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Abstract

ZK-SNARKs (Zero Knowledge Succinct Noninteractive ARguments of Knowledge)
are one of the most promising new applied cryptography tools: proofs allow anyone
to prove a property about some data, without revealing that data. Largely spurred
by the adoption of cryptographic primitives in blockchain systems, ZK-SNARKs are
rapidly becoming computationally practical in real-world settings, shown by i.e. tor-
nado.cash and rollups. These have enabled ideation for new identity applications
based on anonymous proof-of-ownership. One of the primary technologies that would
enable the jump from existing apps to such systems is the development of determin-
istic nullifiers.

Nullifiers are used as a public commitment to a specific anonymous account, to
forbid actions like double spending, or allow a consistent identity between anonymous
actions. We identify a new deterministic signature algorithm that both uniquely
identifies the keypair, and keeps the account identity secret. In this work, we will
define the full DDH-VRF construction, and prove uniqueness, secrecy, and existential
unforgeability. We will also demonstrate a proof of concept of the nullifier.
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Chapter 1

Introduction

Due to the widespread adoption of the Ethereum Virtual Machine (EVM) by various

cryptography research organizations and cryptocurrency platforms, ECDSA signa-

tures and keypairs are now commonplace. As a result, porting existing primitives

to the pairing-unfriendly secp256k1 elliptic curve is desirable for widespread research

adoption.

Spurred by the adoption of cryptocurrency, the ability to reveal specific parts of

your identity in lieu of the whole is an interesting new primitive [9]. Signatures via

ECDSA are nondeterministic, meaning a signer can produce an arbitrary number of

signatures for a message. However, they do provide non-repudiation of signed data,

and enable applications such as semi-anonymous message boards.

For instance, one can prove via a zero knowledge proof of knowledge (ZKP) that

their account satisfies some property i.e. they are an NFT holder or protocol user,

without revealing who they are. Set membership proofs are a typical usecase of zk-

snarks for privacy [8], and we can imagine a zk proof of the form "I can prove that

I own the private key [via generating a valid signature] for some public key that

is a leaf of the merkle tree comprised of all set members, with this public merkle

root." For such applications, a person merely needs to prove the existence of at least

one valid signature per message to be sure that such a message is legitimate [19].

However, such applications have the advantage that there is no uniqueness constraint

on the provers: that is, the same wallet proving itself as a member multiple times is
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intended behavior. However, many applications require a maximum of one action per

user, especially protocols that desire sybil resistance like claiming an airdrop.

For a concrete example, a zero knowledge airdrop [26] requires that an anonymous

claimer can produce some unique public identifier of a claim to a single address on

an airdrop, that does not reveal the value of that address[35]. One can imagine a

"claimer" can send a zk-proof of knowledge of merkle path to some public merkle

root, along with a proof of private key ownership (whether signature verification

or something else). A public nullifier signal ensures they cannot claim again in the

future. This unique public identifier is coined a "nullifier" because the address nullifies

its ability to perform the action again. For a specific nullifier function, a hash of the

public key would be ideal but can easily be brute forced due to the finite number of on-

chain addresses, so alternate solutions are needed. One can imagine that a signature

would be an ideal nullifier; however, most signature algorithms (and all presently

deployed ones on Ethereum) have 2256 valid signatures for the same message and

public key, so you can imagine someone can "prove" membership an effectively infinite

number of times and have a different "nullifier" each time, defeating the purpose of

a unique nullifier.

One can then imagine that hash(message, secret key) is a decent nullifier, where

each app has (usually) one canonical message – there’s no way to reverse engineer

the secret key, it’s lightweight and computable in a hardware wallet, and it is unique

for each account and application. However, we can’t verify it without access to the

secret key itself. For security reasons, we want a way to be able to do all of these

computations without a user having to insert their private key anywhere, especially

not copy paste it as plaintext. For anything that does need a private key, we want

computation to be very lightweight so we can run it on a hardware wallet as well if

needed: the complex elliptic curve pairing functions required to prove ZK SNARKs

are not feasible to compute in current memory-constrained hardware wallets, and

because ZK proof systems evolve so rapidly, we don’t want wallets to commit to a

specific system this early. However, this simple construction provides the key insight

that we use to motivate our nullifier scheme.
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If we want to forbid actions like double spending or double claiming, we need these

nullifiers to be unique per account. Because ECDSA signatures are nondeterministic,

signatures don’t suffice; we need a new deterministic function, verifiable with only

the public key. We want the nullifier to be non-interactive, to uniquely identify the

keypair yet keep the account identity secret. Overall, the key insight is that such

nullifiers can be used as a public commitment to a specific anonymous account.

1.1 Contributions

We implement and verify a method for a non-interactive nullifier scheme. We also

provide an explanatory blog post with intuitions for layfolk.

The exact definition of a successful nullifier is as follows: we want a deterministic

nullifier function N(𝑠𝑘, 𝑝𝑘), for an ECDSA keypair (𝑠𝑘, 𝑝𝑘), to have the following

properties, for some application-specific message 𝑚, which can also be considered

to encapsulate information about any common reference strings. Note that 𝑝𝑟𝑜𝑜𝑓

can be any proof transcript at all, including an adversarially chosen one. 𝜖 is any

negligible function. Note that these definitions may have more inputs as well, such as

common reference inputs. We also assume that no address has public key 0 for ease

of notation.

1. Correctness. For all 𝑝𝑘𝑖, and verification function 𝑉 𝑒𝑟, 𝑉 𝑒𝑟(𝑁(𝑚, 𝑠𝑘𝑖, 𝑝𝑘𝑖), 𝑝𝑟𝑜𝑜𝑓𝑗,𝑚, 𝑝𝑘𝑖) =

𝑝𝑘𝑖, for all such 𝑝𝑟𝑜𝑜𝑓𝑗, and 𝑃 [𝑉 (𝑥, 𝑥 ̸= 𝑁(𝑚, 𝑠𝑘𝑖, 𝑝𝑘𝑖)∀𝑖, 𝑝𝑟𝑜𝑜𝑓) = 0] > 1− 𝜖.

Note that 𝑉 𝑒𝑟 does not take any private input, thus it must be possible to verify

the signature scheme with only public information.

2. Uniqueness. Any keyholder cannot generate two nullifiers. Formally, 𝑉 [𝑥, 𝑝𝑟𝑜𝑜𝑓𝑥] =

𝑝𝑘1, 𝑉 [𝑦, 𝑝𝑟𝑜𝑜𝑓𝑦] = 𝑝𝑘1) implies 𝑥 = 𝑦. This implies the function must be de-

terministic.

3. Secrecy. Also called unpredictability/hiding [18]. An adversary 𝒜 with 𝑝𝑘𝑖,

a succinct list of all valid public keys, as well as 𝑝𝑘𝑗, a list of all public

keys approved by the set inclusion algorithm, cannot distinguish two keys
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given the nullifier, the only public ZK proof output. For 𝑝𝑘1, 𝑝𝑘2 ∈ {𝑝𝑘𝑗},

𝑃 (𝒜[𝑁(𝑠𝑘1, 𝑝𝑘1), 𝑁(𝑠𝑘2, 𝑝𝑘2), {𝑝𝑘𝑗}] = (𝑝𝑘1, 𝑝𝑘2)) < 0.5 + 𝜖.

Note these definitions are almost identical to VUFs [18], but all current imple-

mentations of VUFs are not compatible with the secp256k1 curve. Note that it will

usually be desirable to keep the public key private using this nullifier, so we intend

the verification step to occur within a zk-proof. Our definitions can be achieved via

DDH-VRFs that incorporate ZK-SNARK verifiers instead of classical sigma protocols

[6], since proving public key set membership is much easier in ZK-SNARKS.

1.2 Applications

Standardizing such a nullifier scheme into at least one wallet would make any appli-

cations that rely on unique, anonymous identities practical. These include airdrops,

persistent identities on message boards, and uniqueness claims for proof of ownership.

ZK airdrops are achieved via publishing a set accumulator (i.e. a Merkle tree) of

allowed users and having users submit a proof to claim an airdrop from an unlinked

account. Eligible people would prove proof of private key ownership via signature,

along with a proof that the corresponding public key is in the Merkle tree by providing

a Merkle path, and in the same proof verify their nullifier as a check for double-

claiming.

Message boards can have a persistent anonymous identity, meaning someone can

post under the same nullifier multiple times, and everyone knows that they are the

same person, but not who that person is. Users would simply upload a nullifier where

the message corresponds to the unique ID of the thread, along with an ECDSA

signature from their public key in the same ZK-SNARK of the message contents and

timestamp where the signature verification is kept private in the SNARK.

We can also build a more secure version of tornado.cash, where instead of leaking

the nullifier string in plaintext on the frontend from a server via the website, the

nullifier can simply be this ECDSA nullifier corresponding to some message in a

standard format, like “tornado.cash note 5 for 10 eth”.
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We think that wallets that adopt this standard first will hold the key for their

users being able to interact with the next generation of ZK applications first. We

hope this standard becomes as commonplace as ECDSA signing, within every secure

enclave.

1.3 Related Work

This specific problem has only recently become of particular interest due to the afore-

mentioned zero knowledge applications reaching production. Nullifiers have used

since zcash [4] and tornado.cash [2], but we have a non-interactivity requirement that

they may not. Without a non-interactivity requirement, a user could simply hash a

random string and use another hash of that preimage as their nullifier from then on:

tornado.cash uses a similar scheme based on random strings. However, we want to be

able to publish a nullifier without any such interaction, so it is much harder to build

off of their constructions.

It is also not possible to create an algebraic nullifier function using only one group

and it’s algebraic operations, as proven in [1]. However, using tools such as MPC or

pairings may allow us to map between multiple fields/groups and thus not be solely

algebraic. In addition, treating a hash function as a pseudorandom oracle also breaks

algebraic constraints, as the output of a hash function cannot be expressed as a linear

combination of its inputs.

There is also research on fair ZK, in which a unique witness can be made to have

a deterministic ZK proof, and thus a hash can be used as a nullifier [23]. However,

this is not presently useful, as we still need a deterministic nullifier to prove we know

the private key. Note that our construction is also similar to a unique ring signature

over ECDSA, but where each public key, for each set, emits a unique signature that

doesn’t identify them [29].

One proposed solution is using MPC to shuffle an encrypted secret, first proposed

by Riad Wahby. This solution would allow us to have deterministic nullifiers with

guarantees up to a group instead of an individual; users would simply add their
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nullifiers to an anonymity set, which would be shuffled in such a way that we can detect

if someone in the group is interacting twice with the same application, but we can’t

pinpoint which one. This would work by first having a coordinator publish encrypted

secrets, and future participants "shuffle" which messages are encrypted by which

addresses, leading to a 1-of-n trust guarantee (i.e. at least one shuffler must be honest

for it to be unlinkable). This primarily works with RSA-style encryptions and does

not seem practical for our use case, due to the interactivity required to generate a valid

RSA key pair ahead of time. Verifiable random shuffles also depend on the existence

of a homomorphic encryption function, which the standardized Metamask ed25519

encryption algorithm (𝑋25519_𝑋𝑆𝑎𝑙𝑠𝑎20_𝑃𝑜𝑙𝑦1305 is standard, with a MAC and

with keypairs derived from ECDSA private keys) is not. Note this is impractical for

our setting, as ECDSA has no associated encryption/decryption function (except for

ECIES, which relies on a Diffie-Hellman like setup).

There is additionally another body of work on verifiable unpredictable functions

(VUFs), which has the same zero knowledge and security guarantees as the solu-

tion we are looking for [18]. The output of some VUF would be used to generate

either encrypted randomness for a user that only they can decrypt, or as the ba-

sis for a deterministic signature. However, research is scant especially compared to

VRFs (verifiable random functions). The algorithm outlined in the VUF paper [18]

is promising but requires a pairing friendly curve to verify, similar to BLS. These

are usually groups where decisional Diffie-Hellman (DDH) is easy, but computational

Diffie-Hellman (CDH) is hard. However, ECDSA does not operate on the same el-

liptic curve, and DDH is hard so it is pairing unfriendly. However, exploring other

pairing based schemes could be promising in the future.

This leaves one final avenue for us to proceed on. We want a deterministic function

of a user’s secret key, that can be verified with only their public key, eventually done

inside a ZK-SNARK to keep the public key itself anonymous behind a set member-

ship check. We choose to implement and standardize such a deterministic signature

scheme, specifically building atop a concrete DDH-VRF scheme [6], such as EC-VRF

[15] as originally described in a paper about NSEC5 in DNSSEC [27].
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1.4 Roadmap

We first provide definitions of all the relevant existing cryptographic primitives needed

to understand the nullifier construction.

We then present the nullifier construction of the BLS-like [5] signature scheme.

The construction is based on section 3.2 of [10] and BLS, and is effectively fixed Goh-

Jarecki signatures where we subsitute 𝑟 inside the hash with 𝑝𝑘 instead to make it

deterministic [14]. We prove all the relevant nullifier requirements.

Finally, we present moral considerations and present benchmarks, as well as de-

scribe future work.
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Chapter 2

Preliminaries

In this section, we will introduce the hashing primitives, signature algorithms, ZK-

SNARK systems, and internet infrastructure systems that our construction relies on.

2.1 Hashing

Our nullifier algorithm relies on several hashing algorithms, including SHA256, SHA512,

and the IETF RFC standard hash to curve algorithm for secp256k1 QUUX-V01-

CS02-with-secp256k1_XMD:SHA-256_SSWU_RO_ (we will abbreviate this last al-

gorithm as hash2curve henceforth, for brevity) [12].

There are many SNARK-friendly hash functions, like MiMC, Poseidon, or Peder-

son. However, we didn’t use those in our initial proof of concept and paper, because

we want to guarantee maximum compatibility and probability of adoption by wal-

lets. If a prominent wallet provider indicates a willingness to use one of these hash

functions, we believe it is advantageous to switch our scheme to use it.

Note that our construction also relies on a hash to curve algorithm, because a

hash multiplied by the generator would break the existential unforgeability of any

signature scheme dependent on it [33].

We assume these hash algorithms are collision resistant and deriving a preimage

is hard given the hashed value, and breaking each requires 2𝑛 queries for some n.
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2.2 Signatures

2.2.1 ECDSA

ECDSA is the signature protocol used by Bitcoin, Ethereum and most blockchain

systems [25, 7], due to both Schnorr’s copyright and ECDSA’s relatively smaller key

size, especially when compared to RSA. Most RSA keys are 2,048 bits, but the much

shorter 256-bit ECDSA key provides roughly equal security to a 3,248 bit RSA key

[28].

ECDSA uses the secp256k1 curve, meaning all the points are on 𝑦2 = 𝑥3 + 7 [20].

Because almost all existing blockchain and public key infrastructure uses this curve

for non-deterministic signatures, we are interested in a nullifier construction for this

class of curves specifically.

2.2.2 Pairing Friendly Signatures

BLS is a deterministic proof over pairing-based curves. One notable thing about

secp256k1 is that it is not pairing friendly. One clear reason for this (of many) is

that decisional Diffie Hellman and computational Diffie Hellman are both hard in

secp256k1; but, in pairing friendly curves such as the ones used in BLS, decisional

Diffie Hellman is easy, while computational Diffie Hellman is still hard [5]. Note that

this means that a simple deterministic signature scheme (which would give us our

ideal nullifier for free) such as BLS will not work with ECDSA, although if we use its

form as an inspiration [5].

2.2.3 Other Signatures

Note that RSA signatures are deterministic, which means that those signatures could

directly be proven in the ZK-SNARK – we wouldn’t need a bespoke signature scheme.

Verifiable Unpredictable Functions, or VUFs, are another pairing-curve based con-

struction that allows specific construction of nullifier-style identities [18] and are im-

practical for ECDSA largely due to the reliance on the pairing check.
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2.3 Ethereum

Ethereum is a data available public ledger that can act as a decentralized verification

layer for our contracts and SNARKs. There are several types of wallets, including

secure enclave enabled hardware wallets, software wallets that run on the OS level, and

browser wallets that can query any secure enclaves required and directly interact with

smart contracts via web interfaces. We want to isolate simple operations that leak

the secret key to the secure enclave, isolate the resulting signals that leak anonymity

within the secure wallet application or a client-side-only web app, and only reveal the

ZK-SNARKed public data to the world. To ensure data availability and censorship

resistance, ideally this data is hosted via a credibly neutral blockchain layer that can

act as a 3rd party verifier, trusted via decentralization.

2.3.1 Constraints

We want a nullifier algorithm to be practical for both in-browser wallets such as

Metamask and hardware wallets such as Ledger and Trezor. However, especially

hardware wallet environments are considerably resource-constrained: the inexpensive

secure enclave chips can only compute limited functions, and the smallest ones have a

total of 320 kB of flash memory for all applications [34]. Thus, it will take impractical

amounts of time (and is currently infeasible with that amount of memory) to compute

a function as complex as a SNARK proof.

This constraint is the reason that we cannot generate a simple ZK-SNARK proof

of knowledge of a private key that generates a valid public key, with the anonymity

set as the only public input to the circuit. Even as memory limits increased, we do

not want to commit secure enclaves to a specific proof system or proof, which would

block applications from adding bespoke checks to the proof or upgrading the proving

system. Thus, we opt to separate the calculation of signals in the enclave, from the

verification of the signals in a ZK SNARK outside the enclave.

Note that we prefer to use a ZK-SNARK instead of a non-interactive Sigma pro-

tocol for ZK, because we want to additionally allow applications to easily add checks
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inside the zero knowledge proof – for instance public key set membership in a Merkle

tree, or an proof of a path in the Ethereum trie of on-chain state at some point for

that public key.

2.4 ZK SNARKs

There are several generic proving systems, including Groth16 which uses R1CS arith-

metization [3], PLONK which uses AIR [13], and Nova which uses relaxed R1CS [21].

We write our proof of concept in circom, which uses r1cs and groth16, although we

expect to easily be able to swap out the groth16 proof for a Nova proof to boost

performance. Note that we desire to use a statistical zero knowledge argument sys-

tem over a computational one, to ensure that data remains zero knowledge after 256

qbit quantum supremacy (although the nullifier breaks past zero knowledge, which

we comment on later).

We use a ZK-SNARK for easy composability with other algorithms, like a set

inclusion algorithm for the public key, or any other existing circuit, along with the

ease of verification of the succinct proof on-chain.
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Chapter 3

Nullifier Scheme

3.1 Construction

This is a description of how the different entities of the secure enclave chip, browser

wallet, client-side-only zk prover, and blockchain play their part in calculating the

signatures. We assume the secure enclave is the only entity with access to the secret

key 𝑠𝑘 and secure randomness 𝑟, and can be either a hardware enclave or a software

enclave. We use exponential notation instead of multiplicative notation so a reader

can apply their intuitions about the discrete log problem. In practice, hash2 is a

standard multi-value hash function like SHA256, and hash refers to a hash-to-curve

function.

The enclave calculates and outputs publicly (to become a public input into the

ZK SNARK):

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟 = hash[𝑚, 𝑝𝑘]𝑠𝑘

𝑠 = 𝑟 + 𝑠𝑘 * 𝑐

The enclave also calculates and outputs this privately to the client (to become a

private input into the ZK SNARK, as they de-anonymize the user):
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𝑐 = hash2

(︀
𝑔, 𝑔𝑠𝑘, hash[𝑚, 𝑝𝑘], hash[𝑚, 𝑝𝑘]𝑠𝑘, 𝑔𝑟, hash[𝑚, 𝑝𝑘]𝑟

)︀
𝑝𝑘 = 𝑔𝑠𝑘

𝑔𝑟 [optional output]

hash[𝑚, 𝑝𝑘]𝑟 [optional output]

The optional inputs are included here to increase prover efficiency via precompu-

tation, but they can be calculated from the other signals. The ZK SNARK, which is

generated on a client-side only software that the prover runs, proves:

← 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑠, 𝑐, 𝑝𝑘, 𝑔,𝑚

𝑐 == hash2

(︂
𝑔, 𝑝𝑘, hash [𝑚, 𝑝𝑘] , 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟,

𝑔𝑠

𝑝𝑘𝑐
,
hash [𝑚, 𝑝𝑘]𝑠

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑐

)︂
𝑝𝑘 ∈ 𝑠𝑒𝑡

Note that divisions as written are calculated in practice as subtractions, and

that under the random oracle model for hashing, this check is implicitly proving the

following (which you can easily verify completeness for by substituting 𝑠 = 𝑟+𝑠𝑘 *𝑐).

𝑔𝑠

𝑝𝑘𝑐
=𝑔𝑠/

(︀
𝑔𝑠𝑘

)︀𝑐
= 𝑔𝑟

hash [𝑚, 𝑝𝑘]𝑠

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑐
=hash [𝑚, 𝑝𝑘]𝑠 /

(︀
hash[𝑚, 𝑝𝑘]𝑠𝑘

)︀
= hash[𝑚, 𝑝𝑘]𝑟

We expect that users will include other application-specific checks as well in the

same ZK SNARK, such as set inclusion checks for the stated public key (this can

be done with a Merkle proof for a public Merkle root, for instance). For this circuit

specific ZK SNARK, a verifier with the corresponding prover code will be posted on

a Turing-complete public blockchain ledger, to allow anyone to both verify that the

proof is accurate, and provide proofs that, upon verification, allow access to some

specific on-chain action.

We use a ZK-SNARK instead of a simple ZK interactive protocol with Fiat-Shamir

to allow application creators to easily extend the existing proof to fit their use cases.
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3.2 Proofs

We prove security in the random oracle model. Specifically, we prove uniqueness (each

public key can only generate one nullifier), secrecy (one cannot learn the public key

from the public signals), and existential unforgeability (given proof signals, one cannot

forge another proof or learn the secret key). Previous work has proved uniqueness,

pseudorandomness, and collision resistance of the original signature scheme without

the zero knowledge component [27].

3.2.1 Definitions

We define EUF via definitions similar to the BLS paper [5] and Goh-Jarecki’s EDL

paper [14], but for the secp256k1 curve.

Definition 3.1 (Group Definition) If the group satisfies 𝜏, 𝑡′, 𝜖′, such that it 𝜏 is

the ratio of timesteps needed to break DDH vs do the group operation (time = 1), and

that an adversary can break CDH with probability 𝜖′ in 𝑡′ timesteps. This group has

order 𝑝.

We assume for the implementation that this elliptic curve is secp256k1.

Definition 3.2 (Advantage of existentially forging) This is the probability that

an adversary can produce a nullifier and valid zk proof that validates for a known

message m. Because this is an app specific, app-chosen parameter, we assume the

adversary can choose this message m. We assume the hash function treated as random

oracle, and we account for hash collision failure probabilities in our calculation.

Definition 3.3 (Scheme security) If an adversary in time t, with 𝑞ℎ queries to

hash function, and 𝑞𝑠 queries to sig oracle, can achieve an advantage of existentially

forgery at most 𝜖, then it is (𝑡, 𝑞ℎ, 𝑞𝑠, 𝜖) secure.

Definition 3.4 (Security against Existential Forgery) No forger can (𝑡, 𝑞ℎ, 𝑞𝑠, 𝜖)

break a nullifier.
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Theorem 3.5 (Security Bound) We will prove that 𝑡 ≤ 𝑡′−2𝑐𝐴(𝑙𝑔𝑝)(𝑞𝐻 +𝑞𝑆) and

𝜖 ≥ 2𝑒 · 𝑞𝑆𝜖′, and 𝑐𝐴 is a small constant between 1 and 2. Here e is the base of the

natural logarithm.

Theorem 3.6 (Computational Diffie Hellman Security) A probabilistic algorithm

𝒜 is said to (𝑡, 𝜖)-break 𝐶𝐷𝐻 in a group 𝐺𝑔,𝑝 if on input (𝑔, 𝑝, 𝑞) and random query(︀
𝑔𝑎, 𝑔𝑏

)︀
, and after running in at most 𝑡 steps, 𝒜 computes 𝑔𝑎𝑏 with 𝜖 probability. 𝑊𝑒

say that group 𝐺𝑔,𝑝 is a (𝑡, 𝜖)-CDH group if no algorithm (𝑡, 𝜖)-breaks 𝐶𝐷𝐻 in 𝐺𝑔,𝑝.

Note that these definitions are almost identical to BLS’s signature security proof

[5], and CDH follows because it is merely a reduction of discrete log [24].

Note that there is additionally a proof of set inclusion property: that one can a

valid proof iff the public key is in the allowed set. Note that if we prove the uniqueness,

secrecy, and existential unforgeability of the signature scheme, then this set inclusion

proof immediately follows from the accumulator scheme check being correct, so we

omit the formal proof.

3.2.2 Proof of Uniqueness

We prove that an adversarial secret key holder cannot generate more than one valid

nullifier. Formally adversary 𝒜 breaks uniqueness if:

𝑃𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐺𝑒𝑛(𝑠𝑒𝑐𝑝256𝑘1)→ 𝑠𝑘, 𝑝𝑘

𝑠𝑘, 𝑝𝑘, 𝑔,𝑚→ 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑠, 𝑐

𝑐 = hash2

(︂
𝑔, 𝑝𝑘, hash [𝑚, 𝑝𝑘] , 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟,

𝑔𝑠

𝑝𝑘𝑐
,
hash [𝑚, 𝑝𝑘]𝑠

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑐

)︂
𝒜 ← 𝑠𝑘, 𝑝𝑘, 𝑔,𝑚

𝒜 → 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜, 𝑠𝒜, 𝑐𝒜

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜 ̸= 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟

𝑐𝒜 = hash2

(︂
𝑔, 𝑝𝑘, hash [𝑚, 𝑝𝑘] , 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜,

𝑔𝑠𝒜

𝑝𝑘𝑐𝒜
,
hash [𝑚, 𝑝𝑘]𝑠𝒜

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑐𝒜𝒜

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 𝑛𝑒𝑔𝑙
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where 𝑛𝑒𝑔𝑙 is the negligible function. We can assume all inputs to hash2 are well

formed because we can add those constraints to the ZK-SNARK. We show that in

the random oracle model, this probability is negligible.

𝑃𝑟𝑜𝑜𝑓. Imagine the adversary makes 𝑞ℎ queries to the hash function. For each

query, they have to commit to some
(︁
𝑝𝑘, 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜,

𝑔𝑠𝒜

𝑝𝑘𝑐𝒜
, hash[𝑚,𝑝𝑘]𝑠𝒜

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟
𝑐𝒜
𝒜

)︁
ahead of time

to find 𝑐𝒜. We can assume 𝑝𝑘 = 𝑔𝑠𝑘 and 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜 = hash[𝑚, 𝑝𝑘]𝑟
′ for some 𝑟′, since

hash[𝑚, 𝑝𝑘] is a generator of a cyclic prime group. Then the adversary has committed

to
(︀
𝑔𝑠𝑘, hash[𝑚, 𝑝𝑘]𝑟

′
, 𝑔𝑠𝒜−𝑠𝑘·𝑐𝒜 , hash[𝑚, 𝑝𝑘]𝑠𝒜−𝑟′·𝑐𝒜

)︀
ahead of time. Since they have

committed to the exponents in the last two terms, the adversary has committed to

an arbitrary (𝑠𝑘−𝑟′)𝑐𝒜 before finding out 𝑐𝒜. This means that either 𝑠𝑘 = 𝑟′ and the

discrete logs match so 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝒜 = 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, or else 𝑐𝒜 is 0, which happens with

negligible probability 1/2𝑘.

3.2.3 Proof of Existential Unforgeability

We prove that an adversary 𝒜 with a (𝑡, 𝑞ℎ, 𝑞𝑠, 𝜖) advantage on breaking existential

unforgeability for the signature scheme, can then (𝜏, 𝜖) break CDH [11] in the random

oracle model. Note that this proof is essential from the perspective of the secure

enclave, to ensure that the data it produces does not leak information about the

secret key to ZK-SNARK generator, which might be inside a wallet.

𝑃𝑟𝑜𝑜𝑓. Imagine Alice wants to break CDH of (𝑔, 𝑔𝑎, 𝑔𝑏), and Bob is the adversary

who can generate a valid (ℎ𝑎𝑠ℎ[𝑚, 𝑝𝑘], 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑠, 𝑐,𝑚) tuple for a previously unseen

message m after 𝑞𝑠 queries of public and private outputs of the signature oracle (pre-

vious (ℎ𝑎𝑠ℎ[𝑚, 𝑝𝑘], 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑠, 𝑐,𝑚) tuples). To do this, Alice generates a random

bit 𝑏𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) for the 𝒜’s 𝑖th query of the signature oracle. This bit will

control whether Alice predicts that Bob will try to break CDH on this round or not,

and thus Alice will tailor their responses accordingly.

If 𝑏𝑖 = 1, when Bob queries 𝑝𝑘, Alice returns 𝑔𝑏. When Bob queries hash[𝑚, 𝑝𝑘],

Alice as the random oracle returns the value 𝑔𝑎. If Bob chooses to break the signature

scheme this round and responds, because of the uniqueness proof, they return the

nullifier hash[𝑚, 𝑝𝑘]𝑠𝑘 = 𝑔𝑎𝑏 with probability 𝜖. Alice can then use this value to break
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Diffie Hellman. If Bob queries Alice for the nullifier, this scheme fails.

If 𝑏𝑖 = 0, when Bob queries 𝑝𝑘, Alice returns 𝑔𝑟𝑖 , where 𝑟𝑖 is uniformly random

over the order of the prime field. When Bob queries hash[𝑚, 𝑝𝑘], Alice as the random

oracle returns the value 𝑔𝑞𝑖 , where 𝑞𝑖 is similarly uniformly randomly over the order

of the prime field. If Bob queries Alice for the nullifier, Alice returns 𝑔𝑟𝑖·𝑞𝑖 . If Bob

tries to break the signature scheme by returning a tuple, this scheme fails because

Alice gets no information.

Note that Alice needs to correctly guess all of the 𝑏𝑖’s correctly to successfully

answer Bob’s first 𝑞ℎ queries as well as the final breaking query. Thus, similar to BLS,

the probability of breaking the scheme is 𝑝𝑞ℎ(1 − 𝑝)𝜖. Maximizing 𝑝 via derivative

shows the max probability is attained at 𝑝 = 𝑞ℎ
1+𝑞ℎ

, putting success probability at(︁
𝑞
𝑞ℎ
ℎ

(1+𝑞ℎ)
1+𝑞ℎ

)︁
𝜖. For large 𝑞ℎ, using the identity lim𝑥→∞(1 − 1

𝑥
)𝑥 = 𝑒−1 gives that the

probability is around 𝜖
𝑒·𝑞ℎ

where 𝑒 is the natural logarithm, and the number of steps is

𝑡′ = 𝑡+2𝑐𝒜(𝑙𝑔𝑝)(𝑞𝐻 + 𝑞𝑆), where 𝑞𝐻 is the number of hash function queries, 𝑞𝑆 is the

number of signature queries, 𝑙𝑔𝑝 is the approximate complexity of an exponentiation

in a group of size p and dominates algorithm time per hash/signature, and c is an

overhead constant that in practice is probably between 1 and 2.

Thus, if G is a (𝜏, 𝑡′, 𝜖′)-CDH group, then there can exist no algorithm that

(𝑡, 𝑞𝐻 , 𝑞𝑆, 𝜖)-breaks our nullifier signature scheme with 𝑡 ≤ 𝑡′ − 2𝑐𝐴(𝑙𝑔𝑝)(𝑞𝐻 + 𝑞𝑆)

and 𝜖 ≥ 2𝑒 · 𝑞𝑆𝜖′, and 𝑐𝐴 is a small constant between 1 and 2. Note that this proof is

almost the same as the BLS proof [5].

3.2.4 Proof of Secrecy

We prove that given only public signals, an adversary who is not the prover cannot

learn anything about the original user’s identity. That is, adversary 𝒜 breaks secrecy

if they can distinguish which public key was used to generate the nullifier. Formally,
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𝑃𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐺𝑒𝑛(𝑠𝑒𝑐𝑝256𝑘1)→ 𝑠𝑘, 𝑝𝑘

𝑠𝑘, 𝑝𝑘, 𝑔,𝑚→ 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑠, 𝑐

𝑐 = hash2

(︂
𝑔, 𝑝𝑘, hash [𝑚, 𝑝𝑘] , 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟,

𝑔𝑠

𝑝𝑘𝑐
,
hash [𝑚, 𝑝𝑘]𝑠

𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟𝑐

)︂
𝒜 ← 𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟, 𝑝𝑘, 𝑝𝑘2, 𝑔,𝑚

𝒜 → 𝑝𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
> 0.5+𝑛𝑒𝑔𝑙

where 𝑛𝑒𝑔𝑙 is the negligible function, and the adversary is effectively trying to tell

if 𝑝𝑘 or arbitrary, valid 𝑝𝑘2 corresponds to the nullifier. We show that in the random

oracle model, we can reduce the security of this to DDH.

𝑃𝑟𝑜𝑜𝑓. Specifically, imagine an adversary Alice could in fact determine the correct

public key with probability 0.5+𝜖, 𝜖 > 𝑛𝑒𝑔𝑙, using public signals. Then, imagine that

Bob wanted to distinguish DDH; i.e. distinguish which of (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑥), (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑦),

for 𝑥 ̸= 𝑎𝑏, 𝑦 = 𝑎𝑏, is the valid Diffie-Hellman tuple with epsilon advantage. Then

Bob can randomly shuffle the tuples and designate the first one as 𝑔𝑥, then pass in

(𝑛𝑢𝑙𝑙𝑖𝑓𝑖𝑒𝑟 = 𝑔𝑥, 𝑝𝑘 = 𝑔𝑎, 𝑝𝑘2 = 𝑟, 𝑔,𝑚), where 𝑝𝑘2 ̸= 𝑝𝑘 is randomly generated.

When Alice queries the hash oracle for hash[𝑚, 𝑝𝑘], Bob can respond with 𝑔𝑎. When

Alice queries 𝑝𝑘, Bob can respond with 𝑔𝑏. Then, if Alice has an 𝜖 advantage, they

can distinguish 𝑔𝑎𝑏 in 1/2 of the shuffles, so Bob has an 𝜖/2 advantage in solving

decisional Diffie Hellman.
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Chapter 4

Discussion

4.1 Performance

Our proof of concept for the nullifier uses a library called RustCrypto oriented towards

constant time for all inputs, making timing-based side-channel attacks much harder

[22]. We hope that ports to other languages prioritize this as well. Our code is OSS

on GitHub ∗. It takes 0.35 seconds to compile, run, and verify without a ZK-SNARK.

The gas efficiency of our code is dominated by the Groth16 pairing check right

now, but we expect that to be decreased when we switch to Nova.

4.2 Morality and Mitigations

We believe that as cryptographers, we have a moral imperative to release our work

responsibly, and consider possible harms from releasing our research. We also deem

it necessary to build in warnings and mitigations into such primitives before it is too

late [31].

We hope that all uses of the nullifier will come with appropriate disclosures about

the loss of anonymity upon ECDSA-breaking quantum supremacy.

∗https://github.com/zk-nullifier-sig/zk-nullifier-sig
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4.3 The Interactivity-Quantum Secrecy Tradeoff

Note that in the far future, once 256 qbit quantum computers can break ECDSA

keypair security via breaking discrete log [32], most Ethereum keypairs will be broken,

but funds will be safe. People can merely sign messages committing to new quantum-

resistant keypairs (or just higher bit keypairs on similar algorithms), and the canonical

chain can fork to make such keypairs valid. ZK-SNARKs become forgeable as their

soundness guarantees are broken [36], for instance via a similar discrete log calculating

toxic waste. However, they still guarantee, for statistically zero knowledge systems

euch as Groth16, that secret data in past proofs still cannot ever be revealed. In the

best case, the blockchain’s guarantees should all continue to be upheld.

However, if people rely on any type of deterministic nullifier like our construction,

their anonymity is immediately broken: someone can merely derive the secret keys for

the whole anonymity set, calculate all the nullifiers, and see which ones match. This

problem will exist for any deterministic nullifier algorithm on ECDSA, since revealing

the secret key reveals the only source of “randomness” that guarantees anonymity in

a deterministic protocol.

If people want to keep post-quantum secrecy of data, you have to give up at least

one of our properties: the easiest one is probably non-interactivity. For example,

for the zero knowledge airdrop, each account in the anonymity set publicly signs a

commitment to a new semaphore id commitment (effectively address pk publishes

hash[randomness | external nullifier | pk]) [17]. Then to claim, they reveal their ex-

ternal nullifier and ZK prove it came from one of the semaphore ids in the anonymity

set. This considerably shrinks the anonymity set to everyone who has opted into

a semaphore commitment prior to that account claiming, meaning the first claimer

can potentially have anonymity set of size 1. The loss of noninteractivity also means

some constructions such as the tornado cash improvement via our present nullifier

construction is impossible (see use cases). However, since hashes (as far as we cur-

rently know) are still hard with quantum computers, it’s unlikely that people will be

able to ever de-anonymize you.
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We hope that people will choose the appropriate algorithm for their chosen point

on the interactivity-quantum secrecy tradeoff for their application, and hope that

including this information helps folks make the right choice for themselves. Folks

prioritizing shorter-term secrecy, like DAO voting or short-term confessions of the

young, might prioritize this document’s nullifier construction, but whistleblowers or

journalists might want to consider the semaphore construction instead. We also note

that since it will take around 2321 signal qubits (not accounting for noise) to solve

elliptic curve cryptography in 256 bit prime fields [30], we expect it to take several

decades for this to become feasible – estimates range from 2050 to 2100, to never due

to theoretical noise limitations.

4.4 Future Work

We expect to release a blog post to explain the algorithm intuitively. Finally, we

hope that folks will use our open source repository on GitHub (so far with a Rust

proof of concept, Javascript to come) † to re-implement the scheme in a variety of

formats and languages, especially ones compatible with different wallets. Although

we considered publishing an IETF RFC for additional legitimacy, the existing RFC

for the signature scheme alone (section 5 of [16]) seems sufficient for now.

†https://github.com/zk-nullifier-sig/zk-nullifier-sig/
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Chapter 5

Conclusion

Having identified nullifiers as a key piece of cryptographic infrastructure limiting the

use cases for ZK-SNARKs, in this work we explored the future of pseudonymous

identity systems via nullifiers.

We demonstrated a construction of a new signature scheme with a public, de-

terministic nullifier component, and additional private signals that help verify the

nullifier without the secret key. The nullifier both uniquely identifies the keypair and

keeps the account identity secret. We proved uniqueness, secrecy, and existential un-

forgeability, and demonstrated a performant proof-of-concept.

We informally explained the quantum secrecy and interactivity tradeoff for nulli-

fiers, and described possible mitigations for moral hazards introduced by this paper.
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