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Abstract—This paper studies Batch Private Information
Retrieval (BatchPIR), a variant of private information retrieval
(PIR) where the client wants to retrieve multiple entries from
the server in one batch. BatchPIR matches the use case of many
practical applications and holds the potential for substantial
efficiency improvements over PIR in terms of amortized cost
per query. Existing BatchPIR schemes have achieved decent
computation efficiency but have not been able to improve
communication efficiency at all. In this paper, we present the
first BatchPIR protocol that is efficient in both computation
and communication for a variety of database configurations.
Specifically, to retrieve a batch of 256 entries from a database
with one million entries of 256 bytes each, the communication
cost of our scheme is 7.2∼75x better than state-of-the-art
solutions.

I. INTRODUCTION

User privacy is a critical challenge in cloud-based appli-
cations. To protect user privacy, various cryptographic prim-
itives and protocols have been proposed. Private information
retrieval (PIR) is one such primitive that allows a client
to download an entry from a public database on a server
without revealing the entry of interest to the server [1]. An
efficient PIR scheme can enable many privacy-preserving
applications such as DNS lookup [2], password check [3],
[4], anonymous communication [5].

Unfortunately, even after decades of study [3], [6]–[15],
single-server PIR schemes still come with high costs for
many applications. Existing schemes achieve decent per-
formance only when database entries are large (e.g., Kilo-
Bytes) [3], [12], [15], [16]. But many applications have small
entries; for example, in password check, contact discovery,
and DNS lookup, each entry is often a hash digest or an
IP address (e.g., 128 or 256 bits). When the entry size is
small, existing single-server PIR schemes suffer from very
high communication overhead.

It has been observed that in many applications, a client
wants to retrieve multiple entries from the same database [5],
[12], [17], [18]. For example, a user of an anonymous
messaging system fetches multiple messages directed to
her [5], a user’s browser downloads multiple ads relevant
to her interests [14], a user checks which of her contacts
signed up for a service [19], or a user checks all her
passwords at once against a database of breached pass-
words [4]. These scenarios motivate BatchPIR [12], [17]
(also called Amortized PIR [17] or Multi-query PIR [12])

SealPIR [12] 2, 500×
Angel et al. BatchPIR [12] 1, 872×
MulPIR [3] 982×
OnionPIR [16] 384×
Spiral [15] 140×
This work 19.2×

Table I: Communication overhead of recent single-server
PIR and BatchPIR schemes as well as our work. Each entry
in the database is 256 bytes. For Angel et al. BatchPIR and
our BatchPIR schemes, we assume that the client wants to
retrieve 256 entries from the server.

as a promising alternative to PIR where the client wants to
download multiple entries from the server at once.

The BatchPIR approach has been proposed to reduce the
amortized computational cost over PIR. For example, in the
state-of-the-art BatchPIR scheme [5], for a database with
one million entries each of 288 bytes, it takes 20 seconds of
server computation to retrieve a batch of 256 entries, which
works out to be only 78 milliseconds amortized per query.
However, when it comes to communication, the BatchPIR
approach has not been able to provide any benefit.

In Table I, we show the communication overhead of
recent single-server PIR schemes and the state-of-the-art
BatchPIR scheme [12]. We assume the entry size is 256
Bytes. For BatchPIR schemes, we assume the client wants
to retrieve a batch of 256 entries. It can be seen that even
for the most efficient scheme, the communication overhead
is still more than 100x. The key reason behind the high
communication overhead is that these schemes are based on
the Ring Learning With Error (RLWE) encryption. A RLWE
ciphertext is quite large (tens of KiloBytes), no matter how
small the underlying database entry is. Existing BatchPIR
schemes do not address this issue and still require at least
two ciphertexts to be sent (one in each direction) for each
query in the batch.

In summary, the state-of-the-art BatchPIR scheme nicely
amortizes the computation cost over the batch. But the
communication cost is not amortized and remains high for
databases with small entries. We believe this is currently the
main limitation of BatchPIR for practical applications.
Main contribution. In this paper, we present the first
BatchPIR scheme that achieves both low communication and
low computation for a wide range of database parameters.
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Our key observation is that we can save communication by
using a single ciphertext to retrieve many database entries.
To achieve this goal, we use a vectorized variant of RLWE
homomorphic encryption and design a method to merge
ciphertexts encrypting independent entries. As shown in
Table I, to download a batch of 256 entries from a database
with one million entries where each entry is 256 bytes, the
amortized communication overhead of our scheme is 19.2x
over the insecure baseline, which is 7.2x better than the
state-of-the-art PIR and two orders of magnitude better than
existing BatchPIR. Our amortized computation cost is 2x
higher to the state-of-the-art BatchPIR, at about only 153
milliseconds.

II. PRELIMINARY AND BACKGROUND

A. Somewhat Homomorphic Encryption
Fully homomorphic encryption (FHE) is a special kind

of encryption scheme that allows arbitrary computation
over ciphertexts. FHE for arbitrary computation is still
very expensive. To achieve practical performance, somewhat
homomorphic encryption (SHE, also called leveled FHE) is
often used, which only supports computation up to a fixed
depth.

We focus on SHE schemes based on the Ring Learning
with Errors (RLWE) problem. Many RLWE homomor-
phic encryption schemes, such as Regev [20], BFV [21],
BGV [22], and CKKS [23] share the following common
structure. Let R = Z[x]/(xn + 1) be a polynomial ring
where n is the degree of the polynomial (also called
ciphertext dimension) and is usually a power of two. A
plaintext message m is a polynomial in Rt = R mod t.
The secret key s is a polynomial sampled from a distribution
of “small” (e.g., with binary coefficients) polynomials in
R. A ciphertext consists of two polynomials in Rq = R
mod q and is given as (c0, c1) = (a, a · s + e + m)
where a is sampled uniformly at random from Rq and
e is a noise polynomial with coefficients sampled from a
bounded Gaussian distribution. To decrypt, one computes
µ = c1 − c0 · s = e +m. As long as the noise e is small,
rounding µ recovers m.

RLWE-based SHE schemes support the following homo-
morphic operations.

• CtCtAdd(c1, c2): This operation takes as input two
ciphertexts c1 ∈ R2

q and c2 ∈ R2
q , and outputs a

ciphertext encrypting the sum of two plaintexts.
• CtPtMul(c, p): This operation takes as input a plaintext
p ∈ Rt and a ciphertext c ∈ R2

q encrypting m ∈ Rt,
and outputs a ciphertext encrypting p ·m.

• CtCtMul(c1, c2): This operation takes as input two
ciphertexts c1 ∈ R2

q and c2 ∈ R2
q and outputs a

ciphertext encrypting the product of two plaintexts.
Each homomorphic operation increases the noise level in the
resulting ciphertext, which is why only a limited number of
operations can be performed.

Operation Time cost (milliseconds) Noise added (bits)

CtCtAdd 0.07 ≈0
CtPtMul 0.09 22
CtCtMul 12.1 29
CtRotate 3.6 ≈0

Table II: Experimental computation cost and noise growth of
each BFV homomorphic operation. The polynomial degree
n is 8,192, the ciphertext modulus q has 150 bits, and the
plaintext modulus t has 20 bits. Time costs are measured
with the SEAL library [27] version 3.7.2 on a single core
in AWS t2.2xlarge instances.

Trade-offs in RLWE parameter selection. Parameter se-
lection for a RLWE encryption scheme provides a delicate
balance between computation depth, cost, and security. For
a fixed security level and a plaintext text modulus t, a
larger ciphertext modulus q requires a larger polynomial
degree n, allows higher computation depth, but increases the
ciphertext size and per-operation computation cost. We will
pick parameters that provide a good balance between cost
and computation depth and give a widely accepted security
level of 128 bits.

B. Vectorized Homomorphic Encryption

If the plaintext modulus t is a prime, a polynomial
in Rt can be used to encode a vector in Zn

t [24]. This
transforms the above multiplication and addition operations
into component-wise (also called slots in the literature [25])
operations between vectors in Zn

t .
Vector rotation. With proper parameter choices, an auto-
morphism can be used to move plaintext data across different
slots in the vector [26]. This can be abstracted as the
following ciphertext rotation operation.

• CtRotate(c, r): This operation takes as input a cipher-
text c encrypting a plaintext vector v = [v1, v2, · · · , vn]
and a value r ∈ [0, n). It outputs a ciphertext encrypting
v′ = [vn−r+1, vn−r+2, · · · , vn, v1, v2, · · · , vn−r], i.e.,
v rotated by r slots.

We will extensively use this operation in our scheme.

C. Noise Growth and Computation Costs of Homomorphic
Operations

Different homomorphic operations have drastically dif-
ferent noise growth and computation costs. This will sig-
nificantly impact our design decisions. We summarize the
noise growth and computation cost of relevant homomorphic
operations in Table II. To be concrete, we use the BFV
scheme as an example [28].

CtCtxtAdd is fast and adds little noise. CtPtxtMul is also
fast but adds a lot more noise than addition. On the other
hand, CtRotate does not add much noise but it is quite
slow due to an expensive key-switching step [27]. Lastly,
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CtCtMul is quite expensive in both computation and noise
growth. It is slow because it involves multiple expensive
steps: base expansion, quantization, and relinearization [27].

D. (Batch) Private Information Retrieval

Private Information Retrieval (PIR). Given an index i and
a database DB of N entries, the client wants to privately
download i-th entry in the database, i.e., DBi. A PIR
protocol should satisfy the following properties.

• Correctness: If the client and the server correctly exe-
cute the protocol, then the client recovers the requested
entry.

• Privacy of client: The server learns nothing about
which entry the client is requesting.

Batch Private Information Retrieval (BatchPIR). In
BatchPIR, instead of a single entry, the client wants to
privately download a batch of entries corresponding to in-
dices {i1, i2, · · · , ib}. That is to say, the output of BatchPIR
is {DBi1 ,DBi2 , · · · ,DBib}. A BatchPIR protocol should
satisfy the following properties.

• Correctness: If the client and server correctly execute
the protocol, then the client recovers the requested set
of entries.

• Privacy of client: The server learns nothing about the
batch of indices the client is requesting.

E. Previous Batch Private Information Retrieval

Figure 1 gives a high-level overview of the BatchPIR
framework of Angel et al. [12]. The server database consists
of N entries and the client batch has b indices. The example
in Figure 1 has N = 6 and b = 3. There is a one-time
setup stage in which the server hashes database entries into
buckets. In more detail, the server picks w independent hash
functions h1, · · · , hw; typically w = 3. Then, the server
creates B buckets; typically B = 1.5b. For i-th entry ai in
the database, the server picks buckets h1(i), · · · , hw(i) and
copy ai into each of these buckets. It is common to add a
nonce to the hash functions to make sure the w buckets are
distinct. This results in exactly wN entries in total across
all buckets.

To generate a query, the client assigns the batch of b
indices into the B buckets as well. To do that, the client
uses cuckoo hashing with a maximum bucket size set to
one. In more detail, for each index i in the batch, the
client computes the candidate buckets h1(i), · · · , hw(i) and
places i in one empty candidate bucket. If none of the
candidate buckets is empty, put i into one of the random
candidate buckets, evict the index (call it j) currently in that
bucket, and try to re-insert j. If reinserting j causes another
index to be evicted, the process continues recursively for a
predetermined maximum number of times. After the cuckoo
hashing step finishes for all the b indices in the batch, the
client assigns a dummy index (usually 0) to each of the

3, 4, 6

Server Regular Hashing

PIR(6)

PIR(3)

PIR( )

PIR(4)

PIR( )
Batch

Client Cuckoo Hashing

6

3

4

Database

Figure 1: The BatchPIR protocol of Angel et al.. The server
assigns and copies each element into three buckets and the
client assigns each index to one of those three buckets. The
client and server run an independent PIR for each bucket.

remaining empty buckets. Each bucket now holds a single
index.

It is important to note that the server adds each entry to
all the candidate buckets and the client assigns each index to
one of the candidate buckets. Therefore, if a particular index
i is assigned to bucket j on the client side, then bucket j on
the server side is guaranteed to contain the i-th entry of the
database DBi. Therefore, the client and the server perform
B PIR instances, one for each bucket, to retrieve all the
desired entries. Angel et al. used SealPIR which is proposed
in the same paper [12], but their BatchPIR framework is
compatible with any PIR scheme listed in Table I.
Convert database index to bucket index. In the above
explanation, one subtle issue is left to address. For each
bucket, the client only knows the assigned entry index in
the database. To make a bucket PIR query, the client must
also know the location/index of entry within that bucket.
To address the issue, Angel et al. has proposed several
solutions. The client can directly acquire a map from each
index in the database to all indices within each server bucket.
This map can be compressed using techniques like bloom
filter [29]. Another option is for the client to construct this
map locally. This will require the server to share with the
client the source of randomness. The client can then simulate
the server hashing procedure on the N indices.
Cuckoo hashing failure. There is a chance that the eviction
and re-insertion process exceeds the maximum number of
insertions. If that happens, we say the cuckoo hashing step
has failed. This failure probability depends on the number of
hash functions w, the batch size b, and the number of buckets
B. Analyzing the failure probability of cuckoo hashing is an
open problem. Most previous works experimentally verify it
for the parameter configurations they are interested in [30],
[31]. Angel et al. experimentally estimated with w = 3 and
B = 1.5b, the failure probability is less than 2−40 for a
batch size of 200 and above, and less than 2−20 for a batch
size of 32. For small batch sizes, one can set B to be larger
than 1.5b to reduce the failure probability. Alternatively, an
application can also choose to divide a batch into smaller
batches when a cuckoo hashing failure does occur.
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Low computational cost. The B PIR instances dominate the
computation cost. The computation cost of a PIR is roughly
proportional to the number of entries in the database. Since
the total number of entries across all buckets is 3N , the total
computation cost of these B PIR instances is proportional
to only 3N where N is the size of the server’s original
database. Hence, the amortized computation cost per entry
is quite small.
High communication overhead. Unfortunately, Angel
et al.’s BatchPIR framework does not improve communi-
cation at all. The client and the server exchange at least two
RLWE ciphertexts (one for query and one for response) for
each PIR instance. The ciphertext size could range from 21
KB to 128 KB, even if the plaintext entry is small. Thus,
the communication overhead to retrieve a batch of small
entries could get very high. Concretely, even if we plug
in the most communication efficient PIR scheme [15], to
retrieve a batch of 256 entries where the entry size is 256
bytes, the total communication is 13.4 MB, which is around
214x the plaintext entry size.

As discussed in Section II, RLWE ciphertext size depends
on the ciphertext modulus q and the polynomial degree n.
To reduce the communication overhead, one may be tempted
to simply reduce q and n. However, we cannot reduce q
because q needs to be sufficiently large to accommodate
the noise growth; similarly, to maintain security we cannot
reduce the polynomial degree n [32].

III. A VECTORIZED PIR PROTOCOL

Our BatchPIR protocol follows the template of An-
gel et al. framework described in the previous section where
the client and server first distribute their inputs (the requested
batch and the database respectively) into B buckets. But
instead of running independent PIRs for each bucket, our
protocol merges the request and response ciphertexts across
buckets.

Towards this goal, we will first present a new PIR protocol
(not batched) whose request and response ciphertexts are
vectorized. Naturally, we will rely on vectorized RLWE
SHE introduced in Section II. To elaborate, the response
ciphertext will encrypt a vector that contains the desired
entry at one of the slots and zeroes in the remaining slots.
We will then find ways to merge many vectorized responses
into a single ciphertext in our BatchPIR protocol later.

We remark that if used as a standalone PIR protocol, our
vectorized PIR has no advantage over the state-of-art. It is
designed solely to serve as a building block to our BatchPIR
protocol in the next section.

A. A Warm-up Protocol

In this section, we give a warm-up protocol to help build
intuition. The warm-up protocol has a high computational
cost and will not be used as is. In the next subsection, we
will present a technique to improve the computational cost.

In our protocol, the client query consists of vectorized
ciphertexts, and the server database is also encoded as an
array of plaintext vectors. We use the standard hierarchical
query technique [6] to reduce the request size. In this
technique, a database with N entries are represented as a
d-dimensional hypercube, where each dimension is of size
N ′ = d

√
N .

The number of dimensions d plays a key role in perfor-
mance. A larger d means a smaller request size but a higher
multiplicative depth, which requires less efficient RLWE
parameters and hence higher computation cost. We found
that setting d = 3 provides a decent trade-off between
request size and computation in most of our experiments.
Therefore, we will describe the protocol for d = 3, i.e.,
the database is represented as a cube with each dimension
having size N ′ = 3

√
N .

We think of the cube as having N ′ slices, where each
slice is a N ′ ×N ′ matrix. For now, we assume that within
each slice, each column is a separate plaintext vector of size
n = N ′. In this cube, any desired entry can be accessed
by successively selecting the correct row (first dimension),
then column (second dimension), and eventually slice (third
dimension). We will now describe how we perform these
selections privately.

To access a database entry, the client represents the
index as d = 3 one-hot query vectors each of size N ′

(responsible for selecting the row, the column, and the slice,
respectively). The client then encrypts each query vector into
a separate ciphertext. 1 The server performs ciphertext-
plaintext multiplication between the first query ciphertext
and each plaintext vector. 2 As a result, each slice now
contains N ′ encrypted columns each containing a single
non-zero entry at the same slot. The server then merges
the encrypted columns within each slice after homomorphic
rotations. Specifically, within each slice, the server rotates
the encrypted columns in increments of one so that their non-
zero entries are now in distinct slots; the server then sums
them up. 3 The output is a matrix of N/N ′2 encrypted
columns where each column holds the selected row from
one slice.

The server then processes the second dimension, this
time using ciphertext-ciphertext multiplication between the
second query vector and the previous output. 4 The same
rotate-then-sum step is performed. This results in a single
ciphertext having one entry from each slice. 5 The server
will multiply this with a third query vector. 6 the output
ciphertext has a single non-zero slot containing the desired
entry.

Figure 2 illustrates the warm-up vectorized PIR protocol.
The server database coonsisting of 27 entries is represented
in d = 3 dimensions each of size 3 and the client query
consists of d = 3 query ciphertexts. The plaintext vector
size n is 3.
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Figure 2: A basic vectorized PIR protocol in three dimensions. The database consists of 27 entries and each dimension is
of size three. The query consists of three RLWE ciphertexts.
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Figure 3: A method to reduce the number of rotations in the first dimension of vectorized PIR. The database of 27 entries is
encoded in three dimensions. In each 2 dimensional slice, the server rotates the second column by one and the third column
by two during initialization. The server also copies and rotates the encrypted query ciphertexts. The server performs three
encrypted rotations (instead of 9 with the method in Figure 2).

B. Rotating Query to Reduce Computation

The main limitation of the above approach is the high
computational cost. As shown in Table II, ciphertext rotation
is an expensive operation. Therefore, the N/N ′ ciphertext
rotations in the first dimension will be the computation
bottleneck. In this subsection, we observe that if the server
rotates the first query (instead of the first dimension’s
output), the number of rotations can be greatly reduced from
N/N ′ to N ′.

To achieve this, we make two changes to the warm-
up protocol, shown in Figure 3. 1 At initialization, after
representing the database into a cube, for every slice, the
server rotates the plaintexts column in increments of one.
These cheap plaintext rotations will help avoid expensive
ciphertext rotations at the time of the query. 2 At the time
of query, the server copies the first query ciphertext N ′ times
and then rotates each copy in increments of one, in total N ′

ciphertext rotations. 3 Then within each slice, multiply i-th

5



Algorithm 1: VecPIRSetup algorithm
Input: DB, Input database with N = |DB| entries
Output: DB′, A database with plaintext vectors

1 N ′ = d
√
N

2 for i = 0 : ⌈N/N ′⌉ − 1 do
3 DB′[i] = EncodeToPt(DB[iN ′ : (i+ 1)N ′ − 1])
4 Rotate DB′[i] by i · n/N ′ mod n
5 end
6 outputs DB′

7 Function EncodeToPt(v)
Output: p, Plaintext vector of size n

8 N ′ = |v|
9 g = n/N ′

10 for j = 0 : N ′ − 1 do
11 p[j · g] = v[j]
12 end
13 Output p

Algorithm 2: VecPIRQueryGen algorithm.
Input: idx, Desired index; N ′, dimension size
Output: Q̃, A list of d ciphertext query vectors

1 Represent idx as d-dimensional coordinates of the
hypercube (idx0, · · · idxd−1)

2 Compute (idx′0, · · · idx
′
d−1) where idx′j =

∑j
k=0 idxk

mod N ′

3 for i = 0 : d− 1 do
4 Generates vector b as one-hot encoding of idx′i
5 Q̃[i] = EncodeToPt(b)
6 end
7 Output Q̃

plaintext with the i-th rotated copy of the query ciphertext
and sum the resulting encrypted columns. The overall effect
of this approach is the same as the warm-up protocol, i.e.
the output of the first dimension is a matrix with N/N ′2

encrypted columns. But the number of rotations performed
at the time of query is now N ′. Recall that N ′ = 3

√
N . Thus,

we have N ′ < N/N ′.

C. Full Vectorized PIR Protocol

Setup. The server uses Algorithm 1 to encode database with
N entries into ⌈N/N ′⌉ plaintexts. Specifically, the algorithm
iterates over groups of N ′ consecutive entries, encoding each
group into an individual plaintext vector of size n. For most
RLWE SHE schemes, the number of plaintext slots n is
several thousand. As we set d = 3 so N ′ = 3

√
N . Therefore,

for all practical databases N ′ < n. The algorithm places N ′

entries at equal distances in a plaintext vector.

Algorithm 3: VecPIRResp algorithm.
Input:
- Q̃, Set of PIR query ciphertexts
- DB′, Encoded plaintext PIR database
- N ′, Dimension size
Output:
- R, a single ciphertexts encrypting PIR response.

1 g = n/N ′

▷ Query rotate and Ct-Pt multiply for first dimension
2 for k = 0 : N ′ − 1 do
3 Q̃rot.[k] = CtRotate(Q̃[0], k · g)
4 end
5 for j = 0 : |DB|/N ′ − 1 do

6 DB′[j] =
N ′−1∑
k=0

CtPtMul(Q̃rot.[k], DB[jN ′ + k]))

7 end

▷ Ct-Ct multiply for latter dimensions
8 for i = 1 : d− 1 do
9 C[0 : |DB′|/N ′ − 1] = 0

10 for j = 0 : |DB′|/N ′ − 1 do
11 for k = 0 : N ′ − 1 do
12 C ′ = CtCtMul(Q̃[i],DB′[jN ′ + k])

C[j] = C[j] + CtRotate(C ′, k · g))
13 end
14 end
15 DB′ = C ▷ Encrypted intermediate database
16 end
17 Output R = DB′ ▷ Final encrypted response

In other words, within a plaintext vector, entries are placed
at multiples of g slots. where g = n/N ′. Encoding plaintext
entries this way will help us merge the requests ciphertexts
in our BatchPIR protocol later in Section IV. The encoded
database consists of ⌈N/N ′⌉ plaintexts. The server then
rotates the database as discussed in Section III-C.
Client query generation. The client uses Algorithm 2 to
generate a query. The algorithm first represents idx as the
d-dimensional coordinates of the hypercube, where the i-th
coordinate is the position of the desired entry in the i-th
dimension. Because of rotations in the server computation,
the position of the desired entry will shift, but these shifts are
public and hence can be easily calculated by the client (Line
2). Finally, the client represents these shifted coordinates as
d one-hot query vectors each of size N ′. Similar to database
encoding, query vectors are encoded at equal distances in
the plaintext vector. Each encoded query vector is then
encrypted as a separate ciphertext.
Response generation. The response generation algorithm is
given in Algorithm 3. The server uses the client query and
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the encoded database to generate a single response cipher-
text. For the first dimension, the server follows the above
approach using rotated copies of the first query ciphertext
and the rotated database. We observe that for the second
and higher dimensions, query rotation does not reduce the
number of ciphertext rotations. For these dimensions, we
stick with rotating and summing the resulting ciphertexts
after multiplying the query vector with the encrypted output
of the previous dimension, as in the warm-up protocol.

Recall that the output after the final dimension is a single
ciphertext that contains the desired entry in one of the
slots. If the protocol is used as a standalone PIR, then this
ciphertext is returned to the client. But in the next section,
we will further process this ciphertext at the server to lower
the communication of our BatchPIR protocol, so there is no
need to send it back to the client.

IV. VECTORIZED BATCH PRIVATE INFORMATION
RETRIEVAL

As mentioned earlier, our BatchPIR protocol is built atop
Angel et al. framework given in Section II-E. The server
divides the database into B = 1.5b buckets using w = 3
independent hash functions, the average size of each bucket
is NB ≈ wN/B. The client divides a batch of b indices
into B buckets using cuckoo hashing. Next, we will invoke
our vectorized PIR protocol for each bucket. Each bucket
is represented as a d = 3 dimensional hypercube with each
dimension size N ′

B = 3
√
NB . The client request consists of 3

ciphertexts per bucket. The response consists of B vectorized
ciphertexts (one per bucket) where each ciphertext has at
most one non-zero slot containing the desired entry.

We next introduce mechanisms to reduce communication.
As long as B < n (which is usually the case since n is
quite large), the server will merge the B response ciphertexts
into a single ciphertext. Observe that if all the desired
entries reside in different slots, the server can merge these
responses into a single ciphertext simply using vectorized
homomorphic additions. Unfortunately, response ciphertexts
from different buckets may collide, so the server could not
directly merge them. We propose a mechanism that publicly
aligns these entries. This directly reduces the response size.
We then propose a mechanism to pack requests for multiple
buckets together, which results in significant savings in
request size.

A. Merging Response Ciphertext

We illustrated our technique for B = 4 response cipher-
texts in Figure 4. Recall that after running vectorized PIR
for each bucket the server holds B response ciphertexts,
each having at most a single entry. Each desired entry could
be at any arbitrary index within the respective bucket. As
a result, there may be collisions in the slots occupied by
desired entries from different buckets. For example, Figure
4, entries b and d collide.

Therefore, we can not add them directly. We do not
want the client to send extra encrypted material to guide
the server. Because that will increase the request size.
The key challenge is to enable the server to merge these
ciphertexts publicly without having additional interaction
with the client.

Given B response ciphertexts, our merging technique
works as follows. 1 The server first copies the non-zero
value to all slots. This is achieved with a rotate-and-sum
approach. The server first rotates the ciphertext by one
position and adds the rotated and the original ciphertext.
This copies the non-zero value to an adjacent slot. This step
is then repeated log n−1 times, each time, rotating the output
of the previous step by the next power of two and adding
rotated ciphertext to the previous ciphertext. The result is
a ciphertext that contains the same value at all slots. 2

Then the server publicly selects a distinct slot from each
ciphertext by multiplying it with a plaintext binary one-hot
mask that is 1 only at the selected slot. Now each ciphertext
has a distinct non-zero slot. 3 The server finally merges
these ciphertexts by homomorphically adding them together.

This technique allows us to merge the responses from
up to n buckets, where n is a polynomial degree. In our
implementation, n is set to 8, 192. Thus, even for a batch
with thousands of indices, the final response of our BatchPIR
protocol is a single ciphertext.

B. Packing Request Ciphertexts

Each query vector is of size N ′
B = 3

√
NB . As mentioned

in the previous section, each query vector is much smaller
than the ciphertext dimension n. Therefore, we can pack
query vectors from multiple buckets into a single ciphertext.
Care is needed to ensure that the packing technique is
compatible with the rotation and summation that the server
performs for each dimension of the Vectorized PIR.

We illustrated an example of our packing technique in
Figure 5. In the figure, the client has two batches of queries,
each containing two query vectors. The server database is
divided into two buckets, each containing four elements
represented as a 2× 2 matrix.

For each batch, the client assigns query vectors to alter-
nate slots of the request ciphertext 1 . The server encodes
the buckets in the same fashion. Entries from two buckets
are encoded into alternating plaintext slots 2 . Note that
for both batches, rotating the second column by two slots
(independent of the query) avoids collisions of non-zero
entries and allows the results to be merged together 3 .

More generally request packing works as follows: Given
query vectors from gB buckets, where each bucket is of size
NB and gB = n/N ′

B . Note that in practice buckets are of
unequal sizes. But the server will extend them to the size of
the largest bucket (denoted as NB from here on) by padding
zero entries. For the first dimension, take the first query
vectors of all the buckets and pack them into alternating slots
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Figure 4: Response merging across the buckets. Entries within different buckets overlap. To align entries into distinct slots
first each entry is copied to all slots using rotate and sum. After that distinct slot for each entry is picked.
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Figure 5: Examples of query packing. Query vectors from different buckets are assigned to alternative slots of the ciphertext.
Similarly, entries from different buckets are assigned to alternate slots of the plaintexts.

of an independent plaintext. Specifically, assign values of k-
th first query vector to plaintext slots congruent with k mod
gB . Repeat this step for the second and third dimensions.
The output will be d = 3 packed query vectors one for each
dimension. The server encodes the buckets’ data in the same
way. Pack groups of consecutive N ′

B entries from all the
gB buckets into an independent plaintext vector. The output
consists of NB/N

′
B plaintexts. Concretely, for buckets B =

256, largest bucket size NB ≈ 8192, and dimension size
N ′

B = 32, for each dimension query vectors from all the
buckets can be packed into a single ciphertext. Therefore
the client request would only be d = 3 ciphertexts.

Note that because of request packing each response
ciphertext now consists of gB desired entries. Therefore,
the rotate and sum step of response merging is repeated
log n/gB−1 = logN ′

B−1 times (instead of log n−1), and

each time response ciphertext is rotated in multiples of gB .

C. Putting it all together

We have introduced all the components of our vectorized
BatchPIR protocol separately in previous sections. Now we
describe our full vectorized BatchPIR protocol by putting
together all the techniques. The final protocol is given in
Algorithm 7.

Our protocol has a setup phase that the server has to
perform only once for all the clients. The server first runs
setup using Algorithm 4. In the setup phase, the server
divides the database into B buckets using the server hashing
technique of Angel et al. framework as given Section II-E.
After that the server extends the size of each bucket to
the size of largest bucket by appending zero entries, and
then independently encodes each bucket as d dimensional
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Algorithm 4: BatchPIRSetup algorithm
Input:
- DB, Database of N entries
- System parameters given in Algorithm 7
Output:
- D̃B0, · · · , D̃B⌈B/gB⌉−1, Merged plaintext buckets

1 For each entry DBi, copy it to buckets
h1(i), · · · , hw(i) ▷ server hashing, average size of
bucket is wN/B

2 Pad each bucket Bi to size NB with dummy entries
3 for i = 0 : B − 1 do
4 B′

i ← VecPIRSetup(Bi)
5 end
6 for i = 0 : ⌈B/gB⌉ − 1 do
7 D̃Bi =

∑gB−1
k=0 PtsRotate(B′

i·gB+k, k)

8 end
9 Output D̃B0, · · · , D̃B⌈B/gB⌉−1

10 PtsRotate(P, k): A function takes as input a list of
plaintext vectors P and a value k and rotates each
plaintext vector in the list by k slots.

Algorithm 5: BatchPIRQueryGen algorithm
Input:
- I = {i1, i2, · · · , ib}, Client query batch
- System parameters given in Algorithm 7
Output:
- Q̃0, · · · , Q̃B/g−1, A list of encrypted queries, each

consisting of d RLWE ciphertexts

1 Apply cuckoo hashing to each index in I using hash
functions h1, · · · , hw

2 for i = 0 : B − 1 do
3 Qi ← VecPIRQueryGen(ji, N

′
B) ▷ ji is the index

in i-th bucket the client wants to retrieve
4 end
5 for i = 0 : ⌈B/gB⌉ − 1 do
6 Q′

i =
∑g−1

k=0 PtsRotate(Qi·gB+k, k)
7 end
8 Encrypt Q′

0, · · · , Q′
B/gB−1 to get Q̃0, · · · , Q̃B/gB−1

hypercube using algorithm 1. After that, the server merges
gB buckets. For this take the j-th plaintext of each bucket,
rotate each in increasing order, and sum together. In this
way, the result is ⌈B/gB⌉ merged buckets.

The client generates a query using Algorithm 5. The client
first divides the batch into B buckets using cuckoo hashing.
For each bucket, the client will map the database index to
the bucket index using one of the techniques discussed in
Section II-E. Then, for each bucket, the client generates d

Algorithm 6: BatchPIRRespMerge algorithm.
Input:
- {Ri}i∈[k], List of response ciphertexts, assuming
k · gB ≤ n

- System parameters given in Algorithm 7
Output:
- T , Merged response ciphertext

1 Set R′ = 0 and T = 0
2 for i = 0 : k − 1 do
3 for j = 0 : log(n/gB)− 1 do

▷ copying to all slots
4 R′ = CtRotate(Ri, gB · 2j)
5 Ri = CtxtCtxtAdd(Ri, R

′)
6 end
7 Set plaintext vector p = 0.
8 l = i · gB ▷ selecting distinct slots
9 p[l : l + (gB − 1)] = 1

10 R′ = CtxtPtxtMul(Ri, p)
11 T = CtxtCtxtAdd(R′, T )
12 end
13 Output T

query vectors using Algorithm 2. Then the client packs query
vectors of gB buckets together and encrypts each packed
query vector into an independent ciphertext. The result is a
list of ⌈B/gB⌉ PIR queries.

For each merged buckets, the server calls Algorithm 3
and collects all the response ciphertexts. Each response
ciphertext contains gB non-zero slots.

After that, the server calls Algorithm 6 to merge these
response ciphertexts. For each response ciphertext, the server
first copies non-zero values to all ciphertext slots by using
rotate-and-sum. The server then selects gB distinct slots
from each response ciphertext by multiplying it with a plain-
text binary mask and then merges the resulting ciphertexts
using homomorphic addition. As long as number of buckets
B is less than ciphertext dimensions n, the result will be a
single ciphertext, containing all the desired entries.

D. Efficiency Analysis

Communication between client and the server. We now
calculate how many ciphertexts the client and the server
exchange in the BatchPIR protocol. The communication
from the client to the server includes packed requests for
underlying vectorized PIR and the response ciphertexts.
Concretely, the client sends ⌈B/gB⌉ packed PIR queries to
the server. The query for each PIR contains d ciphertexts.
Due to merging the response consists of ⌈B/n⌉ ciphertexts.
So in total, d · ⌈B/gB⌉+ ⌈B/n⌉ ciphertexts are exchanged
between the client and the server.

Recall that gB represents the ratio between plaintext size
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Algorithm 7: Full Vectorized BatchPIR Protocol.
Input:
- DB, Server database of size N
- I = {i1, i2, · · · , ib}, Indices of entries client wants to

retrieve
System Parameters:
- b, Client query batch size |I|
- B, Number of buckets, usually set to 1.5b
- h1, · · · , hw, Hash functions
- NB , Size of the largest bucket
- N ′

B , Size of first two dimensions, set to a power of two
larger than 3

√
NB

- n, Number of slots per ciphertext
- gB = n/N ′

B

1 Server prepares database DB′
0, · · · ,DB

′
⌈B/gB⌉−1 by

calling BatchPIRSetup(DB) from Algorithm 4

2 Client creates queries Q̃0, · · · , Q̃⌈B/gB⌉−1 by calling
BatchPIRQueryGen(I) from Algorithm 5 and sends
them to the server.

3 for i = 0 : ⌈B/gB⌉ − 1 do
4 Server computes Ri = VecPIRResp(Q̃i,DB

′
i, N

′
B)

5 end
6 Server computes

T = BatchPIRRespMerge({Ri}i∈⌈B/gB⌉) and
sends it to the client

7 Client decrypts T to get the entries corresponding to I

and the dimension size of bucket data n/N ′
B . Therefore,

increasing the size of N ′
B will increase the request size.

Server computational cost. In the setup phase, the server
performs one-time hashing of the database. The server will
use the same hashed database for subsequent queries and
across all the clients. As discussed in Section II, additions in
SHE are quite cheap. Therefore, we focus on computational
cost due to multiplications and rotations.

The most computationally demanding step of BatchPIR is
B/gB calls to Algorithm 3. In each call, the input database
consists of ≈ NB/N

′
B plaintexts, where gB = n/N ′

B . The
algorithm performs dimension-wise computation. Specifi-
cally, for the first dimension, the server performs NB/N

′
B

CtPtMul operations. For the second dimension NB/N
′
B
2

CtCtMul operations are required and for the third dimension,
only single CtCtMul operation is needed. Before multi-
plication of the first dimension, the server also performs
N ′

B CtRotate operations and for the second dimension, the
CtRotate operations are NB/N

′
B2 . The third dimension does

not CtRotate operation. Additionally, logN ′
B − 1 CtRotate

operations are needed for response merging.
In total, our algorithm requires BNB/n CtPtMul op-

erations, B/n(NB/N
′
B + N ′

B) CtCtMul operations and

B/n(N ′
B
2
+ NB/N

′
B + N ′

B(logN
′
B − 1)) CtRotate op-

erations. For a small value of N ′
B , CtCtMul operations

are the computational bottleneck. However, if we raise
the value of N ′

B , then CtRotate operations consume the
most computation. In our experiments, N ′

B is set such that
CtCtMul operations take up the most computation.

E. Additional Details and Extensions

Dimension size. A subtle issue is that the rotation operations
as described in query packing work only if the size of each
query vector is a power of two (or divides the polynomial
degree n). To make this step work, we set the size of the
first two dimensions to the same power of two. Since no
rotations are needed for the third (and last) dimension, we
can set its value to what naturally remains, usually
Modulus switching to reduce response size. At the end of
the BatchPIR protocol, the server sends response ciphertexts
to the client who will decrypt them. In other words, the re-
sponse ciphertexts will not be used for further computation.
We can then use the modulus switching technique to reduce
the size of the response ciphertexts. This technique was first
applied to PIR in [33]. Recall that RLWE ciphertexts are
elements in R2

q . Suppose a response ciphertext c has noise
Err(c). Modulus switching transforms c to R2

q′ with noise
max(

√
n,Err(c) · q′/q), where n is the polynomial degree.

To ensure correctness of decryption, we set q′ ≈
√
nt. This

optimization reduces the response size by ≈ log q/ log
√
nt.

Short random seed to reduce request size. We can further
reduce the request size by using a simple optimization given
in [3]. Recall that in a fresh RLWE ciphertext, the first
component c0 is sampled uniformly randomly from R mod
q. Thus, instead of a sending truly random c0, the client can
send a short random seed to generate a pseudorandom c0.
This optimization reduces the request size by half.
Handling larger items. Recall that our output ciphertext
contains B non-zero slots. For many practical scenarios, B
is smaller than n, so the output ciphertext has space for
more data. We can exploit the space to handle entries larger
than t bits. Specifically, the server splits each entry into
chunks of t bits. One can see it as multiple sub-databases
DB1,DB2, · · · ,DBk, where DBi corresponds to i-th chunk
of all entries. The server then applies the same client query
to all sub-databases and obtains multiple output ciphertexts
each containing B non-zero slots. Lastly, the server can
merge these output ciphertexts using the rotate-and-sum
approach again.

Note that the request will remain the same, i.e. d⌈B/gB⌉
ciphertexts. But the response will be ⌈kB/n⌉ ciphertexts.
Similarly, the server computation will be k times larger than
compute given in previous section. With one exception that
the term BN ′

B
2
/n term does not get multiplied with k this

is because we can use the same rotated query for all the
chunks.
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V. IMPLEMENTATION

We have implemented our scheme in C++ atop of the Mi-
crosoft SEAL Library version 3.7.2 [27]. Following SEAL,
we use the BFV [21], [28] encryption scheme, though our
protocol could easily be implemented using other encryption
schemes such as BGV. We implement the client and server
hashing scheme of Angel et al. scheme using SHA256 and
the crypto++ library [34]. For cuckoo hashing, we set the
maximum number of iterations to 200.
Noise analysis of Vectorized BatchPIR. We will analyse
noise in our protocol using noise estimates of BFV encryp-
tion given in Section II. In BFV rotations and additions adds
insignificant amount of noise. Therefore, it is sufficient to
estimate noise growth due to multiplications. Algorithm 3
sequentially performs 1 ciphertext-plaintext multiplication
followed by d − 1 ciphertext-ciphertext multiplications (on
same ciphertext). Additionally, to merge responses across the
buckets, one extra ciphertext-plaintext multiplication is used.
Total multiplicative depth of the protocol is d+1. Therefore
the expected noise in the BatchPIR response ciphertext will
be O(

√
n(td+1Err(c) + Err(c)d)). In other words the re-

sponse will correctly decrypt as long as coefficient modulus
q is greater than O(

√
n(td+2Err(c) + tErr(c)d)). In our

implementation we set q slightly higher than the required
size, to ensure high correctness.
BFV parameters. The performance of our scheme depends
on our choice of BFV parameters. We test our scheme with
different parameters to find the best choices. We set the
polynomial degree n to 8192 and the ciphertext modulus
q to 200 bits. We use SEAL’s default configurations for
standard deviation error and secret key distribution. This
gives us more than 128 bits of computational security. SEAL
implements the RNS variant of BFV, in q is broken up
into several smaller co-primes q1, q2, q3, · · · . Ciphertexts are
represented in Chinese remainder theorem (CRT) form, so
operations on ciphertexts are performed on the smaller rings
R mod qi. An extra RNS component of q is required for the
key material to reduce noise in the relinearization and key
switching steps for multiplications and rotations. This extra
component is not involved in the client query or the server
response. We pick this extra component to be of 50 bits,
leaving the modulus of the query and response ciphertexts
to be 150 bits.

As mentioned above, we use a modulus reduction in the
end to reduce the response. Concretely, the reduced modulus
q′ is only 30 bits, giving a 4x reduction in response size.
Plaintext encoding in BFV. In SEAL’s implementation of
BFV, a plaintext is represented as a n/2×2 matrix (instead
of length-n vector). We note that this is not an issue for us
because we can divide buckets into two equal-sized groups
and then encode one group per column. To elaborate, given
g buckets that can all fit into a plaintext vector of size n,
we first divide them into two groups each of size g/2 and

then encode the two groups into the two columns of the
plaintext matrix. All our algorithms work directly on this
encoding with the only minor change that we will rotate till
n/2 (instead of n).

VI. EVALUATION

Experimental setup. We run our experiments on Amazon
EC2 instances. Specifically, we used a t2.2xlarge instance
with 32 GB RAM. The instance has 8 CPU cores but our
implementation is single-threaded for ease of comparison
with prior works. All the results are obtained by running
each experiment 10 times and taking the average.
Benchmarking BatchPIR. In Table III we demonstrate
the performance of our scheme when retrieving a batch of
32 to 1024 entries. For all these experiments, the server
database consists of one million entries and each entry is
256 bits. As mentioned, 256-bit entries are common in many
applications.

Observe that both request and response sizes increase
with the batch size. The request size increases because
a larger batch corresponded to more buckets and hence
more ciphertext query vectors. The response size increases
because more response ciphertexts are needed to hold all the
entries in a larger batch.

It is worth noting that the request size accounts for a
larger proportion in total communication. This is because,
for each group of g buckets, Algorithm 7 needs three query
ciphertexts (one for each dimension), but only one response
ciphertext. Furthermore, the modulus reduction at the end
helps reduce response size (more substantial than the effect
of short seed in request).

Our protocol inherits the efficient computation from the
Angel et al. paradigm. As shown in Table III, it takes 10
to 18 milliseconds (amortized per query) for different batch
sizes. Other than a batch of size 32, the computational cost
is dominated by the second dimension. This is because the
second dimension involves NB/N

′
B
2 expensive ciphertext-

ciphertext multiplications (recall N ′
B is the size of the first

two dimensions). This cost could be reduced by increasing
N ′

B but that will increase the size of each query vector
(which is the communication bottleneck).
Comparison with prior work. We demonstrated the perfor-
mance of our protocol by comparing it with Angel et al.’s
BatchPIR scheme [12] which uses SealPIR as the underlying
PIR. To the best of our knowledge, this is the only prac-
tical BatchPIR in the literature. Unfortunately, the publicly
available implementation of this scheme [36] currently gives
compilation errors, and the authors acknowledged that the
implementation is no longer functional. Thus, for computa-
tion cost, we can only compare with the single data point
given in their paper [12], i.e. for a batch of size 256 and a
database with one million entries where each entry is 288
bytes. Fortunately, the communication cost of their scheme
can be easily calculated and compared with.

11



b = 32 b = 64 b = 128 b = 256 b = 512 b = 1, 024
B = 48 B = 96 B = 192 B = 384 B = 768 B = 1, 536

First two dimensions size 128 64 64 64 32 32
Third dimension size 5 9 5 3 5 3

Request (MB) 0.45 0.45 0.90 1.35 1.35 2.70
Response (MB) 0.06 0.06 0.06 0.06 0.12 0.18
Total Communication (MB) 0.51 0.51 0.96 1.41 1.47 2.88

First Dimension (Sec) 1.33 1.06 1.03 0.93 0.77 0.76
Second Dimension (Sec) 0.75 1.63 1.63 1.28 2.47 2.47
Total Computation (Sec) 2.50 3.17 3.32 2.94 4.10 4.52

Table III: Performance of our scheme for batch b sizes 32, 64, 128, 512, 1024. For all the cases the server database consists
of one million entries and each entry is of 32 Bytes.

Our work Angel et al.

Initialization (Sec) 22.2 14.2
Communication (MB) 1.26 120
Computation (Sec) 41.6 20

Table IV: Performance comparison between our scheme and
Angel et al. [12] batch PIR scheme for a batch of size 256
entries, where each entry is of 288 bytes and the server
database consists of one million entries.

Entry size Communication cost (MB)
(Byte) Our work Angel et al.

4 0.93 120
16 0.96 120
64 1.02 120

256 1.20 120

Table V: Communication overhead (in MegaBytes) of our
scheme and Angel et al. [12] BatchPIR scheme. For all
experiments, we assume that the client batch consists of 256
entries and the server database has one million entries. Each
database entry size is set to 4, 16, 64, or 256 bytes.

As depicted in Table V, the communication in our scheme
is 75∼129x smaller than the Angel et al. scheme for differ-
ent entry sizes. In terms of computation, Table IV shows
that the Angel et al. scheme is slightly better. Concretely,
the computation during initialization of our scheme is about
1.5x higher than theirs and the computation at query time
is about 2x higher than theirs. When amortized per query,
the computation cost of our scheme is 162 milliseconds
compared with 78 milliseconds for their scheme.

To provide one more comparison point, we also compared
with Cong et al. [35] Labeled Private Set Intersection (LPSI)
scheme, even though it is not a fair comparison. LPSI is
a stronger primitive than BatchPIR in that it also protects
the server’s data privacy, i.e. the client should not be able
to learn any information about the server data not in the
intersection. LPSI can be directly used as a BatchPIR if

the client and the server do not perform blinding of their
respective inputs using an oblivious pseudorandom function;
thus, we exclude the cost of OPRF evaluation from their
server initialization time. The results are given in Table VI.
We consider a server database consisting of one million
entries and a client batch of 256 indices. We test three entry
sizes: 4, 16, 64, and 256 Bytes.

The LPSI scheme has significantly higher server initializa-
tion than our scheme. The high initialization is because the
server has to perform expensive polynomial interpolations.
This makes their scheme undesirable for applications where
the database updates frequently. The communication of our
scheme beats the LPSI scheme in all cases. Specifically,
for a small entry size of 4 bytes, our scheme demonstrates
2.5x improvement in computation and 3.7x improvement
in communication. We observe that the communication in
the LPSI scheme increases rapidly with the entry size. For
an entry size of 256 bytes, their scheme has 9.2x times
more communication than our scheme. We also note as
the entry size increases, the computational costs of the two
schemes become comparable. In conclusion for fixed batch
size, our scheme has a better computational performance
when the entry size is small. While for bigger entries
(>256 bytes), the LPSI scheme has a lower computational
overhead. Nevertheless, in both cases, our scheme has better
communication performance.

VII. RELATED WORK

Private Information Retrieval (PIR) is first introduced by
Chor et al. [1]. There is an extensive list of works that rely on
multiple non-colluding servers. Since the focus of our paper
is a single server, we focus on single-server PIR schemes in
this section.
Early single-server PIR schemes. Kushilevitz and Ostro-
vsky proposed the first single-server PIR protocol [6]. Their
scheme is based on additively homomorphic encryption.
The database is represented as a d dimensional hypercube,
which results in a request size of O(N1/dK) and a re-
sponse size of O(N1/dKd−1), where K is the ciphertext

12



4 Bytes 16 Bytes 64 Bytes 256 Bytes
Our work LPSI Our work LPSI Our work LPSI Our work LPSI

Server’s Init. (Sec) 11.6 2038.8 13.4 3359.6 16.7 7364.9 20.2 4438.7∗
Communication (MB) 0.93 3.7 0.96 4.1 1.47 5.6 1.20 11.08
Computation (Sec) 1.8 4.6 3.9 5.6 7.08 7.8 39.7 7.6∗

Table VI: Comparison of our scheme with Labelled PSI (LPSI) scheme [35]. For all experiments, we assume that the client
batch consists of 256 entries and the server database consists of one million entries. Each database entry size is 4, 16, 64,
or 256 bytes. For 256-byte entries, we run LPSI with 8 threads because their initialization phase is prohibitively slow on a
single thread.

expansion factor. After their work, several works further
improved the asymptotic communication cost using various
techniques and assumptions [7]–[9], [37]. But Sion and
Carbunar [38] observed that these schemes in practice often
perform slower than downloading the entire database when
the network bandwidth is a few hundred Kbps. The poor
practical performance of these schemes is due to the fact
that the server needs to perform at least N big-integer
modular multiplications or modular exponentiations. The
computation cost of these operations is often higher than
simply sending the data to the client.
Recent practical single-server PIR schemes. Recent prac-
tical single-server PIR constructions use lattice-based cryp-
tography. In particular, they use Somewhat Homomorphic
Encryption (SHE) schemes based on the Ring learning with
error (RLWE) assumption. At a high level, these schemes
followed the hierarchical PIR blueprint of Kushilevitz and
Ostrovsky and represent the database as a d-dimensional
hypercube. For the first dimension, the server performs a dot-
product between the encrypted client query and the plaintext
database. For subsequent dimensions, the dot-product is
between the ciphertext output of the previous dimension and
the encrypted client query. Ciphertext-ciphertext multiplica-
tion in RLWE encryption is expensive and is the bottleneck.
Hence, these schemes mainly differ in how they handle
multiplications in the second and higher dimensions.

These schemes only achieve low communication overhead
when the database entry is large (tens of KiloBytes). For
databases with small entries, the communication overhead
is very high.

Aguilar-Melchor et al. [11] proposed the first such scheme
called XPIR. XPIR significantly improved the computation
cost over earlier schemes but its communication overhead
is prohibitively high. For example, to retrieve a 256-Byte
entry from a database with one million entries, its total
communication is more than 17 MB, about 70, 000x of the
plaintext entry. This is mostly due to the large request size
but the response size is also quite large.

SEALPIR [12] addresses the request size bottleneck by
introducing the query compression technique. This results
in a significant reduction in the request size (to 72 KB) at
the cost of a slight increase in computation. But the response

size of SEALPIR is similar to XPIR, and still results in an
overall communication overhead of around 2, 500x under the
previous example.

The large response size of XPIR and SEALPIR is
due to how they handle the multiplications in the second
(and higher) dimension. Instead of performing a regular
ciphertext-ciphertext multiplication, they re-interpret one of
the two ciphertexts as multiple plaintexts and then multi-
ply each of such plaintext with the other ciphertext using
ciphertext-plaintext multiplication. The client will need all
the resulting ciphertexts to recover the result.

Ali et al. [3] improve upon SEALPIR’s response size to
achieve a total communication overhead of around 982x
using the same example. Their key technique is to use
ciphertext-ciphertext multiplication directly in the second
and higher dimensions, followed by a modulus switching
step to reduce the response size. This strategy results in
higher noise growth and forces their protocol to adopt
less efficient RLWE parameters. This in turn increases the
computation cost.

The next breakthrough comes from a new type of ho-
momorphic multiplication that composes RLWE ciphertexts
with RGSW ciphertexts. This new multiplication, first intro-
duced by Chillotti et al. [39], only adds an additive (rather
than multiplicative) amount of noise after each operation.
But using this new multiplication for PIR requires some
extra care. Its low noise growth directly improves com-
munication since we no longer need ciphertext splitting or
large RLWE parameters. But this low-noise multiplication is
even more expensive in terms of computation than RLWE
ciphertext-ciphertext multiplications. Thus, a straightforward
design using this low-noise multiplication will improve
communication but severely worsen computation [40].

ONIONPIR avoids this computation bottleneck by adding
base decomposition and sticking with RLWE ciphertext-
plaintext multiplication in the first dimension. Their scheme
achieves a 288x communication overhead for the aforemen-
tioned scenario of retrieving one entry from a database of
one million entries each of 256 Bytes. SPIRAL adds modulus
switching and matrix RRLWE encryption to ONIONPIR,
and further reduces the communication overhead to about
128x in the above concrete scenario.
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Batch Private Information Retrieval (BatchPIR).
Ishai et al. [17] proposed the first BatchPIR scheme
(named as Amortized PIR) using batch codes. In their
scheme to retrieve a batch of size b, the server computation
is proportional to O(N(3/2)log b) and the protocol
communication is proportional to O(3log b). As the
performance of their scheme depends on the size of the
batch, the scheme is getting highly inefficient even for a
small batch size of 32.

The state-of-the-art BatchPIR scheme called Multi-query
PIR is by Angel et al. [12]. We have reviewed it in detail in
Section II-E, so we do not repeat it here. If the client wants
to retrieve a batch of 256 entries from a database with one
million 256-Byte entries, its per-query computation is just 80
milliseconds but its communication overhead is still 1, 872x.
Orthogonal directions to improve PIR. The Stateful PIR
approach improves the computation when the client has
many entries to retrieve over time. The high-level idea is
that the client retrieves some helper data (state) in the offline
phase and uses it to make cheaper queries in the online
phase.

Patel et al. [41] introduced the first stateful PIR construc-
tion. In the online phase, the server performs a linear number
of cheaper symmetric-key operations and a sublinear number
of expensive RLWE homomorphic operations. Corrigan-
Gibbs and Kogan proposed a stateful PIR scheme [42] in
which the server performs only a sublinear amount of com-
putation. Their work does not provide an implementation or
performance evaluation.

The offline phase of both of these protocols involves
the client downloading subset sums of database entries.
Mughees et al. [16] gives a construction for this problem
based on batch PIR and copy networks. It is only efficient
when each database entry is big (around 30 KB). Hence,
concretely efficient construction for small entry sizes re-
mains open.

Two independent works Henzinger et al. [43] and David-
son et al. [44] proposed stateful PIR based on the Learning
with errors (LWE) assumption. Their key observation is that
in LWE, the bulk of server computation is independent of the
client query and can be performed in the offline phase. The
downside of this scheme is that the client needs to download
a large state offline.

VIII. CONCLUSION

In this paper, we have proposed the first BatchPIR pro-
tocol that is efficient in both computation and communi-
cation. Our protocol is based on vectorized homomorphic
encryption and is especially suitable for applications with
small entry sizes. The response overhead of our scheme is
7.2∼75x less than the previous BatchPIR scheme.
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