Fully-Secure MPC with Minimal Trust

Yuval Ishai Arpita Patra Sikhar Patranabis*
Technion Indian Institute of Science IBM Research India
Divya Ravi Akshayaram Srinivasan
Aarhus University Tata Institute of Fundamental Research
Abstract

The task of achieving full security (with guaranteed output delivery) in secure
multiparty computation (MPC) is a long-studied problem. Known impossibility results
(Cleve, STOC 86) rule out general solutions in the dishonest majority setting. In this
work, we consider solutions that use an external trusted party (TP) to bypass the
impossibility results, and study the minimal requirements needed from this trusted
party. In particular, we restrict ourselves to the extreme setting where the size of the
TP is independent of the size of the functionality to be computed (called “small” TP)
and this TP is invoked only once during the protocol execution. We present several
positive and negative results for fully-secure MPC in this setting.

e For a natural class of protocols, specifically, those with a universal output decoder,
we show that the size of the TP must necessarily be exponential in the number
of parties. This result holds irrespective of the computational assumptions used
in the protocol. The class of protocols to which our lower bound applies is broad
enough to capture prior results in the area, implying that the prior techniques
necessitate the use of an exponential-sized TP. We additionally rule out the pos-
sibility of achieving information-theoretic full security (without the restriction of
using a universal output decoder) using a “small” TP in the plain model (i.e.,
without any setup).

e In order to get around the above negative result, we consider protocols without a
universal output decoder. The main positive result in our work is a construction of
such a fully-secure MPC protocol assuming the existence of a succinct Functional
Encryption scheme. We also give evidence that such an assumption is likely to
be necessary for fully-secure MPC in certain restricted settings.

e Finally, we explore the possibility of achieving full-security with a semi-honest TP
that could collude with other malicious parties (which form a dishonest majority).
In this setting, we show that even fairness is impossible to achieve regardless of
the “small TP” requirement.

*Most of the work was done while the author was affiliated with ETH Ziirich and Visa Research.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting parties to com-
pute a joint function of their private inputs such that only the output of the function is
revealed. Security of MPC protocols is required to hold even if the participating parties are
controlled by a centralized malicious adversary, who may instruct them to deviate from the
protocol specification.

Two desired properties for MPC protocols are fairness and full security (a.k.a guaranteed
output delivery). Fairness requires that if the adversary learns the output of the function-
ality, then all the honest parties also learn this output. Full security strengthens fairness
by requiring that the adversary cannot prevent the honest parties from learning the output
of the functionality. Unfortunately, a classical impossibility result of Cleve [Cle86] shows
that many functions cannot be fairly computed in the presence of an adversary corrupting
a majority of the parties. Two ways to bypass this impossibility result are to restrict the
adversary to corrupt only a minority of the parties, or to make use of some external help.
In this work, we focus on the second approach, referring to the external help as a trusted
party (TP).} A trusted party can be realized via different standard mechanisms, such as
trusted execution environments, hardware tokens, blockchain based approaches, or cloud
service providers.

Size of the TP. TPs are useful in circumventing the above impossibility result as they
can be used as an ideal functionality that takes inputs from the parties and provides them
outputs. A simple way to obtain protocols that satisfy full security in the TP model is for
the TP to perform the entire computation on the private inputs of the parties and provide
them outputs. However, this approach is less desirable as the size of the TP grows with
the size of the function to be computed. Fitzi et al. [FGMOO01] showed how to make the
TP in the above solution universal, in the sense that it is independent of the function being
computed. They also showed that to achieve full security, it is necessary to use TPs that
take inputs from all the parties. However, this negative result does not rule out a TP which
is independent of circuit size of the functionality. Thus, an interesting line of inquiry is
to construct protocols where the size of the TP is independent of the circuit size of the
functionality to be computed.

Apart from being a theoretically interesting question, it is also motivated by the practical
goal of minimizing the use of trustworthy resources. For instance, if a trusted party service
is implemented by a cloud service provider who charges fees for the use of its computational
resources, it is obviously desirable (for the clients) to minimize the fees. The same holds if
the TP is emulated via the use of a large-scale honest-majority MPC protocol. We refer to a
setting of a trusted party whose size is independent of the circuit size of the function as the
small-TP model. This problem is not new to our work and has already been considered in
the works of Gordon et al. [GIMT10] and Ishai et al. [[OS12] for the case of fairness and full
security respectively. The state of the art result from [IOS12] gave a protocol that achieves
guaranteed output delivery with statistical security (in the OT-hybrid model) with a small

1This notion differs from the line of work on token-based cryptography initiated by Katz [Kat07], where
the tamper-proof tokens are generated locally, and the main challenge is to guarantee security even when
tokens can be maliciously generated.

TP, where the parties make n sequential calls to this TP. In the same work, the authors
gave a protocol where the parties make a single call to the TP but where the size of the TP
grows exponentially in the number of parties (and is otherwise independent of the size of
the function to be computed).

Number of Calls to TP. In this work, in addition to considering a small-TP model, we
are interested in designing fully-secure protocols that make a single call to the TP. The-
oretically, one call is the minimal requirement to circumvent the impossibility of [Cle86]
for fair and fully-secure MPC. It further opens up the possibility of protocols in a minimal
model, reminiscent of private simultaneous message (PSM) [FKN94| model, where given a
common randomness, the parties communicate one-shot message to the TP and compute
the output on receiving the reply from the TP. One call as opposed to many calls is also
likely to generate more practical solution in the real world settings where, for instance, the
TP is replaced with a cloud service provider, or a blockchain based approach.

The question which is the main focus to our work is:

Can we construct efficient protocols that make a single call to a “small” TP and achieve
Sfull security?

1.1 Owur Results

We obtain both positive and negative results on the existence of fully-secure MPC protocols
using a small TP. We start by discussing the negative results below.

Impossibility with a Universal Output Decoder. We give evidence that the prior
approaches to this problem necessarily require a TP whose size is exponential in the number
of parties. To show this, we abstract out the key features of prior protocols and show that
any protocol having these features requires an exponential-sized TP (irrespective of the
computational assumptions used in the protocol). More concretely, we consider the class
of protocols where the parties could interact with each other (in an arbitrary number of
rounds), then they make a single call to the trusted party, get a reply from TP, and then
apply a universal decoder on this reply and their state to compute the output. By universal
decoder, we mean that the size of the decoder is independent of the size of the functionality
to be computed (considering single bit output functionalities). This model is interesting
because it is quite natural and, more importantly, it captures prior approaches of realizing
TP-aided MPC protocols [IOS12]. We show that for such protocols, the size of the TP
necessarily grows exponentially with the number of parties. Our result holds irrespective of
the computational assumptions used by the protocol. Additionally, our result holds even if
the size of the TP is allowed to grow with the size of the function output.

Theorem 1 (Informal) For any fully-secure MPC protocol with a universal output de-
coder, the size of the TP must necessarily be exponential in the number of parties.

Necessity of Setup or Computational Assumptions. The above result naturally
leads to the question of whether we can have small TP-aided fully secure MPC protocols
once the restriction of using a universal decoder is relaxed. In this regard, we prove that
any statistically secure protocol (without any trusted setup or correlated randomness) that
makes a single call to a small TP cannot be even semi-honest secure. This impossibility
holds even against protocols that may not have a universal output decoder. This shows that
to achieve full security it is necessary to resort to computational assumptions, or assume
some sort of setup (such a correlated randomness).

Theorem 2 (Informal) There exists no MPC protocol that achieves information-theoretic
security against semi-honest adversaries in the plain model with a TP whose size is a fized
polynomial in the input size of the functionality to be computed.

Positive Results. We now focus on the problem of achieving fully-secure MPC protocols
using a small TP based on computational assumptions. Our main positive result is captured
by the following theorem:

Theorem 3 (Informal) Assuming a single-key succinct Functional Encryption (FE) scheme,
there exists a fully secure efficient MPC' protocol that makes a single call to the small TP.

A single-key succinct Functional Encryption is an FE scheme [SW05,0’N10,BSW11] where
the size of the encryption algorithm does not grow with size of the function for which a secret

key is released. Using known instantiations of these primitives from various assumptions,
we get the following corollary (building on [GKPT13, GGSW13, Wat15]).

Corollary 4 (Informal) There exists a fully secure efficient MPC protocol that makes a
single call to a TP, assuming:

1. Learning with Errors (with sub-exponential modulus-to-noise ratio) [GKPY13] if the
size of the TP is allowed to only grow with the depth and the output length of the
functionality.

2. Witness Encryption scheme [GGSW13] and FHE if the size of the TP is allowed to
only grow with the output length of the functionality.

3. Indistinguishability Obfuscation (i0) [BGIT01, GGH' 13, JLS21] and one-way func-
tions, where the size of the TP is independent of the depth and the output length.

We also give evidence that this assumption might be necessary in certain restricted settings.
Specifically, consider a restricted model of computation where the parties do not interact
with each other, but make a single-call to the TP and could compute the output of the
functionality based on the reply from the TP. This model is reminiscent of the Private
Simultaneous Messages setting [FKN94]. Tt is not too hard to see that this restricted model
is equivalent to an MPC protocol with a succinct online phase. Specifically, the computation
done by the parties before the TP call can be thought of as the pre-processing phase and

this could grow with the circuit-size of the functionality. The messages sent to the TP
and the computation performed by the TP correspond to the online phase of the protocol.
Since we restrict the size of the TP to be small, it follows that the computation and the
communication cost of the online phase is independent of the size of the functionality (i.e.,
the protocol has succinct online phase). The post-processing phase could grow with the size
of the functionality to be computed (this is in fact necessary considering our impossibility
with a universal output decoder).

Currently, the only known constructions of an MPC protocol with a succinct online phase are
based on Laconic Functional Evaluation [QWW18] (LFE). This is known to imply a succinct
Functional Encryption. This suggests that such assumptions are likely to be necessary in
the restricted setting outlined above. In fact, an MPC protocol with a succinct online phase
implies a weaker flavor of LFE with the following property: unlike standard LFE where the
size of the encryption algorithm only grows with the input size, the encryption algorithm
in this weaker notion of LFE has two components: (i) a pre-processing algorithm which
takes the input and the size of the functionality and produces a hint that only grows with
the input size, and (ii) a second algorithm that takes the input and the hint and outputs
a ciphertext (the size of the second algorithm only grows with the input size). Finally, in
this restricted model, we give a positive result by constructing a fully-secure MPC protocol
with a single call to a small TP based on LFE.

(Im)Possibility of Reducing the Trust in TP. Finally, we explore the possibility of
weakening the security requirements from the TP. Interestingly, our above solutions maintain
privacy against the TP, which is an additional desirable feature. More specifically, our
constructions are secure if the adversary corrupts the TP in a semi-honest manner (but
does not corrupt any of the parties). This led us to explore what happens if we allow the
semi-honest TP to collude with the other malicious parties. We showed that irrespective of
the size of the TP, such a model would not be enough to circumvent Cleve’s impossibility of
fairness. This impossibility holds even if we restrict the malicious parties to be fail-stop.?

The summary of our results appears in Table 1.

1.2 Open Directions
Our work opens up several interesting research directions. We highlight some of them below.

e Showing Necessity of Succinct FE. In this work, we argued that any protocol in
the restricted model (where the parties do not communicate with each other before
and after the TP invocation) is equivalent to an MPC protocol with a succinct online
phase. However, we are unable to extend this to the setting where the parties could
potentially communicate with each other before making the TP call. Can we show
that such a weaker model also implies some weakening of an MPC protocol with a
succinct online phase? This would justify the necessity of a succinct FE assumption.

2The notion of fail-stop corruption lies between semi-honest and malicious corruption, where eaves-
dropping like semi-honest corruption is allowed and the only possible malicious corruption is stopping the
execution of the protocol.

Security No. of | Setup | Pre-TP call | Universal Output Possible? Reference
calls interaction Decoder

Statistical 1 Plain Yes No No Theorem 21
Computational 1 C.R. Yes Yes No Theorem 19
Computational 1 CRS No No Yes (based on LFE) Theorem 16
Computational 1 Plain Yes No Yes (based on succint FE) | Theorem 17

Statistical n CR Yes Yes Yes 10512
Computational n Plain Yes Yes Yes (based on OT) 10512

Statistical 1 CR Yes No Open

Table 1: Results on fully-secure MPC in dishonest majority using small TP under different
kinds of setup (plain model i.e. no setup / C.R. i.e. correlated randomness setup / CRS
i.e. common random string), security guarantees (statistical / computational) and different
TP computation models (with / without the restrictions on pre-TP call interaction and
universal output decoder).

e Making more than a Single Call to TP. As our goal was to minimize the require-

ments from the TP as much as possible, we considered the extreme setting where a
single call is made to the TP. A fascinating direction is to explore the possibility of
constructing fully-secure MPC protocols from weaker assumptions which could make
more than one call but less than n calls. The key challenge here is to design protocols
using a stateless TP. If we allow the TP to be stateful, we can realize a construction
based on FHE that makes two calls to a stateful TP (we sketch this construction in
Appendix E).

Characterization of Fair Computation in the Colluding TP model. As men-
tioned previously, in this work we show that it is impossible to achieve fairness in the
colluding TP model (where the adversary can corrupt the TP in a semi-honest man-
ner, in addition to corrupting majority of the parties maliciously) for general functions.
However, it is still possible to achieve fairness for restricted classes of (non-trivial) func-
tions such as coin-tossing (by using the TP to directly compute the desired function).
It is an interesting open question to give a complete characterization of which function
classes can be fairly computed in the colluding TP model.

1.3 Technical Highlights and Discussion

In this section, we present a high-level technical overview of our results.

1.3.1 Positive Results

We present two protocols based on LFE [QWW18] and single-key succinct FE [SWO05,
BSW11] respectively utilizing a single call to a stateless “small” TP. We start off with their
trade-offs below.

LFE-based Construction.

LFE’s 2-round minimal communication pattern leads to an
MPC in a minimal communication setting that is reminiscent of PSM-style [FKN94] com-

munication. Here, the parties start off with a common randomness. Based on the respective
inputs and this randomness, the parties communicate a single message to the TP, which
performs certain computation and returns a message to each party. In the end, each party
recovers the output receiving the message from the TP. Further, the encryption algorithm
of LFE enjoys computation that is only dependent on the depth and the output length (and
not size) of the function to be computed. This allows our TP to be “small”. Here with the
best known realizations of LFE, we can achieve a TP of size poly(n,k,d, m), where d de-
notes depth of the circuit and m denotes input and output size of the circuit, n denotes the
number of parties and x denotes the security parameter. Removing m from the complexity
of the TP seems hard, intuitively because the parties never communicate with each other
and they communicate only once via the TP. Achieving depth and input-size independence
in this minimal communication setting is left as an interesting open question which can
possibly contribute back to the LFE regime. In particular, a solution in our setting where
TP is of size poly(n, x,m) will lead to a LFE where the encryption scheme and size of the
ciphertext are completely independent of the depth of the function under consideration.

FE-based Construction. Unlike the LFE-based construction, our FE-based construction
requires communication amongst the parties before making the TP call. While it loses on
this front, there are two positive features that it brings to the table: (a) possibly weaker
assumption (b) the TP’s computation can be independent of d, m. Elaborating further, LFE
is seemingly a stronger assumption than FE, since it is known to imply FE, while the other
way is not known [QWW18]. Based on the realization of FE under various assumptions,
we achieve multiple variants of the protocol where the TP’s computation ranges from being
completely independent of input, output and function to linearly dependent on output size
(yvet independent of the function) to linearly dependent on the output size and the depth of
the function. To be specific, under 1O and OWFs, our FE based construction leads to a TP
of size poly(n, k), completely independent of the function to be computed.

Construction Overview. Our constructions follow a three-phase structure as follows:
(a) phase 1: here the parties, on holding a common randomness and respective inputs,
prepare a (message, state) pair, where the message is sent to the TP and the state is saved;
(b) phase 2: the TP, on receiving messages from the parties, performs some computation
and returns a message to every party; and (c) phase 3: the parties, on receiving the message
from the TP, uses its state to recover the output. Phase 1 involves communication amongst
the parties in the FE-based construction.

We keep our TP small for both constructions by carefully assigning the tasks under LFE
and FE to the parties and TP. In both the constructions, the TP performs the “encryption”
part of the computation, which makes it circuit-size independent. Whereas the parties take
care of the set-up part (digest generation for LFE and master public/secret key and function
secret key for FE) and the decryption part, both of which are circuit-size dependent. We
provide an informal overview behind the idea for each construction below.

Overview of LFE-based Solution. We present here a simplified version of our LFE-
based construction of fully-secure MPC for ease of exposition. The actual construction,

detailed in Section 3.3, is significantly more nuanced and uses several techniques to achieve
full security against malicious corruptions of parties. In the simplified treatment presented
here, we focus on the case of semi-honest corruption, with the aim of highlighting how
we manage to keep the TP size small (i.e., independent of the function size). Note that
throughout this paper, we assume that each party communicates with the TP via a separate
secure channel, and hence an adversary (corrupting a subset of the parties) cannot eavesdrop
on the communication between the TP and any honest party.

Given this model, a simplified version of our LFE-based protocol works as follows. Each
party first uses a common randomness to (locally) derive a CRS for the LFE scheme and
a digest corresponding to the function f. Each party then sends the LFE CRS and the
function digest to the TP, along with its own input. The TP uses the CRS and the digest
to compute an LFE ciphertext encapsulating the inputs of all of the parties, and sends
this ciphertext back to the parties. Finally, each party uses the LFE CRS and its local
randomness of digest generation to recover the function output. Observe that the size of
the messages to the TP and the computation done by the TP are independent of the size of
the function f; this follows immediately from the succinctness properties of the underlying
LFE scheme. Finally, we can invoke the privacy guarantees of LFE to argue that the parties
learn no more information than the output of the MPC protocol, as desired.

As mentioned earlier, our actual LFE-based protocol uses additional techniques to guar-
antee full security in the presence of malicious corruptions. This includes techniques that
enable the TP to “partition” the parties into various sets depending on their messages to
the TP, and to substitute default input values for (malicious) parties not in the partition
when preparing partition-specific LFE ciphertexts. Further, we augment the construction
to achieve privacy against the TP. We refer to Section 3.3 for the detailed description and
analysis of our construction.

Overview of FE-based Solution. We now present a simplified version of our FE-based
construction of fully-secure MPC. Once again, our actual protocol, detailed in Section 3.3
uses additional techniques to achieve full security against malicious corruptions of parties;
we avoid detailing all of these in the simplified treatment for ease of exposition and focus on
the setting of semi-honest corruptions. As in the LFE-base solution, we again assume that
each party communicates with the TP via a separate secure channel, and hence an adversary
(corrupting a subset of the parties) cannot eavesdrop on the communication between the
TP and any honest party.

Given this model, the simplified version of our FE-based protocol works as follows. The
parties initially engage in an MPC protocol (with identifiable abort security) to decide on a
common set of public parameters and a common master public key for the FE scheme. The
MPC protocol additionally outputs to each party a functional secret key for the function
f to be evaluated. Each party then simply sends the master public key and its own input
to the TP. The TP uses the master public key to compute an FE ciphertext encapsulating
the inputs of all of the parties, and sends this ciphertext back to the parties. Finally, each
party uses the functional secret key to recover the function output. Observe that the size
of the messages to the TP and the computation done by the TP are independent of the size
of the function f as long as the FE scheme is succinct. Finally, we can invoke the privacy

guarantees of FE to argue that the parties learn no more information than the output of
the MPC protocol, as desired.

Note that in the above simplified exposition, the TP incurs an overhead that grows with
the size of the inputs and output of the function f to be evaluated. In our actual pro-
tocol, we use additional techniques to get rid of this dependence. In particular, we use a
carefully designed indirection mechanism that allows the TP to simply partition the set of
parties (depending on their messages to the TP) and encapsulate this partition information
into the FE ciphertext, while delegating all computation dependent on the input/function
size entirely to the parties. These techniques serve two purposes: (a) making the TP size
independent of the function input/output size (and thereby asymptotically smaller than
the TP size for our LFE-based solution) and (b) achieving full security against malicious
corruptions of parties. Interestingly, this solution also achieves privacy against the TP. We
refer to Section 3.4 for the detailed description and analysis of our construction.

1.3.2 Negative Results

We present two impossibility results for fully-secure MPC that utilizes a small TP. Our
two results are as follows: (1) First, we show that it is impossible to achieve a fully secure
TP-aided MPC utilizing a single call to a small TP, for a class of protocols that have
an universal output decoder. This result holds irrespective of computational assumptions
used in the protocol. The universal output decoder is independent of the function to be
computed and only performs poly(n, x) computation. (2) Second, we show an impossibility
in the plain model, for any statistically-secure MPC even in the semi-honest setting. This
result does not assume that the protocol uses an universal output decoder. We present the
high-level intuition of both the impossibility arguments.

Impossibility of Fully-Secure MPC protocols with universal output decoder in
the Correlated Randomness Model. We now present a simplified argument of our
impossibility result and refer to Section 4.1 for the details. Consider an execution of an MPC
protocol with full security, where the adversary behaves honestly until the TP call. During
the TP call, he can choose to make any subset of corrupt parties, say S, abort; where the
number of such subsets is exponential in the number of parties. Since the protocol achieves
full security, it must be the case that the TP is able to enable output computation by the
parties, no matter which subset S the adversary chooses. Further, the output must be such
that it is computed on the default input of the corrupt parties in S and the honest inputs
of others (i.e. the input used until and including the TP call). Intuitively, this means that
the information given to the TP is such that it can be used to recover 2™ output values (one
for each possible subset). Since the TP is small, this information must be ‘short’ and can
therefore be perceived as a ‘compression’ of the 2" output values. Building on the above
intuition, we show that a fully secure protocol with universal output decoder would imply
an (encoding, decoding) scheme which can produce an encoding that is smaller than the size
of the message domain of the encoding scheme. This breaches the known incompressibility
argument. Precisely, we use a result of De et al. [DTT10], which formalizes the notion that
it is impossible to compress every element in a set X to a string less than log|X| bits long.

Impossibility of Statistical MPC in the Plain Model. At a high-level, we show this
impossibility by demonstrating that such a protocol would imply a semi-honest information-
theoretic oblivious transfer (OT) extension, which is known to be impossible [Bea96]. Here,
OT extension refers to a protocol that allows a sender and a receiver to extend a relatively
small number of base OT's (say k) to a larger number of OT's (say k+1) using only symmetric-
key primitives.

The main idea of the proof is to construct an OT extension protocol using the semi-honest
statistically-secure protocol, say II, as follows. We choose the functionality computed by
IT as computing (k + 1) oblivious transfer instances. Since the TP is small, its size must
be strictly less than the circuit computing (k + 1) oblivious transfer instances. Roughly
speaking, IT can thus be viewed as a protocol that enables the parties to generate (k + 1)
OTs, by having access to the TP whose functionality can be realized by strictly less than
(k+1) OTs (say k OTs). We build on this idea to construct an information-theoretic
semi-honest OT extension protocol where the parties begin with k& base OTs and use II to
generate (k+ 1) OTs.

1.3.3 Impossibility of Fair MPC with Colluding TP

Our results show that small TP is sufficient for positive results in the computational security
regime. But what happens when the TP is no longer a stand-alone entity, but behaves as
another party that can not only eavesdrop but also collude with the corrupt parties (while
remaining semi-honest by itself)? This is a model where the adversary controls a majority of
the parties maliciously (or even fail-stop fashion) and simultaneously corrupts the TP semi-
honestly. For this model, we ask the questions: Can such a TP circumvent Cleve’s [Cle86]
impossibility result?

We show a negative result for the above question even for fail-stop adversaries (i.e., the
malicious parties still follow the protocol specification but may choose to stop arbitrarily).
At a high level, we take the following route. Note that the colluding adversarial model
can be viewed more generally, in terms of the general mixed adversarial model that has
been studied in works such as [HMZ08, FHM99, BFH08]. We then use the characterization
proposed in [HMZ08] for fair and fully-secure MPC tolerating mixed adversaries to rule
out a fair protocol in the colluding model even when malicious corruption is replaced with
fail-stop corruption. In particular, we define an adversarial structure complying with the
colluding security model and show that this structure is ruled out by the characterization
provided in [HMZ08].

In light of this generic negative result, we also explore whether a TP can be used in the col-
luding model to realize fair MPC protocols for certain specific classes of non-trivial functions
such as randomized functions without inputs (e.g. coin-tossing). A naive solution uses the
TP to directly compute the desired function; however, such a TP can no longer be small.
We give evidence that a better solution using a small TP is unlikely to exist.

10

1.4 Related Work

There are several fascinating works in the MPC literature that attempt to bypass funda-
mental feasibility results using external aid. Impossibility of fair MPC in dishonest major-
ity [Cle86] is one such classic impossibility result that has received noteworthy attention.
We focus on three broad categories of related works. First is the most closely related line
of work to ours which studies the ‘minimal help’ required to compute all functions fairly,
where the helper is characterized as a ‘complete’ primitive. Second, we outline the line of
works that circumvent the impossibility of [Cle86] by considering non-standard notions of
fairness. Lastly, we outline the works that circumvent yet another classical impossibility,
namely, impossibility of secure computation of general functionalities within the universal
composability (UC) framework in presence of dishonest majority in the plain model [CF01]
by using hardware tokens and physically unclonable functions (PUF's).

The work of [FGMOO1] initiated the study of minimal complete primitives for secure com-
putation, focusing on the minimal cardinality of complete primitives for various thresholds.
In particular, they showed that cardinality n is necessary for any complete primitive in
dishonest majority and proposed Universal Black Box (UBB) as one such primitive. Subse-
quently, the work of [GIM™10] proposed a simpler complete primitive for fairness in dishon-
est majority, namely ‘fair reconstruction’. While [GIM*10] focused on the computational
setting, [IOS12] presented the first unconditional construction of a complete primitive for
full security, whose complexity does not grow with the complexity of the function being
evaluated (in contrast to the UBB solution of [FGMOO1]). However, this unconditional
construction of [I0S12] utilizes number of calls that scales with the circuit size. To improve
the number of calls, [I0S12] also proposes another construction where the number of calls
depends only on the number of parties (n) and the output size of the circuit but settles
for computational security in the plain model. Finally, they also have a variant where the
number of calls is reduced to 1 at the price of increasing the complexity of the computation
done by the complete primitive exponentially in n.

As mentioned earlier, an interesting feature that our constructions satisfy is to maintain
privacy against the TP. We note that the unconditional variant of [I0S12] (that utilizes
number of calls scaling with circuit size) leaks the inputs of the parties to the TP. With re-
spect to the computational variants in [[OS12] that only leak the output of the computation
to the TP, we note that it can be tweaked to maintain privacy of the output by adopting
the technique of [GIM™10].

Other works related to breaking barriers imposed by the impossibility of [Cle86] include
the works of [GK09, GHKL11, ABMO15] that achieve fairness in dishonest majority for
restricted functionalities. Some other works explore non-standard notions of fairness such
as [GK12,B0O015,BLOO20] that considers partial fairness, [BK14, KB14, ADMM14] that
enforce fairness by imposing penalties, [CGJT17] that use bulletin boards and [EGLS85,
GMPY11,PST17] that explore resource-fairness.

The sequence of works of [Kat07, CKST14, DMRV13, CGS08, CCOV19, HPV16] study UC-
security with tamper-proof hardware token, both in the stateful and stateless variants. An-
other interesting utility of hardware tokens is reflected in designing Non-Interactive Secure
Computation (NISC) protocols using minimal assumptions. The work of [BJOV18] pro-

11

poses a UC-secure NISC protocol based on the minimal assumption of one-way functions
using hardware token. Lastly, the works of [BFSK11,0SVW13,BKOV17] explore UC-secure
computation assuming access to PUFs.

Paper Outline. We formally define TP-aided MPC protocols in Section 2. Our positive
results appear in Section 3. The corresponding security proofs are deferred to Appendices A
and B. Our negative results for TP-aided MPC appear in Section 4, with some extensions
presented in Appendix C. Our negative results in the colluding TP model are given in
Section 5 and Appendix D. Finally, Appendix E outlines some results on TP-aided MPC in
the stateful TP model.

2 Security Model

In this section, we present our definitions in the UC-framework [Can01]. We denote by [p]
the set {1,...,p}, for a positive integer p.

The Real World. An n-party protocol IT with n parties P = (Py,..., P,) is an n-tuple
of probabilistic polynomial-time (PPT) interactive Turing machines (ITMs), where each
party P; is initialized with input z; € {0,1}* and random coins r; € {0,1}*. These parties
interact in synchronous rounds. In every round parties can communicate either over a
broadcast channel or a fully connected point-to-point (P2P) network, where we additionally
assume all communication to be private and ideally authenticated. Further, we assume that
there exists a special party P* called a “trusted party” (abbreviated henceforth as TP)
such that each party P; can interact with P* via private and authenticated point-to-point
channels. The TP P* does not typically hold any inputs, and also does not obtain any
output at the end of the protocol. Further, the TP is stateless in the sense that it does not
keep any state between calls.

We let A denote a special ITM that represents the adversary. A is coordinated by another
special non-uniform ITM environment Z = Z,,. At setup, Z gives input (1%, ;) to each
party P;. At the same time, Z provides to A the tuple (C, {x;}icc, aux), where C C [n]U{P*}
denotes the set of all corrupt parties, and aux denotes some auxiliary input.

During the execution of the protocol, the maliciously corrupt parties (sometimes referred
to as ‘active’) receive arbitrary instructions from the adversary A, while the honest parties
and the semi-honestly corrupt (sometimes referred to as ‘passive’) parties faithfully follow
the instructions of the protocol. We consider the adversary A to be rushing, i.e., during
every round the adversary can see the messages the honest parties sent before producing
messages from corrupt parties.

At the conclusion of the protocol, A gives to the environment Z an output which is an
arbitrary function of A’s view throughout the protocol. Z is additionally given the outputs
of the honest parties. Finally, Z outputs a bit. We let real, 4 z(k) be a random variable
denoting the value of this bit.

12

Definition 5 (Real-world execution) LetII be an n-party protocol amongst (Py, ..., Py)
computing an n-party function f: ({0,1}*)™ — ({0,1}*)™ and let C C [n]U{P*} denote the
set of indices of the corrupted parties. The execution of Il under (Z,8,C) in the real world,
on input vector T = (x1,...,xy), euziliary input aux and security parameter k, denoted
reali ¢ A(aux) (Z, k), s defined as the output of Z resulting from the protocol interaction.

The Ideal World. We describe ideal world executions with unanimous abort (un-abort),

identifiable abort (id-abort), fairness (fairness) and full security aka. guaranteed output
delivery (full).

Definition 6 (Ideal Computation) Considertype € {un-abort,id-abort, fairness, full}. Let
f:({0,1}")™ — ({0,1}*)™ be an n-party function. Once again, we have a non-uniform en-
vironment Z = Z,; that gives (at setup) input (1%, x;) to each party P;, while also providing
to the simulator S the tuple (C,{x;}icc,aux), where C C [n] U {P*} denotes the set of all
corrupt parties, and aux denote some auxiliary input. Then, the ideal execution of f under

(2,8,C) on input vector T = (x1,...,x,), auziliary input aux to S and security parameter

K, denoted ideal}y%es (aux) (Z, k), is defined as the output bit of Z resulting from the following

ideal process.

1. Parties send inputs to trusted party: An honest party P; sends its input x; to the
trusted party. The simulator S may send to the trusted party arbitrary inputs for the
corrupt parties. Let x} be the value actually sent as the input of party x;.

2. Trusted party speaks to simulator: The trusted party computes (y1,...,yn) = f(ah, ..., 2}).
If there are no corrupt parties or type = full, proceed to step /.
(a) If type € {un-abort,id-abort}: The trusted party sends {y;}icc to S.
(b) If type = fairness: The trusted party sends ready to S.

3. Simulator S responds to trusted party:

(a) If type € {un-abort, fairness}: The simulator can send abort to the trusted party.
(b) If type = id-abort: If it chooses to abort, the simulator S can select a corrupt
party i* € C who will be blamed, and send (abort,i*) to the trusted party.

4. Trusted party answers parties:

(a) If the trusted party got abort from the simulator S,

1. It sets the abort message abortmsg, as follows:
e if type € {un-abort, fairness}, we let abortmsg = L.
e if type = id-abort, we let abortmsg = (L,7*).
it. The trusted party then sends abortmsg to every party P;, j € [n]\ C.

Note that, if type = full, we will never be in this setting, since S was not allowed
to ask for an abort.

(b) Otherwise, it sends y; to every Pj, j € [n].

13

5. Outputs: Honest parties always output the message received from the trusted party
while the corrupt parties output nothing. At the conclusion of the above execution, S
provides Z with an output which is an arbitrary function of S’s view throughout the
protocol. Z is additionally given the outputs of the honest parties. Finally, Z outputs
a bit. We let ideal?:?ﬁz(/i) be a random variable denoting the value of this bit.

Security Definitions. We now define the security notions used in this paper.

Definition 7 (Colluding and Non-colluding Security) Considertype € {un-abort,id-abort,
fairness, full}. Let f: ({0,1}*)™ — ({0,1}*)™ be an n-party function. A protocol 11 securely
computes the function f in the colluding model with type security if for any adversary A,
there exists a simulator S such that for any security parameter k and any circuit family

Z ={Z;} corrupting any C C [n] maliciously and the TP P* semi-honestly simultaneously,

we have

— —J); type =
{reaIH’C“A@mx) (IIJ, K)}ie({o,l}*)",HEN - {Idealﬁc,s(aux) (ZZ, K)}EG({O,I}*)",nEN :

When the corruption is non-simultaneous i.e. either any subset of [n] are maliciously corrupt
or the TP P* is semi-honestly corrupt, we denote the security by non-colluding. Therefore
we need the above indistinguishability to hold in two corruption cases: (a) C C [n] malicious
corruption (b) C = P* semi-honest corruption.

A protocol achieves computational security, if the above distributions are computationally
close in the presence of the parties, A, S, Z that are PPT. A protocol achieves statisti-
cal (resp. perfect) security if the distributions are statistically close (resp. identical).

3 Fully-secure MPC with Single Call to Small TP

Here, we present TP-aided MPC protocols that make a single call to a small TP and
achieve full security in the non-colluding setting against malicious corruption of majority
of parties and semi-honest corruption of the TP. We present two flavors of protocols— one
based on laconic function evaluation (LFE) [QWW18] and the other based on succinct
single-key functional encryption (FE) [GKPT13]. We begin by recalling the definitions for
these primitives.

3.1 Laconic Function Evaluation (LFE)
We recall the definition of LFE — a primitive introduced in [QWW18].

Definition 8 (Laconic Function Evaluation) An LFE scheme for a class of circuits
H = {Hm}men (represented as Boolean circuits with m-bit inputs) is a tuple (LFE.Setup, LFE.Compress,
LFE.Enc, LFE.Dec) defined below.

14

e LFE.Setup(1®) — LFE.crs: On input the security parameter 1%, the generation algo-
rithm returns a common random string LFE.crs.

e LFE.Compress(LFE.crs,h) — (digest,r): On input LFE.crs and a circuit h, the com-
pression algorithm returns a digest digest and a decoding information r.

e LFE.Enc(LFE.crs, digest, z) — ct: On input LFE.crs, a digest digest, and a message x,
the encryption algorithm returns a ciphertext ct.

e LFE.Dec(LFE.crs,ct,r) — y: On input LFE.crs, a ciphertext ct, and a decoding string
r, the decoding algorithms returns a message y.

In this work, we use LFE schemes that satisfy correctness, simulation-security and function-
hiding security, as defined formally below.

Definition 9 (Correctness) Let LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec) be
an LFE scheme for a class of functions H = {Hm}men. We say that LFE is a correct
LFE scheme if for any m = poly(k), for all h € H,,, and for all x € {0,1}™, letting
LFE.crs < LFE.Setup(1*), and letting

(digest,r) < LFE.Compress(LFE.crs, h), ct < LFE.Enc(LFE.crs, digest, x),
the following holds:
Pr[LFE.Dec(LFE.crs,ct,r) = h(z)] = 1 — negl(k),
where the probability is taken over the random coins of LFE.Setup, LFE.Compress, and

LFE.Enc.

Definition 10 (Simulation-Security) Let LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec)
be an LFE scheme for a class of functions H = {Hm tmen. For every non-uniform PPT ad-
versary A = (A1, A2) and every PPT simulator S, consider the following two experiments (k

being the security parameter):

Experiment Expt[eFE"E’A(l’*): Experiment ExptiijeE[AS(l’{):
LFE.crs < LFE.Setup(1*) LFE.crs < LFE.Setup(1*)
(z,h,s,stq) < A (17, LFE.crs) (z,h,s,sta) « A (17, LFE.crs)
(digest, r) < LFE.Compress(LFE.crs, h; s) (digest, r) < LFE.Compress(LFE.crs, h; s)
ct < LFE.Enc(LFE.crs, digest,) ct + S(LFE.crs, digest, h, h(z))
Output b < As(st 4, ct) Output b < Ay (st 4, ct)

The LFE scheme LFE is said to satisfy (semi-malicious)-simulation-security if for any security
parameter k£ € N, there exists a PPT simulator S such that for every non-uniform PPT

15

adversary A = (A, A3), the outcomes of the real and ideal experiments are computationally
indistinguishable, i.e., we have

PrExptieL 4(1%) = 1] — Pr[Exptled , (1%) = 1]| < negl(x),

where A is admissible if h € H,, for some m = poly(k), and the probability is taken over
the random coins of LFE.Setup, LFE.Compress, LFE.Enc, A;, and S.

Definition 11 (Function-Hiding Security) Let LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec)
be an LFE scheme for a class of functions H = {Hm tmen. For every non-uniform PPT ad-

versary A = (A1, As) and every PPT simulator S, consider the following two experiments (k

being the security parameter):

. ideal,FH K\ .
Experiment ExptrLeFallz”T(l'“): Experiment Exptrg’y (17):
LFE.crs « LFE.Setup(l”) LFE.crs + LFE.Setup(l”’)
(h, StA) « ./41(1'{, mpk) (/hf_t/A) — .,41(1“, LFE.CI’S)
(digest, r) <— LFE.Compress(LFE.crs, h) digest <— S(LFE.crs, F)
Output b < As(st 4, digest) Output b + As(st 4, digest)

The LFE scheme LFE is said to satisfy function-hiding simulation-security if for any security
parameter k € N, there exists a PPT simulator S such that for every non-uniform PPT
adversary A = (A1, As), the outcomes of the real and ideal experiments are computationally
indistinguishable, i.e., we have

Pr[ExptrLe,flE’,T(l”) =1] - Pr[Expt:f',fE[jf's(l“) = 1]| < negl(k),
where A is admissible if h € H,, for some m = poly(x), and the probability is taken over

the random coins of LFE.Setup, LFE.Compress, A, and S.

3.2 Succinct Single-key Functional Encryption
We now recall the definition of succinct single-key functional encryption (FE).

Definition 12 (Functional Encryption) A functional encryption scheme FE for a class
of functions H = {Hm}men (represented as Boolean circuits with m-bit inputs), is a tuple
of four PPT algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) such that:

e FE.Setup(1%) — (mpk, msk): On input the security parameter k, the setup algorithm
outputs a master public key mpk and a master secret key msk.

e FE.KeyGen(msk, h) — sky,: On input the master secret key msk and a function h € H,
the key generation algorithm outputs a key skp,.

16

e FE.Enc(mpk,z) — ct: On input the master public key mpk and an input x € {0,1}™
for some m = poly(k), the encryption algorithm outputs a ciphertext ct.

e FE.Dec(skp,ct) — y: On input a key sk, and a ciphertext ct, the decryption algorithm
outputs a value y.

In this work, we use single-key FE schemes that satisfy correctness, single-key full-simulation-
security and succinctness, as defined formally below.

Definition 13 (Correctness) Let FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) be a single-
key FE scheme for a class of functions H = {H . }men. We say that FE is a correct single-key
FE scheme if for any m = poly(k), for all h € H,,, and for all x € {0,1}™, letting

(mpk, msk) < FE.Setup(17), skj < FE.KeyGen(msk,h), ct < FE.Enc(mpk,z),

the following holds:
Pr[FE.Dec(sky, ct) = h(z)] = 1 — negl(k),

where the probability is taken over the random coins of FE.Setup, FE.KeyGen, and FE.Enc.

Definition 14 (Full-Simulation Security) Let FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec)
be a single-key FE scheme for a class of functions H = {Hm}men. For every non-uniform
PPT adversary A = (A1, As) and every PPT simulator S, consider the following two ex-
periments (k being the security parameter):

Experiment ExptrFeéjA(l"): Experiment ExptiFdEiL"S(l"“):
(mpk, msk) « FE.Setup(1*) (mpk, msk) < FE.Setup(1*)
(h, St_A) %Al(lﬁ,mpk) (h, StA) %Al(l"‘,mpk)
sky, < FE.KeyGen(msk, h) skp, «+ FE.KeyGen(msk,).
(x,st!y) « Az(st.a,sks) (Na:, st’y) < Aa(sta,skp)
ct « FE.Enc(mpk, z) ct < S(mpk, sky,, h(z), 11#1)
Output (st’y,ct) Output (st'y, ct)

The FE scheme FE is said to satisfy (single-key) full-simulation-security if for any security
parameter k£ € N, there exists a PPT simulator S such that for every non-uniform PPT
adversary A = (A1, As), the outcomes of the real and ideal experiments are computationally
indistinguishable, i.e., we have

Exptie.a(17) = Exptigy s(17).
Definition 15 (Succinctness) Let FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) be a single-

key FE scheme for a class of functions H = {Hmtmen. We say that FE is succinct if for
any m = poly(k), for all h € H,,, and for all x € {0,1}™, letting

(mpk, msk) < FE.Setup(1”), ct < FE.Enc(mpk, z),

the size of the ciphertext ct (i.e., |ct|) does not grow with the size of the circuit for h, but
only with its depth.

17

3.3 Fully-secure MPC from Laconic Cryptography

In this subsection, we present our construction of TP-aided MPC from LFE.

Construction Overview. The high-level description of the construct, following the three-
phase structure (as discussed in Section 1.3), is presented in two steps. In the first step, we
assume an honest TP and allow the parties to hand out the inputs to the TP in the clear.
In the second step, input privacy against the TP is put in place via function-hiding LFE.
Throughout, we assume an LFE with a common random string (CRS), as is the case for
the construction of LFE in [QWW18].

In the first phase, every party uses the common randomness to derive a CRS for the LFE
and subsequently computes a digest of f (the function to be computed) using the CRS. It
sends the CRS, the digest and its input to the TP. The TP needs to compute an encryption
of the collective inputs under the correct digest and CRS. However, a malicious party may
send a incorrect digest, say for a function that leaks an honest party’s input. The TP
can verify the correctness of the digest, since the compress function of the LFE scheme is
deterministic. But this amounts to a computation that is dependent on the circuit size,
breaking the promise of small TP. To tackle this issue without recomputing the function
digest, the TP partitions the set of parties based on the CRS and digest. For every set
that sends the same copy of both, gets an encryption under the digest, of the message that
consists of the real inputs received from that set and default inputs for those outside that
set. This trick ensures that a corrupt party does not get encryption of the inputs of the
honest parties under its ill-formed digest. Lastly, on receiving the encryption from the TP,
a party simply uses the CRS to learn the function output.

To additionally ensure input privacy against the TP, the function f for LFE is replaced with
a related function g that hard-codes n random masks and takes as input n masked inputs of
the parties. It first unmasks the masked inputs and then performs the f-computation. The
masks are derived from common randomness and thus are known to all. We can use one-time
pad for masking. This implies every party has the knowledge of g and can generate a digest
that is supposed to be the same. Now, every party uses its respective mask to mask its input
before sending to the TP. The TP performs the same computation as before, but now on
the received masked inputs, digest for g and CRS. To hide the random masks that are hard-
coded inside g from the TP who will learn the digest, we switch to function-hiding LFE.
This makes sure the TP learns neither about the inputs, not about the output. The LFE
security ensures the parties learn nothing but the output of g. The detailed construction is
as described below.

—i Protocol 11, e

Inputs: Each party P; has input z;. All parties share a common randomness of the form r||r’.

Output: f(z1,...%n)

Primitive: The following building blocks are used

e An LFE scheme LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec).

Phase 1 (Pre-TP Call): Each party P; does the following:

18

e Set LFE.crs := r , where r is obtained from the common randomness r||7’.

e Derive n random pads {r;};e[n], where |r;| = |z;|, using 7' obtained from the common ran-
domness r||r’.

e Compute (digest?,r?) <— LFE.Compress (g, LFE.crs) , where function g is as follows and send
(LFE.crs, digest?, z; = x; @ r;) to the TP.
— g hard-codes the n pads {r;};cn]
— it takes n inputs z1,..., 2
— it computes f on input {z; @ rj}jcm)-

We note that (LFE.crs,digest?, r?) is supposed to be the same for all parties, since they use
the common randomness r and f.

Phase 2(TP Call): The TP carries out the following computation:

e Initialize the set Z = @. Add P; to Z if nothing (or syntactically incorrect message) is
received from P;.

e Partition the set P\ Z into subsets S, Sz ...5S; according to the values of (LFE.crs, digest?)
received from the parties i.e. all parties in a subset have sent the same (LFE.crs, digest?).

e For each S, for a € {1,...,¢}

— Let LFE.crsq, digest?, denote the common values submitted by parties in Sa.

— For each j € {1,...,n}, set z; = z; if j € So, and Z; = z; otherwise, where z; is received
from P; and {z}};eq1,...,n} are the default (masked) inputs sampled randomly by the TP.

— Send ctq, S, to every party in S,, where cty LFE.Enc(digesti, (21, ... ,Zn)).
Phase 3 (Post-TP Call): A party P;, on receiving ct, computes output y as

y LFE.Dec(LFE,crs, t, rg),

using LFE.crs, 79 from Phase 1.

Figure 1: Fully-secure MPC with single TP call based on LFE

Our result can be summarized via the following theorem.

Theorem 16 (TP-Aided MPC from LFE) Assuming the existence of a laconic func-
tion evaluation (LFE) scheme that satisfies correctness, simulation-security and function-
hiding security, there exists a TP-aided MPC protocol Il gg for any functionality f that:

o utilizes a single call to a stateless TP of size poly(n, k, m,a,) (where n is the number
of parties, K is the security parameter, m is the size of each party’s input to f, and

a and B denote the sizes of a single digest and a single ciphertext, respectively, in the
LFFE scheme), and

o achieves full security against malicious corruption of up to (n — 1) parties and semi-
honest corruption of the TP in the non-colluding model (see Definition 7).

19

We defer the formal proof of this theorem to Appendix A. We present here an asymptotic
analysis of the size of the TP in our protocol.

TP Size. To begin with, note that the input to the TP from each party P; is of size
poly(k,m,), where k is the security parameter (we assume here that the LFE scheme
generates LFE.crs and randomness r of size poly(k)), « is the size of the digest generated
by the LFE scheme, and m is the size of each party’s input to f. Hence, the overall size of
inputs received by the TP across all parties is poly(n, k,m,«a). Also, the TP generates an
LFE ciphertext ct of size, say (3, for each partition of parties. Hence, the overall size of the
TP is at most poly(n, K, m,a, 3), as summarized in Theorem 16.

3.4 Fully-secure MPC from Single-Key Succinct FE

In this subsection, we show how to construct TP-aided MPC from single-key succinct FE.

Construction Overview. The high-level description of the construct, following the three-
phase structure (as discussed in Section 1.3), is presented in two steps. In the first step, we
assume an honest TP and allow the parties to hand out the inputs to the TP. In the second
step, input privacy is put in place via a SKE.

For our construction, in the first phase, the parties execute an MPC protocol with identifiable
abort?® amongst the n parties that establishes the setup of the FE and gives the parties sk ¥
(corresponding to the function f desired to be computed) to aid in output computation.
Since this execution may result in abort (where only corrupt parties may get the output),
we cannot allow the MPC to output the FE ciphertext corresponding to the parties’ inputs
directly. Instead, the ciphertext is computed by the TP to whom the parties submit their
inputs when Phase 1 is successful (which may need repeated run of the MPC with identifiable
abort). To enable the TP to do so, the parties additionally submit mpk (obtained in Phase
1) to the TP. In order to ensure that privacy of honest parties’ inputs is maintained against
a corrupt party who sends mpk distinct from the one obtained in Phase 1, the TP does the
following: partition the set of parties based on the value of mpk they submitted. For each
partition, the TP returns ciphertext based on actual inputs of parties within the partition
and default otherwise. This ensures that a corrupt party who submits an incorrect mpk (say
mpk’ which is distinct from the one obtained from Phase 1) never get access to a ciphertext
computed using mpk’ that involves an honest party’s input. Lastly, the parties use the
ciphertext obtained from the TP and sk; to obtain the output.

Note that the above protocol is not secure in the non-colluding model as it does not achieve
input privacy against a semi-honest TP. Further, the computation done by the TP grows
with the size of the parties’ inputs. In order to achieve security against a semi-honest TP
and make the computation of the TP independent of the size of the parties’ inputs, we
make the following modifications. First, the input of each party is hidden in a ciphertext
of a SKE. The MPC with identifiable abort now takes as input the inputs of the parties,

3Some of the protocols in the literature realizing this functionality for general functions are [GS18].

20

computes distinct ciphertexts for the inputs, each under a distinct secret key, and delivers
only the ith secret key to P;. Instead of the inputs, these keys are sent to the TP, who
performs similar computation as before, but with respect to these keys. To make the both
ends meet, the function to be computed by FE is changed to a related function g (instead
of the function to be computed f) that hard-codes the ciphertexts of the inputs and takes
the n keys as inputs. The function ¢ first decrypts the ciphertexts and then compute f on
the decrypted messages. The MPC with identifiable abort now prepares and gives out the
secret key of FE corresponding to g. To prevent the parties from tampering the secret keys
for SKE while sending to the TP, we use a signature scheme. The MPC samples a (public,
secret) key pair for a digital signature scheme and delivers signed messages meant for TP
(SKE key and mpk in this case) and the public key for verification to a party. The parties
forward this to the TP, who now discards the parties whose verification fails, partitions the

parties based on the verification key and proceeds as before. The detailed construction is
as described below.

—i Protocol I1ge

Inputs: Each P; participates with input ;.
Output: f(z1,...%n)

Primitive: The following building blocks are used
e An MPC protocol T4y, that achieves security with identifiable abort.

e A succinct single-key simulation-secure FE scheme FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec)
e An IND-CPA secure symmetric-key encryption scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec).

A digital signature scheme (Sign, Vrfy).

Phase 1 (Pre-TP Call): Each P; invokes an instance of ITigy, with input z; to compute a
function that does the following:
e Generate a default input x} for every P;.
o Generate a secret key k; « SKE.Gen(1") for every party P;.
e Generate (msk, mpk) < FE.Setup(1~).
e Generate e; + SKE.Enc(k;, ;) for every P;.
e Generate sk, = FE.KeyGen(msk, g), where g is a function defined as follows:
— g embeds the ciphertexts {e;};e[n and default inputs {z} ;e
— g takes as input a set of keys {k;};c[n) and an n-length bit vector {b;} cin]-

— g outputs f(Z1,...,%n) where for each j € [n], T; = SKE.Dec(ks, ¢;) if b; = 1 and &; =
otherwise.

e Generate (sk,vk) for the digital signature scheme.
e For each i € [n], output (vk, mpk, k;, 0s,sky) to P; where o; = Sign(sk, (z, mpk, k;)).
If TTigua outputs (L, C), re-run Phase 1 among the set of parties P \ C (the inputs of parties in C

are substituted using default inputs). Else, continue to the next phase. Each P; invokes the TP
with in; = (vk, mpk, ki, o).

Phase 2 (TP Call): The TP carries out the following computation:

21

e Initialize Z = @. Add P; to Z if nothing is received or Vrfy(vk, (j, mpk, k;,c;) = 0, for a tuple
(vk, mpk, kj, o;) received from P;.

e Partition the set P\ Z into subsets S1,S2...S¢ according to the values of vk received from
the parties i.e. all parties in a subset have sent the same vk.

e For each S, for a € {1,...,¢}
— Let mpk,, denote the common mpk submitted by parties in S,.
— For each j € [n], set ka,; = k;j and by,j = 1if j € S,, and ka,; = L and ba,; = 0 otherwise.
— Compute and return ct, to every party in S,, where

Cty < FE.Enc(mpka, ({ka,j}je[n]a {ba,j}je[n]))-

Phase 3 (Post-TP Call): A party computes output y = FE.Dec (skg,cta) using sk, obtained
from Phase 1 and ct, obtained from Phase 2.

Figure 2: Fully-secure MPC with single TP call based on Succinct Single-Key FE

Our result can be summarized via the following theorem:

Theorem 17 (TP-Aided MPC from Single-Key Succinct FE) Assuming the existence
of an FE scheme that satisfies correctness, (single-key) simulation-security and succinctness,
there exists a TP-aided MPC protocol llgg for any functionality f that:

o utilizes a single call to a stateless TP of size poly(n,k,3) (where n is the number of
parties, k is the security parameter, and B denotes the size of a single ciphertezt in
the FE scheme), and

o achieves full security against malicious corruption of up to (n — 1) parties and semi-
honest corruption of the TP in the non-colluding model (see Definition 7).

We defer the formal proof of this theorem to Appendix B. We present here an asymptotic
analysis of the size of the TP in our protocol.

TP Size. To begin with, note that the input to the TP from each party P; is of size
poly(k), where & is the security parameter. This follows from the following assumptions:
e The FE scheme generates a master public key mpk of size poly(k).

e The digital signature scheme generates a verification key vk and a signature o; of size
poly(k) each.

e Each symmetric key K; is of size poly(k).

Hence, the overall size of inputs received by the TP across all parties is poly(n,). Also,
the TP generates an FE ciphertext ct of size, say 3, for each partition of parties. Hence,
the overall size of the TP is at most poly(n, k, 3), as summarized in Theorem 17.

22

4 Impossibilities in the Non-colluding Model

In this section, we present our negative results for small-TP aided MPC.

4.1 Impossibility in the Correlated Randomness Model for proto-
cols with universal output decoder

Here, we make following assumptions— (a) small TP: the TP performs poly(n, k) computa-
tion, (b) small output decoder: the parties, on receiving the message from the TP, perform
poly(n, k) computation to compute the output. We show that in this model, it is impos-
sible to design a fully secure MPC, even if parties have access to correlated randomness
and irrespective of computational assumptions used in the protocol. This holds even if the
parties are corrupted in fail-stop fashion in the non-colluding model. Before we begin, we
formalize the class of protocols for which the impossibility holds.

Notation. A fully-secure n-party protocol IT in the correlated randomness model that
utilizes a single call to a small stateless TP comprises of the following phases.

e Correlated Randomness Setup. The setup computes correlated randomness (cry, cra,
...,cry,) and outputs cr; to P; (i € [n).

e Pre-TP Computation. In this phase, the parties may interact with each other
(before the TP call), where each P; participates with input z; and randomness r;. Let
st; denotes the state of P; at the end of this phase, where st; comprises of its input
x;, randomness r;, correlated randomness cr; (received as part of the setup) and in
addition, the messages sent / received during this phase, if this phase was interactive.
Lastly, each P; computes algorithm (in;,st}) <— preTP,(st;) and invokes TP with in;.

e TP Computation. For each i € [n], the TP computes its response as out;
TP;(iny,...,iny;r1p), where rvp denotes the internal randomness of the TP and TP,
denotes the algorithm used by the TP to compute its response to P;.

e Post-TP Computation. Each P; (i € [n]) computes its output as y < postTP,(st}, out;),
where postTP, denotes the algorithm used by P; to compute its output. We refer to
this algorithm as output decoder occasionally.*

In our model, (a) each TP; for i € [n] is poly(n, k)-time (b) each postTP, for i € [n] is
poly(n, k)-time.

To show the impossibility, we show that a fully secure protocol would imply a statistically-
correct (encoding, decoding) scheme which can produce an encoding that is smaller than the

4We believe that a non-interactive post-TP computation phase is essentially without loss of generality.
In other words, any fully secure MPC protocol (having access to one TP call) with interaction amongst the
parties can be transformed to one where the parties do not communicate at all amongst themselves after
receiving TP’s response. We give a proof in Appendix C.

23

size of the message domain of the encoding scheme. This breaches the known incompress-
ibility argument. Precisely, we use the following proposition of De et al. [DTT10], which
formalizes the notion that it is impossible to compress every element in a set X to a string
less than log | X| bits long.

Proposition 18 [Incompressibility Argument [DTT10]] Let E : X x {0,1}* — {0,1}™ and
D :{0,1}™ x {0,1}* — X be randomized encoding and decoding procedures such that, for
every x € X, Procqo1yo[D(E(w,7),7) = 2] > 5. Then m > log(|X|) —log(1/4).

Theorem 19 A general fully secure MPC protocol is impossible in the non-colluding model
(see Definition 7), where the parties have access to arbitrary correlated randomness, a single
call to a TP of size poly(n, k), and are allowed to use an output decoder of size poly(n, k),
even when malicious corruption of parties in P is restricted to fail-stop corruption.

Proof: Towards a contradiction, assume such a protocol Il computing an arbitrary function
f exists (f is defined later) that achieves full security in the correlated randomness model,
satisfying correctness with overwhelming probability. Without loss of generality, II com-
prises of the phases (Correlated randomness setup, pre-TP computation, TP computation,
post-TP computation) described previously.

Below, we show that II leads to a statistically-correct randomized (encoding, decoding)
scheme (E, D) (as defined in Proposition 18).

—[Algorithm (E, D)}

E : {0,1}211’_1 x {0,1}? — {0,1}™: This algorithm takes as input 2"~' bits, say (b1,b2,...,
byn—1), an randomness r € {0,1}” and computes its encoding as follows:

1. For each i € [n], choose a pair of inputs (z;,z;) using r.

2. Consider a set S containing tuples of the form (x1,,...,x,) where x; € {z;,z;} for i €
{2,...,n}. Note that z; is fixed in all the tuples and |S| = 2"~ .

3. Consider a lexicographic ordering of the elements in S generated as follows. For each i € [n],
map z; to bit 0 and z] to bit 1. Now each tuple in S can be viewed as an n bit string and
the elements in S can be lexicographically ordered. Let us denote the jth element as S;. Let
M be a mapping between S and (b1, b, .. .,byn—1), where S; is mapped to b; for j € [2"71].

4. Construct an n-input function f(Xj, ..., X,) that outputs M(Xl, e Xn), when (X1,...,X5,)
€ S and L otherwise.

5. Suppose II computes f on input X; from P;. Consider an execution of II where parties
{P1,..., P,} participate using inputs {«:};c[n), randomness {r:};c[,] and correlated random-
ness {cri}icin) (the latter two picked using r). Further, II uses z; as the default input of
P; (i € [n]). Emulate the steps of this execution until the pre-TP computation to ob-
tain {st},in;};en). Let st] denote the subset of st; used in postTP,; with size restricted
to poly(n, k), as dictated by II (recall that postTP function is allowed to do only poly(n,k)
computation).

6. The encoding of input (b1, ba,...,bon-1) is defined as {st},in1,...,in,}, TP1 (the algorithm

used by the TP to compute its response to P;) and postTP; (the output computation algorithm
Of P1) .

24

D : {0,1}™ x {0,1}* — {0, 1}27171: It takes as input the encoding {st},ini,...,in,} and the
r € {0,1}* used by E. For each subset S’ C {2,...,n} in lexicographic order (starting from
S =2 to S ={2,...,n}), do the following (below we abuse the notation and use S’ to denote
the decimal value corresponding to the binary representation):

1. Compute out<13> < TPy(inh,iny, ... iny;71p), where inj = in; for i ¢ S’ “ and inj = L for
i € S’. Here, r1p is derived from r as per the distribution corresponding to the internal
randomness of the TP in II.

2. Compute bgr) postTP, (st], outgsl)).
Output (b1, b2,...,bon—1).

“Note inf = in1 is always satisfied as S’ is defined as subsets of {2,...,n}.

Figure 3: A Randomized Encoding and Decoding Scheme

Lemma 20 (E, D) is a statistically-correct encoding and decoding scheme.

Proof: We now claim that the above pair (E, D) is statistically correct. That is the following
holds good: for every (by,...,ban-1) € {0, 1}2%17 Prrcioye [D(E((b1, ..., bon—1),7),7) =
(b1,...,ban-1)] > &. This is because II computes f that, for every input in S, as defined in
E, maps to one distinct bit in the sequence (by, ..., byn—1) (recall that the jth element of S,
S; is mapped to b;). Further, IT computes f and achieves full security (guaranteed output
delivery) and satisfies correctness with overwhelming probability. Specifically, if a subset
of parties P; such that ¢ € S’ do not invoke the TP during II, then the TP receives {in;}
only from the other parties P; where i ¢ S’ and sets in; = L for parties in S’. The output
computed by the TP is on the default input z; for each party P; with ¢ € S’ and «; for each
party P; with i ¢ S’.

Since S’ is defined as subsets of {2, ...,n} and never includes the index 1, the above captures
executions of II where P; is honest, participated honestly with input x; and invoked the
TP with in} = in;. This allows us to rely on the correctness of the output computed by

postTP,. We can thus infer that the 2"~! bits computed during decoding indeed correspond
to the set of outputs of f for each subset S’, namely (b1,ba, ..., ban-1).

Notice that the above argument holds good even if I1 satisfies full security tolerating fail-stop
corruption where the parties do not send their message to the TP. Furthermore, IT satisfying
fairness is not enough to claim that (E, D) is (statistically) correct, because D may fail to
recover (by,...,byn—1) always.

]

By the incompressibility argument of [DTT10] (which is formally stated above), it must
hold that |st}| + |ing] + ... |in,| + |out1| + [postTP;| > 2"~1. We can thus infer that at

least one of the terms > % Recall that by our assumption on small output decoder, the
terms |st}| and |postTP;| are bounded by size poly(n,«). Therefore, it must be the case

that one of the terms inq,...,in,, out; must be of size > % However, this contradicts
our assumption that the TP has size poly(n,) as iny,...,in, comprises of the input to the

25

TP and out; is the algorithm run by the TP to compute its response to P;. We have thus
arrived at a contradiction; completing the proof.

O

4.2 Impossibility in the Plain Model

In this section, we show that in the plain model (without correlated randomness), it is
impossible to design statistically secure MPC with the non-colluding security, even when
the parties are only semi-honestly corrupt. That is, we prove that a protocol is impossible
when the adversary in the non-colluding TP model can either (a) corrupt majority of the
parties { Py, ..., P,} semi-honestly or (b) control the TP semi-honestly). We state the formal
theorem below.

Theorem 21 A general statistically-secure MPC protocol is impossible in the plain and the
non-colluding TP model (see Definition 7), where the parties have access to a single call to
a small TP of size poly(n, k), even when malicious corruption of parties in P is restricted
to semi-honest corruption.

Proof. Towards a contradiction, assume that there exists a statistically-secure 2-party
protocol II securely computing f against a semi-honest adversary in the non-colluding TP
model. Let f be defined as the functionality computing (k + 1) oblivious transfer (OT)
instances i.e.
by, b b
[z = (mg,mi)icprr), 2 = (b1, .. b, beyr)) = (my*,ma? .. mpR)

Here, the input of P; (who acts as the sender) consists of (k4 1) pairs of bits and the input
of P, (who acts as the receiver) consists of (k + 1) bits.

Suppose Ctp denotes the circuit describing the function {TP};c[,,) computed by the TP
during II. Based on our assumption that the TP is ‘small’, it must hold that |Ctp| <
poly(n, k) which is independent of the function f being computed. Specifically, this means
that the computation done by the TP must be strictly less than computing (k + 1) OTs.

We claim that II computing f can be used to build a semi-honest OT extension protocol
IT'. Assume a semi-honest setting where the parties are given k& OT correlations generated
as the base OTs of the OT extension protocol IT'. TI' proceeds as follows:

1. The parties execute the steps of IT in the pre-TP computation phase.

2. Next, the parties emulate the TP computation phase of II by executing the perfectly-
secure semi-honest GMW protocol [GMWST7] to compute the function described by
Ctp. For this, the parties use the k& OT correlations (given as base OTs). Note that
these OT correlations must suffice as computing Ctp must involve computing fewer
than (k + 1) OTs (based on our assumption).

26

3. Finally, the parties use the output of the execution of the GMW protocol (which
computes the TP response of II) to carry out the steps of output computation as per
II. This will result in the parties obtaining the output of f.

We note that II' does not involve any calls to the stateless TP. Since I’ computes (k + 1)
OTs starting with k£ base OTs and involves execution of steps in II and the GMW protocol,
which are both information-theoretically secure; we can conclude that II’ is indeed a semi-
honest information-theoretic OT extension protocol. However, this is a contradiction as
information-theoretically secure OT extension does not exist in the plain model [Bea96].
This completes the proof.

5 Impossibilities in the Colluding Model

In this section, we present some negative results in the colluding security model (see Defini-
tion 7). Recall that, in this model, we assume that the adversary controls a majority of the
parties among { Py, ..., P,} maliciously and simultaneously corrupt the TP semi-honestly.
Our impossibility holds good even when malicious corruption is weakened to fail-stop cor-
ruption and the requirement of full security is relaxed to fairness.

5.1 Impossibility of Fair MPC

At a high level, we follow the following route. We note that the colluding adversarial model
can be viewed more generally, in terms of the general mixed adversarial model that has been
studied in works such as [HMZ08, FHM99, BFHT08]. We begin with the details of mixed
adversaries below.

A general mixed adversary is characterized by an adversary structure
Z = {(A17 E17F1)7 MR (A’ﬂhEma Fm)}7

(for some m) which is a monotone set of triples of party sets. At the beginning of the
protocol, the adversary chooses one of these triples Z* = (A*, E*, F*) € Z and actively
corrupts parties in A*, semi-honestly corrupts the parties in £* and fail-corrupts the parties
in F* (i.e. the adversary can make the fail-corrupt parties crash at any time during the
protocol). For any triple (A, E, F), it is assumed that A C F and A C E, since any actively
corrupted party can behave as passive or fail-corrupted.

Adversary structure for colluding model. If we view the TP as an additional party
P, +1 (who can be semi-honestly corrupted) and the party set P = {Py,..., Py, Pyy1}, the
adversarial structure for the colluding TP model can be expressed as: Z = {Zl, RN/
where for each i € [n]

Z; = (Ai =P\{P;,Phi1},E; =P\{R},F; =P\ {P, Pn+1}>.

27

Specifically, the above denotes the maximal class of the adversarial structure of the colluding
TP model, since these subsume all other possible corruption scenarios indicated by subsets
of the triples in each Z;. Le. the adversary can choose to corrupt (A*, E*, F*), such that
there exists (A,E,F)c€Z: A* C A E* CE,F*CF.

Now restricting the malicious adversaries to behave in a fail-stop manner, we refine the
maximal adversarial structure as Z' = {Z},...,Z],}, where for each i € [n],

Z; = (Az‘=®7Ez‘:P\{Pi}»Fi:P\{Pi»PnH})-

We observe that in the regime of mixed adversarial model, we consider the TP to be just
another party that can communicate freely with the other parties while maintaining states
across the communication. This is a more liberal setting than the stateless TPs that we
consider in this work. This implies that our impossibility holds even for state-full TPs.

We are now ready to prove our impossibility.

Theorem 22 There exists a function f such that it is impossible to design a fair MPC
protocol securely computing f in the computational colluding model (see Definition 7) even
when malicious corruption of parties in P is restricted to fail-stop corruption.

Proof. [HMZ08] showed that fair (non-reactive) MPC is possible in the computational
setting against an adversary characterized by Z only if there exists an ordering ((Al, Ey, Fy),
s (A, B, Fm)) of the maximal adversarial class such that Vi, j € [m], i < j: E;UF; # P.

Consider the maximal adversarial structure Z' = {Z,...,Z,}, where for each i € [n],
Z, = (Ai =0,E, =P\{P},F,=P)\ {PZ-,PnH}). For Z', we note that such an ordering
does not exist. For contradiction, consider that such an ordering exists with the triple
Z, = (Ak =2, E, =P\ {P:}, Fr = P\ {F%, Pn+1}) as the last triple in the ordered set of
triples. Then for any i < k, Ey U F; = P would hold because F; for any i # k comprises of
the party Px. We can thus conclude that the condition of [HMZ08] does not hold, implying
that fair MPC is impossible against the adversary characterized by Z’ i.e in the colluding
TP model.

5.2 Randomized Function without Inputs

While the above negative result (Theorem 22) rules out fair MPC for arbitrary functions
in the colluding model, there may be special classes of functions that can be computed
fairly in the colluding model. Specifically, we observe that certain useful functions such as
randomized functions without inputs (such as “coin-tossing”) can be fairly computed using
the TP. Since such functions do not involve private inputs from the parties that need to be
protected from the adversary, the TP can be simply used as a trusted third-party (which
directly computes the desired randomized function and returns the output to all).

28

While the above trivial solution does in fact gives full security (stronger than fairness), it
involves computation by the TP which is as much as computing the desired function itself.
This opens up the question regarding whether this is inherent. We present here a high
level intuition for why we believe that this is likely to be inherent for the functionality of
coin tossing. We begin by noting that there exists a fairness and computation preserving
transformation that compiles any generic TP-aided fair protocol in the colluding model to
a fair protocol with a single TP call at the beginning of the protocol. One can then design
a series of specialized adversarial strategies where the adversary aborts during sequential
rounds, depending on the response of the first (and only) TP call (at a high level, this is
similar to the sequence of adversarial strategies used in the well-known impossibility result
for fair MPC due to Cleve [Cle86]). This seems to indicate that once the TP invocation is
completed, the distribution of the outputs does not change. Intuitively, this seems to capture
that interaction post TP invocation does not help in output computation and therefore it
seems likely that the computation done by the TP is as much as computing the function
itself. We elaborate on the details in Appendix D.

Acknowledgments

We thank the anonymous reviewers of TACR TCC 2022 for their helpful comments and
suggestions. Y. Ishai was supported in part by ERC Project NTSC (742754), BSF grant
2018393, and ISF grant 2774/20. A. Patra would like to acknowledge financial support from
DST National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025.
A. Srinivasan was supported in part by a SERB startup grant. D. Ravi was funded by the
European Research Council (ERC) under the European Unions’s Horizon 2020 research and
innovation programme under grant agreement No 803096 (SPEC).

References

[ABMO15] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete
characterization of fairness in secure two-party computation of boolean func-
tions. In T'CC 2015, volume 9014 of Lecture Notes in Computer Science, pages
199-228. Springer, 2015.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In IEEE SP 201/, pages
443-458. IEEE Computer Society, 2014.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private
computations. In ACM STOC 1996, pages 479-488. ACM, 1996.

[BFHT08] Zuzana Beerliovd-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli M. Maurer, and
Vassilis Zikas. MPC vs. SFE: perfect security in a unified corruption model. In
TCC 2008, volume 4948 of Lecture Notes in Computer Science, pages 231-250.
Springer, 2008.

29

[BFSK11]

[BGI*01]

[BGV12]

[BJOV1S]

[BK14]

[BKOV17]

[BLOO20]

[BOO15]

[BSW11]

[Can01]

[CCOV19]

[CFO1]

Christina Brzuska, Marc Fischlin, Heike Schroder, and Stefan Katzenbeisser.
Physically uncloneable functions in the universal composition framework. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of Lecture Notes in Com-
puter Science, pages 51-70. Springer, 2011.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
1-18. Springer, 2001.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Innovations in Theoretical
Computer Science 2012, 2012.

Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Visconti.
Non-interactive secure computation from one-way functions. In ASIACRYPT
2018, pages 118-138, 2018.

Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In CRYPTO 2014, volume 8617 of Lecture Notes in Computer Science, pages
421-439. Springer, 2014.

Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, and Ivan Vis-
conti. Unconditional uc-secure computation with (stronger-malicious) pufs. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science,
pages 382-411, 2017.

Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-secure multi-
party computation without an honest majority and the best of both worlds. J.
Cryptol., 33(4):1659-1731, 2020.

Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss
with a dishonest majority. J. Cryptol., 28(3):551-600, 2015.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC 2011, volume 6597 of Lecture Notes in Computer
Science, pages 2563—-273. Springer, 2011.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, 2001.

Nishanth Chandran, Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Vis-
conti. Universally composable secure computation with corrupted tokens. In
CRYPTO 2019, pages 432-461, 2019.

Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO 2001, pages 1940, 2001.

30

[CGJI+17]

[CGS08]

[CKSt14]

[Cle86]

[DMRV13]

[DTT10]

[EGLS5]

[FGMOO1]

[FHM99)]

[FKNO4]

[Gen09]

[GGH*13]

[GGSW13]

[GHKL11]

Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and
Tan Miers. Fairness in an unfair world: Fair multiparty computation from public
bulletin boards. In ACM CCS 2017, pages 719-728. ACM, 2017.

Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for
UC secure computation using tamper-proof hardware. In EUROCRYPT 2008,
pages 545-562, 2008.

Seung Geol Choi, Jonathan Katz, Dominique Schriéder, Arkady Yerukhimovich,
and Hong-Sheng Zhou. (efficient) universally composable oblivious transfer
using a minimal number of stateless tokens. In TCC 2014, pages 638662,
2014.

Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In ACM STOC, 1986.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan
Venkitasubramaniam. Adaptive and concurrent secure computation from new
adaptive, non-malleable commitments. In ASIACRYPT 2013, pages 316-336,
2013.

Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for
attacks against one-way functions and prgs. In CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 649-665. Springer, 2010.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637-647, 1985.

Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal
complete primitives for secure multi-party computation. In CRYPTO 2001,
pages 80-100, 2001.

Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in un-
conditional multi-party computation. In ASTACRYPT 1999, volume 1716 of
Lecture Notes in Computer Science, pages 232-246. Springer, 1999.

Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computa-
tion (extended abstract). In ACM STOC 199/, pages 554-563, 1994.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC
2009, pages 169-178. ACM, 2009.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In IEEE FOCS 2013, pages 40-49. IEEE Computer
Society, 2013.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In ACM STOC 2013, pages 467-476. ACM, 2013.

S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. J. ACM, 58(6):24:1-24:37, 2011.

31

[GIM*10]

[GK09]

[GK12]

[GKP+13]

[GMPY11]

[GMWS7]

[GS18]

[HMZ08]

[HPV16]

[10S12]
[JLS21]
[Kat07]

[KB14]

[O’N10]

[OSVW13]

S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On
complete primitives for fairness. In TCC 2010, pages 91-108, 2010.

S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computa-
tion without an honest majority. In TCC 2009, volume 5444 of Lecture Notes
in Computer Science, pages 19-35. Springer, 2009.

S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party com-
putation. J. Cryptol., 25(1):14-40, 2012.

Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional en-
cryption. In STOC 2013, pages 555-564, 2013.

Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang.
Resource fairness and composability of cryptographic protocols. J. Cryptol.,
24(4):615-658, 2011.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In ACM
STOC, 1987.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure com-
putation from minimal assumptions. In FUROCRYPT 2018, pages 468—499,
2018.

Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Unconditional
and computational security. In ASITACRYPT 2008, volume 5350 of Lecture
Notes in Computer Science, pages 1-18. Springer, 2008.

Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasub-
ramaniam. Composable security in the tamper-proof hardware model under
minimal complexity. In TCC 2016, pages 367-399, 2016.

Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters with-
out an honest majority. In TCC 2012, pages 21-38, 2012.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In STOC ’21, pages 60-73, 2021.

Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In EUROCRYPT 2007, pages 115-128, 2007.

Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014, pages 30-41. ACM, 2014.

Adam O’Neill. Definitional issues in functional encryption. IACR Cryptol.
ePrint Arch., page 556, 2010.

Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and Akshay Wadia. Uni-
versally composable secure computation with (malicious) physically uncloneable
functions. In EUROCRYPT 2018, volume 7881 of Lecture Notes in Computer
Science, pages 702-718. Springer, 2013.

32

[PST17] Rafael Pass, Elaine Shi, and Florian Tramer. Formal abstractions for attested
execution secure processors. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, FUROCRYPT 2017, volume 10210 of Lecture Notes in Computer Sci-
ence, pages 260-289, 2017.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, IEEE FOCS 2018, pages 859-870.
IEEE Computer Society, 2018.

[SWO05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 457—-473. Springer, 2005.

[Wat15) Brent Waters. A punctured programming approach to adaptively secure func-
tional encryption. In CRYPTO 2015, volume 9216, pages 678-697. Springer,
2015.

A Proof of Theorem 16 (Full Security of LFE-based TP-
Aided MPCQC)

In this section, we prove Theorem 16 on the full security of our LFE-based TP-Aided MPC
protocol. As per the formal definition of full security for TP-aided MPC, our proof is divided
into two cases for two distinct corruption scenarios:

e Corruption scenario-1: a semi-honest adversary A corrupts the TP, while the parties
Py, ..., P, are honest.

e Corruption scenario-2: a malicious adversary A corrupts a subset C C [n] of the parties

Py, ..., P, such that |C| < (n — 1), while the TP is honest.

We tackle each of these cases separately below.

A.1 Case-1: Semi-Honest Corruption of TP

We first consider the case where the TP is corrupted by a semi-honest adversary A, while

the parties Py, ..., P, are honest. In this setting, we construct a simulator Spy that simulates
the view of the adversary A without the knowledge of the inputs 1, ..., z, for the honest
parties.

Recall that in our protocol, the TP does not have any inputs nor does it receive any outputs
at the end of the protocol; consequently, it suffices for Sy to simulate the messages from
the (honest) parties Py, ..., P, to the TP. To this end, Sy acts on behalf of each (honest)
party FP; while interacting with an ideal-world simulator — a simulator Sy gy for the LFE
scheme in the function-hiding security experiment — as follows:

33

e Sy sets LFE.crs := r, where 7|7’ is the common randomness.

e Sy samples a uniformly random string z;, where |Z;| = |2;|, on behalf of each (honest)
party F;.

e Sp then invokes the simulator Sirgfy for the LFE scheme in the function-hiding
security experiment to generate

digest <— Sire rH(LFE.crs, F).

Finally, on behalf of each (honest) party P;, Sy sends across to the semi-honest adversary
A corrupting the TP the message

in, = (LFE.crs,a—g\e_s/t,Z).

Eventually, the adversary A outputs some string s 4, which Sy forwards to the environment
Z to complete the simulation.

We argue that the view of the semi-honest adversary A corrupting the TP is computa-
tionally indistinguishable in the real and ideal worlds assuming that the LFE scheme satis-
fies function-hiding simulation-security. By extension, we claim that for any circuit family
Z ={z,} corrupting the TP P* semi-honestly, we have

Itype

{realn.c,au) (@ K) } e (0,13 ym wens e {'dea 7.5 (T H)}EE({O,I}*)",KEN '

whenever the LFE scheme satisfies function-hiding simulation-security. The argument uses
the following hybrids:

e Hybrid-0: This hybrid is identical to the real security experiment.

e Hybrid-1: In this hybrid, we switch the digest to be sent across to the semi-honest

adversary A from digest as in the real scheme, to digest as in the simulation strategy
described above.

e Hybrid-2: In this hybrid, we switch the padded input string to be sent across to
the semi-honest adversary A as follows: for each (honest) party P;, we switch it from
z; = x; Dr; as in the real scheme, to a uniformly random string z; such that |z;| = |z;|,
as in the simulation strategy described above.

Hybrid-0 ~. Hybrid-1: We argue the following: assuming that the LFE scheme satisfies
function-hiding security, the views of the adversary A (and hence, the environment Z) in
Hybrid-0 and Hybrid-1 are computationally indistinguishable. To see this, suppose that
there exists some (Z,.A) pair such that their views in Hybrid-0 and Hybrid-1 are distin-
guishable with non-negligible advantage e. We construct an algorithm B that can break
function hiding security of the LFE scheme with non-negligible advantage ¢ = .

The algorithm B samples a function f and receives the inputs x1,...,z, for the honest
parties Py, ..., P, from the environment Z, and proceeds as follows:

34

B receives from the challenger in the LFE function-hiding security game a common
random string LFE.crs = r and uses the same random string r in the simulation.

e B samples additional common randomness ' and uses r’ this to derive the random
pads {r;};e[m) as in the “real” scheme and sets z; = x; @ r; for each j € [n].

e B outputs to the challenger in the LFE function-hiding security game the function
g (where g is as described in the “real” scheme).

e The challenger responds to B with a digest (ﬁggc.

e On behalf of each (honest) party P;, B sends across to the semi-honest adversary .4
corrupting the TP the message

—~—

in; = (LFE.crs, digest, Z;).

e Eventually, the adversary A outputs some string s 4, which B forwards to the envi-
ronment Z to complete the simulation.

e Finally, the environment Z outputs a bit b. B outputs the same bit b.
It is easy to see that:

e When (@ is sampled by the challenger from the “real world” distribution, i.e.,

digest = digest, the view of the adversary A (and hence the environment Z) is exactly
as in Hybrid-0.

e When d/ig-e; is sampled by the challenger from the “ideal world” distribution, i.e.,

digest = digest, the view of the adversary A (and hence the environment Z) is exactly
as in Hybrid-1.

Hence, if A (and hence Z) has non-negligible advantage € in distinguishing Hybrid-0 and
Hybrid-1, then B has non-negligible advantage ¢ = ¢ in breaking the function privacy of
the LFE scheme. This yields a contradiction, as desired.

Hybrid-1 ~, Hybrid-2: We now argue that the views of the adversary A (and hence, the
environment Z) in Hybrid-1 and Hybrid-2 are statistically indistinguishable, as desired. To

see this, observe that in Hybrid-1, the simulated digest digest has no information about the
common randomness ||’ and the corresponding derived randomness pads r;. As a result,
from the point of view of the adversary A, each padded string z; perfectly hides the input
x; of the (honest) party P;. In other words, each z; is statistically indistinguishable from a
uniformly random string z; such that |z;| = |z;|. It immediately follows that the views of
the adversary A in Hybrid-1 and Hybrid-2 are statistically indistinguishable, as desired.

Thus, it follows that the view of the semi-honest adversary A corrupting the TP is com-
putationally indistinguishable in the real and ideal worlds assuming that the LFE scheme
satisfies function-hiding simulation-security, as desired.

35

A.2 Case-2: Malicious Corruption of Majority of Parties

We now consider the case where a malicious adversary A corrupts a subset C C [n] of the
parties Py, ..., P, such that |C| < (n — 1), while the TP is honest. The simulation strategy
in this case is substantially more involved.

We again construct an ideal-world simulator Syj, where S now interacts with a different
ideal-world simulator — a simulator S gg for the LFE scheme in the standard simulation-
security experiment. We divide the simulation strategy for Sy into two phases - the pre-TP
call phase and the TP-call phase. Note that since the TP is honest, Siy also acts on behalf
of the TP in addition to the honest parties {P; }ic[n)\c- We assume that Sp learns from the
environment Z the list C C [n] of all corrupt parties from among Pi,..., P,, along with
their inputs {z; }iec.

Pre-TP Call Phase: In this phase, Sy does the following:

e Spy generates a common randomness string r||7’ and provides r||r’ to A.

e Spp generates a random default input 2 for each (honest/corrupt) party P; (this is
done on behalf of the honest TP).

e Sy sets LFE.crs := 7.

e Sy derive n random pads {r;};e[n), Where |r;j| = |2;| from the common randomness
sub-string 7.

e Sy computes (digest?, r9) + LFE.Compress(LFE.crs,g), where the function g is as in

the “real scheme” (hard-coded with the random pad r; for each party P;).

TP Call Phase: In this phase, S acts on behalf of the (honest) TP, and interacts with
the (real-world) adversary A (which it internally simulates), and the simulator S gg for the
LFE scheme as follows:

e Sp receives from the adversary A the message in; = (LFE.crs;, digest;, z;) corresponding
to each corrupt party P;.

e Spp then partitions the corrupt parties in C, such that all corrupt parties P; in a given
partition share the same common reference string and the same digest. It then chooses
the partition C* for which the common reference string LFE.crs™ and the digest digest®
match the common reference string LFE.crs and the digest digest that it sampled during
phase-1.

e 51 invokes the trusted party/ideal functionality fri with the corrupt set C and the
corresponding inputs as:

{Zitiec = {witiccr U{ziticercr,

36

i.e., S substitutes the default masked input for each corrupt party P; that does not
use the same LFE.crs and digest as sampled by Sy in the pre-TP call phase.

e Sy receives the output y from the ideal functionality. It then invokes the simulator
Sire for the LFE scheme using the tuple

(LFE.crs, digest, g, 7),

and receives the simulated LFE ciphertext ct, which it subsequently forwards to the
adversary A.

e Eventually, the adversary A outputs some string s 4, which Sy forwards to the envi-
ronment Z to complete the simulation.

We argue that the view of the adversary A corrupting the TP is computationally indistin-
guishable in the real and ideal worlds assuming that the LFE scheme satisfies simulation-
security. To see this, observe that from the point of view of the adversary A, the only
difference between the real and ideal worlds is in the manner in which the LFE ciphertext
ct is generated. In particular, if ct is the ciphertext that the adversary A receives in a
uniformly random instance of the real-world experiment, and ct is the ciphertext that the
adversary A receives in a uniformly random instance of the ideal-world experiment, then we
claim that the distributions of ct and ct are computationally indistinguishable. Hence, we
claim by extension that for any circuit family Z = {z,} corrupting any set C C [n] of the
parties Py, ..., P, maliciously, we have

— ~ . type —
{realmc aau (,8) }oc 0,1y)m ens e {'dea'f,c»s@w(x’ K)}a‘c'e({O,l}*)",neN7

whenever the LFE scheme satisfies simulation-security. To see this, suppose this is not

the case, i.e., suppose there exists some (Z,.4) pair such that their views in the real and
ideal world experiments are distinguishable with non-negligible advantage e. We construct
an algorithm B that can break simulation-security of the LFE scheme with non-negligible
advantage € = e.

The algorithm B samples a function f, receives from the environment Z the inputs for the
honest parties among Py, ..., P,, and proceeds as follows:

e B receives from the challenger in the LFE simulation-security security game a common
reference string LFE.crs = r and uses the same random string r in the simulation.

e 3 samples a random string r’/, provides the common randomness r||r’ (where r =
LFE.crs) to the adversary A, uses this randomness 7’ to derive the random pads
{rj}jem) as in the “real” scheme, and sets z; = x; ® r; for each j € [n].

e [3 issues a digest-query to the challenger in the LFE simulation-security game with
the function g, where ¢ is as in the “real scheme” (hard-coded with the random pad
r; for each party P;), and receives from the challenger the digest digest?.

e B receives from the adversary A the message in; = (LFE.crs;, digest;, z;) corresponding
to each corrupt party P;, and partitions the corrupt parties in C, such that all corrupt
parties P; in a given partition share the same common reference string and the same

37

digest. It then chooses the partition C* for which the common reference string LFE.crs”
and the digest digest™ match the common reference string LFE.crs and the digest digest
that it sampled.

e 3 then issues a challenge ciphertext query to the challenger in the LFE simulation-
security on the set of masked inputs

({Zitiem) = {zitige U{zi}icer U{zi}icerer),

i.e., B substitutes a (randomly sampled) default masked input for each corrupt party
P; that does not use the same LFE.crs and digest as sampled by B in the pre-TP call
phase.

e The challenger responds with a challenge ciphertext ct*. B forwards this ciphertext
ct* to the adversary A.

e Eventually, the adversary A outputs some string s 4, which B forwards to the envi-
ronment Z to complete the simulation.

e Finally, the environment Z outputs a bit b. B outputs the same bit b.

It is easy to see that:

e When ct* is sampled by the challenger from the “real world” distribution, i.e., ct* = ct,
the view of the adversary A (and hence the environment Z) is exactly as in the real-
world experiment.

e When ct* is sampled by the challenger from the “ideal world” distribution, i.e., ct* =
ct, the view of the adversary A (and hence the environment Z) is exactly as in the
ideal-world experiment.

Hence, if A (and hence Z) has non-negligible advantage € in distinguishing the real and ideal-
world experiments, then B has non-negligible advantage ¢’ = € in breaking the simulation-
security of the LFE scheme. This yields a contradiction, as desired.

B Proof of Theorem 17 (Full Security of Single-Key
Succinct FE-based TP-aided MPC)

In this section, we prove Theorem 17 on the full security of our succinct single-key FE-based
TP-Aided MPC protocol. As per the formal definition of full security for TP-aided MPC,
our proof is divided into two cases for two distinct corruption scenarios:

e Corruption scenario-1: a semi-honest adversary A corrupts the TP, while the parties
Py, ..., P, are honest.

38

e Corruption scenario-2: a malicious adversary A corrupts a subset C C [n] of the parties
Py, ..., P, such that |C| < (n — 1), while the TP is honest.

We tackle each of these cases separately below.

B.1 Case-1: Semi-Honest Corruption of TP

We first consider the case where the TP is corrupted by a semi-honest adversary A, while the
parties Py, ..., P, are honest. In this setting, it is straightforward to construct a simulator
Sy that simulates the view of the adversary A without the knowledge of the inputs z1, ..., z,
for the honest parties.

Recall that in our protocol, the TP does not have any inputs nor does it receive any outputs
at the end of the protocol; consequently, it suffices for Sy to simulate the messages from the
(honest) parties Py, ..., P, to the semi-honest adversary A corrupting the TP. To this end,
St acts on behalf of the honest parties as follows:

e Si1 generates a uniform secret key k; «+ SKE.Gen(1%) for every party P;.
e Si1 generates (msk, mpk) <— FE.Setup(17).

e Sip generates a uniformly random signing key-verification key pair (sk,vk) for the
digital signature scheme.

On behalf of each party P;, Sy generates the signature o; = Sign(sk, (¢, mpk, k;)).

On behalf of each (honest) party P;, S sends across to the semi-honest adversary A cor-
rupting the TP the message
in; = (vk, mpk, k;, 0;).

It is easy to see that the view of the semi-honest adversary A corrupting the TP is identical
in the real and ideal worlds. Consequently, we have that for any circuit family Z = {z,}
corrupting the TP P* semi-honestly, we have

- —J: type -
{realn,C,A(aux) (QZ‘, K)}"?E({O,l}*)",KEN = {Idealﬁc,s(aux) (1’, H)}fe({o,l}*)n,neN)

B.2 Case-2: Malicious Corruption of Majority of Parties

We now consider the case where a malicious adversary A corrupts a subset C C [n] of the
parties P,..., P, such that |C| < (n — 1), while the TP is honest. The simulation strategy
in this case is substantially more involved.

We again construct an ideal-world simulator Sy, where Sip now interacts with two additional
ideal-world simulators - a simulator Spy,,,, for the MPC protocol with identifiable abort, and
a simulator Sgg for the FE scheme. We divide the simulation strategy for Spy into two phases

39

- the pre-TP call phase and the TP-call phase. Note that since the TP is honest, Sy also
acts on behalf of the TP in addition to the honest parties {P;};c[n)\c. We assume that Sy
learns from the environment Z the list C C [n] of all corrupt parties from among Py, ..., P,,
along with their inputs {z;};cc-

Pre-TP Call Phase: In this phase, Sy acts on behalf of the honest parties among
Py, ..., P, (the TP is not yet involved), and interacts with the (real-world) adversary
A (which it internally simulates) and the simulator Sry,,, for Iligua (the MPC with id-abort
protocol) as follows:

idua

e Sy receives from Sy, the messages corresponding to the honest parties among P, ..., P,
during the MPC with abort protocol Ilg,, and forwards these messages to the adver-
sary A.

e Sy receives from A the messages corresponding to the corrupt parties among Py, ..., P,

during the MPC with abort protocol Iljq,, and forwards these messages to Sp

idua *

e At the end of the execution of the protocol, S, invokes the trusted party/ideal
functionality fm,,,, for the MPC with abort protocol Iligu,. At this point, it expects
from Sy the output of Iy, for each party P; such that i € C. Sy responds as follows:

— Si1 generates a default input z} for every (honest/corrupt) party P;.
— Sy samples a secret key k; < SKE.Gen(1%) for every party P;.

— For each corrupt party P;, Sip generates e; + SKE.Enc(k;, ;).

— For each honest party P;, Siy generates ¢; < SKE.Enc(k;, 0/%i).

— Spp samples (mpk, msk) < FE.Setup.

— Sir generates sk < FE.KeyGen(msk, g), where the function g is identical to the
function g in the “real” scheme except that it embeds €; instead of e; for each
honest party P;.

— Si generates (sk, vk) for the digital signature scheme.

Finally, Sy provides to Sy, the following tuple for each corrupt party P;:

idua
(Vka mpk7 kia 04, Skﬁ)a
where o; = Sign(sk, (i, mpk, k;)).

o Eventually, Spp,,,, outputs either abort or continue. If S, outputs abort, then S
also aborts the current execution and restarts the pre-TP call phase. If Spp., outputs
continue, then Sy proceeds to the next phase, as described below.

idua

idua

TP Call Phase: In this phase, Spy acts on behalf of the (honest) TP, and interacts with
the (real-world) adversary A (which it internally simulates), and the simulator Sgg for the
FE scheme as follows:

40

e Syy receives from the adversary A the message in; = (vk;, mpk;, k;, 0;) corresponding
to each corrupt party F;. If there exists a corrupt party P; such that vk; = vk,
mpk; # mpk, and the signature o; verifies under vk, Sy aborts the simulation.

e Spp then partitions the corrupt parties in C, such that all corrupt parties P; in a given
partition share the same verification key and master public key. It then chooses the
partition C* for which the verification key vk* and the master public key mpk* match
the verification key vk and the master public key mpk that it used during phase-1.

e Sp1 invokes the trusted party/ideal functionality fri with the corrupt set C and the
corresponding inputs as:

{ZiYice = {ziticer U{z]}icerer,

i.e., Sy1 substitutes the default input for each corrupt party P; that does not use the
same vk and mpk as chosen by Sy during the pre-TP call phase.

e Sy receives the output y from the ideal functionality. It then invokes the simulator
Sge for the FE scheme using the tuple

(mpka Sk§7 gv ga 1n\$1|)7
and receives the simulated FE ciphertext ¢t, which it forwards to the adversary A.

e Eventually, the adversary A outputs some string s 4, which Sy forwards to the envi-
ronment Z to complete the simulation.

We argue that the view of the adversary A corrupting the TP is computationally indistin-
guishable in the real and ideal worlds. More formally, we claim (by extension) that for any
circuit family Z = {z,} corrupting any set C C [n] of the parties Py,..., P, maliciously, we
have

— ~ . type —
{reall_[’C‘A(aUX) (1‘, K)}ie({O,l}*)”,neN ~e {Idealfycas(aux) (J:, H)}EE({O,I}*)",KGN ’

assuming that:

e The MPC protocol ITiy,, satisfies simulation-security with id-abort.
e The succinct FE scheme satisfies (single-key) simulation-security.
e The symmetric-key encryption scheme satisfies IND-CPA security.

e The digital signature scheme satisfies existential unforgeability against chosen-message
attacks.

We now establish this indistinguishability via a hybrid argument.

e Hybrid-0: This hybrid is identical to the real security experiment.

e Hybrid-1: This hybrid is identical to Hybrid-1 except that in the pre-TP call phase,
we switch the execution of the MPC with identifiable abort protocol Ilig,, from the
real world to the ideal world. It immediately follows that Hybrid-1 is computationally
indistinguishable from Hybrid-0 assuming that the Ilq,, satisfies simulation-security
with id-abort.

41

e Hybrid-2: In this hybrid, in the TP call phase of the simulation, the simulator Sy
aborts if it receives from the adversary .4 a message in; on behalf of some corrupt
party P; such that vk; = vk, mpk; # mpk and the signature o; verifies under vk,
where vk and mpk are the signature verification key and the FE master public key
sampled by Sy in the pre TP call phase.

We argue that the probability that Spp aborts is negligible assuming that the digital
signature scheme satisfies existential unforgeability against chosen-message attacks.
To see this, observe that the view of the adversary .4 has no information about the
secret signing key sk for the signature scheme used by the simulator Sy;. Hence, any
adversary A that manages to a create a message in; on behalf of some corrupt party
Pj such that vk; = vk, mpk; # mpk, and the signature o; verifies under vk with non-
negligible probability, can be used to construct a PPT simulator B that successfully
forges a signature on the chosen message mpk; in an existential unforgeability game
against the signature scheme with non-negligible probability (note that B can simulate
the view of the adversary A using only the challenge verification key vk and the re-
spomnses to its signing oracle queries in the existential unforgeability game, and without
any information about the challenge signing key sk). This leads to a contradiction, as
desired.

e Hybrid-3: In this hybrid, Sy generates a simulated FE ciphertext ct as in the ideal-
world experiment, instead of generating the FE ciphertext ct as in the real-world
experiment. We argue that the view of the adversary A in Hybrid-2 and Hybrid-3 are
computationally indistinguishable assuming that the FE scheme satisfies (single-key)
simulation security.

To see this, suppose this is not the case, i.e., suppose there exists some (Z,.4) pair
such that their views in the real and ideal world experiments are distinguishable with
non-negligible advantage e. We construct an algorithm B that can break (single-
key) simulation-security of the FE scheme with non-negligible advantage ¢’ = €. The
algorithm B samples a function f, receives from Z the inputs for the honest parties
among P, ..., P,, and simulates Sy exactly as in Hybrid-2 except the following:

— In the pre-TP call phase, instead of generating the FE master public key mpk by
itself, B receives from the challenger in the FE simulation-security security game
a master public key mpk, and uses the same mpk in the simulation.

— In the pre-TP call phase, instead of generating the FE evaluation key sk, by
itself, B issues a single-key query to the challenger in the FE simulation-security
game with the function g, where g is as in the “real scheme”, receives from the
challenger the corresponding key sk,, and uses the same sk, in the simulation.

— In the post-TP call phase, instead of generating the FE ciphertext ct on behalf
of the (honest) TP, B issues a challenge ciphertext query to the challenger in the
FE simulation-security on the input

({(Fi, bi) Yiep)) = ({(Ri D }ige U{(Ri, D }ice- U{(L, 0)bieere)

i.e., B substitutes the default key-bit pair for each corrupt party P; that does not
use the same vk and mpk as used by B in the pre-TP call phase.

42

— The challenger responds with a challenge ciphertext ct*. B forwards this cipher-
text ct* to the adversary A.

— Eventually, the adversary A outputs some string s4, which B forwards to the
environment Z to complete the simulation.

— Finally, the environment Z outputs a bit b. B outputs the same bit b.

It is easy to see that:

— When ct* is sampled by the challenger from the “real world” distribution, i.e.,
ct* = ct, the view of the adversary A (and hence the environment Z) is exactly
as Hybrid-2.

— When ct* is sampled by the challenger from the “ideal world” distribution, i.e.,
ct* = ct, the view of the adversary A (and hence the environment Z) is exactly
as in Hybrid-3.

Hence, if A (and hence Z) has non-negligible advantage € in distinguishing Hy-
brids 2 and 3, then B has non-negligible advantage ¢/ = € in breaking the (single-
key) simulation-security of the FE scheme. This yields a contradiction, as desired.

e Hybrid-4: This hybrid is identical to Hybrid-3 except that for each honest party P;,
Sir generates ¢; «+ SKE.Enc(k;, ()Iri\)_

We argue that Hybrid-4 is indistinguishable from Hybrid-1 assuming that the symmetric-
key encryption scheme satisfies IND-CPA security. The argument follows via a se-
quence of sub-hybrids {Hybrid; ;};e(0,n—|c|), where Hybrid; j is identical to Hybrid-3,
and in each sub-hybrid Hybrid, ; for j > 1, we switch e;; to ¢;; for the j-th honest
party P;,. It is easy to see that the final sub-hybrid is 1dent1(3a1 to Hybrid-4.

We now argue that for each j € [n — |C| — 1], sub-hybrid Hybrid; ; is indistinguishable
from sub-hybrid Hybrids ;,,. This follows immediately from the IND-CPA security
of the symmetric-key encryption scheme. To see this, observe that the view of the
adversary A has no information about the secret key sk;, . Hence, any adversary A
that can distinguish between Hybrid,, ; and Hybrid, ;; with non-negligible advantage
€ can be used in a straightforward manner to construct a PPT algorithm B that
distinguishes e;; and €;, in an IND-CPA security game with non-negligible advantage
¢ (note that B can snnulate the view of the adversary A using its own challenge
ciphertext, and without any information about the secret key sk;,). This leads to a

contradiction, as desired.

C Extension of Impossibility in the Correlated Ran-
domness Model

In this section, we extend our impossibility result for fully-secure MPC using a single call
to a small TP (in the non-colluding model) from the special sub-class of protocols where
the parties do not engage in any further communication post TP-call, to the more general

43

sub-class of protocols where the parties are allowed to engage in any polynomially many
rounds of communication post TP-call. Our extension relies on the following theorem:

Lemma 23 Suppose there exists a fully secure MPC protocol in the non-colluding model (see
Definition 7), where the parties have access to arbitrary correlated randomness, a single call
to a TP of size poly(n, k), and are allowed to engage in r = poly(k) rounds of interaction
post-TP call. Then, there exists (with probability at least 1 — negl(k), where the probability
space is over the internal randomness of the parties and the TP in the MPC protocol) a fully
secure MPC protocol in the non-colluding model, where the parties have access to arbitrary
correlated randomness, a single call to a TP of size poly(n, k) and are allowed only non-
interactive computation after the TP call.

It is easy to see that Lemma 23, together with Theorem 19, extends our negative result, as
desired.

Proof of Lemma 23. To prove Lemma 23, we use a sequence of hybrid arguments as
follows. Suppose that there exists a fully secure MPC protocol in the non-colluding model
(see Definition 7), where the parties have access to arbitrary correlated randomness, a single
call to a TP of size poly(n, k), and are allowed to engage in » = poly(x) rounds of interaction
post-TP call.

Hybrid-r. Consider a malicious adversary 4 that maliciously corrupts a set C of ¢ parties
from among P, ..., P, for some t > n/2, and uses the following strategy: A instructs all
maliciously corrupted parties to not send their round-r messages to the honest parties. We
observe the following:

e Since the honest parties send out their round r-messages as dictated by the protocol,
the adversary A manages to compute the output of the functionality as in an honest
execution of the protocol.

e Since the protocol is, by definition, fully secure (i.e., has guaranteed output delivery)
against malicious corruptions, all honest parties must also be able to compute the
output without the messages from the corrupt parties with probability at least 1 —
negl(x). Here, we assume that the function computed by the protocol is such that
the adversary cannot locally compute the output using its own inputs.

This implies that the views of the (n — t) parties in C = [n] \ C at the end of round-(r — 1)
are sufficient to compute the output with probability at least 1 — negl(k).

Hybrid-(r—1). Now consider an adversary .4 that maliciously corrupts the set C = [n]\C
of (n — t) parties that were honest in the previous hybrid, and instructs them to cease
sending any messages during and after round-(r — 1). We observe the following:

44

e By the argument in the previous hybrid, the adversary A manages to compute the
output of the functionality using the view of the n — ¢ parties as claimed in the
Hybrid-r.

e Again, since the protocol is, by definition, fully secure (i.e., has guaranteed output
delivery) against malicious corruptions, all of the ¢ remaining honest parties must
also be able to compute the output without the corrupt parties’ communication with
probability at least 1 — negl(k).

This implies that the views of the ¢ parties in C = [n] \ C at the end of round-(r — 2) are
sufficient to compute the output with probability at least 1 — negl(x).

We build a sequence of r hybrids of the aforementioned forms down through Hybrid-
1, where in each alternate hybrid, the adversary either corrupts the set C or the set C.
Also, assume without loss of generality that r is even (the argument works similarly if r is
odd). By extending the above chain of arguments, the views of ¢ parties in C are enough to
compute their outputs immediately after the call to the TP. In the Hybrid-0, the adversary
corrupting C ceases to communicate in any of the post-TP rounds. Due to the full security
guarantee, we claim that the remaining parties in C must recover their output without the
above messages.

Now recall that since we allow a corruption of upto (n — 1) parties, we can have t = (n—1).
This effectively implies that each party can compute its own output immediately after the
TP call without engaging in any additional communication with any of the other parties.
Let us assume that each party computes its own output immediately after the TP call with
probability p for some p € (0, 1).

Note that, each of the aforementioned hybrid arguments from Hybrid-r down through
Hybrid-0 holds true with probability 1 — negl(k), as opposed to probability 1. However,
since r = poly(k), the accumulated error over all of the hybrid arguments remains negl(k);
in other words, the overall sequence of argument remains correct with probability at least
1 —negl(x). So, we must have

p > 1—negl(k).

This immediately yields, with overwhelmingly large probability, a fully secure MPC protocol
in the non-colluding model, where the parties have access to arbitrary correlated random-
ness and a single call to a TP of size poly(n, k), and are only allowed a non-interactive
computation after the TP call. This completes the proof of Lemma 23.

D TP-Aided Fair Coin-Tossing in the Colluding Model

In this section, we give evidence that any TP-aided fair protocol that computes coin-tossing
securely in the colluding model is likely to involve total computation done by the TP which
is as much as computing the function itself.

First, we show that any such fair protocol (that computes a special class of functions) in

45

the colluding model can be assumed to have single call to the TP without loss of generality.
For this, we present a compiler that transforms a fair protocol with ¢(x) invocations to a
fair protocol with a single invocation.

Let 79(%) denote the fair protocol with q(k) invocations. Suppose inz(-j) denotes the message
with which P; invokes the TP during the jth call. Let outl(-j) denote the response of jth

invocation from the TP to P; which is computed as outl(-j) = TPg({ing)}ke[n];r(Tjg) where
T-(l—JFZ denotes the randomness sampled by the TP for this invocation. ° Let 7 denote the set
of q(k) invocations in 79(%).

We present the transformation from 79(%) to 7! (that involves single invocation to the TP)
which involves the following sequence of steps:

(a) 7909 — qalr)+1, ga(9)+1 ig identical to 79(%) except for the following change. There
1 _

i =

is an additional invocation in the beginning of the protocol which returns out
{r%} }jer for each i € [n].

(b) a0+ _y 7aFL Za00HL S dentical to w9+ except for the following change -
Each P; also broadcasts ingj) in addition to sending it to the TP.

(c) 7IF 5 2l 7l proceeds identical to wl{™ ! except the following. Consider the

4* invocation to the TP where j > 2 (the first invocation to the TP remains the
same). Then, instead of invoking the TP, each P; carries out the following local
computation outEJ) +— TP?({in,(g)}ke[n]; T(TJP_l)) where {in,(j)}ke[n} and r%]_l) is received

via broadcast and outgl) respectively. ©

Next, we show that 7! is fair based on our assumption that 79(*) is fair by proving that
fairness is preserved in each of the above steps (a), (b) and (c).

Lemma 24 79*1 gehieves fairness.

Proof: Security of 79(9)+1 follows directly from security of 79(*) (assumed to be fair) as
the view of the adversary is identical in both. This holds since the adversary can access r(TJP)
for each j € T since the beginning of 79(*) as well. Also, note that the computation done
during the first invocation of 79(")+1 is still poly(x) (as it is bounded by ¢() - 7(x), where

it is assumed that the computation in each call is bounded by r(k)). O

1 . .
Lemma 25 WEﬁHH achieves fairness.

Proof: We note that ingj) corresponding to an honest P; is known to the adversary in
72"+ a5 well, since the adversary semi-honestly corrupts the TP. Therefore, the additional

5For deterministic computation by the TP, r-(rjg is simply L.

6Note that r.(l.],;_l) is used for jth call in WE(K)+1

N as it corresponds to (j — 1)th call in 72(%),

46

(k)+1

. reveal no extra information to the

messages broadcast by the honest parties during 7,

adversary and its view remains identical across 72" ™ and 79(®+1_ Thus, the lemma holds
due to security of m?")*1 (Lemma 24). O

Lemma 26 7! achieves fairness.

Proof: Consider an execution of ﬂ'gén)ﬂ where each corrupt party Py invokes the TP during

the jth invocation using {ing)} that it broadcasts (for each j € [2,q(k)+1]). It follows from

Lemma 25 that such an execution is fair. We note that outgj) computed by an honest P; in
7! is identical to the response given by the TP during the ' (j € [2,¢(x) + 1]) invocation
of the above described execution of w{iﬁ“)“. Thereby, security of 7! follows from security

of i+t O

We can thus conclude that any fair protocol in the colluding TP model can be assumed to
have single call to the TP without loss of generality. Lastly, we point that the above compiler
does not inflate the total computation done by the TP (because the TP computation done
in 7! only involves sampling the internal TP randomness used across the TP invocations,
which was also done during 79(%)).

Next, we argue that any fair protocol that computes coin-tossing securely in the collud-
ing model seems likely to involve total computation done by the TP which is as much as
computing the function itself.

At a high-level, we use the above transformation to transform any generic fair coin-tossing
protocol in colluding model to a fair protocol that utilizes only a single TP call in the
beginning of the protocol (during the first round). We then design a series of adversarial
strategies where the adversary aborts in Rounds 2 to r’ sequentially (where ' denotes the
total number of rounds) depending on the response of the first (and only) TP call. This
allows us to show that once the TP invocation is completed, the distribution of the outputs
does not change with further interaction amongst the parties. We elaborate on this below.

Consider a fully-secure 2-party protocol m?(%), say comprising of r(x) rounds, that com-
putes the function of coin tossing using ¢(x) invocations to the colluding TP. Following
the transformation in the previous section, we can transform 79(%) to 7! (comprising of
r'(k) = r(k) + 1 rounds) that has a single TP invocation in Round 1 and messages sent via
broadcast channels thereafter. Note that the transformation is such that the total compu-

tation done by the TP during 7' does not exceed the total computation done by the TP in
ra(r),

Next, assume for simplicity that the response of the first invocation is a single-bit ¢ € {0, 1}.
Let Pr[t = 0] = p (probability over the random tape of TP). Let a; (i € [r']) denote the
output of P; when P, acts honestly until (and including) Round ¢ and then aborts. b; is
defined symmetrically. It follows from the correctness of the protocol that for out € {0,1},
where out denotes the potential output of the coin-tossing protocol:

1
Pria,» = out|t =0] - p+ Prla,» =outlt =1]- (1 —p) = 3

47

We now consider a strategy A; - Adversary corrupts P> who does the following: Participate
honestly in Round 1. If ¢ = 0, then stop communication Round 2 onwards. Else, participate
honestly throughout the protocol. Since w! must maintain security even against A;, the
following must hold for out € {0, 1}:

1
Pr[P;, outputs out] = Pr{a; = out|t =0]-p+ Pra,» =out|t =1]- (1 —p) = 3

Comparing both the above equations, we get that Pra,» = out|t = 0] = Pr[a; = out|t = 0].

We capture the above in a generalized argument for ¢ € [r/]. Consider strategy A; where
adversary corrupting P, does the following - Participate honestly until (and including)
Round 4. If ¢ = 0, then abort thereafter. Else, participate honestly throughout the protocol.
Since m! must maintain security even against A;, the following must hold for out € {0,1}:

1
Pr[P; outputs out] = Prfa; = out|t = 0] - p+ Prla,» = out|t =1]- (1 —p) = 3

Combining all the above, we get Prla; = out|t = 0] = Prag =out|t =0] =--- = Prla, —1 =
out|t = 0] = Pr[a,» = out|t = 0]. Similarly, it can be shown that Prla; = out|t = 1] =
Prlas = out|t = 1] = --- = Pr[a,»_1 = out|t = 1] = Pr[a,» = out|t = 1].

This implies that once the TP invocation is completed, the distribution of the outputs does
not change. Intuitively, this seems to imply that the interaction post TP invocation does
not help in output computation and gives evidence that it is likely that the computation
done by the TP is as much as computing the function itself.

E Fully Secure MPC using Stateful TP

In this section, we study the problem of achieving fully secure MPC protocols in the stateful
TP model. We sketch an MPC protocol that achieves full security against fail-stop cor-
ruption of a majority of parties while relying on Fully Homomorphic Encryption (FHE)
[Gen09, BGV12] and a small stateful TP that is invoked twice during the protocol. Re-
call that FHE is a form of encryption that permits computations directly over encrypted
data without decrypting it first, where the result of each such computation is also in the
encrypted form.

Protocol Sketch. We now sketch an MPC protocol involving parties Py, ..., P, that
achieves full security against fail-stop corruption of a majority of parties. At a high level,
the protocol proceeds as follows:

e First TP-call: Each party P; sends its input x; to the stateful TP. The TP collects
all of the inputs (while substituting a default input for each party that does not send
across its input), and encrypts each of these inputs under some FHE public key pk that

48

it generates uniformly at random (along with the corresponding secret key sk). The
TP then sends across to each party P; the FHE public key pk and the FHE ciphertexts
cty,...,ct, encrypting the original/default inputs for all parties under pk. The TP
retains the FHE secret key sk as part of its internal state.

e Local Computation: Each party P; locally computes a homomorphic evaluation of
the function f over the FHE ciphertexts cty, ..., ct, received from the TP, and obtains
a ciphertext ct}.

e Second TP-call: Each P; then invokes the TP using its homomorphically evaluated
ciphertext ctf, and receives from the TP the corresponding decryption (recall that the
TP retains sk as part of its internal state). The party P; then outputs the decryption
received from the TP. If a party does not invoke the TP during the second TP-call,
the TP sends L to this party.

Correctness of the protocol follows immediately from the correctness of the underlying FHE
scheme. Note that this protocol requires the TP to maintain its internal state across the
two calls. Also, it is only secure against fail-stop corruption of a majority of the parties, and
does not provide security against a malicious corruption of parties. We leave it as an open
question to construct, given only an FHE scheme, an MPC protocol that makes two calls
to a small stateful TP and achieves full security against malicious corruption of majority of
the parties. We also leave it as an open question to realize, given only an FHE scheme, a
fully secure MPC protocol that achieves full security against fail-stop/malicious corruption
of a majority of parties while making at most two calls to a stateless TP.

49

	Introduction
	Our Results
	Open Directions
	Technical Highlights and Discussion
	Positive Results
	Negative Results
	Impossibility of Fair MPC with Colluding TP

	Related Work

	Security Model
	Fully-secure MPC with Single Call to Small TP
	Laconic Function Evaluation (LFE)
	Succinct Single-key Functional Encryption
	Fully-secure MPC from Laconic Cryptography
	Fully-secure MPC from Single-Key Succinct FE

	Impossibilities in the Non-colluding Model
	Impossibility in the Correlated Randomness Model for protocols with universal output decoder
	Impossibility in the Plain Model

	Impossibilities in the Colluding Model
	Impossibility of Fair MPC
	Randomized Function without Inputs

	Proof of Theorem 16 (Full Security of LFE-based TP-Aided MPC)
	Case-1: Semi-Honest Corruption of TP
	Case-2: Malicious Corruption of Majority of Parties

	Proof of Theorem 17 (Full Security of Single-Key Succinct FE-based TP-aided MPC)
	Case-1: Semi-Honest Corruption of TP
	Case-2: Malicious Corruption of Majority of Parties

	Extension of Impossibility in the Correlated Randomness Model
	TP-Aided Fair Coin-Tossing in the Colluding Model
	Fully Secure MPC using Stateful TP

