Article

Privacy-preserving Federated Singular Value Decomposition

Bowen Liu 109, Balazs Pej6 23

Citation: Liu, B.; Pejo, B.; Tang, Q.
Privacy-preserving Federated Singular
Value Decomposition. Journal Not
Specified 2023,1,0. https://doi.org/

Received:
Revised:
Accepted:
Published:

Copyright: © 2023 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Qiang Tang **

Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362,
Esch-sur-Alzette, Luxembourg

ELKH-BME Information Systems Research Group, Hungary

Laboratory of Cryptography and System Security, Department of Networked Systems and Services, Faculty of
Electrical Engineering and Informatics, Budapest University of Technology and Economics, Mtiegyetem rkp.
3., H-1111 Budapest, Hungary

* Correspondence: giang.tang@list.lu

Abstract: Modern Singular Value Decomposition (SVD) computation dates back to the 1960s when the
basis for the eigensystem package and linear algebra package routines was created [1,2]. Since then,
SVD has gained attraction and been widely applied in various scenarios, such as recommendation
systems and principal component analyses. Federated SVD has recently emerged, where different
parties could collaboratively compute SVD without exchanging raw data. Besides its inherited
privacy protection, noise injection could be utilized to further increase the privacy guarantee of
this privacy-friendly technique. This paper advances the state-of-science by improving an existing
Federated SVD scheme [3] with two-fold contributions. First, we revise its privacy guarantee in
terms of Differential Privacy, the de-facto data privacy standard of the 21st century. Second, we
increase its utility by reducing the added noise, which is achieved by employing Secure Aggregation,
a cryptographic technique to prevent information leakage. Using a recommendation system use-case
with real-world data, we demonstrate that our scheme outperforms the state-of-the-art Federated
SVD solution.

Keywords: Singular Value Decomposition; Federated Learning; Secure Aggregation; Differential
Privacy

1. Introduction

Advances in networking and hardware technology have made the design and deploy-
ment of the Internet of Things (IoTs) and decentralized applications a trend. For example,
the FoG computing concept and its associated edge computing technologies push compu-
tations to the node devices so that data aggregation can be avoided. This naturally brings
benefits such as efficiency and privacy, but on the other hand, it forces data analysis tasks
to be carried out in a distributed manner. To this end, Federated Learning (FL) has become
a promising solution direction where raw data is not required to be exchanged among
different parties. Instead, each party locally processes and trains its model and only shares
intermediate results with an aggregator server [4]. Compared with other settings such as
centralized training, FL is clearly a privacy friendly solution.

Among many data analysis methods, this paper focuses on Singular Value Decompo-
sition (SVD). Plainly, SVD factorizes a matrix into three new matrices. Originating from
linear algebra, SVD has several interesting properties and conveys crucial insights about the
underlying matrix. Hence, SVD has essential applications in data science, such as in recom-
mendation system [5,6], Principal Component Analysis [7], Latent Semantic Analysis [8],
noise filtering [9,10], dimension reduction [11], clustering [12], matrix completion [13], etc.

Among all, Federated SVD has emerged as an interesting topic recently. Existing solu-
tions fall into two categories: SVD over horizontally and vertically partitioned dataset [14].
In real-world applications, the former is much more common [3,15]; therefore, in this paper,
we also focus on the horizontal setting.

Version April 12, 2023 submitted to Journal Not Specified

https:/ /www.mdpi.com/journal /notspecified

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0003-2396-9896
https://orcid.org/0000-0002-1825-9251
https://orcid.org/0000-0002-6153-4255
https://www.mdpi.com/journal/notspecified

Version April 12, 2023 submitted to Journal Not Specified 2 of 14

Protects | The individual updates The aggregate
Secure Aggregation 4 X
Central DP X v
Local DP 4 v

Table 1. Comparing Secure Aggregation with Local and Central Differential Privacy.

Despite this seemingly privacy-friendly setup, a long line of research has shown that
sensitive information can be inferred about the underlying datasets [16-18]. To mitigate
such information leakages, FL can be aided with other privacy-enhancing technologies,
such as Secure Aggregation (SA) [19] and Differential Privacy (DP) [20]. SA hides the
individual contributions from the aggregator server in each intermediate step in a way
that does not affect the trained model’s utility. In other words, the standalone updates are
masked such that the masks cancel out during aggregation, therefore the aggregated results
remain intact. The masks could be seen as temporary noise; hence, the privacy protection
does not extend to the aggregated data. In contrast, DP adds persistent noise to the model,
i.e., it provides broader privacy protection but with an inevitable utility loss (due to the
permanent noise). We differentiate between two DP settings depending on where the noise
is injected. In Local DP (LDP), the participants add noise to their updates, while in Central
DP (CDP), the server applies noise to the aggregate. A comparison of LDP, CDP and SA is
summarized in Table 1.

Related Work. The utilized algorithms to compute SVD are mostly iterative, such as
the power iteration method [21]. Recently, these algorithms were adopted to a distributed
setting to solve large-scale problems [22,23]. While these works tackle important issues and
advance the field, they all disregard privacy issues: we are only aware of two Federated
SVD solutions in the literature explicitly providing a privacy analysis [3,15].

Hartebrodt et al. [15] proposed a Federated SVD algorithm with a star-like architecture
for high-dimensional data such that the aggregator cannot access the complete eigenvector
matrix of SVD results. Instead, each node device has access, but only to its share part of
the eigenvector matrix. In contrast, Guo et al. [3] proposed a Federated SVD algorithm
based on the distributed power method where both the server and all the participants learn
the entire eigenvector matrix. Their solution incorporated additional privacy-preserving
features, such as participant and aggregator server noise injection. We improve upon this
solution by pointing out an error in its privacy analysis and by providing a tighter privacy
protection with less utilized noise.

Contribution. This work focuses on a setting similar to Guo et al. [3], i.e., when the
server and all the participants are expected to learn the final eigenvector matrix. Our main
contribution is improving the FedPower algorithm suggested by [3]. Firstly, we point out
several inefficiencies and shortcomings of the original protocol, such as the avoidable noise
injection steps and the unclear and confusing privacy guarantee. Secondly, we propose two
enhanced solutions (with focus on utility and privacy, respectively), where the added noise
is reduced due to the introduction of SA. Finally, we provide empirical results to measure
the privacy-utility trade-off using a real-world dataset.

Organisation. The rest of the paper is organized as follows. In Section 2, we list the
fundamental definitions of the relevant techniques used throughout the paper. In Section 3,
we recap the scheme proposed by Guo et al. [3], while in Section 4 and 5, we propose two
improved schemes focusing on utility and privacy, respectively. In Section 6 we empirically
compare the proposed schemes with the original work. Finally, in Section 7, we conclude
the paper.

2. Preliminary

Singular Value Decomposition. Let M be a s x d matrix with assumption of s < d.
As shown in Figure 1, the full SVD of M is a factorisation of the form UzVT, where T means
conjugate transpose. The left-singular vectors are U = [ug, up, ..., us] € RS, the right-

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Version April 12, 2023 submitted to Journal Not Specified 30f 14

F Singular Value

vT d

Figure 1. Singular Value Decomposition.

singular vectors are V = [vq,v,...,74] € R¥*4 and the diagonal matrix with the singular
values in decreasing order in its diagonal is & = diag{c7,01,...,0;} € R®*“. The partial or
truncated SVD [24,25] is used to find the top k (k < d) singular vectors U = [uq,up, ..., ugl,
V = [v1,0y,...,v¢] and singular values ¥ = diag{cy,01,...,0%} -

IfM = %MTM € R¥*4 then the Power Method [21] could be used to compute the
top k right singular vector of M and the top k eigenvectors of M. It works by iterating
Y = M'Z and Z = orth(Y), where both Y and Z are d x k matrices and orth(-) is the
orthogonalization of the columns with QR factorization.

Moreover, if M is the composition of n matrices, then computation of the Power
Method can be distributed. So if M7 = [MlT, Mg, .,MI e RS> with s = Y. 4 si, where
M; € R%*% and M} = SliMiTMi, then Equation (1) holds. Thereby, Y can be written as

Y = ¥, IM!Z € R™K, which indicates that the Power Method can be processed in
parallel by each data holder [3,26].
P =17 " Si d /
i=1 i=1 i=1

Secure Aggregation. In simple terms, with SA, the original data of each node device
are locally masked in a particular way and shared with the server, so when the masked
data is aggregated on the server, the masks are canceled and offset. In contrast, the server
does not know all individual node devices’ original unmasked intermediate results. In the
FL literature, many solutions have widely used the SA protocol of Bonawitz et al. [27]. We
recap this protocol in Appendix A and use it in Section 4 to benchmark our enhanced SVD
solution.

Differential Privacy. Besides SA, DP is also exhaustively utilized in the FL literature.
DP was introduced by Dwork et al. [28], which ensures that the addition, removal, or modi-
fication of a single data point does not substantially affect the outcome of the data-based
analysis. One of the core strengths of DP comes from its properties, called composition and
post-processing, which we also utilize in this paper. The former ensures that the output
of two DP mechanisms still satisfies DP but with a parameter change. The latter ensures
that a transformation of the results of a DP mechanism does not affect the corresponding
privacy guarantees. Typically, DP is enforced by injecting calibrated noise (e.g., Laplacian
or Gaussian) into the computation.

Definition 1 ((¢, 6)-Differential Privacy). A randomised mechanism M : X — R with domain
X and range R satisfies e-differential privacy if for any two adjacent inputs x,x' € X and for any
subset of output S C R it holds that

Pr(M(x) € S) < ¢ - Pr(M(x') € S) @)

The variable ¢ is called the privacy budget, which measures the privacy loss. It captures
the trade-off between privacy and utility: the lower its value, the more noise is required
to satisfy Equation (2), resulting in higher utility loss. Another widely used DP notion is
Approximate DP, where a small additive term ¢ is added to the right side of Equation (2).
Typically, we are interested in values of J that are smaller than the inverse of the database

84

85

86

87

88

89

920

91

92

93

94

95

Version April 12, 2023 submitted to Journal Not Specified

40f14

size. Although DP has been adopted to many domains [20] such as recommend systems [29],

we are not aware of any work besides [3] which adopts DP for SVD computation. Thus, as
we show later a flaw in that work, we are the first to provide a distributed SVD computation
with DP guarantees.

3. The FedPower Algorithm

Following Guo et al. [3], we assume there are n node devices, and each device i holds
an independent dataset, an s;-by-d matrix M;. Each row represents a record item, while
the columns of each matrix correspond to the same feature space. Besides, M denotes the

composition of matrices M; such that MT = M, M7, ... M] € R4, with s = Y7 s;.

The solution proposed by Guo et al. [3] is presented in Algorithm 1 with the following

parameters.

e T: the number of local computations performed by each node device.

. I;: the rounds where the node devices and the server communicate,

ie, Il =

{0,p,2p,...

* (g 0): the privacy budget.
e (0,0’): the variance of noises added by the clients and the server, respectively:

o =

| T/p]

e-min; (s

pLT/pl}

o

e-min;(s;)

_ | T/p]maxi(p 1)\/21 g<1.25L5T/pJ>

In the proposed solution, each node device holds its raw data and processes the SVD

locally, its eigenvectors are aggregated on the server by Orthogonal Procrustes Transforma-

tion (OPT) mechanism, and the aggregahon result is sent back for further iterations. More

details (e.g., the computation of D;’

(i)

) are given in [3].

Algorithm 1 Fully Participation Protocol of FedPower by Guo et al. [3]

Input: Datasets {M];}}" ,, target rank k, iteration rank r > k, number of iteration T,
synchronous set Z, and the variance of noises (¢, ¢”)
Output: Approximated eigenspace Zr

1: initialise Z((Ji)

2: fort =1to T do

3. each node device i computes Y’

(i

) —

= Zy € R¥*" ~ N(0,1)4%"

=Mz, where M] = 1 MM,

(@) (orthogonal transformation)

the server performs perturbed aggregatlon with an extra Gaussian noise:

4. ifte I; then
5: each node device i computes Y(l) Yfl)
6 ea/c(:h nodt(e)dev1ce i adds the C(}auss1an no1se
Y =+ NO ~ N, |12, Ziar?) "
7: each node device i sends Y, /(@) to the server
8.
Y =2, 3V 4+ N~ N(0, max; || 2, D | a0) "
9: the server broadcasts Y; to all node dev1ces
10: each node device i sets Ygl) =Y
11: end if

12: each node device i performs orthgonalization: Zgi) = orth(Ygi))

13: end for

14: return approximated eigenspace

ZT:{

1ls

115

S’Z()]D)(i)

Z()

T+1

if T ¢ I7

otherwise.

133

134

135

136

137

138

Version April 12, 2023 submitted to Journal Not Specified 5o0f 14

4. Enhancing the Utility of FedPower 140

Adversary Model. Throughout the paper we consider a semi-honest setup, i.e., where s
the clients and the server are honest but curious. This means that they follow the protocol 1a:
truthfully, but in the meantime, they try to learn as much as possible about the dataset of 143
other participants. We also assume that the server and the clients cannot collude, so the 14
server cannot control node devices. 145

Utility Analysis of FedPower. It is not a surprise that adding Gaussian noise twice 14s
(i.e., the local and the central noise in Step 6 and 8 in Algorithm 1) severely affects the 14
accuracy of the final result. A straightforward way to increase the utility is to eliminate 14
some of this noise. As highlighted in Table 1, the local noise protects the individual clients 14
from the server. Besides, it also protects the aggregate from other clients and from external 1so
attackers. On the other hand, the central noise merely covers the aggregate. Hence, if the 15
protection level against the server is sufficient against other clients and external attackers, s
the central noise becomes obsolete. 153

Moreover, all the locally added noise accumulates during aggregation, which also ss
effects negatively the utility of the final result. Loosely speaking, as shown in Table 1, CDP 1ss
combined with SA could provide the same protection as LDP. Consequently, by utilizing 1se
cryptographic techniques with a single local noise, we can hide the individual updates, s
and protect the aggregate as well. 158

Utility Enhanced FedPower. We improve on FedPower [3] from two aspects: 1) we 1so
apply a SA protocol to hide the individual intermediate results of the node devices from 1e0
the server, and 2) we use a secure multi-party computation (SMPC) protocol to enforce the 16
CDP in an oblivious manner to the server. We supplement the assumptions, and the setup ez
of Guo et al. [3] with a homomorphic encryption key pair generated by the server. The 1es
server holds the private key and shares the public key with all node devices. The remaining ies
part of our solution is shown in Algorithm 2. To ease understanding, the pseudo code is 1es
simplified. The actual implementation is more optimized, e.g., the encrypted results are 1es
aggregated before decryption in Step 11, and in Step 7, the ciphertexts are re-randomized ez
rather than generate from scratch. We will describe all these tricks in Section 6. 168

By performing SA in Step 7, the server obtains the aggregated result with Gaussian 16
noises from all node devices. With the simple SMPC procedure (Steps 8-12), the server 17
receives all Gaussian noises apart from the one (i.e., node device j) it randomly selected 17
(which is hidden from the node devices). Then, in Step 13 it removes them from the output 172
of the SA protocol. Compared to FedPower [3], our intermediate aggregation result only 17s
contains a single instance of Gaussian noise from the randomly chosen node device instead 174
of n. Consequently, via SA and SMPC, the proposed utility enhancing protocol reduced the 175
locally added noise n-fold and completely eliminated the central noise. 176

Computational Complexity. Regarding computational complexity, we compare the 177
proposed scheme with the original solution in Table 2. The major difference is that we 17e
have integrated SA to facilitate our new privacy protection strategy. Let SA, and SA; be 170
the asymptotic computational complexities of SA on each node device and server side, 1s0

respectively. 181
Addition Multiplication Noise Encryption | Decryption Secure
P Gen. yP P Agg.
T x (K —k)+ 2 [T/p]x
. Node [T/p] x &2 T x k 2
server |, (/0] FU% [(7 F DR a%F | TT751%
K2 x (d—1)+|T/p] +|T/p| xd+1 K2
Node T x (K —k)+ T x K>+ [T/p]x [T/p]x
Ours |T/p| x k? |T/p] x k? K? SA.
[T/p] Xk > d+ 2 [T/p]x (T/p]x | [T/p]x
Server K2 x (d—1) dx (k2 +1) k2 x m k2 xm SAs

Table 2. Complexity Comparison between FedPower [3] andAlgorithm 2.

Version April 12, 2023 submitted to Journal Not Specified 6 of 14

Algorithm 2 Utility Enhanced FedPower

Input: Datasets {M];}}' ,, target rank k, iteration rank r, number of iteration T,
synchronous trigger p, the variance of noise ¢, and key pair (skj,, pky,)
Output: Approximated eigenspace Zr
1: initialise Z((Jl) = 7y € R ~ N(0,1)?*" with orthonormal columns and
generate an r X r zero matrix [P and another all-ones matrix P’ of the same size
2. fort=1to T do)]
each node device i computes YEZ) = M;Zgl, where M: = %MITMI
ift =0 (mod p) then
(i)

3
4
5: each node device i computes Yt = Ygi)]D)Ei) (orthogonal transformation)
6
7

each node device i adds Gaussian noise: Y;(i) = YE” + N ~ N(0,0)2>
SA protocol is executed among the server and all node devices,

with inputs Y;(l) and output Y
8: the server chooses one random index j € [1,1] and encrypts P’ and IP':
CW) = Encpy, (P) and CU) = Encyy, (P') for j' € [1,n] \ {j}
9: the server sends value C1/) and CU") to the appropriate node devices
10: each node device i computes C'() = N() . C(;) which is
Ency, (NGO P ifi = jand Encpx, (N . P) otherwise
11: each node device i sends C'(¥) back to the server
12: foralli € [1,n]\ {j}, the server decrypts the receiving messages C’("
to obtain N() = N() . P' = Decg, (C'())
13: the server updates aggregation result as Yy = Yj — Yicpy)\ j) N
14: the server performs orthogonalisation Z; = orth(Y}')
15: the server broadcasts Z; to all node devices
16: each node device i sets Zgl) =7
17: else , ,
18: each node device i calculates the latest Zgl) = orth(Ygl))
19: endif
20: end for

21: return approximated eigenspace

i 77 (D) (i .
Iy = { =1 S?ZTI)ID#)H if T ¢ I}

n o sirp(i) :
im1 2Ly otherwise.

Although we have added more operations as seen in Table 2, we have distributed some
computations to individual node devices. Most importantly, we no longer add secondary
server-side Gaussian noise to the final aggregation result and only retain the Gaussian
noise from one node device.

Analysis. As we mentioned in our adversarial model, the semi-honest server cannot
collude with any of the node devices, which are also semi-honest. Thus, the server cannot
eliminate the remaining noise from the final result. In terms of the node device, since no
one except the server is aware of the random index in Step 8, apart from its data, an node
device only knows the aggregation result with the added noise, even if the retained noise
comes from itself.

Compared to the original solution by Guo et al. [3], we have improved the utility of
the aggregation result by keeping the added noise from only one node device. As a side
effect, the complexity has grown due to the SA protocol. This is a trade-off between result
accuracy and solution efficiency.

Version April 12, 2023 submitted to Journal Not Specified 7 of 14

5. Differentially Private Federated SVD Solution 196

Privacy Analysis of FedPower. Algorithm 1 injects noise both on the local (Step 6) and 107
the global (Step 8) level. Consequently, the claimed privacy protection of Algorithm 1is 1es
(2¢,26)-DP, which originates from (¢, §)-LDP and (¢, 6)-CDP [3]. Firstly, as we highlighted 10
in Table 1, LDP and CDP provide different privacy protections; hence, merely combining zoo
them is inappropriate, so the claim must be more precise. Instead, Algorithm 1 seems zo:
to provide (g, J)-DP for the clients from the server and stronger protection (due to the 2o
additional central noise) from other clients and external attackers. 203

Yet, this is still not entirely sound, as not all computations were included in the sensi- 204
tivity calculation; hence, the noise scaling is incorrect. Indeed, the authors only considered zos
the sensitivity of the multiplication with Z in Step 3 when determining the variance of the 206
Gaussian noise in Step 6; however, the noise is only added after the multiplication with D 207
in Step 5. Thus, the sensitivity of the orthogonalization is discarded. 208

Privacy Enhanced FedPower. We improve on FedPower [3] from two aspects: 1) 200
we incorporate clipping in the protocol to bound the sensitivity of the local operations 2o
performed by the clients and 2) we use SA with DP to obtain a strong privacy guarantee. For 21
this reason, similar to FedPower [3], we assume that for all i the elements of M; = SliMiTMi 212
are bounded with 7. In Algorithm 1, the computations the nodes undertake (beside noise 213
injection at Step 6) are in Steps 3, 5, and 12, where the last two could be either discarded for 21
the sensitivity computation or removed entirely, as explained below. 215

e Step 12: Orthogonalization is intricate, so its sensitivity is not necessarily traceable. To 216
tackle this, we propose to apply the noise before, in which case it would not affect the 27

privacy guarantee, as it would count as post-processing. 218
e Step 5: We remove this client-side operation from our privacy enhanced solution, as it 210
is not essential; only the convergence speed would be affected slightly. 220

The FedPower protocol with enhanced privacy is present in Algorithm 3, where 22
besides the orthogonalization clipping is also performed with 2. The only client operation zz:
which must be considered for the sensitivity computation (i.e., before noise injection) is 22
Step 3. We calculate its sensitivity in Theorem 1. 224

Theorem 1. If we assume |m;]| < 1t for all i,j € [1,d], then the sensitivity (calculated via s
the Eucledian distance) of the client side operations (i.e., Step 3 in Algorithm 3 is bounded by 226

2.7t 2.

Proof. To make the proof easier to follow, we remove the subscript round counter from the 22s
notation. Let us define M’ and M such that they are equal except at position 1 <i,j < d. 22
Now, multiplying these with Z from the left results in Y and Y respectively which are the 230
same except in row i: 231

abs(-)<i-2 abs(-)<m-2
N
! !/ ! !/ / !/ !/
[ml-l-Z11+--~+m,-]»-Zj1+--~+mid~zd1,...,mi1-zly+~--+mij-zj,+---+mid-zd,] for Y
~/ ~/
[m;l.le+.‘.+mij.Zj1+.‘.+m;d.zd1’_”,m;1.er_‘_..._'_ml.].
abs(+)<i-2 abs(-)<mr-2

-zj,+ ol zg for Y

Hence, the Euclidean distance of Y and Y boils down to this row i: 232

d r r 2
dist(Y,Y) $ Y Y vk —u) = \/Z yir —) \/Z ij i — g]1)
k=11=1 =1

As a direct corollary of abs(m - z) < i1 - 2, we know that each of the r squared element 23
is bounded by 2 - 11 - . Therefore, dist(Y,Y) < Vr-4-m2-22. O 234

Version April 12, 2023 submitted to Journal Not Specified 8 of 14

Algorithm 3 Privacy Enhanced FedPower

Input: Datasets {Mi}?zl, target rank k, iteration rank r, number of iteration T,
the clipping bound Z, the variance of noise ¢
Output: Approximated eigenspace Zt
1: initialise Z((Jl) = 7y € R ~ N(0,1)?*" with orthonormal columns
2: fort =1to T do

3: each node device i computes Ygi) = M;ZEZ, where M: = Sl’_MiTM,»

4. each node device i adds Gaussian noise: Y;(l) = Y;l) + N ~ N(0,5) >
5 ift=0 (mod p) then
6: SA protocol is executed among the server and all node devices,
with inputs Y;(l) and output Y;
the server performs orthogonalisation and clipping Z; = clip(orth(Y}),2)
the server broadcasts Z; to all node devices
9: each node device i sets ZEZ) =7t
10: else . .
11: each node device i calculates the latest Zgl) = clip(orth(Y;(Z)),2)
12 end if
13: end for

14: return approximated eigenspace

izOpl
ZT:{ i1 Y2y Dy T ¢ Tp

- %Zp otherwise.

.52 5 .
It is known that adding Gaussian noise with 0?2 = M (where s is the

sensitivity) results in (¢, J)-DP. As a corollary, we can state in Theorem 2 that a single
round in Algorithm 3 is differentially private. An even tighter result was presented in [30],
we leave the exploration of this as future work. The best practice is to set § as the inverse of
the size of the underlying dataset, so there is a direct connection between the variance ¢
and the privacy parameter e.

Theorem 2. If T = 1, then Algorithm 3 provides (¢, 6)-DP where

o V/8-r-log(1.25/6) -1 - £
o

Proof. Can be verified by combining the provided formula with the appropriate sensitiv-
ity. O

One can easily extend this result for T > 1 with the composition property of DP:
Algorithm 3 satisfies (T - ¢, T - §)-DP. Besides this basic loose composition, one can obtain
better results by utilizing more involved composition theorems such as in [31]. We leave
this for future work.

Analysis. Similarly to Section 4, we protect the individual intermediate results
with SA. On the other hand, it is equivalent to generate n Gaussian noise with variance
o and select one, or generate n Gaussian noise with variance ¢ and sum them all up.
Consequently, instead of relying on an SMPC protocol to eliminate most of the local noise,
we could merely scale them down. combining SA with such a downsized local noise is, in
fact, a common practice in FL: this is what Distributed Differential Privacy (DDP) [32] does,
i.e., DDP combined with SA provides LDP but with n times smaller noise where 7 is the
number of participants.

Version April 12, 2023 submitted to Journal Not Specified

9 of 14

6. Empirical Comparison

In order to compare our proposed schemes with FedPower, we implement the schemes
in Python'. As we only encrypt 0 and 1 in Section 4, we optimize the performance and
take advantage of the utilized Paillier cryptosystem. In more details, we re-randomize the
corresponding ciphertexts to obtain new ciphertexts. In addition, we also exploit the homo-
morphic property, and instead of decrypting each value (d x r x |number of node devices|
times), we first calculate the product of all the ciphertexts (elementary matrix multiplica-
tion) and then perform the decryption on a signal matrix. This way, we obtain the sum of
all Gaussian noises more efficiently. The decryption result is the sum of noise which will be
cancelled in Algorithm 2. Furthermore, we prepare the M} = sliMiTM,», Z(()l) and all keys of
SA offline for each node device i.

Metric. We use Euclidean distance to represent the similarity of two m x n matrix
A = (a;;) and B = (b;;), i.e., dist(A,B) \/Z "1 Z] 1 111] b,»j)Z. Let Z denote the true
eigenspace computed without any noise, let Z¢(c, ¢”) denote the eigenspace generated
with Algorithm 1, let Z,(c) denote the eigenspace generated with Algorithm 2, and let
Zy(c) denote the eigenspace generated with Algorithm 3.

Setup. For our experiments we used the well-known NETFLIX rating dataset [33],
and we pre-process it similarly to [34]%. It consists of 96.310.835 ratings corresponding to
17.711 movies from 324.468 users. We split them horizontally into 100 random blocks to
simulate node devices. Besides, we set the security parameter to 128, thus, we adopt 3072
bits for N in Paillier cryptosystem®. The number of iteration rank and top eigenvectors
is set to ¥ = k = 10 and we keep the same synchronous trigger p = 4 as [3]. To compare
FedPower with our enhanced solutions, we set the noise size for these algorithms as

o = ¢’ = 0.1. Besides, for Algorithm 3 we bounded M with 0.05 and Zil) with 0.2 for all
possible i and t. Using Theorem 2, we can calculate that a single round corresponds to
privacy budget e = 30.6 with § = 107°.

In order to determine the number of global rounds T, we set up a small experiment.
We built a data matrix M of size 3000 x 100 filled with integers in [0, 5], and randomly
divided it for 100 node devices (each has at least 10 rows). We executed Algorithm 1 for 200
rounds and compared the distance between the aggregation result Z and the real singular
values of M. From the result in Figure 2 we can see that convergence happens around
round 92, since the subsequent results vary only slightly (< 1%). Thus, we set T = 92 for
our experiments.

The experiment is implemented in a Docker container of 40-core Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz and 755G RAM. We run our experiments 10-fold and take the
average execution time.

-

https:/ / github.com/MoienBowen/Privacy-preserving-Federated-Singular-Value-Decomposition
Instead of 10, we removed users and movies with less than 50 ratings.
This is equivalent to RSA-3072, which provides a 128-bit security level [35]

w N

Algorithm 1

Distance from Zr to real singular values

Round

Figure 2. Determining T with Algorithm 1.

https://github.com/MoienBowen/Privacy-preserving-Federated-Singular-Value-Decomposition

Version April 12, 2023 submitted to Journal Not Specified 10 of 14

Name Device Aggr.CompSlll\tlaIﬁiCon timeRest thlirrlr?ei?g
FedPower F §Necf)3§f - 7139747 -—-- { -—-- 7112§726f§ { 2698 -10°
Privacy Enhanced §Ne(})3§f %%g?é% - - - { - - - 71127782979015 { 4.477 -10°

Table 3. Running time comparison of Algorithm 1, 2, and 3 in miliseconds.

Results. Firstly, we compare the efficiency of our enhanced schemes and the original
algorithm. The computation times are presented in Table 3. Compared to FedPower the
overall computation burden of the devices increased with a factor of x39.68 for the Utility
Enhanced solution in Section 4 and only x1.74 and Privacy Enhanced solution in Section 5.
Concerning the server, the increase is x6.97 and x1.17, respectively.

The rise in computational demand comes with benefits. Concerning Algorithm 2,
significant progress is achieved on the utility while it offers a similar privacy guarantee as
FedPower. Concerning Algorithm 3, the privacy guarantee is more robust, as it provides a
formal DDP protection (while FedPower fails to satisfy DP). Moreover, it obtains a higher
utility, which could make this solution preferable despite its computational appeal. The
details are shown in Figure 3.

Our utility-enhanced solution significantly outperforms FedPower: after 92 rounds,
the obtained error of our scheme is almost three times (2.74 x) smaller than for FedPower.
The final error of Algorithm 2 is dist(Z, Z,(c)) = 6.72, while this value for Algorithm 1
is dist(Z,Z¢(0,0’)) = 18.42. Note that this level of accuracy (~ 18.5) was obtained by
our method in the 32nd round, i.e., almost three times (2.88 x) faster. Hence, the superior
convergence speed can compensate for most of the computational increase caused by SA
and SMPC.

Let’s shift our attention to our privacy-enhanced solution. In that case, we can see
that besides more robust privacy protection, our solution offers better utility: Algorithm 1
and Algorithm 3 obtains dist(Z, Zg(c,0")) = 18.42 and dist(Z,Zy(c)) = 13.94 RMSE
values respectively, i.e., we acquired a 24% error reduction. Our method (with actual DP
guarantees) achieved the same level of accuracy (~ 18.5) only after 65 rounds, which is a
29% convergence speed increase.

Finally, we compare our two proposed schemes, in a way, that the size of the accumu-
lated noises is equal. Besides the nature of noise injection (many small vs one large), the
only factor that differentiates the results is the clipping bounds. As expected, the error is
1.65x larger with clipping, i.e., dist(Z, Zy({;)) = 11.11 compared to dist(Z, Zy(0)) = 6.72.
Concerning the convergence speed, the utility enhanced solution is 1.7 x faster, reaching

4 Due to the large volume of memory required for matrix calculations, we had to access data by reading and

writing local files, which caused the longer overall execution time.

o Alg 1 (0=0.1,0'=0.1)
—— Alg2(0=0.1)

—— Alg 3 (0=0.1)

—— Alg 3 (0=0.01)

40

3 S <5 N3 o > ® o 5 o o ©® 4 & & o & e Ao & o & Y
Round

Distance from Zr to real singular value

Figure 3. Comparison of Eigenspaces Calculated by Algorithm 1, 2, and 3.

Version April 12, 2023 submitted to Journal Not Specified 110f 14

similar accuracy (~ 11) in round 54. Note though, that this result still vastly outperform
FedPower: the accuracy and the convergence speed are increased with 40% and 43%
respectively.

7. Conclusion

Motivated by Guo et al.’s distributed privacy-preserving SVD algorithm based on
federated power method [3], we have proposed two enhanced federated SVD schemes,
focusing on utility and privacy, respectively. Both are using secure aggregation to reduce
the added noise, which reverts to the initial design intent and interest. Yet, the added
cryptographic operations trade efficiency for superior performance (x10 better results)
while providing either similar or superior privacy guarantee.

Acknowledgments: Bowen Liu and Qiang Tang are supported by the 5G-INSIGHT bi-lateral project
(ANR-20-CE25-0015-16) funded by the Luxembourg National Research Fund (FNR) and by the French
National Research Agency (ANR). Balazs Pejo is supported by Project no. 138903, which has been
implemented with the support provided by the Ministry of Innovation and Technology from the
NRDI Fund, and financed under the FK_21 funding scheme.

References

1. Golub, G.; Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and
Applied Mathematics, Series B: Numerical Analysis 1965, 2, 205-224.

2. Golub, G.H,; Reinsch, C. Singular value decomposition and least squares solutions. In Linear algebra; Springer, 1971; pp. 134-151.

3. Guo, X; Li, X,; Chang, X.; Wang, S.; Zhang, Z. Privacy-preserving distributed SVD via federated power. arXiv preprint
arXiv:2103.00704 2021.

4. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; etal. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning 2021, 14, 1-210.

5. Polat, H,; Du, W. SVD-based collaborative filtering with privacy. In Proceedings of the Proceedings of the 2005 ACM symposium
on Applied computing, 2005, pp. 791-795.

6. Zhang, S.; Wang, W.; Ford, J.; Makedon, F,; Pearlman, J. Using singular value decomposition approximation for collaborative
filtering. In Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05). IEEE, 2005, pp.
257-264.

7. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemometrics and intelligent laboratory systems 1987, 2, 37-52.

8. Dumais, S.T;; et al. Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 2004, 38, 188-230.

9. Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An efficient SVD-based method for image denoising. IEEE transactions on Circuits and
Systems for Video Technology 2015, 26, 868-880.

10. Rajwade, A.; Rangarajan, A.; Banerjee, A. Image denoising using the higher order singular value decomposition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 2012, 35, 849-862.

11. Ravi Kanth, K.; Agrawal, D.; Singh, A. Dimensionality reduction for similarity searching in dynamic databases. ACM SIGMOD
Record 1998, 27, 166-176.

12. Von Luxburg, U. A tutorial on spectral clustering. Statistics and computing 2007, 17, 395-416.

13. Candes, E.J.; Recht, B. Exact matrix completion via convex optimization. Foundations of Computational mathematics 2009, 9, 717-772.

14. Yakut, I; Polat, H. Privacy-preserving SVD-based collaborative filtering on partitioned data. International Journal of Information
Technology & Decision Making 2010, 9, 473-502.

15. Hartebrodt, A.; Rottger, R.; Blumenthal, D.B. Federated singular value decomposition for high dimensional data. arXiv preprint
arXiv:2205.12109 2022.

16. Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In
Proceedings of the Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015.

17. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.

18. Zhu, L, Liu, Z.; Han, S. Deep leakage from gradients. In Proceedings of the Advances in Neural Information Processing Systems,
2019.

19. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the Artificial intelligence and statistics. PMLR, 2017, pp. 1273-1282.

20. Pejo, B.; Desfontaines, D. Guide to Differential Privacy Modifications: A Taxonomy of Variants and Extensions; Springer Nature, 2022.

21. Golub, G.H.; Van Loan, C.E. Matrix computations; JHU press, 2013.

22. Fan,].; Wang, D.; Wang, K.; Zhu, Z. Distributed estimation of principal eigenspaces. Annals of statistics 2019, 47, 3009.

23. Chen, X,; Lee,].D,; Li, H.; Yang, Y. Distributed estimation for principal component analysis: An enlarged eigenspace analysis.

Journal of the American Statistical Association 2022, 117, 1775-1786.

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

Version April 12, 2023 submitted to Journal Not Specified 12 0of 14

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211-218.

Stewart, G.W. On the early history of the singular value decomposition. SIAM review 1993, 35, 551-566.

Arbenz, P,; Kressner, D.; Ziirich, D. Lecture notes on solving large scale eigenvalue problems. D-MATH, EHT Zurich 2012, 2, 3.
Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1175-1191.

Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of the
Theory of cryptography conference. Springer, 2006, pp. 265-284.

Guerraoui, R.; Kermarrec, A.M.; Patra, R.; Taziki, M. D 2 p: distance-based differential privacy in recommenders. Proceedings of
the VLDB Endowment 2015, 8, 862-873.

Balle, B.; Wang, Y.X. Improving the gaussian mechanism for differential privacy: Analytical calibration and optimal denoising. In
Proceedings of the International Conference on Machine Learning. PMLR, 2018, pp. 394—403.

Kairouz, P; Oh, S.; Viswanath, P. The composition theorem for differential privacy. In Proceedings of the International conference
on machine learning. PMLR, 2015, pp. 1376-1385.

Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig, H.; Zhang, R.; Zhou, Y. A hybrid approach to privacy-preserving
federated learning. In Proceedings of the Proceedings of the 12th ACM workshop on artificial intelligence and security, 2019, pp.
1-11.

Bennett, J.; Lanning, S.; et al. The netflix prize. In Proceedings of the Proceedings of KDD cup and workshop. New York, 2007,
Vol. 2007, p. 35.

Pejo, B.; Tang, Q.; Biczok, G. Together or alone: The price of privacy in collaborative learning. Proceedings on Privacy Enhancing
Technologies 2019, 2019, 47-65.

Barker, E. Recommendation for Key Management: Part 1 — General. Technical Report NIST Special Publication (SP) 800-57, Rev.
5, National Institute of Standards and Technology, Gaithersburg, MD, 2020. https://doi.org/10.6028 /NIST.SP.800-57pt1r5.
Blum, M.; Micali, S. How to generate cryptographically strong sequences of pseudorandom bits. SIAM journal on Computing 1984,
13, 850-864.

Yao, A.C. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science (SFCS 1982). IEEE, 1982, pp. 80-91.

Shamir, A. How to share a secret. Communications of the ACM 1979, 22, 612-613.

Diffie, W.; Hellman, M. New directions in cryptography. IEEE Transactions on Information Theory 1976, 22, 644-654. https:
//doi.org/10.1109/TIT.1976.1055638.

McGrew, D.; Viega,]. The Galois/counter mode of operation (GCM). submission to NIST Modes of Operation Process 2004,
20, 0278-0070.

Bellare, M.; Neven, G. Transitive signatures: new schemes and proofs. IEEE Transactions on Information Theory 2005, 51, 2133-2151.

Appendix A Practical secure aggregation

The practical secure aggregation by Bonawitz et al. [27] is summarised as below. First and foremost, the following

parameters are generated during the setup phase and sent to relevant node devices.

Pseudorandom Generator (PRG) [36,37]: PRG which takes a fixed length seed as input and outputs in space [0, R),
where R is a prefixed value.

Secret Sharing [38]: SS.share(s, t,U) — {(u,su) }ucy, it takes a secret s, a set of user IDs (e.g. integers), a threshold
s < |U] as input, and outputs a set of shares s, associated with the user u € U; and a reconstruction algorithm
SS.recon({(u,s4) }pey,t) — s takes the following values as input: threshold t and shares corresponding to a user
subset V C U such that |V| > t, and outputs a field element s.

Key Agreement [39]: KA.param(k) — pp takes a security parameter k and returns some public parameters;
KA.gen(pp) — (s°K,sPK) generates a secret/public key pair; KA.agree(s5K,sbX) — s, , allows a user u to com-
bine its private key with the public key of another user v into a private shared key between them.

Authenticated Encryption [40]: AE.enc and AE.dec are algorithms for encrypting a plaintext with a public key and
for decrypting a ciphertext with a secret key.

Signature Scheme [41]: SIG.gen takes a security parameter k and outputs a secret/public key pair; SIG.sign signs a
message with a secret key and returns the relevant signature; SIG.ver verifies the signature of the relevant message
and returns a boolean bit indicating whether the signature is valid.

Number of node devices m.

Security parameter k.

Public parameter of key agreement pp <— KA.param(k).

Threshold value t, where t < n and # is the number of node devices.

389

390

391

392

303

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

Version April 12, 2023 submitted to Journal Not Specified 13 of 14

Input space Zg.

Secrets sharing field IF.

Signature key pairs (d5K, dLX) of each node device, where u € [1,m].

The complete execution of the protocol between node devices and the server is provided in the following.

Round 0 (AdvertiseKeys):

0.1. each node device u generates secret/public key pairs of encryption and sharing algorithm (c3X, c}X) and
(s, s0)
0.2. each node device u signs c;X and s’X into 0, +— SIG.sign(d3X, c[K|[sPK)

0.3. the two public keys and all n signatures (c/X||sFX||o,) are sent to the server

0.4. if the server receives at least f messages from individual node devices (denote by 4 this set of node devices),

then broadcasts {(v, cJX, sPX, 0,) } e, to all node devices in ¢4

Round 1 (ShareKeys):

1.1. once an node device u in U1 receives the messages from the server, it verifies if all signatures are valid with
SIG.ver(dlX, cPK||sPK, 0,), where u € Uy

1.2. thenode device u sample a random element b, < I as a seed for a PRG

1.3. the node device u generates two t-out-of-|Uf;| shares of s;X : {(v,555)},er, < SS.share(spK,t,U;) and
bu : {(v, buw) bocy, < SS.share(by, t,U)

14. for each node device v € U \ {u}, u computes e, , < AE.enc(KA.agree(c5X, cbX), u|[v||s5K||b,,.) and sends
them to the server

1.5. if the server receives at least t messages from individual node devices (denoted by U, C U this set of node
devices), then it shares to each node device u € U all ciphertexts for it {eu, }oeis,

Round 2 (MaskedInputCollection):

2.1. for the node device u € Uy, once the ciphertexts are received, it computes s, , <— KA.agree(s;, 5K gP K) where
v e\ {u}

22, s,y is expanded using PRG into a random vector py o = Ayp - PRG(sy,0), where A, = 1 when u > v and
Ay = —1when u < v, besides, define p;,,, = 0

2.3. thenode device u computes its own private mask vector p, = PRG(b,) and the masked input vector x, into
Yu < Xu + Pu + Loet, Puo (mod R), then y,, is sent to the server

2.4. if the server receives at least t messages (denote with U3 C U, this set of node devices), and share the node
device set U3 with all node devices in U3

Round 3 (ConsistencyCheck):

3.1. once the node device u € U3 receives the message, it returns the signature o7, < SIG.sign(d5X,U3)

3.2. if the server receives at least t messages (denoted by Uy C U3 this set of node devices) and shares the set
{', O'Llu }u’eu4

Round 4 (Unmasking):

4.1. each node device u verifies SIG.ver(d'X, U3, 07) for all v € U,
4.2. foreachnode devicev € U \ {u}, u decrypts the ciphertext (received in the MaskedInputCollection round)
v'||u + AE.dec(KA.agree(c ﬁK, cPK), e,) and asserts that u’ = u Av' = v
43. each node dev1ce u sends the shares s K for node devices v € U, \ Us and b, for node devices in v € U3 to
the server
4.4. if the server receives at least t messages (denote with /5 this set of node devices), it re-constructs, for each

node device u € Up \ U, 53K < SS.recon({s5X },c14, t) and re-computes ps,,, using PRG for all v € Us
45. the server also re-constructs, for all node devices u € U3, by, < SS.recon({by, }vcuss, t) and re-computes py
using the PRG

4.6. finally, the server outputs z = Yuells Xu = Luctts Yu — Luctts Pu + ZueZ/{3,v€Z/{2\Z/{3 Po,u

We summarise the asymptotic computational complexity of each node device and the server in Table Al. For

simplicity of description, we assume that all devices participate in the protocol, that is, ¢ = m. Since some operations can
be considered as offline pre-configuration, we focus on online operations starting from masking messages in Step 2.3.

Version April 12, 2023 submitted to Journal Not Specified

14 of 14

Vector Add | SIG.sign | SIG.vef | KA.agree | AE.dec | SS.recon | PRG
Node m+1 1 m—1 m—1 m—1 1
Server 2m —1 m m

Table Al. Asymptotic Computational Complexity of Online Operations.

	Introduction
	Preliminary
	The FedPower Algorithm
	Enhancing the Utility of FedPower
	Differentially Private Federated SVD Solution
	Empirical Comparison
	Conclusion
	References
	Practical secure aggregation

