
Privacy-preserving Federated Singular Value
Decomposition

Bowen Liu and Qiang Tang

Luxembourg Institute of Science and Technology (LIST),
5, Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg

{bowen.liu, qiang.tang}@list.lu

Abstract. Modern SVD computation dates back to work in the 1960s
that proposed the basis for the eigensystem package and linear algebra
package routines [8, 9]. As a result of a long history of research, SVD is
now widely applied in various scenarios, such as recommendation sys-
tem and principal component analysis. Furthermore, federated SVD has
emerged as a prevalent privacy-preserving technique. For example, the
raw data are not required to be exchanged among different parties; in-
stead, each party trains and processes locally and shares intermediate
result. In general, there are two main categories: SVD over horizontally
and vertically partitioned data [22]. Imagine a dataset matrix M, where
each row stands for a record from a data subject, and the columns stand
for the attributes/features of the records. In the horizontally partitioned
setting, each party holds a disjoint subset of the rows of M. While in
the vertically partitioned setting, each party has a disjoint subset of the
columns of M for all the rows. In real-world applications, the horizontally
partitioned setting is much more common than the vertically partitioned
setting [12, 13]. In this paper, we have proposed a privacy-preserving fed-
erated SVD scheme with secure aggregation. The proposed scheme can
aggregate SVD results (eigenspace) from different devices and synchro-
nise the aggregation result with all devices while maintaining privacy
protection.
Therefore, we have proposed a privacy-preserving federated SVD scheme
with secure aggregation on the former setting.

Keywords: Singular Value Decomposition · Federated Learning · Dis-
tributed Computation.

1 Introduction

Advances in networking and hardware technology have made the design and
deployment of Internet of Things (IoTs) and decentralised applications a trend.
For example, the FoG computing concept and its associated edge computing
technologies are pushing computations to the edge so that data aggregation can
be avoided to some extent. This naturally brings benefits such as efficiency and
privacy, but on the other hand it forces data analysis tasks to be carried out in
a distributed manner (due to the fact that data will not be aggregated). To this

2 Bowen Liu and Qiang Tang

end, federated learning has become a promising solution direction: raw data are
not required to be exchanged among different parties; instead, each party trains
and processes locally and shares intermediate results [23].

Among many data analysis methods, Singular Value Decomposition (SVD)
is a very interesting one with wide applications. Modern SVD computation can
be dated back to the work in the 1960s that proposed the basis for eigensys-
tem package and linear algebra package routines [8, 9]. As a result of a long
history of research, SVD is now applied in a wide variety of scenarios, such as
recommendation system [16, 25], Principal Component Analysis (PCA) [21], La-
tent Semantic Analysis (LSA) [6], noise filtering [11, 17], dimension reduction
[18], clustering [20], matrix completion [4], etc. As a matter of fact, federated
SVD has emerged as a prevalent privacy-preserving technique. Existing solutions
fall into two main categories: SVD over horizontally and vertically partitioned
dataset [22]. Imagine a dataset M, where each row stands a record from a data
subject and the columns stand for the attributes/features of the records. In the
horizontally partitioned setting, each party (in our case, an edge device) holds
a disjoint subset of the rows of M. While in the vertically partitioned setting,
each party holds a disjoint subset of the columns of M for all the rows.

In real-world applications, the horizontally partitioned setting is much more
common than the vertically partitioned setting [12, 13]. Therefore, we focus on
the former in this paper.

1.1 Related Work

In the literature, we notice two federated SVD solutions which have explicitly
provided privacy analysis. Hartebrodt et al. proposed a federated SVD algorithm
for high-dimensional data [13]. It is designed for a star-like architecture where
the aggregator does not have access to the complete eigenvector matrix of SVD
results, and each edge device has access only to its share part of the eigenvector
matrix. However, it does not discuss any additional privacy protection. Guo et al.
presented a federated privacy-preserving SVD algorithm based on the distributed
power method [12]. It is assumed that each edge device holds its own set of data
records, and they want to perform a SVD based on their joint dataset (denoted
as a matrix M). With their solution, each edge device performs a (partial) SVD
on the matrix multiplication MTM and the eigenvectors are sent to the server
with added Gaussian noise. Then, the server aggregates all received eigenvectors
and sends the result back to each edge device with additional Gaussian noise.
We will provide a detailed description and analysis in the next section.

1.2 Contribution and Organisation

We analyse the fully participation protocol of federated privacy-preserving SVD
algorithm from [12]. We find that it has the potential to be improved, thus
increasing the accuracy and utility of the final results. We therefore propose a
privacy-preserving federated SVD scheme with secure aggregation.

Privacy-preserving Federated Singular Value Decomposition 3

The rest of the paper is organised as follows. In Section 2, we list the funda-
mental definitions of the relevant techniques. In Section 3, we recap the scheme
proposed by Guo et al. [12] and analyse its privacy protection. In Section 4, in
addition to a preliminary on secure aggregation, we present our enhanced so-
lution with analysis of its computational complexity, privacy and accuracy. In
Section 5, we conclude the paper.

2 Preliminary

LetM be am×nmatrix. As shown in Figure 1, the Singular Value Decomposition
(SVD) ofM is a factorisation of the form UΣVT , where U is anm×m left-singular
matrix of M, Σ is an m × n singular matrix of M, V is a n × n right-singular
matrix of M, and T means conjugate transpose. In addition, there are also two
relations:

M ·MT = UΣVT · VΣTUT = UΣΣTUT

MT ·M = VΣTUT · UΣVT = VΣTΣVT

The columns of U (left-singular vectors) and V (right-singular vectors) are, re-
spectively, eigenvectors of M ·MT and MT ·M. The non-zero elements of Σ are
the square roots of the non-zero eigenvalues of M ·MT and MT ·M.

m

n

M =

m

m

n

n

n

Singular Value

U
VT

Fig. 1. Singular Value Decomposition

2.1 Singular Value Decomposition with the Power Method

The power method [10] can be used to find the eigenvalues, if one exists, and the
corresponding eigenvectors, especially for large size matrix. Let M be a m × n
matrix, where m > n and its full SVD can be calculated as M = UΣVT , where
Σ = (λ1, · · · , λk, · · · , λn) and V = (v1, · · · , vk, · · · , vn). Let M′ = MTM be the
power method computes the top k eigenvectors of M′ by iterating

Y = M′Z and Z = orth(Y),

where both Y,Z are n × k matrices and orth(Y) stands for orthogonality the
columns of Y with QR factorisation [10].

4 Bowen Liu and Qiang Tang

2.2 Distributed Power Method

Suppose M is an m × n matrix, where m > n, and is horizontally partitioned
into d blocks MT = [MT

1 ,MT
2 , . . . ,MT

d]. Each partitioned matrix Mi consists of

si individual vectors of M and
∑d

i=1 si = m. Let us denote M′
i =

1
si
MT

i Mi, thus,

M′ =
1

m
MTM =

d∑
i=1

1

m
MT

i Mi =

d∑
i=1

si
m
M′

i =

d∑
i=1

piM′
i,

where pi =
si
m . Thereby, Y in Section 2.1 can be written as

Y =

d∑
i=1

si
m
M′

iZ =

d∑
i=1

piM′
iZ.

which indicates that the power method can be distributed to each individual
edge device, which holds Mi.

2.3 Differential Privacy

The privacy notion of differential privacy was introduced by Dwork et al. [7],
which ensures that the addition, removal, or modification of a single data item
does not substantially affect the outcome of the data-based analysis. Typically,
differential privacy is enforced by injecting calibrated noise (e.g., Gaussian noise)
into the intermediate/final results. It is formally defined as follows.

Definition 1 ((ε, δ)-Differential Privacy). A randomised mechanism M :
X → R with domain X and range R satisfies (ε, δ)-differential privacy if for
any two adjacent inputs x, x′ ∈ X and for any subset of output S ⊆ R it holds
that

PrM(x) ∈ S ≤ exp(ε) PrM(x′) ∈ S + δ.

The privacy budget ε is a small constant used to measure privacy loss and
maintain the trade-off between privacy and utility/accuracy. The δ is other small
constant representing the probability of information being leaked accidently.

3 Analysis of an Existing Federated SVD Solution

3.1 Recap of the Fully Participation Protocol by Guo et al.

Assume there are d edge devices, and each device i holds an independent dataset,
a si × n matrix Mi and stores a multiplication M′

i =
1
si
MT

i Mi. Besides, let M
denote the ingratiation matrix of joining all Mi, where MT = [MT

1 ,MT
2 , . . . ,MT

d].
The solution by Guo et al. [12] is summarised in Figure 2 and is detailed as
follows.

In the initialisation phase, the server needs to generate the following param-
eters:

Privacy-preserving Federated Singular Value Decomposition 5

yes

no

yes

no

yes

no

Server

Node

Fig. 2. Illustration of the Fully Participation Protocol by Guo et al.

– T : the number of local computations performed by each edge device.
– IpT : the communications between the edge devices and server only perform

every p interactions, where IpT is an index subset that IpT = {t ∈ [T] :
t mod p = 0} = {0, p, 2p, . . . , p ⌊T/p⌋}.

– (σ, σ′): the variance of noises.
– Z0: the initial approximation of one of the dominant eigenvectors of M.

At the end of the initialisation, the parameters (T, IpT , σ, σ′,Z0) are shared
with all edge devices. And during the privacy-preserving SVD protocol, each
edge device and the server perform as follows:

1: for t = 1 to T do
2: each edge device i computes Y(i)

t = M′
iZ

(i)
t−1

3: if t ∈ IpT then

4: each edge device i adds the Gaussian noise N(i), thus Y(i)
t = Y(i)

t D(i)
t +

N(i), where Y(i)
t D(i)

t is the orthogonal transformation of Y(i)
t , and sends

it to the server
5: the server performs perturbed aggregations, and adds another Gaussian

noise N′ into the result, thus, Yt =
∑d

i=1
si
mY(i)

t + N′

6: the server broadcasts Yt to each edge device i, and let Y(i)
t = Yt on

each edge device i
7: end if
8: each edge device i performs orthogonalisation Z(i)

t = orth(Y(i)
t)

9: end for
10: the final result is the approximated eigenspace:

ZT

{∑d
i=1

si
mZ(i)

T D(i)
T+1 if T /∈ IpT∑d

i=1
si
mZ(i)

T otherwise.

Briefly, in the proposed solution, each individual edge device holds its own
raw data and processes the SVD locally, its eigenvectors are aggregated on the
server by Orthogonal Procrustes Transformation (OPT) mechanism, and the

6 Bowen Liu and Qiang Tang

aggregation result is sent back for further iterations. More details (e.g. the com-

putation of D(i)
t and Gaussian noise) are given in [12].

3.2 Analysis of the Fully Participation Protocol by Guo et al.

The privacy protection of [12] is achieved in terms of local differential privacy
by adding Gaussian noise on each edge device in Step 4 when synchronisation
occurred, and central differential privacy by adding Gaussian noise on the server
in Step 5.

From the perspective of privacy protection, adding Gaussian noise provides
the indistinguishability between the true eigenspace and the computation result
in each iteration round. It is not a surprise that the added Gaussian noise affects
the accuracy of the final result, and it is usually accepted as a tradeoff between
privacy and utility/accuracy. However, we consider that the noise from the server
to be unnecessary because an edge device’s input has already been masked when
local differential privacy is applied. On the other hand, it is well known that
local differential privacy may seriously downgrade the utility/accuracy of the
final result. To this end, central differential privacy does have an advantage.
combining these two observation, it is preferably to apply the central privacy
concept in such a manner so that it protects every edge device’s privacy against
both curious individuals and the server. This is what we will do in the enhanced
solution in the next section.

During each iteration, every edge device needs to perform orthogonalisation

Z(i)
t = orth(Y(i)

t). This is very inefficient, particularly we would like to reduce
the computational complexity of edge devices. Trivially, the server can do this
once and share the result with all edge devices. Clearly, this does not impact
privacy at all.

4 Enhanced Privacy-preserving Federated SVD Solution

4.1 Preliminary on Secure Aggregation

In federated machine learning literature, the secure aggregation protocol of
Bonawitz et al. [3] has been widely used by many solutions. Next, we recap
this protocol and then use it in benchmarking our enhanced SVD solution.

In simple terms, with the secure aggregation protocol, the original data of
each edge device are locally masked in a particular way and shared to the server,
when the masked data are aggregated on the server, in the meanwhile, the masks
are cancelled and offset.

– The following algorithms are defined, and parameters are generated during
the setup phase and sent to relevant edge devices.

• Pseudorandom Generator (PRG) [2, 24]: PRG which takes a fixed length
seed as input and outputs in space [0, R), where R is a prefixed value.

Privacy-preserving Federated Singular Value Decomposition 7

• Secret Sharing [19]: SS.share(s, t,U) → {(u, su)}u∈U , it takes a secret s,
a set of user IDs (e.g. integers), a threshold s ≤ |U| as input, and outputs
a set of shares su associated with the user u ∈ U ; and a reconstruction
algorithm SS.recon({(u, su)}v∈V , t) → s takes the following values as
input: threshold t and shares corresponding to a user subset V ⊆ U such
that |V| ≥ t, and outputs a field element s.

• Key Agreement [5]: KA.param(k)→ pp takes a security parameter k and
returns some public parameters; KA.gen(pp) → (sSK , sPK) generates a
secret/public key pair; KA.agree(sSK

u , sPK
v) → su,v allows a user u to

combine its private key with the public key of another user v into a
private shared key between them.

• Authenticated Encryption [14]: AE.enc and AE.dec are algorithms for
encrypting a plaintext with a public key and for decrypting a ciphertext
with a secret key.

• Signature Scheme [1]: SIG.gen takes a security parameter k and outputs
a secret/public key pair; SIG.sign signs a message with a secret key and
returns the relevant signature; SIG.ver verifies the signature of the rele-
vant message and returns a boolean bit indicating whether the signature
is valid.

• Number of edge devices m.
• Security parameter k.
• Public parameter of key agreement pp← KA.param(k).
• Threshold value t, where t < n and n is the number of edge devices.
• Input space ZR.
• Secrets sharing field F.
• Signature key pairs (dSK

u , dPK
u) of each edge device, where u ∈ [1,m].

– Round 0 (AdvertiseKeys):

0.1. each edge device u generates secret/public key pairs of encryption and
sharing algorithm (cSK

u , cPK
u) and (sSK

u , sPK
u)

0.2. each edge device u signs cPK
u and sPK

u into σu ←
SIG.sign(dSK

u , cPK
u ||sPK

u)
0.3. the two public keys and all n signatures (cPK

u ||sPK
u ||σu) are sent to the

server
0.4. if the server receives at least t messages from individual edge de-

vices (denote by U1 this set of edge devices), then broadcasts
{(v, cPK

v , sPK
v , σv)}v∈U1

to all edge devices in U1
– Round 1 (ShareKeys):

1.1. once an edge device u in U1 receives the messages from the server, it
verifies if all signatures are valid with SIG.ver(dPK

u′ , cPK
u′ ||sPK

u′ , σu′), where
u′ ∈ U1

1.2. the edge device u sample a random element bu ← F as a seed for a PRG
1.3. the edge device u generates two t-out-of-|U1| shares of sSK

u :
{(v, sSK

u,v)}v∈U1
← SS.share(sSK

u , t,U1) and bu : {(v, bu,v)}v∈U1
←

SS.share(bu, t,U1)

8 Bowen Liu and Qiang Tang

1.4. for each edge device v ∈ U1 \ {u}, u computes eu,v ←
AE.enc(KA.agree(cSK

u , cPK
v), u||v||sSK

u,v ||bu,v) and sends them to the server

1.5. if the server receives at least t messages from individual edge devices
(denoted by U2 ⊆ U1 this set of edge devices), then it shares to each
edge device v′ ∈ U2 all ciphertexts for it {eu′,v′}u′∈U2

– Round 2 (MaskedInputCollection):

2.1. for the edge device u ∈ U2, once the ciphertexts are received, it computes
su,v ← KA.agree(sSK

u , sPK
v , where v ∈ U2 ⊆ {u}

2.2. su,v is expanded using PRG into a random vector pu,v = ∆u,v ·PRG(su,v),
where ∆u,v = 1 when u > v and ∆u,v = −1 when u < v, besides, define
pu,u = 0

2.3. the edge device u computes its own private mask vector pu = PRG(bu)
and the masked input vector xu into yu ← xu + pu +

∑
v∈U2

pu,v (mod
R), then yu is sent to the server

2.4. if the server receives at least t messages (denote with U3 ⊆ U2 this set of
edge devices), and share the edge device set U3 with all edge devices in
U3

– Round 3 (ConsistencyCheck):

3.1. once the edge device u ∈ U3 receives the message, it returns the signature
σ′
u ← SIG.sign(dSK

u ,U3)
3.2. if the server receives at least t messages (denoted by U4 ⊆ U3 this set of

edge devices) and shares the set {u′, σ′
u′}u′∈U4

– Round 4 (Unmasking):

4.1. each edge device u verifies SIG.ver(dPK
v ,U3, σ′

v) for all v ∈ U4
4.2. for each edge device v ∈ U2 \ {u}, u decrypts the ciphertext

(received in the MaskedInputCollection round) v′||u′||sv′,u′ ||bv′,u′ ←
AE.dec(KA.agree(cSK

u× , cPK
v), ev,u) and asserts that u′ = u ∧ v′ = v

4.3. each edge device u sends the shares sSK
v,u for edge devices v ∈ U2 \U3 and

bv,u for edge devices in v ∈ U3 to the server

4.4. if the server receives at least t messages (denote with U5 this set of
edge devices), it re-constructs, for each edge device u ∈ U2 \ U3, sSK

u ←
SS.recon({sSK

u,v }v∈U5
, t) and re-computes pv,u using PRG for all v ∈ U3

4.5. the server also re-constructs, for all edge devices u ∈ U3, bu ←
SS.recon({bu,v}v∈U5 , t) and re-computes pv,u using the PRG

4.6. finally, the server outputs z =
∑

u∈U3
xu =

∑
u∈U3

yu −
∑

u∈U3
pu +∑

u∈U3,v∈U2\U3
pv,u

We summarise the asymptotic computational complexity of each edge device
and the server in Table 1. For simplicity of description, we assume that all
devices participate in the protocol, that is, t = m. Since some operations can
be considered as offline pre-configuration, we focus on online operations starting
from masking messages in Step 2.3.

Privacy-preserving Federated Singular Value Decomposition 9

Vector Add SIG.sign SIG.vef KA.agree AE.dec SS.recon PRG

Edge m+ 1 1 m− 1 m− 1 m− 1 1

Server 2m− 1 m m
Table 1. Asymptotic Computational Complexity of Online Operations

4.2 Our Enhanced SVD Solution

As mentioned in Section 3.2, in the context of achieving the privacy-preserving
objective, we would like to reduce the added Gaussian noises so as to improve
the accuracy of the results. Hence, we adapt the solution of [12] (see Section 3.1)
from two aspects: (1) we apply secure aggregation to aggregate the intermediate
results from edge devices; (2) we use a secure multi-party computation (SMC)
protocol to enforce the central differential privacy concept in an oblivious manner
to the server. The enhanced steps are underlined in the following description.

During the initialisation phase, the server needs to generate additionally a
key pair (skhm, pkhm) for a homomorphic encryption scheme. The enhanced
privacy-preserving SVD protocol works as follows.

1: for t = 1 to T do
2: each edge device i computes Y(i)

t = M′
iZ

(i)
t−1

3: if t ∈ IpT then

4: each edge device i adds the Gaussian noise N(i), thus Y(i)
t = Y(i)

t D(i)
t +

N(i), where Y(i)
t D(i)

t is the orthogonal transformation of Y(i)
t

5: all edge devices and the server run a secure aggregation protocol with

Y(i)
t from all edge devices i ∈ [1, d] as the inputs, and the output aggre-

gation result for the server is denoted as Yt.
6: the server chooses one random index j from [1, d] and generates one

k × k zero matrix C and another all-ones matrix C′ of the same size.

Besides, the server sends the encryption value E(j) = Encpkh
(C) to edge

device j and independently generates E(j′) = Encpkh
(C′) for each edge

devices j′ ∈ [1, d] \ {j}, respectively
7: each edge device i computes N(i) · Encpkh

(C(i)) and sends it back to the
server (· stands for elementary matrix multiplication in the homomor-
phic sense)

8: the server first decrypts the receiving messages to obtain
(
N(i) · C(i)

)
=

Decskh

(
N(i) · Encpkh

(
C(i)

))
= Decskh

(
Encpkh

(
N(i) · C(i)

))
for all i ̸= j,

then the aggregation result is Y′
t = Yt−

∑
i∈[1,m]\{j}

(
N(i) · C(i)

)
=∑

i∈[1,d]

(
si
mY(i)

t

)
+ N(j)

9: the server performs orthogonalisation Zt = orth(Y′
t) and broadcasts it

to all edge devices (Z(i)
t = Zt on each edge device i)

10: end if
11: end for

10 Bowen Liu and Qiang Tang

12: the final result is the approximated eigenspace:

ZT

{∑d
i=1

si
mZ(i)

T D(i)
T+1 if T /∈ IpT∑d

i=1
si
mZ(i)

T otherwise.

With the secure aggregation in Step 4, the server obtains the aggregated re-
sult with Gaussian noises from all edge devices. With the simple SMC procedure
(Step 5-8), the server obtains all Gaussian noises apart from the one (i.e. j) that
it has selected randomly. Then, it removes all noises from the output of secure
aggregation protocol, except for that from device j. In comparison to the SVD
protocol from Section 3.1, the intermediary aggregation result only contains the
Gaussian noise from the edge device j. While this index j is hidden from the
edge devices.

Regarding Steps 6 and 8, we have two remarks. In Step 6, depending on
the homomorphic encryption scheme, it may be more efficient to use ciphertext
re-randomisation to generate E(j′) based on an existing ciphertext, rather than
generating it from scratch. In Step 8, it may be more efficient to aggregate all
the encrypted results and then performs a single decryption. We will discuss this
in the performance evaluation.

4.3 Computational Complexity Analysis

Regarding computational complexity, we compare the proposed scheme with
the original solution in Table 2. The major difference is that we have integrated
secure aggregation to facilitate our new privacy protection strategy. Let SAe

and SAs be the asymptotic computational complexities of secure aggregation on
each edge device and server side, respectively.

Add Mul
Noise

Enc Dec
Secure

Gen. Agg.

[12] Edge
T × (k2 − k)+

T × k2 ⌊T/p⌋×
⌊T/p⌋ × k2 k2

Server
(⌊T/p⌋ + 1)× (⌊T/p⌋ + 1) × d × k2 ⌊T/p⌋×

k2 × (d − 1) + ⌊T/p⌋ + ⌊T/p⌋ × d + 1 k2

Ours
Edge

T × (k2 − k)+ T × k2+ ⌊T/p⌋× ⌊T/p⌋×
⌊T/p⌋ × k2 ⌊T/p⌋ × k2 k2 SAe

Server
⌊T/p⌋ × k2 × d

d × (k2 + 1)
⌊T/p⌋× ⌊T/p⌋× ⌊T/p⌋×

+k2 × (d − 1) k2 × m k2 × m SAs

Table 2. Comparison tetween [12] and Ours

Compared to [12], although we have added more operations, we have dis-
tributed some computations to individual edge devices and, most importantly,
we no longer add secondary server-side Gaussian noise to the final aggregation
result and only retain the Gaussian noise from one single edge device.

Privacy-preserving Federated Singular Value Decomposition 11

We implement the scheme in C with GNU Multiple Precision Arithmetic
Library (GMP)1. In terms of homomorphic encryption, we use Paillier cryp-
tosystem [15], besides, we use [3] as the secure aggregation component. The
experiment is performed on a MacBook Pro, which has a 10-core Apple M1 Pro
CPU with 16 GB RAM, we use it for both edge devices and the server. Regarding
performance, we refer to [12] for parameter selections:

– number of edge device: d = 100

– number of local computations: T = 40

– number of local computations before communication: p = 4

– number of item features: f = 100

– number of top eigenvectors: k = 5

– security parameter of Paillier cryptosystem and secure aggregation: 128

– threshold value in secure aggregation: 100

In the implementation, on the basis of the observation at the end of Section
4.2, we only encrypt 0 and 1 once at Step 6, and use the property of Paillier
cryptosystem to re-randomise their ciphertexts to obtain new ciphertexts, so as
to optimise the performance. In addition, we also take advantage of the homo-
morphic property in Step 8. Instead of decrypting each value (d× k2 times), we
first calculate the product of all the ciphertexts (elementary matrix multiplica-
tion) and then perform the decryption on a signal matrix to obtain the sum of
all Gaussian noises, except for the noise generated by edge device j chosen in
Step 6.

In addition to the optimisation above, we consider the encryption and re-
randomisation processes are preconfigured offline. We record the time of all online
operations of 10 tests, and give the average running times. It takes 18.09 ms on
a signal device and 3.23 ms on the server side. Note that they include 11.79 and
1.48 ms of secure aggregation on each edge device and the server, respectively.

4.4 Privacy and Accuracy Analysis

We conduct privacy analysis under the trust assumption that the server and
all edge devices are semi-honest. In this case, since the server is not possible to
collude with any edge device, the server cannot eliminate the remaining noise
from the final result. In terms of edge device, since no one except the server is
aware of the random selection in Step 6, apart from its own data, an edge device
only knows the aggregation result with added noise, even if the retained noise
comes from itself. Compared to the original solution by Guo et al., we have
improved the utility/accuracy of the aggregation result by keeping the added
noise from only one edge device. As a side effect, the complexity has grown due
to the secure aggregation protocol. This can be regarded as a trade-off between
result accuracy and solution efficiency.

1 https://gmplib.org/

12 Bowen Liu and Qiang Tang

We use Euclidean distance to represent the similarity of two m × n matrix
A = (aij) and B = (bij),

dist(A,B) =

√√√√ m∑
i=1

n∑
j=1

(aij − bij)
2
.

Let Z denote the true eigenspace computed without any noise, let ZL denote the
outcoming eigenspace of our scheme (refer to Section 4.2), and let ZG denote the
eigenspace generated with the Gaussian noise from both edge devices and server
(refer to Section 3.1). We have dist(Z,ZG) = 1.04145 and dist(Z,ZL) = 0.09747.
From this, it is clear that the final result from our solution is very close to the
true results which are computed from the original data and do not contain any
noise. In other words, our scheme better preserves the accuracy and usability of
the final results.

5 Conclusion

Motivated by Guo et al.’s distributed privacy-preserving SVD algorithm based
on federated power method [12], we have proposed a privacy-preserving feder-
ated SVD scheme with secure aggregation. The proposed solution reverts to the
initial design intent and interest, although the added operations trade off some
performance, it significantly improves the accuracy and utility of the results.

With regard to performance, although we use rerandomisation mechanism
instead of re-encrypting 0 and 1 in the experiment, we believe that there are
possibilities for further optimisation.

Acknowledgement

Bowen Liu is supported in the context of the project CATALYST funded by
Fonds National de la Recherche Luxembourg (FNR, reference 12186579). Qiang
Tang is supported by the 5G-INSIGHT bi-lateral project (ANR-20-CE25-0015-
16) funded by the FNR and by the French National Research Agency (ANR).

References

1. Bellare, M., Neven, G.: Transitive signatures: new schemes and proofs. IEEE Trans-
actions on Information Theory 51(6), 2133–2151 (2005)

2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM journal on Computing 13(4), 850–864 (1984)

3. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191 (2017)

4. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics 9(6), 717–772 (2009)

Privacy-preserving Federated Singular Value Decomposition 13

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory 22(6), 644–654 (1976).
https://doi.org/10.1109/TIT.1976.1055638

6. Dumais, S.T., et al.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1),
188–230 (2004)

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Theory of cryptography conference. pp. 265–284. Springer
(2006)

8. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis 2(2), 205–224 (1965)

9. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions.
In: Linear algebra, pp. 134–151. Springer (1971)

10. Golub, G.H., Van Loan, C.F.: Matrix computations. JHU press (2013)
11. Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient svd-based method for image

denoising. IEEE transactions on Circuits and Systems for Video Technology 26(5),
868–880 (2015)

12. Guo, X., Li, X., Chang, X., Wang, S., Zhang, Z.: Privacy-preserving distributed
svd via federated power. arXiv preprint arXiv:2103.00704 (2021)

13. Hartebrodt, A., Röttger, R., Blumenthal, D.B.: Federated singular value decom-
position for high dimensional data. arXiv preprint arXiv:2205.12109 (2022)

14. McGrew, D., Viega, J.: The galois/counter mode of operation (gcm). submission
to NIST Modes of Operation Process 20, 0278–0070 (2004)

15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238. Springer (1999)

16. Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: Proceedings
of the 2005 ACM symposium on Applied computing. pp. 791–795 (2005)

17. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order
singular value decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(4), 849–862 (2012)

18. Ravi Kanth, K., Agrawal, D., Singh, A.: Dimensionality reduction for similarity
searching in dynamic databases. ACM SIGMOD Record 27(2), 166–176 (1998)

19. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

20. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4),
395–416 (2007)

21. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics
and intelligent laboratory systems 2(1-3), 37–52 (1987)

22. Yakut, I., Polat, H.: Privacy-preserving svd-based collaborative filtering on parti-
tioned data. International Journal of Information Technology & Decision Making
9(03), 473–502 (2010)

23. Yang, Q.: Advances and open problems in federated learning. Foundations and
Trends in Machine Learning (2021)

24. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Sympo-
sium on Foundations of Computer Science (SFCS 1982). pp. 80–91. IEEE (1982)

25. Zhang, S., Wang, W., Ford, J., Makedon, F., Pearlman, J.: Using singular value
decomposition approximation for collaborative filtering. In: Seventh IEEE Inter-
national Conference on E-Commerce Technology (CEC’05). pp. 257–264. IEEE
(2005)

