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Abstract—Differential Privacy (DP) is one of the gold standards
of privacy. Nonetheless, when one is interested in mechanisms
with theoretical guarantees, one has to either choose from a
relatively small pallet of generic mechanisms, like Laplacian,
Gaussian, and exponential, or develop a new, problem-specific
mechanism and analyze its privacy. This makes it challenging
for non-experts in security to utilize DP for preserving privacy
in complex tasks in areas like machine learning, data science,
and medicine, which are primary application domains of DP.

Our work aims to address the above limitation. In a nut-
shell we devise a methodology for domain experts with limited
knowledge of security to estimate the (differential) privacy of an
arbitrary mechanism. Our Eureka moment is the utilization of a
link—which we prove—between the problems of DP parameter-
estimation and Bayes optimal classifiers in machine learning,
which we believe can be of independent interest. Our estimator
methodology uses this link to achieve two desirable properties: (1)
it is black-box, i.e., does not require knowledge of the underlying
mechanism, and (2) it has a theoretically-proven accuracy, which
depends on the underlying classifier used. This allows domain
experts to design mechanisms that they conjecture offer certain
(differential) privacy guarantees—but maybe cannot prove it—
and apply our method to confirm (or disprove) their conjecture.

More concretely, we first prove a new impossibility result, stat-
ing that for the classical DP notion there is no black-box poly-time
estimator of (ε, δ)-DP. This motivates a natural relaxation of DP,
which we term relative DP. Relative DP preserves the desirable
properties of DP—composition, robustness to post processing,
and robustness to the discovery disclosure of new data—and
applies in most practical settings where privacy is desired. We
then devise a black-box poly-time (ε, δ)-relative DP estimator—
the first to support mechanisms with large output spaces while
having tight accuracy bounds. As a result of independent interest,
we apply this theory to develop the first approximate estimator
for the standard, i.e., non-relative, definition of Distributional
Differential Privacy (DDP) – aka noiseless privacy.

To demonstrate both our theory and its potential for practical
impact, we devised a proof-of-concept implementation of our
estimator and benchmarked it against well-studied DP mecha-
nisms. We show that in reasonable execution time our estimator
can reproduce the tight, analytically computed ε, δ trade-off of
Laplacian and Gaussian mechanisms—to our knowledge, the
first black box estimator to do so, and for the Sparse Vector
Technique, our outputs are comparable to that of a more
specialized state-of-the-art (ε, δ)-DP estimator.

I. INTRODUCTION

As big-data algorithms, e.g., machine learning, become
more sophisticated and ubiquitous, the need to ensure privacy
for sensitive data becomes ever more prominent. Differential
privacy (DP) is one broadly accepted notion of privacy for

a wide range of applications. Despite numerous milestone
results over decades of research, there is only a handful of
DP mechanisms whose privacy can be analytically bounded.
Furthermore, these mechanisms can often not be applied to
protect the privacy of queries that include complex algorithms,
such as machine learning on private data. This limits the
accessibility of DP to application domain experts who are not
trained in security.

Informally, a mechanism M is (ε, δ)-DP if for all pairs of
similar neighboring databases D,D′, the output distributions
of M(D) and M(D′) are (ε, δ)-close. The parameters ε and
δ quantify the DP of M. We define the DP-spectrum of M,
δ(ε), as the optimal (i.e., minimum) δ achievable for a given
ε. Our first result is on the impossibility of a poly-time black-
box DP estimator: there is no poly-time black-box estimator
to compute the DP-spectrum of an arbitrary input mechanism
(see Theorem 3). This result justifies a recent line of work [1],
[2], [3], [4], [5], [6], [7], [8] that takes aim at the challenge of
black-box DP-algorithms by proposing methods to empirically
estimate the DP-spectrum of a mechanism. The desirable
properties of such estimators are: accuracy, generality, and
efficiency.
Accuracy requires that the estimated DP-spectrum for the
mechanism M should be close to true DP-spectrum of M.
There are two modes in which one can empirically analyze
the DP spectrum of a mechanism.

1) Verify if a mechanism satisfies a given (ε, δ)-DP re-
quirement. Typically the approach is to estimate a lower
(upper) bound on the DP parameter(s) [5], [6], [7] and
use these bounds to decide if the privacy is violated. The
bounds produced can be loose, and so the outcome of
the verification is not always conclusive.

2) A stronger and more useful statement is to estimate the
full DP-spectrum of the mechanism, by producing tight
(upper and lower) bounds on the privacy parameters.
This is the task we tackle in this work. To our knowledge
the only other work which attempted such a tight esti-
mation is ADP-Estimator [8] which however can only
be used for mechanisms with a small output domain.
(We refer to Section II for a detailed comparison.)

One thread in the prior approaches above takes a heuristic
approach, offering primarily empirical estimates of the privacy
parameters. In contrast, in this work we develop a framework



that allows for theoretical guarantees on the estimated privacy
of a (DP) mechanism. Importantly, our methodology can
in principle be applied to estimate the privacy obtained by
arbitrarily complex mechanism, as it uses this mechanism in
a black-box manner. We also validate the theory and demon-
strate the potential of our method to yield a practical estimator
for various tasks, via a proof-of-concept implementation of our
estimator. Concretely, in order to demonstrate the accuracy of
our theory and the potential practicality of our estimator, we
test it against mechanisms whose theoretical properties are
already well understood, like the Laplacian and Gaussian, as
well as those with varying implementations, like the Sparse
Vector Technique (SVT).
Generality mandates that the estimator should work for any
mechanism. One way to achieve this is by making the es-
timator agnostic as to what the mechanism does, i.e., the
mechanism is used in a black-box manner. Such a black-box
estimator, which is the type we develop, only interacts with
the mechanism in an input/output manner. In contrast, a white-
box (aka non-black-box) estimator needs to know the (pseudo-
code) of the mechanism whose privacy is to be estimated.
An orthogonal feature of estimators regarding generality is
whether they estimate only the ε parameter (aiming for the
less flexible ε-DP) or, as we do in this work, estimate the full
DP-spectrum which quantifies the ε-δ trade off. The latter is
more general, as ε-DP is the same as (ε, 0)-DP (setting δ = 0).
Efficiency is necessary for an estimator to be useful in
practice. As we discuss in Section II, depending on the actual
size of the datasets and, more intriguingly, the output space
of the mechanism whose privacy is being estimated, certain
methodologies that exhaustively process the output space, such
as [5], [6], quickly become impractical, especially for large
output spaces. In fact, to our knowledge, ours is the first tight,
black-box, and theory-backed (ε, δ)-DP estimator that can
handle even mechanisms with a large (and even uncountable)
output space. (We offer of more comprehensive comparison of
our estimator with existing methods in Section II, cf Table I.)

A. Our Contributions

We put forth a general framework for constructing and
analysing black-box DP estimators, and propose, analyze, and
benchmark a concrete instantiation. At a high level, the main
insight driving our results is that the task of a black-box
DP-estimator can be re-cast as a machine learning problem.
Given a data set and a black-box mechanism, we carefully
construct a classification task whose optimal classifier can
be directly linked to the DP-spectrum of the mechanism.
Estimating the DP-spectrum of the mechanism then reduces
to the analysis of this optimal classifier. Using tools from
statistical learning theory, we are then able to obtain tight
bounds on the performance of this optimal classifier, which
leads to our estimator for the DP-spectrum of the black-box
mechanism. This link between the DP-spectrum and statistical
learning theory may be of independent interest. We now
elaborate on some of the details.

First, we ask if it is even possible to efficiently estimate the
full DP-spectrum of an arbitrary mechanism. The answer is
no: no efficient black-box DP estimator can exactly compute
the ε-δ privacy trade off. A straw-man attempt is to relax
the “exact” requirement and settle for a (randomized) approx-
imate estimator—i.e., one that with high probability, 1 − β,
approximates the DP parameters of the mechanism up to an
(additive) approximation factor α. Unfortunately, as we show
in Theorem 3, this relaxation is of little use, as this estimator
is also impossible for reasonable parameters α and β.

We resolve the above difficulty by introducing a natural
relaxation of (ε, δ)-DP, which we term relative differential
privacy (relative DP for short) (Sec. IV-A), for which, as
we show, an approximate estimator is possible. Informally, an
(ε, δ, T )-relative DP mechanism is one which satisfies (ε, δ)-
DP—but only for databases in the set T . The motivation
for such a relaxation comes from one of the key uses of
DP in practice: Typically there are limited datasets that one
might have access to, so requiring DP to apply for any
dataset might be overreaching when it comes to estimating
privacy in real-world applications. Nonetheless, one might be
worried that such a definition ignores the inherent “future-
proofness” of DP, along with other desirable properties. We
prove in a sequence of results (Proposition 2-5) that this is
not the case. We show that relative DP is reasonably robust to
adding new databases to the set T —informally, the privacy
of the estimated mechanism is never worse the privacy of
the mechanism on the new set T . Subsequently, we prove
that relative DP preserves the common desirable notions of
DP, namely sequential/parallel composition, and robustness to
post-processing.

Armed with the notion of relative DP, we then proceed to
the task of devising and analysing a relative DP-estimator, by
linking DP to an optimal (i.e., Bayes) classifier for a carefully
constructed machine learning problem that uses the black-box
mechanism and the databases in T . As we show, one can in
principle derive the privacy estimator using any classification
algorithm from the ML literature, as long as that algorithm
approaches this optimal classifier. Here, we focus on the well
studied k-Nearest-Neighbor (kNN) classification algorithm [9].

To better demonstrate the basic principles of our methodol-
ogy, we start with the simplest instance of relative DP, namely
where the set T includes just a single database, and show how
to estimate the privacy of any single given record (i.e., for a
specific pair of neighboring databases). Due to this setting’s
(over)-simplified nature, results in this setting are of-course
not particularly relevant for assessing the privacy of the given
mechanism. Nonetheless, this setting is the perfect basis for
providing a simple and modular description and analysis of
our general estimator.

In more detail, first we present a general method to convert
the risk (or error) of a Bayes/optimal classifier to the δ
privacy parameter of a DP mechanism (Theorem 4). Then,
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in Lemma 2, we convert the convergence theorem1 of any
classifier to tight bounds on the accuracy of our relative
DP estimator. We apply this lemma to the kNN classifier in
Theorem 5.

The last step to construct our (relative) DP estimator is to
extend the set T to be any polynomial-size set of databases.
The idea is to employ the above singleton-T algorithms for
each of the databases in T and then use Proposition 2 to bound
the parameters with respect to the whole set T . Our main
results are the Algorithms in Figs. 1 and 2 for estimating the
relative DP-spectrum, and the accompanying Theorem 6 which
proves its convergence rate to the true relative DP-spectrum.

a) Distributional Differential Privacy: At the heart of the
nonexistence of an (even approximate) estimator for DP is the
standard problem in ML classification: The input distribution
of the algorithm whose parameters we are trying to estimate
is completely unknown, and in the worst case, learning it
would require infeasible (or even infinitely many) samples.
In fact, knowledge of the data distribution can be used to
replace the “relative” (to a specific T ) restriction of our
treatment. This makes our framework directly applicable to
“noiseless” versions of DP such as the well known Distribu-
tional Differential Privacy (DDP) notion [10]. In a nutshell,
these notions propose taking advantage of the inherent entropy
that is included in common datasets to reduce the amount
of noise needed to achieve the closeness metric of DP (see
Section III-B for an overview.) We show that, under the
assumption of independently distributed database rows, our
relative DP estimator framework can be employed to estimate
the DDP parameters of a mechanism. To our knowledge, this
yields the first black-box DDP estimator. We believe that
both the general paradigm and the estimator itself are of
independent interest to the ML/AI research, where the question
of whether a given algorithm achieves any meaningful notion
of (noiseless) privacy has been circulating for a long time.

Finally, we experimentally validate our framework by im-
plementing our (relative) DP estimator and testing it by
estimating the privacy of known DP mechanisms. To verify our
implementation’s accuracy, we use the Laplacian and Gaussian
mechanisms as examples, since we can analytically compute
their theoretical ε, δ trade-off. We show that the privacy
parameters estimated by our implementation are indeed within
our theoretical bounds, and in fact can be much closer to
the true (analytically computed) privacy than what the error
bounds suggest. Our algorithm runs in O(mn), where m is
the number of neighboring databases tested (this is a necessary
dependency to estimate any mechanism, since a mechanism’s
behavior on different databases can vary drastically) and n
is the number of samples. In our experiments, using 226

samples and running 10 minutes, we achieve a small error
of 10−5, which may be improved with a more optimized
implementation. In addition, we provide experiments for SVT,
a popular mechanism with various (sometimes incorrect) im-

1A convergence theorem describes the difference between the accuracy of a
classifier (such as kNN), and the accuracy of the theoretical optimal classifier.

plementations. Our experimental results comparable to the
state-of-the-art, more specialized algorithm aimed towards
mechanisms with limited output space (as it iterates over this
space) [8].

The concrete accuracy and theoretical tight bounds of our
estimator means it can be used to reveal the full privacy spec-
trum of a mechanism, quantifying the ε, δ privacy parameter
trade-off (under a set of databases). We showcase the value
of the full relative DP-spectrum in various applications such
as comparing the privacy of mechanisms and verifying the
correctness of a mechanism’s implementation.

II. RELATED WORK

Below, we discuss previous work on privacy estimators,
categorizing them by their method.

Programming Language-based methods. This line of
works [1], [2], [3], [4] uses language-based methods to auto-
matically verify whether or not a mechanism satisfies certain
level of differential privacy. These methods require white-
box access to the tested mechanism—such as access to the
tested mechanism’s code, even requiring manual annotations
on the code. They are particularly useful in formally veri-
fying if the implementation of some known mechanisms is
correct or buggy. In particular, these estimators automatically
search and infer proof of the differential privacy property
for the tested mechanism, hence the result (satisfying DP
or not) can be very accurate if they do succeed. However,
automated verification may sometimes fail to complete its task
to verify the mechanism’s DP parameters. For example, [4]
reports that LightDP [1] is unable to disprove faulty variants
of PrivTree [12], because the variants have a probabilistic
main loop that terminates eventually with probability 1 but
is not guaranteed to terminate in any bounded number of
iterations. The main advantage of our work compared to this
line of works is that we pursue a probabilistic, data-driven,
and black-box approach, and thus can be applied to general
mechanisms, even proprietary software or heuristic attempts
by ML researchers, without access to the mechanism’s code.

Probabilistic testing methods. This line of works [5], [6],
[7], [8], [11] uses statistical tools and their output are based
on sampling the mechanism’s inputs/outputs. Specifically, the
works [5], [6], [7], [11] focused on the task of lower-bounding
the DP parameter of a mechanism—that is, asserting that the
tested mechanism cannot achieve (beyond a) certain level of
differential privacy. The core challenge then is to find a witness
of the DP violation for values beyond this level. StatDP [5]
requires semi-black-box access to the tested mechanism, as
one of its post-processing requires running the tested mecha-
nism on input data without any noise. DP-Finder [6] requires
the tested mechanism’s algorithm (which it relies on white-
box access to) to be differentiable, so that excludes common
operations such as arbitrary loops or hash functions. This
requirement considerably limits the class of mechanisms the
method applies to, and excludes common differential private
techniques such as SVT [13] and Randomized Response [14].
DP-Sniper [7] and the most recent work DPL [11] use the
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Access to M M with large
output space Accuracy Methods

StatDP [5] Semi-black-box No Lower bounds Hypothesis testing
DP-Finder [6] White-box No Lower bounds Sampling and optimzation
DP-Sniper [7] Black-box Yes Lower bounds Classifier

DPL [11] Black-box Yes Lower bounds Kernel Density estimator
ADP-Estimator [8] Black-box No Upper and lower bounds Distribution estimator

Our Work Black-box Yes Upper and lower bounds Classifier (e.g., kNN)

TABLE I: Summary of comparisons between our work and previous works.

black-box approach and are designed for general mechanisms.
DPL [11] improves upon DP-Sniper [7] by avoiding the pro-
cess of “event selection”—a major obstacle to finding privacy
violation witness. This is achieved via a method called kernel
density estimation. However, similar to all the above works in
this thread, DP-Sniper and DPL aim to test the ε-DP property,
and constructs algorithms that find only a lower bound of the
privacy parameter ε for the tested mechanism on neighboring
databases. In comparison, the main goal of our work is to
provide a tight characterization (i.e., both upper and lower
bounds) on both the ε and δ privacy parameters. In particular,
given any ε, we provide upper and lower bounds on δ (that
depend on sample size and probability of success) such that the
tested mechanism is (ε, δ)-(relative) DP. We show that given
enough sample data, the bound can be arbitrarily tight. This
means that our method could find the nearly optimal privacy
parameter characterizing the tested mechanism on neighboring
databases. We note in passing that since our method tests the
more general (ε, δ)-DP property (δ could be zero to achieve
ε-DP), our estimator is compatible with natural mechanisms
such as the Gaussian mechanism.

The work whose goals is closest to ours is the ADP-
Estimator [8] which aims to test the (ε, δ)-DP property for
a mechanism, and to demonstrate the relationship between the
accuracy in estimated privacy parameters and the number of
samples required. While the goals of our work align with that
of [8], our approach is vastly different. Whereas the algorithm
of [8] is based on empirically estimating mechanism output
distributions on a single pair of neighboring databases, our
work takes advantage of the rich ML theory on classification
algorithms and develops a general framework of that can
derive privacy estimators via using different classifiers in a
plug-and-play manner. In addition, a limitation of the ADP-
Estimator [8] is that by enumerating the tested mechanism’s
output space, their algorithm requires this space to be a
finite (and small) set. This requirement limits both the class
of mechanisms and the algorithm’s performance—as running
time of their algorithm scales linearly with the size of the
output space. In contrast, our method does not depend on
the size of the output space, only on its dimensionality (for
example, Rd has dimensionality d), and can estimate the
privacy of mechanisms with an uncountable output space. We
demonstrate this by estimating the Laplacian and Gaussian
mechanisms (which both have large output spaces, even when
implemented in a 64-bit computer) in Section VII.

Lastly, we mention that the authors in [15] discuss the lower

bound of the sample complexity of verifying whether some
specific (ε, δ)-DP is satisfied. Their work is useful to answer
what type of privacy parameter verification task is feasible.
In contrast, our work devises a concrete method of tightly
estimating (relative) differential privacy. To achieve this, we
also develop sample complexity results which are orthogonal
to [15].

III. PRELIMINARIES

We introduce the privacy definitions for which we will con-
struct our privacy estimators. Moreover, we introduce relevant
background on classifiers, in particular the kNN classifier.

A. Differential Privacy

Informally, differential privacy (in short, DP) [16] is defined
via an experiment between a query party P and a curator C,
who has access to a database D. P wishes to make a query
Q on the database, and C wants to answer this query in a
way that protects the privacy of any individual record. This
property is achieved by C using a randomized algorithm, aka
mechanism, to answer P ’s queries, in a way that does not
destroy accuracy—i.e., the outcome of the mechanism is not
too far from the true answer to the query—while respecting
the privacy of any individual record X ∈ D— i.e., P (or in
fact any P ′ with arbitrary side-information on the database)
has only a small chance in telling weather or not X was used
in answering the query. To make this formal, we recall the
following standard definition from the DP literature (cf. [17]
for an excellent treatment of DP and its properties.)

Definition 1 (Mechanism). Let U be the set of all possible
database records. Let X = U∗ be the set of all databases
where each database row is from U . Let O be the set of all
possible output strings. Then a mechanism M := X 7→ O is
a (randomized) algorithm that takes as input a database from
the input space X , and produces an output from the output
space O.

In DP, we are interested in whether our mechanism reveals
information on individual database records. Thus, we consider
the output of our mechanism on pairs of databases called
neighbors, where one neighbor contains a particular individual
record, and the other does not.

Definition 2 (Neighboring Databases). A pair of databases
D,D′ ∈ X is neighboring, denoted D ≃ D′ if D can be
obtained from D′ by removing one row.
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A mechanism is DP if its output given a database is similar
to its output given the database’s neighbor.

Definition 3 (Differential Privacy (DP) [16]). A mechanism
M := X 7→ O is (ε, δ)-differentially private if for all subset
S ⊆ O and for all neighboring databases D ≃ D′ or D′ ≃ D:

Pr[M(D) ∈ S] ⩽ eεPr[M(D′) ∈ S] + δ, (1)

where the probability space is over the coin flips of the
mechanism M. If δ = 0, we say that M is ε-differentially
private.

B. Distributional Differential Privacy (DDP)

The above DP definition is broadly used, but might be
inapplicable in cases where utility degrades rapidly even with
small noise, such as machine learning with deep-networks,
whose performance is sensitive to noise in the data. Distri-
butional differential privacy (DDP) [10]2 was suggested as
an alternative to DP that can treat such cases. The idea here
is that we might often be willing to make an assumption
about the entropy (inherent randomness) of the database;
in this case, we might be able to avoid using (too much)
extra randomness/noise in the mechanism, and instead, rely
on this internal randomness of the data to achieve similar
privacy guarantees as DP with less to no hit on the output’s
accuracy. More concretely, in DDP, instead of considering
fixed databases D, we consider databases as random variables
(r.v.’s) from a distribution π. We denote by D−i as the random
variable that is the same as database D, but without its ith row.
Denote by Di the ith row of D. We denote by Supp(·) as the
support of a random variable. Informally, a mechanism M is
DDP for some distribution π and auxiliary information z if
its output on some database (r.v.) can be approximated by a
function h without being given the ith row of this database.

Definition 4 (Distributional differential privacy (DDP) [10]).
A mechanism M is (ε, δ,∆)-distributional differentially pri-

vate if there is a function h3 such that for all (π, Z) ∈ ∆,
D ∼ π, for all i, (x, z) ∈ Supp(Di, Z), and all sets
S ⊆ Range(M),

Pr
D∼π

(M(D) ∈ S|Di = x, Z = z)

⩽eε Pr
D∼π

(h(D−i) ∈ S|Di = x, Z = z) + δ,

and

Pr
D∼π

(h(D−i) ∈ S|Di = x, Z = z)

⩽eε Pr
D∼π

(M(D) ∈ S|Di = x, Z = z) + δ.

In the case of distributions π with independently distributed
rows, and when Z = ∅ (there is no auxiliary information), we
can greatly simplify the above definition of DDP.

Definition 5 (Simplified DDP). Let ∆ be a set of distributions
on databases where each row is independently distributed. For

2A rich literature of variants/relaxations to the DP definition exist, e.g.,
[18], [19], [20], [10]. An interesting future direction would be to construct
privacy estimators for such definitions.

3In [10] h is called the simulator in the sense that h “simulates" missing ith
row of D, and following notation from a similar concept in security. However,
to avoid confusion we simply refer to h as a function.

any ε > 0 and δ > 0, a mechanism M is (ε, δ,∆)-DDP if
for every π ∈ ∆, i ⩽ n, x, x′ ∈ U , and S ⊆ Range(M), the
following inequality holds.

PrD∼π(M(D) ∈ S|Di = x) (2)

⩽eε PrD∼π(M(D) ∈ S|Di = x′) + δ, (3)

The work of Liu et al. [21] shows that the definition above
is equivalent to DDP under the simplifying assumption of
independent rows and no auxiliary information, as is common
in machine learning.

Lemma 1 (Equivalence of definitions [21]). We denote Def. 4
as the simulation-based DDP4. For any U , let ∆ be a set of
distributions on databases where each row is independent, and
∆′ = (∆, Z = ∅). Suppose M is (ε, δ,∆′)-simulation-based
DDP, then M is (2ε, (1+ eε)δ,∆)-DDP for our Definition 5.
Conversely, if M is (ε, δ,∆)-DDP for Definition 5 then M
satisfies (ε, δ,∆′)-simulation-based DDP.

C. Classification Algorithms

Our treatment uses concepts and results from machine
learning (ML) theory to construct our privacy estimator and
prove (tight) bounds on its accuracy, i.e., how well it estimates
optimal pairs (ε, δ) for the (D)DP definitions. For complete-
ness, here we recall the necessary basic machine learning (ML)
background to interpret our results.

Let O denote the observation space, and let the label (or
prediction) space be Y = {0, 1} (e.g., outputting 0 means the
classifier predicts the observation is from one distribution and
outputting 1 means the classifier predicts the other distribu-
tion). Let P be a joint distribution with the support of O×Y,
where O × Y := {(o, b) : o ∈ O, b ∈ Y} is a concatenation
set. Let I(b, y) be the inequality predicate, i.e., the indicator
function outputs 1 if b is not equal to y, otherwise 0.

A classifier h : O 7→ Y (also called a classification
algorithm) is a function from the observation space O to the
prediction space Y . For every observation o ∈ O, h outputs a
bit b ∈ Y indicating that h predicts o has label b.

A risk function R is defined with respect to a distribution
P on observables—in fact, it is easier to think of P as a
joint distribution of pairs of the type (x, y) where x is an
observation and y is its label. R takes a classifier h as input,
and computes the probability that a sample drawn from P
is mistakenly classified—i.e., assigned the wrong label—by
h; equivalently, R computes the expectation of the above
inequality predicate. Formally:

R(h) = Pr
(x,y)∼P

[I(h(x), y) = 1] = E
(x,y)∼P

[I(h(x), y)].

We note that in a given application context, the risk R(h)
is typically impossible to compute, as the distribution P
is unknown. However, viewing risk R(h) as the expecta-
tion of the random variable I(h(x), y), allows us to derive
a good estimator for it: the testing risk R̂m(h) which is

4(1) Following the function h being referred to as the “simulator" in [10].
(2) Although the lemma in [21] is stated with respect to i.i.d. database rows,
an inspection of the proof shows only independence of the rows is required.
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defined as the average on a set of independent samples
((x1, y1), · · · , (xm, ym)) ∼ Pm. (We make the sampling
process ((x1, y1), · · · , (xm, ym)) ∼ Pm implicit when it is
clear from context). Formally:

R̂m(h) =
1

m

m∑
i=1

I(h(xi), yi),

In particular, a well-known result using Hoeffding’s inequal-
ity allows us to gauge, up to an error probability γ, how close
R̂m(h) is to the true risk R(h):

Theorem 1 (Hoeffding’s Inequality [22]). With probability
1− γ,

|R̂m(h)−R(h)| ⩽
√

1

2m
ln

2

γ
.

Bayes (optimal) classifiers. A Bayes (optimal) classifier
h∗ with respect to P is a classifier that has the minimal risk
R(h∗) among all the classifiers (with respect to the same P.)

The kNN Classifier. Unfortunately, for the same reason we
can not compute R—i.e., because P is typically unknown5—
we can also not construct the Bayes classifier h∗. Nonetheless,
the ML theory provides us with several “reasonable” classifiers
that achieve both good performance, and are not too far from
optimal. One such classifier which is well understood and
thoroughly studied in the field of pattern recognition is the k-
Nearest Neighbor (kNN) classifier—which we use in our paper
as a concrete instantiation of our framework. To construct a
kNN classifier hNNk,n with n samples, we simply sample and
store n training points ((x1, y1), · · · , (xn, yn)) ∼ Pn. To
predict the label of an observation o ∈ O, hNNk,n returns the
label taking a majority vote of the class labels of its k nearest
neighbors (according to the distance function defined on the
space) in the stored training points:

hNN
k,n(o) =

 1

k

∑
i∈[k]

bi

 ,

where bi is the label of the i-th nearest neighbor of o, and
⌊·⌉ is an operator rounding to nearest integer.

The following convergence result for kNN gauges how close
the true risk R(hNNk,n) of the kNN classifier hNNk,n is to the risk
of the optimal classifier, R(h∗).

Theorem 2 (Convergence of k-Nearest Neighbor Classi-
fier [9]). Let P be a joint distribution with support O × Y.
If the conditional distribution P|Y has a density 6, O ⊆ Rd,
and k =

√
n, then for every α > 0 there is an n0 such that

for n > n0,

Pr[|R(hNN
k,n)−R(h∗)| > α] ⩽ 2e−nα2/(72c2d),

where cd
7 is the minimal number of cones centered at the

origin of angle π/6 that cover Rd. Note that if the number of
dimensions d is constant, then cd is also a constant.

5In a typical ML classification experiment, one is able to observe values
sampled from P but does not know the actual distribution.

6Having a density is a mild technical condition which essentially amounts to
the observable smoothly varying. For simplicity we assume this condition, but
generalizations are possible, for example to discrete observables. Mechanisms
that noise their output via a distribution with density (e.g., Laplace, Gaussian),
satisfy this condition.

7By Lemma 5.5 of [9], cd satisfies cd ⩽ (1 + 2/
√

2−
√
3)d − 1.

IV. RELATIVE DP: MOTIVATION AND DEFINITION

In this section, we will first give an intuitive definition
of a perfect and approximate DP estimator. Then, we will
motivate relative DP with an impossibility result: A black-
box poly-time (approximate) estimator for differential privacy
parameters with tight bounds on accuracy does not exist.
Informally, a DP estimator is an algorithm which, on input a
mechanism M (a function with a database as input) and one
of the privacy parameters (e.g., ε), outputs the other privacy
parameter (e.g., δ), such that the estimator guesses that M
is (ε, δ)-DP. An estimator with tight accuracy bounds (α, β)
is one which (on input a mechanism M and an ε value)
outputs, with probability 1−β, a δ value that is at most α far
from the smallest δ such that M is (ε, δ)-DP. In other words,
an estimator with tight accuracy gives a known probability
of success, and an upper and lower bound on its output’s
closeness to the true privacy of the mechanism.

First, given any ε, we define the optimal δ with respect to
a mechanism M. Note this optimal δ is a point in the DP-
spectrum discussed in the introduction. We also define the
quantity δD,D′ which is the optimal δ with respect to a single,
fixed pair of (neighboring) databases D,D′. Looking ahead
in the next section, we will first tackle the easier problem
of estimating δD,D (Section V-A), before tackling the harder
problem of estimating δ itself (Section V-B).

Definition 6 (Optimal δ). Let M be a mechanism, D ≃ D′ be
a pair of neighboring databases, and ε ∈ R⩾0 be a privacy
parameter. We say the privacy parameter δD,D′ is optimal
(minimal) with respect to the tuple (M, D,D′, ε) if

δD,D′ = max(max
S⊆O

Pr[M(D) ∈ S]− eε Pr[M(D′) ∈ S], 0).

We say the privacy parameter δD is optimal (minimal) with
respect to the tuple (M, D, ε) if

δD = max
D′∈X :
D≃D′

δD,D′ ,

where δD,D′ is optimal with respect to (M, D,D′, ε).
We say the privacy parameter δ is optimal (minimal) with

respect to the tuple (M, ε) if

δ = max
D∈X

δD,

where δD is optimal with respect to (M, D, ε).

Then, we define a (perfect) DP estimator, which, given a
mechanism M and one of the privacy parameters ε, outputs
the optimal δ such that M is (ε, δ)-DP.

Definition 7 (Perfect Differential Privacy Estimator). Let
C = X 7→ O be the set of poly(log |X |)-time mechanisms,
M ∈ C be a mechanism from the set C, ε ∈ R⩾0 be
a privacy parameter. An algorithm is a Perfect Differential
Privacy Estimator for C, if for every (M, ε), with black-box
access to M, the algorithm outputs the optimal δ with respect
to the tuple (M, ε).

Unfortunately, a perfect DP estimator does not exist. In fact,
we can show something even stronger—even an approximate
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version of a DP estimator (Def. 9) still does not exist (Theo-
rem 3). Intuitively, this is because a general estimator would
need to test the DP property for all pairs of databases—an
impossible task for a polynomial-time algorithm if the number
of databases in the mechanism’s domain is super-polynomial.
The proof of the theorem follows the above intuition and can
be found in Appendix A.

Definition 8 (α-tight bound). Let M be a mechanism,
D ≃ D′ be a pair of neighboring databases, and ε ∈ R⩾0

be a privacy parameter. We say δ′D,D′ is a α-tight bound with
respect to (M, D,D′, ε) if

|δ′D,D′ − δD,D′ | ⩽ α,

where δD,D′ is optimal with respect to (M, D,D′, ε).
Similarly, we say δ′D is a α-tight bound with respect to

(M, D, ε) if

|δ′D − δD| ⩽ α,

where δD is optimal with respect to (M, D, ε).
δ′ is a α-tight bound with respect to (M, ε) if

|δ′ − δ| ⩽ α,

where δ is optimal with respect to (M, ε).

Definition 9 (Approximate Differential Privacy Estimator).
Let C = X 7→ O be the set of poly(log |X |)-time mechanisms,
M ∈ C be a mechanism from the set C, ε ∈ R⩾0 be a privacy
parameter. An algorithm is a (α, β)-Approximate Differential
Privacy Estimator for C, if for every (M, ε), with black-box
access to M, with probability at least 1−β, it provides α-tight
bound with respect to the tuple (M, ε), where α, β ∈ [0, 1).

Theorem 3. Let α ∈ [0, 1
2 ) and β ⩾ 1

2 + ν(n), where ν is a
non-negligible function. Let C = {0, 1}n 7→ O be the set of
poly(n)-time mechanisms. There doesn’t exist a poly(n)-time
(α, β)-Approximate Differential Privacy Estimator for C.

A. Relative Differential Privacy

In view of the impossibility stated in Theorem 3, we ask: “Is
there a meaningful/useful relaxation to differential privacy that
allows us to circumvent this impossibility?" We answer this
to the affirmative. We introduce relative differential privacy,
which considers the privacy of a mechanism relative to a set
of databases. As discussed in our introduction, this models
the case where the mechanism will only be applied to a
limited number of databases, such as the database of census
results in 2020 Census in the United States [23]. Informally,
a mechanism is (ε, δ, T )-relative DP if on domain restricted
to T , the mechanism is (ε, δ)-DP.

Definition 10 (ε, δ, T -relative Differential Privacy (rDP)).
A mechanism M := X 7→ O is (ε, δ, T )-relative differentially
private if for all subset S ⊆ O and for all neighboring
databases D ≃ D′ : D ∈ T :

Pr[M(D) ∈ S] ⩽ eεPr[M(D′) ∈ S] + δ,

where the probability space is over the coin flips of the
mechanism M.

To further motivate the definition of relative DP, we also
show it satisfies several useful properties (such as composition
(Prop. 3, and 4) and post-processing (Prop. 5)), that are com-
parable to those of classical DP. The proofs of the following
propositions can be found in Appendix B.

It is clear to see that relative DP and DP are the same, if
T is the same as the domain of the mechanism. Moreover,
a mechanism that is private for T1 and T2 is also private for
T1 ∪ T2 (T scalable).

Proposition 1. If the mechanism M is (ε, δ, T )-relative dif-
ferentially private and T = X , then the mechanism M is
(ε, δ)-differentially private.

As discussed above, relative DP is meaningful in standard
ML and research aggregation contexts where we anyway have
a limited set of (typically known) mechanisms. However, one
might be worried that by providing such a relative version of
DP, we might be creating a privacy notion that melts down
once new databases are added to the mix. The following
proposition shows that this is not the case for relative DP.

Proposition 2. [T Scalable] If the mechanism M is
(ε1, δ1, T1)-relative differentially private, · · · , and (εk, δk, Tk)-
relative differentially private, then the mechanism is also(
max
i∈[k]

εi,max
i∈[k]

δi,
⋃

i∈[k]

Ti

)
- relative DP.

Relative DP also enjoys the same convenient properties as
DP: parallel composition, sequential composition, as well as
post-processing.

Proposition 3. [Parallel Composition] Let T1 × T2 be the
concatenation of set T1 and T2, that is, T1×T2 = {(D1, D2) :
D1 ∈ T1 ∧ D2 ∈ T2}. If M1, · · · ,Mk are k mechanisms,
where Mi satisfies (εi, δi, Ti)-relative differential privacy,
then the mechanism M taking database (D1, · · · , Dk) ∈ T1×
· · · × Tk as inputs and outputting (M1(D1), · · · ,Mk(Dk))

is

(
max
i∈[k]

εi,max
i∈[k]

δi, T1 × · · · × Tk

)
-relative DP.

Proposition 4. [Sequential Composition] If M1, · · · ,Mk

are k mechanisms, where Mi satisfies (εi, δi, T )- relative dif-
ferentially privacy, then the mechanism M := (M1, · · · ,Mk)

is

( ∑
i∈[k]

εi,
∑
i∈[k]

δi, T

)
- relative DP.

Proposition 5. [Post-processing] If M1 is a mechanism that
satisfies (ε, δ, T )-relative differentially privacy, then for any
(randomized) algorithm f, the mechanism M := f(M1) is
(ε, δ, T )-relative differentially private.

V. (RELATIVE) DP ESTIMATOR

In this section we define an analyse our (relative) privacy
estimator. As discussed in the introduction, we start (in Sec-
tion V-A) with the simple case of |T | = 1 and for a fixed
pair of neighboring databases. Although this is clearly not
particularly relevant for a general privacy definition, it still
offers an interesting ball field for introducing our main ideas,
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and allows us a smooth transition to our general estimator
which is described and analyzed in Section V-B.

A. Estimating δ for a pair of databases

As the first step in defining our privacy estimator, we
narrow the definition of a privacy estimator to define a privacy
estimator for a single pair of neighboring databases. We
construct a class of concrete privacy estimator algorithms AB

C
by relating the privacy parameter δ to the risk (or error)
of a classification algorithm B (Theorem 4). Inheriting tight
bounds on risk from the classification algorithm’s convergence
theorem, we show in Theorem 5 (using the kNN classification
algorithm as example), that our privacy estimator algorithm
also enjoys tight accuracy bounds.

Our results in this section show that, despite the impossi-
bility of general DP estimator and the lack of tight bounds in
previous work, it is indeed possible to construct relative DP
estimators with tight accuracy bounds. In the next section, we
will extend algorithm AB

C of this section to construct a privacy
estimator for any (ε, δ, T )-relative DP mechanism.

1) Privacy Estimator for Neighboring Databases: First, we
define a perfect δ estimator for a pair of neighboring databases.
Informally, this estimator must always output the optimal δ
(see Def. 6).

Definition 11 (Perfect Delta Estimator for Neighboring
Databases). Let C = X 7→ O be the set of poly(log |X |)-
time mechanisms. M ∈ C be a mechanism from the set C.
D ≃ D′ be a pair of neighboring databases, ε ∈ R⩾0 be a
privacy parameter. An algorithm is a Perfect Delta Estimator
for Neighboring Databases for C if for every (M, D,D′, ε)
with black-box access to M, the algorithm outputs the optimal
δD,D′ with respect to the tuple (M, D,D′, ε).

However, a perfect estimator for neighboring databases does
not exist—by our Theorem 4 below, a perfect estimator would
imply the existence of an optimal classifier achievable with
limited training samples. Thus, we define below an approxi-
mate estimator Def. 12, with similar approximation parameters
α and β as for the approximate DP privacy estimator Def. 9.

Definition 12 (Approximate Delta Estimator for Neighbor-
ing Databases). Let C = X 7→ O be the set of poly(log |X |)-
time mechanisms, M ∈ C be a mechanism from the set C,
D ≃ D′ be a pair of neighboring databases, ε ∈ R⩾0 be
a privacy parameter. An algorithm is a (α, β)-Approximate
Delta Estimator for Neighboring Databases for C if for every
(M, D,D′, ε), with black-box access to M, with probability
at least 1 − β, it provides α-tight bound with respect to the
tuple (M, D,D′, ε), where α, β ∈ [0, 1).

2) Relating Privacy Parameter δ to Risk of the Bayes Clas-
sifier: Now we have defined an approximate privacy estimator
with respect to a pair of neighboring databases (Def. 12), we
present our construction of such an estimator. The basis of our
estimator is connection between the definition of DP and the
risk of a Bayes Classifier, described in Theorem 4 below.

For a mechanism M, a database D, and privacy parameter
ε, let

[
M(D)

]
ε

denote the random variable obtained by
tossing a biased coin c where Pr[c = 1] = e−ε, and receiving
value M(D) if c = 1 or receiving value ⊥ (a null value not
in the range of M) otherwise.

Definition 13 (The distribution P(M,D,D′,ε)). Let P(M,D,D′,ε)

denote the distribution of a random variable, which is obtained
by tossing a fair coin b, and receiving tuple (M(D′), 1) if
b = 1 or receiving value (

[
M(D)

]
ε
, 0) otherwise.

The proof of the theorem below (App. C) is based on the
fact that δ in (ε, δ)-(relative) DP can be re-written in terms
of a statistical distance8 between two random variables. The
difference between the DP definition and statistical distance
is that in DP, one of the probabilities is scaled by eε. This
means we can re-write δD,D′ in terms of the statistical distance
between two r.v.’s M(D′) and

[
M(D)

]
ε

(which, intuitively,
‘scales’ the distribution of M(D) by 1/eε). Then, the theorem
follows from the connection between statistical distance and
the accuracy (or risk) of the optimal (or Bayes) classifier.

Theorem 4 (Mechanism Privacy in Terms of Bayes Classifier
Risk). Let M be a mechanism, D ≃ D′ be a pair of
neighboring databases, and ε ∈ R⩾0 be a privacy parameter.
Let h∗

D,D′ be the Bayes classifier for P(M,D,D′,ε) (Def. 13,
abbreviated as P below). The optimal delta δD,D′ with respect
to the tuple (M, D,D′, ε) satisfies the following equality

δD,D′ = max
(
1− 2eεR(h∗

D,D′), 0
)
,

Corollary 1. Let the mechanism M, neighboring databases
pair D ≃ D′, privacy parameter ε, distribution

[
M(D)

]
ε
,

and the Bayes classifier h∗
D,D′ defined the same as that in

Theorem 4. The optimal delta δ with respect to the tuple
(M, ε) satisfies the equality

δ = max

 max
D,D′∈X :

D≃D′

1− 2eεR(h∗
D,D′), 0

 ,

and the optimal delta δD with respect to the tuple (M, D, ε)
satisfies the equality

δD = max

 max
D′∈X :
D≃D′

1− 2eεR(h∗
D,D′), 0

 .

3) Privacy Estimator for Neighboring Databases with Tight
Accuracy Bounds: In this section, we take advantage of the
connection between DP and the risk of the Bayes classifier
(Theorem 4), to construct an approximate DP estimator for
a single pair of neighboring databases (see Def. 12). Our
algorithm AB

C , Fig. 1, is parameterized by any classifier B,
and generates a privacy estimate via the computed risk of this
classifier.

Lemma 2. Let C = X 7→ O be the set of poly(log |X |)-time
mechanisms, M ∈ C be a mechanism from the set C, D ≃ D′

be a pair of neighboring databases, ε ∈ R⩾0 be a privacy
parameter. Let P(M,D,D′,ε) be as in Def. 13, abbreviated as P .

8Statistical distance between two r.v. X,Y is defined as ∆(X,Y ) =
maxS |Pr(X ∈ S)− Pr(Y ∈ S)|.
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Input: A binary classification algorithm B with n samples. A mechanismM∈ C, a pair of neighboring databases D ≃ D′, privacy
parameter ε ∈ R⩾0.
Output: δ′D,D′ , the estimate of the optimal delta δD,D′ with respect to the tuple (M, D,D′, ε).
Recall P(M,D,D′,ε) (Def. 13, abbreviated below as P) denotes the distribution of a random variable, which is obtained by tossing
a fair coin b, and receiving tuple (M(D′), 1) if b = 1 or receiving value (

[
M(D)

]
ε
, 0) a otherwise.

1) Initialize n1 ← n/2, n2 ← n/2, and r ← 0.
2) Sample n1 training points (o1, b1), · · · , (on1 , bn1) according to joint distribution P.
3) Taking the n1 training points as inputs, classification algorithm B outputs a classifier hB

n1
.

4) Repeat the process n2 times: ▷ Estimate risk function of classifier hB
n1

with n2 testing samples.
a) Sample a testing point (o, b) according to joint distribution P.
b) Predict the sample o’s label using the trained classifier: b′ = hB

n1
(o). If b′ ̸= b, r ← r + 1/n2.

5) Output δ′D,D′ ← max(1− 2eεr, 0).

aRecall
[
M(D)

]
ε

is a distribution for tossing a coin c where Pr[c = 1] = e−ε, outputting M(D) if c = 1 or ⊥ (a null value) otherwise.

Fig. 1: AB
C , an algorithm for estimating the optimal delta with respect to the tuple (M, D,D′, ε)

Let h∗
D,D′ be the Bayes classifier for P. Let hBn be a classifier

for P produced by binary classification algorithm B with n
samples. Let g(X , n, β) be a function of input space X , sample
size n and β ∈ (0, 1).

If for every (M, D,D′, ε), where M ∈ C, with probability
at least 1− β,

|R(hB
n)−R(h∗

D,D′)| = O
(
g(X , n, β)

)
,

then the algorithm AB
C with n samples, shown

in Figure 1 , is a (α, β)-Approximate Delta
Estimator for Neighboring Databases for C, for any
α = O

(
g(X , n/2, β/2) +

√
ln(1/β)/n

)
, β ∈ (0, 1), c ∈ R.

Proof. For every (M, D,D′, ε), and its corresponding distri-
bution P , we have the following. Recall the random variable r
as computed in Step 4, Figure 1, is the testing risk for classifier
hBn1

with n2 testing samples. We could show that r is a good
approximate of the risk of the Bayes classifier R(h∗

D,D′).

Claim 1. With probability at least 1− β,

|r −R(h∗
D,D′)| = O

(
g(X , n/2, β/2) +

√
ln(1/β)/n

)
.

Proof of Claim 1. Recall n1 = n/2, defined in Step 1, Fig. 1.
By the condition in the Lemma, when the sample size param-
eter n1 is large enough, we have that, with probability at least
1− β/2,

|R(hBn1
)−R(h∗

D,D′ )| ⩽ c · g(X , n1, β/2) = c · g(X , n/2, β/2),

where c is a constant.
By Theorem 1, plug in n2 = n/2 (defined in Step 1, Fig. 1),

with probability at least 1− β/2, we have

|r −R(hB
n1

)| ⩽
√

ln(4/β)/n.

Apply union bound and triangular inequality to above two
inequalities with probability at least 1− β, we have

|r −R(h∗)| ⩽ |r −R(hB
n1

)|+ |R(hB
n1

)−R(h∗
D,D′)|

⩽ c · g(X , n/2, β/2) +
√

ln(4/β)/n,

which completes the proof.

Using Claim 1, we could show that δ′D,D′ (defined in
Step 5, Fig. 1) is a good approximate of δD,D′ with respect
to (M, D,D′, ε).

Claim 2. With probability at least 1− β,

|δ′D,D′ − δD,D′ | = O
(
g(X , n/2, β/2) +

√
ln(1/β)/n

)
.

Proof of Claim 2.∣∣∣δ′D,D′ − δD,D′

∣∣∣
=

∣∣∣max
(
1− 2eεr, 0

)
− δD,D′

∣∣∣ (By Fig. 1, Step 5,)

=
∣∣∣max

(
1− 2eεr, 0

)
−max

(
1− 2eεR

(
h∗
D.D′

)
, 0
) ∣∣∣

(By Theorem 4)

⩽
∣∣∣((1− 2eεr

)
−

(
1− 2eεR

(
h∗
D.D′

)) ∣∣∣
⩽ 2eε

∣∣r −R(h∗
D.D′)

∣∣
= O

(
g(X , n/2, β/2) +

√
ln(1/β)/n

)
, (By Claim 1)

where the last step we omit the constant 2eε since the tight
bound is in asymptotic form.

Combining the results of Claim 1 and Claim 2, we have
that for every tuple (M, D,D′, ε) the algorithm AB

C provides
a α = O

(
g(X , n/2, β/2) +

√
ln(1β)/n

)
tight bound with

probability 1−β. Thus concludes the proof that AB
C is a (α, β)-

Approximate Delta Estimator for Neighboring Databases for
C.

We state the theorem for the case where our classifier is
kNN.

Theorem 5 (Proof in Appendix D). Consider the set of
mechanisms C = X 7→ Rd whose output distributions have
a density. kNN is the kNN classification algorithm with n
samples where k =

√
n. The algorithm AkNN

C , shown in
Figure 1, is a (α, β)-Approximate Delta Estimator for Neigh-
boring Databases for C, for any α = O

(
cd
√

ln(1/β)/n
)

,
β ∈ (0, 1).9

9Recall by Lemma 5.5 of [9], cd satisfies cd ⩽ (1+2/
√

2−
√
3)d−1 ⩽

4.86371d.
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B. Estimating Approximate Relative DP

In this section, we extend our algorithm from our previous
section, to construct a privacy estimator for Relative Differen-
tial Privacy (Def. 10). We begin with a formal definition for
a relative DP estimator with tight bounds (Def. 15). Then, we
present our privacy estimator which builds upon algorithm AB

C
from Section V-A3. Given any classification algorithm B, our
privacy estimator AB

C,t outputs the privacy parameter for any
mechanism in class C and set of databases of size t. Using
the kNN classifier as example, we show in Thm. 6 that our
privacy estimator indeed satisfies tight accuracy bounds.

1) Our Approximate Relative DP Estimator: Before de-
scribing our DP estimator, we first define the guarantees such
a (α, β)-approximate relative DP estimator should satisfy.
Intuitively, these are the same as for an approximate DP
estimator, except we restrict the domain of our mechanism
to the set T , relative to which we define privacy.

Definition 14. Let M be a mechanism, T ⊆ X be a set of
databases, and ε ∈ R⩾0 be a privacy parameter. We say the
privacy parameter δT is optimal with respect to (M, T , ε), if

δT = max
D∈T

δD,

where δD is optimal with respect to (M, D, ε).
We say δ′T is a α-tight bound with respect to (M, T , ε), if

|δ′T − δT | ⩽ α.

Definition 15 (Approximate Relative Differential Privacy
Estimator). Let C = X 7→ O be the set of poly(log |X |)-time
mechanisms, M ∈ C be a mechanism from the set C, ε ∈ R⩾0

be a privacy parameter. Let T ⊆ X be any set of databases,
such that there is some t ∈ N+, |T | ⩽ t. An algorithm is
a (α, β)-Approximate Relative Differential Privacy Estimator
for C if for every (M, T , ε) with black-box access to M with
probability at least 1−β, it provides µ-tight bound with respect
to the tuple (M, T , ε) for any α, β ∈ [0, 1), and |T | ⩽ t.

We are now ready to formally define and analyze our Algo-
rithm, denoted as AB

C,t (see Fig. 2 for a detailed description).
AB

C,t uses our estimator for pairs of neighboring databases (see
Fig. 1) and runs it for all neighbors of set T . Intuitively, by
union bound, our accuracy degrades multiplicatively with the
total number of neighbors of databases in T . This leads to
our main Theorem 6 that shows the accuracy of our privacy
estimator based on the kNN classifier.

Theorem 6 ((α, β)-Approximate Relative Differential Pri-
vacy Estimator, using kNN). Consider the set of mechanisms
C = X 7→ Rd whose output distribution has a density. Let
T ⊆ X be any set of databases considered in relative DP,
|T | ⩽ t. Let the algorithm B be AkNN

C with n samples, shown
in Figure 1. The algorithm AB

C,t, shown in Figure 2, is a
(α, β)-Approximate Relative Differential Privacy Estimator for
C, where α = O

(
cd
√
ln(t ln |X |/β)/n

)
, β ∈ (0, 1).

Proof. Let m be the number of neighboring databases D ≃ D′

where D ∈ T . Let {δ1, · · · , δm} be the set of optimal δD,D′

for each neighboring databases, {δ′1, · · · , δ′m} (computed in

Step 1, Fig. 2) be the set of estimate for {δ1, · · · , δm}. δ′1 is
the estimate of δ1, etc.

By Theorem 5, we could say that for each i ∈ [m], with
probability at least 1− β/m, for a constant c

|δ′i − δi| ⩽ c · cd
√

ln(m/β)/n,

By a union bound, with probability at least 1− β,

max
i∈[m]

|δ′i − δi| ⩽ c · cd
√

ln(m/β)/n. (4)

Denote the index of δT in set {δ1, · · · , δm} as a. That
is δT = δa = max

i∈[m]
δi. Denote the index of the maximum

estimate in set {δ′1, · · · , δ′m} as b. That is δ′b = max
i∈[m]

δ′i. The

algorithm AB
C,t outputs δ′b as the estimate of δT . Then, with

probability at least 1− β,

|δ′b − δT | = |δ′b − δa|

⩽ max
(
|δ′b − δb|, |δ′a − δa|

)
⩽ max

i∈[m]
|δ′i − δi|

(5)

We bound the total number of neighboring databases m.
Because the size of the databases set T is smaller than t
and each databases has at most ln |X | records, hence by
Definition 2 each database has at most ln |X | neighbors, so
that

m ⩽ t ln |X |. (6)

Combining Inequalities 4, 5 and 6, with probability at least
1− β,

|δ′b − δT | ⩽ c · cd
√

ln(t ln |X |/β)/n,

which completes the proof.

VI. DISTRIBUTIONAL DIFFERENTIAL PRIVACY

As an extension of our results, we present the first pri-
vacy estimator for (ε, δ,∆)-distributional differential privacy
(Def. 5), given ∆ contains database distributions where each
entry is independently distributed. Of importance, by consid-
ering databases as random variables that model a level of
adversarial uncertainty about the data, DDP—unlike DP—
can formally measure the privacy of even deterministic mech-
anisms. This means, for the first time, we have shown a
method to heuristically estimate the privacy of deterministic
mechanisms (under independently distributed data).

First, we observe that DDP under the independence assump-
tion (Def. 5) is very similar to DP. This allows us to define
an approximate privacy estimator in a similar manner.

Definition 16. Let M be a mechanism, D ≃ D′ be a pair of
neighboring databases, ε ∈ R⩾0 be a privacy parameter, and
∆ be a set of distributions on size-m databases where each
row is independently distributed. We say the privacy parameter
δDDP is optimal with respect to the tuple (M,∆, ε) if

δDDP = max
(

max
π∈∆,i∈[m],x,x′∈U,S⊆O

Pr
D∼π

[M(D) ∈ S|Di = x]

− eε Pr
D∼π

[M(D) ∈ S|Di = x′], 0
)
.

10



Input: An algorithm B with n samples, which estimates the optimal delta with respect to the tuple (M, D,D′, ε) for mechanism family
C. A mechanism M∈ C, a set of databases T , privacy parameter ε ∈ R⩾0.
Output: δ′T , the estimate of the optimal delta δT with respect to the tuple (M, T , ε).

1) For each neighboring databases D ≃ D′ where D ∈ T , use algorithm B with n samples compute the estimate of optimal δD,D′

with respect to (M, D,D′, ε). Denote the maximum among these estimates as δ′T .
2) Output δ′T .

Fig. 2: AB
C,t, an algorithm for estimating the optimal delta with respect to the tuple (M, T , ε)

We say δ′DDP is a α-tight bound with respect to (M,∆, ε),
if

|δ′DDP − δDDP| ⩽ α.

Definition 17 (Approximate Distributional Differential Pri-
vacy Estimator). Let C = X 7→ O be the set of poly(log |X |)-
time mechanisms, M ∈ C be a mechanism from the set
C, ε ∈ R⩾0 be a privacy parameter. Let ∆ be any set of
distributions on size m databases, such that |∆| ⩽ t for some
t ∈ N+. An algorithm is a (α, β)-Approximate Distributional
Differential Privacy Estimator for C if for every (M,∆, ε),
with black-box access to M, with probability at least 1 − β,
it provides α-tight bound with respect to the tuple (M,∆, ε),
where α, β ∈ [0, 1), and |∆| ⩽ t.

Our DDP estimator AB
C,∆, described formally in Fig. 3, is

essentially the same as our relative DP estimator, except it is
even simpler—here, we only need to run our estimator on the
distributions in ∆, rather than enumerating all databases in T .
The accuracy of AB

C,∆ is thus a corollary of Theorem 6.

Corollary 2. Consider the set of mechanisms C = X 7→ Rd

whose output distribution has a density. Let the algorithm
B be AkNN

C with n samples, shown in Figure 2. The al-
gorithm AB

C,∆, shown in Figure 3, is a (α, β)-Approximate
Distributional Differential Privacy Estimator for C, where
α = O(cd

√
ln(mt|U|2 ln |X |/β)/n), β ∈ (0, 1). 10

VII. VALIDATION AND BENCHMARKING

We next demonstrate the applicability of our theoretical
construction and the accuracy of the theory presented above.
To do so, we have devised a proof-of-concept implementation
of our estimator which we use in two different modes: First we
focus on the two most common DP mechanisms, the Laplacian
mechanism and the Gaussian mechanism, for which we have
well understood theory yielding analytical bounds that we
can compare our estimator’s output against. Informally, these
two mechanisms achieve differential privacy by adding noise
drawn from Laplace (resp. Gaussian) distribution to query
results. In particular, Gaussian mechanism is one of the most
important building blocks to achieve (ε, δ)-DP, and as far as
we know, our work is the first to test our heuristic estimator
on this mechanism.

Second, we benchmark our implementation against Sparse
Vector Technique (SVT), a fundamental differential privacy

10Recall that U is the space of values each entry in the database can take
(see Def. 1).

mechanism which takes a sequence of queries Q and a
sequence of threshold T as input, and outputs a Boolean
vector indicating whether each query over the database is
above or below the corresponding threshold in T . We note
that SVT is a more complex mechanism for which no exact
analytical privacy bound is known. Nonetheless, it serves as a
perfect benchmark as (1) we can still compare our results to
the state of the art implementation [8], and (2) the literature
offers alternative implementations of SVT, some of which are
known to be buggy [13] which can be used to demonstrate
the ability of our estimator to compare the quality of different
mechanisms.

We complete the section with two further applications of
our theory, namely comparing different implementations of DP
mechanisms and verifying an implementation, demonstrating
how our system can be used to solve problems in DP that have
attracted a lot of attention in recent security literature.

A. Benchmarking and Validating our Theory

Our first two sets of experiments estimate the privacy pa-
rameters of the noised bit query mechanism ML,ε (MG,ε,δ),
in Definition 18 (Definition 19).

Definition 18 (The Laplacian bit query mechanism ML,ε).
Let ML,ε denote the differentially private bit query mechanism
using Laplacian mechanism, which takes a bit b as input, sam-
ples a noise v ∼ Lap(ε) according to Laplace distribution11,
and then returns b + v as the mechanism’s output. ML,ε is
(ε, 0)-differential private [16].

Definition 19 (The Gaussian bit query mechanism MG,ε,δ).
Let MG,ε,δ denote the differentially private bit query mech-
anism using Gaussian mechanism, which takes a bit b as
input, samples a noise v ∼ N (0, 2ε−2log(1.25/δ)) according
to Gaussian distribution12, and then returns b + v as the
mechanism’s output. MG,ε,δ is (ε, δ)-differential private [16].

Knowing just a single pair of privacy parameters (ε, δ) for
a mechanism may be insufficient to understand its privacy
guarantees. It does not answer, for example, the question
“What happens to δ (resp. ε) if I claim a smaller ε (resp.

11The Laplace distribution (centered at 0) with parameter λ is the distri-
bution with probability density function: Lap(x | λ) = λ

2
exp

(
−λ|x|

)
. We

use Lap(λ) to denote the Laplace distribution with parameter λ.
12The Gaussian distribution with expectation 0 and variance σ2 is the distri-

bution with probability density function: N (x|σ) = 1√
2πσ

exp (− x2

2σ2 ).We
use N (0, σ2) to denote the Gaussian distribution with expectation 0 and
variance σ2

11



Input: A binary classification algorithm B with n samples, mechanism M∈ C, privacy parameter ε ∈ R⩾0, and set of distributions ∆.
Output: δ′DDP, the estimate of the optimal delta δDDP with respect to the tuple (M,∆, ε).
Let Xx,i,π denote the random variable outputting by the following experiment: sample a database D according to distribution π. Set the
i-th row of D to records x. Return M(D).

Let [Xx,i,π]ε denote the random variable obtained by tossing a biased coin c where Pr[c = 1] = e−ε, and receiving value Xx,i,π if
c = 1 or receiving value ⊥ (a null value not in the range of M) otherwise.
Let P denote the distribution of a random variable, which is obtained by tossing a fair coin b, and receiving tuple (Xx′,i,π, 1) if b = 1
or receiving value ([Xx,i,π]ε , 0) otherwise.

1) Initialize n1 ← n/2, n2 ← n/2, and δ′DDP ← 0.
2) For all π ∈ ∆, i ∈ [m], x, x′ ∈ U

a) Initialize r ← 0.
b) Sample n1 training points (o1, b1), · · · , (on1 , bn1) according to joint distribution P.
c) Taking the n1 training points as inputs, classification algorithm B outputs a classifier hB

n1
.

d) Repeat the process n2 times: ▷ Estimate risk function of classifier hB
n1

with n2 testing samples.
i) Sample a testing point (o, b) according to joint distribution P.

ii) Predict the sample o’s label using the trained classifier: b′ = hB
n1

(o). If b′ ̸= b, r ← r + 1/n2.

e) Update δ′DDP ← max
(
δ′DDP, 1− 2eεr

)
.

3) Output δ′D,D′ .

Fig. 3: AB
C,∆, an algorithm for estimating the optimal delta δDDP with respect to the tuple (M,∆, ε)

(a) Analytical computed optimal δ com-
pared with estimated δ for ML,ε

(b) Analytical computed optimal δ com-
pared with estimated δ for MG,ε,δ

(c) Estimated (ε, δ)-spectrum ofMSVT,ε

parameterized with ε = 0.5, δ = 0.

Fig. 4: Accuracy check for our DP estimator implementation

δ) for the same mechanism?". This question can be answered
by understanding how the claimed ε (the privacy achieved) for
this mechanism affects its associated δ (probability of privacy
failure). In Figures 4a and 4b, we use our privacy estimator to
plot, for ML,ε and MG,ε,δ , the privacy parameter ε against
its corresponding optimal δ (Def. 6). The figures show the
accuracy of our estimate of δ to the analytically computed
optimal δ (see Lemma 3 and Lemma 4), demonstrating that our
estimator not only enjoys tight theoretical accuracy bounds, it
also achieves even better experimental accuracy.

Our second set of experiments on SVT demonstrates that
the DP spectrum computed by our estimator (Fig. 4c) is
comparable with the state of the art ([8], Fig. 1e, e.g., around
δ = 0.055 for ε = 0 for SVT). Note that, whereas [8] is
specialized for mechanisms with smaller output space, our
estimator works with large output spaces as well, which to
our knowledge is the first black box (ε, δ) privacy estimator
with this property.

Figure 5 plots the number of samples used in our kNN-
based privacy estimator, against the guaranteed α parameter

(recall from Def. 8, this describes the accuracy of our estimator
output). The tested mechanism is the noised bit query Laplace
mechanism ML,ε (with sensitivity 1). We use the empirical
bootstrapping method, run the estimator 30 times and set
the confidence interval as 0.9. From the figure, we see that
the empirical α is 3 orders of magnitude tighter than the
theoretical α. When the number of sample points is 226, (about
10 minutes running time on a Dell compute node with two
64-core AMD Epyc 7662 “Rome" processors and 256 GB
memory) the estimated δ is within an additive error less than
0.0001, which is also shown in Figure 4a and Figure 4b.

The above demonstrates that our implementation tightly
matches the theory developed in our framework (and at a
level impressive for machine learning applications). On the
one hand, this establishes the usefulness of our framework and
implementation as a very accurate privacy estimator; (2) on the
other hand, our experiments on SVT demonstrates that our
estimator, even in this proof-of-concept implemenation, can
be applied to more complex mechanisms, serving as evidence
of its potential practical usage.
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(a) Theoretical α (b) Empirical α

Fig. 5: Left: Theoretical accuracy α of estimated δ vs. number
of samples (Theorem 5). Right: empirical accuracy for ML,ε.

(a) Loose theoretical (top curve)
vs. actual (analytically computed
and estimated) (ε, δ)-privacy
spectrum of MG,ε,δ

(b) Estimated (ε, δ)-privacy
spectrum of MG,ε,δ and ML,ε.
We see MG,ε,δ (bottom curve)
achieves better (smaller) δ.

Fig. 6: Application 1: Which mechanism has better privacy?

B. Further Applications

In the remainder of this section, we showcase two additional
useful applications of our privacy estimation framework: (1)
To compare what we term the (differential) privacy spectrum
(i.e., the tradeoff between ε and δ) of two mechanisms, and (2)
to verify the implementation of a given mechanism. We note
in passing, that as discussed above, a major application of our
method is for estimating the privacy of heuristic approaches
to privatizing machine learning algorithms. We view this as a
very promising research direction, albeit beyond the scope of
this work which aims at introducing, analyzing, and validating
the theory of our framework, as well as showing the tractability
of our estimator.13

1) Comparing Two Mechanisms: The (ε, δ) privacy-
spectrum generated by our privacy estimator can be used to
generate a more in-depth comparison of two mechanisms. For
example, suppose that you are presented with two mechanisms,
ML,ε and MG,ε,δ , noised so that they give the privacy guar-
antees of (ε, δ) = (1, 0) for ML,ε and (ε, δ) = (1, 0.00001)
for MG,ε,δ. It appears then, that ML,ε is a strictly better
mechanism.

However, the (ε, δ) spectrum of these mechanisms lends to a
much better comparison. Our privacy estimator can be provide
an estimate (with tight accuracy bounds) of such curves
(Figure 6b). While in this ML,ε versus MG,ε,δ example, we
can actually analytically compute the (ε, δ) spectrum, this may

13Indeed, such a validation is a necessary step to ensure that there is benefit
in applying such a method to heuristic algorithms.

(a) Estimated (ε, δ)-privacy spec-
trum of MSVT,ε parameterized
with ε = 1, δ = 0. We see that
better ε may be achieved with
sacrifices to δ.

(b) Estimated (ε, δ) spectrum of
MSVT,ε and its two variants.
MSVT2,ε and MSVT3,ε have
much worse ε-δ trade-offs and
are not (ε = 1, δ = 0)-DP.

Fig. 7: SVT’s DP-spectrum in comparison with its two buggy
variants.

not be possible for all mechanisms. Moreover, even for ML,ε,
there is little information about this curve available, and the
theoretical δ given by well-known bounds [17] is loose14.
Figure 6b shows definitively that in fact MG,ε,δ provides a
much stronger DP guarantee most of the time (its δ is closer
to 0, even if you claim a smaller ε than 1) while ML,ε can
only provide ε = 1 DP guarantee but achieves ε < 1 with
undesirable δ.

As another application of our framework we plot the esti-
mated privacy spectrum of the SVT mechanism and its two
buggy variants (algorithm details in Figure 8, Figure 9 and
Figure 10, Appendix F).

Figure 7a plots the privacy parameter ε of MSVT,ε=1

against its corresponding optimal δ (Def. 6). Our estimator ver-
ifies that indeed MSVT,ε=1 provides (1, 0)-DP. It also shows
ε = 1 is tight, since when a small ε is claimed, Figure 7a
demonstrates a significant increase in δ. Figure 7b compares
the privacy spectrum of mechanisms MSVT,ε and its two
variants MSVT2,ε and MSVT3,ε. We see that MSVT2,ε,
MSVT3,ε provide much weaker DP guarantee than MSVT,ε

as their corresponding δ is significantly larger for the same
ε. Even so, we observe that some reasonable DP guarantee
may be provided by MSVT2,ε, while there is no evidence
that MSVT3,ε could provide any meaningful DP guarantee.
Appendix F) gives a brief explanation of how we estimate
these mechanisms using our framework.

2) Verifying Mechanism Implementation: A common use
of privacy estimators has been in verifying (claims about) the
privacy of DP mechanisms (e.g., [7], [5]). In Appendix G we
show that our estimator is in fact useful also for this task.
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APPENDIX A
PROOF OF IMPOSSIBILITY OF APPROXIMATE DP

ESTIMATOR

Proof of Theorem 3. We will prove the theorem by
1) constructing two mechanisms M and MD, where MD

is a mechanism parameterized with a database D.
2) showing that there does not exist a polynomial time

algorithm P that can distinguish between M and MD

if D is randomly chosen.
3) proving by contradiction that if the algorithm Eε de-

fined in the lemma exists, then we can turn it into a
distinguisher P (which was proven impossible).

We start by constructing two mechanisms M and MD.
Let M : {0, 1}n 7→ {0, 1} and MD : {0, 1}n 7→ {0, 1} be
two randomized mechanisms. Let D ∈ {0, 1}n. We define
M as the following: no matter what input in the domain it
takes, M outputs 0 with probability 1

2 otherwise outputs 1
with probability 1

2 . We define MD as the following: given
any input x not equal to D it outputs M(x) otherwise MD

outputs 0 with probability 0 and 1 with probability 1.
We know that M is (0, 0)-differential private, because its

output is independent of its input. Also, we know that MD

is (0, 1)-differential private, because its output is deterministic
when given D.

Then, we define the following game for algorithm P :
Choose database D uniformly at random from {0, 1}n. Toss
a fair coin b, and give the algorithm P black-box access to
either M or MD based on b. The algorithm P wins if it can
correctly decide whether it was given M or MD.

Since P is running in polynomial time, and has only black-
box access to the mechanism, this means we can consider
P ’s output as a randomized function of its poly(n) queries
D1, D2, · · · (made possibly adaptively) to the mechanism.
Since M’s and MD’s outputs only differ on input D, and D
is chosen uniformly at random, it means the probability that P
queries D is negligible in n. In other words, P can only win
with at best negligibly better probability than guessing (1/2).

We now prove by contradiction that Eε defined in the lemma
does not exist. Suppose for contradiction that Eε does indeed
exist. Then, let P do the following: given a mechanism (one
of M or MD), feed this mechanism and ε = 0 to Eε. If
Eε says an estimate δ′ ⩽ α, P guesses that it was given M.
Else, it guesses that it was given MD. Since, with probability
1
2 + ν(n), Eε should always give some estimate δ′ ∈ [0, α]
given M, and some estimate δ′ ∈ [1 − α, 1] given MD, it
means P should be correct with probability at least 1

2 + ν(n).
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This contradicts the conclusion of (2), meaning Eε does not
exist.

APPENDIX B
PROOF OF PROPERTIES OF RELATIVE DP

Proof of Prop. 1. This proposition holds by definition of dif-
ferential privacy.

Proof of Prop. 2. By the relative DP definition and the propo-
sition’s condition, the mechanism M satisfies that, for every
neighboring databases D ≃ D′ : D ∈ T and subset
S ⊆ Range(M),

Pr[M(D) ∈ S] ⩽ eεi Pr[M(D′) ∈ S] + δi

⩽ emaxi∈[k] εi Pr[M(D′) ∈ S] + max
i∈[k]

δi,

which completes the proof.

Proof of Prop. 3. Let D = (D1, · · · , Dk) be a arbitrary
database from the set T1 × · · · × Tk. Let D′ = (D′

1, · · · , D′
k)

be a arbitrary neighbor of D. Without loss of generality, D
has an extra record x than D′ in the j-th partition, that is
Dj = D′

j

⋃
{x}, otherwise Di = D′

i for i ∈ [k] and i ̸= j.
For every subset S ⊆ Range(M), we have

Pr[M(D) ∈ S]
= Pr[(M1(D1), · · · ,Mk(Dk)) ∈ (S1, · · · ,Sk)]

=
∏
i∈[k]

Pr[Mi(Di) ∈ Si]

= Pr[Mj(Dj) ∈ Sj ]
∏

i∈[k]\{j}
Pr[Mi(Di) ∈ Si]

⩽ (eεj Pr[Mj(D
′
j) ∈ Sj ] + δj)

∏
i∈[k]\{j}

Pr[Mi(D
′
i) ∈ Si]

⩽ eεj Pr[Mj(D
′
j) ∈ Sj ]

∏
i∈[k]\{j}

Pr[Mi(D
′
i) ∈ Si] + δj

= eεj Pr[M(D′) ∈ S] + δj

⩽ (max
i∈[k]

eεi ) Pr[M(D′) ∈ S] + (max
i∈[k]

δi),

which completes the proof.

Proof of Prop. 4. Let D be a arbitrary database from the set
T and D′ be a arbitrary neighbor of D. For every subset
S ⊆ Range(M), we have

Pr[M(D) ∈ S]
= Pr[(M1(D), · · · ,Mk(D)) ∈ (S1, · · · ,Sk)]

=
∏
i∈[k]

Pr[Mi(D) ∈ Si]

=
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]) Pr[Mk(D) ∈ Sk]

⩽
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]
(
eεk Pr[Mk(D

′) ∈ Sk] + δk
)

⩽ eεk (
∏

i∈[k−1]

Pr[Mi(D) ∈ Si]) Pr[Mk(D
′) ∈ Sk] + δk

⩽ e

∑
i∈[k]

εi

Pr[M(D′) ∈ S] +
∑
i∈[k]

δi,

which completes the proof.

Proof of Prop. 5. Let D be a arbitrary database from the set
T and D′ be a arbitrary neighbor of D. For every subset S ⊆

Range(M), define set T = {t ∈ Range(M1) : f(t) ∈ S}.
We have

Pr[M(D) ∈ S] = Pr[f(M1(D)) ∈ S]

=
∑
t∈T

Pr[M1(D) = t]

= Pr[M1(D) ∈ T ]

⩽ eε Pr[M1(D
′) ∈ T ] + δ,

= eε Pr[M(D′) ∈ S] + δ.

which completes the proof.

APPENDIX C
PROOF: CONNECTING δ IN (ε, δ)-DP WITH RISK OF BAYES

CLASSIFIER

Proof of Theorem 4. Let ∆
([

M(D)
]
ε
,M(D′)

)
be the sta-

tistical distance between
[
M(D)

]
ε

and M(D′). Our plan
of proof is the following. We first show the equivalence
between the optimal δD,D′ and the statistical distance
∆
([

M(D)
]
ε
,M(D′)

)
.

Claim 3. The following equation between the optimal δD,D′

with respect to the tuple (M, D,D′, ε) and the statistical
distance ∆

([
M(D)

]
ε
,M(D′)

)
holds:

δD,D′ = max
(
eε
(
∆
([

M(D)
]
ε
,M(D′)

)
− (1− e−ε)

)
, 0
)
.

Proof of Claim 3. By definition of optimal δD,D′ in Defini-
tion 6, we have

δD,D′ = max
(
max
S⊆O

Pr[M(D) ∈ S]− eε Pr[M(D′) ∈ S], 0
)

= max
(
eε max

S⊆O

(
e−ε Pr[M(D) ∈ S]− Pr[M(D′) ∈ S]

)
, 0
)
.

(7)

We first check that the distribution
[
M(D)

]
ε

has the
following property, for all S ∈ O (support of mechanism M),

Pr
[[
M(D)

]
ε
∈ S

]
= e−ε Pr[M(D) ∈ S].

This is because, for all S ∈ O,

Pr[
[
M(D)

]
ε
∈ S] = Pr[c = 1 ∧M(D) ∈ S]

= Pr[c = 1]Pr[M(D) ∈ S]
(c and M(D) are independent)

= e−ε Pr[M(D) ∈ S].

We are given a method to find the statistical distance
between two distributions by sampling them. The statistical
distance between distributions

[
M(D)

]
ε

and M(D′) is de-
fined as follows:

∆
( [

M(D)
]
ε
,M(D′)

)
≡ max

S⊆O

(
Pr
[ [

M(D)
]
ε
∈ S

]
− Pr[M(D′) ∈ S]

)
.

By construction,
[
M(D)

]
ε

outputs ⊥ with probability 1−
e−ε, whereas M(D′) outputs ⊥ with probability zero. Thus, ⊥
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can always be included in the set that maximizes the statistical
distance.

∆(
[
M(D)

]
ε
,M(D′))

= max
S∈O

(
Pr[
[
M(D)

]
ε
∈ S]− Pr[M(D′) ∈ S]

)
+
(
(Pr[

[
M(D)

]
ε
= ⊥]− Pr[M(D′) = ⊥]

)
= max

S∈O

(
e−ε Pr[M(D) ∈ S]− Pr(M(D′) ∈ S)

)
+ (1− e−ε)

Then, plug the above equation into the equation 7, we have

δD,D′ = max(eε
(
∆
([

M(D)
]
ε
,M(D′)

)
− (1− e−ε)

)
, 0),

which completes the proof.

Secondly, we show the equivalence between risk of the
the Bayes classifier R(h∗

D,D′) and the statistical distance

∆
([

M(D)
]
ε
,M(D′)

)
.

Claim 4.

∆
([
M(D)

]
ε
,M(D′)

)
= 2 ·

(
1

2
−R(h∗

D,D′)

)
.

Proof of Claim 4. The statistical distance can be alternatively
defined as

∆
([

M(D)
]
ε
,M(D′)

)
= max

h

∣∣∣ Pr
x∼M(D′)

[h(x) = 1]− Pr
x∼[M(D)]

ε

[h(x) = 1]
∣∣∣,

where h is any classifier for the distribution P. Then,

∆
([

M(D)
]
ε
,M(D′)

)
= 2

(
1

2
max
h

∣∣∣ Pr
x∼M(D′)

[h(x) = 1]−
(
1− Pr

x∼[M(D)]
ε

[h(x) = 0]
)∣∣∣)

= 2

(
max
h

∣∣∣∣∣12( Pr
x∼M(D′)

[h(x) = 1] + Pr
x∼[M(D)]

ε

[h(x) = 0]
)
−

1

2

∣∣∣∣∣
)

= 2
(
max
h

∣∣∣ Pr
(x,y)∼P

[h(x) = 1, y = 1] + Pr
(x,y)∼P

[h(x) = 0, y = 0]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣ Pr
(x,y)∼P

[h(x) = y]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣1− Pr
(x,y)∼P

[h(x) ̸= y]−
1

2

∣∣∣)
= 2
(
max
h

∣∣∣1
2
−R(h)

∣∣∣)
= 2
(1
2
−R(h∗

D,D′ )
)
.

Show the equivalence between the optimal δD,D′ and the
risk of the the Bayes classifier R(h∗). Combining the Claim 3
and the Claim 4, it is easy to show that

δD,D′ = max
(
1− 2eεR(h∗

D,D′), 0
)
,

which completes the proof.

APPENDIX D
PROOF: ESTIMATOR USING KNN

Proof of Theorem 5. The algorithm AkNN
C with the classifica-

tion algorithm kNN is a concrete instantiation of AB
C , shown

in Figure 1. To prove that AkNN
C is a (α, β)-Approximate Delta

Estimator for Neighboring Databases for C, we could directly
plug in the convergence results of kNN into Lemma 2 and
then complete the proof.

For every tuple (M, D,D′, ε), where M ∈ C, we have two
random variables: M(D′) and

[
M(D)

]
ε
. We also have a

corresponding distribution P(M,D,D′,ε) (Def. 13, abbreviated
below as P). Recall that the experiment of generating P is
following: Toss a fair coin b. If b = 0 the experiment outputs
a sample o according to distribution

[
M(D)

]
ε
, or otherwise

outputs a sample o according to distribution M(D′).
Let h∗ and R(h∗) be the Bayes classifier and the risk of

the Bayes classifier for the distribution P , respectively. Step 3
of algorithm AkNN

C (Figure 1) computes a kNN classifier hNNk,n1

for distribution P. Step 4 computes R̂n2(h
NN
k,n1

), the testing
risk of hNNk,n1

with n2 testing samples.
Because M ∈ C, the distribution of M(D′) has density.

Moreover, the distribution
[
M(D)

]
ε

almost has a density
except at point ⊥. By Chapter 11.2 of [9], the density
assumption was needed to avoid problems caused by training
points having equal distances to testing points (i.e., so that
each point has exactly k-nearest neighbors). For the point ⊥,
we could define the distance from it to any other points as
infinity, so at point ⊥ the distance tie problem does not appear
even without the density assumption. This means we could still
use the result from Theorem 2. Thus, Theorem 2’s condition
suffices. By Theorem 2, when the sample size parameter n1
is large enough, we have that

Pr[|R(hNN
k,n1

)−R(h∗)| > α] ⩽ 2e−n1α
2/(72c2d).

Recall n1 = n/2, defined in Step 1, Fig. 1. Set
2e−n1α

2/(72c2d) = β/2. Rearranging the inequality, with prob-
ability at least 1− β/2,

|R(hNN
k,n1

)−R(h∗)| ⩽ 12cd
√

ln(4β)n (8)

Plug the above inequality into Lemma 2, we have that for
every δD,D′ with respect to the (M, D,D′, ε) and its estimate
δ′D,D′ (defined in Step 5, Fig. 1)

|δ′D,D′ − δD,D′ | ⩽ 12cd
√

ln(4β)n+O
(√

ln(1/β)/n
)
,

which completes the proof.

APPENDIX E
ANALYTICAL COMPUTED PRIVACY OF LAPLACIAN AND

GAUSSIAN MECHANISM

Lemma 3. Let ML,ε be the noised bit query mechanism de-
fined in Definition 18. Let δ(ε′) be the optimal δ (Def. 6) with
respect to the tuple (ML,ε, ε

′). δ(ε′) satisfies the following
equality

δ′(ε′) =

{
1− e−

1
2
(ε−ε′) ε′ ∈ [0, ε]

0 ε′ ⩾ ε.
(9)

Proof. Note that ML,ε has only one neighboring database pair
(D,D′) = (0, 1). By Definition 6, we have

δ(ε′) = max(max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S], 0),
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where O = Range(ML,ε).
For ε′ ⩾ ε, by the differential privacy definition shown in

Definition 3, we know

max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S] ⩽ 0,

so that

δ(ε′) = 0.

Now we turn to the case ε′ < ε. We first recall the
probability density function of ML,ε(D)

Pr[ML,ε(D) = x] =
ε

2
e−ε|x|,

where x ∈ R. Similarly, the probability density function of
ML,ε(D

′) is

Pr[ML,ε(D
′) = x] =

ε

2
e−ε|x−1|,

where x ∈ R.
For ε′ < ε,

δ(ε′) = max(max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S], 0)

= max
S⊆O

Pr[ML,ε(D) ∈ S]− eε
′
Pr[ML,ε(D

′) ∈ S]

=

∞∫
−∞

max(0,Pr[ML,ε(D) = x]− eε
′
Pr[ML,ε(D

′) = x])dx

(10)

Denote x+ ∈ R such that e−ε|x+| − eε
′
e−ε|x+−1| = 0.

The function Pr[ML,ε(D) = x]− eε
′
Pr[ML,ε(D

′) = x] has
only one zero, that is x+. For all x ⩽ x+, Pr[ML,ε(D) =
x] − eε

′
Pr[ML,ε(D

′) = x] ⩾ 0, otherwise Pr[ML,ε(D) =
x]− eε

′
Pr[ML,ε(D

′) = x] < 0. One can show

x+ =
1

2
(1− ε′

ε
).

Plug in the equation 10, we have

δ(ε′) =

x+∫
−∞

Pr[ML,ε(D) = x]− eε
′
Pr[ML,ε(D

′) = x]dx

=

x+∫
−∞

ε

2
(e−ε|x| − eε

′
e−ε|x−1|)dx

= 1− e−
1
2
(ε−ε′),

where the last step is by integration.

Lemma 4. Let MG,ε,δ be the noised bit query mechanism
defined in Definition 19. Let δ(ε′) be the optimal δ (defined in
Def. 6) with respect to the tuple (MG,ε,δ, ε

′). δ(ε′) satisfies
the following equality

δ(ε′) =
1

2
[1 + erf(

x+

σ
√
2
)− eε

′
(1 + erf(

x+ − 1

σ
√
2

)),

where σ2 = 2 log(1.25/δ)
ε2 , ε′ > 0, x+ = 1

2 (1 − 2σ2ε′) and
erf(x) = 2√

π

∫ x

0
e−s2ds (the standard error function.)

Proof. Note that MG,ε,δ has only one neighboring database
pair (D,D′) = (0, 1). By Definition 6, we have

δ(ε′) = max(max
S⊆O

Pr[MG,ε,δ(D) ∈ S]− eε
′
Pr[MG,ε,δ(D

′) ∈ S], 0),

where O = Range(MG,ε,δ).
We then recall the probability density function of

MG,ε,δ(D)

Pr[MG,ε,δ(D) = x] =
1√
2πσ2

e
− x2

2σ2 ,

where x ∈ R. Similarly, the probability density function of
MG,ε,δ(D

′) is

Pr[MG,ε,δ(D
′) = x] =

1√
2πσ2

e
− (x−1)2

2σ2 ,

where x ∈ R.
x+ = 1

2 (1−2σ2ε′) is the value such that Pr[MG,ε,δ(D) =

x+] − eε
′
Pr[MG,ε,δ(D

′) = x+] = 0. The function
Pr[MG,ε,δ(D) = x] − eε

′
Pr[MG,ε,δ(D

′) = x] has only
one zero, that is x+. For all x ⩽ x+, Pr[MG,ε,δ(D) =
x]−eε

′
Pr[MG,ε,δ(D

′) = x] ⩾ 0, otherwise Pr[MG,ε,δ(D) =
x]− eε

′
Pr[MG,ε,δ(D

′) = x] < 0.
Now we have, for all ε′ > 0,

δ(ε′) = max(max
S⊆O

Pr[MG,ε,δ(D) ∈ S]− eε
′
Pr[MG,ε,δ(D

′) ∈ S], 0)

= max
S⊆O

Pr[MG,ε,δ(D) ∈ S]− eε
′
Pr[MG,ε,δ(D

′) ∈ S]

=

∞∫
−∞

max(0,Pr[MG,ε,δ(D) = x]− eε
′
Pr[MG,ε,δ(D

′) = x])dx

=

x+∫
−∞

Pr[MG,ε,δ(D) = x]− eε
′
Pr[MG,ε,δ(D

′) = x]dx

=

x+∫
−∞

Pr[MG,ε,δ(D) = x]− eε
′

x+∫
−∞

Pr[MG,ε,δ(D
′) = x]

= (
1

2
+

1

2
erf(

x+

σ
√
2
))− eε

′
(
1

2
+

1

2
erf(

x+ − 1

σ
√
2

))

=
1

2
[1 + erf(

x+

σ
√
2
)− eε

′
(1 + erf(

x+ − 1

σ
√
2

)),

which completes the proof.

APPENDIX F
ESTIMATING SVT’S PRIVACY SPECTRUM

Input: A database D, a counting query list Q = {q1, q2, · · · } ∈
N ∗

⩾0, a threshold list T = {T1, T2, · · · } ∈ N ∗.
Output: A bits sequence s ∈ {1, 01, 001, · · · }.

1) ρ = Lap
(

ε
2

)
2) For each query qi ∈ Q :

a) νi = Lap
(

ε
4

)
b) If qi(D) + νi ⩾ Ti + ρ then

i) Output ai = 1 and Abort.
c) Else Output ai = 0.

Fig. 8: The SVT (Sparse Vector Technique) mechanism
MSVT,ε (Alg.1 from [13])

In this section, we further discuss our SVT experiments
on the MSVT,ε,MSVT2,ε,MSVT3,ε mechanisms. First, to
estimate the optimal δ (Def 6), we use the link between
differential privacy and Bayes optimal risk established in
Theorem 4. Here, we estimate the Bayes optimal risk for SVT
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Input: A database D, a counting query list Q = {q1, q2, · · · } ∈
N ∗

⩾0, a threshold list T = {T1, T2, · · · } ∈ N ∗.
Output: A bits sequence s ∈ {1, 01, 001, · · · }.

1) ρ = Lap
(

ε
4

)
2) For each query qi ∈ Q :

a) νi = Lap
(

3ε
4

)
b) If qi(D) + νi ⩾ Ti + ρ then

i) Output ai = 1 and Abort
c) Else Output ai = 0.

Fig. 9: A buggy variant of the SVT mechanism MSVT2,ε

(Alg.4 from [13])

Input: A database D, a counting query list Q = {q1, q2, · · · } ∈
N ∗

⩾0, a threshold list T = {T1, T2, · · · } ∈ N ∗.
Output: A bits sequence s ∈ {0, 1}∗.

1) ρ = Lap
(

ε
2

)
2) For each query qi ∈ Q :

a) If qi(D) ⩾ Ti + ρ then Output ai = 1.
b) Else Output ai = 0.

Fig. 10: A buggy variant of the SVT mechanism MSVT3,ε

(Alg.5 from [13])

by computing its output on at most some finite k queries. In
our experiments, we use k = 40, and for simplicity consider
integer-output queries and thresholds that are no more than 2
away from the true query output. Lastly, we further reduce the
number of samples required by our algorithm by observing
that SVT’s output distribution is the same on databases D1

and D2, if qi(D1) − Ti = qi(D2) − Ti. Thus, it suffices to
test fewer number of databases. For more detail, please see
our full version.

APPENDIX G
VERIFYING MECHANISM IMPLEMENTATION

Perhaps a more common application of our privacy
estimator is to verify the correctness of a mechanism
implementation—that is, whether a mechanism implementa-
tion really is (ε, δ)-DP as claimed. Compared with previous
work, our estimator has the advantage of only requiring black
box access to the mechanism, and generating outputs with
tight accuracy bounds. Moreover, our estimator can handle
even mechanisms with large output spaces. In Fig. 4b, we
demonstrate an example of checking whether a mechanism
satisfies (ε = 1, δ = 0)-(relative) DP, by testing the mech-
anism on ε = 1 and receiving the estimated optimal δ—in
this example, δ is a small value on the order of 10−5. This
tells us that the true ε is likely close if not equal to 1, when
δ = 0. For 226 testing/training samples (or about 10 minutes
running time on our machine, a Dell compute node with two
64-core AMD Epyc 7662 “Rome" processors and 256 GB
memory), we get an error for δ of around 0.0001, which can be
improved by increasing the number of samples. If the privacy
spectrum is actually known for this mechanism (which is the
case for Laplace and Gaussian mechanisms, via Lemmas 3

Fig. 11: Application 2: verify implementation of ML,ε mech-
anism, by checking which ε, δ trade-off curve the implementa-
tion falls under. Different curves represent ML,ε with different
amount of added noise.

Fig. 12: Application 2: verify the mechanism MG,ε,δ(ε =
1, δ = 0.00001) is correctly implemented

and 4), then our verification can be even more accurate. To
do so, we first generate several analytically computed (ε, δ)
curves for ML,ε, w.r.t. added noise that guarantees at least
(ε, δ = 0)-DP, for ε = 0.999, 1, 1.001. We see (Fig. 11) that
the ε, δ trade-off of the implementation is the closest to the
analytically computed curve generated by mechanism ML,ε

with noise according to ε = 1, which is a good indication that
in fact our implementation satisfies ε = 1. This same technique
also applies to, e.g., the Gaussian mechanism (Fig. 12).
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