
Cryptographic Role-Based Access Control,
Reconsidered ⋆

Bin Liu1, Antonis Michalas1,2, and Bogdan Warinschi3,4

1 Tampere University
2 RISE Research Institutes of Sweden

3 DFINITY
4 University of Bristol

{bin.liu,antonios.michalas}@tuni.fi
csxbw@bristol.ac.uk

Abstract. The heavy reliance on reference monitors is a significant shortcom-
ing of traditional access contorl mechanisms, since monitors are single points of
failure that need to run in protected mode and have to be permanently online to
deal with every access request. Cryptographic access control offers an alternative
solution which provides better scalability and deployability. It relies on security
guarantees of the underlying cryptographic primitives and also the appropriate
key distribution/management in the system. In order to rigorously study security
guarantees that a cryptographic access control system can achieve, providing for-
mal security definitions for the system is of great importance, since the security
guarantee of the underlying cryptographic primitives cannot be direclty translated
into those of the the system.
In this paper, we follow the line of existing study on cryptographic enforcement
of Role-Based Access Control (RBAC). Inspired by the study of the relation be-
tween the existing security definitions for such system, we identify two different
types of attacks which cannot be captured by the existing ones. Therefore, we
propose two new security definitions towards the goal of appropriately modelling
cryptographic enforcement of Role-Based Access Control policies and study the
relation between our new definitions and the existing ones. In addition, we show
that the cost of supporting dynamic policy update is inherently expensive by pre-
senting two lower bounds for such systems which guarantee correctness and se-
cure access.

1 Introduction

Traditional access control mechanisms heavily rely on reference monitors, which are
single points of failure that need to run in protected mode, must be placed at the criti-
cal path and have to be permanently online to deal with every access request of users.
These inherent limitations greatly affect scalability and deployability of the applica-
tions. Cryptographic techniques have the potential to alleviate this limitation. The idea

⋆ This work was partially funded by the HARPOCRATES project, Horizon Europe and the
Technology Innovation Institute (TII), Abu Dhabi, United Arab Emirates, for the project
ARROWSMITH: Living (Securely) on the edge.

behind is to enforce access control policies by employing cryptographic primitives.
This alternative approach is known as cryptographic access control. It aims to reduce
the reliance on monitors or even eliminate this need, since the policy enforcement in
cryptographic access control is achieved in an indirect way: data is protected by cryp-
tographic primitives and the policies are enforced by distributing the appropriate keys
to right users.

A main concern in the existing studies of cryptographic access control is the gap
between the specification of the access control policies being enforced and the imple-
mentation of the access control systems. In traditional monitor-based access contorl
mechanisms, the correct enforcement of access control policies holds by design. But in
cryptographic access control, the problem becomes more complicated. The enforcement
not only relies on security guarantees of the underlying cryptographic primitives but
also the appropriate key distribution/management. Even though some advanced cryp-
tographic primitives are seemingly well-suited for cryptographic access control, their
security guarantees cannot be directly translated to security guarantees of the whole
system. It is widely accepted that there is often a gap between primitives and the appli-
cations motivating them. The gap obscured by uses of similar terms and jargon at both
application and primitive level. Once primitives are investigated, the step showing that
they imply security of the motivating application is unfortunately often omitted.

In order to bridge this gap, coming up with formal security definitions for cryp-
tographic access control systems is crucially important. However, the study on formal
security definitions is often neglected in the existing research on cryptographic access
control. There have been some initial works in this area that focus on designing new
primitives motivated by access control systems [10, 4, 16] and on designing access con-
trol systems based on those primitives [12, 15, 17, 9].

Throughout the literature, rigorous definitions that look at the security of systems for
access control have only been heuristically studied. Halevi et al. proposed a simulation-
based security definition for access control on distributed file storage system in order
to reason about the confinement problem [8]. Their result is for a particular system
rather than a general one. Ferrara et al. defined a precise syntax for cryptographic role-
based access control (cRBAC) systems and proposed a formal security definition with
respect to secure read access in [6]. Later they extend their results in a setting which
supports for write access [5] so that the need for the trusted monitors to mediate every
write access request can be eliminated. Liu et. al. studied security of cRBAC systems
in the UC framework [13]. They proposed a UC security definition for such systems
and also showed an impossibility result that such security cannot be achieved due to the
commitment problem.

Garrison III et al. studied the practical implications of cryptographic access con-
trol systems that enforces RBAC policies [11]. They analysed the computational costs
of two different constructions of cryptographic role-based access control systems via
simulations with the use of real-world datasets. Their results indicate that supporting
for dynamic access control policy enforcement may be prohibitively expensive, even
under the assumption that write access is enforced with the minimum use of reference
monitors.

NEW SECURITY DEFINITIONS. The results presented in [13] show a gap between the
game-based and simulation-based security definitions for cRBAC systems, which raises
a question here:

Do the existing security definitions appropriately capture the secure enforcement of
access control policies?

Inspired by their results, we identify two different types of attacks which are over-
looked in the existing works and propose two new security definitions in game-based
setting. Our work can be considered as a step towards the goal of providing an appro-
priate and formal treatment for secure policy enforcement.

The first security definition is called past confidentiality. It aims to capture the se-
curity concern from the users who can get unauthorised read access to the previous file
versions and serves as a refinement to the existing definition of read security for cRBAC
systems. In traditional monitor-based access control, when a user gets access to the file
to which it is authorised, only the current content will be available to it but not the pre-
vious contents. The previous contents here refer to the previous file versions which are
written in the past and they are not considered as a part of the current content of the
file. In cryptographic access control, due to the publicly accessibility of the file system,
users can easily obtain the previous file versions (even in an encrypted form) by sim-
ply monitoring the state of the file system. Therefore, a user who is recently granted the
read permission of a file might have the ability to retrieve those previous contents which
are written at the time when it does not have the permission - this can be considered as
a violation of the access control policy being enforced.

The security concern mentioned above is not appropriately captured by the game-
based security definitions of read security from the existing work [6, 5]. Recall that
in those games that define security with respect to read access, the adversary is not
allowed to get read access to the challenge files at any point during the game. This
restriction imposed on the adversary leads to the attack mentioned above not being
ruled out. In fact, the attack can be easily carried out in the constructions proposed
in [6, 5]. Interestingly, some recently proposed constructions of cryptographic access
control systems have the similar security concern [2, 11, 14], even though they have
been proven to securely enforce the corresponding access control policies within their
individual frameworks.

LOWER BOUNDS FOR SECURE CRBAC SYSTEMS. Garrison III et al. studied the prac-
tical implications of using cryptography to enforce RBAC policies in their recent work
[11]. They considered a system model with necessary use of reference monitors to en-
force access control on write access and to maintain the metadata of each file in the file
system. For their purpose, they developed two different constructions of cryptographic
RBAC systems: one bases on identity-based encryption (IBE) and identity-based signa-
ture (IBS) schemes, while the other one bases on the traditional public key cryptography
with the use of public key infrastructure (PKI). In order to analyse the costs of their con-
structions, they carried out the simulation over real-world RBAC datasets to generate
traces. Their experimental results show that even with the minimum use of reference
monitors, the computational costs of the cryptographic RBAC systems which supports
for dynamic policy update are still prohibitively expensive.

Motivated by Garrison III et al.’s work, we study lower bounds for secure cRBAC
systems to find out where the inefficiency stems from. We show that the costs are inher-
ent in secure cRBAC systems and also in those cryptographic access control systems
that greatly or solely rely on cryptographic techniques to enforce access control on both
read and write access. The main idea is, since the manager does not involve in any
read and write operation to the file system, the local states of the users and also the
file system should reflect the access control policy being enforced. Whenever the policy
gets updated, the system might inevitably require re-keying and re-encryption in order
to guarantee secure access and system correctness. We present two lower bounds for
secure cRBAC systems. Our results can be valuable in the design of such systems for
practical purposes.

2 Preliminaries

2.1 Notations

For assignment, we write x← y to denote the assignment of the value y to the variable
x. If S is a set, x←$ S denotes that x is being assigned with a value which is selected
uniformly at random from S. LetA be an algorithm, x← A(y) denotes the assignment
of x with the output of running it on the input y if A is deterministic, whilst we write
x←$A(y) for the assignment if A is probabilistic.

For any integer n ≥ 0, we write 1n to denote the string of n 1s. If S is a set, |S|
denotes its size. If s is a string, |s| denotes its length. Given two strings s0 and s1,
s0∥s1 denotes their concatenation. ϵ denotes the empty string. ⊥ denotes an error but
its meaning depends on the context: it could indicate an decryption error or an error
returned by an oracle due to an invalid oracle query.

We say f is a negligible function if for every positive polynomial p, there exists an
integer N such that for all integers n > N , it holds that f(n) < 1

p(n) .

2.2 Role-Based Access Control

Role-Based Access Control (RBAC) is one of the most popular access control models
adopted in large-scale systems. RBAC introduces an important concept called roles,
which are typically associated to a collection of job functions. Roles allow for specify-
ing the access control policies which naturally map to the organisation structures and
therefore reduce the complexify in administration of permissions. An RBAC policy is
decomposed into two assignments: the user-role assignment and the permission-role
assignment. A user is authorised to a permission if there exists a role of the users’ has
been assigned with the permission. In this paper, we will only focus on core RBAC, as
it is the most common model of the standard.

The state of a (core) RBAC system consists of:

– U : a finite set of users,
– R: a finite set of roles,
– O: a finite set of objects,
– P : a finite set of permissions where each permission is an object-operation pair,

– UA ⊆ U ×R: a relation modelling the user-role assignment,
– PA ⊆ P ×R: a relation modelling the permission-role assignment,

Since the role structures in organisations are changed less frequently, we assume
that the set of roles R is fixed for simplicity. Therefore, the state of an RBAC system
over a fixed role set R is a tuple (U,O, P,UA,PA). We describe an RBAC system in
terms of a state-transition system. We define the set of state-transition rules RULES
as the RBAC administrative commands. Given two states S = (U,O, P,UA,PA) and
S′ = (U ′, O′, P ′,PA′,UA′), there is a transition from S to S′ with q ∈ RULES
denotes S

q−→S S′ if one of the following conditions holds:

– [AddUser] q = (AddUser, u), u /∈ U , U ′ = U ∪ {u}, O′ = O, P ′ = P ,
PA′ = PA and UA′ = UA;

– [DelUser] q = (DelUser, u), u ∈ U , U ′ = U \ {u}, O′ = O, P ′ = P , PA′ = PA
and UA′ = UA \ {(u, r) ∈ UA ∥ r ∈ R)};

– [AddObject] q = (AddObject, o), o /∈ O, O′ = O ∪ {o}, U ′ = U , P ′ =
P ∪ {(o,read), (o,write)}, PA′ = PA and UA′ = UA;

– [DelOject] q = (DelObject, o), o ∈ O, O′ = O \{o}, U ′ = U , P ′ = P \{(o, ·)},
PA′ = PA \ {((o, ·), r) ∈ PA ∥ r ∈ R)} and UA′ = UA;

– [AssignUser] q = (AssignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA and UA′ = UA ∪ {(u, r)};

– [DeassignUser] q = (DeassignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA and UA′ = UA \ {(u, r)};

– [GrantPerm] q = (GrantPerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA ∪ {(p, r)} and UA′ = UA;

– [RevokePerm] q = (RevokePerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA \ {(p, r)} and UA′ = UA.

An execution of an RBAC system is a finite sequence of transitions S0
q0−→S S1

q1−→S
. . .

qn−→S Sn+1, where S0 is called the initial state of the RBAC system.
We denote the read permission and the write permission of a file o ∈ O by (o,read)

and (o,write) respectively. A predicate HasAccess(u, p) reflects that a user u has sym-
bolically access to a permission p. It is defined as follows:

HasAccess(u, p)⇔ ∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA

2.3 System Model and Syntax

The system model we consider in this paper is the one proposed by Ferrara et. al. in [5].
In their system model, a versioning append-only file system is employed for enforcing
access control on (quasi-) unrestricted read and write access to the files and therefore
eliminating the need for online reference monitors.

It should be noticed that the use of such a file system is not a limitation. In contrast,
it allows for modelling a general class of access control systems. Since the file system
itself does not implement any access control mechanism and the enforcement of access
control policies on files are handled using cryptography solely, it can be used to capture

the data outsourcing scenarios where hosting trusted reference monitors are not possible
and users might be even able to keep track of files (e.g. storing data on public clouds,
repositories and decentralised distributed storage network, etc.).

We consider a cRBAC system consisting of three main entities: a manager, a file
system and a set of users.

The manager is responsible for the administration of access control policies. More
specifically, it is in charge of executing RBAC administrative commands which could
involve key management/distribution and data encryption/re-encryption. In contrast to
the traditional access control policy enforcer (the reference monitor) which has to be
placed in the critical path to check whether or not an access request is considered com-
liant to the policy, the manager does not involve in any read and write access to the file
system. In addition, the manager is assumed to be a trusted party.

The file system is tasked with storing the files being enforced access control on and
it is publicly accessible to users. In implementation, it could contain arrays of encrypted
files and the related metadata. The file system is assumed to be untrusted on data privacy
but it guarantees availability of the data it stores. Consider that if users are provided
unrestricted write access to the file system, no amount of cryptographic techniques can
prevent a malicious user from keeping overwriting the existing contents. Therefore, the
file system is further assumed to be append-only and to support versioning. In such
case, users can only append contents but not delete any. The append operations can be
interpreted as logical writes to the files. When reading a file, a user first needs to fetch
the file versions and then identifies the most recent “valid” one to retrieve the content.
As the data owner, the manager could have richer interfaces to the file system than users.
Therefore, it can overwrite the file contents and to add/delete files.

The users can have (quasi-) unrestricted read and write access to the file system di-
rectly without the involvement of the manager. Since the enforcement of access control
policies solely relies on cryptograpihc primitives while the file system does not imple-
ment any access control functionality, only the users who hold the appropriate keys can
get authorised access to the files.

Secure channels are assumed between each of any two entities. For simplicity,
the execution of any RBAC administrative command is assumed to be done by non-
interactive multi-party computations. That is, when executing any RBAC command,
the manager carries out some local computation according to the command to produce
update messages for users and potentially updates the file system. After that update
messages will be sent to the users via secure channels. Once a user receives such a mes-
sage from the manager, it updates its local state accordingly. The file system proceeds
the update in a similar manner.

The global state of a cRBAC system at any point during its execution is a tuple
(stM , fs, {stu}u∈U), where stM is the local state of the manager, fs is the state of the
file system and stu is the local state for each user u ∈ U in the system. Since the
manager is tasked with the access control policy administration, the symbolic RBAC
state S = (U,O, P,UA,PA) is considered to be a part of stM and let ϕ(stG) denote
the RBAC state of the global state stG.

A cRBAC system is defined by a cRBAC scheme which consists of the following
algorithms:

– Init, the initialisation algorithm: A probabilistic algorithm that takes the security
parameter 1λ and a set of roles R as input and outputs the initialised global state of
the cRBAC system.

– AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,
RevokePerm, the RBAC administrative algorithms: Probabilistic algorithms that
implement the corresponding RBAC administrative commands. As mentioned, they
are non-interactive multi-party computations. Each of the algorithms takes the state
of the manager stM , the state of the file system fs and the additional argument for
the command arg as input and outputs the updated state for the manager and the
file system, and also a set of update messages {msgu}u∈U for each user u ∈ U .

– Read, the read algorithm: A deterministic algorithm that allows a user retrieve the
current content of a file. It takes the local state of a user stu, the current state of the
file system fs and a file name o as input and outputs the current content of the file
o if the user has the read permission. If not, or if the file is empty, the algorithm
returns an error ⊥.

– Write, the write algorithm: A probabilistic algorithm that allows a user write some
content to a file. It takes the local state of a user stu, the current state of the file
system fs , a file name o and the content m as input and outputs the updated file
system.

– Update, the update algorithm: A deterministic algorithm that takes the local state
of a user stu and an update message msgu received from the manager and outputs
the updated local state.

There is also a remark regarding updated file system, which is as a part of the out-
put of some algorithms outlined above. More specifically, the algorithms will produce
update instructions to be carried out on the file system. For example, after running the
Write algorithm, a user will get the update instruction info that includes the informa-
tion of the file name and also the content to be appended to the file system. Then the
user uploads info to the file system and the latter gets updated accordingly. The man-
ager proceeds similarly but the update instructions might be different from the users
due to its privilege of the data owner. For simplicity, we just let those algorithms output
the updated file system. In terms of effect, all the above algorithms except Read can
protentially update the global state of the cRBAC system. Therefore, we may write the
execution of a cRBAC algorithm in the following form:

stG
Q−→ st ′G ⇔ st ′G←$ A(stG, arg),

where A is one of the algorithms defined above (except for Read), arg is its arguments,
Q is an implementation of the algorithm, stG and st ′G are global state of the cRBAC
system.

Let Q⃗ = (Q0, ..., Qn), we write the execution trace of the cRBAC system as:

stG0

Q⃗−→ stGn+1
⇔ stG0

Q0−−→ stG1

Q1−−→, ...,
Qn−1−−−→ stGn

Qn−−→ stGn+1
,

where {stGi
}i∈{0,...,n+1} are global states of the cRBAC system.

We say a sequence of operations is efficient if the length of its execution trace is
polynomially bounded.

We also introduce the following two notations Pr and Or. Pr is the set of objects of
which a user has been “symbolically” assigned with the read permissions at a certain
point. Let S = (U,O, P,UA,PA) be the RBAC state of a system:

Pr(S, u)⇔ {o|HasAccess(u, (o,read))}.

Qr is the set of objects of which a user has “computational” read access to, i.e.
the objects whose contents can be retrieved by performing the read opeartions with
the user’s local state. Consdier that some file might be empty (namely, it contains no
content) after the initialisation while some user could be granted the read permission of
that file. Therefore, we define Qr as the set of objects such that if any user u′ who has
the write permissions write some contents to them at this point, u will be able to read
those contents. Let stG be the global state of a cRBAC system. Qr is defined as:

Qr(stG, u)⇔ {o| ∀u′ ∈ U,m ∈ {0, 1}λ : HasAccess(u′, (o,write))∧
(fs ′←$ Write(stu′ , fs, o,m),m′ ← Read(stu, fs

′, o) : m′ = m)}

3 Security Definitions

In this section, we present our formal security definitions of correctness, past confiden-
tiality and local correctness for cRBAC systems.

3.1 Correctness

Correctness was first proposed by Ferrara et al. in [6], but it was omitted in their later
work [5] where a new system model was introduced to support for write access. There-
fore, we will need to reintroduce the definition of correctness.

Intuitively, a cryptographic access control system is said to be correct if every user
in the system can get access to the resrouces to which it is authorised according to the
symobilc state of the system. In a cRBAC system which enforces access control on both
read and write access to a publicly accessible file system, the correctness requirements
are specialised as follows:

1. any user that has the read permission of a file should be able to retrieve the current
content of the file by reading it, and

2. the current content of a file which is written by a user who has the write permission
will be correctly read by any user who has the read permission of the file.

We formalise the two requirements above via a game between a challenger who acts
as a manager of a cRBAC system defined by cRBAC scheme Π and a polynomial-time
adversary A that attacks against the system. The adversary is allowed to request the
manager to execute any RBAC administrative command such that the symbolic state
of the system evolves according to its queries. The adversary can also request a user to
write to the file system and to query the current state of the file system. At some point
of the game, A needs to show that there exists some user who cannot correctly retrieve
the current content of a file to which it has read access.

More specifically, we define the following experiment Expcorr
Π,A. The experiment

maintains the symbolic RBAC state of the system State , which is set to be (∅, ∅, ∅, ∅, ∅)
initially, and a object-indexed list T to record the contents written to the files by autho-
rised users.

After the initialisation of the cRBAC system with a fixed set of roles R, the adver-
sary can ask for the execution of any RBAC administrative command by calling the
oracle CMD. Upon receiving a query that consists of an RBAC command Cmd and its
arguments arg , the oracle will execute the command symbolically and run the algorithm
Cmd which implements the command. Then the adversary will be provided the current
state of the file system fs as the response. The oracle WRITE allows the adversary to
request a user u to write some content m to a specified file o. If u has the write permis-
sion of o , the oracle runs the write algorithm Write to carry out the write operation and
then sets T [o] ← m. In addition, the adversary can check the current state of the file
system by calling the oracle FS with the query “STATE”.

In this experiment, the adversary is not allowed to take over any user in the system
and not to update the file system on its own. At some point,A outputs a user-object pair
(u∗, o∗) and the experiment terminates here. In the case that u∗ has the read permission
of o∗ but the content that it can retrieve from o∗ by running the read algorithm Read
does not match the record in T [o∗], the adversary wins the game. Correctness is defined
by requiring any probabilistic polynomial-time adversary cannot win the above game
with probability greater than 0.

Definition 1 (Correctness). A cRBAC system Π defined by a cRBAC scheme for a fixed
set of roles R is correct if for any probabilistic polynomial-time adversary A, it holds
that

Advcorr
Π,A(λ) := Pr

[
Expcorr

Π,A(λ)→ true
]

is 0, where the experiment Expcorr
Π,A is defined as follows:

Expcorr
Π,A(λ)

T ← ∅; State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ocorr)

if HasAccess(u∗, (o∗,read)) ∧ T [o∗] ̸= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ocorr that the adversary has access to are specified in Figure 1.

3.2 Past confidentiality

In the extended cRBAC system model, the enforcement of access control on write ac-
cess is supported by employing a versioning file storage where users can append con-
tents only. The versioning file stroage allows users to have (quasi-) unrestricted read
and write access to the file system, but it is also accompanied by some subtle secu-
rity issues, even though the file system itself does not implement any access control

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U :
stu ← Update(stu,msgu)

return fs

WRITE(u, o,m)

if ¬HasAccess(u, (o,write)) then
return ⊥

fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

Fig. 1. Ocorr: Oracles for defining the experiment Expcorr
Π,A.

mechanism. One of the security issues is related to unauthorised access to the previous
contents, which is a severe security concern in cryptographic access control but not in
the traditional mechanisms. Unfortunately, the existing game-based security definitions
for secure read access do not suffice to capture this security concern. We propose the
following security definition called past confidentiality which is improved over the one
presented in [5].

The security property is formalised via the following experiment Exppc
Π,A which

proceeds similarly to the experiment that defines read security in [5], but the adversary
here is allowed to corrupt the users who have the read permission of the challenge files
under some conditions. More specifically, the adversary is not allowed to corrupt any
user who can read the challenge contents (rather than the challenge files in the read
security game), untill those challenge contents are no longer the current contents of
the files. The adversary’s goal is still to determine a random bit b←$ {0, 1} which is
selected at the beginning of the game.

The experiment maintains the symbolic RBAC state of the system State , which is
initalised as (∅, ∅, ∅, ∅, ∅) and gets updated according to A’s request for the execution
of RBAC commands. The experiment keeps the following lists during the execution:
Cr for the corrupt users, Ch for the files of which some contents have been specified as
challenges, L for the users who have read access to the challenge contents and Ud for
the files of which the current contents are specified as challenges.

In the experiment, the adversary can request for executing any RBAC administrative
command, taking over users and requesting an honest user to write to a file with the
content it specifies. The adversary can query the current state of the file system and
also write (append) some new content to it. A can ask for a challenge by specifying
a tuple (u, o,m0,m1), where u is a user that has the write permission of the file o,
m0 and m1 are two messages of the same length. Then the challenger will carry out
Write(stu, o,mb) and provide the current state of the file system to the adversary as the
response. A can ask for multiple challenges. When A terminates with an output b′, it
wins the game if b′ = b.

To prevent the adversary from winning the game trivially by corrupting a user who
has read access to the challenge contents, the experiment maintains the following in-
variants:

1. No user in Cr can have read access to any file o in Ud : the adversary is not allowed
to request for granting the read permission of any file to a corrupt user if the file’s
current content is specified as a challenge.

2. No user in the list L can be corrupted: any user who has direct access to the chal-
lenge contents cannot be taken over by the adversary.

Definition 2 (Past Confidentiality). A cRBAC system Π defined by a cRBAC scheme
for a fixed set of roles R is said to preserve past confidentiality if for any probabilistic
polynomial-time adversary A, it holds that

Advpc
Π,A(λ) :=

∣∣Pr[Exppc
Π,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where the experiment Exppc

Π,A is defined as follows:

Exppc
Π,A(λ)

b←$ {0, 1}; Cr ,Ch,L,Ud ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Opc)

return (b′ = b)

The oracles Opc that the adversary has access to are specified in Figure 2 and
discussed below.

The oracle CMD allows the adversary to request for the execution of any valid
RBAC command. When A’s query will lead to an update to Cr , Ch , L or Ud , the
lists will get updated accordingly. When any user in L loses the read permission of
any file in Ch , it will be removed from the list L. When A requests to grant the read
permission of the files in Ud to an honest user, the user will be added to L.

When the adversary requests an honest user to write some content to a file of which
the current content is specified as a challenge, the file will be removed from the list Ud ,
meaning from then on, the read permission of the file can be granted to a corrupt user.
When A requests to put a challenge by calling the oracle CHALLENGE, if there exists
some corrupt user that has read access to the specified file, the oracle returns an error.
Otherwise, it carries out the write operation and add the file to the lists Ch and Ud .

Compared with the adversary in the game that defines read security of a cRBAC
system (see Appendix A.1), the adversary in the past confidentiality game is obviously
more powerful since it has the ability to take over the users who can get read access
to the challenged files under some restrictions. The following theorem confirms the
implication between the two security definitions.

Theorem 1. Past confidentiality is strictly stronger than secure read access.

Proof sketch. First, we briefly show that any cRBAC system that preserves past con-
fidentiality is secure with respect to read access. Given any adversary A that attacks
against a cRBAC system with respect to read security, an adversary B for past confi-
dentiality can be easily constructed. After the initialisation of the cRBAC system in its

CMD(Cmd , arg)

(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach (u, o) ∈ Cr ×Ud :
if ∃r ∈ R: (u, r) ∈ UA′

∧ ((o,read), r) ∈ PA′ then

return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U \ L :

if ∃o ∈ Ud : HasAccess(u, (o,read)) then

L← L ∪ {u}
foreach u ∈ L:
if ∄o ∈ Ch : HasAccess(u, (o,read))

∨u /∈ U then

L← L \ {u}
foreach o ∈ Ch:

if o /∈ O then

Ch ← Ch \ {o};Ud ← Ud \ {o}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U ∨ u ∈ L then

return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

If u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

if o ∈ Ch then

Ud ← Ud \ {o}
return fs

CHALLENGE(u, o,m0,m1)

if ¬HasAccess(u, (o,write)) then
return ⊥

if |m0| ̸= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o,read)) then

return ⊥
fs ←$ Write(stu, fs, o,mb)

foreach u′ ∈ U :
if HasAccess(u′, (o,read)) then

L← L ∪ {u′}
Ch ← Ch ∪ {o};Ud ← Ud ∪ {o}
return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 2. Opc: Oracles for defining the experiment Exppc
CRBAC,A.

own game, B runs a local copy of A with the input of the initial state of the file system
that it received from the challenger. Then B starts to simulate the read security game
for A with the use of the oracles that it has access to. During the simulation, B does
not maintain the global state of the cRBAC system but only keeps the two lists: Cr for
corrupt users and Ch for the challange files as defined in the read security game. After
that, for any query received from A, B just simply forwards to the same oracles in its
game and replies A with the response it received. In the case that A’s query violates
the restrictions of the read security game (i.e. by granting any user in Cr with the read
permission of the files in Ch), B just responses with an error and ignores the query.
Whenever A outputs a guess of the random bit, B outputs the same bit in its game.

We now argue that the simulation B provides is perfect. First, the global states in
both B’s game and the simulated game are identical. Secondly, all A’s oracle queries
will not lead to a violation to the restrictions of the game that defines past confidentiality,

since any query from A which does not violate the invariant in the read security game
will not violate the invariants in the past confidentiality game. Moreover, the simulated
game fully depends on the random bit chosen in B’s game, thus B wins its game with
the same probability as A wins the simulated game. Therefore, any cRBAC system
which is not secure with read access does not preserve past confidentiality.

In addition, the construction of cRBAC scheme presented in [5] has been proven to
be secure with respect to read access. But clearly it does not preserve past confidential-
ity, because granting the read permission of any file to a user will allow it to get access
to the previous contents which are encrypted under the same public key. Therefore, we
can conclude that past confidentiality is strictly stronger than secure read access. ⊓⊔

3.3 Local Correctness

The local correctness of a cRBAC system can be considered as a sort of correctness
but it is not implied by correctness. It captures the threat from “insiders” with respect
to data availability. The append-only versioning file system allows users to get (quasi-)
unrestricted write access to the files, but it also poses new security concern: a user who
has the write permission of a file might be able to invalidate the file’s future versions
which are written by authorised users. Local correctness guarantees that such an attack
is thwarted in such systems.

This security requirement is formalised via the following experiment Expl-corr
Π,A that

involves an adversaryA. The experiment maintains a list Cr to record the corrupt users
and another object-indexed list T to record the contents written to files by the honest
users. After the initialisation of the cRBAC system, the adversary can request for the
execution of any RBAC administrative command, taking over any user and writing some
content to a file on behalf of any honest user. A can also query for the current state of
the file system and request to append arbitrary content to it.

The use of the list T here is to record whether the files have been unauthorised
touched (rather than authorised write access) or not. When an honest user writes some
content to a file o, the content will be recorded in T [o]. If the adversary requests to
update the file by appending any entry to it, T [o] will store a special value adv, which
means the file has been touched after the previous authorised write access.

The experiment terminates when the adversary outputs an user-object pair (u∗, o∗),
where u∗ has the read permission of o∗. A wins the game if the content of o∗ read by
u∗ is different from the record in T [o∗] while T [o∗] cannot be the special value adv.

Definition 3 (Local Correctness). A cRBAC system Π defined by a cRBAC scheme
for a fixed set of roles R is said to preserve local correctness if for any probabilistic
polynomial-time adversary A, it holds that

Advl-corr
Π,A (λ) := Pr

[
Expl-corr

Π,A (λ)→ true
]

is negligible in λ, where Expl-corr
Π,A is defined as follows:

Expl-corr
Π,A(λ)

T ,Cr ← ∅;State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ol-corr)

if T [o∗] ̸= adv ∧ T [o∗] ̸= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ol-corr that the adversary has access to are specified in Figure 3.

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :
if u /∈ U then

Cr ← Cr \ {u}
if Cmd = “DELOBJECT” then

Parse arg as o; T [o]← ∅
if Cmd = “DELUSER” then

Parse arg as u; Cr ← Cr \ {u}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {stu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

Parse info as (o, c)
T [o]← adv; fs ← fs∥info
return fs

Fig. 3. Ol-corr: Oracles for defining the experiment Expl-corr
Π,A.

We further show that the cRBAC construction proposed by Ferrara et al. in [5]
preserves this security property.

Theorem 2. If both the predicate encryption scheme and the digital signature scheme
are correct, the construction in [5] preserves local correctness.

Proof sketch. We show that in their cRBAC construction, no matter how the adversary
will touch a file, after that, any content written by an authorised user will be correctly
retrieved by another user who has the read permission of the file.

From the specification of their write algorithm Write, we can observe that the algo-
rithm will come up with the new entry to be appended to the file. The content of the new
entry is completely independent from any of the previous entries and it only depends on
the next available index of the file versions and also the metadata stored in the header of

that file. Since the file system is assumed to preserve correct ordering of the file and the
metadata can only be updated by the manager, these two parameters will not be affected
by any corrupt user’s behaviours to the file system. In such case, the other possibility is
either the predicate encryption scheme or the signature scheme is not correct therefore
the authorised user cannot correctly retrieve the content written to the target file. Thus
we can conclude that the construction preserves local correctness under the assumption
that both the predicate encryption scheme and the digital signature are correct. ⊓⊔

4 Lower Bounds for secure cRBAC systems

In this section, we present two lower bounds for secure cRBAC systems. By lower
bounds, we mean the efficiency implications of secure cRBAC systems. To some extent,
our results explain the reason why cRBAC systems that support dynamic policy updates
may be prohibitively expensive: permission revocation can be costly.

Before we present our results, we introduce a technical term which is called Permis-
sion Adjustment for an RBAC system. Informally, permision adjustment is a sequence
of administrative commands which changes the access rights of some users with respect
to a set of permissions. In comparison with any sequence of typical RBAC administra-
tive commands which might not bring any change to the access matrix of the system,
permission adjustment emphasises the change it will bring to the access matrix. We can
get a better understanding of the term from the following example. Consider the case
that a user has been deassigned from a role of reviewer might not affect its access to
the conference papers, since it can have a role of programme committee member which
allows him to get authorised access. But for the permission adjustment of cancelling its
access to the papers, the user will no longer be able to do so due to the change on the
access control policy.

Definition 4. (Permission Adjustment) Let S0 = (U,O, P,UA,PA) be the state of an
RBAC system over a set of roles R. Given a set of users Ũ ⊆ U and a set of permis-
sions P̃ ⊆ P , where both Ũ and P̃ are non-empty, a sequence of RBAC administrative
commands q⃗ = (q0, ..., qn) is called a permission adjustment for S0 with respect to Ũ
and P̃ :

(1) if ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p) holds for S0 and after a sequence of
transitions S0

q0−→S S1
q1−→S , . . . ,

qn−1−−−→S Sn
qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ :

HasAccess(u, p) holds for Sn+1 or
(2) if ∀u ∈ Ũ , p ∈ P̃ : HasAccess(u, p) holds for S0 and after a sequence of transitions

S0
q0−→S S1

q1−→S , . . . ,
qn−1−−−→S Sn

qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p)
holds for Sn+1.

We denote the set of all possible q⃗ in case (1) by Ũ↑P̃ (S0) and the set of all possible q⃗
in case (2) by Ũ↓P̃ (S0).

In addition, we introduce two key properties with respect to efficiency.

Definition 5. Let stG = (stM , fs, {stu}u∈U) be the global state of a cRBAC system
over a set of roles R at some point during its execution. Given a sequence of RBAC

administrative commands q⃗ = (q0, ..., qn) and a sequence of efficient operations Q⃗ =
(Q0, ..., Qn) such that for each i ∈ {0, ..., n}: Qi implements the command qi. After
carrying out Q⃗:

(1) if the state of the file system remains unchanged, we say that q⃗ is file system pre-
serving for stG. It is reflected by the following predicate:

FSP(q⃗, stG)⇔ Pr[∀Q⃗ : stG
Q⃗−→ st ′G; fs = fs ′] = 1,

where st ′G = (st ′M , fs ′, {st ′u}u∈U ′) and ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′);

(2) if the local states of a set of users U remain unchanged, we say that q⃗ is U-user
local state preserving for stG. It is reflected by the following predicate:

LSP(q⃗, stG,U)⇔ Pr[∀Q⃗ : stG
Q⃗−→ st ′G;∀u ∈ U : stu = st ′u] = 1,

where st ′G = (st ′M , fs ′, {st ′u}u∈U ′), ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′) and U ⊆
U ′.

Finally, we introduce the concept of non-trivial execution for a cRBAC system. A
non-trivial execution consists of a sequence of operations such that after executing ev-
ery operation in order, for each file in the system, there should exist at least a user that
has the read permission for it and also exist at least a user that has the write permission
for it. The non-trivial execution serves as a mild assumption on the execution of a cR-
BAC system, for the purpose of studying the lower bound of cRBAC systems which are
commonly used in practice. Also, non-trivial execution can prevent trivial implementa-
tions of a cRBAC system. For example, in a cRBAC system that only exists users who
are authorised to read but no user can write to the file system, there is no need to worry
about unauthorised read access because no content will be written to the file system.
Similar situation holds for the case of write security.

Before introducing the lower bounds, we first present following auxiliary results.

Lemma 1. For any correct cRBAC system, it holds that:

Pr[stG←$ Init(1λ, R); stG
Q⃗−→ st ′G;∀u ∈ U : Pr(ϕ(st

′
G), u) ⊆ Qr(st

′
G, u)] = 1,

where Q⃗ an efficient non-trivial execution and ϕ(st ′G) = (U,O, P,UA,PA).

Proof. Assume that for a cRBAC system Π , the probability that after carrying out
the non-trivial execution Q⃗, the system will reach some global state st ′G such that
Pr(ϕ(st

′
G), u) ⊆ Qr(st

′
G, u) holds for all user u ∈ U is ϵ < 1. We show that Π

cannot be correct in such case.
Consider the following adversary A for Expcorr

Π,A(λ). After the system gets ini-
tialised, A is provided λ and then calls the corresponding oracles to carry out Q⃗ in
order. Let st ′G be the current global state of the system. Now A makes a random guess
of a tuple (u, u′, o) ∈ U×U×O and also comes up with a message m ∈ {0, 1}λ. It then

calls the write oracle WRITE with (u′, o,m). If WRITE returns an error, A just termi-
nates here; otherwise A terminates with an outputs (u, o). Since Q⃗ is a finite sequence
of opeartions, A is an polynomial-time adversary.

By assumption, the probability of existing a user ū ∈ U and a file ō ∈ O satisfying
both o ∈ Pr(ϕ(st

′
G), ū) and o /∈ Qr(st

′
G, ū) is 1− ϵ. Since Q⃗ is a non-trivial execution,

the condition o /∈ Qr(st
′
G, ū) further implies that there exists a user ū′ ∈ U has the

write permission of ō such that if the message m is written to ō by ū′ at this point, it
will not be retrieved by correctly by running Read with ū’s local state. Therefore, if A
made a good guess of such ū, ō, ū′, the challenger will not be able to retrieve m. The
advantage that A can gain in the experiment is:

Advcorr
Π,A(λ) ≥

1

|U | · |U | · |O|
,

which is obviously non-zero. Therefore, Π cannot be correct. ⊓⊔

Lemma 2. If a cRBAC system is secure with respect to read access, it holds that:

Pr[stG←$ Init(1λ, R); stG
Q⃗−→ st ′G;∀u ∈ U : Pr(ϕ(st

′
G), u) ⊇ Qr(st

′
G, u)] ≥ 1− ϵ,

where Q⃗ is an efficient non-trivial execution, ϕ(st ′G) = (U,O, P,UA,PA) and ϵ is a
negligible function in λ.

Proof. Assume that for a cRBAC system Π , the probability that after carrying out
the non-trivial execution Q⃗, it will reach some global state st ′G such that for all ϵ,
Pr(ϕ(st

′
G), u) ⊇ Qr(st

′
G, u) holds for all u ∈ U with probability ϵ0 < 1 − ϵ. We

show that Π cannot be secure with respect to read access.
Consider the following adversary A for Expread

Π,A(λ). After being provided the se-
curity parameter λ, A makes queries to the corresponding oracles to carry out Q⃗ in
order. Let st ′G be the current global state of Π . Now A randomly chooses a user
u ∈ U , a file o ∈ O and another user u′ ∈ {u|HasAccess(u, (o,write))}. It then
requests to corrupt u to obtain the local state stu. Next, A calls the challenge oracle
CHALLENGE with (u′, o,m0,m1), where m0,m1 ∈ {0, 1}λ are two random messages
of the same length. If CHALLENGE returns an error, A terminates here and outputs a
random bit. If CHALLENGE returns the updated state of the file system fs ,A then com-
putes m∗ ← Read(stu, fs, o). Finally, it outputs 0 if m∗ = m0 and 1 if m′ = m1;
otherwise, it just outputs a random bit. Since Q⃗ is efficient, A is an polynomial-time
adversary.

It is possible that u has the read permission of o, due to the reason that A chose u
and o randomly from all existing users and files in the system. Therefore, the request
of taking over u might lead to an error returned by CHALLENGE. Notice that A can
read the content written to the file specified as its challenge only when there exist some
user ū ∈ U and ō ∈ O satisfying both ō /∈ Pr(ϕ(st

′
G), ū) and ō ∈ Qr(st

′
G, ū), and

A made a good guess of them. In all the other cases, A has to output a random bit. By
assumption, such ū and ō exist with probability 1 − ϵ0. Then we have, the advantage

that A can gain in the experiment is:

Advread
Π,A(λ) ≥

∣∣(1− ϵ0) ·
1

|U | · |O|
+ (1− ϵ0) · (1−

1

|U | · |O|
) · 1

2
+ ϵ0 ·

1

2
− 1

2

∣∣
=
∣∣1
2
· 1

|U | · |O|
− ϵ0 ·

1

2
· 1

|U | · |O|
∣∣

=
1

2
· 1

|U | · |O|
· (1− ϵ0) >

1

2
· 1

|U | · |O|
· ϵ

which is non-negligible. Hence Π cannot be secure with respect to read access. ⊓⊔

Now we present our first lower bound for cRBAC systems which are both correct
and secure with respect to read access.

Theorem 3. For any cRBAC system which is correct and secure with respect to read
access, it holds that:

Pr

[
stG←$ Init(1λ, R); stG

Q⃗−→ st ′G;∀q⃗ ∈ Ur↓Pr(ϕ(st
′
G)) :

FSP(q⃗, st ′G) ∧ LSP(q⃗, st ′G, Uw)

]
≤ ϵ,

where Q⃗ is any non-trivial execution for the system, st ′G = (st ′M , fs ′, {st ′u}u∈U ′),
ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′), Ur ⊆ U ′, Pr ⊆ {(o,read)|o ∈ O′}, Uw =
{u|∀(o,read) ∈ Pr : HasAccess(u, (o,write))} and ϵ is a negligible function in
λ.

Proof. We prove the theorem by showing that if the above condition is not satisfied, the
cRBAC system cannot be both correct and secure with respect to read access. Assume
by contradiction that there exists a cRBAC system Π which is correct and read secure,
the above condition holds with probability ϵ0, which is greater than any ϵ.

Consider the following attack against the system. After Π is initialised with the
role set R and then the non-trivially execution Q⃗ is carried out. Let st ′G be the current
global state. Since the cRBAC system is correct, for all users u ∈ Ur, Pr(ϕ(st

′
G), u) ⊆

Qr(st
′
G, u) should hold with probability 1 according to Lemma 1. We let a user u0 ∈ Ur

keeps its current local state stu0 and refuses to get it updated in future, which means u0

will ignore all the update messages sent from the manager from now on. After the se-
quence of RBAC administrative commands in q⃗ is carried out, the global state becomes
st ′′G. Now, by assumption, FSP(q⃗, st ′G) and LSP(q⃗, st ′G, Uw) holds with non-negligible
probability ϵ0. In the case that both of the two properties are satisfied simultaneously,
the state of the file system and the local states of the users in Uw remain the same. It
implies that Qr(st

′
G, u) = Qr(st

′′
G, u) but Pr(ϕ(st

′′
G), u) ← Pr(ϕ(st

′
G), u) \ Pr with

overviewming probability, which leads to a violation of the Lemma 2. Therefore, we
can conclude that the cRBAC system cannot be both correct and secure with respect to
read access. ⊓⊔

We have the following lower bound for cRBAC systems which preserve both cor-
rectness and write security (see Appendix A.2). The proof of it can be carried out in a
similar manner. But it is obtained via a weaken security definition of secure write access
where the manager will carry out the read operation to the specified file instead of the
user chosen by the adversary.

Theorem 4. For any cRBAC system which is correct and secure with respect to write
access, it holds that:

Pr

[
stG←$ Init(1λ, R); stG

Q⃗−→ st ′G;∀q⃗ ∈ Uw↓Pw(ϕ(st
′
G)) :

FSP(q⃗, st ′G) ∧ LSP(q⃗, st ′G, Ur)

]
≤ ϵ,

where Q⃗ is any non-trivial execution for the system, st ′G = (st ′M , fs ′, {st ′u}u∈U ′),
ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′), Uw ⊆ U ′, Pw ⊆ {(o,write)|o ∈ O′}, Ur =
{u|∀(o,write) ∈ Pr : HasAccess(u, (o,read))} and ϵ is a negligible function in λ.

5 Conclusion

We proposed two new formal security definitions for cRBAC systems in the game-
based setting. The first one is called past confidentiality, which captures the security
concern of unauthorised access to the previous versions of the files. We show that this
security definition is strictly stronger than the existing one for secure read access. The
other security definition we proposed is called local correctness, which captures the
security concern from the insider of the system which might undermine data availability.
We presented two lower bounds for secure cRBAC systems, which explain where the
inefficiency stems from in such systems that support for permission revocation.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, August 1983.

2. James Alderman, Jason Crampton, and Naomi Farley. A framework for the cryptographic
enforcement of information flow policies. In Proceedings of the 22nd ACM on Symposium
on Access Control Models and Technologies, SACMAT 2017, Indianapolis, IN, USA, June
21-23, 2017, pages 143–154, 2017.

3. Mrinmoy Barua, Xiaohui Liang, Rongxing Lu, and Xuemin Shen. ESPAC: enabling security
and patient-centric access control for ehealth in cloud computing. IJSN, 6(2/3):67–76, 2011.

4. Michael Clear, Arthur Hughes, and Hitesh Tewari. Homomorphic encryption with ac-
cess policies: Characterization and new constructions. In Progress in Cryptology -
AFRICACRYPT 2013, 6th International Conference on Cryptology in Africa, Cairo, Egypt,
June 22-24, 2013. Proceedings, pages 61–87, 2013.

5. Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy privacy in
cryptographic access control. In IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015, pages 46–60, 2015.

6. Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Cryptographically enforced
RBAC. In 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, June 26-28, 2013, pages 115–129, 2013.

7. David K. Gifford. Cryptographic sealing for information secrecy and authentication. Com-
mununications of the ACM, 25(4):274–286, 1982.

8. Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in distributed storage
and a cryptographic model for access control. IACR Cryptology ePrint Archive, 2005:169,
2005.

9. Jie Huang, Mohamed A. Sharaf, and Chin-Tser Huang. A hierarchical framework for secure
and scalable EHR sharing and access control in multi-cloud. In 41st International Con-
ference on Parallel Processing Workshops, ICPPW 2012, Pittsburgh, PA, USA, September
10-13, 2012, pages 279–287, 2012.

10. Luan Ibraimi. Cryptographically enforced distributed data access control. University of
Twente, 2011.

11. William C. Garrison III, Adam Shull, Adam J. Lee, and Steven Myers. Dynamic and pri-
vate cryptographic access control for untrusted clouds: Costs and constructions (extended
version). CoRR, abs/1602.09069, 2016.

12. Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: encryption-based access control in
social networks with efficient revocation. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China,
March 22-24, 2011, pages 411–415, 2011.

13. Bin Liu and Bogdan Warinschi. Universally composable cryptographic role-based access
control. In Liqun Chen and Jinguang Han, editors, Provable Security - 10th International
Conference, ProvSec 2016, Nanjing, China, November 10-11, 2016, Proceedings, volume
10005 of Lecture Notes in Computer Science, pages 61–80, 2016.

14. Saiyu Qi and Yuanqing Zheng. Crypt-dac: Cryptographically enforced dynamic access con-
trol in the cloud. IEEE Trans. Dependable Secur. Comput., 18(2):765–779, 2021.

15. Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption for fine-grained
access control in cloud storage services. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 735–737, 2010.

16. Stefan G Weber. Designing a hybrid attribute-based encryption scheme supporting dynamic
attributes. IACR Cryptology ePrint Archive, 2013:219, 2013.

17. Yan Zhu, Gail-Joon Ahn, Hongxin Hu, and Huaixi Wang. Cryptographic role-based security
mechanisms based on role-key hierarchy. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2010, Beijing, China, April
13-16, 2010, pages 314–319, 2010.

A Security definitions of cRBAC schemes in [5]

A.1 Secure Read Access

A cRBAC system is said to be secure with respect to read accesses if no user can deduce
any partial content of a file without having the read permission. It is formalised via the
following experiment Expread

Π,A which involves a challenger who plays as the manager
of a cRBAC system and an adversary A. During the game, the adversary can choose
two messages to be written to a file of which it does not have the read permission. Then
one of the two messages will be written to that file and A’s goal is to determine which
of the messages it is.

Definition 6 (Secure Read Access). A cRBAC system Π defined by the cRBAC scheme
(Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,
RevokePerm, Read, Write, Update) is secure with respect to read access if for any
probabilistic polynomial-time adversary A, it holds that

Advread
Π,A(λ) :=

∣∣Pr[Expread
Π,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where Expread

Π,A is defined as follows:

Expread
Π,A(λ)

b←$ {0, 1}; Cr ,Ch ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Oread)

return (b′ = b)

The oracles Oread that the adversary has access to are specified in Figure 4.

A.2 Secure Write Access

A cRBAC system is said to be secure with respect to write access if no user can write
some content to a file without having the permission. Particularly, in the case of open-
accessible file system, the content wrote by an unauthorised user should not be con-
sidered as valid. It is formalised by the following experiment Expwrite

Π,A. The adversary
needs to specify a target file with an honest user and its wins the game if it can manage
to write any valid content (read by the honest user) without the help of any authorised
user. To prevent trivial wins, from the point when the last write operation to the target
file is carried out by an honest user who has the permission till A generates its output,
no corrupt user can get write access to the target file.

Definition 7. A cRBAC system Π defined by the cRBAC scheme (Init, AddUser, DelUser,
AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm, Read,
Write, Update) is secure with respect to write access if for any probabilistic polynomial-
time adversaries A, we have

Advwrite
Π,A(λ) := Pr

[
Expwrite

Π,A(λ)→ true
]

CMD(arg)

(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach u ∈ Cr AND o ∈ Ch:
if ∃r ∈ R:
(u, r) ∈ UA′ ∧ ((o, read), r) ∈ PA′

then return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :
if u /∈ U then Cr ← Cr \ {u}

foreach o ∈ Ch:
if o /∈ O then Ch ← Ch \ {o}

foreach u ∈ U \ Cr :
stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
foreach o ∈ Ch:

if HasAccess(u, (o,read)) then

return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

return fs

CHALLENGE(u, o,m0,m1)

if ¬HasAccess(u, (o,write)) then
return ⊥

if |m0| ̸= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o,read)) then

return ⊥
Ch ← Ch ∪ {o}
fs ←$ Write(stu, fs, o,mb)

return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 4. Oread: Oracles for defining the experiment Expread
Π,A.

is negligible in λ, where Expwrite
Π,A is defined as follows:

Expwrite
Π,A(λ)

Cr ,T ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

o∗←$A(1λ : Owrite)

if T [o∗] ̸= adv ∧ T [o∗] ̸= Read(stM , fs, o∗) then

return true

else return false

The oracles Owrite that the adversary has access to are specified in Figure 5

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

if Cmd = “DELOBJECT” then

Parse arg as o; T [o]← ∅
if Cmd = “DELUSER” then

Parse arg as u; Cr ← Cr \ {u}
foreach o ∈ O:

if ∃u′ ∈ Cr : HasAccess(u′, (o,write)) then

T [o]← adv

foreach u ∈ U \ Cr :
stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
foreach o ∈ O:

if HasAccess(u, (o,write)) then

T [o]← adv

Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

foreach u′ ∈ Cr :
if HasAccess(u′, (o,write)) then

return fs

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 5. Owrite: Oracles for defining the experiment Expwrite
Π,A.

