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ABSTRACT

Differential Privacy (DP) is a gold standard of privacy. Nonetheless,

one challenge for non-privacy experts to utilize DP, is the difficulty

in analyzing the privacy of their often quite complex tasks.

Our work aims to address the above limitation. In a nutshell we

devise a methodology for domain experts with limited knowledge

of security to estimate the (differential) privacy of an arbitrary
mechanism. Our Eureka moment is the utilization of a link—which

we prove—between the problems of DP parameter-estimation and

Bayes optimal classifiers in machine learning, which we believe

can be of independent interest. Our estimator methodology uses

this link to achieve two desirable properties: (1) it is black-box, i.e.,
does not require knowledge of the underlying mechanism, and

(2) it has a theoretically-proven accuracy, which depends on the

underlying classifier used. This allows domain experts to design

mechanisms that they conjecture offer certain (differential) privacy

guarantees—but maybe cannot prove it—and apply our method to

confirm (or disprove) their conjecture.

More concretely, we first prove a new impossibility result, stating

that for the classical DP notion there is no black-box poly-time esti-

mator of (𝜀, 𝛿)-DP. This motivates a natural relaxation of DP, which

we term relative DP. Relative DP preserves the desirable properties

of DP—composition, robustness to post processing, and robustness

to the disclosure of new data—and applies in most practical settings

where privacy is desired. We then devise a black-box poly-time

(𝜀, 𝛿)-relative DP estimator—the first to support mechanisms with

large output spaces while having tight accuracy bounds. As a result

of independent interest, we apply this theory to develop the first
approximate estimator for the standard, i.e., non-relative, definition

of Distributional Differential Privacy (DDP) – aka noiseless privacy.

To demonstrate both our theory and its practicality, we devise

and benchmark a proof-of-concept implementation of our estima-

tor. In reasonable execution time, our implementation reproduces

tight, analytically computed 𝜀, 𝛿 trade-off of Laplacian and Gaussian

mechanisms—to our knowledge, the first black box estimator to do

so, and for the Sparse Vector Technique, our outputs are comparable

to that of a more specialized state-of-the-art (𝜀, 𝛿)-DP estimator.
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1 INTRODUCTION

As big-data algorithms, e.g., machine learning (in short, ML), be-

come more sophisticated and ubiquitous, the need to ensure privacy

for sensitive data becomes ever more prominent. Differential pri-

vacy (DP) is one broadly accepted notion of privacy for a wide range

of applications. Despite numerous milestone results over decades of

research, there is only a handful of DP mechanisms whose privacy

can be analytically calculated. Furthermore, these mechanisms can

often not be applied to protect the privacy of queries that invoke

complex algorithms, such as machine learning on private data. This

limits the accessibility of DP to application domain experts who

are not trained in security.

Informally, a mechanismM is (𝜀, 𝛿)-DP if for any pair of neigh-
boring databases 𝐷, 𝐷 ′, the output distributions of M(𝐷) and
M(𝐷 ′) are (𝜀, 𝛿)-close. Parameters 𝜀 and 𝛿 quantify the DP ofM—

the smaller the more private. The two parameters address different

aspects of privacy: informally, 𝜀 quantifies how much the privacy of

each individual record is protected, and 𝛿 can be seen as the proba-

bility that all privacy guarantees are given up. Thus, naturally one

is interested in keeping 𝛿 tiny. However, in most applications—and

for most mechanisms—there is an inherent trade-off between these

two parameters, i.e., aiming for tiny 𝛿 comes at the cost of high

values of 𝜀. Charting this trade-off is thus important in deciding if

a mechanism is a good fit for a given application.

In this work we define the privacy spectrum, also referred to as

DP-spectrum, of a mechanism M, denoted as 𝛿M (𝜀),1 to be the

optimal (i.e., minimum) 𝛿 achievable for a given 𝜀. We then devise

a methodology for estimating the privacy spectrum of any given

M, while usingM in a black-box manner. Our methodology uses

ML theory to provide provable accuracy guarantees, a common

approach when designing efficient mechanisms in ML and cryptog-

raphy. We prove that our ML-based method estimates the optimal 𝛿

within a sufficiently small error, which diminishes with the number

of samples (runtime) that the estimator uses. We then empirically

demonstrate that the asymptotically-predicted behavior kicks-in

already for a small number of samples. In the following we outline

our main results:

Our first result is on the impossibility of a poly-time black-box

(𝜀, 𝛿)-DP estimator: there is no poly-time black-box estimator to

compute the DP-spectrum of an arbitrary input mechanism (see

1
To keep our notation simple, whenever the mechanismM is clear from the context

we drop it from the notation of the DP-spectrum, i.e., we write 𝛿 (𝜀) instead of 𝛿M (𝜀) .



Theorem 4.5). This result justifies a recent line of work [1–8] that

takes aim at the challenge of black-box DP estimator by proposing

methods to empirically estimate the DP-spectrum of a mechanism.

The desirable properties of such estimators are: accuracy, generality,
and efficiency.
Accuracy requires that the estimated DP-spectrum for the mecha-

nismM should be close to true DP-spectrum ofM. There are two

modes in which one can empirically analyze the DP spectrum of a

mechanism.

(1) Verify if a mechanism satisfies a given (𝜀, 𝛿)-DP require-

ment. Typically the approach is to estimate a lower (upper)
bound on the DP parameter(s) [5–7] and use these bounds

to decide if the privacy is violated. The bounds produced

can be loose, and so the outcome of the verification is not

always conclusive.

(2) A stronger and more useful statement is to estimate the

full DP-spectrum of the mechanism, by producing tight
(upper and lower) bounds on the privacy parameters. This

is the task we tackle in this work. To our knowledge the

only other work which attempted such a tight estimation

is ADP-Estimator [8] which however can only be used

for mechanisms with a small output domain. (We refer to

Section 2 for a detailed comparison.)

A thread in the aforementioned prior work takes a heuristic

approach, offering primarily empirical estimates of the privacy pa-

rameters. In contrast, in this work we develop a framework that

allows for theoretical guarantees on the estimated privacy of a

(DP) mechanism. Our methodology can in principle be applied to

estimate the privacy obtained by arbitrarily complex mechanism,

as it uses this mechanism in a black-box manner. Importantly, we

validate the theory and demonstrate the potential of our method to

yield a practical estimator for various tasks, via a proof-of-concept

implementation of our estimator. Concretely, in order to demon-

strate the accuracy of our theory and the potential practicality of

our estimator, we benchmark it against mechanisms whose theo-

retical properties are already well understood, like the Laplacian

and Gaussian, as well as those with varying implementations, like

the Sparse Vector Technique (SVT).

Generalitymandates that the estimator should work for anymech-

anism. One way to achieve this is by making the estimator agnostic

as to what the mechanism does, i.e., the mechanism is used in a

black-box manner. Such a black-box estimator, which is the type

we develop, only interacts with the mechanism in an input/output

manner. In contrast, a white-box (aka non-black-box) estimator

needs to know the (pseudo-code) of the mechanism whose privacy

is to be estimated. An orthogonal feature of estimators regarding

generality is whether they estimate only the 𝜀 parameter (aiming

for the less flexible 𝜀-DP) or, as we do in this work, estimate the

full DP-spectrum which quantifies the 𝜀-𝛿 trade off. The latter is

more general, as 𝜀-DP is the same as (𝜀, 0)-DP (setting 𝛿 = 0).

Efficiency is necessary for an estimator to be useful in practice. As

we discuss in Section 2, depending on the actual size of the datasets

and, more intriguingly, the output space of the mechanism whose

privacy is being estimated, certain methodologies that exhaustively

process the output space, such as [5, 6], quickly become impractical,

especially for large output spaces. In fact, to our knowledge, ours is

the first tight, black-box, and theory-backed (𝜀, 𝛿)-DP estimator that

can handle even mechanisms with a large (and even uncountable)

output space. (We offer more comprehensive comparison of our

estimator with existing methods in Section 2, cf Table 1.)

1.1 Our Contributions

We put forth a general framework for constructing and analysing

black-box DP estimators, and propose, analyze, and benchmark a

concrete instantiation. At a high level, the main insight driving our

results is that the task of a black-box DP-spectrum estimator can be

re-cast as a specially-crafted classification problem, which can then

be analyzed and solved by ML techniques. In particular, given a data

set and a (black-box) mechanism, we devise a new classification task

whose optimal classifier can be directly linked to the DP-spectrum

of the mechanism. Thus we can employ tools from the the literature

of this optimal classifier to estimate (theoretically and empirically)

the DP-spectrum of the given mechanism. Concretely, using tools

from statistical learning theory, we are able to obtain tight bounds

on the performance of this optimal classifier, which leads to our

estimator for the DP-spectrum of the black-box mechanism. In the

following we elaborate on some of the main points and techniques,

and give pointers to the paper sections that include the detailed

treatment.

Relative Differential Privacy (Section 4) First, we ask if it is even

possible to efficiently and exactly estimate the (𝜀, 𝛿)-DP-spectrum
of an arbitrary mechanism. The answer is that no efficient black-box

DP estimator can exactly compute the 𝜀-𝛿 privacy trade off.

A straw-man attempt to circumvent the above would be to relax

the “exactness” requirement and aim for an approximate estimator.

Nonetheless, we show that even if we relax the exactness in a very

generous manner to allow both for error probability and for an

approximation factor, the above impossibility cannot be circum-

vented. To this direction, we devise the relaxation of randomized
approximate estimator—i.e., one that with high probability, 1−𝛽 , ap-
proximates the DP parameters of the mechanism up to an (additive)

approximation factor 𝛼 . Unfortunately, as we show in Theorem 4.5,

this relaxation is of little use, as an estimator is also in general

impossible for reasonable parameters 𝛼 and 𝛽 .

A second attempt to circumvent the above impossibility could be

to settle for one of the relaxed definitions of DP from the literature,

such as Renyi DP [9] and (Zero-)Concentrated DP [10, 11]. Unfor-

tunately, they also do not accept efficient black-box estimators. In

fact, one can verify that the proof idea of our impossibility theorem

(Thm. 4.5) applies also to these relaxations.

Motivated by the above, here, we introduce a natural relaxation

of (𝜀, 𝛿)-DP, which we term relative differential privacy (relative

DP for short) (Sec. 4.1), that circumvents the impossibility (and

for which, as we show, an approximate estimator is indeed possi-

ble.) Informally, an (𝜀, 𝛿,T)-relative DP mechanism is one which

satisfies (𝜀, 𝛿)-DP for databases in a given set T . We believe that

such a relaxation is well justified by the key uses of DP in practice:

Typically there are limited datasets that one might have access to,

so requiring DP to apply for any dataset might be overreaching

when it comes to estimating privacy in real-world applications.

In fact, we prove that relative DP has many of the desirable

properties of DP that make it useful in a wide range of applications,

2



more prominently its “future-proofness”. In a nutshell, we prove

in a sequence of results (Proposition 4.8-4.11) that relative DP is

reasonably robust to adding new databases to the set T—informally,

the privacy of the estimated mechanism is never worse than the

privacy of the mechanism on the new set T . Subsequently, we
prove that relative DP preserves the common desirable notions

of DP, namely sequential/parallel composition, and robustness to

post-processing.

(Relative) DP Estimator (see Section 5). Armed with the notion

of relative DP, we then proceed to the task of devising and analysing

a relative DP(-spectrum) estimator, by linking DP to an optimal (i.e.,

Bayes) classifier for a carefully constructed classification problem

that uses the mechanism as a black-box, and the databases in T .
Because we are after a method with theory-backed guarantees, we

focus on the well studied k-Nearest-Neighbor (kNN) algorithm [12];

nonetheless, our methods can be instantiated (in a mostly plug-

and-play manner) by any other classification algorithm to achieve

similar guarantees but different performance.

To help the reader build intuition on the basic principles of our

methodology, we start with the simplest instance of relative DP,

where the set T includes just a single database; we show how to

estimate the privacy of any single given record (i.e., for a specific

pair of neighboring databases). We stress that due to this setting’s

(over)-simplified nature, results in this setting are of-course not par-

ticularly relevant for assessing the privacy of the given mechanism.

Nonetheless, we believe it offers a smoother way to ease into the

ideas of our description and analysis of our general estimator. The

actual result is then derived by removing the above simplification.

In more detail, focusing on the above (oversimplified) setting,

we start by presenting a general method to convert the risk (or

error) of a Bayes/optimal classifier to the 𝛿 privacy parameter of a

DP mechanism (Theorem 5.4). Then, in Lemma 5.6, we convert the

convergence theorem
2
of a classifier to tight bounds on the accuracy

of our relative DP estimator. We apply this lemma to the kNN

classifier in Theorem 5.7. The final step to construct our (relative)

DP estimator is to extend the set T to be any polynomial-size set of

databases. The idea is to employ the above singleton-T algorithms

for each of the databases in T and then use Proposition 4.8 to bound

the parameters with respect to the whole set T . Our main results

are the Algorithms in Figs. 1 and 2 for estimating the relative DP-

spectrum, and the accompanying Theorem 5.10 which proves its

convergence rate to the true relative DP-spectrum.

Distributional Differential Privacy (see Section 6) At the heart

of the nonexistence of an (even approximate) estimator for DP that

we proved is the standard problem in ML classification: The input

distribution of the algorithm whose parameters we are trying to

estimate is completely unknown, and in the worst case, learning

it would require an infeasible number of (or even infinitely many)

samples. In fact, knowledge of the data distribution can be used

to replace the “relative” (to a specific T ) restriction of our treat-

ment. This makes our framework directly applicable to “noiseless”

versions of DP such as the well known Distributional Differential
Privacy (DDP) notion [13]. In a nutshell, these notions propose tak-

ing advantage of the inherent entropy that is included in common

2
A convergence theorem describes the difference between the accuracy of a classifier

(such as kNN), and the accuracy of the theoretical optimal classifier.

datasets to reduce the amount of noise needed to achieve the close-

ness metric of DP (see Section 3.2 for an overview.) We show that,

under the assumption of independently distributed database rows,

our relative DP estimator framework can be employed to estimate

the DDP parameters of a mechanism. To our knowledge, this yields

the first black-box DDP estimator. We believe that both the general

paradigm and the estimator itself are of independent interest to the

ML/AI research, where the question of whether a given algorithm

achieves any meaningful notion of (noiseless) privacy has been

circulating for a long time.

Validating our Theory & Benchmarking our Estimator (see

Section 7). To complement the theory, we validate our (asymptotic)

bounds empirically. Our experiments demonstrate that with a mod-

erate number of samples, we can already showcase the concrete

practicality of our estimator. It is worth noting that in a milestone

result on ML theory, Antos et al. [14] proved that there is no fixed

finite sample-size beyond which one can universally bound the

convergence rate of a Bayes risk estimator. This makes our empiri-

cal validation the ideal, if not only way to validate our theory and

demonstrate that the asymptotic predictions kick in for moderately-

sized samples. (Such an empirical validation of asymptotic theory is

common in both the cryptography/privacy and in theML literature).

The findings of our empirical analysis are described next.

By testing existing DP mechanisms whose privacy can be com-

puted exactly using analytical methods, we demonstrate a (nearly

exact) match of these analytical values and the output of our es-

timator. Theorem 5.7 states the relationship between error and

number of samples—e.g. doubling number of samples decreases

error by 1/
√
2. This relationship allows users who run our estimator

to calculate the number of samples required for a theoretically guar-

anteed desired error. In practice, far fewer samples are needed. Our

algorithm runs in 𝑂 (𝑚𝑛), where𝑚 is the number of neighboring

databases tested (this is a necessary dependency to estimate any

mechanism, since a mechanism’s behavior on different databases

can vary drastically) and 𝑛 is the number of samples. Furthermore,

achieving cryptographically small error in 𝛿 is feasible: our eval-

uation with 𝛿 = 10
−5

error needs just 2
26

samples which takes 10

minutes using a simple textbook implementation of kNN. In addi-

tion, we provide experiments for SVT, a popular mechanism with

various (sometimes incorrect) implementations. Our privacy esti-

mates are comparable to the state-of-the-art estimates which use

a specialized algorithm aimed towards mechanisms with limited

output space (as it iterates over this space) [8].

The combination of theoretically and concretely tight accuracy

bounds means our estimator can reveal the full privacy spectrum of

a mechanism. By quantifying the 𝜀, 𝛿 privacy parameter trade-off

(under a set of databases), we can not only verify the correctness

of a mechanism’s implementation, but also compare the privacy of

two different mechanisms.

2 RELATEDWORK

Below, we discuss previous work on privacy estimators, categoriz-

ing them by their method.
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Access toM M with large

output space

Accuracy Methods

StatDP [5] Semi-black-box No Lower bounds Hypothesis testing

DP-Finder [6] White-box No Lower bounds Sampling and optimzation

DP-Sniper [7] Black-box Yes Lower bounds Classifier

DPL [15] Black-box Yes Lower bounds Kernel Density estimator

ADP-Estimator [8] Black-box No Upper and lower bounds Distribution estimator

Our Work Black-box Yes Upper and lower bounds Classifier (e.g., kNN)

Table 1: Summary of comparisons between our work and previous works.

Programming Language-based methods. This line of

works [1–4] uses language-based methods to automatically ver-

ify whether or not a mechanism satisfies certain level of differen-

tial privacy. These methods require white-box access to the tested

mechanism—such as access to the tested mechanism’s code, even

requiring manual annotations on the code. They are particularly

useful in formally verifying if the implementation of some known

mechanisms is correct or buggy. In particular, these estimators au-

tomatically search and infer proof of the DP property for the tested

mechanism, hence the result (satisfying DP or not) can be very

accurate if they do succeed. However, automated verification may

sometimes fail to complete its task to verify the mechanism’s DP

parameters. For example, [4] reports that LightDP [1] is unable to

disprove faulty variants of PrivTree [16], because the variants have

a probabilistic main loop that terminates eventually but its number

of iterations can’t be bounded. The main advantage of our work

compared to this line of works is that we pursue a probabilistic, data-

driven, and black-box approach, and thus can be applied to general

mechanisms, even proprietary software or heuristic attempts by

ML researchers, without access to the mechanism’s code.

Probabilistic testing methods.This line of works [5–8, 15]

uses statistical tools and is based on sampling the mechanism’s

inputs/outputs. Specifically, the works [5–7, 15] focused on the

task of lower-bounding the DP parameter of a mechanism—that is,

asserting that the tested mechanism cannot achieve (beyond a) cer-

tain level of differential privacy. The core challenge then is to find

a witness of the DP violation for privacy parameters beyond this

level. StatDP [5] requires semi-black-box access to the tested mech-

anism, as one of its post-processing requires running the tested

mechanism on input data without any noise. DP-Finder [6] requires

the tested mechanism’s algorithm (which it relies on white-box ac-

cess to) to be differentiable, so that excludes common operations

such as arbitrary loops or hash functions. This requirement consid-

erably limits the class of mechanisms the method applies to, and

excludes common differential private techniques such as SVT [17]

and Randomized Response [18]. DP-Sniper [7] and the most recent

work DPL [15] use the black-box approach and are designed for

general mechanisms. DPL [15] improves upon DP-Sniper [7] by

avoiding the process of “event selection”—a major obstacle to find-

ing privacy violation witness. This is achieved via a method called

kernel density estimation. However, similar to all the above works

in this thread, DP-Sniper and DPL aim to test the 𝜀-DP property, and

constructs algorithms that find only a lower bound of the privacy
parameter 𝜀 for the tested mechanism on neighboring databases.

In comparison, the main goal of our work is to provide a tight

characterization (i.e., both upper and lower bounds) on both the 𝜀

and 𝛿 privacy parameters.

ADP-Estimator [8] aims to test the (𝜀, 𝛿)-DP property for a mech-

anism, and discuss the relationship between the accuracy in esti-

mated privacy parameters and the number of samples required.

While the goals of our work align with that of [8], our approach

is vastly different. ADP-Estimator presents one specific method

of empirically estimating the mechanism’s output distributions

for a single pair of neighboring databases. In comparison, we de-

velop a general framework that gives a formal treatment of the DP

parameter-estimation problem and links it to the rich ML theory on

classification algorithms, hence our method can derive a family of

privacy estimators by using different classifiers in a plug-and-play

manner. In addition, the ADP-Estimator [8] is limited: by enumerat-

ing the tested mechanism’s output space, their algorithm requires

this space to be a finite (and small) set. In contrast, our estimator

instantiation using kNN classifier does not have such limitations.

As further evidence of our method’s advantage, we estimate the

Gaussian mechanism (Section 7), which hadn’t been reported by ei-

ther DP-Sniper and DPL (they only aim to 𝜀-DP) or ADP-estimator

(it is inefficient to test mechanism with large output space).

Machine Learning for DP The connection between machine

learning and DP estimation has recently attracted attention in the

ML/AI literature. A recent line of works [19–22] investigated a con-

nection between DP and empirically estimatable statistical distance.

In a nutshell, the goal of these works is to bound the distinguishing

advantage between distributionsM(𝐷) andM(𝐷 ′) (which directly
relates to their statistical distance) for a DP mechanismM and a

pair of (neighboring) database 𝐷 and 𝐷 ′. Specifically, given a (𝜀, 𝛿)-
DP mechanism, these works upper bound the statistical distance

betweenM(𝐷) andM(𝐷 ′) . This in turn implies a lower bound on

𝛿 as a function of 𝜀 and the statistical distance betweenM(𝐷) and
M(𝐷 ′). In contrast, our results use a pair of carefully crafted distri-

butions (not𝑀 (𝐷) and𝑀 (𝐷 ′)) which allows us build an exact link

between the DP-spectrum and a Bayes optimal risk. By then estimat-

ing this risk nonparametrically, we are able to get tight statistical

upper and lower bounds on the achievable 𝛿 parameter for every

given 𝜀, hence giving an accurate characterization of the entire DP-

spectrum. Devising and analyzing these new distributions—and the

connection to the DP-spectrum—is a key novelty here and can be

seen as a non-trivial extension of Le Cam’s (lower-only) bound [23]:

we present equality rather than just a lower bound, which we can

use to tightly bound (both upper and lower) the accuracy of our

estimate of 𝛿 for every given 𝜀.

4



Lastly, Gilbert and McMillan [24] discuss the lower bound of the

sample complexity of verifying whether some specific (𝜀, 𝛿)-DP
is satisfied. Their work is useful to answer what type of privacy

parameter verification task is feasible. In contrast, our work devises

a concrete method of tightly estimating (relative) differential privacy.
To achieve this, we also develop sample complexity results which

are orthogonal to [24].

3 PRELIMINARIES

We introduce the privacy definitions for whichwewill construct our

privacy estimators. Moreover, we introduce relevant background

on classifiers, in particular the kNN classifier.

3.1 Differential Privacy

Informally, differential privacy (in short, DP) [25] is defined via

an experiment between a query party 𝑃 and a curator 𝐶 , who has

access to a database 𝐷 . 𝑃 wishes to make a query𝑄 on the database,

and𝐶 wants to answer this query in a way that protects the privacy

of any individual record. This property is achieved by𝐶 using a ran-

domized algorithm, akamechanism, to answer 𝑃 ’s queries, in a way

that does not destroy accuracy—i.e., the outcome of the mechanism

is not too far from the true answer to the query—while respecting

the privacy of any individual record 𝑋 ∈ 𝐷— i.e., 𝑃 (or in fact any

𝑃 ′ with arbitrary side-information on the database) has only a small

chance in telling weather or not𝑋 was used in answering the query.

To make this formal, we state here the definition of DP (cf. [26] for

an excellent treatment of DP and its properties.)

Definition 3.1 (Mechanism). Let U be the set of all possible

database records. Let X = U∗ be the set of all databases where

each database row is fromU. Let O be the set of all possible output

strings. Then a mechanismM := X ↦→ O is a (randomized) algo-

rithm that takes as input a database from the input space X, and
produces an output from the output space O.

In DP, we are interested in whether our mechanism reveals

information on individual database records. Thus, we consider the

output of our mechanism on pairs of databases called neighbors,
where one neighbor contains a particular individual record, and

the other does not.

Definition 3.2 (Neighboring Databases). A pair of databases

𝐷, 𝐷 ′ ∈ X is neighboring, denoted 𝐷 ≃ 𝐷 ′ if 𝐷 ′ can be obtained

from 𝐷 by removing one row.

A mechanism is DP if its output given a database is similar to its

output given the database’s neighbor.

Definition 3.3 (Differential Privacy (DP) [25]). A mechanism

M := X ↦→ O is (𝜀, 𝛿)-differentially private if for all subset S ⊆ O
and for all neighboring databases 𝐷 ≃ 𝐷 ′:

Pr[M(𝐷) ∈ S] ⩽ 𝑒𝜀𝑃𝑟 [M(𝐷′) ∈ S] + 𝛿,

and

Pr[M(𝐷′) ∈ S] ⩽ 𝑒𝜀𝑃𝑟 [M(𝐷) ∈ S] + 𝛿.

where the probability space is over the coin flips of the mechanism

M. If 𝛿 = 0, we say thatM is 𝜀-differentially private.

3.2 Distributional Differential Privacy (DDP)

The above DP definition is broadly used, but might be inapplicable

in cases where utility degrades rapidly even with small noise, such

as machine learning with deep networks, whose performance is

sensitive to noise in the data. Distributional differential privacy
(DDP) [13].3 was suggested as an alternative to DP that can treat

such cases. The idea here is that we might often be willing to make

an assumption about the entropy (inherent randomness) of the

database; in this case, we might be able to avoid using (too much)

extra randomness/noise in the mechanism, and instead, rely on

this internal randomness of the data to achieve similar privacy

guarantees as DP with less to no hit on the output’s accuracy. More

concretely, in DDP, instead of considering fixed databases 𝐷 , we

consider databases as random variables (r.v.’s) from a distribution

𝜋 . We denote by 𝐷−𝑖 as the random variable that is the same as

database 𝐷 , but without its 𝑖th row. Denote by 𝐷𝑖 the 𝑖th row

of 𝐷 . We denote by Supp(·) as the support of a random variable.

Informally, a mechanismM is DDP for some distribution 𝜋 and

auxiliary information 𝑧 if its output on some database (r.v.) can be

approximated by a function ℎ without being given the 𝑖th row of

this database.

Definition 3.4 (Distributional differential privacy (DDP) [13]).
A mechanismM is (𝜀, 𝛿,Δ)-distributional differentially private if
there is a function ℎ4 such that for all (𝜋, 𝑍 ) ∈ Δ, 𝐷 ∼ 𝜋 , for all 𝑖 ,

(𝑥, 𝑧) ∈ Supp(𝐷𝑖 , 𝑍 ), and all sets S ⊆ Range(M),
Pr

𝐷∼𝜋
(M(𝐷) ∈ S |𝐷𝑖 = 𝑥,𝑍 = 𝑧)

⩽𝑒𝜀 Pr

𝐷∼𝜋
(ℎ (𝐷−𝑖 ) ∈ S |𝐷𝑖 = 𝑥,𝑍 = 𝑧) + 𝛿,

and

Pr

𝐷∼𝜋
(ℎ (𝐷−𝑖 ) ∈ S |𝐷𝑖 = 𝑥,𝑍 = 𝑧)

⩽𝑒𝜀 Pr

𝐷∼𝜋
(M(𝐷) ∈ S |𝐷𝑖 = 𝑥,𝑍 = 𝑧) + 𝛿.

In the case of distributions 𝜋 with independently distributed

rows, and when 𝑍 = ∅ (there is no auxiliary information), we can

greatly simplify the above definition of DDP.

Definition 3.5 (Simplified DDP). Let Δ be a set of distributions

on databases where each row is independently distributed. For any

𝜀 > 0 and 𝛿 > 0, a mechanism M is (𝜀, 𝛿,Δ)-DDP if for every

𝜋 ∈ Δ, 𝑖 ⩽ 𝑛, 𝑥, 𝑥 ′ ∈ U, and S ⊆ Range(M), the following

inequality holds.

Pr𝐷∼𝜋 (M(𝐷) ∈ S |𝐷𝑖 = 𝑥)
⩽𝑒𝜀 Pr𝐷∼𝜋 (M(𝐷) ∈ S |𝐷𝑖 = 𝑥′) + 𝛿,

The work of Liu et al. [30] shows that the definition above is

equivalent to DDP under the simplifying assumption of indepen-

dent rows and no auxiliary information, as is common in machine

learning.

Lemma 3.6 (Eqivalence of definitions [30]). We denote
Def. 3.4 as the simulation-based DDP5. For any U, let Δ be a set

3
We focus here on DDP but we believe our approach applies also to alternative type

of noisless privacy [27–29].

4
In [13] ℎ is called the simulator in the sense that ℎ “simulates" missing 𝑖th row of 𝐷 ,

and following notation from a similar concept in security. However, to avoid confusion

we simply refer to ℎ as a function.

5
(1) Following the notation in [13]. (2) Although the lemma in [30] is stated with

respect to i.i.d. database rows, an inspection of the proof shows only independence of

the rows is required.
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of distributions on databases where each row is independent, and
Δ′ = (Δ, 𝑍 = ∅). SupposeM is (𝜀, 𝛿,Δ′)-simulation-based DDP, then
M is (2𝜀, (1+𝑒𝜀 )𝛿,Δ)-DDP for our Definition 3.5. Conversely, ifM is
(𝜀, 𝛿,Δ)-DDP for Definition 3.5 thenM satisfies (𝜀, 𝛿,Δ′)-simulation-
based DDP.

3.3 Classification Algorithms

Our treatment uses concepts and results from machine learning

(ML) theory to construct our privacy estimator and prove (tight)

bounds on its accuracy, i.e., how well it estimates optimal pairs

(𝜀, 𝛿) for the (D)DP definitions. For completeness, here we recall

the necessary basic machine learning (ML) background to interpret

our results.

Let O denote the observation space, and let the label (or pre-

diction) space be Y = {0, 1} (e.g., outputting 0 means the clas-

sifier predicts the observation is from one distribution and out-

putting 1 means the classifier predicts the other distribution).

Let P be a joint distribution with the support of O × Y, where
O ×Y := {(𝑜, 𝑏) : 𝑜 ∈ O, 𝑏 ∈ Y} is a concatenation set. Let I(𝑏,𝑦)
be the inequality predicate, i.e., the indicator function outputs 1 if 𝑏

is not equal to 𝑦, otherwise 0.

A classifier ℎ : O ↦→ Y (also called a classification algorithm) is a

function from the observation space O to the prediction space Y.
For every observation 𝑜 ∈ O, ℎ outputs a bit 𝑏 ∈ Y indicating that

ℎ predicts 𝑜 has label 𝑏.

A risk function 𝑅 is defined with respect to a distribution P on

observables—in fact, it is easier to think of P as a joint distribution

of pairs of the type (𝑥,𝑦) where 𝑥 is an observation and 𝑦 is its

label. 𝑅 takes a classifier ℎ as input, and computes the probability

that a sample drawn from P is mistakenly classified—i.e., assigned

the wrong label—by ℎ; equivalently, 𝑅 computes the expectation of

the above inequality predicate. Formally:

𝑅 (ℎ) = Pr

(𝑥,𝑦)∼P
[I (ℎ (𝑥), 𝑦) = 1] = E

(𝑥,𝑦)∼P
[I (ℎ (𝑥), 𝑦) ] .

We note that in a given application context, the risk 𝑅(ℎ) is
typically impossible to compute, as the distribution P is unknown.

However, viewing risk 𝑅(ℎ) as the expectation of the random vari-

able I(ℎ(𝑥), 𝑦), allows us to derive a good estimator for it: the

testing risk 𝑅𝑚 (ℎ) which is defined as the average on a set of in-

dependent samples ((𝑥1, 𝑦1), · · · , (𝑥𝑚, 𝑦𝑚)) ∼ P𝑚 . (We make the

sampling process ((𝑥1, 𝑦1), · · · , (𝑥𝑚, 𝑦𝑚)) ∼ P𝑚 implicit when it

is clear from context). Formally:

𝑅̂𝑚 (ℎ) =
1

𝑚

𝑚∑︁
𝑖=1

I(ℎ (𝑥𝑖 ), 𝑦𝑖 ),

In particular, a well-known result using Hoeffding’s inequality

allows us to gauge, up to an error probability 𝛾 , how close 𝑅𝑚 (ℎ)
is to the true risk 𝑅(ℎ):

Theorem 3.7 (Hoeffding’s Ineqality [31]). With proba-
bility 1 − 𝛾,

|𝑅̂𝑚 (ℎ) − 𝑅 (ℎ) | ⩽
√︄

1

2𝑚
ln

2

𝛾
.

Bayes (optimal) classifiers. A Bayes (optimal) classifier ℎ∗ with
respect to P is a classifier that has the minimal risk 𝑅(ℎ∗) among

all the classifiers (with respect to the same P .)

The kNN Classifier. Unfortunately, for the same reason we can

not compute 𝑅—i.e., because P is typically unknown
6
—we can also

not construct the Bayes classifier ℎ∗. Nonetheless, the ML theory

provides us with several “reasonable” classifiers that achieve both

good performance, and are close to optimal. One such classifier

which is well understood and thoroughly studied in the field of pat-

tern recognition is the 𝑘-Nearest Neighbor (kNN) classifier—which
we use in our paper as a concrete instantiation of our framework.

To construct a kNN classifier ℎNN
𝑘,𝑛

with 𝑛 samples, we simply sam-

ple and store 𝑛 training points ((𝑥1, 𝑦1), · · · , (𝑥𝑛, 𝑦𝑛)) ∼ P𝑛 . To
predict the label of an observation 𝑜 ∈ O, ℎNN

𝑘,𝑛
returns the label

taking a majority vote of the class labels of its 𝑘 nearest neighbors

(according to the distance function defined on the space) in the

stored training points:

ℎNN
𝑘,𝑛
(𝑜) =


1

𝑘

∑︁
𝑖∈[𝑘 ]

𝑏𝑖

 ,
where 𝑏𝑖 is the label of the 𝑖-th nearest neighbor of 𝑜, and ⌊·⌉ is an
operator rounding to nearest integer.

The following convergence result for kNN gauges how close

the true risk 𝑅(ℎNN
𝑘,𝑛
) of the kNN classifier ℎNN

𝑘,𝑛
is to the risk of the

optimal classifier, 𝑅(ℎ∗).
Theorem 3.8 (Convergence of k-Nearest Neighbor

Classifier [12]). LetP be a joint distribution with supportO×Y . If
the conditional distribution P|Y has a density, O ⊆ R𝑑 , and 𝑘 =

√
𝑛,

then for every 𝛼 > 0 there is an 𝑛0 such that for 𝑛 > 𝑛0,

Pr[ |𝑅 (ℎNN
𝑘,𝑛
) − 𝑅 (ℎ∗) | > 𝛼 ] ⩽ 2𝑒

−𝑛𝛼2/(72𝑐2
𝑑
)
,

where 𝑐𝑑 7 is the minimal number of cones centered at the origin of
angle 𝜋/6 that cover R𝑑 . Note that if the number of dimensions 𝑑 is
constant, then 𝑐𝑑 is also a constant.

Notes on using kNN: The astute reader may observe that we

require a technical assumption on density when using kNN as our

classifier. This is standard assumption in the ML literature and es-

sentially amounts to the observable being smoothly varying. One

can easily generalize this to, e.g., also discrete observables because

a discrete distribution can be approximated arbitrarily closely by a

smooth distribution in one dimension. This means the Bayes opti-

mal risk between the two discrete distributions is arbitrarily close

to the Bayes optimal risk between the two arbitrarily close smooth

approximations. Furthemore, mechanisms that noise their output

via a distribution with density (e.g., Laplace, Gaussian), automati-

cally satisfy the smoothness condition on the density. The reader

may also observe that the term 𝑐𝑑 in Thm. 3.8 implies our results

depend on the dimensionality of the mechanism’s output (which

we indeed see in Thm 5.7). This ‘curse’ of output-dimensionality

will be inherent to any DP estimator due to the direct connection

between classifier risk and DP parameters. Nonetheless, many ap-

plications exist, such as private counting/range queries and ML

data aggregation mechanisms, where output dimension is small. In

fact, evidence shows mechanisms with large output dimensionality

are typically less accurate (e.g., the private mechanisms [32, 33] for

deep learning reduce dimensionality via PCA).

6
In a typical ML classification experiment, one is able to observe values sampled from

P but does not know the actual distribution.

7
By Lemma 5.5 of [12], 𝑐𝑑 satisfies 𝑐𝑑 ⩽ (1 + 2/

√︁
2 −
√
3)𝑑 − 1.
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4 RELATIVE DP: MOTIVATION AND

DEFINITION

In this section, we will first give an intuitive definition of a perfect

and approximate DP estimator. Then, we will motivate relative DP
with an impossibility result: A black-box poly-time (approximate)

estimator for differential privacy parameters with tight bounds on

accuracy does not exist. Informally, we define a privacy estimator as

an algorithm which, given a mechanismM and an 𝜀 value, outputs

a 𝛿 for which it believesM is (𝜀, 𝛿)-DP (symmetrically, it can also

be given 𝛿 and be asked to estimate 𝜀). An estimator with tight

accuracy bounds (𝛼, 𝛽) means its output 𝛿 will be at most 𝛼-far

from the optimal solution with probability 1 − 𝛽 . In other words, it

gives a known probability of success, and an upper and lower bound

on its output’s closeness to the true privacy of the mechanism.

Below, we first define the notion of optimal 𝛿 given any 𝜀 and

mechanismM. Note this optimal 𝛿 is a point in the DP-spectrum

discussed in the introduction. We also define the quantity 𝛿𝐷,𝐷′

which is the optimal 𝛿 with respect to a single, fixed pair of (neighbor-
ing) databases𝐷, 𝐷 ′. Looking ahead in the next section, we will first

tackle the easier problem of estimating 𝛿𝐷,𝐷′ (Section 5.1), before

tackling the harder problem of estimating 𝛿 itself (Section 5.2).

Definition 4.1 (Optimal 𝛿). LetM be a mechanism, 𝐷, 𝐷 ′ be
databases, and 𝜀 ∈ R⩾0 be a privacy parameter. We say the privacy

parameter 𝛿𝐷,𝐷′ is optimal (minimal) with respect to the tuple

(M, 𝐷, 𝐷 ′, 𝜀) if
𝛿𝐷,𝐷′ = max(max

S⊆O
Pr[M(𝐷) ∈ S] − 𝑒𝜀 Pr[M(𝐷′) ∈ S], 0) .

We say the privacy parameter 𝛿 is optimal (minimal) with respect

to the tuple (M, 𝜀) if
𝛿 = max

𝐷≃𝐷′
{
max(𝛿𝐷,𝐷′ , 𝛿𝐷′,𝐷 )

}
.

Then, we define a (perfect) DP estimator, which, given a mecha-

nismM and one of the privacy parameters 𝜀, outputs the optimal

𝛿 such thatM is (𝜀, 𝛿)-DP.

Definition 4.2 (Perfect DP Estimator). Let C = X ↦→ O be the

set of poly(log |X|)-time mechanisms, M ∈ C be a mechanism

from the set C, 𝜀 ∈ R⩾0 be a privacy parameter. An algorithm is

a Perfect DP Estimator for C, if for every (M, 𝜀), with black-box

access toM, the algorithm outputs the optimal 𝛿 with respect to

the tuple (M, 𝜀).

Unfortunately, a perfect DP estimator does not exist. In fact, we

can show something even stronger—even an approximate version

of a DP estimator (Def. 4.4) still does not exist (Theorem 4.5). Intu-

itively, this is because a general estimator would need to test the

DP property for all pairs of databases—an impossible task for a

polynomial-time algorithm if the number of databases in the mech-

anism’s domain is super-polynomial. The proof of the theorem

follows the above intuition and can be found in Appendix A.

Definition 4.3 (𝛼-tight bound). LetM be a mechanism, 𝐷,𝐷 ′

be databases, and 𝜀 ∈ R⩾0 be a privacy parameter. We say 𝛿 ′
𝐷,𝐷′ is

a 𝛼-tight bound with respect to (M, 𝐷, 𝐷 ′, 𝜀) if

|𝛿′
𝐷,𝐷′ − 𝛿𝐷,𝐷′ | ⩽ 𝛼,

where 𝛿𝐷,𝐷′ is optimal with respect to (M, 𝐷, 𝐷 ′, 𝜀).

Similarly, we say 𝛿 ′ is a 𝛼-tight bound with respect to (M, 𝜀) if
|𝛿′ − 𝛿 | ⩽ 𝛼,

where 𝛿 is optimal with respect to (M, 𝜀) .
Definition 4.4 (Approximate DP Estimator). Let C = X ↦→ O

be the set of poly(log |X|)-time mechanisms,M ∈ C be a mecha-

nism from the set C, 𝜀 ∈ R⩾0 be a privacy parameter. An algorithm

is a (𝛼, 𝛽)-Approximate DP Estimator for C, if for every (M, 𝜀),with
black-box access toM, with probability at least 1 − 𝛽 , it provides
𝛼-tight bound with respect to the tuple (M, 𝜀), where 𝛼, 𝛽 ∈ [0, 1).

Theorem 4.5. Let 𝛼 ∈ [0, 1
2
) and 𝛽 ⩾ 1

2
+ 𝜈 (𝑛), where 𝜈 is a non-

negligible function. Let C = {0, 1}𝑛 ↦→ O be the set of poly(𝑛)-time
mechanisms. There doesn’t exist a poly(𝑛)-time (𝛼, 𝛽)-Approximate
DP Estimator for C.

One can verity that the above impossibility also applies to com-

mon relaxations of DP from the literature, such as Renyi DP [9]

and (Zero-)Concentrated DP [10, 11]. Intuitively, the reason is the

following: if to test a mechanism’s property (in the worse case) we

need to test the property for all pairs of the mechanism’s input, and

the number of pairs is unbounded, then we cannot have an efficient

algorithm for this task. This intuition, which is at the core of the

proof of Theorem 4.5, applies also to the above variants, and points

to the idea that in order to circumvent our impossibility, it seems

necessary to bound the size of the mechanism’s input space, which

motivates the relative-DP relaxation detailed in the following.

4.1 Relative Differential Privacy

In view of the impossibility stated in Theorem 4.5, we ask: “Is

there a meaningful/useful relaxation to differential privacy that

allows us to circumvent this impossibility?" Using a similar argu-

ment as Thm. 4.5, we can also show that the impossibility also

applies to well-known relaxations of DP such as Renyi DP [9] and

(Zero-)Concentrated DP [10, 11]. To answer the above question

in affirmative, we introduce relative differential privacy, which we

believe is a minimal (in terms of intuitive distance from DP) and

useful definition. Relative DP considers the privacy of a mechanism

relative to a set of databases. As discussed in our introduction, this

models the case where the mechanism will only be applied to a

limited number of databases, such as the database of census results

in 2020 Census in the United States [34]. Informally, a mechanism

is (𝜀, 𝛿,T)-relative DP if on domain restricted to T , the mechanism

is (𝜀, 𝛿)-DP.
Recall, we defined ‘neighboring’ (Def. 3.2) as ‘remove one row’

rather than ‘remove-or-add one row’, so that the number of neigh-

bors of a database does not depend on the domain of each database

row. This modification did not change the original DP definition,

but allows our Thm 5.10 to circumvent impossibility Thm 4.5 for

superpolynomial-size domains in our relative DP definition.

Definition 4.6 (𝜀, 𝛿,T -relative Differential Privacy). A mecha-

nismM := X ↦→ O is (𝜀, 𝛿,T)-relative differentially private if for

all subset S ⊆ O and all neighboring databases 𝐷 ≃ 𝐷 ′ : 𝐷 ∈ T :

Pr[M(𝐷) ∈ S] ⩽ 𝑒𝜀𝑃𝑟 [M(𝐷′) ∈ S] + 𝛿,
and

Pr[M(𝐷′) ∈ S] ⩽ 𝑒𝜀𝑃𝑟 [M(𝐷) ∈ S] + 𝛿.

where the probability space is over the coin flips of mechanismM.
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To further motivate the definition of relative DP, we also show

it satisfies several useful properties (such as composition (Prop. 4.9,

and 4.10) and post-processing (Prop. 4.11)), that are comparable to

those of classical DP. The proofs of the following propositions can

be found in Appendix B.

It is clear to see that relative DP and DP are the same, if T is

the same as the domain of the mechanism. Moreover, a mechanism

that is private for T1 and T2 is also private for T1 ∪ T2 (T scalable).

Proposition 4.7. If the mechanismM is (𝜀, 𝛿,T)-relative dif-
ferentially private and T = X, then the mechanism M is (𝜀, 𝛿)-
differentially private.

Onemight be worried that by providing such a relative version of

DP, wemight be creating a privacy notion thatmelts down once new

databases are added to the mix. The following proposition shows

that this is not the case for relative DP, as long as the mechanism

behaves well on the new database. Note that this requirement also

exists in DP, where parallel composition also takes the max of the

privacy of all composed mechanisms.

Proposition 4.8. [T Scalable] If the mechanism M is
(𝜀1, 𝛿1,T1)-relative differentially private, · · · , and (𝜀𝑘 , 𝛿𝑘 ,T𝑘 )-
relative differentially private, then the mechanism is also(
max

𝑖∈[𝑘 ]
𝜀𝑖 , max

𝑖∈[𝑘 ]
𝛿𝑖 ,

⋃
𝑖∈[𝑘 ]

T𝑖

)
- relative DP.

Relative DP also enjoys the same convenient guarantees as

DP: parallel composition, sequential composition, as well as post-

processing.

Proposition 4.9. [Parallel Composition] Let T1 × T2 be the
concatenation of set T1 and T2, that is, T1 × T2 = {(𝐷1, 𝐷2) :

𝐷1 ∈ T1 ∧ 𝐷2 ∈ T2}. If M1, · · · ,M𝑘 are 𝑘 mechanisms,
where M𝑖 satisfies (𝜀𝑖 , 𝛿𝑖 ,T𝑖 )-relative differential privacy, then
the mechanism M taking database (𝐷1, · · · , 𝐷𝑘 ) ∈ T1 ×
· · · × T𝑘 as inputs and outputting (M1 (𝐷1), · · · ,M𝑘 (𝐷𝑘 )) is(
max

𝑖∈[𝑘 ]
𝜀𝑖 , max

𝑖∈[𝑘 ]
𝛿𝑖 ,T1 × · · · × T𝑘

)
-relative DP.

Proposition 4.10. [Sequential Composition] IfM1, · · · ,M𝑘

are 𝑘 mechanisms, where M𝑖 satisfies (𝜀𝑖 , 𝛿𝑖 ,T)- relative differ-
entially privacy, then the mechanism M := (M1, · · · ,M𝑘 ) is( ∑
𝑖∈[𝑘 ]

𝜀𝑖 ,
∑

𝑖∈[𝑘 ]
𝛿𝑖 ,T

)
- relative DP.

Proposition 4.11. [Post-processing] IfM1 is a mechanism that
satisfies (𝜀, 𝛿,T)-relative differentially privacy, then for any (random-
ized) algorithm 𝑓 , the mechanismM := 𝑓 (M1) is (𝜀, 𝛿,T)-relative
differentially private.

5 (RELATIVE) DP ESTIMATOR

In this section we define and analyse our (relative) privacy estimator.

As discussed in the introduction, we start (in Section 5.1) with the

simple case of |T | = 1 and in particular with one fixed pair of

databases. Although this is clearly not particularly relevant for a

general privacy definition, it still offers an interesting ball field for

introducing our main ideas, and allows us a smooth transition to our

general estimator which is described and analyzed in Section 5.2.

5.1 Estimating 𝛿 for a pair of databases

As the first step in defining our privacy estimator, we narrow the

definition of a privacy estimator to define a privacy estimator for

a single pair of neighboring databases. We construct a class of

concrete privacy estimator algorithms AB
C by relating the privacy

parameter 𝛿 to the risk (or error) of a classification algorithm 𝐵

(Theorem 5.4). Inheriting tight bounds on risk from the classification

algorithm’s convergence theorem, we show in Theorem 5.7 (using

the kNN classification algorithm as example), that our privacy

estimator algorithm also enjoys tight accuracy bounds.

Our results in this section show that, despite the impossibility of

general DP estimator and the lack of tight bounds in previous work,

it is indeed possible to construct relative DP estimators with tight

accuracy bounds. In the next section, we will extend algorithmAB
C

of this section to construct a privacy estimator for any (𝜀, 𝛿,T)-
relative DP mechanism.

5.1.1 Privacy Estimator for a Pair of Databases. First, we define a
perfect 𝛿 estimator for a pair of databases. Informally, this estimator

must always output the optimal 𝛿 (see Def. 4.1).

Definition 5.1 (Perfect 𝛿-Estimator for a Pair of Databases).
Let C = X ↦→ O be the set of poly(log |X|)-time mechanisms.

M ∈ C be a mechanism from the set C. 𝐷, 𝐷 ′ be databases, 𝜀 ∈ R⩾0
be a privacy parameter. An algorithm is a Perfect 𝛿-Estimator for

a Pair of Databases for C if for every (M, 𝐷, 𝐷 ′, 𝜀) with black-box

access toM, the algorithm outputs the optimal 𝛿𝐷,𝐷′ with respect

to the tuple (M, 𝐷, 𝐷 ′, 𝜀) .
However, a perfect estimator for a pair of databases does not

exist—by our Theorem 5.4 below, a perfect estimator would im-

ply the existence of an optimal classifier achievable with limited

training samples. Thus, we define below an approximate estimator

Def. 5.2, with similar approximation parameters 𝛼 and 𝛽 as for the

approximate DP privacy estimator Def. 4.4.

Definition 5.2 (Approximate 𝛿-Estimator for a Pair of
Databases). Let C = X ↦→ O be the set of poly(log |X|)-time

mechanisms, M ∈ C be a mechanism from the set C, 𝐷, 𝐷 ′ be
databases, 𝜀 ∈ R⩾0 be a privacy parameter. An algorithm is a

(𝛼, 𝛽)-Approximate 𝛿-Estimator for a Pair of Databases for C if

for every (M, 𝐷, 𝐷 ′, 𝜀), with black-box access toM, with probabil-

ity at least 1− 𝛽 , it provides 𝛼-tight bound with respect to the tuple

(M, 𝐷, 𝐷 ′, 𝜀), where 𝛼, 𝛽 ∈ [0, 1).
5.1.2 Relating Privacy Parameter 𝛿 to Risk of the Bayes Classifier.
Now we have defined an approximate privacy estimator with re-

spect to a pair of databases (Def. 5.2), we present our construction

of such an estimator. The basis of our estimator is a connection

between the definition of DP and the risk of a Bayes Classifier,

described in Theorem 5.4 below.

For a mechanismM, a database 𝐷 , and privacy parameter 𝜀, let[
M(𝐷)

]
𝜀
denote the random variable obtained by tossing a biased

coin 𝑐 where Pr[𝑐 = 1] = 𝑒−𝜀 , and receiving valueM(𝐷) if 𝑐 = 1 or

receiving value ⊥ (a null value not in the range ofM) otherwise.

Definition 5.3 (The distribution P(M,𝐷,𝐷′,𝜀) ). Let P(M,𝐷,𝐷′,𝜀) de-
note the distribution of a random variable, which is obtained by

tossing a fair coin 𝑏, and receiving tuple (M(𝐷 ′), 1) if 𝑏 = 1 or

receiving value (
[
M(𝐷)

]
𝜀
, 0) otherwise.
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The proof of the theorem below (App. C) is based on the fact that

𝛿 in (𝜀, 𝛿)-(relative) DP can be re-written in terms of a statistical
distance8 between two random variables. The difference between

the DP definition and statistical distance is that in DP, one of the

probabilities is scaled by 𝑒𝜀 . This means we can re-write 𝛿𝐷,𝐷′

in terms of the statistical distance between two r.v.’sM(𝐷 ′) and[
M(𝐷)

]
𝜀
(which, intuitively, ‘scales’ the distribution ofM(𝐷) by

1/𝑒𝜀 ). Then, the theorem follows from the connection between

statistical distance and the accuracy (or risk) of the optimal (or

Bayes) classifier.

Theorem 5.4 (Mechanism Privacy as Bayes Classifier Risk).

LetM be a mechanism, 𝐷,𝐷 ′ be databases, and 𝜀 ∈ R⩾0 be a privacy
parameter. Let ℎ∗

𝐷,𝐷′ be the Bayes classifier for P(M,𝐷,𝐷′,𝜀) (Def. 5.3,
abbreviated as P below). The optimal delta 𝛿𝐷,𝐷′ with respect to the
tuple (M, 𝐷, 𝐷 ′, 𝜀) satisfies the following equality

𝛿𝐷,𝐷′ = max

(
1 − 2𝑒𝜀𝑅 (ℎ∗

𝐷,𝐷′ ), 0
)
,

Corollary 5.5. Let the mechanismM, privacy parameter 𝜀, dis-
tribution

[
M(𝐷)

]
𝜀
, and the Bayes classifier ℎ∗

𝐷,𝐷′ defined the same
as that in Theorem 5.4. Let 𝐷 ≃ 𝐷 ′ be a neighboring databases pair.
The optimal 𝛿 with respect to the tuple (M, 𝜀) satisfies the equality

𝛿 = max

𝐷≃𝐷′

{
max(1 − 2𝑒𝜀𝑅 (ℎ∗

𝐷,𝐷′ ), 1 − 2𝑒
𝜀𝑅 (ℎ∗

𝐷′,𝐷 ), 0) }

5.1.3 Privacy Estimator for Neighboring Databases with Tight Accu-
racy Bounds. In this section, we take advantage of the connection

between DP and the risk of the Bayes classifier (Theorem 5.4), to

construct an approximate DP estimator for a single pair of databases

(see Def. 5.2). Our algorithm AB
C , Fig. 1, is parameterized by any

classifier 𝐵, and generates a privacy estimate via the computed risk

of this classifier.

Lemma 5.6 (Proof in Appendix D). Let C = X ↦→ O be the set
of poly(log |X|)-time mechanisms,M ∈ C be a mechanism from
the set C, 𝐷, 𝐷 ′ be databases, 𝜀 ∈ R⩾0 be a privacy parameter. Let
P(M,𝐷,𝐷′,𝜀) be as in Def. 5.3, abbreviated as P. Let ℎ∗

𝐷,𝐷′ be the
Bayes classifier for P . Let ℎB𝑛 be a classifier for P produced by binary
classification algorithm 𝐵 with 𝑛 samples. Let 𝑔(X, 𝑛, 𝛽) be a function
of input space X, sample size 𝑛 and 𝛽 ∈ (0, 1).

If for every (M, 𝐷, 𝐷 ′, 𝜀), where M ∈ C, with probability at
least 1 − 𝛽, we have |𝑅(ℎB𝑛) − 𝑅(ℎ∗

𝐷,𝐷′) | = 𝑂
(
𝑔(X, 𝑛, 𝛽)

)
, then

the algorithm AB
C with 𝑛 samples, shown in Figure 1 , is a (𝛼, 𝛽)-

Approximate 𝛿-Estimator for a Pair of Databases for C, for any
𝛼 = 𝑂

(
𝑔(X, 𝑛/2, 𝛽/2) +

√︁
ln(1/𝛽)/𝑛

)
, 𝛽 ∈ (0, 1), 𝑐 ∈ R.

We state the theorem for the case where our classifier is kNN. On

a more technical note, we remark that Thm. 5.7 does not contradict

the impossibility results from Antos et al. [14]. In fact, our theorem

uses as blackbox Thm 11.1 in Devroye et al. [12] which only requires

a density. Similar to [12], our theorem statement is asymptotic.

Theorem 5.7 (Proof in Appendix E). Consider the set of mech-
anisms C = X ↦→ R𝑑 whose output distributions have a density.
𝑘𝑁𝑁 is the kNN classification algorithm with 𝑛 samples where
𝑘 =

√
𝑛. The algorithm AkNN

C , shown in Figure 1, is a (𝛼, 𝛽)-
Approximate 𝛿-Estimator for a Pair of Databases for C, for any 𝛼 =

8
Statistical distance between two r.v. 𝑋,𝑌 is defined as Δ(𝑋,𝑌 ) = maxS | Pr(𝑋 ∈
S) − Pr(𝑌 ∈ S) |.

𝑂

(
𝑐𝑑

√︁
ln(1/𝛽)/𝑛

)
, 𝛽 ∈ (0, 1), where 𝑐𝑑 ⩽ (1 + 2/

√︁
2 −
√
3)𝑑 − 1 ⩽

4.86371𝑑 (Lemma 5.5, [12]).

5.2 Estimating Approximate Relative DP

In this section, we extend our algorithm from our previous section,

to construct a privacy estimator for Relative Differential Privacy

(Def. 4.6). We begin with a formal definition for a relative DP esti-

mator with tight bounds (Def. 5.9). Then, we present our privacy

estimator which builds upon algorithm AB
C from Section 5.1.3.

Given any classification algorithm 𝐵, our privacy estimator A𝐵
C,𝑡

outputs the privacy parameter for any mechanism in class C and

set of databases of size 𝑡 . Using the kNN classifier as example, we

show in Thm. 5.10 that our privacy estimator indeed satisfies tight

accuracy bounds.

5.2.1 Our Approximate Relative DP Estimator. Before describing
our DP estimator, we first define the guarantees such a (𝛼, 𝛽)-
approximate relative DP estimator should satisfy. Intuitively, these

are the same as for an approximate DP estimator, except we restrict

the domain of our mechanism to the set T , relative to which we

define privacy.

Definition 5.8. Let M be a mechanism, T ⊆ X be a set of

databases, 𝜀 ∈ R⩾0 be a privacy parameter, 𝐷 ≃ 𝐷 ′ be a pair of

neighboring databases. We say the privacy parameter 𝛿T is optimal

with respect to (M,T , 𝜀), if
𝛿T = max

𝐷∈T:
𝐷≃𝐷′

{
max(𝛿𝐷,𝐷′ , 𝛿𝐷′,𝐷 )

}
,

where 𝛿𝐷,𝐷′ is optimal with respect to (M, 𝐷, 𝐷 ′, 𝜀). We say 𝛿 ′T is

an 𝛼-tight bound with respect to (M,T , 𝜀), if |𝛿 ′T − 𝛿T | ⩽ 𝛼.

Definition 5.9 (Approximate Relative DP Estimator). Let C =

X ↦→ O be the set of poly(log |X|)-time mechanisms,M ∈ C be a

mechanism from the set C, 𝜀 ∈ R⩾0 be a privacy parameter. Let T ⊆
X be any set of databases. An algorithm is a (𝛼, 𝛽)-Approximate
Relative DP Estimator for C if for every (M,T , 𝜀) with black-box

access toM with probability at least 1−𝛽 , it provides 𝛼-tight bound
with respect to the tuple (M,T , 𝜀) for any 𝛼, 𝛽 ∈ [0, 1) .

We are now ready to formally define and analyze our Algorithm,

denoted asA𝐵
C,𝑡 (see Fig. 2 for a detailed description).A

𝐵
C,𝑡 uses our

estimator for pairs of neighboring databases (see Fig. 1) and runs it

for all neighbors of set T . Intuitively, by union bound, our accuracy

degrades multiplicatively with the total number of neighbors of

databases in T . This leads to our main Theorem 5.10 that shows

the accuracy of our privacy estimator based on the kNN classifier.

Theorem 5.10 ((𝛼, 𝛽)-Approximate Relative DP Estimator,

using kNN, Proof in Appendix F). Consider the set of mechanisms
C = U𝑚 ↦→ R𝑑 whose output distribution has a density. Let T ⊆ X
be any set of databases in relative DP, |T | ⩽ 𝑡 . Let the algorithm
𝐵 be AkNN

C with 𝑛 samples, shown in Figure 1. The algorithm A𝐵
C,𝑡 ,

shown in Figure 2, is a (𝛼, 𝛽)-Approximate Relative DP Estimator for

C, where 𝛼 = 𝑂

(
𝑐𝑑

√︁
ln(2𝑡𝑚/𝛽)/𝑛

)
, 𝛽 ∈ (0, 1).

6 DISTRIBUTIONAL DIFFERENTIAL PRIVACY

As an extension of our results, we present the first privacy estima-

tor for (𝜀, 𝛿,Δ)-distributional differential privacy (Def. 3.5), given Δ
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Input: A binary classification algorithm 𝐵 with 𝑛 samples. A mechanismM ∈ C, a pair of databases 𝐷,𝐷′ ∈ X, privacy parameter 𝜀 ∈ R⩾0.
Output: 𝛿′

𝐷,𝐷′ , the estimate of the optimal delta 𝛿𝐷,𝐷′ with respect to the tuple (M, 𝐷, 𝐷′, 𝜀) .
Recall P(M,𝐷,𝐷′,𝜀 ) (Def. 5.3, abbreviated below as P) denotes the distribution of a random variable, which is obtained by tossing a fair coin 𝑏, and

receiving tuple (M(𝐷′), 1) if 𝑏 = 1 or receiving value (
[
M(𝐷)

]
𝜀
, 0) a otherwise.

(1) Initialize 𝑛1 ← 𝑛/2, 𝑛2 ← 𝑛/2, and 𝑟 ← 0.

(2) Sample 𝑛1 training points (𝑜1, 𝑏1), · · · , (𝑜𝑛1
, 𝑏𝑛1
) according to joint distribution P .

(3) Taking the 𝑛1 training points as inputs, classification algorithm 𝐵 outputs a classifier ℎB𝑛1

.

(4) Repeat the process 𝑛2 times: ⊲ Estimate risk function of classifier ℎB𝑛1

with 𝑛2 testing samples.

(a) Sample a testing point (𝑜,𝑏) according to joint distribution P .
(b) Predict the sample 𝑜’s label using the trained classifier: 𝑏′ = ℎB𝑛1

(𝑜) . If 𝑏′ ≠ 𝑏, 𝑟 ← 𝑟 + 1/𝑛2 .
(5) Output 𝛿′

𝐷,𝐷′ ← max(1 − 2𝑒𝜀𝑟, 0) .

a
Recall

[
M(𝐷)

]
𝜀
is a distribution for tossing a coin 𝑐 where Pr[𝑐 = 1] = 𝑒−𝜀 , outputtingM(𝐷) if 𝑐 = 1 or ⊥ (a null value) otherwise.

Figure 1: AB
C , an algorithm for estimating the optimal delta with respect to the tuple (M, 𝐷, 𝐷′, 𝜀)

Input: An algorithm 𝐵 with 𝑛 samples, which estimates the optimal 𝛿T with respect to the tuple (M, 𝐷, 𝐷′, 𝜀) for mechanism family𝐶 . A mechanism

M ∈ C, a set of databases T, privacy parameter 𝜀 ∈ R⩾0.
Output: 𝛿′T , the estimate of the optimal delta 𝛿T with respect to the tuple (M, T, 𝜀) .

(1) For each neighboring databases 𝐷 ≃ 𝐷′ where 𝐷 ∈ T, use algorithm 𝐵 with 𝑛 samples compute the estimate of 𝛿𝐷,𝐷′ and the estimate of 𝛿𝐷′,𝐷 .

Denote the maximum among these estimates as 𝛿′T .
(2) Output 𝛿′T .

Figure 2: A𝐵
C,𝑡 , an algorithm for estimating the optimal delta with respect to the tuple (M, T, 𝜀)

contains database distributions where each entry is independently

distributed. Of importance, by considering databases as random

variables that model a level of adversarial uncertainty about the

data, DDP—unlike DP—can formally measure the privacy of even

deterministic mechanisms. This means, for the first time, we have

shown a method to heuristically estimate the privacy of determin-

istic mechanisms (under independently distributed data).

First, we observe that DDP under the independence assump-

tion (Def. 3.5) is very similar to DP. This allows us to define an

approximate privacy estimator in a similar manner.

Definition 6.1. Let M be a mechanism, 𝐷 ≃ 𝐷 ′ be a pair of

neighboring databases, 𝜀 ∈ R⩾0 be a privacy parameter, and Δ
be a set of distributions on size-𝑚 databases where each row is

independently distributed. We say the privacy parameter 𝛿DDP is

optimal with respect to the tuple (M,Δ, 𝜀) if

𝛿DDP = max

(
max

𝜋∈Δ,𝑖∈[𝑚],𝑥,𝑥′∈U,S⊆O
Pr

𝐷∼𝜋
[M(𝐷) ∈ S |𝐷𝑖 = 𝑥 ]

− 𝑒𝜀 Pr

𝐷∼𝜋
[M(𝐷) ∈ S |𝐷𝑖 = 𝑥′], 0

)
.

We say 𝛿 ′DDP is a 𝛼-tight bound with respect to (M,Δ, 𝜀), if

|𝛿′DDP − 𝛿DDP | ⩽ 𝛼.

Definition 6.2 (Approximate DDP Estimator). Let C = X ↦→ O
be the set of poly(log |X|)-time mechanisms,M ∈ C be a mecha-

nism from the set C, 𝜀 ∈ R⩾0 be a privacy parameter. Let Δ be any

set of distributions on size𝑚 databases, such that |Δ| ⩽ 𝑡 for some

𝑡 ∈ N+. An algorithm is a (𝛼, 𝛽)-Approximate DDP Estimator for C
if for every (M,Δ, 𝜀), with black-box access toM, with probability

at least 1 − 𝛽 , it provides 𝛼-tight bound with respect to the tuple

(M,Δ, 𝜀), where 𝛼, 𝛽 ∈ [0, 1), and |Δ| ⩽ 𝑡 .

Our DDP estimator A𝐵
C,Δ, described formally in Fig. 3, is es-

sentially the same as our relative DP estimator, except it is even

simpler—here, we only need to run our estimator on the distribu-

tions in Δ, rather than enumerating all databases in T . The accuracy
of A𝐵

C,Δ is thus a corollary of Theorem 5.10.

Corollary 6.3. Consider the set of mechanisms C = U𝑚 ↦→
R𝑑 whose output distribution has a density. Let the algorithm 𝐵 be
AkNN
C with 𝑛 samples, shown in Fig. 2. The algorithm A𝐵

C,Δ, shown
in Figure 3, is a (𝛼, 𝛽)-Approximate DDP Estimator for C, where
𝛼 = 𝑂 (𝑐𝑑

√︁
ln(𝑚𝑡 |U|2/𝛽)/𝑛), 𝛽 ∈ (0, 1). 9

7 VALIDATION AND BENCHMARKING

We next demonstrate the applicability of our theoretical construc-

tion and the accuracy of the theory presented above. To do so, we

have devised a proof-of-concept implementation of our estimator

which we use in two different modes: First we focus on the two

most common DP mechanisms, the Laplacian mechanism and the

Gaussian mechanism, for which we have well understood theory

yielding analytical bounds that we can compare our estimator’s

output against. Informally, these two mechanisms achieve differen-

tial privacy by adding noise drawn from Laplace (resp. Gaussian)

distribution to query results. In particular, Gaussian mechanism

is one of the most important building blocks to achieve (𝜀, 𝛿)-DP,
and as far as we know, our work is the first to test our heuristic

estimator on this mechanism.

Second, we benchmark our implementation against Sparse Vec-

tor Technique (SVT), a fundamental differential privacy mechanism

which takes a sequence of queries Q and a sequence of threshold

T as input, and outputs a Boolean vector indicating whether each

query over the database is above or below the corresponding thresh-

old in T . We note that SVT is a more complex mechanism for which

no exact analytical privacy bound is known. Nonetheless, it serves

9
Recall that U is the space of values each entry in the database can take (see Def. 3.1).
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Input: A binary classification algorithm 𝐵 with 𝑛 samples, mechanismM ∈ C, privacy parameter 𝜀 ∈ R⩾0, and set of distributions Δ.
Output: 𝛿′DDP, the estimate of the optimal delta 𝛿DDP with respect to the tuple (M,Δ, 𝜀) .
Let 𝑋𝑥,𝑖,𝜋 denote the random variable outputting by the following experiment: sample a database 𝐷 according to distribution 𝜋. Set the 𝑖-th row of 𝐷 to

records 𝑥. ReturnM(𝐷) .
Let

[
𝑋𝑥,𝑖,𝜋

]
𝜀
denote the random variable obtained by tossing a biased coin 𝑐 where Pr[𝑐 = 1] = 𝑒−𝜀 , and receiving value 𝑋𝑥,𝑖,𝜋 if 𝑐 = 1 or receiving value ⊥

(a null value not in the range ofM) otherwise.

Let P denote the distribution of a random variable, which is obtained by tossing a fair coin 𝑏, and receiving tuple (𝑋𝑥′,𝑖,𝜋 , 1) if 𝑏 = 1 or receiving value

(
[
𝑋𝑥,𝑖,𝜋

]
𝜀
, 0) otherwise.

(1) Initialize 𝑛1 ← 𝑛/2, 𝑛2 ← 𝑛/2, and 𝛿′DDP ← 0.

(2) For all 𝜋 ∈ Δ, 𝑖 ∈ [𝑚], 𝑥, 𝑥′ ∈ U
(a) Initialize 𝑟 ← 0.

(b) Sample 𝑛1 training points (𝑜1, 𝑏1), · · · , (𝑜𝑛1
, 𝑏𝑛1
) according to joint distribution P .

(c) Taking the 𝑛1 training points as inputs, classification algorithm 𝐵 outputs a classifier ℎB𝑛1

.

(d) Repeat the process 𝑛2 times: ⊲ Estimate risk function of classifier ℎB𝑛1

with 𝑛2 testing samples.

(i) Sample a testing point (𝑜,𝑏) according to joint distribution P .
(ii) Predict the sample 𝑜’s label using the trained classifier: 𝑏′ = ℎB𝑛1

(𝑜) . If 𝑏′ ≠ 𝑏, 𝑟 ← 𝑟 + 1/𝑛2 .
(e) Update 𝛿′DDP ←𝑚𝑎𝑥

(
𝛿′DDP, 1 − 2𝑒

𝜀𝑟

)
.

(3) Output 𝛿′
𝐷,𝐷′ .

Figure 3: A𝐵
C,Δ, an algorithm for estimating the optimal delta 𝛿DDP with respect to the tuple (M,Δ, 𝜀)

as a perfect benchmark as (1) we can still compare our results to

the state of the art implementation [8], and (2) the literature offers

alternative implementations of SVT, some of which are known to

be buggy [17] which can be used to demonstrate the ability of our

estimator to compare the quality of different mechanisms.

We complete the section with two further applications of our

theory, namely comparing different implementations of DP mecha-

nisms and verifying an implementation, demonstrating how our

system can be used to solve problems in DP that have attracted a

lot of attention in recent security literature.

7.1 Benchmarking and Validating our Theory

Our first two sets of experiments estimate the privacy parame-

ters of the common Laplacian and Gaussian mechanisms, denoted

asM𝐿,𝜀 andM𝐺,𝜀,𝛿 respectively (We recall these mechanisms in

Definitions G.1 and G.2 in appendix G.)

Knowing just a single pair of privacy parameters (𝜀, 𝛿) for a
mechanism may be insufficient to understand its privacy guaran-

tees. It does not answer, for example, the question “What happens

to 𝛿 (resp. 𝜀) if I claim a smaller 𝜀 (resp. 𝛿) for the same mechanism?".

This question can be answered by understanding how the claimed

𝜀 (the privacy achieved) for this mechanism affects its associated

𝛿 (probability of privacy failure). In Figures 4a and 4b, we use our

privacy estimator to plot, forM𝐿,𝜀 andM𝐺,𝜀,𝛿 , the privacy param-

eter 𝜀 against its corresponding optimal 𝛿 (Def. 4.1). The figures

show the accuracy of our estimate of 𝛿 to the analytically computed

optimal 𝛿 (see Lemma G.3 and Lemma G.4), demonstrating that our

estimator not only enjoys tight theoretical accuracy bounds, it also

achieves even better experimental accuracy.

Our second set of experiments on SVT demonstrates that the DP

spectrum computed by our estimator (Fig. 4c) is comparable with

the state of the art ([8], Fig. 1e, e.g., around 𝛿 = 0.055 for 𝜀 = 0 for

SVT). Note that, whereas [8] is specialized for mechanisms with

smaller output space, our estimator works with large output spaces

as well; to our knowledge ours the first black-box (𝜀, 𝛿) privacy
estimator with this property.

Figure 5 plots the number of samples used in our kNN-based

privacy estimator, against the guaranteed 𝛼 parameter (recall from

Def. 4.3, this describes the accuracy of our estimator output). The

tested mechanism is the noised bit query Laplace mechanismM𝐿,𝜀

(with sensitivity 1). We use the empirical bootstrapping method,

run the estimator 30 times and set the confidence interval as 0.9.

From the figure, we see that the empirical 𝛼 is 3 orders of magnitude

tighter than the theoretical 𝛼. When the number of sample points

is 2
26, (about 10 minutes running time on a Dell compute node

with two 64-core AMD Epyc 7662 “Rome" processors and 256 GB

memory) the estimated 𝛿 is within an additive error less than 0.0001,

which is also shown in Figure 4a and Figure 4b.

The above demonstrates that our implementation tightly

matches the theory developed in our framework (and at a level

impressive for machine learning applications). On the one hand,

this establishes the usefulness of our framework and implementa-

tion as a very accurate privacy estimator; (2) on the other hand, our

experiments on SVT demonstrates that our estimator, even in this

proof-of-concept implemenation, can be applied to more complex

mechanisms, serving as evidence of its potential practical usage.

Remark. We talk about additive error in two ways: the one theo-

retically derived from Thm. 5.10 and the one computed via experi-

ment. For the theoretically computed one, we fix failure probability

to 0.01 and then compute the additive error according to Thm. 5.10.

For the experimental one, we use the empirical bootstrap method to

compute a confidence interval (CI) for a 0.9 confidence level. Hence,

0.9 is the probability we are within the CI and the length of the CI

corresponds to the additive error.

7.2 Further Applications

In the remainder of this section, we showcase two additional useful

applications of our privacy estimation framework: (1) To compare
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(a) Analytical computed optimal𝛿 comparedwith

estimated 𝛿 forM𝐿,𝜀

(b) Analytical computed optimal𝛿 comparedwith

estimated 𝛿 forM𝐺,𝜀,𝛿

(c) Estimated (𝜀, 𝛿)-spectrum ofMSVT,𝜀 parame-

terized with 𝜀 = 0.5, 𝛿 = 0.

Figure 4: Accuracy check for our DP estimator implementation

(a) Theoretical 𝛼 (b) Empirical 𝛼

Figure 5: Left: Theoretical accuracy 𝛼 of estimated 𝛿 vs. number of

samples (Theorem 5.7). Right: empirical accuracy forM𝐿,𝜀 .

(a) Loose theoretical (top curve) vs. ac-

tual (analytically computed and es-

timated) (𝜀, 𝛿)-privacy spectrum of

M𝐺,𝜀,𝛿

(b) Estimated (𝜀, 𝛿)-privacy spec-

trum of M𝐺,𝜀,𝛿 and M𝐿,𝜀 . We see

M𝐺,𝜀,𝛿 (bottom curve) achieves bet-

ter (smaller) 𝛿 .

Figure 6: Application 1: Comparing mechanism privacy?

what we term the (differential) privacy spectrum (i.e., the tradeoff

between 𝜀 and 𝛿) of two mechanisms, and (2) to verify the im-

plementation of a given mechanism. We note in passing, that as

discussed above, a major application of our method is for estimating

the privacy of heuristic approaches to privatizing machine learning

algorithms. We view this as a very promising research direction,

albeit beyond the scope of this work which aims at introducing,

analyzing, and validating the theory of our framework, as well as

showing the tractability of our estimator.
10

7.2.1 Comparing Two Mechanisms. The (𝜀, 𝛿) privacy-spectrum
generated by our privacy estimator can be used to generate a more

in-depth comparison of two mechanisms. For example, suppose

that you are presented with two mechanisms,M𝐿,𝜀 andM𝐺,𝜀,𝛿 ,

noised so that they give the privacy guarantees of (𝜀, 𝛿) = (1, 0)
10
Indeed, such a validation is a necessary step to ensure that there is benefit in applying

such a method to heuristic algorithms.

(a) Estimated (𝜀, 𝛿)-privacy spectrum

of MSVT,𝜀 parameterized with 𝜀 =

1, 𝛿 = 0. We see that better 𝜀 may be

achieved with sacrifices to 𝛿 .

(b) Estimated (𝜀, 𝛿) spectrum of

MSVT,𝜀 and its two variants.MSVT2,𝜀
and MSVT3,𝜀 have much worse 𝜀-𝛿

trade-offs and are not (𝜀 = 1, 𝛿 = 0)-
DP.

Figure 7: SVT’s DP-spectrum in comparison with its two buggy vari-

ants.

forM𝐿,𝜀 and (𝜀, 𝛿) = (1, 0.00001) forM𝐺,𝜀,𝛿 . It appears then, that

M𝐿,𝜀 is a strictly better mechanism.

However, the (𝜀, 𝛿) spectrum of these mechanisms lends to a

much better comparison. Our privacy estimator can be provide an

estimate (with tight accuracy bounds) of such curves (Figure 6b).

While in this M𝐿,𝜀 versus M𝐺,𝜀,𝛿 example, we can actually an-

alytically compute the (𝜀, 𝛿) spectrum, this may not be possible

for all mechanisms. Moreover, even forM𝐿,𝜀 , there is little infor-

mation about this curve available, and the theoretical 𝛿 given by

well-known bounds [26] is loose
11
. Figure 6b shows definitively

that in factM𝐺,𝜀,𝛿 provides a much stronger DP guarantee most

of the time (its 𝛿 is closer to 0, even if you claim a smaller 𝜀 than

1) whileM𝐿,𝜀 can only provide 𝜀 = 1 DP guarantee but achieves

𝜀 < 1 with undesirable 𝛿 .

As another application of our framework we plot the estimated

privacy spectrum of the SVT mechanism and its two buggy variants

(algorithm details in Figure 8, Figure 9 and Figure 10, Appendix H).

Figure 7a plots the privacy parameter 𝜀 ofMSVT,𝜀=1 against its
corresponding optimal 𝛿 (Def. 4.1). Our estimator verifies that in-

deedMSVT,𝜀=1 provides (1, 0)-DP. It also shows 𝜀 = 1 is tight, since

when a small 𝜀 is claimed, Figure 7a demonstrates a significant

increase in 𝛿 . Figure 7b compares the privacy spectrum of mecha-

nismsMSVT,𝜀 and its two variantsMSVT2,𝜀 andMSVT3,𝜀 . We see

thatMSVT2,𝜀 ,MSVT3,𝜀 provide much weaker DP guarantee than

11
ForM𝐺,𝜀,𝛿 , because noise distribution’s standard deviation is

√︃
N(0, 2 log(1.25/𝛿 )

𝜀2
) ,

the 𝛿 as the function of 𝜀 (the top green curve in Figure 6a,) is very loose.

12



MSVT,𝜀 as their corresponding 𝛿 is significantly larger for the same

𝜀. Even so, we observe that some reasonable DP guarantee may

be provided byMSVT2,𝜀 , while there is no evidence thatMSVT3,𝜀
could provide any meaningful DP guarantee. Appendix H) gives a

brief explanation of how we estimate these mechanisms using our

framework.

7.2.2 Verifying Mechanism Implementation. A common use of pri-

vacy estimators has been in verifying (claims about) the privacy

of DP mechanisms (e.g., [5, 7]). In Appendix I we show that our

estimator is in fact useful also for this task.
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A PROOF OF IMPOSSIBILITY OF

APPROXIMATE DP ESTIMATOR

Proof of Theorem 4.5. We will prove the theorem by

(1) constructing two mechanismsM andM𝐷 , whereM𝐷 is

a mechanism parameterized with a database 𝐷.

(2) showing that there does not exist a polynomial time algo-

rithm 𝑃 that can distinguish betweenM andM𝐷 if 𝐷 is

randomly chosen.

(3) proving by contradiction that if the algorithm 𝐸𝜀 defined in

the lemma exists, then we can turn it into a distinguisher 𝑃

(which was proven impossible).

We start by constructing two mechanisms M and M𝐷 . Let

M : {0, 1}𝑛 ↦→ {0, 1} andM𝐷 : {0, 1}𝑛 ↦→ {0, 1} be two random-

ized mechanisms. Let 𝐷 ∈ {0, 1}𝑛 . We defineM as the following:

no matter what input in the domain it takes,M outputs 0 with prob-

ability
1

2
otherwise outputs 1 with probability

1

2
. We defineM𝐷 as

the following: given any input 𝑥 not equal to 𝐷 it outputsM(𝑥)
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otherwiseM𝐷 outputs 0 with probability 0 and 1 with probability

1.

We know thatM is (0, 0)-differential private, because its out-
put is independent of its input. Also, we know thatM𝐷 is (0, 1)-
differential private, because its output is deterministic when given

𝐷.

Then, we define the following game for algorithm 𝑃 : Choose

database𝐷 uniformly at random from {0, 1}𝑛 . Toss a fair coin 𝑏, and
give the algorithm 𝑃 black-box access to eitherM orM𝐷 based on

𝑏. The algorithm 𝑃 wins if it can correctly decide whether it was

givenM orM𝐷 .

Since 𝑃 is running in polynomial time, and has only black-box

access to the mechanism, this means we can consider 𝑃 ’s output

as a randomized function of its poly(𝑛) queries 𝐷1, 𝐷2, · · · (made

possibly adaptively) to the mechanism. SinceM’s andM𝐷 ’s out-

puts only differ on input 𝐷 , and 𝐷 is chosen uniformly at random,

it means the probability that 𝑃 queries 𝐷 is negligible in 𝑛. In other

words, 𝑃 can only win with at best negligibly better probability

than guessing (1/2).
We now prove by contradiction that 𝐸𝜀 defined in the lemma

does not exist. Suppose for contradiction that 𝐸𝜀 does indeed exist.

Then, let 𝑃 do the following: given a mechanism (one ofM orM𝐷 ),

feed this mechanism and 𝜀 = 0 to 𝐸𝜀 . If 𝐸𝜀 says an estimate 𝛿 ′ ⩽ 𝛼 ,

𝑃 guesses that it was givenM. Else, it guesses that it was given

M𝐷 . Since, with probability
1

2
+ 𝜈 (𝑛), 𝐸𝜀 should always give some

estimate 𝛿 ′ ∈ [0, 𝛼] givenM, and some estimate 𝛿 ′ ∈ [1 − 𝛼, 1]
givenM𝐷 , it means 𝑃 should be correct with probability at least

1

2
+ 𝜈 (𝑛). This contradicts the conclusion of (2), meaning 𝐸𝜀 does

not exist. □

B PROOF OF PROPERTIES OF RELATIVE DP

Proof of Prop. 4.7. This proposition holds by definition of dif-

ferential privacy. □

Proof of Prop. 4.8. By the relative DP definition and the propo-

sition’s condition, the mechanismM satisfies that, for every neigh-

boring databases 𝐷 ≃ 𝐷 ′ and 𝐷 ′ ≃ 𝐷 : 𝐷 ∈ T and subset

S ⊆ Range(M),

Pr[M(𝐷) ∈ S] ⩽ 𝑒𝜀𝑖 Pr[M(𝐷′) ∈ S] + 𝛿𝑖
⩽ 𝑒

max𝑖∈[𝑘 ] 𝜀𝑖
Pr[M(𝐷′) ∈ S] + max

𝑖∈[𝑘 ]
𝛿𝑖 ,

which completes the proof. □

Proof of Prop. 4.9. Let 𝐷 = (𝐷1, · · · , 𝐷𝑘 ) be a arbitrary data-

base from the set T1×· · ·×T𝑘 . Let 𝐷 ′ = (𝐷 ′1, · · · , 𝐷
′
𝑘
) be a arbitrary

neighbor of𝐷.Without loss of generality, let𝐷 have an extra record

𝑥 than 𝐷 ′ in the 𝑗-th partition, that is 𝐷 𝑗 = 𝐷 ′
𝑗

⋃{𝑥}, otherwise
𝐷𝑖 = 𝐷 ′

𝑖
for 𝑖 ∈ [𝑘] and 𝑖 ≠ 𝑗 . For every subset S ⊆ Range(M), we

have

Pr[M(𝐷) ∈ S]
= Pr[ (M1 (𝐷1), · · · ,M𝑘 (𝐷𝑘 )) ∈ (S1, · · · , S𝑘 ) ]

=
∏
𝑖∈[𝑘 ]

Pr[M𝑖 (𝐷𝑖 ) ∈ S𝑖 ]

= Pr[M 𝑗 (𝐷 𝑗 ) ∈ S𝑗 ]
∏

𝑖∈[𝑘 ]\{ 𝑗 }
Pr[M𝑖 (𝐷𝑖 ) ∈ S𝑖 ]

⩽ (𝑒𝜀𝑗 Pr[M 𝑗 (𝐷′𝑗 ) ∈ S𝑗 ] + 𝛿 𝑗 )
∏

𝑖∈[𝑘 ]\{ 𝑗 }
Pr[M𝑖 (𝐷′𝑖 ) ∈ S𝑖 ]

⩽ 𝑒
𝜀𝑗

Pr[M 𝑗 (𝐷′𝑗 ) ∈ S𝑗 ]
∏

𝑖∈[𝑘 ]\{ 𝑗 }
Pr[M𝑖 (𝐷′𝑖 ) ∈ S𝑖 ] + 𝛿 𝑗

= 𝑒
𝜀𝑗

Pr[M(𝐷′) ∈ S] + 𝛿 𝑗

⩽ (max

𝑖∈[𝑘 ]
𝑒𝜀𝑖 ) Pr[M(𝐷′) ∈ S] + (max

𝑖∈[𝑘 ]
𝛿𝑖 ),

which completes the proof. □

Proof of Prop. 4.10. Let 𝐷 be a arbitrary database from the set

T and 𝐷 ′ be a arbitrary neighbor of 𝐷 , that is, 𝐷 ′ ≃ 𝐷 or 𝐷 ≃ 𝐷 ′.
For every subset S ⊆ Range(M), we have

Pr[M(𝐷) ∈ S]
= Pr[ (M1 (𝐷), · · · ,M𝑘 (𝐷)) ∈ (S1, · · · , S𝑘 ) ]

=
∏
𝑖∈[𝑘 ]

Pr[M𝑖 (𝐷) ∈ S𝑖 ]

=
∏

𝑖∈[𝑘−1]
Pr[M𝑖 (𝐷) ∈ S𝑖 ]) Pr[M𝑘 (𝐷) ∈ S𝑘 ]

⩽
∏

𝑖∈[𝑘−1]
Pr[M𝑖 (𝐷) ∈ S𝑖 ]

(
𝑒𝜀𝑘 Pr[M𝑘 (𝐷′) ∈ S𝑘 ] + 𝛿𝑘

)
⩽ 𝑒𝜀𝑘 (

∏
𝑖∈[𝑘−1]

Pr[M𝑖 (𝐷) ∈ S𝑖 ]) Pr[M𝑘 (𝐷′) ∈ S𝑘 ] + 𝛿𝑘

⩽ 𝑒

∑
𝑖∈[𝑘 ]

𝜀𝑖

Pr[M(𝐷′) ∈ S] +
∑︁
𝑖∈[𝑘 ]

𝛿𝑖 ,

which completes the proof. □

Proof of Prop. 4.11. Let 𝐷 be a arbitrary database from the set

T and 𝐷 ′ be a arbitrary neighbor of 𝐷 , that is, 𝐷 ′ ≃ 𝐷 or 𝐷 ≃ 𝐷 ′.
For every subset S ⊆ Range(M), define set 𝑇 = {𝑡 ∈ Range(M1) :
𝑓 (𝑡) ∈ S}. We have

Pr[M(𝐷) ∈ S] = Pr[𝑓 (M1 (𝐷)) ∈ S]

=
∑︁
𝑡∈𝑇

Pr[M1 (𝐷) = 𝑡 ]

= Pr[M1 (𝐷) ∈ 𝑇 ]
⩽ 𝑒𝜀 Pr[M1 (𝐷′) ∈ 𝑇 ] + 𝛿,
= 𝑒𝜀 Pr[M(𝐷′) ∈ S] + 𝛿.

which completes the proof. □

C PROOF: CONNECTING 𝛿 IN (𝜀, 𝛿)-DP WITH

RISK OF BAYES CLASSIFIER

Proof of Theorem 5.4. Let Δ
( [
M(𝐷)

]
𝜀
,M(𝐷 ′)

)
be the sta-

tistical distance between

[
M(𝐷)

]
𝜀
andM(𝐷 ′). Our plan of proof

is the following. We first show the equivalence between the optimal

𝛿𝐷,𝐷′ and the statistical distance Δ
( [
M(𝐷)

]
𝜀
,M(𝐷 ′)

)
.

Claim 1. The following equation between the optimal 𝛿𝐷,𝐷′

with respect to the tuple (M, 𝐷, 𝐷 ′, 𝜀) and the statistical distance

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷 ′)

)
holds:

𝛿𝐷,𝐷′ = max

(
𝑒𝜀

(
Δ

( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
− (1 − 𝑒−𝜀 )

)
, 0

)
.
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Proof of Claim 1. By definition of optimal 𝛿𝐷,𝐷′ in Defini-

tion 4.1, we have

𝛿𝐷,𝐷′ = max

(
max

S⊆O
Pr[M(𝐷) ∈ S] − 𝑒𝜀 Pr[M(𝐷′) ∈ S], 0

)
= max

(
𝑒𝜀 max

S⊆O

(
𝑒−𝜀 Pr[M(𝐷) ∈ 𝑆 ] − Pr[M(𝐷′) ∈ 𝑆 ]

)
, 0

)
.

(1)

We first check that the distribution

[
M(𝐷)

]
𝜀
has the following

property, for all S ∈ O (support of mechanismM),

Pr

[ [
M(𝐷)

]
𝜀
∈ S

]
= 𝑒−𝜀 Pr[M(𝐷) ∈ S] .

This is because, for all S ∈ O,

Pr[
[
M(𝐷)

]
𝜀
∈ S] = Pr[𝑐 = 1 ∧ M(𝐷) ∈ S]

= Pr[𝑐 = 1] Pr[M(𝐷) ∈ S]
(𝑐 andM(𝐷) are independent)

= 𝑒−𝜀 Pr[M(𝐷) ∈ S] .

We are given a method to find the statistical distance between

two distributions by sampling them. The statistical distance be-

tween distributions

[
M(𝐷)

]
𝜀
andM(𝐷 ′) is defined as follows:

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
≡ max

S⊆O

(
Pr

[ [
M(𝐷)

]
𝜀
∈ S

]
− Pr[M(𝐷′) ∈ S]

)
.

By construction,

[
M(𝐷)

]
𝜀
outputs ⊥ with probability 1 − 𝑒−𝜀 ,

whereasM(𝐷 ′) outputs ⊥ with probability zero. Thus, ⊥ can al-

ways be included in the set that maximizes the statistical distance.

Δ(
[
M(𝐷)

]
𝜀
,M(𝐷′))

= max

S∈O

(
Pr[

[
M(𝐷)

]
𝜀
∈ S] − Pr[M(𝐷′) ∈ S]

)
+

(
(Pr[

[
M(𝐷)

]
𝜀
= ⊥] − Pr[M(𝐷′) = ⊥]

)
= max

S∈O

(
𝑒−𝜀 Pr[M(𝐷) ∈ S] − Pr(M(𝐷′) ∈ S)

)
+ (1 − 𝑒−𝜀 )

Then, plug the above equation into the equation 1, we have

𝛿𝐷,𝐷′ = max(𝑒𝜀
(
Δ

( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
− (1 − 𝑒−𝜀 )

)
, 0),

which completes the proof. □

Secondly, we show the equivalence between risk of the

the Bayes classifier 𝑅(ℎ∗
𝐷,𝐷′) and the statistical distance

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷 ′)

)
.

Claim 2.

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
= 2 ·

(
1

2

− 𝑅 (ℎ∗
𝐷,𝐷′ )

)
.

Proof of Claim 2. The statistical distance can be alternatively

defined as

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
= max

ℎ

��� Pr

𝑥∼M(𝐷′)
[ℎ (𝑥) = 1] − Pr

𝑥∼[M(𝐷 ) ]𝜀
[ℎ (𝑥) = 1]

���,

where ℎ is any classifier for the distribution P . Then,

Δ
( [
M(𝐷)

]
𝜀
,M(𝐷′)

)
= 2

(
1

2

max

ℎ

��� Pr

𝑥∼M(𝐷′)
[ℎ (𝑥) = 1] −

(
1 − Pr

𝑥∼[M(𝐷 ) ]𝜀
[ℎ (𝑥) = 0]

)���)
= 2

(
max

ℎ

����� 12 (
Pr

𝑥∼M(𝐷′)
[ℎ (𝑥) = 1] + Pr

𝑥∼[M(𝐷 ) ]𝜀
[ℎ (𝑥) = 0]

)
− 1

2

�����
)

= 2

(
max

ℎ

��� Pr

(𝑥,𝑦)∼P
[ℎ (𝑥) = 1, 𝑦 = 1] + Pr

(𝑥,𝑦)∼P
[ℎ (𝑥) = 0, 𝑦 = 0] − 1

2

���)
= 2

(
max

ℎ

��� Pr

(𝑥,𝑦)∼P
[ℎ (𝑥) = 𝑦 ] − 1

2

���)
= 2

(
max

ℎ

���1 − Pr

(𝑥,𝑦)∼P
[ℎ (𝑥) ≠ 𝑦 ] − 1

2

���)
= 2

(
max

ℎ

��� 1
2

− 𝑅 (ℎ)
���)

= 2

(
1

2

− 𝑅 (ℎ∗
𝐷,𝐷′ )

)
.

□

Show the equivalence between the optimal 𝛿𝐷,𝐷′ and the risk

of the the Bayes classifier 𝑅(ℎ∗). Combining the Claim 1 and the

Claim 2, it is easy to show that

𝛿𝐷,𝐷′ = max

(
1 − 2𝑒𝜀𝑅 (ℎ∗

𝐷,𝐷′ ), 0
)
,

which completes the proof. □

D PROOF: GENERAL ESTIMATOR

Proof of Lemma 5.6. For every (M, 𝐷, 𝐷 ′, 𝜀), and its corre-

sponding distribution P, we have the following. Recall the random
variable 𝑟 as computed in Step 4, Figure 1, is the testing risk for

classifier ℎB𝑛1

with 𝑛2 testing samples. We could show that 𝑟 is a

good approximate of the risk of the Bayes classifier 𝑅(ℎ∗
𝐷,𝐷′).

Claim 3. With probability at least 1 − 𝛽,

|𝑟 − 𝑅 (ℎ∗
𝐷,𝐷′ ) | = 𝑂

(
𝑔 (X, 𝑛/2, 𝛽/2) +

√︁
ln(1/𝛽)/𝑛

)
.

Proof of Claim 3. Recall 𝑛1 = 𝑛/2, defined in Step 1, Fig. 1. By

the condition in the Lemma, when the sample size parameter 𝑛1 is
large enough, we have that, with probability at least 1 − 𝛽/2,

|𝑅 (ℎB
𝑛
1

) − 𝑅 (ℎ∗
𝐷,𝐷′ ) | ⩽ 𝑐 · 𝑔 (X, 𝑛1, 𝛽/2) = 𝑐 · 𝑔 (X, 𝑛/2, 𝛽/2),

where 𝑐 is a constant.

By Theorem 3.7, plug in 𝑛2 = 𝑛/2 (defined in Step 1, Fig. 1), with

probability at least 1 − 𝛽/2, we have

|𝑟 − 𝑅 (ℎB𝑛1

) | ⩽
√︁
ln(4/𝛽)/𝑛.

Apply union bound and triangular inequality to above two in-

equalities with probability at least 1 − 𝛽, we have
|𝑟 − 𝑅 (ℎ∗) | ⩽ |𝑟 − 𝑅 (ℎB𝑛1

) | + |𝑅 (ℎB𝑛1

) − 𝑅 (ℎ∗
𝐷,𝐷′ ) |

⩽ 𝑐 · 𝑔 (X, 𝑛/2, 𝛽/2) +
√︁
ln(4/𝛽)/𝑛,

which completes the proof. □

Using Claim 3, we could show that 𝛿 ′
𝐷,𝐷′ (defined in Step 5, Fig. 1)

is a good approximate of 𝛿𝐷,𝐷′ with respect to (M, 𝐷, 𝐷 ′, 𝜀) .

Claim 4. With probability at least 1 − 𝛽,

|𝛿′
𝐷,𝐷′ − 𝛿𝐷,𝐷′ | = 𝑂

(
𝑔 (X, 𝑛/2, 𝛽/2) +

√︁
ln(1/𝛽)/𝑛

)
.
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Proof of Claim 4.���𝛿′𝐷,𝐷′ − 𝛿𝐷,𝐷′
���

=
��
max

(
1 − 2𝑒𝜀𝑟, 0

)
− 𝛿𝐷,𝐷′

��
(By Fig. 1, Step 5,)

=

���max

(
1 − 2𝑒𝜀𝑟, 0

)
−max

(
1 − 2𝑒𝜀𝑅

(
ℎ∗
𝐷.𝐷′

)
, 0

) ��� (By Theorem 5.4)

⩽
���( (1 − 2𝑒𝜀𝑟 ) − (

1 − 2𝑒𝜀𝑅
(
ℎ∗
𝐷.𝐷′

)) ���
⩽ 2𝑒𝜀

���𝑟 − 𝑅 (ℎ∗𝐷.𝐷′ )
���

= 𝑂

(
𝑔 (X, 𝑛/2, 𝛽/2) +

√︁
ln(1/𝛽)/𝑛

)
, (By Claim 3)

where the last step we omit the constant 2𝑒𝜀 since the tight

bound is in asymptotic form. □

Combining the results of Claim 3 and Claim 4, we have that

for every tuple (M, 𝐷, 𝐷 ′, 𝜀) the algorithm AB
C provides a 𝛼 =

𝑂

(
𝑔(X, 𝑛/2, 𝛽/2) +

√︁
ln(1𝛽)/𝑛

)
tight bound with probability 1 −

𝛽. Thus concludes the proof that AB
C is a (𝛼, 𝛽)-Approximate 𝛿-

Estimator for a Pair of Databases for C. □

E PROOF: ESTIMATOR USING KNN

Proof of Theorem 5.7. The algorithm AkNN
C with the classifi-

cation algorithm kNN is a concrete instantiation of AB
C , shown in

Figure 1. To prove that AkNN
C is a (𝛼, 𝛽)-Approximate 𝛿-Estimator

for a Pair of Databases for C, we could directly plug in the con-

vergence results of kNN into Lemma 5.6 and then complete the

proof.

For every tuple (M, 𝐷, 𝐷 ′, 𝜀), whereM ∈ C, we have two ran-
dom variables:M(𝐷 ′) and

[
M(𝐷)

]
𝜀
. We also have a correspond-

ing distribution P(M,𝐷,𝐷′,𝜀) (Def. 5.3, abbreviated below as P).
Recall that the experiment of generating P is following: Toss a fair

coin 𝑏. If 𝑏 = 0 the experiment outputs a sample 𝑜 according to

distribution

[
M(𝐷)

]
𝜀
, or otherwise outputs a sample 𝑜 according

to distributionM(𝐷 ′).
Let ℎ∗ and 𝑅(ℎ∗) be the Bayes classifier and the risk of the Bayes

classifier for the distribution P, respectively. Step 3 of algorithm

AkNN
C (Figure 1) computes a kNN classifier ℎNN

𝑘,𝑛1

for distribution P .
Step 4 computes 𝑅𝑛2

(ℎNN
𝑘,𝑛1

), the testing risk of ℎNN
𝑘,𝑛1

with 𝑛2 testing

samples.

BecauseM ∈ C, the distribution ofM(𝐷 ′) has density. More-

over, the distribution

[
M(𝐷)

]
𝜀
almost has a density except at point

⊥. By Chapter 11.2 of [12], the density assumption was needed to

avoid problems caused by training points having equal distances to

testing points (i.e., so that each point has exactly 𝑘-nearest neigh-
bors). For the point ⊥, we could define the distance from it to any

other points as infinity, so at point ⊥ the distance tie problem does

not appear even without the density assumption. This means we

could still use the result from Theorem 3.8. Thus, Theorem 3.8’s

condition suffices. By Theorem 3.8, when the sample size parameter

𝑛1 is large enough, we have that

Pr[ |𝑅 (ℎNN
𝑘,𝑛1

) − 𝑅 (ℎ∗) | > 𝛼 ] ⩽ 2𝑒
−𝑛1𝛼

2/(72𝑐2
𝑑
)
.

Recall 𝑛1 = 𝑛/2, defined in Step 1, Fig. 1. Set 2𝑒−𝑛1𝛼
2/(72𝑐2

𝑑
) = 𝛽/2.

Rearranging the inequality, with probability at least 1 − 𝛽/2,
|𝑅 (ℎNN

𝑘,𝑛1

) − 𝑅 (ℎ∗) | ⩽ 12𝑐𝑑
√︁
ln(4𝛽)𝑛 (2)

Plug the above inequality into Lemma 5.6, we have that for ev-

ery 𝛿𝐷,𝐷′ with respect to the (M, 𝐷, 𝐷 ′, 𝜀) and its estimate 𝛿 ′
𝐷,𝐷′

(defined in Step 5, Fig. 1)

|𝛿′
𝐷,𝐷′ − 𝛿𝐷,𝐷′ | ⩽ 12𝑐𝑑

√︁
ln(4𝛽)𝑛 +𝑂

(√︁
ln(1/𝛽)/𝑛

)
,

which completes the proof. □

F PROOF: RELATIVE-DP ESTIMATOR USING

KNN

Proof of Theorem 5.10. Let 𝑞 be the number of neighboring

databases𝐷 ≃ 𝐷 ′ where𝐷 ∈ T . Let {𝛿1, · · · , 𝛿2𝑞} be the set of opti-
mal 𝛿𝐷,𝐷′ (and 𝛿𝐷′,𝐷 ) for each neighboring databases, {𝛿 ′1, · · · , 𝛿

′
2𝑞
}

(computed in Step 1, Fig. 2) be the set of estimate for {𝛿1, · · · , 𝛿2𝑞}.
𝛿 ′
1
is the estimate of 𝛿1, etc.

By Theorem 5.7, we could say that for each 𝑖 ∈ [2𝑞], with proba-

bility at least 1 − 𝛽/2𝑞, for a constant 𝑐

|𝛿′𝑖 − 𝛿𝑖 | ⩽ 𝑐 · 𝑐𝑑
√︁
ln(2𝑞/𝛽)/𝑛,

By a union bound, with probability at least 1 − 𝛽,

max

𝑖∈[2𝑞 ]
|𝛿′𝑖 − 𝛿𝑖 | ⩽ 𝑐 · 𝑐𝑑

√︁
ln(2𝑞/𝛽)/𝑛.

(3)

Denote the index of 𝛿T in set {𝛿1, · · · , 𝛿2𝑞} as 𝑎. That is 𝛿T =

𝛿𝑎 = max

𝑖∈[2𝑞 ]
𝛿𝑖 . Denote the index of the maximum estimate in set

{𝛿 ′
1
, · · · , 𝛿 ′

2𝑞
} as 𝑏. That is 𝛿 ′

𝑏
= max

𝑖∈[2𝑞 ]
𝛿 ′
𝑖
. The algorithm A𝐵

C,𝑡 out-

puts 𝛿 ′
𝑏
as the estimate of 𝛿T . Then, with probability at least 1 − 𝛽,

|𝛿′
𝑏
− 𝛿T | = |𝛿′𝑏 − 𝛿𝑎 |

⩽ max

(
|𝛿′
𝑏
− 𝛿𝑏 |, |𝛿′𝑎 − 𝛿𝑎 |

)
⩽ max

𝑖∈[2𝑞 ]
|𝛿′𝑖 − 𝛿𝑖 |

(4)

We bound the total number of neighboring databases 𝑞. Because

the size of the databases set T is smaller than 𝑡 and each databases

has at most𝑚 records, hence by Definition 3.2 each database has at

most𝑚 neighbors, so that

𝑞 ⩽ 𝑡𝑚. (5)

Combining Inequalities 3, 4 and 5, with probability at least 1− 𝛽,

|𝛿′
𝑏
− 𝛿T | ⩽ 𝑐 · 𝑐𝑑

√︁
ln(2𝑡𝑚/𝛽)/𝑛,

which completes the proof. □

G ANALYTICAL COMPUTED PRIVACY OF

LAPLACIAN AND GAUSSIAN MECHANISM

Definition G.1 (The Laplacian bit query mechanismM𝐿,𝜀 ). Let
M𝐿,𝜀 denote the differentially private bit query mechanism using

Laplacian mechanism, which takes a bit 𝑏 as input, samples a noise

𝑣 ∼ 𝐿𝑎𝑝 (𝜀) according to Laplace distribution12, and then returns 𝑏+
𝑣 as the mechanism’s output.M𝐿,𝜀 is (𝜀, 0)-differential private [25].

Definition G.2 (The Gaussian bit query mechanismM𝐺,𝜀,𝛿 ). Let
M𝐺,𝜀,𝛿 denote the differentially private bit query mechanism using

Gaussian mechanism, which takes a bit 𝑏 as input, samples a noise

12
The Laplace distribution (centered at 0) with parameter 𝜆 is the distribution with

probability density function: 𝐿𝑎𝑝 (𝑥 | 𝜆) = 𝜆
2
exp

(
−𝜆 |𝑥 |

)
. We use 𝐿𝑎𝑝 (𝜆) to denote

the Laplace distribution with parameter 𝜆.
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𝑣 ∼ N(0, 2𝜀−2log(1.25/𝛿)) according to Gaussian distribution
13
,

and then returns 𝑏 + 𝑣 as the mechanism’s output.M𝐺,𝜀,𝛿 is (𝜀, 𝛿)-
differential private [25].

Lemma G.3. LetM𝐿,𝜀 be the noised bit query mechanism defined
in Definition G.1. Let 𝛿 (𝜀 ′) be the optimal 𝛿 (Def. 4.1) with respect to
the tuple (M𝐿,𝜀 , 𝜀

′) . 𝛿 (𝜀 ′) satisfies the following equality

𝛿′ (𝜀′) =

1 − 𝑒− 1

2
(𝜀−𝜀′) 𝜀′ ∈ [0, 𝜀 ]

0 𝜀′ ⩾ 𝜀.
(6)

Proof. Note thatM𝐿,𝜀 has only one neighboring database pair

(𝐷,𝐷 ′) = (0, 1) . By Definition 4.1, we have

𝛿 (𝜀′) = max(max

S⊆O
Pr[M𝐿,𝜀 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐿,𝜀 (𝐷′) ∈ S], 0),

where O = Range(M𝐿,𝜀 ).
For 𝜀 ′ ⩾ 𝜀, by the differential privacy definition shown in Defini-

tion 3.3, we know

max

S⊆O
Pr[M𝐿,𝜀 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐿,𝜀 (𝐷′) ∈ S] ⩽ 0,

so that

𝛿 (𝜀′) = 0.

Now we turn to the case 𝜀 ′ < 𝜀. We first recall the probability

density function ofM𝐿,𝜀 (𝐷)

Pr[M𝐿,𝜀 (𝐷) = 𝑥 ] = 𝜀

2

𝑒−𝜀 |𝑥 |,

where 𝑥 ∈ R. Similarly, the probability density function of

M𝐿,𝜀 (𝐷 ′) is

Pr[M𝐿,𝜀 (𝐷′) = 𝑥 ] = 𝜀

2

𝑒−𝜀 |𝑥−1|,

where 𝑥 ∈ R.
For 𝜀 ′ < 𝜀,

𝛿 (𝜀′) = max(max

S⊆O
Pr[M𝐿,𝜀 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐿,𝜀 (𝐷′) ∈ S], 0)

= max

S⊆O
Pr[M𝐿,𝜀 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐿,𝜀 (𝐷′) ∈ S]

=

∞∫
−∞

max(0, Pr[M𝐿,𝜀 (𝐷) = 𝑥 ] − 𝑒𝜀′ Pr[M𝐿,𝜀 (𝐷′) = 𝑥 ])𝑑𝑥

(7)

Denote 𝑥+ ∈ R such that 𝑒−𝜀 |𝑥+ | − 𝑒𝜀′𝑒−𝜀 |𝑥+−1 | = 0. The function

Pr[M𝐿,𝜀 (𝐷) = 𝑥] −𝑒𝜀′ Pr[M𝐿,𝜀 (𝐷 ′) = 𝑥] has only one zero, that is
𝑥+. For all 𝑥 ⩽ 𝑥+, Pr[M𝐿,𝜀 (𝐷) = 𝑥] − 𝑒𝜀′ Pr[M𝐿,𝜀 (𝐷 ′) = 𝑥] ⩾ 0,

otherwise Pr[M𝐿,𝜀 (𝐷) = 𝑥] − 𝑒𝜀′ Pr[M𝐿,𝜀 (𝐷 ′) = 𝑥] < 0. One can

show

𝑥+ =
1

2

(1 − 𝜀′

𝜀
) .

Plug in the equation 7, we have

𝛿 (𝜀′) =
𝑥+∫
−∞

Pr[M𝐿,𝜀 (𝐷) = 𝑥 ] − 𝑒𝜀′ Pr[M𝐿,𝜀 (𝐷′) = 𝑥 ]𝑑𝑥

=

𝑥+∫
−∞

𝜀

2

(𝑒−𝜀 |𝑥 | − 𝑒𝜀′𝑒−𝜀 |𝑥−1|)𝑑𝑥

= 1 − 𝑒−
1

2
(𝜀−𝜀′) ,

where the last step is by integration. □
13
The Gaussian distribution with expectation 0 and variance 𝜎2

is the distribution

with probability density function: N(𝑥 |𝜎) = 1√
2𝜋𝜎

exp (− 𝑥2

2𝜎2
) .We use N(0, 𝜎2) to

denote the Gaussian distribution with expectation 0 and variance 𝜎2

LemmaG.4. LetM𝐺,𝜀,𝛿 be the noised bit querymechanism defined
in Definition G.2. Let 𝛿 (𝜀 ′) be the optimal 𝛿 (defined in Def. 4.1) with
respect to the tuple (M𝐺,𝜀,𝛿 , 𝜀

′). 𝛿 (𝜀 ′) satisfies the following equality

𝛿 (𝜀′) = 1

2

[1 + 𝑒𝑟 𝑓 ( 𝑥+

𝜎
√
2

) − 𝑒𝜀′ (1 + 𝑒𝑟 𝑓 ( 𝑥+ − 1
𝜎
√
2

)),

where 𝜎2 =
2 log(1.25/𝛿)

𝜀2
, 𝜀 ′ > 0, 𝑥+ = 1

2
(1 − 2𝜎2𝜀 ′) and 𝑒𝑟 𝑓 (𝑥) =

2√
𝜋

∫ 𝑥

0
𝑒−𝑠

2

𝑑𝑠 (the standard error function.)

Proof. Note thatM𝐺,𝜀,𝛿 has only one neighboring database

pair (𝐷,𝐷 ′) = (0, 1). By Definition 4.1, we have

𝛿 (𝜀′) = max(max

S⊆O
Pr[M𝐺,𝜀,𝛿 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐺,𝜀,𝛿 (𝐷′) ∈ S], 0),

where O = Range(M𝐺,𝜀,𝛿 ) .
We then recall the probability density function ofM𝐺,𝜀,𝛿 (𝐷)

Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥 ] = 1

√
2𝜋𝜎2

𝑒
− 𝑥2

2𝜎2 ,

where 𝑥 ∈ R. Similarly, the probability density function of

M𝐺,𝜀,𝛿 (𝐷 ′) is

Pr[M𝐺,𝜀,𝛿 (𝐷′) = 𝑥 ] = 1

√
2𝜋𝜎2

𝑒
− (𝑥−1)

2

2𝜎2 ,

where 𝑥 ∈ R.
𝑥+ = 1

2
(1 − 2𝜎2𝜀 ′) is the value such that Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥+] −

𝑒𝜀
′
Pr[M𝐺,𝜀,𝛿 (𝐷 ′) = 𝑥+] = 0. The function Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥] −

𝑒𝜀
′
Pr[M𝐺,𝜀,𝛿 (𝐷 ′) = 𝑥] has only one zero, that is 𝑥+. For all 𝑥 ⩽

𝑥+, Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥] − 𝑒𝜀′ Pr[M𝐺,𝜀,𝛿 (𝐷 ′) = 𝑥] ⩾ 0, otherwise

Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥] − 𝑒𝜀′ Pr[M𝐺,𝜀,𝛿 (𝐷 ′) = 𝑥] < 0.

Now we have, for all 𝜀 ′ > 0,

𝛿 (𝜀′) = max(max

S⊆O
Pr[M𝐺,𝜀,𝛿 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐺,𝜀,𝛿 (𝐷′) ∈ S], 0)

= max

S⊆O
Pr[M𝐺,𝜀,𝛿 (𝐷) ∈ S] − 𝑒𝜀

′
Pr[M𝐺,𝜀,𝛿 (𝐷′) ∈ S]

=

∞∫
−∞

max(0, Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥 ] − 𝑒𝜀′ Pr[M𝐺,𝜀,𝛿 (𝐷′) = 𝑥 ])𝑑𝑥

=

𝑥+∫
−∞

Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥 ] − 𝑒𝜀′ Pr[M𝐺,𝜀,𝛿 (𝐷′) = 𝑥 ]𝑑𝑥

=

𝑥+∫
−∞

Pr[M𝐺,𝜀,𝛿 (𝐷) = 𝑥 ] − 𝑒𝜀′
𝑥+∫
−∞

Pr[M𝐺,𝜀,𝛿 (𝐷′) = 𝑥 ]

= ( 1
2

+ 1

2

𝑒𝑟 𝑓 ( 𝑥+

𝜎
√
2

)) − 𝑒𝜀′ ( 1
2

+ 1

2

𝑒𝑟 𝑓 ( 𝑥+ − 1
𝜎
√
2

))

=
1

2

[1 + 𝑒𝑟 𝑓 ( 𝑥+

𝜎
√
2

) − 𝑒𝜀′ (1 + 𝑒𝑟 𝑓 ( 𝑥+ − 1
𝜎
√
2

)),

which completes the proof. □

H ESTIMATING SVT’S PRIVACY SPECTRUM

In this section, we further discuss our SVT experiments on the

MSVT,𝜀 ,MSVT2,𝜀 ,MSVT3,𝜀 mechanisms. First, to estimate the opti-

mal 𝛿 (Def 4.1), we use the link between differential privacy and

Bayes optimal risk established in Theorem 5.4. Here, we estimate

the Bayes optimal risk for SVT by computing its output on at most

some finite 𝑘 queries. In our experiments, we use 𝑘 = 40, and for

simplicity consider integer-output queries and thresholds that are

no more than 2 away from the true query output. Lastly, we further

reduce the number of samples required by our algorithm by ob-

serving that SVT’s output distribution is the same on databases 𝐷1
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Input: A database 𝐷, a counting query list Q = {𝑞1, 𝑞2, · · · } ∈ N∗⩾0, a
threshold list T = {𝑇1,𝑇2, · · · } ∈ N∗ .
Output: A bits sequence 𝑠 ∈ {1, 01, 001, · · · }.

(1) 𝜌 = 𝐿𝑎𝑝

(
𝜀
2

)
(2) For each query 𝑞𝑖 ∈ Q :

(a) 𝜈𝑖 = 𝐿𝑎𝑝

(
𝜀
4

)
(b) If 𝑞𝑖 (𝐷) + 𝜈𝑖 ⩾ 𝑇𝑖 + 𝜌 then

(i) Output 𝑎𝑖 = 1 and Abort.

(c) Else Output 𝑎𝑖 = 0.

Figure 8: The SVT (Sparse Vector Technique) mechanism MSVT,𝜀
(Alg.1 from [17])

Input: A database 𝐷, a counting query list Q = {𝑞1, 𝑞2, · · · } ∈ N∗⩾0, a
threshold list T = {𝑇1,𝑇2, · · · } ∈ N∗ .
Output: A bits sequence 𝑠 ∈ {1, 01, 001, · · · }.

(1) 𝜌 = 𝐿𝑎𝑝

(
𝜀
4

)
(2) For each query 𝑞𝑖 ∈ Q :

(a) 𝜈𝑖 = 𝐿𝑎𝑝

(
3𝜀
4

)
(b) If 𝑞𝑖 (𝐷) + 𝜈𝑖 ⩾ 𝑇𝑖 + 𝜌 then

(i) Output 𝑎𝑖 = 1 and Abort

(c) Else Output 𝑎𝑖 = 0.

Figure 9: A buggy variant of the SVT mechanism MSVT2,𝜀 (Alg.4

from [17])

Input: A database 𝐷, a counting query list Q = {𝑞1, 𝑞2, · · · } ∈ N∗⩾0, a
threshold list T = {𝑇1,𝑇2, · · · } ∈ N∗ .
Output: A bits sequence 𝑠 ∈ {0, 1}∗ .

(1) 𝜌 = 𝐿𝑎𝑝

(
𝜀
2

)
(2) For each query 𝑞𝑖 ∈ Q :

(a) If 𝑞𝑖 (𝐷) ⩾ 𝑇𝑖 + 𝜌 then Output 𝑎𝑖 = 1.

(b) Else Output 𝑎𝑖 = 0.

Figure 10: A buggy variant of the SVT mechanism MSVT3,𝜀 (Alg.5

from [17])

and 𝐷2, if 𝑞𝑖 (𝐷1) −𝑇𝑖 = 𝑞𝑖 (𝐷2) −𝑇𝑖 . Thus, it suffices to test fewer

number of databases. For more detail, please see our full version.

I VERIFYING MECHANISM

IMPLEMENTATION

Perhaps a more common application of our privacy estimator is

to verify the correctness of a mechanism implementation—that is,

whether a mechanism implementation really is (𝜀, 𝛿)-DP as claimed.

Compared with previous work, our estimator has the advantage of

only requiring black box access to the mechanism, and generating

outputs with tight accuracy bounds. Moreover, our estimator can

handle even mechanisms with large output spaces. In Fig. 4b, we

demonstrate an example of checking whether a mechanism sat-

isfies (𝜀 = 1, 𝛿 = 0)-(relative) DP, by testing the mechanism on

𝜀 = 1 and receiving the estimated optimal 𝛿—in this example, 𝛿 is

a small value on the order of 10
−5
. This tells us that the true 𝜀 is

likely close if not equal to 1, when 𝛿 = 0. For 2
26

testing/training

samples (or about 10 minutes running time on our machine, a Dell

compute node with two 64-core AMD Epyc 7662 “Rome" proces-

sors and 256 GB memory), we get an error for 𝛿 of around 0.0001,

which can be improved by increasing the number of samples. If the

privacy spectrum is actually known for this mechanism (which is

Figure 11: Application 2: verify implementation ofM𝐿,𝜀 mechanism,

by checking which 𝜀, 𝛿 trade-off curve the implementation falls un-

der. Different curves representM𝐿,𝜀 with different amount of added

noise.

Figure 12: Application 2: verify the mechanism M𝐺,𝜀,𝛿 (𝜀 = 1, 𝛿 =

0.00001) is correctly implemented

the case for Laplace and Gaussian mechanisms, via Lemmas G.3

and G.4), then our verification can be even more accurate. To do

so, we first generate several analytically computed (𝜀, 𝛿) curves
forM𝐿,𝜀 , w.r.t. added noise that guarantees at least (𝜀, 𝛿 = 0)-DP,
for 𝜀 = 0.999, 1, 1.001. We see (Fig. 11) that the 𝜀, 𝛿 trade-off of the

implementation is the closest to the analytically computed curve

generated by mechanismM𝐿,𝜀 with noise according to 𝜀 = 1, which

is a good indication that in fact our implementation satisfies 𝜀 = 1.

This same technique also applies to, e.g., the Gaussian mechanism

(Fig. 12).
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