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Abstract. The NIST standardization process for post-quantum cryptography has been
drawing the attention of researchers to the submitted candidates. One direction of research
consists in implementing those candidates on embedded systems and that exposes them
to physical attacks in return. The Classic McEliece cryptosystem, which is among the
four finalists of round 3 in the Key Encapsulation Mechanism category, was recently
targeted by a laser fault injection attack leading to message recovery. Regrettably, the
attack setting is very restrictive. Indeed, it does not tolerate errors in the faulty syndrome.
Moreover, it depends on the very strong attacker model of laser fault injection, and is not
applicable to optimised implementations of the algorithm that make optimal usage of the
machine words capacity. In this article, we propose a change of attack angle and perform
a message-recovery attack that relies on side-channel information only. We improve on
the previously published work in several key aspects. First, we show that side-channel
information is sufficient to obtain a faulty syndrome in N, as required by the attack.
This is done by leveraging classic machine learning techniques that recover the Hamming
weight information very accurately. Second, we put forward a computationally-efficient
method, based on a simple dot product, to recover the message from the, possibly noisy,
syndrome in N. We show that this new method, which additionally leverages existing
information-set decoding algorithms from coding theory, is very robust to noise. Finally,
we present a countermeasure against the proposed attack.
Keywords: Post-quantum Cryptography · Classic McEliece · Side-channel Attack

1 Introduction
The post-quantum cryptography standardisation process, initiated and supported by the NIST,
has almost reached its conclusion, as third round candidates were announced on July 20201.
One of the submissions, the Classic McEliece cryptosystem [ABC+20], is based on the theory
of error-correcting codes. It instantiates the Niederreiter cryptosystem [Nie86] with binary
Goppa codes, which is the dual of the McEliece cryptosystem [McE78]. The parameters of the
cryptosystem are set with respect to the complexity of the best information-set decoding attack
strategy [MMT11, BJMM12, MO15, BM18, EMZ21], which is the best known general attack
path against code-based cryptosystems. As the scheme started to gain scientific confidence,
sustained efforts were directed towards the practical side, i.e., implementations [Hey10, HG13,
vMHG16, WSN18, BSNK19, DFA+20, RKK20, CC21, KRF+21], and physical attacks, both
side-channel [LNPS20] and fault injection attacks [DK20, XIU+21, CCD+21].

1https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
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Message-recovery attacks A message-recovery attack that uses side-channel leakage during
the decryption process was proposed in [LNPS20]. The central idea of this article is to add
random columns of the parity matrix to the syndrome. The modified syndrome is sent to a
decoding oracle, on which side-channel analysis is carried out, to detect if the weight of the
input message (error) is higher than expected. If the weight of the input message increases,
that means the message bits of the corresponding columns are 0 in most positions. In the
other case, if the weight decreases, the message bits of the corresponding columns are 1 in
most positions. Information-set decoding is used to reduce the number of calls to the oracle.

In [CCD+21] the authors recover the message using laser-fault injection during the encryp-
tion process. By performing a bit-set laser fault, the matrix-vector multiplication over F2 is
changed into a matrix-vector multiplications over N. By solving a modified version of the
syndrome decoding problem, they manage to recover the message within minutes.

Key-recovery attacks Some attacks aim at recovering the secret key instead. In [DK20], a
fault injection attack framework is presented, but it requires quite a large number of faults,
injected in a precise manner, and its success rate is at most 50 %. No practical attack was
mounted in this work.

A generic attack on the Fujisaki-Okamoto transformation was proposed in [XIU+21] and
performed on multiple candidates submitted to the NIST standardisation process. This generic
attack relies on the ability to skip an instruction during the decapsulation process. Interestingly,
this attack relies on a single fault, making it very practical, as demonstrated experimentally
in [XIU+21]. However, it has not been applied to the Classic McEliece cryptosystem.

Modified versions of the syndrome decoding problem The idea of augmenting the syn-
drome decoding problem (SDP) where some extra information, mainly gained by means of
physical attacks, has been studied in [CCD+21, HPR+21]. While in [HPR+21] the overall
cost of the attacks remain unfeasible practically, in [CCD+21], all the parameters set of the
Classic McEliece were attacked. The Integer Syndrome Decoding (N− SDP), introduced in
[DCC+20, CCD+21], is a similar problem to the SDP. The difference is that the matrix-vector
multiplication is performed over N instead of F2. Solutions to this problem can be found by
using Integer Linear Programming algorithms such as the simplex [DCC+20] or interior-points
methods [CCD+21]. The latter is very computationally efficient, and can solve the N− SDP
using only a small proportion of the parity-check rows. The authors show by simulations that
the empirical complexity is O(n3). However, there are several drawbacks to this algorithm: its
exact complexity remains unknown and it does not tolerate any errors in the syndrome. This
is a major problem in the context of physical attacks, where perfect reproducibility during the
fault injection process is rarely obtained. Hence, a different approach has to be considered in
order to overcome these issues.

It turns out that N−SDP was already considered in the literature, first by Dorfman [Dor43],
and is known as the group testing problem or quantitative group testing [LCPR19, GHKL19,
FL20]. Some of the algorithms from [FL20] are in this article, with some modifications,
imposed by the context of side-channel analysis. Further analysis is also needed to fit these
algorithms in the framework of information-set decoding methods.

Contributions In this article, a hybrid message recovery attack against the Classic McEliece
cryptosystem is performed. By hybrid, we refer to physical attacks and theoretical results
combined together in order to retrieve the initial message given the ciphertext, also called the
syndrome, which is a binary vector. The side-channel attack is performed on the matrix-vector
multiplication during the encryption process. By means of random forests, the value of the
syndrome in N is recovered and is used later as input for the N − SDP. Finally, we show
that there is an algorithm that can retrieve the initial message from the syndrome in F2 in
polynomial time in the code length. Let us detail a bit more each step and contribution.

First of all, we introduce a novel method to obtain the syndrome in N instead of F2 as
required by the attack framework presented in [CCD+21]. While the initial attack relied on
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an expensive and restrictive laser fault injection setup, the method we propose here is based
on side-channel analysis only. Using random forests, this method recovers the syndrome in N
from Hamming weight information during the syndrome computation. Another significant
difference, compared to laser fault injection attacks, is that no modification of the ciphertext
is performed during the side-channel attack. Hence, at the end of this stage, an adversary
has two vectors of information: the real ciphertext, which is a binary syndrome, and an
approximate version the same syndrome in N, obtained by side-channel analysis. These steps
are presented in Section 3, after a review of code-based cryptography and the Classic McEliece
cryptosystem is done in Section 2, focusing in particular on hardware implementations.

Second, we develop another way to recover the positions of the errors in the error vector,
that is, the message, from the syndrome in N, as detailed in Section 4. The initial attack
in [CCD+21] made use of integer linear programming solvers for this task. Although these
solvers are quite efficient, they do not tolerate any error in the syndrome in N. We introduce
an alternative method, based on a simple dot product operation, that acts as a powerful
distinguisher even in the presence of errors. More precisely, using the values of the syndrome
in N and the public key, i.e., parity-check matrix H , we deduce a permutation on the columns
of H. The permuted parity-check matrix is then set into standard form. Our permutation
is able to move almost all the non-zero positions of the error-vector on the support of the
identity in the standard form of the permuted parity-check matrix. It mainly acts as an almost
"perfect" permutation for an Information Set Decoding (ISD) algorithm. Hence, the algorithm
we propose has to main steps. First, we use an approximation of the syndrome in N to find a
"good" permutation. Second, we use it in addition to the syndrome in F2, that is, the exact
ciphertext, in an ISD variant to retrieve the initial message, that is, the binary error vector,
solution to the syndrome decoding problem. We evaluate the resistance of this method to
errors in the syndrome in N and show that it improves both computationally and with respect
to the resistance to errors when compared to the integer linear programming techniques used
in [CCD+21]. Section 5 presents the experimental results.

Finally, we pinpoint the weakness of the Classic McEliece cryptosystem that makes it
vulnerable to the proposed attack. We then suggest a countermeasure, introduced in Section 6
that makes the proposed attack much harder.

2 Code-based cryptosystems
2.1 Coding theory
Notations The following conventions and notations are used. A finite field is denoted by
F, and the ring of integers by Z. We denote N∗

n = {1, . . . , n} and Z−n,n = {−n, . . . , 0, . . . , n}.
For p ∈ [0, 1] and n ∈ N∗ we denote the Bernoulli distribution by Ber(p) and the Binomial
distribution by B(n, p).

Matrices and vectors are written in bold capital, respectively small letters, e.g., a vector
of length n is c = (c1, . . . , cn) and a k × n matrix is H = (hj,i)(j,i)∈N∗

k
×N∗

n
. We will use

the following notation for sub-matrices. H[i,] represents the ith row of H and H[,i] the ith

column of H . Binary vectors and matrices will be packed into blocks of 8-bit sub-vectors and
sub-matrices. For example, we will write c = (c1, . . . , cn/8), where ci+1 = (c8i+1, . . . , c8i+8)
for vectors, and H[i,j] is an 8-bit vector defined as H[i,j+1] = (hi,8j+1, . . . , hi,8j+8) for matrices.
The set of all k × n matrices over F is Fk×n. The support of a vector, that is, the positions
of its non-zero coordinates, is defined as Supp(e) = {i ∈ N∗

n | ei ̸= 0}. The concatenation of
the vectors a and b is written as a ∥ b. The Hamming weight of a binary vector, that is, the
number of non-zero coordinates, is written as HW(e). The Hamming distance between a and
b is written as HD(a, b).

Error correcting codes Let n and k be two positive integers such that k ≤ n. An [n, k]
linear error correcting code, or simply a linear code, is a sub-vector space of dimension k
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of the vector space Fn. It is defined either by its generator matrix G ∈ Fk×n, which is a
basis for the code, or by its parity-check matrix H ∈ F(n−k)×n, which is a basis for the dual
code, where GHt = 0. The minimum distance, or the Hamming distance of a code C, is the
minimum of all HW(v) for v ∈ C,v ̸= 0. A linear code with Hamming distance d can correct
t = ⌊(d− 1)/2⌋ errors. Retrieving the error pattern is a fundamental concept in coding theory.
A possible way of redefining it is by means of the well-known syndrome decoding problem.

Definition 1 (Syndrome decoding problem SDP).
Inputs: H ∈ F(n−k)×n, s ∈ Fn−k, t ∈ N∗.

Output: e ∈ Fn with HW(e) = t, such that He = s.

Here, as for the majority of the code-based encryption schemes, we will restrict to binary
codes, i.e., F = F2. The decisional version of the SDP, also known as the coset weight problem,
belongs to the class of NP-complete problems [BMvT78]. Hence, all the existing algorithms
for solving SDP are exponential in the code parameters [TS16]. Moreover, for t = O(n)
and k/n constant, the work factor of state-of-the-art algorithms for SDP tends towards
2−t log(1−k/n)(1+o(1)), when n goes to infinity. A non-exhaustive list of algorithms for SDP
includes [Pra62, Ste88, LB88, Leo88, Dum89, CC98, FS09, MMT11, BJMM12, MO15, BM18].

2.2 The Niederreiter cryptosystem
The Classic McEliece cryptosystem [ABC+20] is based on the Niederreiter cryptosystem [Nie86].
The key generation, encryption and decryption functions of the Niederreiter cryptosystem are
given in Algorithms 1, 2 and 3 respectively.

In this article, we focus on the encryption step, in particular on the syndrome computation
(line 3 in Algorithm 2). Its implementation, as a matrix-vector multiplication, is detailed
below.

Algorithm 1 Niederreiter key generation
1: function KeyGen(n, k, t)
2: C an [n, k] code that corrects t errors
3: A parity-check of C: H
4: An n× n permutation matrix P
5: An (n− k)× (n− k) invertible matrix S
6: Compute Hpub = SHP
7: pk = (Hpub, t)
8: sk = (S,H,P )
9: return (pk, sk)

Algorithm 2 Niederreiter encryption
1: function Encrypt(m, pk)
2: Encode m→ e with HW(e) = t
3: Compute s = Hpube
4: return s

Algorithm 3 Niederreiter decryption
1: function Decrypt(s, sk)
2: Compute e

′ = Decode(S−1s,H)
3: Compute m from P −1e

′

4: return m

The sets of (n, k, t) parameters suggested in [ABC+20] are given in Table 1. Instantiating
the Niederreiter scheme with binary Goppa codes will be considered, as proposed by the
authors of the submission [ABC+20].

2.3 Hardware implementations
Before the NIST started the post-quantum cryptography standardisation process, a number
of hardware implementations of the Niederreiter cryptosystem had been proposed. We
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Table 1: Classic McEliece parameters
Parameters set 348864 460896 6688128 8192128

n 3488 4608 6688 8192
k 2720 3360 5024 6528
t 64 96 128 128

refer to both microcontroller and FPGA implementations as hardware implementations here.
Interestingly, the McEliece cryptosystem was the first to be implemented in hardware [EGHP09].
The Niederreiter cryptosystem has then been implemented on FPGA [Hey10, HG13, WSN18]
for high performance and on microcontroller [BCS13, vMHG16, Cho18] for embedded systems.

Later on, as the Classic McEliece cryptosystem entered the NIST standardisation pro-
cess, a number of hardware implementations were proposed. First, in order to benchmark
the proposals, several hardware/software co-design and high-level synthesis methods were
explored to speed up the implementation process and obtain rough figures for comparison pur-
poses [BSNK19, DFA+20, KRF+21]. Later on, more specific microcontroller implementations
of the candidates were released [KRSS19]. However, the Classic McEliece cryptosystem was
not included in this comparison since, as already noted in [CC21], the public keys were too
large to fit in the memory of the targeted platform. Nevertheless, a few works showed that
such an implementation is in fact feasible, by heavily optimising numerous steps of the key
generation, encryption and decryption processes [RKK20, CC21].

Classic McEliece NIST PQC submission The Classic McEliece submission to the NIST
PQC standardisation process comes with C source code, as required. In this source code, the
syndrome computation is implemented in a packed fashion, as shown in Algorithm 4, meaning
that the bits of the matrix and the error-vector in F2 are packed into bytes to better exploit
the capacity of the machine words.

The main step of the syndrome computation is shown on line 7 in Algorithm 4, where an
intermediate value b, which is a byte, is repeatedly exclusive-ORed with the bitwise AND
between one byte from the matrix row and one byte from the error vector. In [CCD+21], only
the schoolbook version of the matrix-vector multiplication algorithm is attacked, where bits
are stored individually in the machine words. In the attack we propose here, we target the
packed version, although the schoolbook version could be attacked in the same way.

Algorithm 4 Packed matrix-vector multiplication
1: function Mat_vec_mult_packed(H, e)
2: for r ← 0 to ((n− k)/8− 1) do
3: sr = 0 ▷ Initialisation
4: for r ← 0 to (n− k − 1) do
5: b = 0
6: for c ← 0 to (n/8− 1) do
7: b ˆ= H[r,c] & ec ▷ Multiplication and addition
8: b ˆ= b≫ 4 ▷
9: b ˆ= b≫ 2 ▷ Exclusive-OR folding

10: b ˆ= b≫ 1 ▷
11: b &= 1 ▷ LSB extraction
12: s⌊r/8⌋ |= b ≪ (r mod 8) ▷ Bit packing
13: return s
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2.4 Message-recovery attack on the Classic McEliece cryptosystem
In this section, we outline the attack proposed in [CCD+21], since the attack we propose
follows the same framework.

The first step consists in obtaining a syndrome in N instead of F2. To this end, in [CCD+21],
an exclusive-OR instruction is corrupted into an ADD instruction by laser fault injection. Here,
we propose to use side-channel analysis only to accomplish this task. Laser fault injection has
several drawbacks compared to side-channel analysis for this attack setting.

First, the number of faults to inject exhibits quadratic growth with respect to n, since
n.(n−k) = O(n2) faults are required. Even though the constant-time algorithm implementation
make the fault injection feasible in practice, the number of faults gets very large for realistic
values of n. For instance, in the Classic McEliece cryptosystem, since 3488 ≤ n ≤ 8192, more
than one million faults must be injected.

Second, while the laser fault injection attack applies to the schoolbook version of the
matrix-vector multiplication algorithm, in which each machine word stores only one bit
of information, it does not adapt easily to the packed version of this algorithm shown in
Algorithm 4.

Finally, it involves a lot of resources and a very strong attacker model. Indeed, the attacker
must own an expensive laser fault injection setup and have access to the backside of the chip
to perform laser fault injection through the bulk. Even though this is a standard attacker
model for laser fault injection, it calls for simplification and a less restrictive way to carry out
the attack.

The second step of the attack consists in recovering the message from the syndrome in N.
To this end, in [CCD+21], a computationally-efficient integer linear programming solver is
used. Here, we propose to perform a dot product between the faulty syndrome in N and the
columns of the parity-check matrix to recover the positions of the errors in the error vector,
as detailed in Section 4.

Compared with the attack proposed in [CCD+21], the one we describe here is much more
practical, since it is based on side-channel analysis only, it is faster, and less sensitive to errors.
A side-by-side comparison of the two attacks is provided in Table 2.

Table 2: Comparison of [CCD+21] and the proposed attack
Attack step Attack in [CCD+21] Proposed attack
Method to obtain instruction corruption side-channel attacka syndrome in N with laser fault injection
Derivation of the exact value yes noof the syndrome in N

Multiplication method schoolbook only schoolbook and packedthat can be attacked
Detectable alterations yes noof the ciphertext (syndrome)
Message recovery from integer linear programming dot-product and
the syndrome in N information-set decoding

Practicality expensive setup and very applicablerestrictive attacker model

3 Side-channel recovery of the syndrome in N
The first step of the attack on the Classic McEliece cryptosystem proposed in [CCD+21]
consists in obtaining a syndrome in N instead of F2. In this section, we propose an alternative
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way to obtain the syndrome in N, that does not rely on fault injection, but on side-channel
measurements only.

3.1 Side-channel measurements
We perform side-channel measurements during the syndrome computation, that is, when the
syndrome s is computed as the matrix-vector multiplication He = s. Being in the profiled
attack setting, we record a training set for which the inputs of the matrix-vector multiplication
algorithm are chosen. Actually, as detailed below, a single trace is sufficient to form the
training set. For this trace, both the matrix H and the error vector e are random, and
HW(e) = t. Although a single trace is used, samples diversity is ensured by the fact that the
matrix H is very large and random and that the trace is preprocessed before being fed to the
classifier. The trace is composed of nsamples and is stored as a vector traw. We additionally
record a second trace, ttest, that is used as a test set when training the classifier. For both
traces, we also store the Hamming weights of the intermediate value b used in the syndrome
computation (see line 7 in Algorithm 4). They will be used as labels for the classifier.

3.2 Side-channel traces preprocessing
Considering the dimensions of the H matrix involved in the syndrome computation, the
number of samples nsamples is very large, and grows quadratically with respect to n. Thus
the trace cannot be fed directly to a classifier and must be preprocessed first. This three-step
procedure is described below.

3.2.1 First reshaping : matrix-row level

The first preprocessing step consists in reshaping the vector traw into a matrix, with each row
corresponding to the multiplication of one row of H with the error vector e. This is easily
done since the matrix-vector multiplication is a very regular operation, in which patterns can
be identified by visual inspection.

What we obtain is a matrix of traces Trow-wise of (n− k) rows and approximately nsamples
n−k

columns. The number of columns is not fixed, since it depends on the number of non-
informative samples that were recorded at the beginning and the end of the trace, before
the matrix-vector multiplication started and after it was finished. The number of columns is
actually the number of samples corresponding to the multiplication of one row of the matrix
H by the error vector e.

3.2.2 Second reshaping : matrix-element level

The second preprocessing step is similar to the first and consists in reshaping again the matrix
of traces, so that each row now corresponds to the multiplication of one element of H with
one element of the error vector e. This is easily done since the vector-vector multiplication is
a very regular operation, in which patterns can be identified easily.

What we obtain is a new matrix of traces Telement of (n− k).n8 rows and approximately
nsamples
n
8 .(n−k) columns. Again, the number of columns is not fixed, since it depends on the number of

non-informative samples that were recorded at the beginning and the end of each preprocessed
trace, before the vector-vector multiplication started and after it was finished. In fact, these
extra samples correspond to the exclusive-OR folding operation, the LSB extraction and the
bit-level storage of the syndrome (see lines 8 to 12 in Algorithm 4).

3.2.3 Linear Discriminant Analysis

After those two steps, each row of the matrix corresponds to the multiplication of one element
of the matrix H with one element of the error vector e. We then apply Linear Discriminant
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Analysis to reduce the dimensions of the rows of the matrix of traces. This will make them
easier to handle by the classifier.

Linear Discriminant Analysis is a powerful alternative to Principal Component Analysis
for dimensionality reduction. As stated in [SA08], while Principal Component Analysis
aims at maximising the variance of the mean traces, Linear Discriminant Analysis aims at
maximising the ratio between the inter-class variance and the intra-class variance. As a
dimensionality-reduction technique, Linear Discriminant Analysis maps the input data into
a space of dimension nclasses − 1. This can be understood intuitively by considering that
a one-dimensional space is sufficient to allow for a linear separation between two classes.
However, to linearly separate three classes, a two-dimensional space is required. In our case,
since we aim at recovering the Hamming weight of bytes, there are nine classes and the TLDA
matrix has eight columns.

3.2.4 Summary

Figure 1 summarises the preprocessing steps which are applied to the raw side-channel
measurements, showing the changes in the vector/matrix dimensions at every step.

traw

nsamples

Trow-wise

≃ nsamples
n−k

(n
−
k
)

Telement

≃ nsamples
n
8 .(n−k)

(n
−
k
).

n 8

TLDA

nclasses − 1

(n
−
k
).

n 8

Figure 1: Summary of the preprocessing steps applied to the raw traces

These preprocessing steps actually have two very interesting advantages when considering
the complexity of the training process. These two advantages directly stem from the fact that
the traces are reshaped twice, which is made possible by the constant-time property of the
implementation of the algorithm.

The first advantage is that, in the final matrix TLDA, each row corresponds to the multipli-
cation of one entry of H with one entry of e. Therefore, even though the value of n changes,
only one classifier must be trained. This is very interesting from a training complexity point
of view, since as n grows, the number of classifiers to train remains constant, and equal to one.

A second advantage, which directly derives from the one above, is that the number of
training samples extracted from a single trace in traw grows quadratically with respect to n.
Indeed, as shown in Figure 1, the number of rows in TLDA is (n−k).n8 = O(n2). For example, if
n = 8192 and k = 6528, then a single side-channel trace provides n

8×k = 1024×6528 ≈ 6.7×106

training samples. Consequently, provided that an attacker can record a sufficiently large
number of samples, then a single side-channel trace is sufficient to build the training set.

3.3 Hamming weight recovery with a random forest
After the side-channel trace has been preprocessed following the steps described above, the
matrix and labels are fed to a classifier which is trained to recover the Hamming weight of the
intermediate value b used in the syndrome computation. To this end, we selected the random
forest algorithm, which is more lightweight than deep learning neural networks. It has been
used previously for side-channel analysis with good results [HGG20].
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A random forest is a classifier that belongs to the category of ensemble learning. As such,
it is composed of an ensemble of decision trees, and the outcome of their individual decisions
is combined by majority voting. We refer the reader to [Bre01] for more details. As classically
done, the classifier is trained with the samples and labels from the training set and its accuracy
is evaluated with the samples and labels from the test set ttest.

Improving the classification accuracy Although the classification accuracy of the default
random forest was already rather high, we further improved it by considering the rows of
TLDA that come before and after the one being classified (see Equation (1)). Intuitively, this
originates from the fact that the Hamming weight of the intermediate value b in fact does
not vary much. Indeed, since the error vector e has a low Hamming weight, then there is a
high probability that consecutive values of the intermediate value b have the same Hamming
weight. Therefore, by feeding the classifier with augmented data obtained by concatenating
previous and consecutive rows of TLDA, we can greatly improve the classification accuracy.
This can also be seen as having a window of width (2.∆ + 1) sliding vertically over the matrix
TLDA.

TLDAext.[i,] = TLDA[i−∆,] ∥ TLDA[i−∆+1,] ∥ ... ∥ TLDA[i,] ∥ ... ∥ TLDA[i+∆−1,] ∥ TLDA[i+∆,] (1)

Edge cases for i < ∆ or i > (n−∆) are handled by duplicating the closest matrix row if
needed. Therefore, the vector fed to the classifier TLDAext.[i] always has (2.∆ + 1).(nclasses− 1)
components.

The ∆ value is empirically selected. Experiments presented in Section 5.3 show that
∆ = 3 is a good choice and leads to a very high classification accuracy, while keeping the
computational and memory complexity of the dimensionality reduction step reasonable.

3.4 Derivation of the approximate syndrome in N
Once the consecutive Hamming weights of the intermediate value are recovered, an approximate
value for the syndrome entries in N may be derived. Actually, instead of the Hamming weights,
having the Hamming distances would allow to derive the exact value for the syndrome entries,
as shown by Equation (2). Indeed, the Hamming distance between two consecutive values of
b is exactly the number of 1s found in the bitwise AND between the byte from the matrix
row and the byte from the error vector (see line 7 in Algorithm 4). Computing the value
of the syndrome entry in N is equivalent to counting those ones, which in turn is equivalent
to summing the Hamming distances between consecutive values of b. Considering that the
intermediate value is an 8-bit vector written as b, and having bj,0 = 0 for all j ∈ {1, . . . , n−k}
we deduce the jth syndrome entry sj from Equation (2).

1 ≤ j ≤ (n− k) sj =
n
8∑

i=1
HD(bj,i, bj,i−1) (2)

Unfortunately, the leakage model we observed in the experiments is a Hamming weight
leakage model, not a Hamming distance leakage model. This claim is supported by signal-to-
noise ratio computations presented in Section 5. Therefore, we propose another formula to
derive the value of the syndrome entry in N from the Hamming weights, given in Equation (3).

1 ≤ j ≤ (n− k) sj =
n
8∑

i=1

∣∣HW(bj,i)−HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1 (3)

Lemma 1. Let 1ℓ = (1, . . . , 1) ∈ Fℓ
2 and a, b ∈ Fℓ

2 with HW(a) ≥ HW(b). Let a = 1ℓ − a be
the bitwise complement of a. Let a&b = (a1b1, . . . , aℓbℓ) be the element-wise product of the
vectors a and b. Then we have:

HD(a, b) = HW(a)−HW(b) + 2.HW(a&b). (4)
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In particular, if Supp(b) ⊆ Supp(a) we have

HD(a, b) = HW(a)−HW(b). (5)

Notice that a particular case where the aforementioned condition Supp(b) ⊆ Supp(a) is
valid is when HD(a, b) ≤ 1, as specified in Equation (3).

In the general case, considering random bytes, the Hamming distance between two bytes is,
most of the time, not equal to the absolute value of the difference of their Hamming weights.
This can be checked exhaustively: the two values are different more than 80 % of the time,
and the condition of Equation (3) mostly does not hold.

However, we are not in this general case here, since the error vector is of low Hamming
weight (see the Classic McEliece parameters in Table 1). For example, for the lowest value
of n = 3488, the error vector has a Hamming weight of 64 only. For the highest value of
n = 8192, the error vector has a Hamming weight of 128.

Therefore, the bitwise AND between the byte from the matrix (of Hamming weight equal
to 4 on average) and the byte from the error vector (of low Hamming weight) is also of low
Hamming weight. As a consequence, since this byte is exclusive-ORed with the previous value
of b (see line 7 in Algorithm 4), the Hamming distance between two consecutive values of bi,j

will be small and less than one most of the time, satisfying the aforementioned condition.
As an illustrative example, let us consider the first set of parameters for Classic McEliece

where n = 3488 and t = 64. Figure 2a shows the empirical distribution of the Hamming
weight of the bytes found in a vector of length n = 3488 and Hamming weight t = 64. This
in accordance with the fact that, since t = 64, then there are at least n

8 − t bytes with a
Hamming weight of zero, or

n
8 −t

n
8

= 436−64
436 = 372

436 = 85.32 %.
We can see in Figure 2a that, indeed, the vast majority of these bytes have a Hamming

weight of zero or one, with less than one percent having a Hamming weight of two or more.
This is the distribution of the Hamming weight of the bytes in the error vector.
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(a) Empirical distribution of the Hamming weight
of the bytes found in a vector of length n = 3488
and of Hamming weight t = 64.
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(b) Empirical distribution of the Hamming weight
of the bitwise AND between the bytes found in
a vector of length n = 3488 and of Hamming
weight t = 64 and a random byte.

Figure 2: Distributions of the Hamming weight of the intermediate values involved in the
syndrome computation.

Figure 2b illustrates the empirical distribution of the Hamming weight of the bitwise AND
between the bytes found in a vector of length n = 3488 and of Hamming weight t = 64 and a
random byte. We can see that more than 99.75 % of these bytes have a Hamming weight of
zero or one. This is the distribution of the bitwise AND between the bytes in the matrix row
and the bytes in the error vector. Since this value is exclusive-ORed with b in the syndrome
computation, then the distribution shown in Figure 2b is also the distribution of the Hamming
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distances between consecutive values of bi,j . Therefore, in our case, the Hamming distance
between two consecutive values of bi,j is, most of the time, equal to the absolute value of the
difference of their Hamming weights.

While, as shown in Figure 2b, Equation (3) holds more than 99.75 % of the time, it is
invalid if the Hamming distance is equal to two or more. In this case, information about the
Hamming weights is not equivalent to information from the Hamming distances. However,
since this occurs very rarely, it has a very low impact on the recovery of the syndrome in N.

It is important to note that the derivation of the syndrome in N from the Hamming
weights always underestimates it. This is stated in Equation (4), which can also be checked
exhaustively. Note that this is true only if the classifier is perfect, that is, if Hamming weights
are perfectly recovered. This can never be exactly the case, as detailed experimentally in
Section 5.

Extra parity-correction step After estimating the syndrome in N thanks to the Hamming
weight information and Equation (3), an additional parity correction step can be followed.
Indeed, the syndrome in F2 is known: this is the ciphertext. This gives us information about
the parity of the syndrome in N. Since the recovered syndrome in N is always underestimated,
one can add the parity value to the estimated value.

For example, if we estimate the value of a syndrome entry in N to be 14, but the associated
syndrome entry in F2 is 1, then we know that the value 14 is wrong, since it is even but the
syndrome entry in F2 is odd. The estimated syndrome entry in N is then changed to 15.

What we eventually obtain is an estimation of the syndrome in N. More precisely s
mod 2 ∈ Fn−k

2 is the correct syndrome but the entries of s might be incorrect (but with the
correct parity). Although this estimation of s might be incorrect, the next section shows how
to exploit it to recover the message.

4 Message recovery algorithms
The second step of the attack on the Classic McEliece cryptosystem proposed in [CCD+21]
consisted in using linear programming algorithms to solve the N − SDP. Those algorithms
have several drawbacks. First, they are not resistant to errors during the acquisition in the
first attack step: a single incorrect entry in the syndrome in N leads to an incorrect result.
Thus the syndrome in N must be perfectly correct. Second, the complexity of those algorithms
was not analysed in [CCD+21]. In this section, we propose an alternative way to solve the
N− SDP with a dedicated algorithm and show that it resists errors in the syndrome. We also
provide a clear analysis of the complexity of this algorithm.

We start by recalling the definition of N−SDP in Definition 2. The only difference between
the N− SDP and the SDP, shown in Definition 1, is that the syndrome is in N instead of F2.

Definition 2 (Integer syndrome decoding problem N− SDP).
Inputs: H ∈ {0, 1}(n−k)×n, s ∈ Nn−k, t ∈ N∗.

Output: e ∈ {0, 1}n with HW(e) = t, such that He = s.

4.1 Identification of a good permutation
The main idea behind the algorithms proposed here is to use techniques such as those in
[FL20] in order to find a good initial permutation for the information-set decoder.

4.1.1 Score function

Compared with classical approaches where permutations are exhaustively enumerated, we
exploit the extra-information coming from the syndrome in N, and determine a better per-
mutation. To do so, we assign a score for each column of H, computed as a scalar product
between the column in question and the syndrome in N. The intuition behind using the scalar
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product is that, since the columns are high-dimensional, then there is a high probability that
they "point" in very different directions in the high-dimensional space. Since they are summed
to get the syndrome in N, the scalar product should find which columns point in the same
direction as the syndrome in N.

In order to increase the correlation between columns in the support of the error vector
and the syndrome vector we will use extra information by means of the complement, as
stated in Lemma 2. Next, sorting the columns of H with respect to their corresponding
score will determine a column permutation on H. With this permutation at hand we use an
efficient variant of information-set decoding to find the correct error vector. We shall begin by
providing a useful fact related to any solution of the N− SDP.

Lemma 2. Let e be a valid solution for the N− SDP with input H, s, t. Then e is a valid
solution for an equivalent N−SDP with input H, s, t where hj,i = 1−hj,i,∀(j, i) ∈ N∗

n−k×N∗
n

and sj = t− sj ,∀j ∈ N∗
n−k.

What this lemma implies is that we can double the number of equations by considering
both the complements H and s in addition to H and s. We now define the score function ψ
in Definition 3.

Definition 3 (Score function).
Let H ∈ {0, 1}(n−k)×n, s ∈ Nn−k and t ∈ N∗. Define the following score function:

∀i ∈ N∗
n ψi(s) = H[,i] · s + H [,i] · s =

n−k∑
ℓ=1

(hℓ,isℓ + (1− hℓ,i)(t− sℓ))) (6)

With this definition at hand we can outline a procedure that outputs the column permuta-
tion corresponding to sorting the columns with respect to the score function.

Algorithm 5 Sort function
1: function sort(H, s, t)
2: for i← 1, n do
3: compute ψi(s) with Equation (6)
4: Π← sort ψi(s) in descending order
5: return Π

Now, the question here is whether this procedure manages to discriminate between column
belonging to the support of e, where the t errors lie, and the rest of the columns of H. The
following result proves that there is a score difference between column indices in Supp(e) and
column indices outside of Supp(e). This is a result taken from [FL20] and reformulated with
respect to our formalism.

Lemma 3. Let H ∈ {0, 1}(n−k)×n be a matrix, with distribution given by hj,i ∼ Ber( 1
2 ) and

s ∈ Nn−k such that ∃ e ∈ {0, 1}n with HW(e) = t satisfying He = s. Then ψi(s) is a random
variable that follows the distribution

ψi(s) ∼
{
B((n− k)t, 1

2 ) , i ̸∈ Supp(e)
n− k + B((n− k)(t− 1), 1

2 ) , i ∈ Supp(e) (7)

Notice that, for i ̸∈ Supp(e) the most expected value of ψi(s) would be around (n− k)t/2,
as for i ∈ Supp(e) it is more likely to have ψi(s) concentrated around (n− k)/2 + (n− k)t/2.
Typically there is a gap between the average values equal to (n− k)/2, which enables us to
discriminates between positions i ∈ Supp(e) and i ̸∈ Supp(e). Notice that the gap between
these two expected values is increasing in n− k. This fact suggests that the probability of
discriminating indices in the support of the error vector increases when n− k increases.

The syndrome in N, which might be partially incorrect as detailed in Section 3.4 is only
used up to this point, to identify a good permutation.
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4.1.2 Score function in the presence of noise

Let us see how the score function behaves in the presence of noise. We model the noise on
the syndrome vector as a symmetric random variable and give some particular cases. Let us
denote the faulty syndrome by s̃ = s+ ϵ, where ϵ denotes the random variable describing the
faults.
Proposition 1. For any j ∈ N∗

n−k let ϵj be a discrete random variable defined over the set
Z−d,d satisfying:

• ϵj are independent and identically distributed

• Prob(ϵj = α) = Prob(ϵj = −α) for all α ∈ Z−d,d (symmetry).

• Prob ((ϵj = α) ∩ (hj,i = β)) = Prob(ϵj = α)Prob(hj,i = β) for any α ∈ Z−d,d, β ∈ {0, 1}
(independence with hj,i).

Then for all i ∈ N∗
n we have Prob (ψi(s̃)− ψi(s) = α) = Prob

n−k∑
j=1

ϵj = α

.

One can deduce from Proposition 1 that the value of the score function on the faulty
syndrome deviates from the correct value identically for positions i ∈ Supp(e) and i ̸∈ Supp(e).
Moreover, if the sum of ϵj is centred around zero and has a relatively small standard deviation
compared to that of B((n− k)t, 1/2) then the faulty syndrome has little effect on the sorting
method shown in Algorithm 5. In other words, ψ can tolerate such errors, and can discriminate
positions in the support of e from positions outside of it.

We will now consider the exact value of the syndrome s∗ = s mod 2 ∈ Fn−k
2 which is the

correct ciphertext. Moving forward, there are two direct algorithms for retrieving the error
positions using the permutation Π returned by sort(H, s, t).

4.2 ISD-based algorithms that exploit the good permutation
4.2.1 t-Threshold Score Decoder

Let us suppose that the permutation Π arranges the bit positions of e in such a manner that
it can be split into two sub-vectors, the left part is the all-ones vector, and the right part is the
all-zeroes vector. If this is the case, an algorithm only checks if the sum modulo 2 of the first t
columns of HΠ equals s∗. If the condition is satisfied it returns a solution e = Π(1t ∥ 0n−t)t.
This means that the identified permutation is “perfect”, and is capable of bringing t ones in
the first t positions of the error vector.
Remark 1. Under the assumption that computing the product of two integers runs in O(1),
the worst case time complexity of Algorithm 5 is O((n− k)n) = O(n2). Indeed, notice that
computing the list of values ψi(s) is equivalent to:

[ψi(s)]i∈N∗
n

= stH + stH. (8)

Hence, the overall time complexity of Algorithm 5 reduces to three matrix-vector multiplica-
tions, i.e., stH, stH and HΠ(1t ∥ 0n−t)t, and sorting a list of n integers.
Proposition 2. t-Threshold Score Decoder outputs a valid solution as long as min{ψi(s), i ∈
Supp(e)} > max{ψi(s), i ∈ N∗

n \ Supp(e)}.
Proof. If min{ψi(s), i ∈ Supp(e)} > max{ψi(s), i ∈ N∗

n \ Supp(e)} holds this implies that
etΠ = (1t ∥ 0n−t). Hence, we have s∗ = He = HΠΠ−1e = HΠ(etΠ)t = HΠ(1t ∥ 0n−t)t =
(HΠ)e′, which ends the proof.

Our simulations have shown that, unfortunately, there are many cases where the positions
in Supp(e) are not mapped on the first t positions by the permutation Π, but rather on the
first r positions with r > t. To deal with this situation we propose the following more powerful
procedure.
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4.2.2 Rank-Threshold Score Decoder

Let us suppose that the permutation Π arranges the bit positions of e in such a way that, on
the last n− r positions of the permuted vector, all the values are equal to zero. In addition, if
HΠ has column rank r on the first r columns, then one can retrieve a solution by computing
a partial Gaussian elimination, i.e., using the reduced row-echelon form of HΠ as follows.

First, use the sort(H, s, t) function to obtain a permutation Π for H. Then, use the
syndrome s∗ = s mod 2 ∈ Fn−k

2 ,Π and H to retrieve e by means of linear algebra. We start
by computing the reduced row-echelon form of A∗,H∗ ← rref(HΠ). If HW(A∗s∗) is equal
to t then we get e = Π(A∗s∗ ∥ 0k)t.
Remark 2. The procedure rref(HΠ) is equivalent to performing a partial Gaussian elimination
over F2. Indeed, there is an (n− k)× (n− k) non-singular matrix A∗ such that, A∗HΠ =[

Ir

0n−k−r,r
∥B∗

]
where HΠ = [A ∥ B] with A a (n − k) × r matrix satisfying A∗A =[

Ir

0n−k−r,r

]
, and B∗ = A∗B.

From the description of the algorithm above, the following result can be deduced.
Proposition 3. Rank-Threshold Score Decoder outputs a valid solution as long as there
exists at least one set L ⊂ N∗

n \ Supp(e) with #L ≥ n− r such that min{ψi(s), i ∈ Supp(e)} >
max{ψi(s), i ∈ L}.

The overall time complexity of the Rank-Threshold Score Decoder is O((n− k)3), since
it is dominated by the partial Gaussian elimination, i.e., the computation of A∗.

Notice that a valid permutation for the Rank-Threshold Score Decoder is also a valid
permutation for the t-Threshold Score Decoder.

Rank-Threshold Score Decoder uses linear algebra in the same way as the Prange decoder
does for syndrome decoding [Pra62]. Hence, it is natural to further explore the improvements
of the Prange decoder to improve the success of the decoder. Hence, we propose to extend
Rank-Threshold Score Decoder so that it covers error vectors with a more general pattern.
More precisely, instead of having permuted error vectors with all-zero vector on the last n− r
positions, we allow for δ non-zero positions. This is the principle of the Lee-Brickell decoder,
shown in Algorithm 6.

Algorithm 6 Lee-Brickell Score Decoder
1: function Lee-Brickell Score Decoder(H, s∗, t)
2: Compute Π← sort(H, s, t)
3: Set HΠ = [A ∥B]
4: Compute A∗,H∗ ←rref(HΠ) and B∗ = A∗B
5: Compute s

′ = A∗s∗

6: if HW(s′) == t then
7: return e = Π(s′ ∥ 0k)t

8: else
9: for i← 1, δ do

10: S = Gener-Subsets({1, . . . , n− r},i)
11: for E in S do
12: e

′′ ← Vector({0, 1}, n− r, E)
13: e

′ ← s
′ −B∗e

′′

14: if HW(e′) == t− i then
15: return

(
Π(e′ ∥ e

′′)t,Π
)

Remark 3. The working factor of Algorithm 6 is given by

O((n− k)3) +O

((
n− r
δ

)
(n− r)2

)
, (9)
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where the first term corresponds to the work factor of the rref(HΠ), and the second term to
the work factor of the computation of e

′ multiplied by the number of times e
′ is computed.

For fixed parameters (n, k, t), one can estimate the value of δ that leads to a success probability
close to 1. As we shall see in the experimental section, for all the cryptographic parameters in
the Classic McEliece cryptosystem, δ = 2 suffices to have at least 99.5 % of success. Thus, for
these particular parameters, i.e., δ = 2, k = n/c where c is a constant, we have a worst case
complexity of O(n4).

5 Experimental results
5.1 Side-channel measurements
All the side-channel measurements are power consumption measurements. They were performed
using the ChipWhisperer platform [OC14]. The targets microcontroller that computes the
syndrome is based on an ARM® Cortex®-M4 core, which is the hardware platform recommended
by the NIST, and already used in related work such as the PQM4 libray [KRSS] to benchmark
and test implementations of post-quantum cryptography algorithms. Figure 3 shows a side-
channel trace measured during the syndrome computation.
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Figure 3: Side-channel trace of the syndrome computation (n = 64 for readability reasons)

For readability reasons, a very small value of n = 64 (k = 32, t = 8) is used for the plots
in Figures 3 and 4, instead of the Classic McEliece parameters. A pattern is clearly visible
and repeated n− k = 32 times. Samples under the red area are not useful for the analysis and
are discarded later in the preprocessing step described in Section 5.2.

For the rest of the experiments, the values of n, k and t we considered are given in Table 1.
It is worth noting that, for those parameters, side-channel measurements cannot be performed
on the ChipWhisperer platform, for two reasons. First, the H matrix does not fit in the
available memory of the micro-controller we used, which has 256 kB of Flash memory and
40 kB of RAM. Second, the number of samples which can be recorded, less than 100 000, is
greatly exceeded by the duration of the full matrix-vector multiplication. For these two reasons,
we perform the matrix-vector multiplication one row after the other, and then concatenate
the recorded traces to obtain the side-channel trace for the full matrix-vector multiplication.
This does not alter the attack scenario, since the attack works with the Hamming weight over
rows independently to determine the value of the syndrome entry in N. This could be fixed by
using a more advanced experimental setup.

5.2 Side-channel traces preprocessing
The raw trace from Figure 3 is reshaped one time to obtain the trace shown in Figure 4a,
which shows one of the 32 patterns of Figure 3. Each pattern corresponds to the multiplication
of one row of the matrix H with the error vector e. This reshaping is easily done by visually
observing the width of a pattern.
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(a) Trace after the first reshaping step
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(b) Trace after the second reshaping step

Figure 4: Side-channel traces after each of the two reshaping steps.

Then, the trace from Figure 4a is reshaped a second time to obtain the trace shown in
Figure 4b, which shows one of the eight patterns highlighted in Figure 4a. Each pattern
corresponds to the multiplication of one byte of the matrix H with one byte of the error
vector e. Samples that come after the eighth pattern in Figure 4a, under the red area, are
discarded since they are not useful in the derivation of the syndrome in N. They correspond
to the last instructions in the outer for loop of Algorithm 4, namely the exclusive-OR folding,
the LSB extraction and the bit packing operations.

As claimed above in Section 3, the Hamming weight leakage model is much stronger than
the Hamming distance leakage model in the recorded side-channel traces. This is shown in
Figure 5, where the signal-to-noise ratio is plotted for both leakage models and superimposed
on the average trace found in the preprocessed traces. The signal-to-noise ratio is computed
by an F-test, that is, the ratio between the inter-class variability and the intra-class variability.
As depicted, the maximum value for the F statistic is 54 times larger for the Hamming weight
than for the Hamming distance leakage model, indicating that the leakage for the former is
much stronger than for the latter.
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Figure 5: Signal-to-noise ratio for Hamming weight (HW) and Hamming distance (HD)
leakages, superimposed with the power consumption data from Figure 4b.

The last preprocessing step consists in reducing the dimension of the data so that it is easier
to handle by the classifier. We used discriminant_analysis.LinearDiscriminantAnalysis2

from the sklearn Python package to map the preprocessed traces, possibly extended by con-
sidering adjacent rows with the method detailed in Section 3.3, to an 8-dimensional space by
Linear Discriminant Analysis. The output space has eight dimensions since there are nine
possible values for the Hamming weight of a byte. After this last preprocessing step, the traces
are fed to the classifier which will be responsible for recovering the Hamming weight values.

2https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.
LinearDiscriminantAnalysis.html

https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
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5.3 Hamming weight recovery with a random forest
We used the implementation from RandomForestClassifier3 of a random forest classifier
from the sklearn Python package. We kept the parameters to their default values. In
particular, there are one hundred of trees whose votes are combined by majority voting. We
refer the reader to the documentation of the function for the other parameters.

For each (n, k, t) set of parameters, ten independent experiments were conducted. We
restrict ourselves to ten experiments for each value of n because it takes a lot of time to
perform the side-channel measurements for all the matrix rows. Ten classifiers were then
trained and their accuracy computed from the test set. The accuracy we obtained was always
very high, ranging from 99.17 % to 99.91 %, with ∆ = 3. With ∆ < 3, the accuracy is lower.
With ∆ > 3, the dimensionality-reduction step exceeds the memory capacity of the computer
we use (32 GB).

It is worth noting that, since we use only one trace for the training set, the number of
training samples is different for each set of parameters. The classifier trained for n = 3488
sees a bit more than one million samples, while for n = 8192, almost seven million samples
are available. This might explain why the classifier accuracy is higher and more consistent for
the largest values of n. The detailed accuracy and number of training samples for each set of
parameters are given in Table 3.

Table 3: Number of training samples and classifier accuracy for each Classic McEliece
parameters set

Parameters set 348864 460896 6688128 8192128

n 3488 4608 6688 8192
k 2720 3360 5024 6528
t 64 96 128 128
# training samples 1 185 920 1 935 360 4 200 064 6 684 672

Classifier accuracy 0.9964 0.9983 0.9963 0.9983
(σ = 0.0021) (σ = 0.00092) (σ = 0.00076) (σ = 0.00039)

5.4 Derivation of the approximate syndrome in N
After the Hamming weight information has been recovered by the classifier, the syndrome
in N is derived thanks to Equation (3) and the parity-correction step. For each parameters
set, we compute the distribution of the errors made when estimating the syndrome values
in N. These distributions are shown in Figure 6 and are obtained by comparing the (n− k)
recovered and correct syndrome entries in N for each of the ten independent experiments.

We can observe that, for all values of n, in most of the cases, the value of the syndrome
entry in N is correctly recovered, as depicted by a green bar.

Another significant case is when the recovered value is equal to the real one minus two.
This occurs when the Hamming weight of the intermediate value remains the same, but two
bits inside actually flipped in opposite directions. For instance, the intermediate value b can
change from 0b00000001 to 0b00000010. The Hamming distance is two in this case, but is
considered to be zero when looking at the Hamming weights only. This has been shown before
in Figure 2b. Even though this happens very rarely, this is still visible as a result of the
summation over large n values.

5.5 Score function evaluation on perfect and noisy syndromes in N
After obtaining the syndrome in N, we now assess the efficiency of the score function, that is,
its ability to identify the error positions in the error vector.

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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(c) n = 6688
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(d) n = 8192

Figure 6: Difference between the real and recovered syndrome entries in N

The first type of simulations are done using perfect syndromes in N. More exactly, given
a public parity-check matrix H we randomly generated a set of 10 000 error vectors and
computed their corresponding syndromes in N. For each syndrome we we computed the success
probability of the Lee-Brickell Score Decoder for all the Classic McEliece parameters
with respect to the value of δ.

Table 4: Success probability of the Lee-Brickell Score Decoder for the Classic McEliece
with perfect syndromes in N.

Parameters set n k t
N− SDP decoder

δ = 0 δ = 1 δ = 2 δ = 3 δ = 4
348864 3488 2720 64 0.773 0.977 0.999 1.000 1.000
460896 4608 3360 96 0.860 0.991 0.999 1.000 1.000
6688128 6688 5024 128 0.780 0.980 1.000 1.000 1.000
8192128 8192 6528 128 0.661 0.943 0.995 0.999 1.000

Notice that, in the case of perfect syndromes in N, δ = 2 gives a probability of success
greater than or equal to 0.995 for all the parameters. In order to increase it up to 0.999 taking
δ = 3 is sufficient.

For the second type of simulations, we generated noisy syndromes in N by exploiting the
empirical error distributions shown in Figure 6. This allows us to estimate the efficiency of the
score function more accurately. Here, we perform again 10 000 simulations for each parameters
set. Experimental results are shown in Figure 7. We observe that a larger δ value is necessary
to reach the same success probability, when compared to the values given in Table 4. This
makes sense since, when dealing with experimental data, the recovered syndrome in N might
not be perfectly recovered.

Overall, however, we can observe that a very high success probability is achieved for small
values of δ.
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(c) n = 6688, t = 128
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Figure 7: Probability of finding at least x ones in the first (n− k) positions, obtained from
noisy syndromes in N, derived from the distributions in Figure 6.

6 Countermeasures
The main weakness of the Classic McEliece cryptosystem, that makes it vulnerable to the
proposed attack, is that the error weight t is small. Masking can be used to instead have an
error vector with a more general error pattern.

6.1 Classical masking
The leakage used to obtain the values of the syndrome in N instead of F2 can be hidden with
a mask. Indeed, the attack succeeds because the message has a low weight t ≈

√
n.

Using vectors of random Hamming weight n
2 limits the accuracy of the random forest

method to recover the Hamming weights. As a consequence, the derived syndrome in N is
"more incorrect". Therefore, the permutation Π← sort(H, s, t) is not suitable and we must
resort to exhaustive enumeration which is computationally expensive.

The proposed masking scheme is as follows. We first draw a random value x ∈ Fn−k
2

and add it to e. Then, two matrix-vector products are performed: Hpub(e⊕ x) and Hpubx.
Since the operations are linear, we have Hpube = Hpub(e⊕ x)⊕ (Hpubx). This is shown in
Algorithm 7.

Algorithm 7 Encryption using classical masking
1: function Encrypt_Masked(m, pk)
2: Encode m→ e with HW(e) = t
3: Randomly pick an element x ∈ Fn

2 ▷ HW(x) ≈ n
2

4: Compute s = Hpub(e⊕ x)⊕Hpubx = Hpube
5: return s

The overhead of such a masked implementation is linear in time and randomness. Both
matrix-vector products are performed with vectors of average Hamming weight n

2 .
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Performing the attack twice, one on Hpub(e⊕ x) and one on Hpubx, and combining the
results is unlikely to work since the average Hamming weight is now n

2 instead of t ≈
√
n << n

2 .
Another way to attack is to directly perform a second-order attack. In that case, we know

that masking theoretically increases the difficulty of an attack exponentially in the number of
shares [PR13].

6.2 Masking with a codeword
When applying masking during the encryption, we can note that, if the mask belongs to the
dual code of the public matrix, the mask will be automatically removed during the encryption
process. It is what we propose here in Algorithm 8.

Algorithm 8 Encryption using a random codeword
1: function Encrypt_Masked_with_Codeword(m, pk)
2: Encode m→ e with HW(e) = t
3: Compute the dual matrix Gpub of the public matrix Hpub
4: Randomly pick an element x ∈ Fk

2
5: Compute e′ = x Gpub ⊕ e ▷ HW(e′) ≈ n

2
6: Compute s = Hpube′ = Hpub(x Gpub ⊕ e) = Hpube
7: return s

The computation of the dual matrix Gpub of the public matrix Hpub is straightforward if
Hpub is in systematic form. The vector e′ ∈ Fn−k

2 has an average weight of n
2 . Since Gpub is

indistinguishable from a random binary matrix, each bit of xGpub can be seen as a random
bit. There exists 2k different masks xGpub. The large number of mask candidates prevents
from exhaustive search over all the possible mask values.

It is worth noting that the two masking techniques presented here do not need any
unmasking during the decryption process. Therefore, they incur an overhead only during the
encryption process.

7 Conclusion
This article presents a message recovery attack against the Classic McEliece cryptosystem
using side-channel analysis on the power consumption and machine learning techniques. The
attack works in two steps. First, we retrieve the value of the syndrome in N, during the
encryption process, using only one trace. Second, we recover the secret message m using a
new algorithm based on a computationally-efficient score function and known information-
set decoding methods. We showed that the solver we designed is tolerant to errors in the
syndrome recovery process which might stem from side-channel analysis inaccuracy. This
attack, although is follows the same attack path as a previously proposed message-recovery
attack based on laser fault injection, improves it in many ways and makes it much more
practical and efficient overall.

We can identify several research perspectives to continue this work. First, an interesting
aspect to consider would be the influence of the classification accuracy on the overall attack
success. Indeed here, the classifier, although quite simple, is very accurate, with an accuracy
of more than 99.5 %. Evaluating how a less precise classifier would affect the attack success
would be relevant.

Another research direction could be to further improve the derivation of the syndrome
in N. Indeed, while we considered only the Hamming weight information in this work, the
Hamming distance could be exploited as well. Further studies could focus on combining those
two leakages in an efficient manner.

Finally, although we proposed two countermeasures that are applicable to the syndrome
computation, a thorough evaluation of their cost and efficiency remains to be done.
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