
Cryptographic Role-Based Access Control,
Reconsidered ⋆

Bin Liu1, Antonis Michalas1,2, and Bogdan Warinschi3,4

1 Tampere University
2 RISE Research Institutes of Sweden

3 DFINITY
4 University of Bristol

{bin.liu,antonios.michalas}@tuni.fi
csxbw@bristol.ac.uk

Abstract. The heavy reliance on reference monitors is a significant shortcom-
ing of traditional access control mechanisms since monitors are single points of
failure that need to run in protected mode and have to be permanently online to
deal with every access request. Cryptographic access control offers an alternative
solution that provides better scalability and deployability. It relies on security
guarantees of the underlying cryptographic primitives and also the appropriate
key distribution/management in the system. In order to rigorously study security
guarantees that a cryptographic access control system can achieve, providing for-
mal security definitions for the system is of great importance, since the security
guarantee of the underlying cryptographic primitives cannot be directly translated
into those of the system.
In this paper, we follow the line of the existing study on cryptographic enforce-
ment of Role-Based Access Control (RBAC). Inspired by the study of the relation
between the existing security definitions for such systems, we identify two differ-
ent types of attacks which cannot be captured by the existing ones. Therefore, we
propose two new security definitions towards the goal of appropriately modeling
cryptographic enforcement of Role-Based Access Control policies and study the
relation between our new definitions and the existing ones. In addition, we show
that the cost of supporting dynamic policy updates is inherently expensive by pre-
senting two lower bounds for such systems which guarantee the correctness and
secure access.

1 Introduction

Traditional access control mechanisms heavily rely on reference monitors, meaning sin-
gle points of failure operating under protected mode. This approach must be critically
re-examined, while permanently online access control mechanisms are necessary in or-
der to serve all access requests by users The mechanism inherent limitations greatly af-
fect application scalability and deployability. This issue can be addressed with the help

⋆ This work was partially funded by the HARPOCRATES project, Horizon Europe and the
Technology Innovation Institute (TII), Abu Dhabi, United Arab Emirates, for the project
ARROWSMITH: Living (Securely) on the edge.

of cryptographic techniquesby enforcing access control policies with the help of cryp-
tographic primitives. This alternative approach is referred to as cryptographic access
control. It aims at reducing or even eliminating monitor reliance, since in cryptographic
access control policy enforcement is achieved in an indirect way: the data is protected
by cryptographic primitives and the policies are enforced by distributing the appropriate
keys to the appropriate users.

A main concern in the existing cryptographic access control studies is the gap be-
tween the specifications of access control policies enforced and the actual implementa-
tion of the access control systems. In traditional monitor-based access control mecha-
nisms, the correct enforcement of access control policies holds by design. However, in
cryptographic access control, the issue becomes more complex The enforcement relies
on security guarantees by underlying cryptographic primitives and also on the appropri-
ate key distribution/management. Even though some advanced cryptographic primitives
are seemingly well-suited for cryptographic access control, their security guarantees
cannot be directly translated to security guarantees for the entire system. It is a com-
mon understanding that there is often a gap between primitives and the applications
motivating them. The gap is obscured by uses of similar terms and jargon at both the
application and the primitive level. It is unfortunate that in the case of primitives, the
security of the motivating application is often omitted.

Formal security definitions for cryptographic access control systems are of crucial
importance in order to bridge this gap. However, formal security definitions is often
neglected in the existing research on cryptographic access control. There have been
some initial works in this area that focus on new primitives motivated by access control
systems [7, 2, 13] and on access control systems based on said primitives [9, 12, 14, 6].

Throughout the literature, rigorous definitions that examine the security of systems
for access control have only been heuristically studied. In the aim of reasoning about the
confinement problem, Halevi et al. proposed a simulation-based security definition for
access control on a distributed file storage system [5]. Their result concerns a particular
system rather than a general one. Ferrara et al. defined a precise syntax for cryptographic
role-based access control (cRBAC) systems and proposed a formal security definition
with respect to secure read access in [4]. Following, they extend their results in a setting
that supports write access [3], their goal being to reduce the need for trusted monitors
mediation for every write access request. Liu et. al. studied security of cRBAC systems
in the UC framework [10]. They proposed a UC security definition for such systems
and also showed an impossibility result that such security cannot be achieved due to the
commitment problem.

Garrison III et al. studied the practical implications of cryptographic access con-
trol systems implementing RBAC policies [8]. They analysed the computational costs
of two different constructions of cryptographic role-based access control systems via
simulations with the use of real-world datasets. Their results indicate that supporting
a dynamic access control policy enforcement may prove prohibitively expensive, even
under the assumption that write access is enforced with the minimum use of reference
monitors.

NEW SECURITY DEFINITIONS. The results presented in [10] show a gap between game-
based and simulation-based security definitions for cRBAC systems, which raises the
following question:

Do the existing security definitions appropriately capture the secure enforcement of
access control policies?

The first security definition is called past confidentiality and refers to security con-
cerns by users, who acquire unauthorised read access to the previous file versions. It
serves as a refinement to the existing definition of read security for cRBAC systems. In
traditional monitor-based access control, when a user acquires access to the authorised
file, only the current content will be available. By ”previous contents” we refer to pre-
vious file versions written in the past and not considered a part of the current content
of the file. In cryptographic access control, due to the file system’s publicaccessibility,
users can easily obtain previous file versions (even in an encrypted form) by simply
monitoring the state of the file system. Therefore, a user recently granted the read per-
mission of a file might retrieve previous contents written at a time when it did not have
access permission - this can be considered as a violation of the implemented access
control policy.

Game-based security definitions in the existing work do not appropriately capture
the security concern mentioned above [4, 3]. One should keep in mind that in games
that define security with respect to read access, the adversary is not allowed read access
to challenge files at any point during the game. This restriction on the adversary leads
to the attack mentioned above not being ruled out. In fact, the attack can be easily
carried out in the constructions proposed in [4, 3]. Interestingly, some recently proposed
constructions of cryptographic access control systems pose a similar security concern
[1, 8, 11], though they have been proven to securely enforce the corresponding access
control policies within their individual frameworks.

LOWER BOUNDS FOR SECURE CRBAC SYSTEMS. Garrison III et al. studied the prac-
tical implications of using cryptography to enforce RBAC policies in their recent work
[8]. They considered a system model making the necessary use of reference monitors
to enforce access control on write access and to maintain the metadata of each file in
the file system. For this purpose, they developed two different constructions of cryp-
tographic RBAC systems: one is developed with identity-based encryption (IBE) and
identity-based signature (IBS) schemes, while the other one is based on traditional pub-
lic key cryptography and makes use use of public key infrastructure (PKI). In order
to analyse construction costs they carried out the simulation over real-world RBAC
datasets to generate traces. Their experimental results show that even with the min-
imum use of reference monitors, the computational costs of the cryptographic RBAC
systems supporting the idea of a dynamic policy update are still prohibitively expensive.

Motivated by Garrison III et al.’s work, we study lower bounds for secure cRBAC
systems to locate the source of the inefficiency. We show that the costs are inherent
in secure cRBAC systems and also in those cryptographic access control systems that
greatly or solely rely on cryptographic techniques to enforce access control on both read
and write access. The main idea is, since the manager is not involved in any read and

write operation in the file system, both the users’ local states and the file system should
reflect the enforcement of the access control policy. Whenever a policy update occurs,
the system may inevitably require re-keying and re-encryption to preserve secure access
and system correctness. We present two lower bounds for secure cRBAC systems. Our
results can be valuable in the design of such systems for practical purposes.

2 Preliminaries

2.1 Notations

For assignment, we write x← y to denote the assignment of the value y to the variable
x. If S is a set, x←$ S denotes that x is being assigned with a value selected uniformly
at random from S. Let A be an algorithm, x← A(y) denotes the assignment of x with
the output of running it on the input y, if A is deterministic, while we write x←$A(y)
for the assignment, if A is probabilistic.

For any integer n ≥ 0, we write 1n to denote the string of n 1s. If S is a set, |S|
denotes its size. If s is a string, |s| denotes its length. Given two strings s0 and s1, s0∥s1
denotes their concatenation. ϵ denotes the empty string. ⊥ denotes an error, though its
meaning depends on the context: it could indicate a decryption error or an error returned
by an oracle due to an invalid oracle query.

We say f is a negligible function, if for every positive polynomial p, there exists an
integer N such that for all integers n > N , it holds that f(n) < 1

p(n) .

2.2 Role-Based Access Control

Role-Based Access Control (RBAC) is one of the most popular access control models
adopted in large-scale systems. RBAC introduces the significant concept of roles, which
are typically associated to a collection of job functions. Roles allow for specifying ac-
cess control policies that naturally map the organisation structures and therefore reduce
complexity when administering permissions. RBAC policies are decomposed into two
assignments: the user-role assignment and the permission-role assignment. A user is
authorised to a permission, if a user role has been assigned with the permission. In this
paper, we will only focus on core RBAC, as it is the most common between the standard
models.

The state of a (core) RBAC system consists of:

– U : a finite set of users,
– R: a finite set of roles,
– O: a finite set of objects,
– P : a finite set of permissions, where each permission is an object-operation pair,
– UA ⊆ U ×R: a relation modelling the user-role assignment,
– PA ⊆ P ×R: a relation modelling the permission-role assignment,

For simplicity we assume that the set of roles R is fixed, since role structures in
organisations are less frequent to change. Therefore, the state of an RBAC system over
a fixed role set R is a tuple (U,O, P,UA,PA). We describe an RBAC system in terms

of a state-transition system. We define the set of state-transition rules RULES as the
RBAC administrative commands. Given two states S = (U,O, P,UA,PA) and S′ =
(U ′, O′, P ′,PA′,UA′), there is a transition from S to S′ with q ∈ RULES denotes
S

q−→S S′, if one of the following conditions holds:

– [AddUser] q = (AddUser, u), u /∈ U , U ′ = U ∪ {u}, O′ = O, P ′ = P ,
PA′ = PA and UA′ = UA;

– [DelUser] q = (DelUser, u), u ∈ U , U ′ = U \ {u}, O′ = O, P ′ = P , PA′ = PA
and UA′ = UA \ {(u, r) ∈ UA ∥ r ∈ R)};

– [AddObject] q = (AddObject, o), o /∈ O, O′ = O ∪ {o}, U ′ = U , P ′ =
P ∪ {(o,read), (o,write)}, PA′ = PA and UA′ = UA;

– [DelOject] q = (DelObject, o), o ∈ O, O′ = O \{o}, U ′ = U , P ′ = P \{(o, ·)},
PA′ = PA \ {((o, ·), r) ∈ PA ∥ r ∈ R)} and UA′ = UA;

– [AssignUser] q = (AssignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA and UA′ = UA ∪ {(u, r)};

– [DeassignUser] q = (DeassignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA and UA′ = UA \ {(u, r)};

– [GrantPerm] q = (GrantPerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA ∪ {(p, r)} and UA′ = UA;

– [RevokePerm] q = (RevokePerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,
P ′ = P , PA′ = PA \ {(p, r)} and UA′ = UA.

An execution of an RBAC system is a finite sequence of transitions S0
q0−→S S1

q1−→S
. . .

qn−→S Sn+1, where S0 is called the initial state of the RBAC system.
We denote the read permission and the write permission of a file o ∈ O by (o,read)

and (o,write) respectively. A predicate HasAccess(u, p) reflects that a user u has sym-
bolicalaccess to a permission p. It is defined as follows:

HasAccess(u, p)⇔ ∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA

2.3 System Model and Syntax

The system model we consider in this paper is the one proposed by Ferrara et al. in [3].
In their system model, a versioning append-only file system is employed for enforcing
access control on (quasi-) unrestricted read and write access to the files. Hence, the need
for online monitors is eliminated.

It should be noted that using a file system of this kind, does not consist a limitation.
In contrast, it allows for modelling a general class of access control systems. Since the
file system itself does not implement any access control mechanisms and the enforce-
ment of access control policies on files is handled using cryptography solely, it can be
used to apprehend data outsourcing scenarios, where hosting trusted reference monitors
is impossible. Users may even be able to keep track of files (e.g. storing data on public
clouds, repositories, decentralised distributed storage networks, etc.).

We consider a cRBAC system as consisting of three main entities: a manager, a file
system and a set of users.

The manager is responsible for the administration of access control policies. More
specifically, it is in charge of executing RBAC administrative commands that could
involve key management/distribution and data encryption/re-encryption. In contrast to
the traditional access control policy enforcer (i.e. the reference monitor) that has to be
placed in the critical path to check whether an access request is considered compliant
to the policy, the manager does not involve any read and write access to the file system.
In addition, the manager is assumed to be a trusted party.

The file system is tasked with storing the files subjected to access control and it
is publicly accessible to users. In the implementation phase, the system could contain
arrays of encrypted files and the related metadata. The file system is assumed to be un-
trusted in terms of data privacy, but it guarantees availability of the data it stores. Con-
sider that if users are provided unrestricted write access to the file system, no amount
of cryptographic techniques can prevent a malicious user from overwriting the existing
contents. Therefore, the file system is further assumed to be append-only andsupporting
versioning. In this case, users can only append contents but not delete any. The append
operations can be interpreted as logical writes to the files. When reading a file, a user
first needs to fetch the file versions and then identifies the most recently ”validated” one
to retrieve the content. As the data owner, the manager may have richer interfaces to the
file system than users. Therefore, it can overwrite the file contents and add/delete files.

Users may have (quasi-) direct and unrestricted read and write access to the file
system without involving the manager. Since the enforcement of access control policies
solely relies on cryptographic primitives and the file system does not implement any
access control functionality, only the users with appropriate keys can get authorised
access to the files.

Secure channels are assumed between each of any two entities. For simplicity, the
execution of any RBAC administrative command is assumed to be implemented by non-
interactive multi-party computations. That is, when executing any RBAC command, the
manager carries out some local computation according to the command to produce up-
date messages for users and potentially updates the file system. Following, update mes-
sages will be sent to the users via secure channels. Once a user receives said message
from the manager, it updates its local state accordingly. The file system proceeds with
the update in a similar manner.

The global state of a cRBAC system at any point during its execution is a tuple
(stM , fs, {stu}u∈U), where stM is the local state of the manager, fs is the state of the
file system and stu is the local state for each user u ∈ U in the system. Since the
manager is tasked with the access control policy administration, the symbolic RBAC
state S = (U,O, P,UA,PA) is considered to be a part of stM . Let ϕ(stG) denote the
RBAC state of the global state stG.

A cRBAC system is defined by a cRBAC scheme which consists of the following
algorithms:

– Init, the initialisation algorithm: A probabilistic algorithm that takes the security
parameter 1λ and a set of roles R as input and outputs the initialised global state of
the cRBAC system.

– AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,
RevokePerm, the RBAC administrative algorithms: Probabilistic algorithms that

implement the corresponding RBAC administrative commands. As mentioned, they
are non-interactive multi-party computations. Each of the algorithms takes the state
of the manager stM , the state of the file system fs and the additional argument for
the command arg as input and outputs the updated state for the manager and the
file system as well as a set of update messages {msgu}u∈U for each user u ∈ U .

– Read, the read algorithm: A deterministic algorithm that allows a user to retrieve
the current content of a file. It takes the local state of a user stu, the current state of
the file system fs and a file name o as input and outputs the current content of the
file o, if the user has the read permission. If not or if the file is empty, the algorithm
returns an error ⊥.

– Write, the write algorithm: A probabilistic algorithm that allows a user to write
content to a file. It takes the local state of a user stu, the current state of the file
system fs , a file name o and the content m as input and outputs the updated file
system.

– Update, the update algorithm: A deterministic algorithm that takes the local state
of a user stu and an update message msgu received from the manager and outputs
the updated local state.

A comment should be made about the updated file system, forming the output part
of some of the algorithms outlined above. More specifically, the algorithms produce
update instructions to be carried out on the file system. For example, after running the
Write algorithm, a user will get the update instruction info that includes the information
of the file name and also the content to be appended to the file system. Then the user
uploads info to the file system and the latter gets updated accordingly. The manager
proceeds similarly, but the update instructions might be different from that of the users
due to the data owner privilege. For simplicity, we will let those algorithms output
the updated file system. In terms of effect, all the above algorithms except Read can
potentially update the global state of the cRBAC system. Therefore, we may write the
execution of a cRBAC algorithm in the following form:

stG
Q−→ st ′G ⇔ st ′G←$ A(stG, arg),

where A is one of the algorithms defined above (except for Read), arg is its arguments,
Q is an implementation of the algorithm, stG and st ′G are the global states of the cRBAC
system.

Let Q⃗ = (Q0, ..., Qn). We write the execution trace of the cRBAC system as:

stG0

Q⃗−→ stGn+1
⇔ stG0

Q0−−→ stG1

Q1−−→, ...,
Qn−1−−−→ stGn

Qn−−→ stGn+1
,

where {stGi
}i∈{0,...,n+1} are global states of the cRBAC system.

We say a sequence of operations is efficient, if the length of its execution trace is
polynomially bounded.

We also introduce the following two notations Pr and Or. Pr is the set of objects the
read permissions of which a user has been “symbolically” assigned at a certain point.
Let S = (U,O, P,UA,PA) be the RBAC state of a system:

Pr(S, u)⇔ {o|HasAccess(u, (o,read))}.

Qr is the set of objects of which a user has “computational” read access to, i.e.
the objects whose contents can be retrieved by performing the read operations with the
user’s local state. Consider that some file might be empty (i.e. it contains no content)
after the initialisation, while a user could be granted the read permission of that file.
Therefore, we define Qr as the set of objects so that if any user u′ with write permissions
writes some contents to them at this point, u will be able to read those contents. Let stG
be the global state of a cRBAC system. Qr is defined as:

Qr(stG, u)⇔ {o| ∀u′ ∈ U,m ∈ {0, 1}λ : HasAccess(u′, (o,write))∧
(fs ′←$ Write(stu′ , fs, o,m),m′ ← Read(stu, fs

′, o) : m′ = m)}

3 Security Definitions

In this section, we present our formal security definitions of correctness, past confiden-
tiality and local correctness for cRBAC systems.

3.1 Correctness

Correctness was first proposed by Ferrara et al. in [4], but it was omitted in their later
work [3], where a new system model was introduced to support write access. Therefore,
we will need to reintroduce the definition of correctness.

Intuitively, a cryptographic access control system is said to be correct, if every user
in the system can get access to the resources to which it is authorised according to the
symbolic state of the system. In a cRBAC system enforcing access control on both read
and write access to a publicly accessible file system, the correctness requirements are
specialised as follows:

1. any user that has the read permission of a file should be able to retrieve the current
content of the file by reading it, and

2. the current content of a file written by a user with a write permission will be cor-
rectly read by any user who has a read permission of the file.

We formalise the two requirements above via a game between a challenger, who acts
as a manager of a cRBAC system defined by cRBAC scheme Π and a polynomial-time
adversaryA that attacks the system. The adversary is allowed to request the manager to
execute any RBAC administrative command, such that the symbolic state of the system
evolves according to its queries. The adversary can also request a user to write to the
file system and to query the current state of the file system. At some point of the game,
A needs to show that there exists some user, who cannot correctly retrieve the current
content of a file to which it has read access.

More specifically, we define the following experiment Expcorr
Π,A. The experiment

maintains the symbolic RBAC state of the system State , which is set to be (∅, ∅, ∅, ∅, ∅)
initially, and an object-indexed list T to record the contents written to the files by au-
thorised users.

After the initialisation of the cRBAC system with a fixed set of roles R, the adver-
sary can ask for the execution of any RBAC administrative command by calling the

oracle CMD. Upon receiving a query that consists of an RBAC command Cmd and its
arguments arg , the oracle will execute the command symbolically and run the algo-
rithm Cmd, which implements the command. Then the adversary will be provided the
current state of the file system fs as a response. The oracle WRITE allows the adversary
to request a user u to write some content m to a specified file o. If u has the write per-
mission of o , the oracle runs the write algorithm Write to carry out the write operation
and then sets T [o] ← m. In addition, the adversary can check the current state of the
file system by calling the oracle FS with the query “STATE”.

In this experiment, the adversary is not allowed to take over any user in the system
nor to update the file system on its own. At some point, A outputs a user-object pair
(u∗, o∗) and the experiment terminates here. In the case that u∗ has the read permission
of o∗ but the content that it can retrieve from o∗ by running the read algorithm Read
does not match the record in T [o∗], the adversary wins the game. Correctness is defined
by requiring any probabilistic polynomial-time adversary cannot win the above game
with probability greater than 0.

Definition 1 (Correctness). A cRBAC system Π defined by a cRBAC scheme for a fixed
set of roles R is correct if for any probabilistic polynomial-time adversary A, it holds
that

Advcorr
Π,A(λ) := Pr

[
Expcorr

Π,A(λ)→ true
]

is 0, where the experiment Expcorr
Π,A is defined as follows:

Expcorr
Π,A(λ)

T ← ∅; State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ocorr)

if HasAccess(u∗, (o∗,read)) ∧ T [o∗] ̸= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ocorr that the adversary has access to are specified in Figure 1.

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U :
stu ← Update(stu,msgu)

return fs

WRITE(u, o,m)

if ¬HasAccess(u, (o,write)) then
return ⊥

fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

Fig. 1. Ocorr: Oracles for defining the experiment Expcorr
Π,A.

3.2 Past confidentiality

In the extended cRBAC system model, the enforcement of access control on write ac-
cess is supported by employing a versioning file storage, where users can append con-
tents only. The versioning file storage allows users to have (quasi-) unrestricted read
and write access to the file system, but it is also accompanied by subtle security is-
sues, though the file system itself does not implement any access control mechanism.
One of the security issues relates to unauthorised access to the previous contents.This
is a severe security concern in cryptographic access control, but not when concerning
traditional mechanisms. Unfortunately, the existing game-based security definitions for
secure read access do not suffice to capture this security concern. We propose the fol-
lowing security definition called past confidentiality which is improved over the one
presented in [3].

The security property is formalised via the following experiment Exppc
Π,A, which

proceeds similarly to the experiment that defines read security in [3]. However, the
adversary here is allowed to corrupt the users, who have the read permission of the
challenge files under certain conditions. More specifically, the adversary is not allowed
to corrupt any user in a position to read the challenge contents (rather than the challenge
files in the read security game), until said challenge contents are no longer the current
contents of the files. The adversary’s goal is still to determine a random bit b←$ {0, 1},
which is selected at the beginning of the game.

The experiment maintains the symbolic RBAC state of the system Stateinitialised
as (∅, ∅, ∅, ∅, ∅) and updated according to A’s request for the execution of RBAC com-
mands. The experiment maintains the following lists during the execution: Cr for the
corrupt users, Ch for the files of which some contents have been specified as challenges,
L for the users who have read access to the challenge contents and Ud for the files of
which the current contents are specified as challenges.

In the experiment, the adversary can request any RBAC administrative command
for execution, taking over users and requesting an honest user to write to a file with
the content it specifies. The adversary can query the current state of the file system and
also write (append) some new content to it. A can ask for a challenge by specifying
a tuple (u, o,m0,m1), where u is a user that has the write permission of the file o,
m0 and m1 are two messages of the same length. Then the challenger will carry out
Write(stu, o,mb) and provide the current state of the file system to the adversary as the
response. A can ask for multiple challenges. When A terminates with an output b′, it
wins the game if b′ = b.

To prevent the adversary from winning the game trivially by corrupting a user, with-
read access to the challenge contents, the experiment maintains the following invariants:

1. No user in Cr can have read access to any file o in Ud : the adversary is not allowed
to request read permission of any file from a corrupt user, if the file’s current content
is specified as a challenge.

2. No user in the list L can be corrupted: any user with direct access to the challenge
contents cannot be taken over by the adversary.

Definition 2 (Past Confidentiality). A cRBAC system Π defined by a cRBAC scheme
for a fixed set of roles R is said to preserve past confidentiality when for any proba-

bilistic polynomial-time adversary A, it holds that

Advpc
Π,A(λ) :=

∣∣Pr[Exppc
Π,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where the experiment Exppc

Π,A is defined as follows:

Exppc
Π,A(λ)

b←$ {0, 1}; Cr ,Ch,L,Ud ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Opc)

return (b′ = b)

The oracles Opc that the adversary has access to are specified in Figure 2 and
discussed below.

The oracle CMD allows the adversary to request for the execution of any valid
RBAC command. When A’s query leads to an update to Cr , Ch , L or Ud , the lists
get updated accordingly. When a user in L loses the read permission of any file in Ch ,
the file will be removed from the list L. When A requests to grant an honest user with
a read permission for the files in Ud , the user will be added to L.

When the adversary requests an honest user to write content to a file, the current
content of which is specified as a challenge, the file will be removed from the list Ud .
From then on, the file’s read permission can be granted to a corrupt user. When A re-
quests to place a challenge by calling the oracle CHALLENGE, the oracle returns an
error, if there exists some corrupt user that has read access to the specified file. Other-
wise, it carries out the write operation and adds the file to lists Ch and Ud .

Compared to the adversary in the game that defines the read security of a cRBAC
system, the adversary in the past confidentiality game is obviously more powerful, as it
has the ability to take over the users who can acquire read access to the challenged files
under certain restrictions. The following theorem confirms the implication between the
two security definitions.

Theorem 1. Past confidentiality is strictly stronger than secure read access.

Proof sketch. First, we briefly show that any cRBAC system preserving past confiden-
tiality is secure in terms of read access. Given any adversary A attacking a cRBAC
system with respect to read security, an adversary B for past confidentiality can be eas-
ily constructed. After the initialisation of the cRBAC system in its own game, B runs a
local copy of A with the input of the file system’s initial state received from the chal-
lenger. Then B starts to simulate the read security game forAwith the use of the oracles
it has access to. During the simulation, B does not maintain the global state of the cR-
BAC system. It only keeps the two lists: Cr for corrupt users and Ch for the challenge
files, as defined in the read security game. Following, B simply forwards any query
received from A, to the same oracles in its game and replies A with the response it
received. IfA’s query violates the restrictions of the read security game (i.e. by granting
any user in Cr the read permission of the files in Ch), B responds with an error and

CMD(Cmd , arg)

(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach (u, o) ∈ Cr ×Ud :
if ∃r ∈ R: (u, r) ∈ UA′

∧ ((o,read), r) ∈ PA′ then

return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U \ L :

if ∃o ∈ Ud : HasAccess(u, (o,read)) then

L← L ∪ {u}
foreach u ∈ L:
if ∄o ∈ Ch : HasAccess(u, (o,read))

∨u /∈ U then

L← L \ {u}
foreach o ∈ Ch:

if o /∈ O then

Ch ← Ch \ {o};Ud ← Ud \ {o}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U ∨ u ∈ L then

return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

If u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

if o ∈ Ch then

Ud ← Ud \ {o}
return fs

CHALLENGE(u, o,m0,m1)

if ¬HasAccess(u, (o,write)) then
return ⊥

if |m0| ̸= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o,read)) then

return ⊥
fs ←$ Write(stu, fs, o,mb)

foreach u′ ∈ U :
if HasAccess(u′, (o,read)) then

L← L ∪ {u′}
Ch ← Ch ∪ {o};Ud ← Ud ∪ {o}
return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 2. Opc: Oracles for defining the experiment Exppc
CRBAC,A.

ignores the query. Whenever A outputs a guess of the random bit, B outputs the same
bit in its game.

We will now argue that the simulation B provides is perfect. First, the global states
in both B’s game and the simulated game are identical. Secondly, not all of A’s oracle
queries will violate the restrictions of the game that defines past confidentiality, since
queries from A not violating the invariant in the read security game will not violate the
invariants in the past confidentiality game. Moreover, the simulated game fully depends
on the random bit chosen in B’s game, thus B wins its game with the same probability as
A wins the simulated game. Therefore, any cRBAC system not secure with read access
does not preserve past confidentiality.

In addition, the construction of cRBAC scheme presented in [3] has been proven
to be secure with respect to read access. But clearly it does not preserve past confiden-
tiality, because granting the read permission of any file to a user will allow it to access

the previous contents encrypted under the same public key. Therefore, we can conclude
that past confidentiality is strictly stronger than secure read access. ⊓⊔

3.3 Local Correctness

The local correctness of a cRBAC system can be considered as a sort of correctness,
though it is not implied by correctness. It captures the threat from “insiders” with re-
spect to data availability. The append-only versioning file system allows users to get
(quasi-) unrestricted write access to the files, but it also poses a new security concern:
a user who has the write permission of a file might be able to invalidate the file’s future
versions written by authorised users. Local correctness guarantees that these systems
thwart.

This security requirement is formalised via the following experiment Expl-corr
Π,A that

involves an adversaryA. The experiment maintains a list Cr to record the corrupt users
and another object-indexed list T to record the contents written to files by the honest
users. After the initialisation of the cRBAC system, the adversary can request the exe-
cution of any RBAC administrative command, taking over any user and writing content
to a file on behalf of any honest user. A can also query for the current state of the file
system and request to append arbitrary content to it.

The use of the list T here is to record whether the files have been unauthorised
touched (rather than authorised write access) or not. When an honest user writes some
content to a file o, the content will be recorded in T [o]. If the adversary requests to
update the file by appending any entry to it, T [o] will store a special value adv, which
means the file has been touched after the previous authorised write access.

The experiment terminates when the adversary outputs an user-object pair (u∗, o∗),
where u∗ has the read permission of o∗. A wins the game if the content of o∗ read by
u∗ is different from the record in T [o∗] while T [o∗] cannot be the special value adv.

Definition 3 (Local Correctness). A cRBAC system Π defined by a cRBAC scheme
for a fixed set of roles R is said to preserve local correctness, if for any probabilistic
polynomial-time adversary A, it holds that

Advl-corr
Π,A (λ) := Pr

[
Expl-corr

Π,A (λ)→ true
]

is negligible in λ, where Expl-corr
Π,A is defined as follows:

Expl-corr
Π,A(λ)

T ,Cr ← ∅;State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ol-corr)

if T [o∗] ̸= adv ∧ T [o∗] ̸= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ol-corr that the adversary has access to are specified in Figure 3.
We further show that the cRBAC construction proposed by Ferrara et al. in [3]

preserves this security property.

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :
if u /∈ U then

Cr ← Cr \ {u}
if Cmd = “DELOBJECT” then

Parse arg as o; T [o]← ∅
if Cmd = “DELUSER” then

Parse arg as u; Cr ← Cr \ {u}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {stu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

Parse info as (o, c)
T [o]← adv; fs ← fs∥info
return fs

Fig. 3. Ol-corr: Oracles for defining the experiment Expl-corr
Π,A.

Theorem 2. If both the predicate encryption scheme and the digital signature scheme
are correct, the construction in [3] preserves local correctness.

Proof sketch. We will show that in this cRBAC construction, no matter how the adver-
sary touches a file, any content written by an authorised user will be correctly retrieved
by another user, with the read permission of the file.

The specification of their write algorithm Write, shows us that the algorithm will
come up with a new entry to be appended to the file. The content of the new entry is
completely independent from any of the previous entries and it only depends on the
next available index of the file versions and also the metadata stored in the header of
said file. Since the file system is assumed to preserve correct ordering of the file and the
metadata can only be updated by the manager, these two parameters will not be affected
by any corrupt user’s behaviours to the file system. In case, a different option would be
that the predicate encryption scheme or the signature scheme are not correct therefore
the authorised user cannot correctly retrieve the content written to the target file. Thus,
we can conclude that the construction preserves local correctness under the assumption
that both the predicate encryption scheme and the digital signature are correct. ⊓⊔

4 Lower Bounds for secure cRBAC systems

In this section, we present two lower bounds for secure cRBAC systems. By lower
bounds, we refer to the efficiency implications of secure cRBAC systems. To some ex-
tent, our results explain why cRBAC systems supporting dynamic policy updates may

be prohibitively expensive: permission revocation can be costly. Prior to presenting our
results, we will introduce a technical term called Permission Adjustment for an RBAC
system. Informally, permission adjustment is a sequence of administrative commands
changing the access rights of some users with respect to a set of permissions. In com-
parison with any sequence of typical RBAC administrative commands that might not
bring any change to the access matrix of the system, permission adjustment emphasises
the change it will bring to the access matrix. The term can be better understood using
the following example. Consider that a user that has been deassigned from a reviewer
role still has access to the conference papers, as the user may also serve as a programme
committee member. This allows the user to get authorised access. However, for the per-
mission adjustment of cancelling its access to the papers, the user will no longer be able
to do so due to the change on the access control policy.

Definition 4. (Permission Adjustment) Let S0 = (U,O, P,UA,PA) be the state of an
RBAC system over a set of roles R. Given a set of users Ũ ⊆ U and a set of permis-
sions P̃ ⊆ P , where both Ũ and P̃ are non-empty, a sequence of RBAC administrative
commands q⃗ = (q0, ..., qn) is called a permission adjustment for S0 with respect to Ũ
and P̃ :

(1) if ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p) holds for S0 and after a sequence of
transitions S0

q0−→S S1
q1−→S , . . . ,

qn−1−−−→S Sn
qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ :

HasAccess(u, p) holds for Sn+1 or
(2) if ∀u ∈ Ũ , p ∈ P̃ : HasAccess(u, p) holds for S0 and after a sequence of transitions

S0
q0−→S S1

q1−→S , . . . ,
qn−1−−−→S Sn

qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p)
holds for Sn+1.

We denote the set of all possible q⃗ in case (1) by Ũ↑P̃ (S0) and the set of all possible q⃗
in case (2) by Ũ↓P̃ (S0).

In addition, we introduce two key properties with respect to efficiency.

Definition 5. Let stG = (stM , fs, {stu}u∈U) be the global state of a cRBAC system
over a set of roles R at some point during its execution. Given a sequence of RBAC
administrative commands q⃗ = (q0, ..., qn) and a sequence of efficient operations Q⃗ =
(Q0, ..., Qn) such that for each i ∈ {0, ..., n}: Qi implements the command qi. After
carrying out Q⃗:

(1) if the state of the file system remains unchanged, we say that q⃗ is file system pre-
serving for stG. It is reflected by the following predicate:

FSP(q⃗, stG)⇔ Pr[∀Q⃗ : stG
Q⃗−→ st ′G; fs = fs ′] = 1,

where st ′G = (st ′M , fs ′, {st ′u}u∈U ′) and ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′);

(2) if the local states of a set of users U remain unchanged, we say that q⃗ is U-user
local state preserving for stG. It is reflected by the following predicate:

LSP(q⃗, stG,U)⇔ Pr[∀Q⃗ : stG
Q⃗−→ st ′G;∀u ∈ U : stu = st ′u] = 1,

where st ′G = (st ′M , fs ′, {st ′u}u∈U ′), ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′) and U ⊆
U ′.

Finally, we introduce the concept of non-trivial execution for a cRBAC system. A
non-trivial execution consists of a sequence of operations such that after executing ev-
ery operation in order, for each file in the system, there should exist at least a user that
has the read permission for it and also exist at least a user that has the write permission
for it. The non-trivial execution serves as a mild assumption on the execution of a cR-
BAC system, for the purpose of studying the lower bound of cRBAC systems which are
commonly used in practice. Also, non-trivial execution can prevent trivial implementa-
tions of a cRBAC system. For example, in a cRBAC system that only exists users who
are authorised to read but no user can write to the file system, there is no need to worry
about unauthorised read access because no content will be written to the file system.
Similar situation holds for the case of write security.

Before introducing the lower bounds, we first present following auxiliary results.

Lemma 1. For any correct cRBAC system, it holds that:

Pr[stG←$ Init(1λ, R); stG
Q⃗−→ st ′G;∀u ∈ U : Pr(ϕ(st

′
G), u) ⊆ Qr(st

′
G, u)] = 1,

where Q⃗ an efficient non-trivial execution and ϕ(st ′G) = (U,O, P,UA,PA).

Proof. Assume that for a cRBAC system Π , the probability that after carrying out
the non-trivial execution Q⃗, the system will reach some global state st ′G such that
Pr(ϕ(st

′
G), u) ⊆ Qr(st

′
G, u) holds for all user u ∈ U is ϵ < 1. We show that Π

cannot be correct in such case.
Consider the following adversary A for Expcorr

Π,A(λ). After the system gets ini-
tialised, A is provided λ and then calls the corresponding oracles to carry out Q⃗ in
order. Let st ′G be the current global state of the system. Now A makes a random guess
of a tuple (u, u′, o) ∈ U×U×O and also comes up with a message m ∈ {0, 1}λ. It then
calls the write oracle WRITE with (u′, o,m). If WRITE returns an error, A just termi-
nates here; otherwise A terminates with an outputs (u, o). Since Q⃗ is a finite sequence
of opeartions, A is an polynomial-time adversary.

By assumption, the probability of existing a user ū ∈ U and a file ō ∈ O satisfying
both o ∈ Pr(ϕ(st

′
G), ū) and o /∈ Qr(st

′
G, ū) is 1− ϵ. Since Q⃗ is a non-trivial execution,

the condition o /∈ Qr(st
′
G, ū) further implies that there exists a user ū′ ∈ U has the

write permission of ō such that if the message m is written to ō by ū′ at this point, it
will not be retrieved by correctly by running Read with ū’s local state. Therefore, if A
made a good guess of such ū, ō, ū′, the challenger will not be able to retrieve m. The
advantage that A can gain in the experiment is:

Advcorr
Π,A(λ) ≥

1

|U | · |U | · |O|
,

which is obviously non-zero. Therefore, Π cannot be correct. ⊓⊔

Lemma 2. If a cRBAC system is secure with respect to read access, it holds that:

Pr[stG←$ Init(1λ, R); stG
Q⃗−→ st ′G;∀u ∈ U : Pr(ϕ(st

′
G), u) ⊇ Qr(st

′
G, u)] ≥ 1− ϵ,

where Q⃗ is an efficient non-trivial execution, ϕ(st ′G) = (U,O, P,UA,PA) and ϵ is a
negligible function in λ.

Proof. Assume that for a cRBAC system Π , the probability that after carrying out
the non-trivial execution Q⃗, it will reach some global state st ′G such that for all ϵ,
Pr(ϕ(st

′
G), u) ⊇ Qr(st

′
G, u) holds for all u ∈ U with probability ϵ0 < 1 − ϵ. We

show that Π cannot be secure with respect to read access.
Consider the following adversary A for Expread

Π,A(λ). After being provided the se-
curity parameter λ, A makes queries to the corresponding oracles to carry out Q⃗ in
order. Let st ′G be the current global state of Π . Now A randomly chooses a user
u ∈ U , a file o ∈ O and another user u′ ∈ {u|HasAccess(u, (o,write))}. It then
requests to corrupt u to obtain the local state stu. Next, A calls the challenge oracle
CHALLENGE with (u′, o,m0,m1), where m0,m1 ∈ {0, 1}λ are two random messages
of the same length. If CHALLENGE returns an error, A terminates here and outputs a
random bit. If CHALLENGE returns the updated state of the file system fs ,A then com-
putes m∗ ← Read(stu, fs, o). Finally, it outputs 0 if m∗ = m0 and 1 if m′ = m1;
otherwise, it just outputs a random bit. Since Q⃗ is efficient, A is an polynomial-time
adversary.

It is possible that u has the read permission of o, due to the reason that A chose u
and o randomly from all existing users and files in the system. Therefore, the request
of taking over u might lead to an error returned by CHALLENGE. Notice that A can
read the content written to the file specified as its challenge only when there exist some
user ū ∈ U and ō ∈ O satisfying both ō /∈ Pr(ϕ(st

′
G), ū) and ō ∈ Qr(st

′
G, ū), and

A made a good guess of them. In all the other cases, A has to output a random bit. By
assumption, such ū and ō exist with probability 1 − ϵ0. Then we have, the advantage
that A can gain in the experiment is:

Advread
Π,A(λ) ≥

∣∣(1− ϵ0) ·
1

|U | · |O|
+ (1− ϵ0) · (1−

1

|U | · |O|
) · 1

2
+ ϵ0 ·

1

2
− 1

2

∣∣
=
∣∣1
2
· 1

|U | · |O|
− ϵ0 ·

1

2
· 1

|U | · |O|
∣∣

=
1

2
· 1

|U | · |O|
· (1− ϵ0) >

1

2
· 1

|U | · |O|
· ϵ

which is non-negligible. Hence Π cannot be secure with respect to read access. ⊓⊔

Now we present our first lower bound for cRBAC systems which are both correct
and secure with respect to read access.

Theorem 3. For any cRBAC system which is correct and secure with respect to read
access, it holds that:

Pr

[
stG←$ Init(1λ, R); stG

Q⃗−→ st ′G;∀q⃗ ∈ Ur↓Pr(ϕ(st
′
G)) :

FSP(q⃗, st ′G) ∧ LSP(q⃗, st ′G, Uw)

]
≤ ϵ,

where Q⃗ is any non-trivial execution for the system, st ′G = (st ′M , fs ′, {st ′u}u∈U ′),
ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′), Ur ⊆ U ′, Pr ⊆ {(o,read)|o ∈ O′}, Uw =

{u|∀(o,read) ∈ Pr : HasAccess(u, (o,write))} and ϵ is a negligible function in
λ.

Proof. We prove the theorem by showing that if the above condition is not satisfied, the
cRBAC system cannot be both correct and secure with respect to read access. Assume
by contradiction that there exists a cRBAC system Π which is correct and read secure,
the above condition holds with probability ϵ0, which is greater than any ϵ.

Consider the following attack against the system. After Π is initialised with the
role set R and then the non-trivially execution Q⃗ is carried out. Let st ′G be the current
global state. Since the cRBAC system is correct, for all users u ∈ Ur, Pr(ϕ(st

′
G), u) ⊆

Qr(st
′
G, u) should hold with probability 1 according to Lemma 1. We let a user u0 ∈ Ur

keeps its current local state stu0
and refuses to get it updated in future, which means u0

will ignore all the update messages sent from the manager from now on. After the se-
quence of RBAC administrative commands in q⃗ is carried out, the global state becomes
st ′′G. Now, by assumption, FSP(q⃗, st ′G) and LSP(q⃗, st ′G, Uw) holds with non-negligible
probability ϵ0. In the case that both of the two properties are satisfied simultaneously,
the state of the file system and the local states of the users in Uw remain the same. It
implies that Qr(st

′
G, u) = Qr(st

′′
G, u) but Pr(ϕ(st

′′
G), u) ← Pr(ϕ(st

′
G), u) \ Pr with

overviewming probability, which leads to a violation of the Lemma 2. Therefore, we
can conclude that the cRBAC system cannot be both correct and secure with respect to
read access.

We have the following lower bound for cRBAC systems which preserve both cor-
rectness and write security. The proof of it can be carried out in a similar manner. But
it is obtained via a weaken security definition of secure write access where the manager
will carry out the read operation to the specified file instead of the user chosen by the
adversary.

Theorem 4. For any cRBAC system which is correct and secure with respect to write
access, it holds that:

Pr

[
stG←$ Init(1λ, R); stG

Q⃗−→ st ′G;∀q⃗ ∈ Uw↓Pw(ϕ(st
′
G)) :

FSP(q⃗, st ′G) ∧ LSP(q⃗, st ′G, Ur)

]
≤ ϵ,

where Q⃗ is any non-trivial execution for the system, st ′G = (st ′M , fs ′, {st ′u}u∈U ′),
ϕ(st ′G) = (U ′, O′, P ′,UA′,PA′), Uw ⊆ U ′, Pw ⊆ {(o,write)|o ∈ O′}, Ur =
{u|∀(o,write) ∈ Pr : HasAccess(u, (o,read))} and ϵ is a negligible function in λ.

5 Conclusion

We proposed two new formal security definitions for cRBAC systems in the game-
based setting. The first one is called past confidentiality, which captures the security
concern of unauthorised access to the previous versions of the files. We show that this
security definition is strictly stronger than the existing one for secure read access. The
other security definition we proposed is called local correctness, which captures the
security concern from the insider of the system which might undermine data availability.
We presented two lower bounds for secure cRBAC systems, which explain where the
inefficiency stems from in such systems that support for permission revocation.

References

1. James Alderman, Jason Crampton, and Naomi Farley. A framework for the cryptographic
enforcement of information flow policies. In Proceedings of the 22nd ACM on Symposium
on Access Control Models and Technologies, SACMAT 2017, Indianapolis, IN, USA, June
21-23, 2017, pages 143–154, 2017.

2. Michael Clear, Arthur Hughes, and Hitesh Tewari. Homomorphic encryption with ac-
cess policies: Characterization and new constructions. In Progress in Cryptology -
AFRICACRYPT 2013, 6th International Conference on Cryptology in Africa, Cairo, Egypt,
June 22-24, 2013. Proceedings, pages 61–87, 2013.

3. Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy privacy in
cryptographic access control. In IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015, pages 46–60, 2015.

4. Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Cryptographically enforced
RBAC. In 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, June 26-28, 2013, pages 115–129, 2013.

5. Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in distributed storage
and a cryptographic model for access control. IACR Cryptology ePrint Archive, 2005:169,
2005.

6. Jie Huang, Mohamed A. Sharaf, and Chin-Tser Huang. A hierarchical framework for secure
and scalable EHR sharing and access control in multi-cloud. In 41st International Con-
ference on Parallel Processing Workshops, ICPPW 2012, Pittsburgh, PA, USA, September
10-13, 2012, pages 279–287, 2012.

7. Luan Ibraimi. Cryptographically enforced distributed data access control. University of
Twente, 2011.

8. William C. Garrison III, Adam Shull, Adam J. Lee, and Steven Myers. Dynamic and pri-
vate cryptographic access control for untrusted clouds: Costs and constructions (extended
version). CoRR, abs/1602.09069, 2016.

9. Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: encryption-based access control in
social networks with efficient revocation. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China,
March 22-24, 2011, pages 411–415, 2011.

10. Bin Liu and Bogdan Warinschi. Universally composable cryptographic role-based access
control. In Liqun Chen and Jinguang Han, editors, Provable Security - 10th International
Conference, ProvSec 2016, Nanjing, China, November 10-11, 2016, Proceedings, volume
10005 of Lecture Notes in Computer Science, pages 61–80, 2016.

11. Saiyu Qi and Yuanqing Zheng. Crypt-dac: Cryptographically enforced dynamic access con-
trol in the cloud. IEEE Trans. Dependable Secur. Comput., 18(2):765–779, 2021.

12. Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption for fine-grained
access control in cloud storage services. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 735–737, 2010.

13. Stefan G Weber. Designing a hybrid attribute-based encryption scheme supporting dynamic
attributes. IACR Cryptology ePrint Archive, 2013:219, 2013.

14. Yan Zhu, Gail-Joon Ahn, Hongxin Hu, and Huaixi Wang. Cryptographic role-based security
mechanisms based on role-key hierarchy. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2010, Beijing, China, April
13-16, 2010, pages 314–319, 2010.

A Security definitions of cRBAC schemes in [3]

A.1 Secure Read Access

A cRBAC system is said to be secure with respect to read accesses if no user can deduce
any partial content of a file without having the read permission. It is formalised via the
following experiment Expread

Π,A which involves a challenger who plays as the manager
of a cRBAC system and an adversary A. During the game, the adversary can choose
two messages to be written to a file of which it does not have the read permission. Then
one of the two messages will be written to that file and A’s goal is to determine which
of the messages it is.

Definition 6 (Secure Read Access). A cRBAC system Π defined by the cRBAC scheme
(Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,
RevokePerm, Read, Write, Update) is secure with respect to read access if for any
probabilistic polynomial-time adversary A, it holds that

Advread
Π,A(λ) :=

∣∣Pr[Expread
Π,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where Expread

Π,A is defined as follows:

Expread
Π,A(λ)

b←$ {0, 1}; Cr ,Ch ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Oread)

return (b′ = b)

The oracles Oread that the adversary has access to are specified in Figure 4.

A.2 Secure Write Access

A cRBAC system is said to be secure with respect to write access if no user can write
some content to a file without having the permission. Particularly, in the case of open-
accessible file system, the content wrote by an unauthorised user should not be con-
sidered as valid. It is formalised by the following experiment Expwrite

Π,A. The adversary
needs to specify a target file with an honest user and its wins the game if it can manage
to write any valid content (read by the honest user) without the help of any authorised
user. To prevent trivial wins, from the point when the last write operation to the target
file is carried out by an honest user who has the permission till A generates its output,
no corrupt user can get write access to the target file.

Definition 7. A cRBAC system Π defined by the cRBAC scheme (Init, AddUser, DelUser,
AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm, Read,
Write, Update) is secure with respect to write access if for any probabilistic polynomial-
time adversaries A, we have

Advwrite
Π,A(λ) := Pr

[
Expwrite

Π,A(λ)→ true
]

CMD(arg)

(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach u ∈ Cr AND o ∈ Ch:
if ∃r ∈ R:
(u, r) ∈ UA′ ∧ ((o, read), r) ∈ PA′

then return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :
if u /∈ U then Cr ← Cr \ {u}

foreach o ∈ Ch:
if o /∈ O then Ch ← Ch \ {o}

foreach u ∈ U \ Cr :
stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
foreach o ∈ Ch:

if HasAccess(u, (o,read)) then

return ⊥
Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

return fs

CHALLENGE(u, o,m0,m1)

if ¬HasAccess(u, (o,write)) then
return ⊥

if |m0| ̸= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o,read)) then

return ⊥
Ch ← Ch ∪ {o}
fs ←$ Write(stu, fs, o,mb)

return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 4. Oread: Oracles for defining the experiment Expread
Π,A.

is negligible in λ, where Expwrite
Π,A is defined as follows:

Expwrite
Π,A(λ)

Cr ,T ← ∅
State ← (∅, ∅, ∅, ∅, ∅)
(stM , fs, {stu}u∈U)←$ Init(1λ, R)

o∗←$A(1λ : Owrite)

if T [o∗] ̸= adv ∧ T [o∗] ̸= Read(stM , fs, o∗) then

return true

else return false

The oracles Owrite that the adversary has access to are specified in Figure 5

CMD(Cmd , arg)

State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

if Cmd = “DELOBJECT” then

Parse arg as o; T [o]← ∅
if Cmd = “DELUSER” then

Parse arg as u; Cr ← Cr \ {u}
foreach o ∈ O:

if ∃u′ ∈ Cr : HasAccess(u′, (o,write)) then

T [o]← adv

foreach u ∈ U \ Cr :
stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CORRUPTU(u)

if u /∈ U then return ⊥
foreach o ∈ O:

if HasAccess(u, (o,write)) then

T [o]← adv

Cr ← Cr ∪ {u}; return stu

WRITE(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o,write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

foreach u′ ∈ Cr :
if HasAccess(u′, (o,write)) then

return fs

T [o]← m; return fs

FS(query)

if query =“STATE” then

return fs

if query =“APPEND(info)” then

fs ← fs∥info; return fs

Fig. 5. Owrite: Oracles for defining the experiment Expwrite
Π,A.

