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Abstract. Lyubashevsky’s signatures are based on the Fiat-Shamir with
aborts paradigm, whose central ingredient is the use of rejection sampling
to transform secret-dependent signature samples into samples from (or
close to) a secret-independent target distribution. Several choices for the
underlying distributions and for the rejection sampling strategy can be
considered. In this work, we study Lyubashevsky’s signatures through
the lens of rejection sampling, and aim to minimize signature size given
signing runtime requirements. Several of our results concern rejection
sampling itself and could have other applications.
We prove lower bounds for compactness of signatures given signing run-
time requirements, and for expected runtime of perfect rejection sampling
strategies. We also propose a Rényi-divergence-based analysis of Lyuba-
shevsky’s signatures which allows for larger deviations from the target
distribution, and show hyperball uniforms to be a good choice of distri-
butions: they asymptotically reach our compactness lower bounds and
offer interesting features for practical deployment. Finally, we propose
a different rejection sampling strategy which circumvents the expected
runtime lower bound and provides a worst-case runtime guarantee.

1 Introduction

Lyubashevsky’s signature scheme [Lyu09,Lyu12] may be viewed as a lattice vari-
ant of Schnorr’s group-based signature scheme [Sch91], with a core conceptual
difference being the use of rejection sampling and the associated introduction
of aborts and repeats in the Fiat-Shamir heuristic [FS86]. The use of rejection
sampling in Lyubashesvky’s scheme is the focus of the present work. It is hard
to overstate the importance of Lyubashevsky’s signature scheme in lattice-based
cryptography. Thanks to its elementary and flexible design, numerous variants
and optimizations have been proposed (see [AFLT16,GLP15,DDLL13,BG14],
or [Lyu16], for instance). Notably, it led to the TESLA [ABB+17,AAB+19] and
Dilithium [DKL+18,BDK+20] candidates to the NIST standardization project
on post-quantum cryptography. It also led to lattice-based zero-knowledge proofs
(see [LNP22] and the references therein).

Lyubashevsky’s scheme involves a publicly shared matrix A ∈ Zn×mq (note
that other algebraic setups are possible, but this is not relevant to the present



discussion). The signing key is a matrix S ∈ Zm×k. It is small in the sense
that all its entries have absolute values significantly smaller than q. The verifi-
cation key associated to S is T = AS. Given a message µ ∈ {0, 1}∗, the signer
samples a small masking vector y ∈ Zm and computes a random-looking com-
mitment com = Ay. By using a hash function H taking small values in Zk, it
computes a challenge c = H(com, µ). Finally, if some (possibly probabilistic)
test passes, it outputs a signature σ = (z, c) with z = y+Sc, and else it restarts
from scratch. Given a signature σ = (z, c) for a message µ, the verifier accepts if
and only if z is small and H(Az−Tc, µ) = c. We refer the reader to Figure 2 for
a formal description. As suggested by the choice of terminology, Lyubashevsky’s
signature can be viewed as an identification protocol made non-interactive by
relying on the Fiat-Shamir heuristic, i.e., by replacing a truly random c by the
output of a hash function. The security proof relies on the Random Oracle Model
(ROM) as it models H as a function such that each image is distributed as c is
supposed to be.

Compared to Schnorr’s signature scheme, the signing key and mask do not
belong to a finite set, preventing the use of a uniform mask y to hide the sensitive
term Sc.4 One possibility (see, e.g., [DPSZ12]) is to sample y exponentially
larger than Sc as a function of the security parameter, so that the distributions
of y and y + Sc have exponentially small statistical distance. As q must be
larger than y and the smallness of S relative to q impacts security, this flooding
approach leads to large parameters. Instead, Lyubashevsky [Lyu09,Lyu12] put
forward the notion of Fiat-Shamir with aborts. This is the reason for the test
concerning z in the signing algorithm: it is so that the output signature (z, c)
follows a distribution that is independent of the sensitive term Sc.

A classic application of rejection sampling (see, e.g., [Dev86, Chapter 2]) is to
use a source distribution Q that is convenient to sample from, to create samples
from a target distribution P . In Lyubashevsky’s scheme, the purpose differs: we
start from a pre-source distribution Q for y; it is shifted by Sc, leading to a
distribution Q+Sc for y + Sc; the latter is the source distribution; it is rejected
to a target distribution P for z that does not depend on the signing key S.
The purpose of rejection sampling here is to hide the sensitive data Sc. Diverse
choices of pairs of distributions have been put forward in the literature: uniform
in hypercubes [Lyu09], Gaussian with the same standard deviation while allowing
for some small statistical inaccuracy in the target distribution [Lyu12], a bimodal
Gaussian source distribution with a Gaussian target distribution in association
with an accomodating arithmetic modification of the scheme [DDLL13] (the
modification consists in replacing q with 2q and changing key generation to
ensure that T = −T = qI mod 2q). The pre-source distribution Q is shifted by
(−1)bSc for a uniform bit b, leading to a source distribution Q±Sc. We refer
to this as the bimodal setting. By opposition, we now refer to the former two
cases where the source distribution is Q+Sc as the unimodal setting. The first

4 If we view y and S over Zq rather than Z, then they do belong to a finite set; but
for security, the masking should preserve smallness relative to q, which the uniform
distribution modulo q does not achieve.
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choice (uniform distributions in hypercubes) leads to a simple design, whereas
the latter two allow for more compact signatures. One may also want to add
constraints on the number of loop iterations, notably to guarantee a signing
runtime upper bound. In the extreme case of removing rejection altogether, it
was recently shown in [ASY22] that a limited flooding suffices, compared to the
exponential flooding discussed earlier. This leads us to the question we address
in this work:

Given signing runtime requirements, which rejection sampling strategy
leads to the most compact signatures?

In a signature σ = (z, c), the second component contributes to a small fraction of
the bitsize: the main requirement on c is that it has sufficiently high min-entropy
to make it hard to guess. On the other hand, the contribution of z towards
signature length is mostly driven by ‖z‖, as this directly impacts security: for
a given security level, the smaller ‖z‖, the more compact the signatures. For
this reason, we simplify the overall objective to minimizing Ex←↩P (‖x‖) under
signing runtime requirements.

Contributions. Our main contributions concern the optimality of rejection
sampling design choices towards optimizing signature sizes and signing runtime.
We provide lower bounds, and study ways to reach and circumvent them.

Before describing the main results, we need to quantify the runtime of re-
jection sampling strategies. We note that for classic rejection sampling with
target P and source Q, the expected number of samples needed is R∞(P‖Q)
where R∞(D1‖D2) = supxD1(x)/D2(x) refers to the Rényi divergence of in-
finite order. Indeed, for classic rejection sampling, one samples x from Q and
accepts with probability P (x)/(M · Q(x)), for M = R∞(P‖Q). This justifies
using R∞(P‖Q) to quantify the runtime for rejecting Q to P .

We start with our lower bounds.
• Considering Lyubashevsky’s scheme with perfect rejection sampling to the

target distribution P (as in [Lyu09]), the relevant quantity measuring the
signing runtime is then given byM = maxS,cR∞(P‖Q+Sc). We show (under
a mild assumption discussed below) that for all P andQ such thatM is finite,
the expected norm Ex←↩P (‖x‖) is Ω((m/ logM)·maxS,c ‖Sc‖). Interestingly,
this bound is a factor

√
m lower than what is obtained for the typical choice

of P and Q set as uniform distributions in hypercubes.
• In the case of perfect rejection with the accommodating arithmetic modifi-

cation from [DDLL13], then the relevant quantity for measuring the signing
runtime is M = maxS,cR∞(P‖Q±Sc), where Q±Sc denotes the balanced
mixture of Q+Sc and Q−Sc. In this case, we show (under the same mild
assumption) that for all P and Q such that M is finite, the expected norm
Ex←↩P (‖x‖) is Ω(

√
m/ logM · maxS,c ‖Sc‖). This lower bound is actually

reached (up to a constant factor) for P and Q Gaussian as in [DDLL13].
• We show that for any algorithm (terminating with probability 1) that se-

lects one out of many samples from Q to get a sample from P , the expected
number of required samples from Q is ≥ R∞(P‖Q). This lower bound is
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reached by classic rejection sampling. In the case of Lyubashesvky’s signa-
tures with exact rejection sampling, this general result implies that classic
rejection sampling is the appropriate strategy when it comes to minimize
the expected runtime.
The lower bounds above seem to give little margin of improvement in the

design choices of Lyubashevsky’s signatures, except for the unimodal case, for
which uniform distributions in hypercubes do not reach the lower bound. Our
second set of main results considers ways to reach or circumvent these lower
bounds.

• Concerning the unimodal case, one way to circumvent the results above
is to consider imperfect rejection sampling, by allowing for an approxi-
mation to P whose accuracy is parameterized by some ε > 0 (as intro-
duced in [Lyu12]). Then the relevant quantity to bound the runtime be-
comes maxS,cR

ε
∞(P‖Q+Sc), where Rε∞ is a smoothed variant of R∞ that we

define. In this case, we improve the signature security analysis from [Lyu12]
by using the Rényi divergence instead of the statistical distance to quantify
the closeness to P of the output distribution. This allows choosing ε larger
than previously, leading to a (limited) signature compactness improvement.

• Gaussian distributions provide better signature compactness in the bimodal
and imperfect unimodal regimes, than uniforms in hypercubes in the perfect
unimodal regime. However, uniforms in hypercubes are sometimes preferred
(see, e.g., Dilithium), because they lead to a simpler implementation, which
in turn makes protection against timing attacks easier. We consider uni-
forms in hyperballs as a new alternative for the choice of source and target
distributions. We show that this choice reaches the two lower bounds for
Ex←↩P (‖x‖) for perfect rejection sampling and is as good as Gaussians for
imperfect rejection sampling (up to a constant factor). Interestingly, the re-
jection test for uniforms in hyperballs is very simple, similarly to uniforms
in hypercubes. We not only study the choice of uniforms in hyperballs in the
asymptotic regime, but also compare it to Dilithium.

• Finally, imperfect rejection from Q to P allows us to describe and analyze
variants of rejection sampling where the maximum number of loop iterations
is bounded. This provides trade-offs between maximum signing runtime and
signature sizes. When instantiated to rejection-free sampling, we recover the
scheme and analysis from [ASY22], whereas it quickly converges to Lyuba-
shevsky’s signature scheme when the signing runtime bound grows.
The results concerning signature compactness for unbounded (perfect and

imperfect) rejection sampling are summarized in Table 1.

Technical overview. In Section 2, we provide the background necessary to this
work, including rejection sampling and Lyubashevsky’s signature scheme.

After identifying the notion of expected number of iterations during rejection
sampling with the notion of smooth-Rényi divergence that we define, we start
addressing our main question of understanding to which extent the expected
norm of a signature can be small for target expected signing runtime constraints.
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Unimodal (ε = 0) Unimodal
(ε ≥ 2−o(m) and ε = o(1/m))

Bimodal (ε = 0)

Hypercube tm3/2

logM
tm3/2

logM
tm3/2

logM

Gaussian ∞ t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM

Hyperball
tm

logM

(Lemma 5.1)

t
√
m
√

log 1
ε
+logM

logM

(Lemma 5.1)

t
√
m√

logM

(Lemma 5.2)

Lower bound
tm

logM

(Corollary 3.3)
?

t
√
m√

logM

(Corollary 3.5)

Table 1. This table expresses the compactness of the signature modeled as Ex←↩P (‖x‖)
given the signing runtime constraint for various choices of distributions P and Q. The
column indicates the signing runtime constraint which is modeled in the unimodal case
by maxv∈Bm(t)R

ε
∞(P‖Q+v) ≤M where ε quantifies the accuracy of rejection sampling

and in the bimodal case by maxv∈Bm(t)R∞(P‖Q±v) ≤ M . In the first row, P and Q
are chosen to be uniform in m-dimensional hypercubes of appropriate side-lengths, in
the second row, they are chosen to be m-dimensional Gaussians of appropriate vari-
ance. In the third row, they are chosen to be uniform in the m-dimensional hyperballs
of appropriate radii. The last row gives a lower bound on the compactness for any
choice of P and Q. Multiplicative constants are omitted in this table, and we make the
assumption that logM ≤ m.

Lower Bounds. In Section 3, we prove lower bounds in the case of exact re-
jection sampling in both unimodal and bimodal settings. These lower bounds
are obtained following a similar path. In what follows, we focus on the uni-
modal setting. To ease the analysis, we place ourselves in a slightly simpli-
fied setup where shifts belong to a hyperball Bm(t) of radius t instead of be-
ing defined as Sc. Given that S is unknown, this simplification seems reason-
able and allows avoiding significant complications in the proof. In this setting,
we prove that for a given constraint maxv∈Bm(t)R∞(P‖Q+v) ≤ M , we have
Ex←↩P (‖x‖) ≥ (t/M1/(m−1) − 1)−

√
m/2.

Our lower bounds are obtained in three steps: (1) considering the same setting
with continuous distributions, we first prove that we can restrict ourselves to the
case of isotropic distributions over Rm, where isotropic means that their densities
only depend on the norm. Specifically, we prove that for any two densities f, g,
there exist isotropic distributions f∗, g∗ satisfying maxv∈Bm(t)R∞(f∗‖g∗+v) ≤
M as well as Ex←↩f∗(‖x‖) = Ex←↩f (‖x‖). The latter distributions are essen-
tially obtained from f, g by averaging their respective densities on hyperspheres.
(2) Starting with f and g isotropic, we show that Ex←↩f (‖x‖) = µm/µm−1 where
µk =

∫∞
0
rkf(r) dr. The main technicality consists in proving an intermediate

lower bound µm−1/µm−2 ≥ (t/M1/(m−1) − 1) which results from the constraint
maxv∈Bm(t)R∞(f‖g+v) ≤ M . Our lower bound is then obtained by applying
the Cauchy-Schwarz inequality |E(XY )|2 ≤ E(X2)E(Y 2) to random variables
X = ‖x‖m/2 and Y = ‖x‖(m−2)/2, where x ←↩ f . Indeed, it immediately leads
to inequality µm ·µm−2 ≥ (µm−1)2, which results in µm/µm−1 ≥ µm−1/µm−2 ≥
(t/M1/(m−1) − 1). (3) A similar lower bound in the discrete setting is obtained
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by considering the continuous density p(x) = P (dxc) with P being a discrete
probability. These lower bounds provide us with a target to reach, and we can
compare them with the signature size obtained when instantiating the above
scheme with various distributions.

On Alternative Rejection Sampling Strategies. In Section 3.3, we investigate the
question of the relevance of rejection sampling strategies differing from the classic
one. We consider the following setting. As above, the goal is to sample from a
distribution P given access to a sampler from a distribution Q, and we consider
a sequence of samples (Xi)i≥1 from distribution Q. Any strategy is allowed
as long as we output one of the Xi’s. A strategy is given by a sequence of
algorithms (Ai)i≥1 that take samples (Xj)j≤i as input and return either an
index j ∈ [i], which corresponds to halting with output Xj , or a special symbol r
which corresponds to rejecting and moving to Ai+1. We restrict ourselves to the
case of procedures that terminate with probability 1. Considering i∗ the random
variable denoting the number of samples observed in a strategy, our objective is
then to measure how small E(i∗) can be. We prove that for any P,Q, we have
E(i∗) ≥ R∞(P‖Q). This result is obtained by proving that for any x, we have
P (x) ≤ E(i∗) ·Q(x), leading to the former inequality by definition of R∞.

Rényi-Based Analysis for Imperfect Rejection Sampling. All lower bounds are
for perfect rejection sampling, in the sense that one obtains a sample from (ex-
actly) P . In [Lyu12], Lyubashevsky showed that one can consider imperfect re-
jection sampling, and shows that it is particularly beneficial in the case of Gaus-
sians. We propose an analysis that replaces the use of the statistical distance as
done in [Lyu12] by that of the smooth Rényi divergence, and allows loosening
the constraints on imperfectness. We first recall that in [Lyu12], the statistical
distance is used to bound the statistical distance between a (single) execution
of the imperfect rejection sampling algorithm and the target distribution. Using
imperfect rejection sampling in a signature scheme and given bound ε for the
above statistical distance, one can then bound the distinguishing advantage of
an adversary between the real security game and the ideal game (where signa-
tures are simulated by sampling them from the target distribution) by qsig · ε.
Here qsig is a bound on the number of signature queries an adversary can make.
In Section 4, we prove that for P,Q such that Rε∞(P‖Q) is finite, the Rényi
divergence of infinite order between a (single) execution of the imperfect rejec-
tion sampling algorithm and the target distribution is bounded by 1/(1 − ε).
Combining this result with the multiplicativity of the Rényi divergence, we can
then bound the Rényi divergence of infinite order between the adversary’s view
in the real game and its view in the ideal game by 1/(1− ε)qsig for the resulting
signature. The probability preservation property of the Rényi divergence then
allows completing the analysis. Our analysis leads to potential improvements as
the former statistical bound qsig · ε imposes that ε = 2−Ω(λ), while our bound
can be used setting ε = 1/qsig. Since qsig is a (possibly large) polynomial of the
security parameter λ, this puts less constraint on the condition P and Q must
satisfy, which results in compactness improvement.
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Hyperball Uniforms. We show that (continuous) uniform distributions over hy-
perballs reach the signature compactness lower bound (up to constant factors)
in both unimodal and bimodal settings, as shown in Section 5.1. We also show
that they are as good as Gaussians for imperfect rejection sampling (up to a
constant factor). These results reduce to Rényi divergence computations, which
involve geometric properties of hyperballs. We emphasize that while Gaussian
distributions also achieve similar signature size (up to a constant factor) in both
unimodal and bimodal settings (but only in the case of imperfect rejection sam-
pling with polynomial loss for the unimodal case), using uniform distributions
over hyperballs makes the rejection test as simple as computing ‖z‖ since it
consists only in checking that z is in the hyperball of the target distribution P .
In order to use this distribution in a signature, we propose a generalization of
Lyubashevsky’s signature that allows for continuous source and target distribu-
tions, by adding a rounding step after accepting a sample. Its security relies on
the same mechanisms as the discrete case. This strategy could also benefit to
Gaussian distributions, by allowing to replace discrete Gaussian sampling with
possibly simpler continuous Gaussian sampling. To assess the practicality of this
new choice of distributions, we propose parameters for a variant of Dilithium
with uniform distributions in hyperballs. If considering the sum of bitsizes of a
verification key and a signature, the gains range from ∼ 15% to ∼ 25%, depend-
ing on the security level.
Bounded Rejection Sampling. We conclude this work by proposing an original
strategy to use rejection sampling while guaranteeing a (moderate) worst-case
runtime. This could be beneficial in the context of real-time systems. A simple
strategy could consist in fixing a (very large) bound i on the number of iterations
such that it fails to produce a sample with negligible probability. While this
guarantees a worst-case runtime, the change is mainly cosmetic since it has
to be large enough for the sampling to succeed. In Section 6, we propose an
alternative solution that leaves the choice of i open without ever failing: for a
fixed bound i, it performs (up to) i−1 iterations of the classic rejection sampling
and outputs a sample if it ever succeeds, otherwise, the last (i-th) iteration uses
one-shot flooding techniques (as done in [ASY22]) to guarantee an output. The
analysis makes heavy use of the smooth Rényi divergence and its properties.
Different choices for the bound i offer various trade-offs, ranging from one-shot
signatures (i = 1) as in [ASY22] to Lyubashevsky’s expected polynomial-time
signatures (i going to ∞).

Open problems. Our results suggest that instantiating the Fiat-Shamir with
aborts using uniform distributions in hyperballs is a relevant choice, both in the
unimodal and bimodal settings, as it provides more compact signatures than uni-
form distributions in hypercubes but also much simpler rejection test than Gaus-
sians. We believe it is an interesting open question to investigate a constant-time
implementation with this choice. Regarding further improvements of signatures,
our results show that there is not much room for improvement if the goal is to
minimize signature size or E(i∗). However, other quantities could be considered,
such as the shape of the tail of the distribution of i∗.
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2 Preliminaries

Due to space limitations, we postpone notations and some standard background
to Appendix A. This includes definitions pertaining to digital signatures and to
specific distributions.

We introduce a relaxed version of the Rényi divergence, termed the smooth
Rényi divergence, where one is able to remove a few problematic points from
the support, including those that may lie in Supp(p)\Supp(q). Doing so, we can
compare a wider set of probability distributions. For instance, while the Rényi
divergence of infinite order between DZm,σ and DZm,σ,v is infinite when v 6= 0,
their smooth divergence is finite, as we show in Lemma C.2 and is implicit
in [Lyu12]. We could give this definition for any order a ∈ [1,+∞]. However,
only the case a = +∞ is relevant for this work.

This definition is useful to link previous works on rejection sampling and the
Rényi divergence. A similar quantity has been previously defined in the quantum
information literature [Ren05,Dat09], though the specific notion of smoothing we
consider here is slightly different.

Definition 2.1 (Smooth Rényi Divergence). Let ε ≥ 0. Let p, q be two
probability densities such that

∫
Supp(q)

p(x) dµ(x) ≥ 1− ε. Their ε-smooth Rényi
divergence of infinite order is

Rε∞(p‖q) := inf
S⊆Supp(q)∫

S
p(x) dµ(x)≥1−ε

ess sup
x∈S

p(x)

q(x)
.

This definition is equivalent to

Rε∞(p‖q) := inf{M > 0 | Pr
x←↩p

(p(x) ≤Mq(x)) ≥ 1− ε}.

By convention, if
∫
Supp(q)

p(x) dµ(x) < 1− ε, we define Rε∞(p‖q) = +∞.

In Appendix A.3, we prove that the two definitions are indeed equivalent and
give useful properties of the smooth Rényi divergence.

2.1 Rejection Sampling

Given two close enough densities pt and ps, either both continuous or both
discrete, rejection sampling is a way to generate samples from pt given access
to samples from ps, as explained for instance in [Dev86]. It was used mainly
to generate samples from complex distributions that were “close” to easier-to-
sample distributions. However, in cryptography and particularly in the line of
works started with [Lyu09], it found a peculiar use that diverged from its primary
use. Given a family of densities (p

(v)
s ), rejection sampling can be used to hide the

parameter v given a density pt that is close to every density in this family. It was
later observed in [Lyu12] that an “imperfect” rejection procedure is sufficient for
this use and leads to smaller parameters, notably standard deviation of ps.
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In the case of Lyubashevsky’s signature scheme [Lyu09,Lyu12], a signature
is a pair of vectors (y + Sc, c) where y ←↩ Py and c would ideally be sam-
pled from Pc. Here Pc : C → R and Py : Zm → R are two discrete prob-
ability distributions, where C ⊂ Zk,m, k ≥ 1, and S ∈ Zm×k is fixed (it is
the signing key). The joint distribution of this pair corresponds to the source
distribution P

(Sc)
s above, which depends on the sensitive data Sc. Rejection

sampling is used to ensure that the output of the signing algorithm is of the
form (z, c) where z ←↩ Pz and c ←↩ Pc are statistically independent and Pz is
well-chosen. Their joint distribution corresponds to the target distribution Pt
above. The case of BLISS [DDLL13] is identical, except that signatures are of
the form (y + (−1)bSc, c), where b←↩ U({0, 1}).

We consider the following algorithms from Figure 1, which take some M ≥ 1
as a parameter. Algorithm Aideal corresponds to what we would like to have,
whereas Areal is the algorithm corresponding to the real distribution. We are typ-
ically interested in calling these algorithms until they output something, which is
what Breal∞ and Bideal∞ do. It remains to understand when the outputs of these al-
gorithms are statistically close. For completeness, we prove the following lemma
in Appendix B.1.

Algorithm Areal:
1: x←↩ ps
2: with probability min

(
pt(x)

M·ps(x) , 1
)
,

return x
3: return ⊥

Algorithm Aideal:
1: x←↩ pt
2: with probability 1

M
, return x

3: return ⊥

Algorithm Breal
∞ :

1: z ←⊥
2: while z =⊥ do
3: z ← Areal

4: end while
5: return z

Algorithm Bideal
∞ :

1: z ←⊥
2: while z =⊥ do
3: z ← Aideal

4: end while
5: return z

Fig. 1. Rejection sampling algorithms.

Lemma 2.2 (Adapted from [Lyu12, Lemma 4.7]). Assume that M ≥ 1
and ε ∈ [0, 1/2] are such that

Pr
z←↩pt

(pt(z) ≤M · ps(z)) ≥ 1− ε,

which can be rewritten in terms of smooth Rényi divergence as Rε∞(pt‖ps) ≤M .
Then the probability Areal(⊥) that Areal aborts is such that

M − 1

M
≤ Areal(⊥) ≤ M − 1 + ε

M
.

Moreover, we have

∆(Areal,Aideal) ≤ ε/M and ∆(Breal∞ ,Bideal∞ ) ≤ ε.
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2.2 Lyubashevsky’s signature scheme

All the following parameters are functions of a security parameter λ. We let k,m,
n ≥ 1 and q ≥ 2 specify matrix spaces over Zq, with m > n. The distribution PS

over Zm×k is for signing keys and has support S = Supp(PS). Let M be the
message space. Let C ⊂ Zk finite and H : Znq × M → C a hash function,
which is modeled as a random oracle in the signature scheme analysis. The
parameter γ > 0 is used in the verification algorithm to quantify the smallness
of vectors corresponding to valid signatures. To obtain a 2λ security against
known attacks, one typically sets m,n, k = Ω(λ) and γ, q = poly(λ).

Let ε ≥ 0 and M ≥ 1 be parameters related to rejection sampling, for a
source distribution Q and a target distribution P over Zm. Most works directly
instantiate these distributions. For example, uniform distributions in well-chosen
hypercubes are used in [Lyu09] and P = Q Gaussian are used in [Lyu12]. We
assume that the support of Q is contained in (−q/2, q/2]m.

We consider the scheme presented in Figure 2, borrowed from [Lyu12] with
the aforementioned rejection sampling generalization. For simplicity, we assume
that the verification key A ∈ Zn×mq is in Hermite normal form, i.e., we have
A = (In|B) for some matrix B and with In ∈ Zn×nq denoting the identity
matrix. Up to mild conditions on k, n,m, q, this is without loss of generality.

KeyGen(1λ) :

1: B←↩ Zn×(m−n)
q and S←↩ PS

2: A← (In|B)
3: T← AS
4: return vk = (A,T) and sk = (A,S)

Sign(µ,A,S) :

1: y←↩ Q
2: c← H(Ay, µ)
3: z← y + Sc
4: u←↩ U([0, 1])

5: if u ≤ min
(

P (z)
M·Q(y)

, 1
)

then
6: return (z, c)
7: else
8: go to Step 1
9: end if

Verify(µ, z, c,A,T = AS) :

1: if ‖z‖ ≤ γ and c = H(Az −Tc, µ)
then

2: return 1
3: else
4: return 0
5: end if

Fig. 2. Lyubashevsky’s signature scheme.

Runtime and correctness follow from the two lemmas below.

Lemma 2.3 (Sign Runtime). Let ε ≥ 0,M ≥ 1 and B = dλ/ log M
M−1+εe. As-

sume that P and Q satisfy max(S,c)∈S×C R
ε
∞(P‖Q+Sc) ≤ M . Let (y>0 |y>1 )> ←↩

Q, where y0 takes values in Zn. In the ROM, the number of loop iterations i∗
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of a Sign execution satisfies

∀i : Pr(i∗ ≥ i) ≤
(

1− 1− ε
M

)i
+B2 · 2−H∞(y0|y1)Q + 2−λ.

Note that when M ≤ poly(λ), ε ≤ 1− 1/poly(λ) and 2−H∞(y0|y1)Q ≤ negl(λ), we
have that B2 · 2−H∞(y0|y1)Q + 2−λ ≤ negl(λ).

Lemma 2.4 (Correctness). Let ε ≥ 0 and M ≥ 1. Let P and Q satisfy
max(S,c)∈S×C R

ε
∞(P‖Q+Sc) ≤ M . Let (y>0 |y>1 )> ←↩ Q, where y0 takes value

in Zn. Further assume that 2−H∞(y0|y1)Q ≤ negl(λ), ε ≤ negl(λ) and the prob-
ability that Sign terminates is ≥ 1 − negl(λ). Then, in the ROM, the scheme is
correct if γ ≥ γP with γP such that Prz←↩P (‖z‖ ≥ γP ) ≤ negl(λ).

We only highlight components of typical security proofs that are relevant to
our work, and refer to prior works for more details [Lyu09,Lyu12,AFLT16]. The
security proofs of Lyubashevsky’s signature scheme all proceed by sequences of
games and argue that the adversary’s advantages in successive games differ by
small amounts and that no efficient adversary can solve the last game with a
significant advantage.

An early step in the sequence of games is to replace the calls to H at Step 2
of the Sign algorithm by truly uniform and independent samples c ← U(C). To
ensure that the adversary cannot notice the difference in the ROM, this requires
that a given input (Ay, µ) to H cannot occur twice. This is obtained by having
the conditional min-entropy H∞(y0|y1)Q satisfy:

H∞(y0|y1)Q = Ω(λ).

An important other game hop consists in making Steps 1 to 6 of the Sign algo-
rithm signing-key independent. Concretely, this means arguing that the distri-
butions of the pair (z, c) in the experiments from Figure 3 are statistically close,
by using Lemma 2.2. (Note that this also requires programming H consistently
with all appearing c’s.)

1: y←↩ Q
2: c← U(C)
3: z← y + Sc
4: u←↩ U([0, 1])

5: if u ≤ min
(

P (z)
M·Q(y)

, 1
)

then
6: return (z, c)
7: else
8: return (⊥,⊥)
9: end if

1: c← U(C)
2: z← P
3: u←↩ U([0, 1])
4: if u ≤ 1

M
then

5: return (z, c)
6: else
7: return (⊥,⊥)
8: end if

Fig. 3. Simulating signatures.

To complete the security proof, Lyubashevsky [Lyu12] reduces the SIS prob-
lem to the sEU-CMA security of a signing-key independent simulation of the
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Sign algorithm, by relying on the forking lemma. At this stage of the security
proof, rejection sampling does not play a role anymore. We only note that the
SIS instance has parameters q,m, n and β = 2(γ + γ′), with γ as in the Verify
algorithm and γ′ = max(S,c)∈S×C‖Sc‖. Note that γ is always significantly larger
than γ′. We stress that there is a tension in setting γ: it should be sufficiently
high to provide correctness (see Lemma 2.4 above) and as small as possible to
provide higher security and hence allow more compact instantations.

3 Lower Bounds in the Case of Perfect Rejection
Sampling

We start by studying the case of perfect rejection sampling, which corresponds
to the setting of [Lyu09,DDLL13]. That is, we set ε = 0 in the formalism of
Section 2.2. We prove two lower bounds: (1) regarding signature size in both
unimodal and bimodal settings (Sections 3.1 and 3.2), and (2) regarding the
expected number of iterations of the rejection step (Section 3.3).

First, we analyze to which extent the expected norm of a distribution P can
be decreased, under the constraint that we can reject to it using shifted samples
from Q, where the Euclidean norm of the shift is bounded from above. This
gives lower bounds on the norm of the signature vector z in Lyubashevsky’s
signature scheme, as recalled in Section 2.2. We start by studying the easier case
of continuous distributions, and then provide a way to discretize the results.

Second, we prove than the classical rejection sampling strategy described
above is optimal if one aims to minimize the expected number of iterations of the
rejection step in the case of perfect rejection sampling from P to Q. Specifically,
the expected number of iterations of any strategy is at least R∞(P‖Q), which
is reached by classical rejection sampling.

3.1 Optimal Compactness in the Unimodal Setting

The main result of this subsection is the following.

Theorem 3.1. Let m ≥ 1, t > 0, V = Bm(t) and M > 1. Let f, g : Rm → [0, 1]
be two probability densities over Rm such that supv∈V R∞(f‖g+v) ≤ M . Then
we have:

Ex←↩f (‖x‖) ≥ t

M1/(m−1) − 1
.

Note that we place ourselves in a setup where shifts belong to a hyperball. In
the context of Lyubashesvky’s signature scheme, the shift is Sc, where S is the
signing key and c is the challenge (which is part of the signature). Given that S
is unknown, replacing the set of Sc’s by a hyperball seems to be a reasonable
approach. Refining this approximation would lead to significant difficulties in
the proof, with unlikely gains.

We now discuss the parameters M and m. As exhibited in Lemma 2.3, the
variable M is related to the rejection probability. The smaller M , the faster we
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expect signing to be. To obtain a signing algorithm that terminates in polynomial
time with overwhelming probability, we are interested in M ≤ poly(λ). Recall
that we have m = Ω(λ). In this parameter regime, we have t/(M1/(m−1) − 1) ≈
t(m− 1)/ logM .

The role of distribution g in Theorem 3.1 may seem puzzling, as it does
not appear in the result. It acts as a control of the discrepancy of f : distri-
bution f must be sufficiently wide to hide (in the Rényi divergence sense) a
version of V that is blurred by g. This forces Ex←↩f (‖x‖) to be rather large.
The proof proceeds in two steps. The first one consists in showing that there is
no point favoring any direction and that we can restrict the study to isotropic
distributions, i.e., distributions whose density is a function of the norm of the
vector. The proof, which may be found in Appendix B, proceeds by averag-
ing on shells. Theorem 3.1 is then obtained by integrating the local constraint
supv∈V R∞(f‖g+v) ≤M over the whole support, with appropriate scaling.

Lemma 3.2. Let m ≥ 1, t > 0 and V = Bm(t). Let f, g : Rm → [0, 1] be two
probability densities over Rm and define M = supv∈V R∞(f‖g+v). Then there
exist two probability densities f∗, g∗ that satisfy

• supv∈V R∞(f∗‖g∗+v) ≤M ,
• ‖x‖ = ‖y‖ =⇒ g∗(x) = g∗(y) and f∗(x) = f∗(y),
• Ez←↩f (‖z‖) = Ez←↩f∗(‖z‖).

Proof (Theorem 3.1). Thanks to Lemma 3.2, we can, without loss of generality,
assume that both f and g are isotropic. For k ≥ 0, we define µk =

∫∞
0
rkf(r) dr,

which is the k-th order moment of f . In particular, we have µm−1 = 1/Sm
and µm = Ex←↩f (‖x‖)/Sm. Indeed, using a hyperspherical variable change, we
see that, for any β ∈ {0, 1}:

Ex←↩f (‖x‖β) =

∫
Rm
‖x‖βf(x) dx

=

∫ ∞
0

ρm−1+βf(ρ)

∫
[0,π]m−2×[0,2π]

D(~θ) d~θ dρ

= Sm · µm−1+β .

The above implies that Ex←↩f (‖x‖) = µm/µm−1.
For any x ≥ 0 and u ∈ [−t, t], it holds that f(x) ≤M ·g(|x−u|). In particular,

for x ≥ t, we have f(x− t) ≤M · g(x). Let us multiply both sides by xm−1 and
integrate over [t,+∞). With a change of variable on the left-hand side, this gives∫ ∞

0

(x+ t)m−1f(x) dx ≤M ·
∫ ∞
t

xm−1g(x) dx

≤M ·
∫ ∞
0

xm−1g(x) dx

= M ·
∫ ∞
0

xm−1f(x) dx,
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by recognizing that the right-hand side is M · µm−1 (which is the same for f
and g). Grouping everything on the same side, we have

0 ≤
∫ ∞
0

(
Mxm−1 − (x+ t)m−1

)
f(x) dx. (1)

Let C = t/(M1/(m−1) − 1). For m > 2, we rewrite the integrand as

Mxm−1 − (x+ t)m−1 =
(
M

1
m−1x− (x+ t)

)
·
m−2∑
k=0

(
xM

1
m−1

)k
(x+ t)m−2−k

=
(
M

1
m−1 − 1

)
(x− C) ·

m−2∑
k=0

(
xM

1
m−1

)k
(x+ t)m−2−k.

For m = 2, the above holds by replacing the sum by 1. Now, note that the
inequality xM1/(m−1) ≥ x + t holds if and only if x ≥ C. Hence the following
upper bound holds for any x ≥ 0, if m > 2:

(x− C) ·
m−2∑
k=0

(xM
1

m−1 )k(x+ t)m−2−k ≤ (x− C)(m− 1)M
m−2
m−1xm−2.

When m > 2, we can divide by (M1/(m−1) − 1)M (m−2)/(m−1)(m − 1) > 0 in
Equation (1), and obtain:

C ·
∫ ∞
0

xm−2f(x) dx ≤
∫ ∞
0

xm−1f(x) dx.

Note that it also holds for m = 2. This can be rewritten as µm−1/µm−2 ≥ C.
Now, observe that µm · µm−2 ≥ (µm−1)2. Indeed, the Cauchy-Schwarz in-

equality states that for any real random variables X,Y , it holds that |E(XY )|2 ≤
E(X2)E(Y 2). We instantiate it with the (non-independent) random variables
X = ‖x‖m/2 and Y = ‖x‖(m−2)/2, where x ←↩ f . Then XY = ‖x‖m2 +m−2

2 =
‖x‖m−1. To conclude, note µm · µm−2 ≥ (µm−1)2 implies that µm/µm−1 ≥
µm−1/µm−2 ≥ C. This completes the proof. ut

For the discrete case, we observe that given a discrete distribution P , let-
ting f : x 7→ P (dxc) be a probability density over Rm, we have, by the triangle
inequality

Ex←↩f (‖x‖) ≤ Ex←↩P (‖x‖) +

√
m

2
.

Theorem 3.1 can then be adapted to the discrete case, up to subtracting
√
m
2

from the lower bound. In all setups considered in this work, this term is signifi-
cantly smaller than t/(M1/(m−1) − 1).

Corollary 3.3. Let m ≥ 1, t > 0, V = Bm(t)∩Zm and M > 1. Let P and Q be
two discrete probability distributions over Zm such that supv∈V R∞(P‖Q+v) ≤
M . Then we have:

Ex←↩P (‖x‖) ≥ t

M1/(m−1) − 1
−
√
m

2
.
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3.2 Optimal Compactness in the Bimodal Setting

We obtain the following result in the bimodal setting. As the proof is similar to
the one of Theorem 3.1, it is postponed to Appendix B.3.

Theorem 3.4. Let m ≥ 3, t > 0, V = Bm(t) and M > 1. Let f, g : Rm →
[0, 1] be two probability densities over Rm such that supv∈V R∞(f‖g±v) ≤ M ,
where g±v is the density x 7→ 1

2 (g(x− v) + g(x + v)).Then the following holds:

Ex←↩f (‖x‖) ≥ t√
M

2
m−2 − 1

.

For M ≤ poly(λ) and m = Ω(λ) as in the discussion following Theorem 3.1,
we have t/(M2/(m−2)−1)1/2 ≈ t

√
(m− 2)/(2 logM). Similarly to the unimodal

case, the lower bound can be adapted to integer distributions with limited loss
(for all setups considered in this work).

Corollary 3.5. Let m ≥ 3, t > 0, V = Bm(t)∩Zm and M > 1. Let P and Q be
two discrete probability distributions over Zm such that supv∈V R∞(P‖Q±v) ≤
M , where Q±v is as in Theorem 3.4. Then the following holds:

Ex←↩P (‖x‖) ≥ t√
M

2
m−2 − 1

−
√
m

2
.

3.3 Optimality of the Expected Number of Iterations

We now analyze to which extent the expected number of iterations of the rejec-
tion step could be reduced in the case of exact rejection sampling from P to Q,
and prove the classical strategy to be optimal. This question arises from the
variety of rejection sampling techniques that have been studied in other fields.

There exist multiple variants of rejection sampling. For instance, a procedure
described in [HJMR07] and recalled in Appendix D takes a greedy approach to
rejection sampling and differs from the one we presented up until now. We are in
the setting where we have access to a sampler from distribution Q. These samples
are denoted by (Xi)i≥1 withXi ∈ X for some set X and we are required to output
a sample from the distribution P over X . Any design of procedure is allowed,
as long as the output is one of the observed samples Xi. Let i∗ be the random
variable denoting the number of samples observed by an algorithm and we wish
to determine how small E(i∗) can be. We note that the work of [HJMR07],
establishes that there exists a rejection sampling algorithm achieving E(log i∗) =
logR1(P‖Q) up to lower order terms in R1(P‖Q), and that this is optimal. Here,
we show that the minimum value for E(i∗) is R∞(P‖Q).

We model a rejection sampling algorithm by a family of randomized functions
Ai : X i → {1, . . . , i} ∪ {r}. At step i, it sees the new sample Xi and based on
X1, . . . , Xi it computes Ai(X1, . . . , Xi). If it is equal to r, the algorithm asks
for one more sample and otherwise if Ai(X1, . . . , Xi) ∈ {1, . . . , i}, the algorithm
terminates and outputs the sample XAi(X1,...,Xi). Note that the running time
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of the algorithm is defined by i∗ = inf{i ≥ 1 : Ai(X1, . . . , Xi) 6= r}. We only
consider algorithms for which i∗ < ∞ almost surely. We define the random
variable J = Ai∗(X1, . . . , Xi∗) ∈ N+, note that J ≤ i∗ and the output of the
algorithm is XJ (i.e., the output sample may not be the last one that was
generated).

Theorem 3.6. Let P,Q be two discrete probability distributions. Any rejection
sampling algorithm (Ai)i≥1 sampling from P satisfies E(i∗) ≥ R∞(P‖Q).

Proof. We have by assumption for any x ∈ X ,

P (x) = Pr[XJ = x] =

∞∑
j=1

Pr[J = j,Xj = x] ≤
∞∑
j=1

Pr[i∗ ≥ j,Xj = x],

where we used the fact that the event [J = j] is contained in [i∗ ≥ j]. Now,
observe that the event [i∗ < j] only depends on X1, . . . , Xj−1 and as such it is
independent of the event [Xj = x]. This implies that [i∗ ≥ j] is independent of
[Xj = x]. As a result, we have

P (x) ≤
∞∑
j=1

Pr[i∗ ≥ j] Pr[Xj = x] = E(i∗)Q(x) ,

which proves the desired result.

In the context of Lyubashevsky’s signature schemes with source distribu-
tion Q′, target distribution P ′, challenge set C and signing key S, we would
have P = P ′ ⊗U(C) and Q would be the distribution of the pair (z, c) obtained
by sampling y from Q′, c from U(C) and defining z = y + Sc.

The above proof can be adapted in the setting where P and Q are continuous
distributions by considering a sequence of balls converging to {x} instead of x.

4 Improved Analysis via the Rényi Divergence

For the rest of the paper, we flip our focus and prove positive results (upper
bounds). In this section, we propose an improved analysis of Lyubashevsky’s
signatures that relies on the Rényi divergence rather than the statistical distance,
allowing larger sampling errors in the case of imperfect rejection sampling. Then,
in Section 5 propose a new choice of distributions that (asymptotically) reaches
our lower bounds. Finally, in Section 6, we propose a way to circumvent the lower
bound for the expected number of iterations by providing an alternate strategy
which allows to fix a-priori a maximal number of loop iterations.

Our lower bounds apply to perfect rejection sampling, but rejecting to an
inaccurate approximation to the target distribution also allows to instantiate
Lyubashevsky’s signature, as done in [Lyu12] and already mentioned in Sec-
tion 2.2 (when ε > 0 in Lemma 2.2). In particular, imperfect rejection sampling
is used when instantiating the signature scheme with Gaussian distributions.
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In this section, we study the case of imperfect rejection sampling and de-
scribe a way to improve the analysis of the digital signature from Section 2.2, by
replacing the statistical distance (in Lemma 2.2) with the Rényi divergence to
quantify the closeness between ideal and real rejection sampling algorithms. As
already observed in prior works (see in particular the discussion in [BLR+18]),
the Rényi divergence is well-suited for improving the analyses of digital signa-
tures, as the security game is of a search type. While the analysis based on the
statistical distance imposes ε = 2Ω(λ), as it requires the statistical distance to be
negligible, our analysis allows larger sampling errors as it only imposes ε ≈ 1/qsig
where qsig is the number of signing queries (which is poly(λ)� 2Ω(λ)).

4.1 Rényi Divergence Bounds for Imperfect Rejection Sampling

Let pt and ps be two probability densities, both continuous or both discrete. We
consider algorithms Areal, Aideal, Breal and Bideal from Figure 1.

Lemma 4.1. Assume that M > 1 and ε < 1 are such that Rε∞(pt‖ps) ≤ M .
Then for any a ∈ (1,+∞) we have:

Ra(Areal‖Aideal) ≤

(
1

M
+
M − 1 + ε

M
·
(

1 +
ε

M − 1

)a−1) 1
a−1

,

Ra(Breal∞ ‖Bideal∞ ) ≤ 1

(1− ε)a/(a−1)
.

Moreover, for a =∞, we have:

R∞(Areal‖Aideal) ≤ 1 +
ε

M − 1
and R∞(Breal∞ ‖Bideal∞ ) ≤ 1

1− ε
.

Note that for ε = 0, we recover the distributional equalities Areal = Aideal

and Breal∞ = Bideal∞ of Lemma 2.2. We are interested in the case ε > 0.

Proof. Let Areal(⊥) and Aideal(⊥) denote the probabilities that Areal or Aideal

output nothing. We have, using results from Lemma 2.2:

Ra(Areal‖Aideal)a−1 =

∫
Supp(ps)

(
ps(x) min

(
pt(x)

M ·ps(x) , 1
))a

(pt(x)/M)a−1
dx

+
(Areal(⊥))a

(Aideal(⊥))a−1

≤
∫
Supp(ps)

(
ps(x) pt(x)

M ·ps(x)

)a
(pt(x)/M)a−1

dx+
(1− (1− ε)/M)a

(1− 1/M)a−1

=

∫
Supp(ps)

pt(x)

M
dx+

M − 1 + ε

M
·
(
M − 1 + ε

M − 1

)a−1
≤ 1

M
+
M − 1 + ε

M
·
(

1 +
ε

M − 1

)a−1
.
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We move on to bounding the second divergence. For any x ∈ Supp(ps):

Breal∞ (x) =
Areal(x)

1−Areal(⊥)
.

This also holds for Bideal∞ with Aideal instead of Areal. We obtain:

Ra(Breal∞ ‖Bideal∞ )a−1 =

∫
Supp(ps)

1

Ma−1 ·

(
ps(x) min

(
pt(x)

M ·ps(x) , 1
))a

(Areal(⊥))a(pt(x)/M)a−1

≤ M

(1− ε)a

∫
Supp(ps)

(
ps(x) min

(
pt(x)

M ·ps(x) , 1
))a

(pt(x)/M)a−1
.

This sum was already computed just above and is at most 1/M .
The continuity of a 7→ Ra(Pt‖Ps) at a = +∞ gives the last bounds. ut

4.2 Improved Analysis of Lyubashevsky’s Scheme

We now go back to the scheme described in Section 2.2 with imperfect rejec-
tion sampling, and show that the analysis above allows setting ε ≈ 1/qsig instead
of ε = 2−Ω(λ). Here qsig refers to the number of signing queries that an adversary
can make. As a signing query requires an interaction with the signer, it is typi-
cally considered to be a large polynomial in λ, which is much smaller than 2Ω(λ).
As a result, this refined analysis puts less stress on the condition that Ps and Pt
must satisfy and hence to reach smaller values for Ez←↩Pt(‖x‖): this is beneficial
to security and then allows for smaller parameter sets.

To achieve this improvement, we replace the statistical distance with the
Rényi divergence in the scheme analysis, when simulating signature queries (see
Figure 3). By Lemma 4.1 and the data processing inequality of Lemma A.4,
replacingAreal byAideal once in the security proof (i.e., in one loop iteration of one
signature query) leads to a multiplicative loss of a factor ≤ 1 + ε/(M − 1) in the
adversary’s advantage. Now, note that the probability that at least one among
the qsig sign queries requires more than B = (λ+log qsig)/ log(M/(M−1+ε)) loop
iterations is exponentially small. Assuming this is not the case, we can bound
the number of times Areal is replaced by Aideal in the security proof by B ·qsig. By
the Rényi divergence multiplicativity property (see Lemma A.4), this induces a
multiplicative loss of a factor ≤ (1+ε/(M−1))B·qsig in the adversary’s advantage.

5 Reaching the Lower Bounds with Hyperballs

In this section, we show that continuous uniform distributions in hyperballs reach
the lower bounds in both the unimodal and bimodal perfect rejection sampling
settings. We also consider the imperfect unimodal setting and find parameters
that are asymptotically at least as good as the ones obtained for the Gaussian
distribution (using our analysis described in Section 4). As continuous hyperball

18



uniform distributions are easier both to study and implement than their discrete
counterpart, we consider the case of continuous distributions.Further, we show
that a slight modification of Lyubashevsky’s signature allows for the target and
source distributions to be continuous.

We also compare this choice of distributions with the uniform distributions
in hypercubes and with Gaussians, both asymptotically and with concrete pa-
rameters.

5.1 Uniform Distributions in Hyperballs

The first step is to compute the divergence in the three settings: unimodal, either
perfect or imperfect rejection sampling and bimodal perfect rejection sampling.
The first case can actually be seen as a particular case of the second one, and
we summarize both in the following lemma. The function I appearing in the
statement is defined in Appendix A.6 using the beta function, and comes into
play when dealing with hyperspherical caps.

Lemma 5.1 (Smooth Divergence). Let m ≥ 1 and v ∈ Rm. Let ε ∈ [0, 1/2)
and η ≥ 1 be such that 2ε = I1−1/η2(m+1

2 , 12 ). Let r, r′ > 0 such that r′2 ≥
r2 + ‖v‖2 + 2r‖v‖/η. Then it holds that:

Rε∞

(
U(Bm(r))‖U(Bm(r′,v))

)
=
(r′
r

)m
.

Let M > 1. The above is ≤M if r ≥ ‖v‖ ·
1
η+

√
1
η2

+M2/m−1

M2/m−1 and r′ = M1/mr.

Note that when ε = 0, we have η = 1. In that case, we can set r =
‖v‖/(M1/m − 1), which almost matches the lower bound from Theorem 3.1. As
seen in Appendix A.6, for ε = 2−c·m with a constant c > 0, we have that 1/η2

tends to 1 − 2−c when m goes to infinity. For ε satisfying ε ≥ 2−o(m) and
ε = o(1/m) with m going to infinity, we have that 1/η2 ∼ − log(ε)/m.

Proof. Assume that there exists some cut C with vol(C)/Vm(r) ≤ ε such that
the divergence is defined, i.e., with Bm(r) \ C ⊆ Bm(r′,v). Then the divergence
is (r′/r)m, as the ratio of densities is constant and equal to (r′/r)m over Bm(r)\C.
To prove the first claim, it hence suffices to show that such a cut C exists.

We introduce the cut Cη := {x ∈ Bm(r)|〈x,v〉 ≥ −‖v‖r/η}. This is the inter-
section of a ball with an affine half-space, i.e., an m-dimensional hyperspherical
cap. By Lemma A.13, its volume is Vm(r)

2 · I1−1/η2(m+1
2 , 12 ). The definition of η

ensures that vol(Cη)/Vm(r) = ε. We now check that Bm(r) \ Cη ⊆ Bm(r′,v).
Let x ∈ Bm(r) \ Cη. We have

‖x− v‖ ≤
√
r2 + ‖v‖2 + 2r‖v‖/η.

By assumption, the latter is no larger than r′, implying that x ∈ Bm(r′,v). This
completes the proof of the first claim.
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If we combine the condition on r and r′ and the equality r′ = M1/mr, we get

r2 + ‖v‖2 + 2
r‖v‖
η
≤M2/mr2,

which is a degree-2 inequality on r. Solving it completes the proof. ut

Lemma 5.2 (Divergence in the Bimodal Setting). Let m ≥ 1 and v ∈
Rm. Let r, r′ > 0 such that r′2 ≥ r2 + ‖v‖2. Let U(Bm(r′),±v) denote the
continuous probability distribution which samples b←↩ U({0, 1}) and returns z←↩
U(Bm(r′, (−1)bv)). Then it holds that:

R∞

(
U(Bm(r))‖U(Bm(r′),±v)

)
=
(
1 + χ<r+‖v‖(r

′)
)
·
(r′
r

)m
,

where χ<r+‖v‖ denotes the indicator function of reals smaller than r + ‖v‖.
Let M > 1. The above is ≤M if r ≥ ‖v‖/

√
(M/2)2/m − 1 and r′ = (M/2)1/mr.

Note that the choice of r almost matches the lower bound from Theorem 3.4.

Proof. The support of U(Bm(r′),±v) is exactly Bm(r′,v) ∪ Bm(r′,−v) and its
density is z 7→ (χBm(r′,v)(z) +χBm(r′,−v)(z))/(2Vm(r′)). The divergence is finite
when Bm(r) ⊆ Bm(r′,v) ∪ Bm(r′,−v). This is the case if any x with ‖x‖ ≤ r
satisfies ‖x − v‖ ≤ r′ or ‖x + v‖ ≤ r′. Let us assume, w.l.o.g., that ‖x − v‖ ≤
‖x + v‖. Then we write

‖x− v‖ =
√
‖x‖2 + ‖v‖2 − 2〈x,v〉 ≤

√
‖x‖2 + ‖v‖2.

Thanks to the assumption on r and r′, we conclude that the divergence is finite.
Now, the ratio of the densities only takes three values. If x 6∈ Bm(r) then

the ratio is 0. If x ∈ Bm(r) ∩ Bm(r′,v) ∩ Bm(r′,−v) then the ratio is (r′/r)m.
Finally, if x belongs to Bm(r) ∩ Bm(r′,v) but not to Bm(r′,−v), then the ratio
is 2(r′/r)m. This last case only occurs if Bm(r) 6⊆ Bm(r′,−v). This is the case
only if r′ < r + ‖v‖. This completes the proof of the first claim.

For the second claim, note that the assumption on r and r′ is satisfied, and
that the divergence bound is indeed ≤M . ut

Finally, in order to use the uniform distribution in a hyperball, we verify that
there is sufficient min-entropy in the first n coordinates given the remainingm−n
coordinates. The proof of the following lemma can be found in Appendix B.4.

Lemma 5.3. Let m ≥ 6, n ≥ 1 and r ≥ 2
√
m. Let x = (x>0 |x>1 )> be a random

variable over Rm whose distribution is U(Bm(r)), where x0 has dimension n. It
holds that

H∞
(
dx0c|dx1c

)
U(Bm(r))

≥
(

log2

1

0.85

)
· n .
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5.2 Lyubashevsky’s Signature with Continuous Distributions

We consider continuous distributions over hyperballs, which are not directly com-
patible with Lyubashevsky’s signature scheme, as recalled in Section 2. Switching
to uniform distributions over the integer points inside hyperballs leads to several
difficulties: sampling from such a distribution seems delicate, in particular if the
radius of the ball is moderate. Similarly, adapting Lemmas 5.1 and 5.2 seems
difficult. Rather, we argue that it is possible to extend Lyubashevsky’s signa-
ture scheme to the case of continuous distributions, and that this comes with
very limited complications (in the case of Gaussians, it could be simpler to use
continuous Gaussians with this modified scheme, than using discrete Gaussians
with the original scheme).

In order to adapt Lyubashevsky’s signature scheme to continuous distribu-
tions, a rounding step is added after acceptance of a sample, as well as during
hashing. Concretely, the changes compared to the construction described in Fig-
ure 2 are as follows: (i) y is now sampled from a continuous distribution with
density g, (ii) c is now computed as H(Adyc, µ), (iii) with z still being defined as
y+Sc, if the test passes, and the returned signature is now (dzc, c). This adapta-
tion is discussed in more details in Appendix C.3. We note that this leads to the
requirement that the min-entropy of dx0c|dx1c is large, where x = (x>0 |x>1 )> is a
random variable over Rm whose distribution is g and x0 has dimension n. In the
case of the uniform distribution in a hyperball, this is provided by Lemma 5.3.

We further remark that this applies to the analysis relying on the statistical
distance as well as our improved analysis which relies on the Rényi divergence.
Also, we note that the modified scheme involves computations over real numbers.
These can be securely replaced by finite precision computations, using standard
techniques such as described in [Pre17].

5.3 Comparison with other Distributions

Let t = maxS,c‖Sc‖. In Table 2, we summarize the expected norm of signatures
(up to a constant factor) for diverse distributions P and Q, and for a target ex-
pected number of iterations M . We consider three specific pairs of distributions,
two of them being previously considered distributions (Gaussians and uniforms
in hypercubes), and the last one being uniform distributions in hyperballs, in-
troduced above. We also consider three different scenarios:
• unimodal distributions and perfect rejection sampling, corresponding to the

column ε = 0;
• unimodal distributions and imperfect rejection sampling – we use approxi-

mations specific to the choice of ε ≥ 2−o(m) and ε = o(1/m);
• bimodal source distribution and perfect rejection sampling, corresponding

to column “Bimodal”.
Note that the second scenario relies on our improved analysis relying on the
Rényi divergence for the imperfect case (see Section 4). This parameter range
for ε is not appropriate when using the analysis relying on the statistical distance.

21



In the last column, we also emphasize if the test that decides to keep or reject
a sample is simple or not. For hyperballs, it simply consists in comparing the
norm of the sample with the radius of the target hyperball.

The entries in the table are approximations for m→∞, t = ω(1) and M =
2o(m), and for a given choice of P , we optimize the parametrization of Q (e.g.,
the radius in case of a hyperball) to minimize the signature norm.

Choices for P and Q ε = 0 ε ≥ 2−o(m) and ε = o(1/m) Bimodal Rejection Test

Hypercubes tm3/2

logM
tm3/2

logM
tm3/2

logM
Simple

Gaussians ∞ t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM
Complex

Hyperballs tm
logM

t
√
m
√

log 1
ε
+logM

logM
t
√
m√

logM
Simple

Table 2. Expected norm of signatures depending on the choice of distributions and
(im)perfectness of rejection sampling.

The values of the table are obtained by computing the parameters for the
underlying distributions (radii r, r′ of the hypercubes or hyperballs and standard
deviation σ of Gaussians) for our constraintsM and t. This is done by computing
their (smooth) Rényi Divergence, as done in Lemmas 5.1 and 5.2 for hyperballs.
Proofs for hypercubes and Gaussians can be found in Appendix C. Given these
parameters, the expected norm immediately follows (r

√
m for a hypercube of

radius r, σr for a Gaussian of standard deviation σ, and r for a hyperball of
radius r). To conclude this section, we emphasize the following points:

• Gaussians and Hyperballs are asymptotically equivalent and reach the lower
bounds in the bimodal setting; Hyperballs further reach our lower bound in
the exact unimodal setting as well;

• Hyperballs benefits from a significantly simpler rejection test compared to
Gaussians;

• The bimodal setting (in both Gaussian and Hyperballs cases) leads to the
most compact signatures.

5.4 Concrete Parameters

To study the concrete impact of the choice of distributions on signature size,
we consider Dilithium. The left side of Table 3 shows the parameters for three
security levels of the round-3 documentation of the CRYSTALS-Dilithium sub-
mission to the NIST post-quantum project [BDK+20]. The right side of Table 3
gives updated parameters for Dilithium-G, a modification of Dilithium using
Gaussian distributions whose description is available in the first version of the
eprint version of [DKL+18]. For this updated version, we set the value ofM to 4.

In these schemes, the verification key is a module-LWE sample Bs1 + s2
where s1 and s2 have `∞-norms ≤ η. For each coordinate, the lowest d bits are
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Hypercube-Uniform Previous Gaussian
Medium Recommended Very High Medium Recommended Very High

Ring dimension ` 256 256 256 256 256 256
q 8380417 8380417 8380417 254977 254977 254977

(n,m− n) (4, 4) (6, 5) (8, 7) (4, 3) (5, 4) (7, 6)
η 2 4 2 2 3 2
S N/A N/A N/A 91 134 111
τ 39 49 60 39 49 60

t = S ·
√
τ N/A N/A N/A 568 938 860

B N/A N/A N/A 864K 535K 664K
γ2

q−1
88

q−1
32

q−1
32

q−1
48

q−1
24

q−1
32

d 13 13 13 11 11 11
M 4.25 5.1 3.85 4 4 4

BKZ block-size b to break SIS 423 (417) 638 (603) 909 (868) 450 (390) 677 (588) 1018 (891)
Best known classical bit-cost 123 (121) 186 (176) 265 (253) 131 (114) 198 (171) 297 (260)
Best known quantum bit-cost 112 (110) 169 (159) 241 (230) 119 (103) 179 (155) 270 (236)
BKZ block-size b to break LWE 422 622 860 403 623 1018
Best known classical bit-cost 123 181 251 117 182 297
Best known quantum bit-cost 111 164 228 1076 165 170

Expected signature size 2420 3293 4595 1737 2372 3478
Expected public key size 1312 1952 2592 672 1312 1600

Table 3. Parameters for Dilithium and updated Dilithium-G.

dropped. A parameter τ is used to control the `1-norm of any hashed value c, so
that c has sufficient min-entropy. In Dilithium-G, the bound t is S

√
τ , where S

is the median over the key generation randomness of the largest singular value of
(rot(s1)>, rot(s2)>)>. A rejection step is added in KeyGen to check that the key
satisfies this bound. The value of the SIS bound corresponding to unforgeability
is computed using [BDK+20, Equation (6)]. The strong unforgeability bound
is obtained by multiplying this bound by 2. The security is estimated using
block-size optimized BKZ to break the module-SIS or module-LWE instances.5

For Dilithium, i.e., the hypercube version, we take t∞ = τη as a bound on
the `∞-norm of the secret key, which drives the radius of the hypercube and
subsequently the unforgeability SIS bound (in `∞-norm).

It was argued in [DKL+18] that it seems difficult for BKZ to solve SIS
with `∞-norm bound close to q, i.e., `2-norm above q. To analyze the runtime of
BKZ in the case of an `2-norm bound B ≥ q, one can remove the trivial vectors
of the input basis (i.e., the vectors with coordinates in qZ) by some randomiz-
ing step. This approach was however not considered for Dilithium-G and q was
chosen such that B < q, leading to bigger parameters overall. Our updated pa-
rameters allow for B ≥ q, for a fairer comparison to Dilithium. We note that for
B > q

√
n/2, linear algebra modulo q allows to solve SIS efficiently – our choice

of B is always significantly lower than this threshold.
Finally, the computation of the verification key and signature sizes (in bytes)

is performed as in [BDK+20] and [DKL+18], respectively. We note that the
updated Dilithium-G has signature sizes ∼ 25% smaller than those of Dilithium.
To compute signature sizes for Gaussian and Hypercube versions, we rely on a
strategy explained in [ETWY22, Section 5].

5 We use the scripts from https://github.com/pq-crystals/security-estimates.
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Hyperball-Uniform Improved Gaussian
Medium Recommended Very High Medium Recommended Very High

Ring dimension ` 256 256 256 256 256 256
q 254977 254977 254977 254977 254977 254977

(m,n) (4, 3) (6, 4) (8, 6) (4, 3) (5, 4) (7, 6)
η 2 3 2 2 3 2
S 91 140 115 91 134 111
τ 39 49 60 39 49 60

t = S ·
√
τ 568 980 890 568 938 860

B 741K 1894K 2330K 836K 413K 760K
γ2

q−1
16

q−1
8

q−1
8

q−1
64

q−1
48

q−1
48

d 10 13 13 12 11 10
M 4 4 4 4 4 4

BKZ block-size b to break SIS 464 (402) 677 (595) 958 (848) 453 (393) 715 (620) 991 (868)
Best known classical bit-cost 135 (117) 198 (174) 280 (248) 132 (114) 209 (181) 289 (253)
Best known quantum bit-cost 123 (106) 179 (157) 254 (224) 120 (104) 189 (164) 262 (230)
BKZ block-size b to break LWE 403 623 953 403 623 1018
Best known classical bit-cost 117 182 278 117 182 297
Best known quantum bit-cost 106 165 252 106 165 170

Expected signature size 1900 2710 3989 1672 2284 3347
Expected public key size 1056 1184 1824 672 1152 1376

Table 4. Parameters for hyperball-uniform and improved Dilithium-G.

We apply to Dilithium-G two modifications introduced in this work. In Ta-
ble 4 (right side), we show the improvements we obtain when the standard de-
viation σ is computed using our refined bound from Lemma C.2 on the smooth
Rényi divergence between two Gaussians and instantiated with ε = 2−64 instead
of ε = 2−128, as allowed by the use of Rényi divergence (as discussed in Sec-
tion 4). Keeping M = 4, the standard deviation σ drops from 11t to 6.85t and
leads to an additional saving of ∼ 5% on the signature size. When compared to
Dilithium, we obtain up to ∼ 30% of signature size savings.

Finally, we explore the use of the continuous uniform distributions in hyper-
balls. We take the algorithms from Dilithium-G, which are adapted to radial
distributions and replace the Gaussians with the continuous uniform distribu-
tions in hyperballs, adding coefficient-wise rounding to integers when computing
commitments. We also emphasize that the rejection step is deterministic. To set
parameters, the bound B is computed using the radius of the hyperball instead of
the probabilistic upper bound on the norm of a Gaussian vector. In Table 4 (left
side), we provide the instantiations that we obtained. We note that the signature
sizes are larger than those obtained with Gaussians. The growth of the signature
size comes from two factors: first, the bound B is larger than the Gaussian case,
likely because of constant factors hidden in the Rényi divergence computations
of this section. Second, in order to encode a signature, we use a coordinate-wise
Huffman coding of the rounded vector, which is less efficient than in the Gaussian
case, as the Gaussian distribution minimizes entropy across distributions with a
fixed standard deviation. When compared to Dilithium, the signature size still
drops by ∼ 10% to ∼ 20%, which underlines the trade-off offered by the uniform
distributions in hyperballs, between the efficiency of Gaussians and the ease of
implementation provided by the uniform distributions in hypercubes.
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All figures of Tables 3 and 4 can be reproduced using scripts available at
https://github.com/jdevevey/security-estimates.

6 Circumventing the Second Lower Bound via Bounded
Rejection Sampling

We conclude this work by investigating an alternative way to perform rejection
sampling which circumvents our lower bound on the expected number of loop
iterations from Section 3.3. Notably, this approach makes the resulting signature
scheme run within a given amount of time, which may be required in some
practical applications (e.g., in real-time systems).

A first solution could be to set a bound on the maximal number of iterations,
based on the run-time analysis from Lemma 2.3. However, this leads to a very
large bound, of the order of ω(log λ+log qsig)/ log(M/(M−1+ε)), to ensure that
with probability 1− λ−ω(1), no signature among qsig requires more iterations.

In the following, we propose a rejection sampling strategy that lets us fix
an arbitrary bound i ≥ 1 on the number of iterations while still guaranteeing
an output is produced at the end of the process. This strategy consists in first
running i − 1 iterations of the rejection sampling procedure. If something was
output, then we are done, but if all iterations failed, we have to sample some-
thing that is related to the target distribution, in one-shot. For this last step,
we use some sort of flooding. Note that, setting i = 1, one obtains one-shot
signatures based on flooding, as in [ASY22]. Hence, this strategy can be seen as
a generalization of both rejection sampling and flooding techniques.

6.1 Bounded Rejection Sampling Lemma

Let i ≥ 1 be an arbitrary bound for the number of loop iterations. Instead of sim-
ply having one distribution Ps to sample from, we now use two distributions Pf
and Ps, where Ps is used for the rejection sampling part (the first i−1 iterations)
and Pf is used in case of i− 1 successive failures. If the divergences R∞(Pf‖Ps)
and R∞(Ps‖Pt) are small, this strategy works. Moreover, the resulting distribu-
tion has a divergence with Ps and is a weighted mean of the classical rejection
sampling-resulting distribution and the flooding distribution. This is what we
prove in the following lemma.

Lemma 6.1 (Bounded Rejection Sampling). Let pf , pt, ps be probability
densities, either all continuous or all discrete, and ε0, ε1 ≥ 0,M0,M1 ≥ 1 with

Rε0∞(pf‖pt) ≤M0 and Rε1∞(pt‖ps) ≤M1.

Then
R

M
M0

ε0
∞ (Breali ‖Bideali ) ≤M,

where
M =

(
1−

(
1− 1

M1

)i−1) 1

1− ε1
+
(

1− 1 + ε1
M1

)i−1
·M0,

and Breali and Bideali are defined in Figure 4.
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Note that in the case where i = 1, distribution ps is useless, as Breal1 sam-
ples z ←↩ pf and returns it: this is flooding. Our lemma captures this situation,
asM = M0 in that case. It is then not only a generalization of rejection sampling
but also of flooding techniques.

Algorithms Bideali and Bideal′i produce the same distribution for variable z, and
hence Lemma 6.1 also holds when replacing Bideali by Bideal′i . Algorithm Bideal′i is
more convenient when analyzing the adapted Lyubashevsky signature scheme.

Algorithm Breal
i :

1: `← 1
2: while ` ≤ i− 1 do
3: z ←↩ ps
4: with probability min( pt(z)

M1·ps(z)
, 1),

return z
5: `← `+ 1
6: end while
7: return z ←↩ pf

Algorithm Bideal
i :

1: return z ←↩ pt
Algorithm Bideal′

i :
1: `← 1
2: while ` ≤ i− 1 do
3: z ←↩ pt
4: with probability 1

M1
,

return z
5: `← `+ 1
6: end while
7: return z ←↩ pt

Fig. 4. Bounded rejection sampling algorithms.

Proof. With pt and ps, for t ∈ {real, ideal}, we can view Bti as calling i − 1
times At from Figure 1, returning the value of the first call that does not abort,
and if all calls failed, returning some independent sample z ←↩ pf (or pt). Using
probability bounds from Lemma 2.2 and letting Areal(⊥) denote the probability
that Areal aborts, we know that

Breali (x) =

[ ∑
0≤j≤i−2

(Areal(⊥))j ·min
(pt(x)

M1
, ps(x)

)]
+ (Areal(⊥))i−1 · pf (x)

=
1− (Areal(⊥))i−1

1−Areal(⊥)
·min

(pt(x)

M1
, ps(x)

)
+ (Areal(⊥))i−1 · pf (x)

≤
1−

(
1− 1

M1

)i−1
1−ε1
M1

· pt(x)

M1
+
(M1 − 1 + ε1

M1

)i−1
· pf (x).

Let us define

M =
(

1−
(

1− 1

M1

)i−1)
· 1

1− ε1
+
(M1 − 1 + ε1

M1

)i−1
·M0.

For this to be an upper bound on R
M
M0

ε0
∞ (Breali ‖Bideali ), it suffices that

Pr
x←↩Breal

i

[Breali (x) > M · pt(x)] ≤ M

M0
ε0.

For any output x such that Breali (x) > Mpt(x), it holds pf (x) > M0pt(x) accord-
ing to the above upper bound on Breali (x). This yields, by definition of M0:

Pr
x←↩pf

[
Breali (x) > M · pt(x)

]
≤ ε0.
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The probability is however not taken over the desired distribution for x. Note
that if we combine pf (x) > M0 · pt(x) with the above bound on the distribution
of the output of Breali , we get

Breali (x) <
M

M0
· pf (x).

Then Prx←↩Breal
i

[Breali (x) > Mpt(x)] < M
M0
ε0. ut

6.2 Lyubashevsky’s Signature with Bounded Rejection

In this section, we present a way to modify Lyubashevsky’s signature scheme by
relying on bounded rejection sampling, as decribed above. This can be seen as
a hybrid version between one-shot signatures which use flooding, as in [ASY22],
and Lyubashevsky’s unbounded signature.

Let k, n,m, q ≥ 1 specify matrix spaces with m > n. LetM be the message
space. LetH be a hash function modeled as a random oracle with domain Znq×M
and range some finite set C ⊆ Zk. Let γ > 0. Let ε0, ε1 ≥ 0,M0,M1 ≥ 1, i ≥ 1
be parameters related to bounded rejection sampling. Let S ⊆ Zm×k. Let P0, P1

and P2 be three probability distributions over Zm satisfying

max
(S,c)∈S×C

Rε0∞((P0)+Sc‖P1) ≤M0 and max
(S,c)∈S×C

Rε1∞(P1‖(P2)+Sc) ≤M1.

Let (x>0 |x>1 )> ←↩ P0 and (y>0 |y>1 )> ←↩ P2, where y0 and x0 take values in Zn.
We present the modified scheme in Figure 5. The key generation algorithm is
unchanged from Figure 2.

Sign′(µ,A,S) :

1: `← 1
2: if ` ≤ i− 1 then
3: y←↩ P2

4: else
5: y←↩ P0

6: end if
7: c← H(Ay, µ)
8: z← y + Sc
9: u←↩ U([0, 1])

10: if u ≤ P1(z)
M1P2(y)

or ` = i then
11: return (z, c)
12: else
13: `← `+ 1
14: go to Step 2
15: end if

Verify(µ, z, c,A,T = AS) :

1: if ‖z‖ ≤ γ and c = H(Az −Tc, µ)
then

2: return 1
3: else
4: return 0
5: end if

Fig. 5. Lyubashevsky’s signature scheme with bounded rejection.

Before moving to the scheme analysis, let us define

M =
(

1−
(

1− 1

M1

)i−1) 1

1− ε1
+
(

1− 1 + ε1
M1

)i−1
·M0.
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The runtime of Sign is deterministically bounded, by at most i loop iterations.
The correctness statement from Lemma 2.4 can be adapted as follows.

Lemma 6.2 (Correctness). Let ε0, ε1 ≥ 0 andM0,M1 ≥ 1. Let P0, P1, P2 sat-
isfy max(S,c)∈S×C R

εb
∞(Pb‖Pb+1,+Sc) ≤Mb for b ∈ {0, 1}. Let (x>0 |x>1 )>←↩P0 and

(y>0 |y>1 )>←↩P2, where x0 and y0 take values in Zn. Assume that ε0 ≤ negl(λ),
M ≤ poly(λ) and 2−H∞(x0|x1)P0 , 2−H∞(y0|y1)P2 ≤ negl(λ). Then, in the ROM,
the scheme is correct if γ ≥ γP1

with γP1
such that Prz←↩P1

(‖z‖ ≥ γP1
) ≤ negl(λ).

The main modification towards analyzing the security of the scheme from
Figure 5, compared to the one from Figure 2, resides in the observation that the
distributions of the pair (z, c) obtained by the two processes from Figure 6 have
M
M0
ε0-smooth Rényi divergence of infinite order bounded byM . This is obtained

by applying Lemma 6.1. Note that the hash function H needs to be consistently
programmed for every c that is produced, which is why we use the formalism of
Algorithm Bideal′i rather than Algorithm Bideali .

By the multiplicativity of the smooth Rényi divergence (Lemma A.6), we ob-
tain that the (qsig ·Mε0/M0)-smooth Rényi divergence between the adversary’s
views in games where the changes from Figure 6 have been applied to all sig-
nature queries, is bounded by Mqsig . Probability preservation (Lemma A.5) can
then be used meaningfully if qsig ·Mε0/M0 = 2−Ω(λ) and Mqsig ≤ poly(λ).

Once the signature queries are simulated without the signing key, the security
proof can be completed as in prior works (see [Lyu09,Lyu12,AFLT16]).

1: `← 1
2: if ` ≤ i− 1 then
3: y←↩ P2

4: else
5: y←↩ P0

6: end if
7: c← U(C)
8: z← y + Sc
9: u←↩ U([0, 1])

10: if u ≤ P1(z)
M1P2(y)

or ` = i then
11: return (z, c)
12: else
13: `← `+ 1
14: go to Step 2
15: end if

1: `← 1
2: y←↩ P1

3: c← U(C)
4: z← y + Sc
5: u←↩ U([0, 1])
6: if u ≤ 1

M1
or ` = i then

7: return (z, c)
8: else
9: `← `+ 1
10: go to Step 2
11: end if

Fig. 6. Simulating signatures.

Asymptotic trade-off. We now discuss the choices of the distributions P0, P1

and P2. We require thatMqsig = poly(λ) and qsig ·Mε0/M0 = 2−Ω(λ), with ε0, ε1,
M0,M1 and M as in Lemma 6.1. We are aiming at not too large divergence
bounds M0,M1,M as signatures typically become less efficient when they in-
crease. For this reason, we set ε0 = 2−Ω(λ). As the condition Mqsig = poly(λ)
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forces M to be close to 1, the condition qsig · Mε0/M0 = 2−Ω(λ) is already
satisfied. We now focus on ε1, M0 and M1.

When i tends to infinity, we have M ≈ 1/(1 − ε1), so that we can set ε1 ≈
1/qsig as in Section 4. For i = 1, we have M = M0, and we fall in the regime
of [ASY22, Section 4]. Let us now consider the small i case, which is probably
the most interesting one for applications requiring a bounded signature time.
As M ≥ 1/(1 − ε1) and we must ensure that Mqsig = poly(λ), we set ε1 at
most of the order of 1/qsig. This implies that M ≈ 1 +M0 · (1− 1/M1)i−1, and
hence we set (M0 − 1) · (1− 1/M1)i−1 = O(1/qsig). For Gaussian and hyperball-
uniform instanciations, this leads to a standard deviation (resp. radius) growing
polynomially in qsig/(1− 1/M1)i−1.

We argue now that the trade-off above (for small i) seems essentially optimal.
For i = 1, it was showed in [ASY22, Appendix C.2] that the folklore statistical
attack against the Gaussian and rejection-free version of Lyubashevsky’s signa-
ture scheme runs in subexponential time when M0 = q

o(1)
sig . Now, for larger i and

sufficiently distinct target and flooding distributions, an adversary could con-
sider the signatures for which all loop iterations failed (i.e., the output sample
corresponds to the flooding distribution), and run the statistical attack described
in [ASY22] for those samples. As the probability of rejecting all samples is es-
sentially (1− 1/M1)i−1, this attack matches with the trade-off above.
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A Additional Background Material

A.1 Notations

When we consider a probability density, this is with respect to the canonical
(i.e., Lebesgue or counting) measure µ over their support. We may identify the
notion of probability distribution and probability density in the discrete case.
Given a distribution P with density p, we let x ←↩ P denote the sampling
of x according to P . We let Supp(P ) denote the smallest (for inclusion) set
such that for any set X, P (X ∩ Supp(P )) = P (X). Namely, if P is discrete,
then Supp(P ) = {x|P (x) 6= 0}. Given a set S ⊆ Supp(P ), we let PS denote
the distribution P cut to S, i.e., the measure P/P (S) restricted to S. Given two
probability distributions F and G with densities f and g we let F ⊗G denote the
distribution of (x, y) where x←↩ F and y ←↩ G are independent and f ⊗ g one of
its density. Given a distribution F with density f and an element x, we let F+x

denote the distribution with density f+x : y 7→ f(y − x). Given a finite set S,
we let U(S) denote the uniform distribution over S. By notation abuse, we use
algorithm names to denote the random variable associated to their output.

Given a dimensionm ≥ 1, a center c ∈ Rm and a radius r > 0, we let Bpm(r, c)
(resp. Spm(r, c)) denote the p-norm ball (resp. sphere) of radius r and center c
for p ∈ [1,+∞]. When p = 2 (resp. c = 0), we omit it. We also let Vm(r) :=

πm/2

Γ (m/2+1)r
m denote its volume as well as Sm = m · Vm(1) denote the surface of

the unit sphere.
Given a set and a subset S ⊆ Y we let χS : x 7→ {1 if x ∈ S, 0 if x ∈ Y \ S}

denote the indicator function of S. Let d·c : R → Z be the rounding operator
that maps x to the nearest integer (in case of a tie, it is rounded downwards).
It is naturally extended to Rn by coordinate-wise application. The notation log
refers to the natural logarithm.

For a parameter λ going to infinity, we use the notations negl(λ) = λ−ω(1)

and poly(λ) = λO(1). Let H : D → R be a function with a finite range R. It is
said to be modeled as a random oracle if it is replaced by a uniformly sampled
function among those from D to R.

A.2 Information-Theoretic Tools

We will use the following instantiation of conditional min-entropy.

Definition A.1 (Min-Entropy). Let X = (Y, Z) be a random variable. Let
pX , pZ be the densities of X and Z, and pY |Z=z the density of Y conditioned
on Z = z. The conditional min-entropy of Y on Z is:

H∞(Y |Z)pX = − log

(∫
Supp(pZ)

pZ(z) max
y∈Supp(pY |Z=z)

pY |Z=z(y) dµ(z)

)
.

To quantify similarities between distributions, we consider the statistical dis-
tance or a Rényi divergence.
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Definition A.2 (Statistical Distance). Let P,Q be two probability distribu-
tions with respective densities p, q. Their statistical distance is

∆(P,Q) :=
1

2

∫
Supp(P )∪Supp(Q)

|p(x)− q(x)|dµ(x).

Definition A.3 (Rényi divergence). Let a ∈ (1,+∞). Let P,Q be two prob-
ability distributions with P absolutely continuous with respect to Q. Their Rényi
divergence of order a, assuming that it exists, is

Ra(P‖Q) :=

(∫
Supp(P )

(
dP

dQ
(x)

)a−1
dP (x)

) 1
a−1

.

Their Rényi divergence of order 1 is

R1(P‖Q) := exp

(∫
Supp(P )

log

(
dP

dQ
(x)

)
dP (x)

)
.

Their Rényi divergence of infinite order is

R∞(P‖Q) := ess sup
x∈Supp(P )

dP

dQ
(x).

By notation abuse, we may use random variables instead of probability den-
sities as arguments, for the notions defined above.

The following lemma lists standard properties of the Rényi divergence.

Lemma A.4 ([vEH14]). Let X and Y be two random variables with probability
distributions PX and PY such that Supp(PX) ⊆ Supp(PY ). The following holds
for any order a ∈ [1,+∞].

• Log. Positivity: Ra(PX‖PY ) ≥ Ra(PX‖PX) = 1.
• Data Processing Inequality: Ra(Pf(X)‖Pf(Y )) ≤ Ra(P‖Q) for any func-
tion f , where Pf(Z) denotes the distribution of f(Z) for Z = X or Y .

• Multiplicativity: Let X = (X1, X2) and Y = (Y1, Y2). Let PX1 and PY1

denote the probability distribution of X1 and Y1. Let PX2|X1=x and PY2|Y1=x

denote the distribution of X2 conditioned on X1 = x as well as Y2 conditioned
on Y1 = x. If X1 and X2 are independent and Y1 and Y2 are independent,
then

Ra(PX‖PY ) = Ra(PX1‖PY1)Ra(PX2‖PY2).

Otherwise

Ra(PX‖PY ) ≤ R∞(PX1
‖PY1

) · max
x∈Supp(PX1

)
Ra(PX2|X1=x‖PY2|Y1=x).

• Probability Preservation: For any event E ⊆ Supp(PY ),

PY (E) ≥ PX(E)
a
a−1

Ra(PX‖PY )
.

Moreover the Rényi divergence is non-decreasing and continuous as a function
of a ∈ [1,+∞], as long as it is finite.
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A.3 Properties of the Smooth Rényi Divergence

We first prove that the two definitions of Definition 2.1 are indeed equivalent.

Proof (Definition 2.1). We prove that both definitions are indeed equivalent. Let
Rε∞(p‖q) be the first quantity and Rε∞(p‖q) be the second one.

Let S ⊆ Supp(q) such that
∫
S
p(x) dµ(x) ≥ 1− ε. Let M = supx∈S

p(x)
q(x) . This

means that
Pr
x←↩p

[p(x) ≤Mq(x)] ≥
∫
S

p(x) dµ(x) ≥ 1− ε.

Then Rε∞(p‖q) ≤M . By definition of Rε∞(p‖q), this implies the first inequality

Rε∞(p‖q) ≤ Rε∞(p‖q).

Now let M > 0 such that Prx←↩p(p(x) ≤Mq(x)) ≥ 1− ε. Define

S :=
{
x ∈ Supp(p) ∪ Supp(q) | p(x) ≤Mq(x)

}
.

Then
∫
S
p(x) dµ(x) ≥ 1 − ε by definition. Note that if we choose S′ = S ∩

Supp(p) we have
∫
S′
p(x) dµ(x) =

∫
S
p(x) dµ(x) as we only removed elements

that were not in the support of p. Moreover, assume that there exists x ∈ S′

such that x 6∈ Supp(q). We would have p(x) ≤M · 0 = 0, contradicting the fact
that x ∈ Supp(p). Then it holds that S′ = {x ∈ Supp(q)|p(x) ≤ Mq(x)}. We
have

M ≥ sup
x∈S′

p(x)

q(x)
,

∫
S′
p(x) dµ(x) ≥ 1− ε and S′ ⊆ Supp(q).

This implies, by definition of Rε∞(p‖q) that M ≥ Rε∞(p‖q). By definition of the
second quantity, we have the inequality

Rε∞(p‖q) ≤ Rε∞(p‖q),

thus completing the proof of the equality. ut

We now give a few properties of the smooth Rényi divergence. The probability
preservation and multiplicativity properties are used in the security proof of our
signature variant with a bounded number of rejection steps. The comparison to
the Rényi divergence is used to bound the smooth Rényi divergence between
Gaussian distributions.

We start by proving a probability preservation property.

Lemma A.5 (Probability Preservation). Let P,Q be two distributions. For
any ε ≥ 0 such that Rε∞(P‖Q) is finite, the following holds.

∀E ⊆ Supp(P ), P (E) ≤ Rε∞(P‖Q) ·Q(E) + ε.

Proof. Let S := {x ∈ Supp(P )|P (x) ≤ Rε∞(P‖Q) · Q(x)}. We decompose the
event E into the disjoint union (E ∩ S) ∪ (E \ S). The following holds:
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• P (E ∩ S) ≤ Rε∞(P‖Q) ·Q(E ∩ S) ≤ Rε∞(P‖Q) ·Q(E), by definition of S,
• P (E \ S) ≤ ε, by definition of Rε∞(P‖Q).

Combining both inequalities yields the result. ut

In the case of signatures, the security loss may depend on the number of
signing queries. The following result may then prove useful.

Lemma A.6 (Multiplicativity). Let (X1, X2) (resp. (Y1, Y2)) be a random
variable with probability density pX1X2

(resp. pY1Y2
). Let pX1

(resp. pY1
) be the

density of X1 (resp. Y1). For any x, let us denote by pX2|X1=x (resp. pY2|Y1=x)
the probability density of X2 (resp. Y2) conditioned on X1 = x (resp. Y1 = x).
Then for any ε1, ε2 ≥ 0 it holds that

Rε1+ε2∞ (pX1X2
‖pY1Y2

) ≤ Rε1∞(pX1
‖pY1

) · sup
x∈Supp(pX1

)

∩Supp(pY1 )

Rε2∞(pX2|X1=x‖pY2|Y1=x).

Proof. Let R1 = Rε1∞(pX1
‖pY1

) and R2 = supx∈S1
Rε2∞(pX2|X1=x‖pY2|Y1=x), with

S1 = Supp(pX1
) ∩ Supp(pY1

). If R1 = +∞, the statement is vacuously true. Let
us now assume that this is not the case.

We now define R = R1 ·R2 and

S =
{

(x, y) ∈ Supp(pX1X2
) | pX1X2

(x, y) > R · pY1Y2
(x, y)

}
.

Any pair (x, y) ∈ S either satisfies pX1
(x)pX2|X1=x(y) > RpY1

(x)pY2|Y1=x(y)
or x 6∈ Supp(PY1

). This implies that we have either pX1
(x) > R1pY1

(x) or
pX2|X1=x(y) > R2pY2|Y1=x(y). We then have, using the union bound,∫

S

pX1X2
(x) dx ≤ Pr

x←↩pX1

[pX1
(x) > R1 · pY1

(x)]

+
∑
x∈S1

pX1
(x) · Pr

y←↩pX2|X1=x

[
pX2|X1=x(y) > R2 · pY2|Y1=x(y)

]
≤ ε1 +

∑
x∈S1

pX1(x)ε2

≤ ε1 + ε2.

Define the set

S := Supp(pY1Y2) \ S = {(x, y) ∈ Supp(pY1Y2)|pX1X2(x, y) ≤ R · pY1Y2(x, y)}.

We have S = (Supp(pX1X2
)∪Supp(pY1Y2

))\S, as Supp(pX1X2
)\Supp(pY1Y2

) ⊆ S.
Then it satisfies

∫
S
pX1X2(x) dx ≥ 1− ε1− ε2. The first definition of the smooth

divergence provides the result. ut

Noticing that Ra(P‖Q)a−1 = Ex←↩P ((p(x)/q(x))a−1), we can apply concen-
tration inequalities to compare the smooth divergence and the Rényi divergence,
as was done in [RW04] for entropies. We however recall that the smooth Rényi
divergence may be finite for pairs of random variables for which the Rényi di-
vergence is infinite, in which case our bound is trivial.
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Lemma A.7. Let X,Y be two discrete random variable with probability distri-
butions PX and PY . For any ε ≥ 0 and order a ∈ (1,+∞) it holds

Rε∞(PX‖PY ) ≤ Ra(PX‖PY )

ε1/(a−1)
and Rε∞(PX‖PY ) ≤ R∞(PX‖PY ).

Proof. Markov’s inequality gives that for any t > 0,

Pr
x←↩PX

((
PX(x)

PY (x)

)a−1
≥ t

)
≤ Ra(PX‖PY )a−1

t
.

Setting t0 such that Ra(PX‖PY )a−1/t0 = ε, we have:

Pr
x←↩PX

[PX(x) ≥ t1/(a−1)0 · PY (x)] ≤ ε.

By the second definition of Rε∞(PX‖PY ), this shows

Rε∞(PX‖PY ) ≤ t1/(a−1)0 =
Ra(PX‖PY )

ε
1
a−1

.

To conclude the proof, recall that the Rényi divergence is continuous as a function
of a. Taking the limit of this upper bound when a tends to +∞ gives the second
result. ut

A.4 Digital Signatures

Here we briefly recall the formalism of digital signatures. Our definition slightly
differs from more standard ones as we consider the case where correctness and
signature runtime may only hold in the Random Oracle Model (ROM) rather
than unconditionally.

Definition A.8. A signature scheme is a tuple (KeyGen, Sign,Verify) of algo-
rithms with the following specifications:

• KeyGen : 1λ → (vk, sk) takes as input a security parameter λ and outputs a
verification key vk and a signing key sk.

• Sign : (sk, µ) → σ takes as inputs a signing key sk and a message µ and
outputs a signature σ.

• Verify : (vk, µ, σ) → b ∈ {0, 1} takes as inputs a verification key vk, a mes-
sage µ and a signature σ and accepts (1) or rejects (0).

We say that it is correct if for any pair (vk, sk) in the range of KeyGen and µ,

Pr(Verify(vk, µ,Sign(sk, µ)) = 1) ≥ 1− negl(λ),

where the probability is taken over the random coins of the two algorithms. We
say that it is correct in the ROM if the above holds when the probability is also
taken over the randomness of the random oracle modeling some hash function
used in the scheme.

35



Second, we define the Strong Existential Unforgeability Chosen Message At-
tack (sEU-CMA) security game for digital signatures.

Definition A.9. Let T, δ > 0. A signature scheme (KeyGen,Sign,Verify) is said
to be (T, δ)-sEU-CMA secure if no adversary A with runtime ≤ T given vk
and access to a signing oracle has probability ≥ δ over the choice of the sign-
ing and verifciation keys (vk, sk) ← KeyGen(1λ) and its random coins of out-
putting (µ∗, σ∗) such that

• If µ∗ was queried to the signing oracle, it did not return σ∗: the forged sig-
nature must be fresh,

• Verify(vk, µ∗, σ∗) = 1: the forged signature must be accepted.

The scheme is said (T, δ)-sEU-CMA secure in the ROM if the above holds when
the adversary can also make queries to a random oracle that models some hash
function used in the scheme. The probability of forging a signature is also called
the advantage of A.

A.5 The LWE and SIS Problems

The Learning With Errors (LWE) and Short Integer Solution (SIS) problems
serve as security foundation of Lyubashevsky’s signature schemes. In the param-
eter instanciation section, we will use their module counterparts (see [LS15]).

Definition A.10 (SIS). Let m ≥ n ≥ 1, q ≥ 2 and β > 0. The SIS problem
with parameters m,n, q, β is as follows: given as input A← U(Zn×mq ), the goal
is to find x ∈ Zm such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.

Definition A.11 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and χ a distribution over Zq.
The LWE problem with parameters m,n, q, χ consists in distinguishing between
the distributions (A,As + e) and (A,u), where A ← U(Zm×nq ), u ← U(Znq ),
s← χn and e← χm.

A.6 Beta Function and Hyperspherical Caps

The beta function is a special function that is related to the gamma function
and binomial coefficients.

Definition A.12 (Regularized Incomplete Beta Function). The incom-
plete beta function is defined over [0, 1]× R+ × R+ as

B : (x; a, b) 7→
∫ x

0

ta−1(1− t)b−1 dt.

When x = 1, this is the Beta function, and we use the notation B(a, b) in that
case. For fixed a, b, the function I·(a, b) : x 7→ B(x; a, b)/B(a, b) is invertible.

The function x 7→ Ix(a, b) and its inverse are useful when we consider the
area of a hyperspherical cap, as defined below.
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Lemma A.13 (Hyperspherical Cap). Let n > 1, η > 1 and x ∈ Sn(1).
The set {y ∈ Bn(1)|〈y,x〉 ≥ 1/η} is the intersection of a half-space and the
unit hyperball. It is called a hyperspherical cap and has volume Vη and area Aη
satisfying

Vη =
Vn(1)

2
· I1− 1

η2

(
n+ 1

2
,

1

2

)
and Aη =

Sn
2
· I1− 1

η2

(
n− 1

2
,

1

2

)
.

By placing an appropriate cone inside the hyperspherical cap (see [MV10,
Lemma 4.1]), we have:

I1− 1
η2

(
n+ 1

2
,

1

2

)
>
(

1− 1

η2

)n− 1
2 ·

1− 1
η

n
.

By placing the hyperspherical cap into a cylinder of 1-dimensional height 1−1/η,
we have:

I1− 1
η2

(
n+ 1

2
,

1

2

)
<
(

1− 1

η2

)n−1
· n ·

(
1− 1

η

)
.

Letting ε denote I1−1/η2(n+1
2 , 12 ), we obtain the following consequence of the

above two inequalities, which we use to estimate the smooth Rényi divergence
between uniform distributions in hyperballs:

1− (2nε)
1

n+1/2 <
1

η2
< 1−

( ε
n

) 1
n−1

.

For ε = 2−c·n for a constant c > 0, we obtain that 1/η2 tends to 1 − 2−c when
n goes to infinity. For ε satisfying ε ≥ 2−o(n) and ε = o(1/n) with n going to
infinity, we obtain that 1/η2 ∼ − ln(ε)/n.

A.7 Gaussian Distributions

Definition A.14 (Gaussian Distribution). Let m ≥ 1, σ > 0 and v ∈ Rm.
Define ρσ : x 7→ exp(−‖x‖2/(2σ2)). The discrete Gaussian distribution with
standard deviation parameter σ and center parameter v is defined as

DZm,σ,v : z 7→ ρσ(z− v)

ρσ,v(Zm)
,

where we let ρσ,v(Zm) denote
∑

x∈Zm ρσ(x − v). If v = 0, we omit it in the
subscript.

The divergence between two discrete Gaussian distributions is well-known
(see, e.g., [LSS14, Lemma 4.2] for a = 2). We give a formulation that includes
every order ≥ 1, while restricting our case to the Zm lattice. It may be proved
by adapted the proof of [LSS14].
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Lemma A.15. Let m ≥ 1, σ > 0 and v ∈ Zm. Then for any a ∈ [1,+∞):

Ra(DZm,σ‖DZm,σ,v) = exp

(
a
‖v‖2

2σ2

)
.

We also have R∞(DZm,σ‖DZm,σ,v) = +∞ if v 6= 0.

We also consider bimodal Gaussian distributions.

Definition A.16 (Bimodal Gaussian Distribution). Let m ≥ 1. The bi-
modal Gaussian distribution BDZm,σ,v with parameters σ > 0 and v ∈ Rm is the
distribution obtained by sampling b←↩ U({−1, 1}), and returning x←↩ DZm,σ,bv.
It can be expressed as

BDZm,σ,v : z 7→ 1

2
(DZm,σ,v(z) +DZm,σ,−v(z)) .

In particular, since ρσ,v(Zm) = ρσ,−v(Zm) (which can be seen by reordering
the sum), we can write

BDZm,σ,v(z) =
1

ρσ,v(Zm)
exp

(
−‖z‖2 − ‖v‖2

2σ2

)
cosh

(
|〈z,v〉|
σ2

)
.

B Missing proofs

B.1 Proof of Lemma 2.2

Let S = Supp(pt) ∪ Supp(ps). Let us write for any x ∈ Supp(ps):

min

(
pt(x)

Mps(x)
, 1

)
=

1
C ·min (pt(x),M · ps(x))

M
C · ps(x)

,

where C is normalization constant defined as

C =

∫
Supp(ps)

min (pt(x),M · ps(x)) dx.

Notably, we have 1 ≥ C ≥ 1 − ε, by giving pt(x) as an upper bound of
the integrand in the first inequality, and by keeping only the set of x’s such
that pt(x) ≤ Mps(x) in the second inequality. We have that the function p′t :
x 7→ min(pt(x),Mps(x))/C is a probability density satisfying R∞(p′t‖ps) ≤
M/C. Then algorithm Areal is a perfect rejection sampling algorithm with tar-
get density p′t and source density ps. The output density of Breal is exactly p′t,
as explained in [Dev86, Chapter II.3] (see in particular [Dev86, Theorems 3.1
and 3.2]). Moreover, the probability that Areal outputs nothing is

Areal(⊥) = 1− C

M
∈
[
M − 1

M
,
M − 1 + ε

M

]
,
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and the density of Areal is x 7→ (1−Areal(⊥)) · p′t(x) = min(pt(x)/M, ps(x)).
Let us then bound the statistical distance.

∆(Areal,Aideal) =
1

2

∫
S

∣∣∣∣pt(x)

M
−min

(
pt(x)

M
,ps(x)

)∣∣∣∣dx+
1

2

∣∣∣∣Areal(⊥)− M − 1

M

∣∣∣∣
≤ 1

2

∫
S

∣∣∣∣max

(
0,
pt(x)

M
− ps(x)

)∣∣∣∣dx+
ε

2M

≤ 1

2

∫
{x∈S|ps(x)≤pt(x)/M}

(
pt(x)

M
− ps(x)

)
dx+

ε

2M

≤ ε

2M
+

ε

2M
,

by assumption on ps and pt.
To bound the statistical distance between Breal∞ and Bideal∞ , we first note that

their distributions actually correspond to the distributions of Areal and Aideal

conditioned on the fact that they do not abort. We have

∆(Breal∞ ,Bideal∞ ) =
1

2

∫
Supp(pt)

∣∣∣∣pt(x)− 1

1−Areal(⊥)
min

(
pt(x)

M
,ps(x)

)∣∣∣∣ dx
=

1

a

∫
Supp(pt)

∣∣∣∣(1−Areal(⊥))pt(x)−min

(
pt(x)

M
,ps(x)

)∣∣∣∣ dx
=

1

a

[∫
Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx

+

∫
Supp(pt)

ps(x)<pt(x)/M

∣∣(1−Areal(⊥))Pt(x)− Ps(x)
∣∣ dx ],

where a = 2(1−Areal(⊥)).
Recalling the upper and lower bounds on Areal(⊥), the first integral can be

bounded as follows:∫
x∈Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx ≤ ε

M

∫
x∈Supp(pt)

ps(x)≥pt(x)/M

pt(x) dx.

We now observe that:

1−Areal(⊥) ≥

∫
{x∈Supp(Pt)|Ps(x)≥Pt(x)/M} pt(x) dx

M
.

Then, when we multiply the left integral by 1/a, we obtain:

1

a

∫
x∈Supp(pt)

ps(x)≥pt(x)/M

∣∣∣∣1−Areal(⊥)− 1

M

∣∣∣∣pt(x) dx ≤ ε

2
.

Next, we study the right integral. Note that since ε ≤ 1/2, it holds that

0 ≤ ps(x) ≤ pt(x)

M
≤ 2(1−Areal(⊥))pt(x),
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as 1−Areal(⊥) ≥ (1− ε)/M ≥ 1/(2M). Hence the right integral satisfies∫
x∈Supp(pt)

ps(x)<pt(x)/M

∣∣(1−Areal(⊥))pt(x)− ps(x)
∣∣dx ≤ (1−Areal(⊥))ε.

Finally, when divided by 2(1 − Areal(⊥)), we get ε/2 as an upper bound. This
provides the result. ut

B.2 Proof of Lemma 3.2

Proof. Note that if m = 1 then the statement vacuously holds with g∗ = g
and f = f∗. We will assume in the following that m ≥ 2. To define f∗ and g∗m
we will switch from Cartesian to hyperpsherical coordinates. This is done the
following way. Let (x1, . . . , xm) and (ρ, θ1, . . . , θm−1) both representing x in re-
spectively Cartesian and hyperspherical coordinates. They satisfy the relations

‖x‖ = ρ

x1 = ρ cos(θ1)

x2 = ρ sin(θ1) cos(θ2)

... =
...

xm−1 = ρ
( ∏
i≤m−2

sin(θi)
)

cos(θm−1)

xm = ρ
( ∏
i≤m−1

sin(θi)
)
.

Let ~θ = (θ1, . . . , θm−1) and x(ρ, ~θ) be the vector whose coordinates are defined as
above. Notice that the absolute value of the determinant of the variable change
Jacobian is of the form ρm−1D(~θ) for some D : [0, π)m−2× [0, 2π)→ R≥0, as all
columns except the first one are of the form ρ · yi(~θ), and the first column does
not depend on ρ. It then holds that

1 =

∫
Rm

f(x) dx =

∫ ∞
0

ρm−1
∫
[0,π]m−2×[0,2π]

f(x(ρ, ~θ))D(~θ) d~θ dρ.

We then define:

f∗ : z 7→

∫
[0,π]m−2×[0,2π] f(x(‖z‖, ~θ))D(~θ) d~θ∫

[0,π]m−2×[0,2π]D(~θ) d~θ
.

This is a probability density, as it is integrable and
∫
Rm f

∗(x) dx = 1. The
latter can be seen by switching once more to hyperspherical coordinates. By
construction, it is isotropic. We also have Ez←↩f (‖z‖) = Ez←↩f∗(‖z‖), which is
also seen by applying the same change of variables. We define g∗ in the same
way. It remains to prove that supv∈V R∞(f∗‖g∗+v) ≤M .
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Let z ∈ Rm and v ∈ V . Let λ = ‖z − v‖/‖z‖. We consider the scaling s :
y 7→ λ · y. For any y ∈ Sm(‖z‖) (i.e., any y ∈ Rm with ‖y‖ = ‖z‖), we
have f(y) ≤M · g(s(y)) as s(y) can be written as y−v′, where v′ ∈ V . Indeed,
we have, using the triangle inequality:

‖s(y)− y‖ = |λ− 1|‖z‖ = |‖z− v‖ − ‖z‖| ≤ ‖v‖ ≤ t.

Decomposing every element y ∈ Sm(‖z‖) in hyperspherical coordinates as
above with ρ = ‖z‖ for unique (θ1, . . . , θm−1) ∈ [0, π]m−2 × [0, 2π], we multiply
both sides byD(~θ), which is nonnegative, and we integrate over [0, π]m−2×[0, 2π]
to get:∫

[0,π]m−2×[0,2π]
f(x(‖z‖, ~θ))D(~θ) d~θ ≤M

∫
[0,π]m−2×[0,2π]

g(λx(‖z‖, ~θ))D(~θ) d~θ.

Recalling the definition of λ and dividing both sides by
∫
[0,π]m−2×[0,2π]D(~θ) d~θ,

we obtain the result. ut

B.3 Proof of Theorem 3.4

As in the unimodal case, we first radialize the densities.

Lemma B.1. Let m ≥ 1, t > 0 and V = Bm(t). Let f, g : Rm → [0, 1] be two
probability densities over Rm and define M = supv∈V R∞(f‖g±v), where g±v is
as in Theorem 3.4. Then there exist two probability densities f∗, g∗ that satisfy

• supv∈V R∞(f∗‖g∗±v) ≤M ,
• ∀x,y ∈ Rm, ‖x‖ = ‖y‖ =⇒ f∗(x) = f∗(y) and g∗(x) = g∗(y),
• Ez←↩f (‖z‖) = Ez←↩f∗(‖z‖).

Proof. We proceed as in the proof of Lemma 3.2 to define f∗ and g∗, and use
the same notations. Let

f∗ : z 7→

∫
[0,π]m−2×[0,2π] f(x(‖z‖, ~θ))D(~θ) d~θ∫

[0,π]m−2×[0,2π]D(~θ) d~θ
.

We define g∗ in the same way, with f replaced by g. As shown for Lemma 3.2,
the first two claims hold.

Let z ∈ Rm and v ∈ V . For any y ∈ Sm(‖z‖), let sy be the rotation that
maps z to y. It is an isometry, so for any b ∈ {0, 1}, it holds ‖y+ (−1)bsy(v)‖ =
‖z + (−1)bsy(v)‖. We also have ‖sy(v)‖ = ‖v‖, implying that sy(v) ∈ V . It
then holds for any y ∈ Sm(‖z‖):

f(sy(z)) ≤ M

2
(g(sy(z− v)) + g(sy(z + v))) .

By construction, there exist ~θ0 such that sx(‖z‖,~θ)(z) = x(‖z‖, ~θ + ~θ0). This

lets us multiply both sides with D(~θ), which is nonnegative, and integrate
over [0, π]m−2 × [0, 2π]. It yields the first claim, up to dividing by the normali-
sation constant. ut
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Proof (Theorem 3.4). Thanks to Lemma B.1, we assume without loss of general-
ity that both f and g are isotropic. Let us define the moments of f, g by µ(φ)

k :=∫∞
0
xk · φ(x) dx for k ≥ 0 and φ ∈ {f, g}. We have µ(φ)

m = Ex←↩φ(‖x‖)/Sm
and µ(φ)

m−1 = 1/Sm as noted in the proof of Theorem 3.1. For any r ≥ 0, u ∈ [0, t]
and θ ∈ [0, 2π), it holds that:

f(r) ≤ M

2

(
g
(√

r2 + u2 − 2ru cos(θ)
)

+ g
(√

r2 + u2 + 2ru cos(θ)
))

.

We will only consider θ = π/2 as it will suffice to obtain the bound. This
gives for any r ∈≥ and u ∈ [0, t]:

f(r) ≤Mg
(√

r2 + u2
)
.

Let us then multiply both sides by r
(√
r2 + t2

)m−2
and integrate over R≥0.

On the right-hand side, we use the change of variable y =
√
r2 + t2, which

yields dy = r/
√
r2 + t2dr, to obtain:∫ ∞

0

r
(√

r2 + t2
)m−2

f(r) dr ≤M ·
∫ ∞
t

ym−1g(y) dr.

Since y 7→ ym−1g(y) takes values in R≥0, we have that M/Sm = Mµ
(g)
m−1 is an

upper bound for the right-hand side. By reordering terms, we obtain:

0 ≤
∫ ∞
0

r

[(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2

]
f(r) dr.

Now, note that for m ≥ 4, we have:(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2

=
M

2
m−2 r2 − r2 − t2

M
1

m−1 r +
√
r2 + t2

m−3∑
k=0

(
M

2
m−2 r2

) k
2

(r2 + t2)
m−3−k

2 .

This also holds for m = 3 if replacing the sum by 1. Note that for r ≥ 0, we
haveM

1
m−1 r+

√
r2 + t2 ≥ t. Let C = t/(M

2
m−2 −1)1/2. The inequality r2 + t2 ≤

M
2

m−2 r2 holds if and only if r ≥ C. Then for r ≥ 0 and m ≥ 4, we have(
M

2
m−2 r2

)m−2
2 −

(
r2 + t2

)m−2
2 ≤ (M

2
m−2 − 1)(r2 − C2)

m− 2

t
·M

m−3
m−2 rm−3.

Since all constants are positive, we obtain (including for m ≥ 3):

0 ≤
∫ ∞
0

(rm − C2rm−2)f(r) dr.

Equivalently, we have that µ(f)
m ≥ C2µ

(f)
m−2, which we rewrite this as (µ

(f)
m /µ

(f)
m−1)·

(µ
(f)
m−1/µ

(f)
m−2) ≥ C2. As we have seen in the proof of Theorem 3.1, the Cauchy-

Schwarz inequality implies that µ(f)
m−1/µ

(f)
m−2 ≤ µ

(f)
m /µ

(f)
m−1. This leads to the

desired lower bound. ut

42



B.4 Proof of Lemma 5.3

Proof. In this proof, we omit the U(Bm(r)) subscripts for the min-entropies.
Note that H∞(dx0c|dx1c) ≥ H∞(dx0c|x1). By definition of the conditional min-
entropy, we have

2−H∞(dx0c|x1) =

∫
x1∈Bm−n(r)

max
xint
0 ∈Zn

 ∫
x0∈B∞n (1/2,xint

0 )

px0,x1
(x0,x1) dµ(x0)

 dµ(x1) ,

where the density satisfies

p(x0,x1)(x0,x1) =
1

Vm(r)
χ<r2(‖x0‖2 + ‖x1‖2).

Recall that χ<r2(y) = 1 if y ≤ r2 and 0 otherwise and that Vm(r) is the volume
of the Euclidean ball of radius r in dimension m.

The maximum is achieved when xint
0 = 0. Indeed, for any xint

0 ∈ Zm, we have∫
x0∈B∞n (1/2,xint

0 )

χ<r2(‖x0‖2 + ‖x1‖2) dµ(x0)

=

∫
x0∈B∞n (1/2,0)

χ<r2(‖x0 + xint
0 ‖2 + ‖x1‖2) dµ(x0)

≤
∫
x0∈B∞n (1/2,0)

χ<r2(‖x0‖2 + ‖x1‖2) dµ(x0) ,

where we used the fact that if ‖x0‖∞ ≤ 1
2 and xint

0 ∈ Zn, then we have ‖x0 +
xint
0 ‖ ≥ ‖x0‖. As a result, we can write

2−H∞(dx0c|x1) = Pr

[
‖x0‖∞ ≤

1

2

]
.

Now we use the sub-independence of the coordinates slabs in the Euclidean
ball [BP98], i.e., denoting x0 = (x01, x02, . . . , x0n)T , we have

Pr

[
‖x0‖∞ ≤

1

2

]
≤

n∏
i=1

Pr

[
|x0i| ≤

1

2

]
.

We now use Lemma B.2 below to get

Pr

[
|x01| ≤

1

2

]
= Pr

[
|x01|
r
≤ 1

2r

]
≤ Pr

[
|x01|
r
≤ 1

4
√
m

]
≤ 0.843 + 2 exp(−m) ≤ 0.85 ,

for r ≥ 2
√
m and m ≥ 6. ut
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Lemma B.2. Let (x1, . . . , xm)T be uniformly chosen in the m-dimensional Eu-
clidean ball of radius 1. Then

Pr

[
|x1| ≤

1

4
√
m

]
≤ 0.843 + 2 exp(−m) .

Proof. To show this, we use the fact (see [BGMN05]) that we can obtain samples
(x1, . . . , xm)T by first sampling m independent Gaussian variables g1, . . . , gm
with densities t 7→ ρ1/

√
2(t)/

√
π and then setting (x1, . . . , xm)T = (g1,...,gm)T√∑

i≤m g2i+z
,

where z is independent and has an exponential distribution (i.e., density t 7→
exp(−t)). With this notation, we have, for all δ > 0:

Pr

[
x21 >

δ2

m

]
= Pr

[
g21∑

i≤m g
2
i + z

>
δ2

m

]

≥ Pr

g21 > 4δ2 and
∑
i≤m

g2i ≤ 3m and z ≤ m


≥ Pr [|g1| > 2δ]− Pr

∑
i≤m

g2i > 3m

− Pr [z > m]

≥ Pr [|g1| > 2δ]− exp(−m)− exp(−m) .

For the last inequality, note that the distribution of 2
∑
i≤m g

2
i is the chi-squared

distribution of parameter m. If F denotes its cumulative density function, then
we have the tail bound 1− F (x) ≤ ((x/m) exp(1− x/m))m/2 for x > m, which
we use with x = 6m. Taking δ = 1/2 and numerically evaluating the first term
allows to complete the proof of the lemma. ut

C Complements to Section 5

In this appendix, we bound the (smooth) Rényi divergence for distributions
classically used in Lyubashevsky’s signatures. This lets us compare these choices
with our choice of continuous uniform distributions over hyperballs. We also pro-
vide a more detailed description of the adaptation of Lyubashevsky’s signature
to continuous distributions.

C.1 Uniform Distribution in Hypercubes

For simplicity and ease of implementation, some applications rely on uniform
distributions in hypercubes. The following result is implicit in [Lyu09].

Lemma C.1 (Rényi Divergence). Let m ≥ 1 and v ∈ Zm. Let r, r′ ≥ 1/2
such that r′ ≥ r + ‖v‖∞. Then it holds that

R∞

(
U(B∞m (r) ∩ Zm)‖U(B∞m (r′,v) ∩ Zm)

)
≤
(

2r′ + 1

2r − 1

)m
.
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Let M > 1. The above is ≤M if r ≥ ‖v‖∞+(M1/m+1)/2
M1/m−1 and r′ = r + ‖v‖∞.

Proof. For the divergence to be defined, we need B∞m (r)∩Zm ⊆ B∞m (r′,v)∩Zm.
This is ensured by the constraint r′ ≥ r + ‖v‖∞. In that case, the divergence is
the ratio of the number of elements in each support, leading to the upper bound.
The second claim follows by elementary calculations. ut

The downside of the infinite norm is its lack of geometry: as we detail later,
the use of the scalar product induced by the Euclidean norm is crucial to improve
the bounds for the smooth divergence and the divergence with a bimodial version
of the distribution, both for Gaussian distributions and uniforms in hyperballs.
Oppositely, the smooth divergence and considering a bimodial version of the
uniform distribution in a hypercube do not bring significant improvements to
the radius condition from Lemma C.1.

C.2 Gaussian Distributions

By Lemma A.15 and the fact that lima→+∞Ra(P‖Q) = R∞(P‖Q), we see that
the Rényi divergence of infinite order between two Gaussian distributions with
same standard deviation but different centers is infinite. Using Lemma A.7, we
are however able to obtain a finite upper bound on the smooth divergence. The
result is of the same flavour as [Lyu12, Lemma 4.5], but the proof significantly
differs and leads to a smaller upper bound (in [Lyu12, Lemma 4.5], the quan-
tity ‖v‖2 is divided by 4σ2 instead of 2σ2 here).

Lemma C.2 (Smooth Rényi Divergence). Let m > 0,v ∈ Rm, ε ∈ (0, 1)
and σ > 0. We have:

Rε∞

(
DZm,σ‖DZm,σ,v

)
≤ exp

‖v‖2
2σ2

+
‖v‖

√
2 log 1

ε

σ

 ,

Let M > 1. The above is ≤M if

σ ≥ ‖v‖√
2 log(M)

(√
log

1

ε
+

√
log

1

ε
+ logM

)
.

Proof. Combining Lemmas A.15 and A.7, we obtain that for any a ∈ (1,+∞):

Rε∞(P‖Q) ≤ exp

(
a‖v‖2

2σ2
+

1

a− 1
log

1

ε

)
.

Let us instantiate this for a = 1 + σ
‖v‖

√
2 log 1

ε , which minimizes the above
quantity. This gives us the bound

Rε∞(P‖Q) ≤ exp

(
‖v‖2

2σ2
+
√

2
‖v‖
σ

√
log

1

ε

)
.

To find when this is ≤ M , we take the logarithm and multiply by σ2 on both
sides. Solving a degree-2 equation in σ leads to the second claim. ut
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The following is borrowed from [DDLL13], and its proof is provided here for
the sake of completeness.

Lemma C.3 (Rényi Divergence with a Bimodal Gaussian). Let m ≥ 1,
v ∈ Rm and σ > 0. Then the following holds:

R∞

(
DZm,σ‖BDZm,σ,v

)
≤ exp

(
‖v‖2

2σ2

)
.

It is an equality if v ∈ Zm. LetM ≥ 1. The bound is ≤M if σ ≥ ‖v‖/(2
√

logM).

Proof. Let z ∈ Zm. We have:

DZm,σ(z)

BDZm,σ,v(z)
=
ρσ,v(Zm)

ρσ(Zm)
·

exp
(
−‖z‖2
2σ2

)
exp

(
−‖z‖2−‖v‖2

2σ2

)
cosh

(
|〈z,v〉|
σ2

)
=
ρσ,v(Zm)

ρσ(Zm)
·

exp
(
‖v‖2
2σ2

)
cosh

(
|〈z,v〉|
σ2

)
≤ ρσ,v(Zm)

ρσ(Zm)
· exp

(
‖v‖2

2σ2

)
,

where the last inequality comes from the fact that cosh(x) ≥ 1 for any x ∈ R.
Note that for z ∈ Zm orthogonal to v, this upper bound is reached. Finally,
using [MR07, Lemma 2.9], we have that ρσ,v(Zm)

ρσ(Zm) ≤ 1. If v ∈ Zm this is actually
an equality. ut

As a side note, we observe that this result can be extended to any order and
compared to standard results between two Gaussian distributions.

Corollary C.4. Let m ≥ 1, v ∈ Rm and σ > 0. Then the following holds:

∀a ∈ [1,+∞], Ra(DZm,σ‖BDZm,σ,v) ≤ exp

(
‖v‖2

2σ2

)
= (Ra(DZm,σ‖DZm,σ,v))

1
a .

Proof. The Rényi divergence is increasing in its order. Thus the upper bound
from Lemma C.3 is also an upper bound for any order a ∈ [1,+∞]. ut

C.3 Lyubashevsky’s Signature with Continuous Distributions

We use the same notations as in Section 2.2, with the source density g and the
target density f being with supports over Rm rather than Zm. The modified sig-
nature scheme handling continuous source and target distributions is presented
in Figure 7. The key generation algorithm is unchanged from Figure 2. Note
that if f and g were actually discrete densities, then we would exactly recover
the scheme from Figure 2.
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Sign(µ,A,S) :

1: y←↩ g
2: c← H(Adyc, µ)
3: z← y + Sc
4: u←↩ U([0, 1])

5: if u ≤ min
(

f(z)
M·g(y) , 1

)
then

6: return (dzc, c)
7: else
8: go to Step 1
9: end if

Verify(µ, z, c,A,T = AS) :

1: if ‖z‖ ≤ γ and c = H(Az −Tc, µ)
then

2: return 1
3: else
4: return 0
5: end if

Fig. 7. Lyubashevsky’s signature scheme with continuous distributions.

For correctness, note that

Adzc −Tc = Ady + Scc −Tc = A (dyc+ Sc)−Tc = Adyc,

where the second equality holds because Sc is an integer vector.
The main modification towards analyzing the security of the scheme from

Figure 7, compared to the one from Figure 2, resides in the observation that the
distributions of the pair (z, c) obtained by the two processes from Figure 8 have
statistical distance ≤ ε/M , where ε is such that Rε∞(f‖g) ≤M . This is obtained
by Lemma 2.2 and the (statistical distance) data processing inequality.

The only other analysis modification is related to the min-entropy of the
commitments: the condition H∞(y0|y1)Q = Ω(λ) appearing in Section 2.2 now
becomes H∞(dy0c|dy1c)g = Ω(λ).

1: y←↩ g
2: c← U(C)
3: z← y + Sc
4: u←↩ U([0, 1])

5: if u ≤ min
(

f(z)
M·g(y) , 1

)
then

6: return (dzc, c)
7: else
8: return (⊥,⊥)
9: end if

1: c← U(C)
2: z← f
3: u←↩ U([0, 1])
4: if u ≤ 1

M
then

5: return (dzc, c)
6: else
7: return (⊥,⊥)
8: end if

Fig. 8. Simulating signatures.

D Another Rejection Sampling Algorithm

In this section, we study the rejection sampling procedure described in [HJMR07]
and how to apply it to the Fiat-Shamir with aborts framework.
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Let m > 0 and V ⊂ Zm as well as P and Q two probability distributions
over Zm such that supv∈V log(R1(P‖Q+v)) < ∞. Let PH be a distribution
over V . We first define Pt : (z,v) 7→ PH(v)P (z) and Ps : (z,v) 7→ PH(v)Q(z−
v). Let p0(z,v) = 0 for any (z,v) ∈ Zm×V and recursively define the following:


αi(z,v) = min(Pt(z,v)− pi−1(z,v), (1− p∗i−1)Ps(z,v)),

pi(z,v) = pi−1(z,v) + αi(z,v),

p∗i =
∑

(z,v)∈Zm×V pi(z,v).

Finally, define βi(z,v) = min
(
Pt(z,v)−pi−1(z,v)
(1−p∗i−1)Ps(z,v)

, 1
)
.

A
1: i← 1.
2: Sample y←↩ Q.
3: Sample v←↩ PH .
4: Set z← y + v.
5: Sample u←↩ [0, 1].
6: if u ≤ βi(z,v) then
7: Return (z,v).
8: else
9: i← i+ 1.
10: Go to 2.
11: end if

A′

1: Sample z←↩ P .
2: Sample v←↩ PH .
3: Return (z,v).

Fig. 9. Greedy rejection sampling

Lemma D.1 (Correctness). Let r(i, z,v) be the probability that the procedure
returns a pair (z,v) ∈ Zm × V after exactly i iterations. Then for any z ∈ Zm
and v ∈ V it holds that r(i, z,v) = αi(z,v) and

∑∞
j=1 r(j, z,v) = Pt(z,v). Put

differently, the statistical distance between the distribution of the output of A
and A′ is 0.

Proof. The probability that (i, z,v) is output is exactly Ps(z,v)p̄i−1 · βi(z,v),
where p̄i−1 denotes the probability that the i − 1 first values are rejected. We
then show by induction that p̄i = 1 − p∗i for any i ∈ N. In the case i = 0, we
have p̄0 = 1 = 1− p∗0.
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Let us now assume that this holds for some i ∈ N. By induction, let us
compute p̄i+1 = p̄i ·

∑
(z,v)∈Zm×V (1− βi+1(z,v))Ps(z,v). We have:

p̄i+1 = (1− p∗i )
∑

(z,v)∈Zm×V

(1− βi+1(z,v))Ps(z,v)

= 1− p∗i −
∑

(z,v)∈Zm×V

min(Pt(z,v)− pi(z,v), Ps(z,v)(1− p∗i ))

= 1− p∗i −
∑

(z,v)∈Zm×V

αi+1(z,v)

= 1− p∗i+1.

Then ∀(z,v) ∈ Zm × V,∀i ∈ N, r(i, z,v) = αi(z,v). Let us now show
that

∑∞
j=1 r(i, z,v) = Pt(z,v). Note that pi(z,v) =

∑i
j=1 αi(z,v) so we can

study these partial sums and show that they indeed converge to Pt(z,v).
To conclude the proof, we recall the proof from [HJMR07, Claim IV.1]. We

reproduce it here for completeness.
Let us first show that αi(z,v) ≥ (Pt(z,v)− pi−1(z,v))Ps(z,v). We have

1− p∗i−1 =
∑

(z,v)∈Zm×V

(Pt(z,v)− pi−1(z,v))

≥ Pt(z,v)− pi−1(z,v).

Then the above inequality holds by definition of αi(z,v): both Pt(z,v)−p−1(z,v)
and (1− p∗i−1)Ps(z,v) are ≥ (Pt(z,v)− pi−1(z,v))Ps(z,v).

From that, we find that

Pt(z,v)− pi(z,v) ≤ (Pt(z,v)− pi−1(z,v))(1− Ps(z,v)),

and a straightforward induction show that this is ≤ Pt(z,v)(1 − Ps(z,v))i. Fi-
nally, by definition of pi−1(z,v), it holds that Pt(z,v)− pi(z,v) ≥ 0. ut
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