
EvalRound Algorithm in CKKS Bootstrapping

Seonghak Kim1[0000−0001−6366−5550], Minji Park2, Jaehyung
Kim1[0000−0002−1624−6326], Taekyung Kim1[0000−0001−8834−4796], and Chohong

Min2[0000−0002−6108−8742] ⋆

1 Crypto Lab Inc., 1 Gwanak-ro, Gwanak-gu, Seoul, Korea, 08826
cryptolab@cryptolab.co.kr

https://cryptolab.co.kr
2 Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea, 03760

mathdept@ewha.ac.kr
http://math.ewha.ac.kr/

Abstract. Homomorphic encryption (HE) has opened an entirely new
world up in the privacy-preserving use of sensitive data by conducting
computations on encrypted data. Amongst many HE schemes targeting
computation in various contexts, Cheon–Kim–Kim–Song (CKKS) scheme
[8] is distinguished since it allows computations for encrypted real number
data, which have greater impact in real-world applications.
CKKS scheme is a levelled homomorphic encryption scheme, consuming
one level for each homomorphic multiplication. When the level runs out,
a special computational circuit called bootstrapping is required in order
to conduct further multiplications. The algorithm proposed by Cheon
et al. [7] has been regarded as a standard way to do bootstrapping in
the CKKS scheme, and it consists of the following four steps: ModRaise,
CoeffToSlot, EvalMod and SlotToCoeff. However, the steps consume a
number of levels themselves, and thus optimizing this extra consumption
has been a major focus of the series of recent research.
Among the total levels consumed in the bootstrapping steps, about a
half of them is spent in CoeffToSlot and SlotToCoeff steps to scale up the
real number components of DFTmatrices and round them to the nearest
integers. Each scale-up factor is very large so that it takes up one level to
rescale it down. Scale-up factors can be taken smaller to save levels, but
the error of rounding would be transmitted to EvalMod and eventually
corrupt the accuracy of bootstrapping.
EvalMod aims to get rid of the superfluous qI term from a plaintext
pt+qI resulting from ModRaise, where q is the bottom modulus and I is
a polynomial with small integer coefficients. EvalRound is referred to as
its opposite, obtaining qI. We introduce a novel bootstrapping algorithm
consisting of ModRaise, CoeffToSlot, EvalRound and SlotToCoeff, which
yields taking smaller scale-up factors without the damage of rounding
errors.

Keywords: Homomorphic Encryption · CKKS Scheme · Bootstrapping

⋆ Corresponding author.

https://cryptolab.co.kr
http://math.ewha.ac.kr/

2 Kim et al.

1 Introduction

Homomorphic encryption (HE) refers to a class of encryption schemes which
enables computation over encrypted data. The Cheon–Kim–Kim–Song (CKKS)
[8] scheme is recognized as one of the most efficient fully homomorphic encryption
(FHE) scheme that supports computation on real/complex data. Unlike other
FHE schemes that are designed for integer [2–4,14] or binary [10,11,13] messages,
the CKKS scheme is designed for real/complex messages, as it supports efficient
scaling down operation. Since real numbers are the usual data type for many
applications including deep learning, there have been various studies and applications
using the CKKS scheme.

In the CKKS scheme, each multiplication consumes certain amount of ciphertext
modulus due to rescaling process. As computation including homomorphic multiplications
progresses, the total ciphertext modulus in turn decreases, and eventually becomes
too small to afford further multiplications. A homomorphic re-encryption of a
ciphertext, so called bootstrapping, is required to recover the ciphertext modulus.
In this way the levelled CKKS scheme becomes a fully homomorphic encryption
(FHE) scheme [15].

The first step towards the conventional bootstrapping algorithm as presented
in [7] is called ModRaise, which increases the ciphertext modulus from the
bottom to the top modulus. Once the modulus has been raised, an integer
polynomial multiple of the base modulus is added to the encrypted plaintext, and
an appropriate modular reduction modulo the base modulus should be performed
in order to recover the original data. Since it has no simple representation for the
modular reduction by the basic algebraic manipulations (addition, multiplication
or rotation), the modular reduction must be approximated by a polynomial
evaluation with large degree, which is called EvalMod.

The step of CoeffToSlot and SlotToCoeff comes before and after the polynomial
evaluation. After ModRaise, the multiples of the base modulus are added on
the coefficients of the encrypted plaintext (the ‘coefficient side’). However, the
homomorphic polynomial evaluation should be performed to the slots of the
encrypted message (the ‘slot side’). Therefore, to map the value of coefficient
side to slot side and vice versa, homomorphic evaluation of DFT/iDFTmatrix
multiplication named CoeffToSlot and SlotToCoeff should be performed. As DFT/iDFTmatrices
are complex matrices rather than integer ones, we should scale-up them and
perform integer matrix multiplication. After multiplying such scaled-up matrices,
we should scale-down to get the result which approximates the result of the
complex matrix multiplication. Note that the scaling-down consumes modulus
bits of the ciphertext.

These linear transformations (CoeffToSlot and SlotToCoeff), together with a
polynomial approximation of the modular reduction function (EvalMod), consume
a large ciphertext modulus and require a relatively high amount of running
time. In particular, in most practical CKKS-FHE parameters, the remaining
ciphertext modulus after bootstrapping is far less than the total ciphertext
modulus available [1]. Hence, only a limited amount of homomorphic multiplication
can be performed after bootstrapping, which degrades the overall performance of

EvalRound Algorithm in CKKS Bootstrapping 3

the scheme, especially for deeper circuits. Furthermore, the amount of ciphertext
modulus consumed in the bootstrapping process is a major factor keeping us
from forming an FHE parameter with small ciphertext dimension under a fixed
security level, for the total amount of ciphertext modulus needed to keep the
security level is bounded once the ciphertext dimension has been fixed.

How much is the ciphertext modulus consumed during the homomorphic
evaluation of the linear transformations in CoeffToSlot and SlotToCoeff steps?
Since the evaluation of a linear transformation, or equivalently the product of
a plaintext dense square matrix M and an encrypted vector v of dimension n,
can be computed homomorphically by

M · v =

n−1∑
i=0

diagi(M)⊙ roti(v) (matrix-vector multiplication) (1)

where diagi(M) is the i-th diagonal of the matrix M , roti(v) is the rotation of
v by index i and ⊙ denotes the Hadamard multiplication, i.e. componentwise
vector multiplication. This means that only one multiplicative depth is needed for
each CoeffToSlot or SlotToCoeff step. However, this naïve method also requires n
multiplications and n rotations, and it becomes quickly computationally infeasible
as n grows exponentially in practical parameters.

As a remedy, in [17], the authors focused on the rich mathematical structure
of the linear transformations in CoeffToSlot and SlotToCoeff, and proposed to
decompose the linear transformations into the products of several sparse block
diagonal matrices. In this way one can reduce the number of multiplications and
rotations needed for the homomorphic evaluation of the linear transformations at
the cost of using certain amount of multiplicative depths (cf. Subsection 2.4 and
[17]). In practice, the depth consumption is equal to the number of decomposed
matrices and usually taken to be 3 or 4, and it still requires a large amount of
ciphertext modulus.

In this paper, we propose a new bootstrapping algorithm, replacing EvalMod
by a new step called EvalRound, which addresses this modulus consuming problem
on the evaluation of linear transformations and reduce the amount of ciphertext
modulus consumed during bootstrapping.

1.1 Our contribution

In this work, we propose a novel bootstrap circuit, that yields a reduction of
modulus consumed, compared to the conventional circuit [7]. The reduction of
modulus amounts to lessening levels. Table 1 shows the reduction of modulus
consumption on one of the practical parameters. Here N denotes the ciphertext
dimension, log(QP) denotes the bit lengths of the largest RLWE modulus, and
∆̃ denotes the scaling factor of the CoeffToSlot matrix. The proposed method
enables us to maintain the bootstrapping precision while using 32 bit smaller
scaling factor in CoeffToSlot. The proposed method obtains better bootstrapping
precision, while reducing the modulus consumption by 84 bits, which is equivalent

4 Kim et al.

to preserving approximately two multiplicative depths. The details of this example
is in Example 5.

Table 1: Comparison between conventional and proposed bootstrapping
N log(QP) ∆̃ Bootstrap Bit Precision Modulus Consumption

Conventional
217 2900 260 -12.53 1160

Proposed 229 -14.80 1076 = 1160 - 84

We also constructed an improved parameter set based on the parameter set
II proposed in [1], namely II’. New parameter set II’ saves 1 depth while losing
at most 1 bit of precision. Table 2 describes the comparison between set II
and set II’. Here depth denotes the multiplicative level after bootstrapping, ∆
denotes the size of the encoding scaling factor, and q0 denotes the size of the
base modulus. The detail of this example is in Example 6.

Table 2: Comparison between the set II in [1] and the proposed set II’.
Set N log(QP) depth ∆ q0 Bootstrap Precision ∆̃

II
216

1547 5
245 260

-31.5 258

II’ 1543 6 -30.5 234

It should be emphasized that only a negligible effort is needed to upgrade
the conventional circuit to the proposed one. One may directly add one naive
subtraction to the existing circuit to compute EvalRound(x) = x− EvalMod(x),
where EvalMod is the existing procedure of homomorphic modular reduction and
EvalRound is the proposed homomorphic modular rounding.

1.2 Our proposal

Our main proposal is the use of EvalRound rather than EvalMod, which is defined
as EvalRound : x 7→ x−EvalMod(x). Below is the bird-eye view of the algorithm.

pt
ModRaise−−−−−−→ pt+ qI

CoeffToSlot#−−−−−−−−→ (pt+ qI + e)
∗

EvalRound−−−−−−→ (qI)∗
SlotToCoeff−−−−−−−→ qI

Subtract−−−−−→ pt.

In comparison, the conventional bootstrap algorithm, which is first presented
on [7], would be viewed as below.

pt
ModRaise−−−−−→ pt+ qI

CoeffToSlot−−−−−−→ (pt+ qI)
∗ EvalMod−−−−−→ (pt)∗

SlotToCoeff−−−−−−−→ pt.

EvalRound Algorithm in CKKS Bootstrapping 5

The conventional circuit consists of ModRaise, CoeffToSlot, EvalMod and
SlotToCoeff. CoeffToSlot is a sequence of DFTmatrix multiplications. As the
matrix elements are scaled up to integers with full scale factor ∆ (e.g. 260 or 250),
each matrix multiplication consumes modulus bits. When d number of matrices
are multiplied, CoeffToSlot consumes ∆d modulus. The multiplication results
mod-raised plaintext on slot-side, which is often denoted as pt+ qI. EvalMod
refers to the modular reduction pt+qI ≡ pt(mod q), so that EvalMod(pt+qI) =
pt. The following step, SlotToCoeff, computes the desired result of plaintext on
coefficent-side.

The proposed circuit performs CoeffToSlot# instead of CoeffToSlot, which
utilizes small scale factor ∆̃ ≪ ∆, which reduces modulus consumption to ∆̃d.
In exchange for the modulus reduction, a non-negligible error e is appended to
pt+ qI.

The following step of the proposed algorithm is EvalRound, which refers to the
rounding operation, so that EvalRound(pt+qI) = qI under assumption ∥pt∥ ≪ q.
As EvalRound is piecewise constant, EvalRound(pt + qI + e) = EvalRound(pt +
qI) = qI when ∥pt+ e∥ remains to be much smaller than q. In other words, the
error from the small scale factor is annihilated by EvalRound, allowing the use of
the small scale factor while keeping the accuracy. This is the reason why we use
EvalRound instead of EvalMod, which propagates error as EvalMod(pt+qI+e) =
pt+ e and corrupts the overall accuracy.

The output ciphertext of EvalRound then goes into SlotToCoeff, resulting
a ciphertext encrypting qI in the coefficient side. So the extra Subtract step
is needed for subtracting it from the ciphertext originally resulting from the
ModRaise step, encrypting pt+ qI, to get the final ciphertext encrypting pt.

To sum up, our proposed circuit consists of ModRaise, CoeffToSlot, EvalRound,
SlotToCoeff and Subtract. Since the subtraction is ignorable compared to the
overall cost, our proposal is equivalent to the conventional circuit in computational
cost, while taking the reduced scale factor ∆̃ on CoeffToSlot# that saves modulus
and levels.

1.3 Related works

Bootstrapping of the CKKS scheme was first introduced in [7]. The notions of
evaluating DFT/iDFTmatrix homomorphically and evaluating modular reduction
via polynomial approximation of trigonometric function were proposed here.
In order to improve the time complexity of the linear transformations, FFT-
like decomposition was adopted in [5] and [17]. Since then, numerous studies
[5,17–19,21,23] have been conducted to improve the approximation of a modular
reduction function. Recently, the use of sine series to reduce the error caused by
approximating a trigonometric function was presented in [20] and the method
of directly approximating a modular reduction function while minimizing error
variance was presented in [22]. Independently, using double hoisting technique
to reduce the computation time of homomorphic linear transformation was
proposed in [1].

6 Kim et al.

2 Preliminaries

2.1 Encoding and decoding

In this subsection and what follows, we review the basic CKKS scheme([8]);
it will provide us a bird’s-eye view of the entire scheme, and it also serves
us to fix notations used in our discussions hereafter. For a power-of-two N ,
denote by R = Z[x]/(xN +1), the ring of integers of the 2N -th cyclotomic field,
which is a fundamental ring for the CKKS scheme and the RLWE problem the
CKKS scheme is based on. For a positive q, let Rq = R/qR = Zq[x]/(x

N + 1).
Here N is determined at the parameter selection step of the CKKS scheme. A
CKKS ciphertext can encrypt a complex vector of a power-of-two length which
is maximally N/2. This vector is called a (complex) message, and its encryption
is called a ciphertext. Here for the ease of description, we assume every message
has an exact length of N/2.

Let ζ be a primitive 2N -th root of unity contained in C, e.g., ζ = exp(π
√
−1/N),

where
√
−1 is a complex imaginary unit. For integers i, write ζi := ζ5

i

. The map

DFTN : R[x]/(xN + 1)→ CN/2, m(x) 7→ (m(ζ0),m(ζ1), · · · ,m(ζN/2−1)) (2)

is known to be an isomorphism by [5], with inverse iDFTN . When the dimension
N is understood, we also omit the subscript N so we write DFT = DFTN and
iDFT = iDFTN . With these algebraic maps, we can encode a complex message
z ∈ CN/2 to a plaintext pt ∈ R and in reverse decode from pt to z.

– Encode(z;∆). For an N/2-dimensional vector z of complex numbers and a
scale factor ∆, the encoding process first transforms z to a polynomial in
R[x]/(xN + 1) and quantize it into an element of R. It returns

pt = Encode(z;∆) = ⌊∆ · iDFT(z)⌉ , (3)

where ⌊·⌉ is the coefficient-wise rounding to the nearest integers.
– Decode(pt;∆). For a plaintext pt and its scale factor ∆, the decoding process

returns
z = Decode(pt;∆) = DFT(pt/∆). (4)

Here the polynomial pt/∆ is computed in R[x]/(xN + 1).

2.2 Basic operations of the CKKS scheme

Let χkey be the distribution that outputs polynomials in R with coefficients in
{−1, 0, 1} with a fixed Hamming weight (the number of nonzero coefficients). By
χerr and χenc denote discrete Gaussian distribution with mean 0 and with some
fixed standard deviation.

– SetUp. Params← SetUp(1λ). Take a security level λ as an input and return
the public parameters Params such as the ciphertext dimension N and the
chain of moduli Q0 < Q1 < · · · < QL with maximal level L.

EvalRound Algorithm in CKKS Bootstrapping 7

– Key Generation. (sk, pk) ← KeyGen(Params). Take Params and output
a pair of a secret key sk = (1, s) ∈ R × R and an encryption key pk =
(pk0, pk1) ∈ RQL

×RQL
. More precisely,

• Sample s ← χkey, and set sk = (1, s) ∈ R × R. For convenience, denote
by h the Hamming weight of the polynomial s. This is fixed once Params
has been set.

• Sample pk1 ← RQL
and e ← χerr. Output pk = (pk0 := [−pk1 · s +

e]QL
, pk1).

– Switching Key Generation. swksk′→sk ← KSGensk(sk
′). Given two secret

keys sk = (1, s) and sk′ = (1, s′), sample a← RPQL
with auxiliary modulus

P and e ← χerr and output swksk′→sk := (swk0, swk1) with swk1 = a and
swk0 = −a · s+ e+ P · s′ (mod PQL).
• Set the relinearization key as rlk := KSGensk(s

2).
• Set the rotation keys for j-step rotation as rkj := KSGensk(s(x

5j)) for
1 ≤ j < N/2.

– Encryption. ct ← Encpk(pt). Given a plaintext pt given by a polynomial
m(x) ∈ R, sample v ← χenc and e0, e1 ← χerr, output the ciphertext ct =
v · pk+ (m(x) + e0, e1) (mod QL).

– Decryption. pt ← Decsk(ct). Given a ciphertext ct = (ct0, ct1), output the
plaintext pt = [⟨ct, sk⟩]Q0 = [ct0 + ct1 · s]Q0 , where Q0 is the modulus for
level zero.

– Addition and Subtraction. ctadd, ctsub ← Add(ct, ct′), Sub(ct, ct′), respectively.
Given two ciphertexts ct and ct′ in R2

Qℓ
, output the ciphertext ctadd =

[ct+ct′]Qℓ
and ctsub = [ct−ct′]Qℓ

. The resulting ciphertext ctadd and ctsub are
encrypting message vectors z+ z′ and z− z′, respectively, where z (resp. z′)
is the message for ct (resp. ct′).

– Multiplication. ctmult ← Mult(ct, ct′). Given two ciphertexts ct = (c0, c1)
and ct′ = (c′0, c

′
1) in R2

Qℓ
, output the ciphertext ctmult := (c0c

′
0, c1c

′
0 +

c0c
′
1, c1c

′
1). This seemingly unconventional ciphertext can be decrypted by

taking the inner product with (1, s, s2), where sk = (1, s) is the secret key.
One can get rid of the additional component c1c′1 which is multiplied by the
component s2 of the secret key by applying the key switching algorithm with
the relinearization key rlk.

– Rotation. ctrot, j ← Rotj(ct). Given a ciphertext ct = (c0, c1) ∈ R2
Qℓ

,
output ctrot, j := (c0(x

5j), c1(x
5j)). The resulting ciphertext ctrot, j can be

decrypted with the secret key (1, s(x5
j

)) where (1, s) is the secret key for the
original ciphertext ct. This discrepancy can also be resolved by key switching
algorithm and one can transform ctrot, j to another ciphertext with secret
key (1, s).

– Key Switching. ct← KSswk(ct
′). Given a ciphertext ct′ which decrypts to

a message with a secret key sk′ and given a switching key swk = swksk′→sk

for another secret key sk, output another ciphertext ct which decrypts to
the same message as ct′ but with secret key sk. This process is used for
eliminating the s2 term after the multiplication process and also for transforming
the result of the rotation process.

8 Kim et al.

– Rescaling. ctrs ← RS(ℓ, ct). For a given ciphertext ct ∈ R2
Qℓ

, output ctrs =⌊
q−1
ℓ ct

⌉
(mod Qℓ−1), where Qℓ = qℓ · Qℓ−1. Rescaling process is used for

reducing the error by throwing off the LSB of the ciphertext, and at the
same time it makes the ciphertext to keep its scaling factor ∆ in the similar
scale as computation progresses.

2.3 Full CKKS homomorphic encryption scheme and bootstrapping

For a homomorphic encryption scheme to be used in practice, it must support
the computation of complicated circuits. It is only possible if it can conduct
homomorphic operations with sufficient efficiency, and if it can compute arbitrarily
deep circuits. A major problem for homomorphic encryption schemes is that
certain amount of noise must have been accumulated when homomorphic operations
proceed. As a result, after certain number of homomorphic operations has been
done, HE ciphertexts are "deteriorated" so that it is impossible to conduct
further homomorphic multiplications on the ciphertexts. In practice, this phenomenon
of deterioration reveals itself as the modulus of the ciphertexts being decreased.
For example, in the CKKS scheme, any multiplication requires a rescaling operation
to keep the noise under control, and each rescaling consumes certain amount of
ciphertext modulus.

The notion of fully homomorphic encryption, or in short FHE, indicates
homomorphic encryption schemes for which the deterioration problem is resolved,
and thus FHE allows their users to do multiplication on their ciphertexts indefinitely.
Craig Gentry, in [15], proposed an algorithm for a FHE scheme. His method
to renew the deteriorated ciphertexts is called recryption, and it is conducted
by evaluating the decryption circuits homomorphically. He called HE schemes
equipped with such a recryption algorithm bootstrappable, and we use the terminology
bootstrapping to indicate an algorithm to transform such deteriorated ciphertexts
to refreshed ciphertexts so one can continue to apply homomorphic operations
to them. After [15], an enormous amount of contributions was made to improve
Gentry’s original idea and to apply bootstrapping to existing HE schemes: [2–4,
6, 8–14,16].

Bootstrapping in the CKKS scheme As decryption circuit of the CKKS
scheme involves modular reduction, the bootstrapping in the CKKS scheme is
reduced to the problem of performing modular reduction: see [7]. A typical
way to achieve bootstrapping in the CKKS homomorphic encryption scheme
consists of two steps: we first raise the modulus of the ciphertext to the maximal
one, and take a modular reduction modulo the modulus the ciphertext begins
with. Suppose that a CKKS ciphertext ct is given with modulus q, encrypting a
plaintext pt ∈ Rq. Mathematically, raising the modulus of ct is equivalent to just
treating the same ciphertext ct having a bigger modulus Q. In the perspective
of its encrypted plaintext, however, ct with modulus Q now decrypts to pt+ qI,
where I ∈ R is a polynomial with sufficiently small size of coefficients. In order
to retain the original plaintext, one needs to do modular reduction modulo q

EvalRound Algorithm in CKKS Bootstrapping 9

at the plaintext side of ct, and this needs to be done in “homomorphic” way,
because the decryption is needed to see the plaintext ct has encrypted, and it is
not accessible unless the secret key is known.

One problem is the inconsistency at which such two operations take places:
the “raising modulus” or ModRaise operation takes place at the plaintext side (or
coefficient side) so it transforms ct from encrypting pt to a ciphertext encrypting
pt+ qI, and the “evaluating modular reduction” or EvalMod step takes places at
the message side (or slot side), because it consists of homomorphic operations
like addition/subtraction, multiplication and rotation. So one needs to move
coefficients of the plaintext to slot side and vice versa, and these can be achieved
using two additional steps CoeffToSlot and SlotToCoeff.

Let ct be a ciphertext encrypting a plaintext pt that is so deteriorated that
one cannot proceed further multiplication on ct, i.e. ct has ground level, of level
0 with ground modulus q0. The ciphertext ct is an input of the bootstrapping
process.

– ModRaise. Raise the ciphertext modulus from q0 to the maximal modulusQL,
which is determined at SetUp step. We can see that the resulting ciphertext
now encrypts pt + q0I where I ∈ R is a polynomial with small integer
coefficients.

– CoeffToSlot. Apply iDFThomomorphically to transfer the additional q0I part
of the plaintext to the slot side. Being linear map, one can do this with cost
of couples of homomorphic multiplications and rotations.

– EvalMod. In this step, conduct the modular reduction [·]q0 at the encrypted
message of the ciphertext. Since only algebraic operations (addition/subtraction,
multiplication and rotation) are provided in the CKKS scheme, one can do
this by approximating the modular reduction function with some polynomial
function. After the first feasible algorithmic breakthrough [7], this has been
a major topic in homomorphic encryption to improve the quality of such
approximation: see [1, 5, 17,18,21–23].

– SlotToCoeff. Final step of bootstrapping is to restore message by transferring
the message of EvalMod’d ciphertext to its original space, the coefficient side.
Naturally this is the inverse process of CoeffToSlot, and thus this can be done
with applying DFThomomorphically.

2.4 On decomposition of DFT/iDFT matrices

In CoeffToSlot and SlotToCoeff steps of the bootstrapping algorithm, one computes
linear transformations homomorphically on the input ciphertexts, and the linear
transformations are represented by the iDFTand DFTmatrices, respectively. Although
mathematically they are just matrix-vector multiplications, their homomorphic
computations involve homomorphic rotations of various indices and become
infeasible while the ciphertext dimension grows exponentially.

In [17], the authors made some clever use of the rich structures of DFTand
iDFTto decompose DFTand iDFTinto the products of several sparse block diagonal
matrices; it turns out that the homomorphic evaluation of these sequences of

10 Kim et al.

matrix-vector multiplications reduces their homomorphic constant multiplication
complexity from O(n) to O(r logr n) and their homomorphic rotation complexity
from O(

√
n) to O(

√
r logr n) (see §5 in [17]), where n is the number of slots

encrypted in the ciphertext and r is the radix of the decomposition. Of course,
it does not come for free; the multiplicative depth taken in the CoeffToSlot and
SlotToCoeff steps gets larger from 1 to O(logr n).

In a nutshell, our new bootstrapping algorithm actually reduces this additional
multiplicative depth by degrading CoeffToSlot, in such a way that the precision
of the final output of the bootstrapping is on par with the original method (Table
1).

3 Error Analysis of CoeffToSlot

CoeffToSlot is basically a procedure to take a matrix multiplication on the
message. To do so in integer arithmetic, the real numbers of the matrix is
multiplied by a large number ∆, so called scaling factor, and rounded to integers.
This section is devoted to a thorough analysis on the error of the rounding.

There are three types of errors in CoeffToSlot, the rounding error, the key
switching error, and the rescaling error. One of the very common technique in
CoeffToSlot is lazy rescaling, which delays all the rescalings and rescale once only
at the end of CoeffToSlot. This technique enables us to remove the effect of the
key switching error. In this sense, we only have to consider the remaining two
types of errors. Hence, in this section, we analyze the CoeffToSlot error in the
plaintext side, instead of in the ciphertext side.

3.1 Rounding error in matrix multiplication

In this section, we estimate the rounding error which occurs when we homomorphically
compute matrix multiplication. Encoding a messagem into a plaintext pt involves
rounding. To focus on the rounding error, we can think of a plaintext without
rounding ptraw.

pt = ⌊iDFT(z) ·∆⌉ , ptraw = iDFT(z) ·∆,

Let the rounding error e = ptraw − pt. Note that each entry of the error [e]i
belongs to [− 1

2 ,
1
2) and distributed uniformly through the range.

When homomorphically computing a matrix multiplication z 7→ Az, we
compute

Az = V1 ⊙ z1 + V2 ⊙ z2 + · · ·+ Vk ⊙ zk
where Vi are the diagonals of the matrix A (k < N if A is sparse), and zi are the
rotated copies of z, to match Vi. This computation corresponds to the plaintext
computation

ptAz = ptV1
∗ ptz1 + · · ·+ ptVk

∗ ptzk
where ptVi

are encoded with same scale factor ∆A, so that the scale factor of
ptAz becomes ∆A∆z.

EvalRound Algorithm in CKKS Bootstrapping 11

Here each Vi is being rounded during the encoding of ptVi
. Using the notations

above, we can split the rounding error of matrix multiplication into parts as
below. To focus on only the rounding error that occurs when multiplying A, we
ignore the rounding error of z which has been occurred before the multiplication.
The rounding error eAz can be described as

eAz = ptrawAz − ptAz =

k∑
i=1

ptrawVi
∗ ptzi −

k∑
i=1

ptVi
∗ ptzi

=

k∑
i=1

(ptrawVi
− ptVi

) ∗ ptzi =
k∑

i=1

eVi
∗ ptzi .

To take a deeper look into each entry of the sum, we introduce Lemma 1 and
Lemma 2 as stated below.

Lemma 1 (convolution of pt and its error). Let X0, · · · , XN−1 be independent
and identically distributed (i.i.d.) random variables following the uniform distribution
U
(
− 1

2 ,
1
2

)
on range

(
− 1

2 ,
1
2

)
and X ∈ R [x] /

(
xN + 1

)
be a random polynomial

with its i-th coefficient being Xi, for all i. Suppose pt ∈ R[x]/(xN + 1) is given.
Then Y = pt ∗X ∈ R[x]/xN + 1 satisfies

E
(
∥Y ∥2

)
=
N

12
∥pt∥2 .

Proof. The negative-wrapped convolution is defined as

Yi =

i∑
j=0

ptjXi−j −
N−1∑
j=i+1

ptjXi−j+N

or shortly

Yi =

N−1∑
j=0

sgni−jptjX[i−j]N .

where sgnx =

{
1, if x ≥ 0

−1, otherwise

Using the additivity of expectation, we have the following.

E
(
∥Y ∥2

)
= E

(
N−1∑
i=0

Y 2
i

)
= E

N−1∑
i=0

N−1∑
j=0

sgni−j · ptjX[i−j]N

2

= E

N−1∑
i=0

N−1∑
j=0

pt2jX
2
[i−j]N +

N−1∑
j=0

∑
k ̸=j

sgni−j · sgni−k · ptjptkX[i−j]NX[i−k]N

=

N−1∑
i=0

N−1∑
j=0

pt2j · E
(
X2

[i−j]N

)
+

N−1∑
i=0

N−1∑
j=0

∑
k ̸=j

sgni−j · sgni−k · ptjptk · E
(
X[i−j]N

)
E
(
X[i−k]N

)

12 Kim et al.

Since Xj , Xk are independent and ptj are fixed,

=

N−1∑
i=0

N−1∑
j=0

pt2jE(X2
[i−j]N

) =

N−1∑
i=0

||pt||22 ·
1

12
=
N

12
· ||pt||22

The above result with single plaintext can be generalized to the following with
multiple plaintexts.

Lemma 2 (Sum of convolutions of pt1, · · · , ptk and error). Suppose pt1, · · · , ptk ∈
R [x] /

(
xN + 1

)
are given with ∥pt1∥ = · · · = ∥ptk∥. Let Xij be i.i.d. following

U
(
− 1

2 ,
1
2

)
, Xi = [Xi,0, · · · , Xi,N−1] ∈ R [x] /

(
xN + 1

)
and Yi = Xi ∗ pti for

i = 1, · · · , k and j = 0, · · · , N − 1. Then we have

E
(
∥Y1 + · · ·+ Yk∥2

)
=
kN

12
∥pt1∥

2
.

Proof. Note that

∥Y1 + · · ·+ Yk∥2 =

N−1∑
j=0

(
k∑

i=1

Yij

)2

=

N−1∑
j=0

 k∑
i=1

Y 2
ij +

k∑
i=1

∑
l ̸=i

YijYlj

=

k∑
i=1

∥Yi∥2 +
N−1∑
j=0

k∑
i=1

∑
l ̸=i

YijYlj .

For the single entry of YijYlj , the following holds.

E (YijYlj) = E

((
N−1∑
m=0

sgnj−m · ptimXi[j−m]N

)(
N−1∑
o=0

sgnj−o · ptloXl[j−o]N

))

= E

(
N−1∑
m=0

N−1∑
o=0

sgnj−msgnj−o · ptimptloXi[j−m]N Xl[j−o]N

)

=

N−1∑
m=0

N−1∑
o=0

sgnj−msgnj−o · ptimptloE
(
Xi[j−m]N Xl[j−o]N

)
= 0.

Therefore,

E
(
∥Y1 + · · ·+ Yk∥2

)
= E

 k∑
i=1

∥Yi∥2 +
N−1∑
j=0

k∑
i=1

∑
l ̸=i

YijYlj

=

k∑
i=1

E
(
∥Yi∥2

)
+

N−1∑
j=0

k∑
i=1

∑
l ̸=i

E (YijYlj)

=

k∑
i=1

E
(
∥Yi∥2

)
=

k∑
i=1

N

12
∥pti∥

2
=
kN

12
∥pt1∥

2
.

EvalRound Algorithm in CKKS Bootstrapping 13

Example 1. We verify Lemma 2 by experiment in cases ofN = 215 and 216. k and
[pti]i=1,··· ,k is set to 16 and the ith rotated plaintexts of the plaintext pt, which
is the encoding of z ∈ CN/2 given by zi =

cos(i)√
2

+ sin(i)√
−2

. The empirical mean
of 100 trials and the expectation are quite similar and their relative differences
are less than 10−3, as stated in the following table. Figure 1 depicts the trials
and show that the deviations of the empirical observation to the estimation of
Lemma 2 are less than 2.5% and 1.5%, when N = 215 and 216, respectively.

N E
(
∥Y1 + · · ·+ Yk∥2

)
Eempirical

(
∥Y1 + · · ·+ Yk∥2

) ∣∣∣∣E(∥Y1+···+Yk∥2)−Eempirical(∥Y1+···+Yk∥2)
E(∥Y1+···+Y 2

k ∥)

∣∣∣∣
215 2.7692× 1034 2.7718× 1034 9.2777× 10−4

216 5.5384× 1034 5.5430× 1034 8.1469× 10−4

Remark 1.

(a) Case of N = 215 (b) Case of N = 216

Fig. 1: 100 trials of ∥Y1 + · · ·+ Yk∥2 in Example 1 that are fairly close to the
expectation kN

12 ∥pt1∥
2 stated in Lemma 2. The deviation of the trials to the

expectation decreases as N increases.

In this section, to estimate the magnitude of error, we eagerly utilize this
approximation on ∥Y1 + · · ·+ Yk∥ as below.

∥Y1 + · · ·+ Yk∥ =
√
∥Y1 + · · ·+ Yk∥2 ≈

√
E
(
∥Y1 + · · ·+ Yk∥2

)
=

√
kn

12
∥pt∥ .

Recall that the following equality on the matrix multiplication error holds :

eAz =

k∑
i=1

eVi ∗ ptzi .

Applying Lemma 2 on eAz, we prove the following Theorem 1.

Theorem 1. Let A ∈ CN
2 ×N

2 be a matrix with diagonals V1, · · · , Vk, so that
Az = V1 ⊙ z1 + V2 ⊙ z2 + · · ·+ Vk ⊙ zk where each zi is a rotation of z ∈ CN/2.

14 Kim et al.

Assume that A and z are encoded into plaintexts by scale factor ∆A and ∆z

respectively. Then ∥∥∥Az − Ãz∥∥∥ ≈√kN

12

1

∆A
∥z∥

Proof. Let ptzbe the plaintext encoding z and ptV1
, · · · , ptVk

be the plaintext
encoding V1, · · · , Vk, respectively.

Recall that the rounding error of matrix multiplication eAz = ptrawAz −ptAz =∑k
i=1 eVi

∗ptzi . Since we can assume that each entry of eVi
follows U(− 1

2 ,
1
2) and∥∥ptz1∥∥ = · · · =

∥∥ptzk∥∥, we can apply Lemma 2 on
∑k

i=1 eVi ∗ ptzi .∥∥∥∥∥
k∑

i=1

eVi ∗ ptzi

∥∥∥∥∥ ≈
√
kN

12
∥ptz∥

Note that the following holds for any z ∈ CN/2 and pt = Encode(z;∆z).

∥z∥ ≈
∥∥∥∥DFT (pt)

∆z

∥∥∥∥ =
1

∆z
∥DFT (pt)∥ = 1

∆z

√
N

2
∥pt∥

Therefore,

∥∥∥Az − Ãz∥∥∥ =
1

∆Az

√
N

2

∥∥∥ptAz−Ãz

∥∥∥ =
1

∆A∆z

√
N

2
∥ptrawAz − ptAz∥

≈ 1

∆A∆z

√
N

2

√
kN

12
∥ptz∥ =

1

∆A

√
kN

12

(
1

∆z

√
N

2
∥ptz∥

)
≈ 1

∆A

√
kN

12
∥z∥

For convenience, we denote 1
∆A

√
kN
12 as pA so that the following holds :∥∥∥Az − Ãz∥∥∥ ≈ pA ∥z∥ .

Theorem 1, which is the error analysis of single matrix multiplication, can
be applied to the case of homomorphically multiplying the two matrices A
and B successively, i.e. z 7→ Az 7→ BAz. The first type of rounding error
will occur during the multiplication of z by A. Let Ãz be the actual result
of such computation, which contains the rounding error. The second type of

rounding error occurs during the multiplication of Ãz by B. Let B̃Ãz be the
result of such computation, which contains the rounding error with respect to
the matrix multiplication by B. The total error generalized to a series of matrix
multiplications in a straightforward manner as follows.

Theorem 2 (Rounding error in serial matrix multiplication). Let A1, · · · , Ad ∈
CN/2×N/2 and let z ∈ CN/2. Let pi be the multiplier in Theorem 1, i.e. pi =
1

∆Ai

√
ki·N
12 . Then we have∥∥∥∥Ad · · ·A1z−

˜
(Ad · · · Ã1z)

∥∥∥∥ ≲

(
d∑

i=1

pi ∥Ai∥−1

)
·

d∏
i=1

∥Ai∥ · ∥z∥

EvalRound Algorithm in CKKS Bootstrapping 15

Proof. We use an induction on d. The base case with d = 1 is just Theorem 1.
Now suppose the theorem holds up to d−1. Write B := Ad · · ·A2. Then we have∥∥∥∥∥Ad · · ·A1z−

˜(
Ad · · · Ã1z

)∥∥∥∥∥ ≤ ∥∥∥BA1z−BÃ1z
∥∥∥+ ∥∥∥∥∥BÃ1z−

˜(
Ad · · · Ã1z

)∥∥∥∥∥ ,
by the triangular inequality. Then∥∥∥BA1z−BÃ1z

∥∥∥ ≲ ∥B∥ · p1 · ∥z∥

by Theorem 1 and∥∥∥∥∥BÃ1z−
˜(

Ad · · · Ã1z
)∥∥∥∥∥ ≲

(
d∑

i=2

pi ∥Ai∥−1

)
d∏

i=2

∥Ai∥ ·
∥∥∥Ã1z

∥∥∥
by the induction hypothesis. Since p1 ≪ 1, we get

∥∥∥Ã1z
∥∥∥ ≤ ∥A1z∥+

∥∥∥A1z− Ã1z
∥∥∥ ≤

∥A1∥ ∥z∥+ p1 ∥z∥ ≈ ∥A1∥ ∥z∥, and hence∥∥∥∥∥Ad · · ·A1z−
˜(

Ad · · · Ã1z
)∥∥∥∥∥ ≲

(
d∑

i=1

pi ∥Ai∥−1

)
·

d∏
i=1

∥Ai∥ · ∥z∥ ,

as expected.

Example 2. We empirically verify Theorem 2 in cases of N = 215, 216. Again,
z ∈ CN/2 is given by zi =

cos(i)√
2

+ sin(i)√
−2

. To demonstrate the case of CoeffToSlot,
we use A the decomposed iDFTmatrices. [17] introduces the decomposition, so

that the iDFTmatrix 1
NU

NR
0

T
is decomposed into A1 · A2 · · ·AlogN−1 and a

permutation matrix, where each of Ais have at most 3 diagonals and has norm
of ∥Ai∥ = 1√

2
. z and A are encoded with the scale factor of ∆z = ∆A =

250 during the homomorphic computation. The following table shows that the
observed error of the matrix multiplication is close to and less than the estimate
of Theorem 2.

N ∥Ad · · ·A1z− (Ad · · · (A1z)
∼)∼∥

(∑d
i=1 pi ∥Ai∥−1

)
·
∏d

i=1 ∥Ai∥ · ∥z∥
215 7.5697× 10−10 9.2196× 10−9

216 2.1414× 10−9 2.7939× 10−8

3.2 CoeffToSlot

As explained in preliminaries, the linear transform of DFTmatrix maps pt
∆ to z,

so it holds that z = [U0 : U0

√
−1](pt/∆), where

√
−1 is a complex imaginary

unit and U0 is the DFTmatrix of size N/2×N/2. Refer to Section 5.1 of [7] for
the details. CoeffToSlot is the inversion of the encoding. It calculates the two
parts of the plaintext from the message by taking a matrix multiplication and
conjugated sums as follows.

16 Kim et al.

Fig. 2: The diagram illustrates the details of CoeffToSlot procedure. ∆̃ is
the scale factor to round the real numbers of each matrix Ai(i = 1, · · · , d)
into integers. Because of the rounding errors, the homomorphically calculated

message ˜pt
∆ + q

∆I does not equal pt
∆ + q

∆I, but approximates it. The error of the

approximation is estimated in theorem 3 as O
(

1

∆̃
N1+ 1

2d
q
∆

)
.

EvalRound Algorithm in CKKS Bootstrapping 17

z1 =
1

N
U

T

0 z =
1

2

(
pt1st

∆
+

pt2nd

∆

√
−1
)

z1stCTS = z1 + z1 =
pt1st

∆

z2ndCTS =
1√
−1

(z1 − z1) =
pt2nd

∆

In the process of bootstrapping, CoeffToSlot is applied on the ModRaise’d
plaintext, which is known to have form of pt+ qI. The result of CoeffToSlot
becomes two plaintexts encoding z1stcts =

(
pt
∆ + q

∆I
)1st and z2ndcts =

(
pt
∆ + q

∆I
)2nd

.
On the computation of CoeffToSlot, 1

NU0
T

is a full matrix of size N/2×N/2
which is a huge burden to compute naively. In [17], the authors utilized its FFT
decomposition

1

N
U

NRT

0 =
1

N
VlogN−1 · · ·V2V1,

where each Vi is the matrix of butterfly action having matrix norm ∥Vi∥ =
√
2

and has up to three diagonal vectors. Each matrix multiplication requires a
spending of modulus to scale and round its real numbers into integers. It is
customary to group logN-1number of matrix multiplications into fewer number,
let us say d(e.g 3 or 4).

1

N
U

NRT

0 = Ad · · ·A2A1

Let ∆̃ be the scale factor to round the real numbers of each matrix Ai into
integers. Figure 3 illustrates CoeffToSlot that consists of d number of matrix
multiplications and two conjugated sums. The following theorem estimates the
size of error in CoeffToSlot.

Theorem 3 (Error of CoeffToSlot). Let ˜pt
∆ + q

∆I be the approximation of pt
∆+

q
∆I calculated by the CoeffToSlot in figure (2). Then the error e = ˜(pt

∆ + q
∆I
)
−(

pt
∆ + q

∆I
)

satisfies

∥e∥ ≲ C1

∆̃
N1+ 1

2d
q

∆
, 3

where C1 =
d

√
(h+1)3⌈

log N−1
d ⌉

12 · 2 1
2d .

3 Provided that ∆̃ is sufficiently small, we can assume that the rescale error is
negligible. Since we are focusing on the case when ∆̃ is as small as possible, such
assumption is valid.

18 Kim et al.

Proof. The random integer coefficient polynomial I in pt+qI is known to follow
the Irwin-Hall distribution, and each coefficient of pt + qI follows a normal
distribution N

(
0, h+1

12 q
2
)

very accurately when the hamming weight h is large

enough (e.g. 64 or 128). Then we have ∥pt+ qI∥ ≃
√

(h+1)N
12 q and

∥zmr∥ =
√
N

2

1

∆
∥pt+ qI∥ ≃

√
h+ 1

24
N
q

∆
,

where zmr is the message being encoded into pt + qI after the step of
ModRaise.

The iDFTmatrix 1
NU

NRT

0 splits into VlogN−1 · · ·V2V1, where each Vi has
matrix norm of

√
2 and consists of upto 3 diagonal vectors. Merging the matrices

into d number of matrices and scaling by 1
N , we can assume that

∥Ad∥ = · · · = ∥A1∥ =

(√
2
logN−1

N

) 1
d

= 2−
1
2dN− 1

2d ,

and each Ai consists of up to k diagonal vectors, where

k = 3⌈
logN−1

d ⌉.

Utilizing the error analysis in Theorem 2 for the matrix multiplicationAd · · ·A2A1

on zmr, we obtain the estimation on z1 = Ad · · ·A2A1z =
1
2

((
pt
∆ + q

∆I
)1st

+
(
pt
∆ + q

∆I
)2nd√−1).

∥z̃1 − z1∥ ≲ ∥zmr∥
√
kN

12

1

∆̃
∥A1∥ · · · ∥Ad∥

(
1

∥A1∥
+ · · ·+ 1

∥Ad∥

)
≃
√
h+ 1

24
N
q

∆

√
kN

12

1

∆̃

(
2−

1
2dN− 1

2d

)d−1

d

=
d

√
(h+ 1) 3⌈

logN−1
d ⌉

24
2

1
2d

1

∆̃
N1+ 1

2d
q

∆

EvalRound Algorithm in CKKS Bootstrapping 19

∥e∥ =

∥∥∥∥∥ ˜(pt
∆

+
q

∆
I
)
−
(pt
∆

+
q

∆
I
)∥∥∥∥∥

=

√√√√√∥∥∥∥∥ ˜(pt
∆

+
q

∆
I
)1st
−
(pt
∆

+
q

∆
I
)1st∥∥∥∥∥

2

+

∥∥∥∥∥∥
˜(pt

∆
+
q

∆
I
)2nd

−
(pt
∆

+
q

∆
I
)2nd∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
˜((pt

∆
+
q

∆
I
)1st

+
(pt
∆

+
q

∆
I
)2nd√

−1
)
−
((pt

∆
+
q

∆
I
)1st

+
(pt
∆

+
q

∆
I
)2nd√

−1
)∥∥∥∥∥∥

= ∥2 (z̃1 − z1)∥ = 2 ∥z̃1 − z1∥

≲
d

√
(h+ 1) 3⌈

logN−1
d ⌉

12
2

1
2d

1

∆̃
N1+ 1

2d
q

∆
= C1

1

∆̃
N1+ 1

2d
q

∆
.

Example 3. We provide a proof-of-concept implementation of Theorem 3, at
https://github.com/CryptoLabInc/EvalRound. We developed our own source
code in C++, which implements the binary version of CKKS bootstrapping.
Table 3 describes the parameters used in this example. N denotes the ciphertext
dimension, log(QP) denotes the bit lengths of the largest RLWE modulus, h
denotes the hamming weight, λ denotes the security bits, ∆ denotes the encoding
scale factor, q denotes the base modulus, and d denotes the decomposition
number for CoeffToSlot matrix.

Table 3: Parameters for Example 3
Parameter N log(QP) h λ ∆ q d

P1 29 2900 128 - 250 260 4

P2 213 2900 128 - 250 260 4

P3 217 2900 128 128 250 260 4

C1 could be computed directly from the statement of Theorem 3, and so are
the estimate of ∥zmr∥ and the bound of ∥e∥. We checked that ∥zmr∥ is close to
∥zmr∥est and ∥e∥ is bounded to ∥e∥bound, as shown in Table 4.

Table 4: Implementation result for Example 3
Parameter C1 ∥zmr∥ ∥zmr∥est ∥e∥ ∥e∥bound

P1 12.3858 1.2543× 106 1.1723× 106 1.93821× 10−9 1.25792× 10−8

P2 28.6846 1.9509× 107 1.87575× 107 1.50875× 10−7 9.59557× 10−7

P3 37.1574 3.1176× 108 3.0012× 108 1.6208× 10−6 1.9321× 10−5

https://github.com/CryptoLabInc/EvalRound

20 Kim et al.

4 EvalRound instead of EvalMod

Let [·] q
∆

: R → R be the modular reduction by integer multiple of q
∆ . EvalMod

subsequent to CoeffToSlot is a homomorphic evaluation of [·] q
∆

, which removes
the ambiguity q

∆I from pt
∆ + q

∆I. Let Mod q
∆

: RN → RN be an element-wise
evaluation of [·] q

∆
. We first take a look at Mod q

∆
, focusing on its role during

EvalMod.
We pointed out in the previous section that the homomorphically calculated

message ˜pt
∆ + q

∆I does not equal pt
∆ + q

∆I mainly because of the rounding error.
Let e be the error of the approximation, then we get

˜pt
∆

+
q

∆
I =

pt

∆
+
q

∆
I + e and

Mod q
∆

(
˜pt

∆
+
q

∆
I

)
=

pt

∆
+ e.

Note that the rounding error is added to the output of EvalMod and deteriorates
the overall accuracy of bootstrapping. Thus the scale factor ∆̃ should be taken
as large as ∆ to keep the rounding error small, in spite of its consumption of d
number of levels. Let Round q

∆
: RN → RN denote the counterpart of Mod q

∆
, so

that

Round q
∆
(x) := x−Mod q

∆
(x).

A standard assumption is ∥z∥∞ ≤ 1, from which
∥∥ pt
∆

∥∥
∞ ≤ 1 is derived, and

q
∆ is much larger than pt

∆ (e.g. 210). When the magnitude of e is also negligible
compared to q

∆ , the sum pt
∆ +e does not change the qI component in pt

∆ +e+ q
∆I.

In other words,

Round q
∆

(
˜pt

∆
+
q

∆
I

)
=

q

∆
I = Round q

∆

(pt
∆

+
q

∆
I
)

but

Mod q
∆

(
˜pt

∆
+
q

∆
I

)
=

pt

∆
+ e ̸= pt

∆
= Mod q

∆

(pt
∆

+
q

∆
I
)
.

Let EvalRound(ct) := ct − EvalMod(ct). The equality of Round q
∆

allows us
to ignore the rounding error, and the scale factor ∆̃ can be taken much smaller
than the canonical choice ∆ while maintaining the same accuracy. Figure 3
shows the details of our proposed bootstrapping utilizing EvalRound. Our main
aim is to take smaller scale factor ∆̃ while maintaining the same accuracy as
the conventional bootstrapping using EvalMod, and reduce the consumption of
modulus bit from∆l+2d to∆l+d∆̃d, where d is the number of matrix multiplications
in DFTand iDFTand l is the number of levels consumed in EvalMod/EvalRound.

EvalRound Algorithm in CKKS Bootstrapping 21

Fig. 3: The proposed bootstrapping utilizing EvalRound : d is the number of
matrix multiplications in DFTand iDFT. l is the number of levels consumed
in EvalRound, which equals that of EvalMod. The overall modulus bit spent is
∆̃d∆l+d. Our main aim is to reduce ∆̃, while maintaining the accuracy.

22 Kim et al.

From the identity Round q
∆
(x) = x − Mod q

∆
(x), EvalRound can be readily

implemented just using one of the successful implementations [5, 18, 21–23] of
EvalMod. Referencing one of them, let EvalMod : ct 7→ ctem be a homomorphic
approximation of Mod q

∆
. Consider the map of end-to-end evaluation of EvalMod,

EvalModz : z 7→ zem, or EvalModz = ψ−1 ◦ EvalMod ◦ ψ where ψ : z 7→ ct =
Encrypt ◦ Encode. Then EvalModz approximates Mod q

∆
with an error bound

BEvalMod (e.g. 2−20 or 2−30) for each x ∈ CN close to lattice points
{
0,± q

∆ ,±
2q
∆ , · · ·

}
within distance ϵ (e.g. 1), so that

dist
(
x,

{
0,± q

∆
,±2q

∆
, · · ·

})
≤ ϵ

=⇒
∥∥∥Mod q

∆
(x)− EvalModz(x)

∥∥∥
∞
< BEvalMod, (5)

where dist denotes the maximum distance among its elements.

For x = ˜pt
∆ + q

∆I=
pt
∆ + e + q

∆I, its distance to the lattice points is pt
∆ + e,

and we have∥∥∥pt
∆

+ e
∥∥∥
∞
≤ ϵ =⇒

∥∥∥ q
∆
I − EvalRoundz (x)

∥∥∥
∞
< BEvalMod. (6)

From a standard assumption ∥z∥∞ ≤ 1 and theorem 3, we have the following
L2 estimates.

∥∥∥pt
∆

∥∥∥ ≤ 1

∥e∥ ≤ C1N
1+ 1

2d q

∆̃∆
(7)

For any x, it holds that 1√
N
∥x∥ ≤ ∥x∥∞ ≤ ∥x∥. The equivalent condition for

∥x∥∞ = ∥x∥ is that x is a discrete delta function, which is extremely concentrated
at one point. When x is not that extreme, we observed in practice that there
exists a constant C2 of moderate size (< 10) that satisfies

∥∥∥pt
∆

∥∥∥
∞
≤ C2√

N

∥∥∥pt
∆

∥∥∥ and

∥e∥∞ ≤
C2√
N
∥e∥ . (8)

Example 4. Let the parameters be determined as in Example 3. We checked that
the approximations in inequality 8 are valid, as shown in Table 5. ∥ pt∆∥

bound
∞ and

∥e∥bound∞ denote the estimates of the actual values under the choice of C2 = 5.

Now we analyze the proposed bootstrapping in figure 3 and show the proper
range of ∆̃ that enables the bootstrapping to maintain the same accuracy as
EvalMod.

EvalRound Algorithm in CKKS Bootstrapping 23

Table 5: Checking the inequality 8
Parameter ∥ pt

∆
∥∞ ∥ pt

∆
∥bound
∞ ∥e∥∞ ∥e∥bound

∞
P1 8.5345× 10−2 1.2273× 10−1 4.46107× 10−10 2.7796× 10−9

P2 2.4474× 10−2 3.1755× 10−2 3.5204× 10−9 2.7234× 10−8

P3 7.0179× 10−3 7.9874× 10−3 2.8059× 10−8 2.6684× 10−7

Theorem 4 (Proper range of ∆̃). In the bootstrapping proposed in figure 3,
we have ∥∥∥∥pt∆ − p̃t

∆

∥∥∥∥
∞
< BEvalMod

if ∆̃ ≥ ∆̃min = 1
ϵ
√

N
C2

−1

C1N
1+ 1

2d q
∆ . Here C1 and C2 are the constants in theorem

3 and the inequality (8), respectively.

Proof. If ∆̃ ≥ ∆̃min, the inequalities (8) and (7) lead to∥∥∥pt
∆

+ e
∥∥∥
∞
≤ C2√

N

(∥∥∥pt
∆

∥∥∥+ ∥e∥)
≤ C2√

N

(
1 +

C1N
1+ 1

2d q

∆̃∆

)

≤ C2√
N

(
1 +

(
ϵ
√
N

C2
− 1

))
= ϵ.

From (6), we have ∥∥∥∥ q∆I − q̃

∆
I

∥∥∥∥
∞
< BEvalMod.

Since p̃t
∆ = pt

∆ + q
∆I −

q̃
∆I

4, we have the desired result,∥∥∥∥pt∆ − p̃t

∆

∥∥∥∥
∞

=

∥∥∥∥ q∆I − q̃

∆
I

∥∥∥∥
∞
< BEvalMod.

Example 5. We validate our main argument, Theorem 4 on the two parameter
sets in Example 3. A standard EvalMod is employed. The minimax polynomial
approximation of degree 31 is sought for q

2π∆ sin
(

2π∆x
q

)
on
[
−3 q

∆ , 3
q
∆

]
. Repeatedly

applying half-angle identity, the domain is extended to
[
−24 q

∆ , 24
q
∆

]
. EvalMod is

then the composition of the arcsine polynomial of degree three and the polynomial
approximation on the extended domain. The following Table 6 reports the constants
in Theorem 4.

24 Kim et al.

Table 6: Constants in Theorem 4
Parameter C2 ϵ BEvalMod ∆̃min

P1 5 1 1.7441× 10−8 222

P2 5 1 1.8069× 10−8 225

P3 5 1 2.01234× 10−8 229

Table 7: Results of the conventional and proposed bootstrappings

Parameter ∆̃ = ∆̃min ∆̃ = ∆̃can

Conventional Proposed Conventional Proposed∥∥∥ pt
∆

− p̃t
∆

∥∥∥
∞

P1 1.0778× 10−1 4.3459× 10−10 4.7695× 10−10 4.4524× 10−10

P2 1.1448× 10−1 1.0692× 10−9 8.4596× 10−10 1.0636× 10−10

P3 5.9085× 10−2 1.0979× 10−8 1.3277× 10−8 5.2136× 10−8

A conventional bootstrapping takes ∆̃ = ∆̃can = 260 and utilizes EvalMod.
Our proposed bootstrapping allows for taking any ∆̃ ≥ ∆̃min.

As stated in Theorem 4, the proposed bootstrapping satisfies
∥∥∥ pt
∆ −

p̃t
∆

∥∥∥
∞
<

BEvalMod in all the cases, while the conventional one does not in the case of
∆̃ = ∆̃min. Let z̃ be the final output of the proposed bootstrapping in Figure
3. ∥z − z̃∥∞ represents the precision of bootstrapping. The following Table 8
re-interprets the result in Table 7 in terms of bootstrapping precision.

Table 8: Precision of bootstrapping obtained from conventional and proposed
methods

Parameter ∆̃ = ∆̃min ∆̃ = ∆̃can

Conventional Proposed Conventional Proposed

∥z − z̃∥∞
P1 1.11 -26.43 -26.40 -26.41
P2 3.02 -22.14 -22.20 -22.29
P3 4.27 -18.23 -18.14 -18.25

Finally, we compute the amount of preserved modulus in Parameter II, as in
Table 1. In CoeffToSlot, we use ∆̃ = 229 instead of 260, preserving (60− 29) · 4 =
124 bits of modulus. Meanwhile, since the input of SlotToCoeff becomes larger
from the size of pt to the size of pt + qI, we should increase the SlotToCoeff
scaling factor by q

∆ = 210, losing a total of 10 · 4 = 40 bits of modulus. In sum,
we save 124−40 = 84 bits of ciphertext modulus. Since ∆ = 250, it is equivalent
to preserving approximately two multiplicative depths.

In the state of the art implementations, we multiply a constant c > 1 before
bootstrapping and divide by c after bootstrapping. This technique increases the

4 Here we assumed that SlotToCoeff error is negligible.

EvalRound Algorithm in CKKS Bootstrapping 25

bootstrapping precision by log2(c) bits. In particular, we use as large c and
possible. Let c−bootstrapping be a bootstrapping circuit with such constant c.

Corollary 1. Let BTSc = (×c−1) ◦BTS ◦ (×c) be a c-bootstrapping circuit with
EvalMod input bound ϵ and EvalMod error bound BEvalMod, so that

∥∥ c·pt
∆

∥∥
∞ ≤ ϵ.

This bootstrapping satisfies∥∥∥∥pt∆ − p̃t

∆

∥∥∥∥
∞
<

1

c
BEvalMod.

where p̃t is defined to be a final output of BTSc. Let BTS# be an EvalRound
version of BTS. We define BTS#

c/2 := (×2/c) ◦ BTS# ◦ (×c/2). For BTS#
c/2, we

have ∥∥∥∥pt∆ − p̃t

∆

∥∥∥∥
∞
<

2

c
BEvalMod.

if ∆̃ ≥ ∆̃min = 2C2

ϵ
√
N
· C1N

1+ 1
2d q

∆ . Here C1 and C2 are the constants in theorem 3
and the inequality (8), respectively.

Proof. If ∆̃ ≥ ∆̃min, the inequalities (8) and (7) lead to

∥∥∥ c
2
· pt
∆

+ e
∥∥∥
∞
≤ ϵ

2
+

C2√
N
∥e∥

≤ ϵ

2
+

C2√
N
· C1N

1+ 1
2d q

∆̃∆

≤ ϵ

2
+
ϵ

2
= ϵ

= ϵ.

From (6), we have ∥∥∥∥ q∆I − q̃

∆
I

∥∥∥∥
∞
< BEvalMod.

Since c
2 ·

p̃t
∆ = c

2 ·
pt
∆ + q

∆I −
q̃
∆I, we have the desired result,∥∥∥∥pt∆ − p̃t

∆

∥∥∥∥
∞

=
2

c

∥∥∥∥ q∆I − q̃

∆
I

∥∥∥∥
∞
<

2

c
BEvalMod.

Example 6 (Parameter Construction based on a set in [1]). Table 9 describes the
overview of the parameter set II proposed in [1]. Here N denotes the ciphertext
dimension, log(QP) denotes the bit length of the largest RLWE modulus, h
denotes the hamming weight, depth denotes the number of available multiplication
after bootstrapping, ∆ denotes the scaling factor for encoding, and q0 denotes
the size of the base modulus.

Using Corollary 1, ∆̃min is computed as 234. Based on Set II, by applying
EvalRound technique, we can construct a parameter with depth = 6, while losing

26 Kim et al.

Table 9: Overview of Set II in [1].
Set N log(QP) h depth ∆ q0 Bootstrap Precision
II 216 1547 192 5 245 260 -31.5

at most 1 bit of precision. Table 10 describes the new parameter, namely Set
II’. Here L denotes the maximum ciphertext level. log(qi) and log(pj) denote
the bit lengths of individual RNS primes and temporary primes for Modulus
switching, respectively. Base, Mult, StC, EvalRound, CtS denote the base prime,
the multiplication primes, the SlotToCoeff primes, the EvalRound primes, and the
CoeffToSlot primes, respectively. The left operand of the dot product denotes the
number of primes, and the right operand denotes the bit lengths of primes.

Table 10: Proposed parameter Set II’
II’

h N ∆ log(QP) L

192 216 245 1543 23

log(qi) log(pj)Base + Mult StC EvalRound CtS
60 + 6 · 45 3 · 57 11 · 60 3 · 46 4 · 61

5 Conclusion

In this article, we proposed a method called EvalRound, which is a modification
of the EvalMod step in the CKKS bootstrapping. One can reduce the amount
of ciphertext modulus consumed in the bootstrapping by modifying the original
algorithm with EvalRound. The modulus spent in CoeffToSlot are for the scale
factors, each of which has been chosen large enough to take up one level to
rescale it down. Smaller scale factors lead to non-negligible rounding errors that
are transmitted to EvalMod and eventually corrupt the overall accuracy of the
bootstrapping. We introduce a scrutinized analysis that estimates the size of the
rounding error with respect to the new scale factors.

Although the rounding error at this step is stuck to the input of the next step
EvalMod, it does not pass through EvalRound if it is of a similar size to ϵ = ∆/q.
Thus, when using EvalRound, we can use smaller scale factors for CoeffToSlot
compared to the conventional method. In particular, we observed that we can
preserve almost half of the modulus consumption in CoeffToSlot. The utilization
of the error analysis of CoeffToSlot, reduced scale factors, and EvalRound yielded
a saving of approximately two multiplicative levels, in one of practical settings.

EvalRound Algorithm in CKKS Bootstrapping 27

Acknowledgements

The research was supported by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Education
(Grant No. 2019R1A6A1A11051177 and 2021R1A2C1095703) and Institute of
Information & Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) [NO.2022-0-01047, Development of
statistical analysis algorithm and module using homomorphic encryption based
on real number operation].

References

1. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys. In:
Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT
2021. pp. 587–617. Springer International Publishing, Cham (2021)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. p. 309–325. ITCS ’12, Association
for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/
2090236.2090262, https://doi.org/10.1145/2090236.2090262

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in
Cryptology – CRYPTO 2011. pp. 505–524. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43(2), 831–871 (2014). https://doi.
org/10.1137/120868669, https://doi.org/10.1137/120868669

5. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate
homomorphic encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology
– EUROCRYPT 2019. pp. 34–54. Springer International Publishing, Cham (2019)

6. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013. pp. 315–335. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

7. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2018. pp. 360–384. Springer International Publishing,
Cham (2018)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Application of Cryptology and
Information Security. pp. 409–437. Springer (2017)

9. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015.
pp. 513–536. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for tfhe. In: Takagi, T., Peyrin,
T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp. 377–408. Springer
International Publishing, Cham (2017)

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669

28 Kim et al.

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully
homomorphic encryption over the torus. Journal of Cryptology (2019). https:
//doi.org/10.1007/s00145-019-09319-x

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) Advances in Cryptology –
EUROCRYPT 2010. pp. 24–43. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

13. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. pp. 617–640. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144 (2012), https://ia.cr/2012/144

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. p.
169–178. STOC ’09, Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/10.1145/
1536414.1536440

16. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 75–92.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

17. Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete fourier
transforms and fhe bootstrapping. IEEE Access 7, 57361–57370 (2019). https:
//doi.org/10.1109/ACCESS.2019.2913850

18. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. pp. 364–390. Springer
International Publishing, Cham (2020)

19. Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for
bootstrapping of approximate he. Cryptology ePrint Archive, Report 2020/1355
(2020), https://ia.cr/2020/1355

20. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for
bootstrapping of approximate he. In: Advances in Cryptology – EUROCRYPT
2022 (2022)

21. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping
of rns-ckks homomorphic encryption using optimal minimax polynomial
approximation and inverse sine function. In: Canteaut, A., Standaert, F.X. (eds.)
Advances in Cryptology – EUROCRYPT 2021. pp. 618–647. Springer International
Publishing, Cham (2021)

22. Lee, J.W., Lee, Y., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision
bootstrapping for approximate homomorphic encryption by error variance
minimization. In: Advances in Cryptology – EUROCRYPT 2022 (2022)

23. Lee, Y., Lee, J.W., Kim, Y.S., No, J.S.: Near-optimal polynomial for modulus
reduction using l2-norm for approximate homomorphic encryption. IEEE Access
PP, 1–1 (08 2020). https://doi.org/10.1109/ACCESS.2020.3014369

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://ia.cr/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://ia.cr/2020/1355
https://doi.org/10.1109/ACCESS.2020.3014369
https://doi.org/10.1109/ACCESS.2020.3014369

	EvalRound Algorithm in CKKS Bootstrapping

