
Vectorized Batch Private Information Retrieval
Muhammad Haris Mughees

University of Illinois at Urbana-Champaign
mughees2@illinois.edu

Ling Ren
University of Illinois at Urbana-Champaign

renling@illinois.edu

Abstract—This paper studies Batch Private Information Re-
trieval (BatchPIR), a variant of private information retrieval
(PIR) where the client wants to retrieve multiple entries from
the server in one batch. BatchPIR matches the use case of many
practical applications and holds the potential for substantial
efficiency improvements over PIR in terms of amortized cost
per query. Existing BatchPIR schemes have achieved decent
computation efficiency but have not been able to improve
communication efficiency at all. Using vectorized homomorphic
encryption, we present the first BatchPIR protocol that is efficient
in both computation and communication for a variety of database
configurations. Specifically, to retrieve a batch of 256 entries
from a database with one million entries of 256 bytes each, the
communication cost of our scheme is 7.5x to 98.5x better than
state-of-the-art solutions.

I. INTRODUCTION

User privacy is a critical challenge in cloud-based appli-
cations. To protect user privacy, various cryptographic prim-
itives and protocols have been proposed. Private information
retrieval (PIR) is one such primitive that allows a client to
download an entry from a public database on a server without
revealing the entry of interest to the server [1]. An efficient
PIR scheme can enable many privacy-preserving applications
such as DNS lookup [2], password check [3], [4], anonymous
communication [5].

At a high level, there are two categories of PIR protocols:
single-server ones [3], [6]–[15] and multi-server ones [1],
[16]–[26]. Multi-server schemes are typically more efficient
but need the stronger trust assumption of multiple non-
colluding servers. This requires coordination from multiple
organizations, making them harder to deploy in practice. In
this paper, we will focus on the single-server setting.

Unfortunately, even after decades of study [3], [6]–[15],
single-server PIR schemes still come with high communica-
tion and computation costs for many applications. Existing
schemes achieve decent communication performance only
when database entries are large (e.g., KiloBytes) [3], [13]–
[15]. But many applications have small entries; for example,
in password check, contact discovery, and DNS lookup, each
entry is often a hash digest or an IP address (e.g., 128 or 256
bits). When the entry size is small, existing single-server PIR
schemes suffer from very high communication overhead.

It has been observed that in many applications, a client
wants to retrieve multiple entries from the same database [5],
[13], [27], [28]. For example, a user of an anonymous mes-
saging system fetches multiple messages directed to her [5],
a user’s browser downloads multiple ads relevant to her

TABLE I. Communication overhead and computation cost of
single-server PIR and batch PIR schemes. The first set includes
PIR schemes prior to the RLWE paradigm; the second set
includes RLWE-based PIR schemes. The last set is batched
PIR protocols, including our new proposal. Each entry in
the database is 256 Bytes. For the three batch PIR schemes,
we assume that the client wants to retrieve 256 entries from
the server. For the first set of schemes, we report estimated
computation cost based on [3].

Comm. Overhead Computation (Sec)

Paillier-based PIR [10] 5,944× >4,000
ElGamal-based PIR 1,152× >2,000
Gentry–Ramzan [11] 7.2× >10,000

XPIR [12] 71,168× 2.12
SealPIR [13] 2,500× 3.19
MulPIR [3] 982× -
OnionPIR [14] 384× 3.31
Spiral [15] 143× 1.68

Angel et al. [13] 1,872× 0.07
Angel et al. + Spiral 215× 0.33
Vectorized BatchPIR 19× 0.12

interests [29], a user checks which of her contacts signed up
for a service [30], or a user checks all her passwords at once
against a database of breached passwords [4]. These scenarios
motivate BatchPIR [13], [27] (also called Amortized PIR [27]
or Multi-query PIR [13]) as a promising alternative to PIR
where the client wants to download multiple entries from the
server at once.

The BatchPIR approach reduces the amortized computa-
tional cost over PIR. For example, in the state-of-the-art
BatchPIR scheme [5], for a database with one million entries
each of 288 Bytes, it takes 20 seconds of server computation
to retrieve a batch of 256 entries, which works out to be only
78 Milliseconds amortized per query. However, when it comes
to communication, the BatchPIR approach has not been able
to provide any benefit.

In TABLE I, we show the communication overhead of
existing single-server PIR and BatchPIR schemes on databases
with a relatively small entry size of 256 Bytes. For BatchPIR
schemes, we assume the client wants to retrieve a batch of
256 entries. It can be seen that even the most efficient scheme
(Spiral) has a communication overhead over 100x. (Though
the Gentry-Ramzan scheme has only 7.2x communication
overhead, it has prohibitively high computation.) The key
reason behind the high communication overhead is that recent

efficient PIR schemes are based on Ring Learning With Error
(RLWE) encryption. An RLWE ciphertext is quite large (tens
of KiloBytes), no matter how small the underlying database
entry is. Existing BatchPIR schemes do not address this issue
and still require at least two ciphertexts to be sent (one in each
direction) for each query in the batch.

In summary, the state-of-the-art BatchPIR scheme nicely
amortizes the computation cost over the batch. But the commu-
nication cost is not amortized and remains high for databases
with small entries. We believe this is currently the main
limitation of BatchPIR for practical applications.
Main contribution. In this paper, we present the first Batch-
PIR scheme (named Vectorized BatchPIR) that achieves both
low communication and low computation for a wide range of
database parameters. Our key observation is that we can save
communication by using a single ciphertext to retrieve many
database entries. To achieve this goal, we use a vectorized
variant of RLWE homomorphic encryption and design a
method to merge ciphertexts encrypting independent entries.
As shown in TABLE I, to download a batch of 256 entries from
a database with one million entries where each entry is 256
bytes, the amortized communication overhead of our scheme
is 19.2x over the insecure baseline, which is 7.5x better than
the state-of-the-art PIR and two orders of magnitude better
than existing BatchPIR. Our amortized computation cost is
1.5x higher than the state-of-the-art BatchPIR, at about 123
milliseconds.

II. PRELIMINARY AND BACKGROUND

A. Somewhat Homomorphic Encryption

Fully homomorphic encryption (FHE) is a special kind
of encryption scheme that allows arbitrary computation over
ciphertexts. FHE for arbitrary computation is still very expen-
sive. To achieve practical performance, somewhat homomor-
phic encryption (SHE, also called leveled FHE) is often used,
which only supports computation up to a fixed depth.

We focus on SHE schemes based on the Ring Learning
with Errors (RLWE) problem. Many RLWE homomorphic
encryption schemes, such as Regev [31], BFV [32], BGV [33],
and CKKS [34] share the following common structure. Let
R = Z[x]/(xn + 1) be a polynomial ring, where n is the
degree of the polynomial (also called ciphertext dimension)
and is usually a power of two. A plaintext message m is
a polynomial in Rt = R mod t. The secret key s is a
polynomial sampled from a distribution of ”small” (e.g., with
binary coefficients) polynomials in R. A ciphertext consists
of two polynomials in Rq = R mod q and is given as
(c0, c1) = (a, a · s+ e+m) where a is sampled uniformly at
random from Rq and e is a noise polynomial with coefficients
sampled from a bounded Gaussian distribution. To decrypt,
one computes µ = c1 − c0 · s = e+m. As long as the noise
e is small, rounding µ recovers m.

RLWE-based SHE schemes support the following homo-
morphic operations.

• CtCtAdd(c1, c2): This operation takes as input two ci-
phertexts c1 ∈ R2

q and c2 ∈ R2
q , and outputs a ciphertext

encrypting the sum of two plaintexts.
• CtPtMul(c, p): This operation takes as input a plaintext

p ∈ Rt and a ciphertext c ∈ R2
q encrypting m ∈ Rt, and

outputs a ciphertext encrypting p ·m.
• CtCtMul(c1, c2): This operation takes as input two ci-

phertexts c1 ∈ R2
q and c2 ∈ R2

q and outputs a ciphertext
encrypting the product of two plaintexts.

Each homomorphic operation increases the noise level in the
resulting ciphertext, which is why only a limited number of
operations can be performed.
Security. SHE schemes based on RLWE have indistinguisha-
bility under chosen plaintext attack (IND-CPA) security, which
informally means that encryption reveals no information about
the encrypted messages to an adversary. Also, these schemes
are typically assumed to have circular security, which implies
the scheme remains secure even if the adversary is given the
encryption of secret key [32], [35].
Trade-offs in RLWE parameter selection. Parameter selec-
tion for the RLWE encryption scheme provides a delicate
balance between computation depth, cost, and security. For
a fixed security level and a plaintext text modulus t, a larger
ciphertext modulus q requires a larger polynomial degree n,
allows higher computation depth, but increases the ciphertext
size and per-operation computation cost. We will pick parame-
ters that provide a good balance between cost and computation
depth and give a widely accepted security level of 128 bits.

B. Vectorized Homomorphic Encryption

If the plaintext modulus t is a prime, a polynomial in Rt

can be used to encode a vector in Zn
t [36]. This transforms the

above multiplication and addition operations into component-
wise (also called slots in the literature [37]) operations between
vectors in Zn

t .
Vector rotation. With proper parameter choices, an automor-
phism can be used to move plaintext data across different slots
in the vector [38]. This can be abstracted as the following
ciphertext rotation operation.

• CtRotate(c, r): This operation takes as input a ciphertext
c encrypting a plaintext vector v = [v1, v2, · · · , vn] and
a value r ∈ [0, n). It outputs a ciphertext encrypting
v′ = [vn−r+1, vn−r+2, · · · , vn, v1, v2, · · · , vn−r], i.e., v
rotated by r slots.

We will extensively use this operation in our scheme.

C. Noise Growth and Computation Cost of SHE Operations

Different homomorphic operations have drastically different
noise growth and computation costs. This will significantly
impact our design decisions. We summarize the noise growth
and computation cost of relevant homomorphic operations in
TABLE II. To be concrete, we use the BFV scheme as an
example [40].

CtCtxtAdd is fast and adds little noise. CtPtxtMul is also
fast but adds a lot more noise than addition. On the other hand,

TABLE II. Experimental computation cost and noise growth
of each BFV homomorphic operation. The polynomial degree
n is 8,192, the ciphertext modulus q has 150 bits, and the
plaintext modulus t has 20 bits. Time costs are measured with
the SEAL library [39] version 3.7.2 on a single core in AWS
t2.2xlarge instances.

Operation Time cost (ms) Noise added (bits)

CtCtAdd 0.07 ≈0
CtPtMul 0.09 22
CtCtMul 12.1 29
CtRotate 3.6 ≈0

CtRotate does not add much noise but it is quite slow due to
an expensive key-switching step [39]. Lastly, CtCtMul is quite
expensive in both computation and noise growth. It is slow
because it involves multiple expensive steps: base expansion,
quantization, and relinearization [39].

D. (Batch) Private Information Retrieval

Private Information Retrieval (PIR). Given an index i and
a database DB of N entries, the client wants to privately
download i-th entry in the database, i.e., DBi. A PIR protocol
should satisfy the following properties.

• Privacy of client: The server learns nothing about which
index the client is requesting.

• Correctness: If the client and the server correctly execute
the protocol, then the client recovers the requested entry.

Batch Private Information Retrieval (BatchPIR). In Batch-
PIR, instead of a single entry, the client wants to pri-
vately download a batch of entries corresponding to indices
{i1, i2, · · · , ib}. That is to say, the output of BatchPIR is
{DBi1 ,DBi2 , · · · ,DBib}. A BatchPIR protocol should satisfy
the following properties.

• Privacy of client: The server learns nothing about the
batch of indices the client is requesting.

• Correctness: If the client and the server correctly execute
the protocol, then the client recovers the requested batch
of entries.

E. Previous Batch Private Information Retrieval

Fig. 1 gives a high-level overview of the BatchPIR frame-
work of Angel et al. [13]. The server database consists of N
entries, and the client batch has b indices. The example in
Fig. 1 has N = 6 and b = 3. There is a one-time setup stage
in which the server hashes database entries into buckets. In
more detail, the server picks w independent hash functions
h1, · · · , hw; typically w = 3. Then, the server creates B
buckets; typically B = 1.5b. For i-th entry ai in the database,
the server picks buckets h1(i), · · · , hw(i) and copy ai into
each of these buckets. It is common to add a nonce to the
hash functions to make sure the w buckets are distinct. This
results in exactly wN entries in total across all buckets.

To generate a query, the client assigns the batch of b indices
into the B buckets as well. To do that, the client uses cuckoo

3, 4, 6

Server Regular Hashing

PIR(6)

PIR(3)

PIR()

PIR(4)

PIR()
Batch

Client Cuckoo Hashing

6

3

4

Database

Fig. 1. The BatchPIR protocol of Angel et al.. The server
assigns and copies each entry into three buckets, and the client
assigns each index to one of those three buckets. The client
and server run an independent PIR for each bucket.

hashing with the maximum bucket size set to one. In more
detail, for each index i in the batch, the client computes the
candidate buckets h1(i), · · · , hw(i) and places i in one empty
candidate bucket. If none of the candidate buckets is empty,
put i into one of the random candidate buckets, evict the index
(call it j) currently in that bucket, and try to re-insert j, which
may cause another index to be evicted. If this process keeps
occurring and exceeds a predetermined maximum number of
times, the cuckoo hashing has failed. We will discuss the
implications of cuckoo hash failure in Section IV-E. After the
cuckoo hashing step finishes successfully for all the b indices
in the batch, the client assigns a dummy index (usually 0) to
each of the remaining empty buckets. Each bucket now holds
a single index.

It is important to note that the server adds each entry to
all the candidate buckets, and the client assigns each index to
one of the candidate buckets. Therefore, if a particular index
i is assigned to bucket j on the client side, then bucket j on
the server side is guaranteed to contain the i-th entry of the
database DBi. Therefore, the client and the server perform B
PIR instances, one for each bucket, to retrieve all the desired
entries. Angel et al. used SealPIR which is proposed in the
same paper [13], but their BatchPIR framework is compatible
with any PIR scheme.
Convert database index to bucket index. In the above
explanation, one subtle issue is left to be addressed. For
each bucket, the client only knows the entry’s index in the
database. But to make a bucket PIR query, the client needs to
know the entry’s location/index within that bucket. To address
the issue, Angel et al. has proposed several solutions. The
client can directly acquire from the server a map from each
database index to their indices in the buckets. This map can be
compressed using techniques like bloom filter [41]. Another
option is for the client to construct this map locally. The client
can simulate the server hashing procedure on the N indices.
Low computational cost. The B PIR instances dominate the
computation cost. The computation cost of a PIR is roughly
proportional to the number of entries in the database. Since
the total number of entries across all buckets is 3N , the total
computation cost of these B PIR instances is proportional to
only 3N where N is the size of the server’s original database.
Hence, the amortized computation cost per entry is quite small.

High communication overhead. Unfortunately, Angel et al.’s
BatchPIR framework does not improve communication at
all. The client and the server exchange at least two RLWE
ciphertexts (one for query and one for response) for each
PIR instance. The ciphertext size could range from 21 KB
to 128 KB, even if the plaintext entry is small. Thus, the
communication overhead to retrieve a batch of small entries
could get very high. Concretely, even if we plug in the most
communication efficient PIR scheme (Spiral) [15], to retrieve
a batch of 256 entries where the entry size is 256 bytes, the
total communication is 13.4 MB, which is around 215x the
plaintext entry size.

As discussed in Section II, RLWE ciphertext size depends
on the ciphertext modulus q and the polynomial degree n. To
reduce the communication overhead, one may be tempted to
simply reduce q and n. However, we cannot reduce q because
q needs to be sufficiently large to accommodate the noise
growth; similarly, to maintain security we cannot reduce the
polynomial degree n [35].

III. A VECTORIZED PIR PROTOCOL

Our BatchPIR protocol follows the template of Angel et al.
framework described in the previous section where the client
and server first distribute their inputs (the requested batch
and the database respectively) into B buckets. But instead
of running independent PIRs for each bucket, our protocol
merges the request and response ciphertexts across buckets.

Towards this goal, we will first present a new PIR protocol
(not batched) whose request and response ciphertexts are
vectorized. Naturally, we will rely on vectorized RLWE SHE
introduced in Section II. To elaborate, the response ciphertext
will encrypt a vector that contains the desired entry at one
of the slots and zeroes in the remaining slots. We will then
find ways to merge many vectorized responses into a single
ciphertext in our BatchPIR protocol later.

We remark that if used as a standalone PIR protocol, our
vectorized PIR has no advantage over the state-of-art. It is
designed solely to serve as a building block to our BatchPIR
protocol in the next section.

A. A Warm-up Protocol

In this section, we give a warm-up protocol to help build
intuition. The warm-up protocol has a high computational cost
and will not be used as is. In the next subsection, we will
present a technique to improve the computational cost.

In our protocol, the client query consists of vectorized
ciphertexts, and the server database is also encoded as an array
of plaintext vectors. We use the standard hierarchical query
technique [6] to reduce the request size. In this technique,
N entries in the database are represented as a d-dimensional
hypercube, where each dimension is of size N ′ = d

√
N .

The number of dimensions d plays a key role in perfor-
mance. A larger d means a smaller request size but a higher
multiplicative depth, which requires less efficient RLWE pa-
rameters and hence higher computation cost. We found that
setting d = 3 provides a decent trade-off between request

size and computation in most of our experiments. Therefore,
we will describe the protocol for d = 3, i.e., the database
is represented as a cube with each dimension having size
N ′ = 3

√
N .

We think of the cube as having N ′ slices, where each
slice is a N ′ × N ′ matrix. For now, we assume that within
each slice, each column is a separate plaintext vector of size
n = N ′. In this cube, any desired entry can be accessed
by successively selecting the correct row (first dimension),
then column (second dimension), and eventually slice (third
dimension). We will now describe how we perform these
selections privately.

To access a database entry, the client represents the index
as d = 3 one-hot query vectors each of size N ′ (responsible
for selecting the row, the column, and the slice, respectively).
The client then encrypts each query vector into a separate
ciphertext. The server first performs ciphertext-plaintext mul-
tiplication between the first query ciphertext and each plaintext
vector. Now each slice has N ′ encrypted columns, each
containing a single non-zero entry at the same slot. The server
then merges the encrypted columns within each slice after
homomorphic rotations. Specifically, within each slice, the
server rotates the encrypted columns in increments of one
so that their non-zero entries are now in distinct slots; the
server then sums them up. As a result, the output is a matrix
of N/N ′2 encrypted columns where each column holds the
selected row from one slice.

The server then processes the second dimension, this time
using ciphertext-ciphertext multiplication between the second
query vector and the previous output. After that, the same
rotate-then-sum step is performed. This results in a single
ciphertext having one entry from each slice. The server will
multiply this with a third query vector. Finally, the output
ciphertext has a single non-zero slot containing the desired
entry.

Fig. 2 illustrates the warm-up vectorized PIR protocol. The
server database consisting of 27 entries is represented in d = 3
dimensions each of size 3 and the client query consists of
d = 3 query ciphertexts. The plaintext vector size n is 3.

B. Rotating Query to Reduce Computation

The main limitation of the above approach is the high com-
putational cost. As shown in Table II, ciphertext rotation is an
expensive operation. Therefore, the N/N ′ ciphertext rotations
in the first dimension will be the computation bottleneck. In
this subsection, we observe that if the server rotates the first
query ciphertext (instead of the first dimension’s output), the
number of rotations can be greatly reduced from N/N ′ to N ′.

To achieve this, we make two changes to the warm-up
protocol, shown in Fig. 3. At initialization, after representing
the database into a cube, for every slice, the server rotates the
plaintexts column in increments of one 1 . These cheap plain-
text rotations will help avoid expensive ciphertext rotations at
the time of the query. At the time of query, the server copies
the first query ciphertext N ′ times and then rotates each copy
in increments of one, in total N ′ ciphertext rotations 2 . Then

0
1
0

slice 1

slice 2

slice 3

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

0
2
0

0
0
5

8
0
0

0
11
0

0
0
14

17
0
0

0
20
0

0
0
23

26
0
0

3-d database cube multiply and rotate

1

multiply

8
2
5

17
11
14

26
20
23

1
0
0

8
0
0

0
17
0

0
0
26

8
17
26

1
0
0

8
0
0

add

query 1

query 2 query 3
result

2

3 4 5 6

Fig. 2. A basic vectorized PIR protocol in three dimensions. The database of 27 entries is encoded in three dimensions.
In every two-dimensional slice, the server multiplies the first query vector with each column and then rotates the encrypted
column in increments of one. Finally, sum all the columns into a single ciphertext. The server then repeats these steps for the
second and third query vectors.

19
20
21

24
22
23

26
27
25

0
1
0

slice 1

slice 2

slice 3

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

1
2
3

6
4
5

8
9
7

10
11
12

15
13
14

17
18
16

0
0
1

1
0
0

0
2
0

0
0
5

8
0
0

0
11
0

0
0
14

17
0
0

0
20
0

0
0
23

26
0
0

8
2
5

17
11
14

26
20
23

rotate query

rotate database3D database cube
1

2

4
add

3
multiply

0
1
0

query

Fig. 3. A method to reduce the number of rotations in the first dimension for the database in Fig. 2. Now, in each two-
dimensional slice, the server first rotates the second column by one and the third column by two during initialization. The
server also copies and rotates the encrypted query ciphertexts. The server performs three encrypted rotations (instead of 9 with
the method in Fig. 2).

within each slice, multiply i-th plaintext with the i-th rotated
copy of the query ciphertext and sum the resulting encrypted
columns 3 . The overall effect of this approach is the same as
the warm-up protocol, i.e. the output of the first dimension is
a matrix with N/N ′2 encrypted columns 4 . But the number
of rotations performed at the time of query is now N ′. Recall
that N ′ = 3

√
N . Thus, we have N ′ < N/N ′.

C. Full Vectorized PIR Protocol

Setup. The server uses Algorithm 1 to encode a database with
N entries into ⌈N/N ′⌉ plaintexts. Specifically, the algorithm
iterates over groups of N ′ consecutive entries, encoding each
group into an individual plaintext vector of size n. For most
RLWE SHE schemes, the number of plaintext slots n is several
thousand. As we set d = 3 so N ′ = 3

√
N . Therefore, for all

practical databases N ′ < n. The algorithm places N ′ entries
at equal distances in a plaintext vector.

In other words, within a plaintext vector, entries are placed
at multiples of g slots. where g = n/N ′. Encoding plaintext
entries this way will help us merge the requests ciphertexts
in our BatchPIR protocol later in Section IV. The encoded
database consists of ⌈N/N ′⌉ plaintexts. The server then rotates
the database as discussed in Section III-C.
Client query generation. The client uses Algorithm 2 to
generate a query. The algorithm first represents idx as the
d-dimensional coordinates of the hypercube, where the i-th
coordinate is the position of the desired entry in the i-th
dimension. Because of rotations in the server computation,
the position of the desired entry will shift, but these shifts are
public and hence can be easily calculated by the client (Line
2). Finally, the client represents these shifted coordinates as

Algorithm 1: VecPIRSetup algorithm
Input: DB, Input database with N = |DB| entries
Output: DB′, A database with plaintext vectors

1 N ′ = d
√
N

2 for i = 0 : ⌈N/N ′⌉ − 1 do
3 DB′[i] = EncodeToPt(DB[iN ′ : (i+ 1)N ′ − 1])
4 Rotate DB′[i] by i · n/N ′ mod n
5 end
6 outputs DB′

7 Function EncodeToPt(v)
Output: p, Plaintext vector of size n

8 N ′ = |v|
9 g = n/N ′

10 for j = 0 : N ′ − 1 do
11 p[j · g] = v[j]
12 end
13 Output p

Algorithm 2: VecPIRQueryGen algorithm
Input: idx, Desired index; N ′, dimension size
Output: Q̃, A list of d ciphertext query vectors

1 Represent idx as d-dimensional coordinates of the hypercube
(idx0, · · · idxd−1)

2 Compute (idx′0, · · · idx′d−1) where idx′j =
∑j

k=0 idxk mod
N ′

3 for i = 0 : d− 1 do
4 Generates vector b as one-hot encoding of idx′i
5 Q̃[i] = EncodeToPt(b)
6 end
7 Output Q̃

d one-hot query vectors each of size N ′. Similar to database
encoding, query vectors are encoded at equal distances in the
plaintext vector. Each encoded query vector is then encrypted
as a separate ciphertext.
Response generation. The response generation algorithm is
given in Algorithm 3. The server uses the client query and
the encoded database to generate a single response ciphertext.
For the first dimension, the server follows the above approach
using rotated copies of the first query ciphertext and the
rotated database. We observe that for the second and higher
dimensions, query rotation does not reduce the number of
ciphertext rotations.

For these dimensions, we stick with rotating and summing
the resulting ciphertexts after multiplying the query vector
with the encrypted output of the previous dimension, as in
the warm-up protocol.

Recall that the output after the final dimension is a single
ciphertext that contains the desired entry in one of the slots. If
the protocol is used as a standalone PIR, then this ciphertext
is returned to the client. But in the next section, we will
further process this ciphertext at the server to lower the
communication of our BatchPIR protocol, so there is no need
to send it back to the client.

Algorithm 3: VecPIRResp algorithm.
Input:

- Q̃, Set of PIR query ciphertexts
- DB′, Encoded plaintext PIR database
- N ′, Dimension size

Output:
- R, a single ciphertexts encrypting PIR response.

1 g = n/N ′

▷ Query rotate and Ct-Pt multiply for first dimension
2 for k = 0 : N ′ − 1 do
3 Q̃rot.[k] = CtRotate(Q̃[0], k · g)
4 end
5 for j = 0 : |DB|/N ′ − 1 do

6 DB′[j] =
N′−1∑
k=0

CtPtMul(Q̃rot.[k], DB[jN ′ + k]))

7 end
▷ Ct-Ct multiply for latter dimensions

8 for i = 1 : d− 1 do
9 C[0 : |DB′|/N ′ − 1] = 0

10 for j = 0 : |DB′|/N ′ − 1 do
11 for k = 0 : N ′ − 1 do
12 C′ = CtCtMul(Q̃[i],DB′[jN ′ + k])
13 C[j] = C[j] + CtRotate(C′, k · g))
14 end
15 end
16 DB′ = C ▷ Encrypted intermediate database
17 end
18 Output R = DB′ ▷ Final encrypted response

0 0 0

00 0 0

0 0 0

0 0 0

3. Addition1. Rotate and sum

0 0

0 0

00 0

0 0 0 1

0 0 1 0

0 1 0 0

00 0

11 0 0 0

2. Ciphertext-plaintext
multiplication

0 0 0

0 0 0

0 0 0

0 0 0

Fig. 4. Response merging across the buckets. Entries within
different buckets overlap. To align entries into distinct slots,
first, each entry is copied to all slots using rotate and sum.
After that, a distinct slot for each entry is picked.

IV. VECTORIZED BATCH PIR

As mentioned earlier, our BatchPIR protocol is built atop
Angel et al. framework given in Section II-E. The server
divides the database into B = 1.5b buckets using w = 3
independent hash functions, the average size of each bucket
is NB ≈ wN/B. The client divides a batch of b indices
into B buckets using cuckoo hashing. Next, we will invoke
our vectorized PIR protocol for each bucket. Each bucket is
represented as a d = 3 dimensional hypercube with each
dimension size N ′

B = 3
√
NB . The client request consists of 3

ciphertexts per bucket. The response consists of B vectorized
ciphertexts (one per bucket) where each ciphertext has at most
one non-zero slot containing the desired entry.

We next introduce mechanisms to reduce communication.
As long as B < n (which is usually the case since n is

quite large), the server will merge the B response ciphertexts
into a single ciphertext. Observe that if all the desired entries
reside in different slots, the server can merge these responses
into a single ciphertext simply using vectorized homomorphic
additions. Unfortunately, response ciphertexts from different
buckets may collide, so the server could not directly merge
them. We propose a mechanism that publicly aligns these
entries. This directly reduces the response size. We then
propose a mechanism to pack requests for multiple buckets
together, which results in significant savings in request size.

A. Merging Response Ciphertext

We illustrated our technique for B = 4 response ciphertexts
in Fig. 4. Recall that after running vectorized PIR for each
bucket, the server holds B response ciphertexts, each having
at most a single entry. Each desired entry could be at any
arbitrary index within the respective bucket. As a result, there
may be collisions in the slots occupied by desired entries from
different buckets. For example, Fig. 4, entries b and d collide.

Therefore, we can not add them directly. We do not want
the client to send extra encrypted material to guide the server.
Because that will increase the request size. The key challenge
is to enable the server to merge these ciphertexts publicly
without having additional interaction with the client.

Given B response ciphertexts, our merging technique works
as follows. First, the server copies the non-zero value to all
slots 1 . This is achieved with a rotate-and-sum approach.
The server rotates the ciphertext by one position and adds the
rotated and the original ciphertext. This copies the non-zero
value to an adjacent slot. This step is then repeated log n− 1
times, each time rotating the output of the previous step by
the next power of two and adding the rotated ciphertext to
the previous ciphertext. The result is a ciphertext that contains
the same value at all slots. Then the server publicly selects
a distinct slot from each ciphertext by multiplying it with a
plaintext binary one-hot mask that is 1 only at the selected
slot 2 . Now each ciphertext has a distinct non-zero slot. The
server finally merges these ciphertexts by homomorphically
adding them together 3 .

This technique allows us to merge the responses from
up to n buckets, where n is a polynomial degree. In our
implementation, n is set to 8, 192. Thus, even for a batch
with thousands of indices, the final response of our BatchPIR
protocol is a single ciphertext.

B. Packing Request Ciphertexts

Each query vector is of size N ′
B = 3

√
NB . As mentioned

in the previous section, each query vector is much smaller
than the ciphertext dimension n. Therefore, we can pack query
vectors from multiple buckets into a single ciphertext. Care is
needed to ensure that the packing technique is compatible with
the rotation and summation that the server performs for each
dimension of the Vectorized PIR.

We illustrated an example of our packing technique in
Fig. 5. In the figure, the client has two batches of queries, each
containing two query vectors. The server database is divided

1
query 1

query 2

packed
query 1

packed
query 2

1
0

1
0

0
1

1
0

bucket 2

Rotate & multiply3

bucket 1

0
1
1
0

0

0
0
0

1
1
0
0

0
0

0
0

2 Merge
buckets

Fig. 5. Examples of query packing. Query vectors from
different buckets are assigned to alternative slots of the ci-
phertext. Similarly, entries from different buckets are assigned
to alternate slots of the plaintexts.

into two buckets, each containing four elements represented
as a 2× 2 matrix.

For each batch, the client assigns query vectors to alternate
slots of the request ciphertext 1 . The server encodes the
buckets in the same fashion. Entries from two buckets are
encoded into alternating plaintext slots 2 . Note that for both
batches, rotating the second column by two slots (independent
of the query) avoids collisions of non-zero entries and allows
the results to be merged together 3 .

More generally, request packing works as follows: Given
query vectors from gB buckets, where each bucket is of size
NB and gB = n/N ′

B . Note that in practice, buckets are of
unequal sizes. But the server will pad them to the size of the
largest bucket (denoted as NB from here on) with zero entries.
For the first dimension, take the first query vectors of all the
buckets and pack them into alternating slots of an independent
plaintext. Specifically, assign values of k-th first query vector
to plaintext slots congruent with k mod gB . Repeat this step
for the second and third dimensions. The output will be d = 3
packed query vectors, one for each dimension. The server
encodes the buckets’ data in the same way. Pack groups
of consecutive N ′

B entries from all the gB buckets into an
independent plaintext vector. The output consists of ⌈NB/N

′
B⌉

plaintexts. Concretely, for buckets B = 256, the largest bucket
size NB ≈ 8192, and dimension size N ′

B = 32, for each
dimension query vectors from all the buckets can be packed
into a single ciphertext. Therefore, the client request would
only be d = 3 ciphertexts.

Note that because of request packing, each response cipher-
text now consists of gB desired entries. Therefore, the rotate
and sum step of response merging is repeated log n/gB −1 =
logN ′

B−1 times (instead of log n−1), and each time response
ciphertext is rotated in multiples of gB .

C. Putting it all together

We have introduced all the components of our Vector-
ized BatchPIR scheme separately in previous sections. Now

Algorithm 4: BatchPIRSetup algorithm
Input:

- DB, Database of N entries
- System parameters given in Algorithm 7

Output:
- D̃B0, · · · , D̃B⌈B/gB⌉−1, Merged plaintext buckets

1 For each entry DBi, copy it to buckets h1(i), · · · , hw(i) ▷
server hashing, average size of bucket is wN/B

2 Pad each bucket Bi to size NB with dummy entries
3 for i = 0 : B − 1 do
4 B′

i ← VecPIRSetup(Bi)
5 end
6 for i = 0 : ⌈B/gB⌉ − 1 do
7 D̃Bi =

∑gB−1
k=0 PtsRotate(B′

i·gB+k, k)
8 end
9 Output D̃B0, · · · , D̃B⌈B/gB⌉−1

10 PtsRotate(P, k): Takes as input a list of plaintext vectors P
and a value k and rotates each vector by k slots.

Algorithm 5: BatchPIRQueryGen algorithm
Input:

- I = {i1, i2, · · · , ib}, Client query batch
- System parameters given in Algorithm 7

Output:
- Q̃0, · · · , Q̃B/g−1, A list of encrypted queries, each consisting

of d RLWE ciphertexts

1 Apply cuckoo hashing to each index in I using hash
functions h1, · · · , hw

2 for i = 0 : B − 1 do
3 Qi ← VecPIRQueryGen(ji, N

′
B) ▷ ji is the index in

i-th bucket the client wants to retrieve
4 end
5 for i = 0 : ⌈B/gB⌉ − 1 do
6 Q′

i =
∑g−1

k=0 PtsRotate(Qi·gB+k, k)
7 end
8 Encrypt Q′

0, · · · , Q′
B/gB−1 to get Q̃0, · · · , Q̃B/gB−1

we describe the full Vectorized BatchPIR by putting together
all the techniques. The final protocol is given in Algorithm 7.

Our protocol has a setup phase that the server has to
perform only once for all the clients. The server first runs setup
using Algorithm 4. In the setup phase, the server divides the
database into B buckets using the server hashing technique
of Angel et al. framework, as given in Section II-E. After
that, the server extends the size of each bucket to the size of
the largest bucket by appending zero entries, and then inde-
pendently encodes each bucket as d dimensional hypercube
using algorithm 1. After that, the server merges gB buckets.
For this, take the j-th plaintext of each bucket, rotate each in
increasing order, and sum together. In this way, the result is
⌈B/gB⌉ merged buckets.

The client generates a query using Algorithm 5. The client
first divides the batch into B buckets using cuckoo hashing.
For each bucket, the client will map the database index to
the bucket index using one of the techniques discussed in

Algorithm 6: BatchPIRRespMerge algorithm.
Input:

- {Ri}i∈[k], List of response ciphertexts, assuming k · gB ≤ n
- System parameters given in Algorithm 7

Output:
- T , Merged response ciphertext

1 Set R′ = 0 and T = 0
2 for i = 0 : k − 1 do
3 for j = 0 : log(n/gB)− 1 do
4 R′ = CtRotate(Ri, gB · 2j)
5 Ri = CtxtCtxtAdd(Ri, R

′) ▷ copying to all slots
6 end
7 Set plaintext vector p = 0.
8 l = i · gB ▷ selecting distinct slots
9 p[l : l + (gB − 1)] = 1

10 R′ = CtxtPtxtMul(Ri, p)
11 T = CtxtCtxtAdd(R′, T)
12 end
13 Output T

Algorithm 7: Full Vectorized BatchPIR Protocol.
Input:

- DB, Server database of size N
- I = {i1, i2, · · · , ib}, Indices of entries client wants

to retrieve
System Parameters:

- b, Client query batch size |I|
- B, Number of buckets, usually set to 1.5b
- h1, · · · , hw, Hash functions
- NB , Size of the largest bucket
- N ′

B , Size of first two dimensions, set to a power
of two larger than 3

√
NB

- n, Number of slots per ciphertext
- gB = n/N ′

B

1 Server prepares database DB′
0, · · · ,DB′

⌈B/gB⌉−1 by calling
BatchPIRSetup(DB) from Algorithm 4

2 Client creates queries Q̃0, · · · , Q̃⌈B/gB⌉−1 by calling
BatchPIRQueryGen(I) from Algorithm 5 and sends them
to the server.

3 for i = 0 : ⌈B/gB⌉ − 1 do
4 Server computes Ri = VecPIRResp(Q̃i,DB

′
i, N

′
B)

5 end
6 Server computes T = BatchPIRRespMerge({Ri}i∈⌈B/gB⌉)

and sends it to the client
7 Client decrypts T to get the entries corresponding to I

Section II-E. Then, for each bucket, the client generates d
query vectors using Algorithm 2. Then the client packs query
vectors of gB buckets together and encrypts each packed query
vector into an independent ciphertext. The result is a list of
⌈B/gB⌉ PIR queries.

For each merged bucket, the server calls Algorithm 3 and
collects all the response ciphertexts. Each response ciphertext
contains gB non-zero slots.

After that, the server calls Algorithm 6 to merge these
response ciphertexts. For each response ciphertext, the server
first copies non-zero values to all ciphertext slots by using
rotate-and-sum. The server then selects gB distinct slots from

each response ciphertext by multiplying it with a plaintext
binary mask and then merges the resulting ciphertexts using
homomorphic addition. As long as the number of buckets B
is less than ciphertext dimensions n, the result will be a single
ciphertext containing all the desired entries

D. Efficiency Analysis

Communication between client and the server. We now
calculate how many ciphertexts the client and the server
exchange in the Vectorized BatchPIR. The communication
from the client to the server includes packed requests for
underlying vectorized PIR and the response ciphertexts. Con-
cretely, the client sends ⌈B/gB⌉ packed PIR queries to the
server. The query for each PIR contains d ciphertexts. Due
to merging, the response consists of ⌈B/n⌉ ciphertexts. So in
total, d · ⌈B/gB⌉+ ⌈B/n⌉ ciphertexts are exchanged between
the client and the server.

Recall that gB represents the ratio between plaintext size
and the dimension size of bucket data n/N ′

B . Therefore,
increasing the size of N ′

B will increase the request size.
Server computational cost. In the setup phase, the server
performs one-time hashing of the database. The server will use
the same hashed database for subsequent queries and across
all the clients. As discussed in Section II, additions in SHE
are quite cheap. Therefore, we focus on computational costs
due to multiplications and rotations.

The most computationally demanding step of Vector-
ized BatchPIR is B/gB calls to Algorithm 3. In each call,
the input database consists of ≈ NB/N

′
B plaintexts, where

gB = n/N ′
B . The algorithm performs dimension-wise compu-

tation. Specifically, for the first dimension, the server performs
NB/N

′
B CtPtMul operations. For the second dimension,

NB/N
′
B
2
CtCtMul operations are required and for the third

dimension, only a single CtCtMul operation is needed. Before
multiplication of the first dimension, the server also performs
N ′

B CtRotate operations and for the second dimension, the
CtRotate operations are NB/N

′
B
2. The third dimension does

not CtRotate operation. Additionally, logN ′
B − 1 CtRotate

operations are needed for response merging.
In total, our algorithm requires BNB/n CtPtMul op-

erations, B/n(NB/N
′
B + N ′

B) CtCtMul operations and
B/n(N ′

B
2
+ NB/N

′
B + N ′

B(logN
′
B − 1)) CtRotate opera-

tions. For a small value of N ′
B , CtCtMul operations are the

computational bottleneck. However, if we raise the value of
N ′

B , then CtRotate operations consume the most computation.
In our experiments, N ′

B is set such that CtCtMul operations
take up the most computation.

E. Privacy and Correctness Analysis

Cuckoo hashing failure. There is a chance that cuckoo
hashing done at the client fails by exceeding the maximum
number of re-insertions. The cuckoo hashing failure proba-
bility depends on the number of hash functions w, the batch
size b, and the number of buckets B. Analyzing the cuckoo
hashing failure probability is an open problem. Most previous

works experimentally verify it for the parameter configurations
they are interested in [42], [43]. Angel et al. experimentally
estimated that with w = 3 and B = 1.5b, the cuckoo hashing
fails with probability less than 2−40 for a batch size of at least
200, and less than 2−20 for a batch size of 32. One can also
set B to be larger than 1.5b to reduce the failure probability
for small batches.

If a cuckoo hashing failure occurs, it directly affects the
correctness of our scheme (and previous BatchPIR schemes)
as the client will not be able to retrieve all the entries. But if
care is taken, it will not affect the scheme’s security (privacy
of the client’s desired indices) as we discuss below.
Privacy. Note that the client learns about the cuckoo hashing
failure before issuing the PIR query. So the client can take
appropriate steps to make sure privacy is not affected. The
simplest, secure strategy is to just drop a few entries (sacrifice
correctness). Alternatively, the client can defer some indices to
the next batch if it regularly queries the server and not every
batch is full. If that is not possible and the client has to add
an extra query, the client can obfuscate it by issuing a dummy
query with the same probability even when the cuckoo hashing
does not fail.

Once we make sure cuckoo hashing failure does not affect
privacy, the privacy of our scheme is reduced to the security
of the underlying Somewhat Homomorphic Encryption (SHE)
scheme. The client transmits key material and queries to the
server in ciphertexts. The queries are protected by the IND-
CPA security of the SHE scheme. The key material can be
thought of as encryption of the secret key under the secret
key itself. Its security comes down to the circular security
of the SHE schemes. All the computation performed by the
server on the plaintext database and the client’s ciphertexts,
oblivious to the client’s indices. Therefore, the server learns
no information about the client’s batch of indices.
Correctness. It is easy to see that the protocol correctly
retrieves the desired batch of entries unless the cuckoo hashing
fails or the decryption of the server’s response fails. As
mentioned above, cuckoo hashing succeeds with overwhelm-
ing probability. It remains to pick RLWE parameters that
guarantee decryption succeeds with overwhelming probability.
In other words, the RLWE parameters should be able to handle
the total noise in the response ciphertexts. As mentioned in
Section II, rotations and additions add insignificant amounts
of noise, so we can focus on multiplications. Algorithm 3
performs one ciphertext-plaintext multiplication followed by
d − 1 ciphertext-ciphertext multiplications sequentially. One
extra ciphertext-plaintext multiplication is used to merge re-
sponses across the buckets. Thus, the total multiplicative depth
of the protocol is d+ 1. Therefore, RLWE parameters should
be larger than the expected noise, i.e., d + 1 times the noise
added by a single multiplication as given in Table II.

F. Additional Details and Extensions

Modulus switching to reduce response size. At the end of
the BatchPIR protocol, the server sends response ciphertexts to

the client, who will decrypt them. In other words, the response
ciphertexts will not be used for further computation. We can
then use the modulus switching technique to reduce the size
of the response ciphertexts. This technique was first applied to
PIR in [44] and later adopted by MulPIR [3] and Spiral [15].
Recall that RLWE ciphertexts are elements in R2

q . Suppose
a response ciphertext c has noise Err(c). Modulus switching
transforms c to R2

q′ with noise max(
√
n,Err(c) · q′/q), where

n is the polynomial degree. To ensure the correctness of
decryption, we set q′ ≈

√
nt. This optimization reduces the

response size by ≈ log q/ log
√
nt.

Short random seed to reduce request size. We can further
reduce the request size by using a simple optimization given
in [3]. Recall that in a fresh RLWE ciphertext, the first
component c0 is sampled uniformly randomly from R mod
q. Thus, instead of sending truly random c0, the client can
send a short random seed to generate a pseudorandom c0.
This optimization reduces the request size by half. Previous
schemes like OnionPIR [14], Spiral [15], and MulPIR [3] have
also implemented this optimization.
Dimension size. A subtle issue is that the rotation operations
as described in query packing work only if the size of each
query vector is a power of two (or divides the polynomial
degree n). To make this step work, we set the size of the first
two dimensions to the same power of two. Since no rotations
are needed for the third (and last) dimension, we can set its
value to what naturally remains.
Handling larger items. Recall that our output ciphertext
contains B non-zero slots. For many practical scenarios, B
is smaller than n, so the output ciphertext has space for
more data. We can exploit the space to handle entries larger
than t bits. Specifically, the server splits each entry into
chunks of t bits. One can see it as multiple sub-databases
DB1,DB2, · · · ,DBk, where DBi corresponds to i-th chunk of
all entries. The server then applies the same client query to
all sub-databases and obtains multiple output ciphertexts, each
containing B non-zero slots. Lastly, the server can merge these
output ciphertexts using the rotate-and-sum approach again.

Note that the request will remain the same, i.e. d⌈B/gB⌉
ciphertexts. But the response will be ⌈kB/n⌉ ciphertexts.
Similarly, the server computation will be k times larger than
the compute given in the previous section. With one exception
that the term BN ′

B
2
/n term does not get multiplied with k,

this is because we can use the same rotated query for all the
chunks.

V. IMPLEMENTATION

We have implemented Vectorized BatchPIR in C++ atop the
Microsoft SEAL Library version 3.7.2 [39]. Following SEAL,
we use the BFV encryption scheme [32], [40], though our
protocol could easily be implemented using other encryption
schemes such as BGV. We implement the client and server
hashing scheme of Angel et al. scheme using SHA256 and
the crypto++ library [45]. We set the maximum number of
re-insertions in cuckoo hashing to 200.

BFV parameters. The performance of Vectorized BatchPIR
depends on our choice of BFV parameters. We test Vec-
torized BatchPIR with different parameters to find the best
choices. We set the polynomial degree n to 8192 and the
ciphertext modulus q to 200 bits. As mentioned, we use
modulus reduction in the end to reduce the response size.
The reduced modulus q′ is 30 bits, giving a 4x reduction
in response size. We use SEAL’s default configurations for
standard deviation error and secret key distribution. This gives
us more than 128 bits of computational security.

SEAL implements the RNS variant of BFV in which q
is broken up into several smaller co-primes q1, q2, q3, · · · .
Ciphertexts are represented in Chinese remainder theorem
(CRT) form, so operations on ciphertexts are performed on the
smaller rings R mod qi. An extra RNS component is required
for the key material for the relinearization and key switching
steps in multiplications and rotations. This extra component is
not involved in the client query or the server response. We pick
this extra component to be of 50 bits, leaving the modulus of
the query and response ciphertexts to be 150 bits. This allows
us to have a plaintext modulus t of 20 bits.
Key material size. Our scheme requires transferring key
material to the server for multiplications and rotations. The
total size of the key material is 9.34 MB. This is a one-
time cost that can be amortized over many PIR queries. For
reference, many recent PIR schemes also require key materials
between 3 and 15 MB [3], [13]–[15].
Plaintext encoding in BFV. In SEAL’s implementation of
BFV, a plaintext is represented as a n/2 × 2 matrix (instead
of a length-n vector). We note that this is not an issue for
us because we can divide buckets into two equal-sized groups
and then encode one group per column. To elaborate, given g
buckets that can all fit into a plaintext vector of size n, we first
divide them into two groups each of size g/2, and then encode
the two groups into the two columns of the plaintext matrix.
All our algorithms work directly on this encoding, with the
only minor change that we will rotate till n/2 (instead of n).

VI. EVALUATION

Experimental setup. We run our experiments on an Amazon
EC2 t2.2xlarge instance, which has 32 GB RAM. The instance
has 8 CPU cores, but our implementation is single-threaded
for ease of comparison with prior works. All the results are
obtained by running each experiment 10 times and taking the
average.
Baselines. We compared our Vectorized BatchPIR with the
following baselines:

• Angel et al.’s BatchPIR [13], which uses SealPIR as the
underlying PIR. Unfortunately, the publicly available im-
plementation of this scheme [46] is no longer functional.
Thus, for computation cost, we can only compare with
the data points provided in their paper [13].

• Spiral [15], the latest single-server PIR scheme. We ran
their publicly available Rust implementation [47].

• Since the Angel et al. BatchPIR framework can use
any underlying PIR scheme, we can plug Spiral into
it. We consider this combination to be the best possible
BatchPIR scheme prior to our work. But it will require
non-trivial efforts to implement it, so for this baseline,
we only use estimated results.

• Finally, we compare with Cong et al. [48] Labeled Private
Set Intersection (LPSI) scheme in appendix B.

Benchmarking Vectorized BatchPIR. In TABLE III we
benchmark the performance of Vectorized BatchPIR when the
batch size ranges from 32 to 512. For all these experiments,
we assume a database of one million entries and each entry is
256 bits. As mentioned, 256-bit (hash digest size) entries are
common in applications.

Observe that both request and response sizes increase with
the batch size. The request size increases because a larger
batch corresponded to more buckets and hence more ciphertext
query vectors. The response size increases because more
response ciphertexts are needed to hold all the entries in a
larger batch.

It is worth noting that the request size accounts for a
larger proportion of total communication. This is because, for
each group of g buckets, the Algorithm 7 needs three query
ciphertexts (one for each dimension), but only one response
ciphertext. Furthermore, the modulus reduction at the end
helps reduce response size (more substantial than the effect
of short seed in request).

Vectorized BatchPIR inherits the efficient computation from
the Angel et al. paradigm. As shown in TABLE III, it takes
10 to 18 milliseconds (amortized) for different batch sizes.
Other than a batch of size 32, the computational cost is
dominated by the second dimension. This is because the
second dimension involves NB/N

′
B
2 expensive ciphertext-

ciphertext multiplications (recall N ′
B is the size of the first

two dimensions).
Comparison with Angel et al. [13]. The results are depicted
in TABLE IV. We consider batch sizes 16, 64, and 256 and a
database with one million entries where each entry is 288 bytes
(the setting considered in their paper). The communication of
Vectorized BatchPIR is 20∼96x smaller than the Angel et al.
scheme for different entry sizes. In terms of computation,
the Angel et al. scheme is slightly better. Concretely, the
computation during initialization of our scheme is about 1.5x
higher than theirs and the computation at query time is about
1.1∼1.6x higher than theirs.
Comparison with Spiral and Angel et al. + Spiral. For this
comparison, we consider a database with one million entries
and various entry sizes and two batch sizes of 32 and 256.
TABLE V shows the communication and computation of these
schemes under different entry sizes. Overall, for relatively
small entries (below 1 KB), Vectorized BatchPIR achieves
superior communication and computation than the other two
schemes. As the entry size increases, Spiral eventually over-
takes our scheme in communication and Angel et al. + Spiral
eventually overtakes our scheme in computation. These results

32 64 128 256 512
1024

2048
4096

8192
16384

Batch Size

0.0

0.1

0.2

0.3

0.4

0.5

C
om

m
.

si
ze

/
D

B
si

ze

Fig. 6. Communication cost of Vectorized BatchPIR, Spiral
and Angel et al. + Spiral as a ratio of the whole database size,
under different batch sizes.

216 218 220 222 224

Database Elements

2

4

6

8

10

12

14

16

C
om

m
u

n
ic

at
io

n
(M

B
)

Fig. 7. Performance comparison between Vectorized Batch-
PIR, Spiral and Angel et al. + Spiral batch PIR scheme for a
batch of size 256 entries for varying database elements. Each
database entry is 32 Bytes.

are as expected because, as we have mentioned, previous
schemes have achieved decent results on large entries. As
stated from another angle, if a single entry is big enough to
fill the entire ciphertext, there is no need to use vectorized
ciphertexts.

Specifically, for a batch of 32, the communication of Spiral
becomes better when the entry size is around 5 KB and
for a batch of 256, the cross-over entry size is around 7
KB. Furthermore, when the entry size exceeds 6∼8 KB, the
Angel et al. + Spiral scheme is the winner: it has better
computation and comparable communication compared to our
scheme, whereas Spiral has the best communication among
the three but much worse computation.

Fig. 6 displays the communication cost of these three
schemes as a ratio of the whole database size, under different
batch sizes. The database consists of one million entries each
of 32 Bytes, giving a total size of 32 MB. As expected, if
the batch size keeps increasing, the communication cost of
any scheme will eventually approach the trivial scheme of
downloading the whole database. But Vectorized BatchPIR
significantly beats the other two schemes at any particular
batch size. Concretely, Vectorized BatchPIR incurs a total
communication that is about 5% of the whole database when
the batch size is 1024. The other two schemes would have
transmitted the entire database’s worth of data at much smaller
batch sizes.

Fig. 7 demonstrate the communication performance of these
schemes for increasing database entries. We consider a batch
of 256 entries, where each entry is 32 bytes. Vectorized Batch-

TABLE III. Performance of our scheme for batch b sizes 32, 64, 128, 512. The server database consists of one million entries
and each entry is 32 Bytes.

b = 32 b = 64 b = 128 b = 256 b = 512
B = 48 B = 96 B = 192 B = 384 B = 768

First two dimensions size 128 64 64 32 32
Third dimension size 5 9 5 9 5

Request (MB) 0.45 0.45 0.90 0.90 1.35
Response (MB) 0.06 0.06 0.06 0.06 0.12
Total Communication (MB) 0.51 0.51 0.96 0.96 1.47

First Dimension (Sec) 0.89 0.70 0.89 0.72 0.67
Second Dimension (Sec) 0.72 1.39 1.42 2.78 2.08
Third Dimension (Sec) 0.29 0.29 0.58 0.54 0.75
Total Computation (Sec) 1.90 2.38 2.89 4.04 3.50

TABLE IV. Performance comparison of Vectorized BatchPIR and Angel et al. BatchPIR scheme for different batch sizes. For
all experiments, we assume that the server database has one million entries and each entry is 288 bytes (setting considered in
Angel et al. paper [13]).

Vectorized BatchPIR Angel et al.

b = 16 b = 64 b = 256 b = 16 b = 64 b = 256

Initialization (Sec) 33.83 38.54 46.08 24.00 24.32 30.72

Communication (MB) 0.45 0.57 1.26 9.22 36.86 122.80

Computation (Sec) 12.33 20.02 34.64 11.04 14.70 20.48

TABLE V. Performance comparison between Vectorized BatchPIR (VB), Spiral (S), and Angel et al. + Spiral BatchPIR (AS)
for a batch of sizes 32 and 256 entries for varying entry sizes for a database with one million entries. Green represents better
performance. For small entries (≤ 512 B) Vectorized BatchPIR outperforms both other schemes in terms of communication
and computation.

32 B 64 B 128 B 256 B 512 B 1 KB 2 KB 3 KB 4 KB 5 KB 6 KB 7 KB 8 KB

VB Comm. (MB) 0.51 0.51 0.51 0.51 0.57 0.63 0.75 0.93 1.05 1.17 1.35 1.47 1.65

B
at

ch
Si

ze
32 Comp. (Sec) 1.92 2.99 5.11 9.72 17.06 29.29 67.71 101.06 134.43 168.11 201.29 225.78 258.072

S Comm. (MB) 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
Comp. (Sec) 33.6 33.6 33.6 33.6 57.6 80.64 120.96 272.56 272.56 640.93 640.93 640.93 640.93

AS Comm. (MB) 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68
Comp. (Sec) 19.64 19.64 19.64 19.64 23.37 28.95 38.07 50.85 50.85 80.85 80.85 80.85 80.85

VB Comm. (MB) 0.96 1.02 1.08 1.20 1.95 2.55 3.69 4.83 5.97 7.11 8.31 9.45 10.59

B
at

ch
Si

ze
25

6 Comp. (Sec) 4.08 7.94 15.69 30.79 61.06 96.04 119.61 179.99 239.56 301.85 358.34 417.82 456.20

S Comm. (MB) 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96
Comp. (Sec) 268.8 268.8 268.8 268.8 460.8 645.12 967.68 2180.4 2180.4 5127.4 5127.4 5127.4 5127.4

AS Comm. (MB) 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44 13.44
Comp. (Sec) 85.2 85.2 85.2 85.2 85.2 115.1 156.3 231.05 231.05 300.09 300.09 300.09 300.09

PIR has better performance for all cases. A minor downside
of Vectorized BatchPIR is that the communication gradually
grows, while it mostly stays flat for others. This is an expected
behavior because the client query in Vectorized BatchPIR is
cube root in database size, while in both other schemes it
is logarithmic. We anticipated that with current parameter
choices, the communication of our scheme will cross over
the communication of the other two schemes for the database
of around 64 billion entries. A direct way to reduce the
communication is to represent the database as a d = 4
dimensional hypercube, which will make the client query

proportional to the fourth root of the database.

VII. RELATED WORK

Private Information Retrieval (PIR) is first introduced by
Chor et al. [1]. There is an extensive list of works that rely on
multiple non-colluding servers. Since the focus of our paper
is a single server, we focus on single-server PIR schemes in
this section.
Early single-server PIR schemes. Kushilevitz and Ostrovsky
proposed the first single-server PIR protocol [6]. Their scheme
is based on additively homomorphic encryption. The database

is represented as a d dimensional hypercube, which results
in a request size of O(N1/dK) and a response size of
O(N1/dKd−1), where K is the ciphertext expansion factor.
After their work, several works further improved the asymp-
totic communication cost using various techniques and as-
sumptions [7]–[9], [11]. But Sion and Carbunar [49] observed
that these schemes in practice often perform slower than down-
loading the entire database when the network bandwidth is a
few hundred Kbps. The poor practical performance of these
schemes is because the server needs to perform at least N big-
integer modular multiplications or modular exponentiations.
The computation cost of these operations is often higher than
simply sending the data to the client.
Recent practical single-server PIR schemes. Recent prac-
tical single-server PIR constructions use lattice-based cryp-
tography. In particular, they use Somewhat Homomorphic En-
cryption (SHE) schemes based on the Ring learning with error
(RLWE) assumption. At a high level, these schemes followed
the hierarchical PIR blueprint of Kushilevitz and Ostrovsky
and represent the database as a d-dimensional hypercube.
For the first dimension, the server performs a dot-product
between the encrypted client query and the plaintext database.
For subsequent dimensions, the dot-product is between the
ciphertext output of the previous dimension and the encrypted
client query. Ciphertext-ciphertext multiplication in RLWE
encryption is expensive and is the bottleneck. Hence, these
schemes mainly differ in how they handle multiplications in
the second and higher dimensions.

These schemes only achieve low communication overhead
when the database entry is large (in KiloBytes). For databases
with small entries, the communication overhead is very high.

Aguilar-Melchor et al. [12] proposed the first such scheme,
called XPIR. XPIR significantly improved the computation
cost over earlier schemes, but its communication overhead
is prohibitively high. For example, to retrieve a 256-Byte
entry from a database with one million entries, its total
communication is more than 17 MB, about 70,000x of the
plaintext entry. This is mostly due to the large request size,
but the response size is also quite large.

SEALPIR [13] addresses the request size bottleneck by
introducing the query compression technique. This results in
a significant reduction in the request size (to 72 KB) at the
cost of a slight increase in computation. But the response size
of SEALPIR is similar to XPIR, and still results in an overall
communication overhead of around 2,500x under the previous
example.

The large response size of XPIR and SEALPIR is due
to how they handle the multiplications in the second (and
higher) dimension. Instead of performing a regular ciphertext-
ciphertext multiplication, they re-interpret one of the two
ciphertexts as multiple plaintexts and then multiply each of
such plaintext with the other ciphertext using ciphertext-
plaintext multiplication. The client will need all the resulting
ciphertexts to recover the result.

Ali et al. [3] improve upon SEALPIR’s response size to
achieve a total communication overhead of around 982x using

the same example. Their key technique is to use ciphertext-
ciphertext multiplication directly in the second and higher di-
mensions, followed by a modulus switching step to reduce the
response size. This strategy results in higher noise growth and
forces their protocol to adopt less efficient RLWE parameters.
This in turn increases the computation cost.

The next breakthrough comes from a new type of homo-
morphic multiplication that composes RLWE ciphertexts with
RGSW ciphertexts. This new multiplication, first introduced
by Chillotti et al. [50], only adds an additive (rather than
multiplicative) amount of noise after each operation. But using
this new multiplication for PIR requires some extra care.
Its low noise growth directly improves communication, since
we no longer need ciphertext splitting. But this low-noise
multiplication is even more expensive in terms of computa-
tion than RLWE ciphertext-ciphertext multiplications. Thus,
a straightforward design using this low-noise multiplication
will improve communication but severely worsen computa-
tion [51].

ONIONPIR avoids this computation bottleneck by adding
base decomposition and sticking with RLWE ciphertext-
plaintext multiplication in the first dimension. Their scheme
achieves a 384x communication overhead for the aforemen-
tioned scenario of retrieving one entry from a database of
one million entries, each of 256 Bytes. SPIRAL adds modulus
switching and matrix RLWE encryption to ONIONPIR and
further reduces the communication overhead to about 143x in
the above concrete scenario.
Multi-server PIR. While the focus of our paper is single-
server PIR, we mention that there also exist many PIR
protocols based on multiple non-colluding servers [1], [16]–
[26]. Overall, multi-server schemes have superior efficiency
than single-server schemes because they do not involve costly
public-key cryptography. But they require the stronger trust
assumption of non-colluding servers.
BatchPIR. Ishai et al. [27] proposed the first BatchPIR
scheme (named Amortized PIR) using batch codes. In their
scheme, retrieving a batch of size b incurs O(N(3/2)log b)
server computation and O(3log b) communication. The state-
of-the-art BatchPIR scheme is due to Angel et al. [13]. We
have reviewed it in detail in Section II-E, so we do not repeat
it here.

Both BatchPIR schemes can work with any (single-server
or multi-server) PIR protocol. We note that plugging in a
multi-server PIR will come with the same trade-off of better
efficiency and stronger trust assumption.

VIII. CONCLUSION

In this paper, we have proposed the first BatchPIR protocol
that is efficient in both computation and communication. Our
protocol is based on vectorized homomorphic encryption and
is especially suitable for applications with small entry sizes.
The response overhead of our scheme is 7.5∼98.5x less than
the previous BatchPIR scheme.

ACKNOWLEDGMENT

This work is partly funded by a gift from Google.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in 36th Annual Symposium on Foundations of Computer
Science, 1995, pp. 41–50.

[2] F. Zhao, Y. Hori, and K. Sakurai, “Two-servers PIR based DNS
query scheme with privacy-preserving,” in International Conference on
Intelligent Pervasive Computing (IPC), 2007.

[3] A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth,
and K. Yeo, “Communication-computation trade-offs in PIR,” in 30th
USENIX Security Symposium, 2021.

[4] D. Kogan and H. Corrigan-Gibbs, “Private blocklist lookups with
checklist,” in 30th USENIX Security Symposium, 2021.

[5] S. Angel and S. T. V. Setty, “Unobservable communication over fully
untrusted infrastructure,” in 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI, K. Keeton and T. Roscoe,
Eds., 2016.

[6] E. Kushilevitz and R. Ostrovsky, “Replication is NOT needed: SINGLE
database, computationally-private information retrieval,” in 38th Annual
Symposium on Foundations of Computer Science, FOCS, 1997, pp. 364–
373.

[7] C. Cachin, S. Micali, and M. Stadler, “Computationally private infor-
mation retrieval with polylogarithmic communication,” in Advances in
Cryptology - EUROCRYPT, International Conference on the Theory and
Application of Cryptographic Techniques, 1999, pp. 402–414.

[8] Y. Chang, “Single database private information retrieval with logarithmic
communication,” in Information Security and Privacy: 9th Australasian
Conference, ACISP, 2004.

[9] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,” in Public Key
Cryptography, 4th International Workshop on Practice and Theory in
Public Key Cryptography, PKC, vol. 1992, 2001, pp. 119–136.

[10] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang, “Optimal
rate private information retrieval from homomorphic encryption.” Proc.
Priv. Enhancing Technol., 2015.

[11] C. Gentry and Z. Ramzan, “Single-database private information retrieval
with constant communication rate,” in Automata, Languages and Pro-
gramming, 32nd International Colloquium, ICALP, 2005, pp. 803–815.

[12] C. A. Melchor, J. Barrier, L. Fousse, and M. Killijian, “XPIR: Private
information retrieval for everyone,” Proceedings on Privacy Enhancing
Technologies, vol. 2016, pp. 155–174, 2016.

[13] S. Angel, H. Chen, K. Laine, and S. T. V. Setty, “PIR with compressed
queries and amortized query processing,” in 2018 IEEE Symposium on
Security and Privacy. San Francisco, California, USA: IEEE Computer
Society, 2018, pp. 962–979.

[14] M. H. Mughees, H. Chen, and L. Ren, “OnionPIR: Response efficient
single-server PIR,” in CCS ’21: ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, 2021.

[15] S. J. Menon and D. J. Wu, “Spiral: Fast, high-rate single-server pir via
fhe composition,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022.

[16] B. Chor and N. Gilboa, “Computationally private information retrieval
(extended abstract),” in Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, 1997.

[17] S. Wehner and R. de Wolf, “Improved lower bounds for locally decod-
able codes and private information retrieval,” in Automata, Languages
and Programming, 32nd International Colloquium, ICALP, ser. Lecture
Notes in Computer Science, vol. 3580. Lisbon, Portugal: Springer,
2005, pp. 1424–1436.

[18] R. Beigel, L. Fortnow, and W. I. Gasarch, “A tight lower bound for
restricted pir protocols,” Comput. Complex., vol. 15, no. 1, pp. 82–91,
2006.

[19] S. Yekhanin, “Towards 3-query locally decodable codes of subexponen-
tial length,” in Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, 2007.

[20] K. Efremenko, “3-query locally decodable codes of subexponential
length,” in Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC. Bethesda, MD, USA: ACM, 2009, pp. 39–44.

[21] O. Barkol, Y. Ishai, and E. Weinreb, “On locally decodable codes, self-
correctable codes, and t-private PIR,” Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 10th In-
ternational Workshop, APPROX, 2010.

[22] A. Beimel, Y. Ishai, E. Kushilevitz, and I. Orlov, “Share conversion and
private information retrieval,” in Proceedings of the 27th Conference on
Computational Complexity, CCC, Porto, Portugal, 2012.

[23] N. Gilboa and Y. Ishai, “Distributed point functions and their ap-
plications,” in Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, ser. Lecture Notes in Computer
Science, vol. 8441. Copenhagen, Denmark: Springer, 2014, pp. 640–
658.

[24] Z. Dvir and S. Gopi, “2-server pir with subpolynomial communication,”
Journal of the ACM (JACM), 2016.

[25] I. Goldberg, “Improving the robustness of private information retrieval,”
in 2007 IEEE Symposium on Security and Privacy (SP’07), 2007.

[26] C. Devet, I. Goldberg, and N. Heninger, “Optimally robust private
information retrieval,” in 21st USENIX Security Symposium (USENIX
Security 12), 2012.

[27] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004. ACM,
2004, pp. 262–271.

[28] R. Henry, “Polynomial batch codes for efficient IT-PIR,” Proceedings on
Privacy Enhancing Technologies, vol. 2016, no. 4, pp. 202–218, 2016.

[29] M. H. Mughees, G. Pestana, A. Davidson, and B. Livshits, “Privatefetch:
Scalable catalog delivery in privacy-preserving advertising,” CoRR, vol.
abs/2109.08189, 2021.

[30] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in 28th USENIX Security
Symposium, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds., 2019.

[31] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. ACM,
2005, pp. 84–93.

[32] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[33] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory, 2014.

[34] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, 2017.

[35] C. Peikert et al., “A decade of lattice cryptography,” Foundations and
trends in theoretical computer science, vol. 10, pp. 283–424, 2016.

[36] S. Halevi and V. Shoup, “Algorithms in HElib,” in Annual Cryptology
Conference, 2014, pp. 554–571.

[37] N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,”
Designs, codes and cryptography, vol. 71, pp. 57–81, 2014.

[38] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption
with polylog overhead,” in Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings, 2012.

[39] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library
- SEAL v2.1,” in Financial Cryptography and Data Security – Interna-
tional Workshops. Springer, 2017.

[40] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of
the BFV homomorphic encryption scheme,” in Topics in Cryptology -
CT-RSA - The Cryptographers’ Track at the RSA Conference 2019, San
Francisco, CA, USA, 2019.

[41] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, 1970.

[42] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on OT extension,” ACM Transactions on Privacy and Security
(TOPS), 2018.

[43] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, 2017.

[44] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on computing, vol. 43,
pp. 831–871, 2014.

[45] “Crypto++ library 8.7,” Online: https://www.cryptopp.com/, Apr. 2022.
[46] “Mpir,” Online: https://github.com/sga001/mpir, Apr. 2022.
[47] “Spiral-rs,” Online: https://github.com/menonsamir/spiral-rs, Apr. 2022.
[48] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine,

and M. Rosenberg, “Labeled psi from homomorphic encryption with
reduced computation and communication,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1135–1150.

[49] R. Sion and B. Carbunar, “On the computational practicality of private
information retrieval,” in Proceedings of the Network and Distributed
Systems Security Symposium,San Diego, California, USA, 2007.

[50] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Advances in Cryptology - ASIACRYPT- 22nd International Conference
on the Theory and Application of Cryptology and Information Security,
2016.

[51] C. Gentry and S. Halevi, “Compressible FHE with applications to PIR,”
in Theory of Cryptography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, 2019.

[52] S. Patel, G. Persiano, and K. Yeo, “Private stateful information retrieval,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and

APPENDIX A
ADDITIONAL MATERIAL ON RELATED WORK

Orthogonal directions to improve PIR. The Stateful PIR
approach improves the computation when the client has many
entries to retrieve over time. The high-level idea is that the
client retrieves some helper data (state) in the offline phase
and uses it to make cheaper queries in the online phase.

Patel et al. [52] introduced the first stateful PIR construc-
tion. In the online phase, the server performs a linear number
of cheaper symmetric-key operations and a sublinear number
of expensive RLWE homomorphic operations. Corrigan-Gibbs
and Kogan proposed a stateful PIR scheme [53] in which the
server performs only a sublinear amount of computation. Their
work does not provide an implementation or performance
evaluation.

The offline phase of both of these protocols involves
the client downloading subset sums of database entries.
Mughees et al. [14] gives a construction for this problem based
on batch PIR and copy networks. It is only efficient when
each database entry is big (around 30 KB). Hence, concretely
efficient construction for small entry sizes remains open.

Two independent works, Henzinger et al. [54] and David-
son et al. [55] proposed stateful PIR based on the learning
with errors (LWE) assumption. Their key observation is that
in LWE, the bulk of server computation is independent of the
client query and can be performed in the offline phase. The

Communications Security, CCS, 2018.
[53] H. Corrigan-Gibbs, A. Henzinger, and D. Kogan, “Single-server private

information retrieval with sublinear amortized time,” in Advances in
Cryptology - EUROCRYPT 2022 - 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, May 30
- June 3, 2022, Proceedings, Part II, 2022.

[54] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and
V. Vaikuntanathan, “One server for the price of two: Simple and fast
single-server private information retrieval,” Cryptology ePrint Archive,
Paper 2022/949, 2022.

[55] A. Davidson, G. Pestana, and S. Celi, “Frodopir: Simple, scalable,
single-server private information retrieval,” Cryptology ePrint Archive,
Paper 2022/981, 2022.

downside of this scheme is that the client needs to download
a large state offline.

APPENDIX B
COMPARISON TO LABELLED PSI SCHEME (LPSI)

LPSI is a stronger primitive than BatchPIR in that it also
protects the server’s data privacy, i.e. the client should not
be able to learn any information about the server data not
in the intersection. LPSI can be directly used as a BatchPIR
if the client and the server do not perform blinding of their
respective inputs using an oblivious pseudorandom function
(OPR); thus, we exclude the cost of OPRF evaluation from
their server initialization time.

The results are given in TABLE VI. We consider a server
database consisting of one million entries and a client batch of
256 indices. We test three entry sizes: 32, 64, and 256 Bytes.

The LPSI scheme has significantly higher server initializa-
tion than our scheme. The high initialization is because the
server has to perform expensive polynomial interpolations.
This makes their scheme undesirable for applications where
the database updates frequently. The communication of our
scheme beats the LPSI scheme in all cases. Specifically, for a
small entry size of 32 bytes, our scheme demonstrates a 1.5x
improvement in computation and around 3x improvement in
communication. We observe that the communication in the
LPSI scheme increases rapidly with the entry size. For an
entry size of 256 bytes, their scheme has 9.2x times more
communication than our scheme. We also note as the entry size
increases, the computational costs of the two schemes become
comparable. In conclusion, for fixed batch size, our scheme
has a better computational performance when the entry size is
small. While for bigger entries (¿256 bytes), the LPSI scheme
has a lower computational overhead. Nevertheless, in both
cases, our scheme has better communication performance.

TABLE VI. Comparison of Vectorized BatchPIR with Labelled PSI (LPSI) scheme [48]. For all experiments, we assume that
the client batch consists of 256 entries and the server database consists of one million entries. Each database entry size is 32,
64, or 256 bytes. For 256-byte entries, we run LPSI with 8 threads because their initialization phase is prohibitively slow on
a single thread.

32 Bytes 64 Bytes 256 Bytes
Vectorized BatchPIR LPSI Vectorized BatchPIR LPSI Vectorized BatchPIR LPSI

Server’s Init. (Sec) 13.4 3359.6 16.7 7364.9 46.08 4438.7∗
Communication (MB) 0.96 4.3 1.02 5.6 1.20 11.08
Computation (Sec) 4.08 5.6 7.08 7.8 30.79 7.6∗

