A Conjecture From a Failed Cryptanalysis

David Naccache ${ }^{1}$ and Ofer Yifrach-Stav ${ }^{1}$
DIÉNS, ÉNS, CNRS, PSL University, Paris, France
45 rue d'Ulm, 75230, Paris Cedex 05, France
ofer.friedman@ens.fr, david.naccache@ens.fr

Abstract

This note describes an observation discovered during a failed cryptanalysis attempt. Let $P(x, y)$ be a bivariate polynomial with coefficients in \mathbb{C}. Form the $n \times n$ matrices L_{n} whose elements are defined by $P(i, j)$. Define the matrices $M_{n}=L_{n}-\mathrm{ID}_{n}$. It appears that $\mu(n)=(-1)^{n} \operatorname{det}\left(M_{n}\right)$ is a polynomial in n that we did not characterize. We provide a numerical example.

1 Introduction

During a failed cryptanalysis of multivariate signature scheme we stumbled on the following observation.

Let $P(x, y)$ be a bivariate polynomial with coefficients in \mathbb{C}. Form the $n \times n$ matrices L_{n} whose elements are defined by $P(i, j)$. Define the matrices $M_{n}=$ $L_{n}-\mathrm{ID}_{n}$.

It appears that $\mu(n)=(-1)^{n} \operatorname{det}\left(M_{n}\right)$ is a polynomial in n that we did not characterize.

If we replace the definition of μ by $\mu(n)=(-1)^{n+1} \operatorname{det}\left(M_{n}\right)$ then a similar phenomenon occurs with $M_{n}=L_{n}+\mathrm{ID}_{n}$.

We did not research the reasons for this behavior but note it for those who wish to further investigate it.

2 Example

Let

$$
P(x, y)=h x^{2} y+g y^{2} x+f y^{2}+e x^{2}+d x y+a x+b y+c
$$

Then

$$
\begin{aligned}
\mu(n) & =(-1)^{n} \operatorname{det}\left(M_{n}\right)=\sum_{i=0}^{9} \eta_{i} n^{i} \\
\eta_{9} & =\frac{d e f+c g h-a f h-b e g}{2160}
\end{aligned}
$$

$$
\begin{gathered}
\eta_{8}=-\frac{g h}{240} \\
\eta_{7}=-\frac{\rho}{60}-6 \eta_{9} \\
\eta_{6}=\frac{\kappa}{72}-\frac{4 e f+2 \rho}{45}-6 \eta_{8} \\
\eta_{5}=\frac{\kappa}{24}+\frac{c g+c h-a f-b e-2 e f}{12}+9 \eta_{9} \\
\eta_{4}=\frac{\kappa-7 e f+2 \rho}{36}+9 \eta_{8}-\frac{g+h}{4}-\tau \\
\eta_{3}=-2 \sigma-\frac{g+h}{2}-\eta_{5}-\eta_{9}-\eta_{7} \\
\eta_{2}=\alpha-\frac{19 e f+2 \rho}{180}-4 \eta_{8}-\frac{g+h}{4}+\frac{\kappa}{72}-2 \sigma+\tau \\
\eta_{1}=\alpha-c \\
\eta_{0}=1
\end{gathered}
$$

Where $\sigma=\frac{d+e+f}{6}, \quad \tau=\frac{a b-c d}{12}+9 \eta_{9}-\eta_{5}, \quad \alpha=-\frac{a+b}{2}-\sigma$

$$
\kappa=a h+b g-d e-d f-e g-f h \text { and } \rho=e g+f h+g h
$$

The Mathematica code generating those polynomials is very simple:

```
M := Function[n,
    P := Function[{x, y},
        h x^2 y + g y^2 x + f y^2 + e x^2 + d x y + a x + b y + c];
    Table[P[i, j] , {i, 1, n}, {j, 1, n}] - IdentityMatrix[n]]
t = Table[ Det[(-1)^(k) M[k]], {k, 1, 20}];
mu = Collect[Expand[InterpolatingPolynomial[t, n]], n];
```

The formulae were simplified (?) by hand using $\sigma, \tau, \alpha, \kappa, \rho$ and machinetested.

3 Further Remarks

3.1 Extending the Example

Adding to the example the coefficients:

$$
P(x, y)=c_{1} y^{3}+c_{2} x^{3}+h x^{2} y+g y^{2} x+f y^{2}+e x^{2}+d x y+a x+b y+c
$$

the formal interpolation offered by Mathematica runs out of resources.
Nonetheless, it is possible to disassemble the effect of c_{1}, c_{2} by assigning to those coefficients notable values such as 10^{6} and solving locally a system of linear equations assuming that the missing terms are linear combinations of c_{1}, c_{2} and $c_{1} c_{2}$.

The resulting coefficients are very large and have additional terms with respect to the η_{i}. For instance, the new value of η_{2} becomes:

$$
\eta_{2}^{\prime}=\eta_{2}+\frac{a c_{1}+b c_{2}}{30}+\frac{d\left(c_{1}+c_{2}\right)}{60}+\frac{c_{1} g+c_{2} h}{180}-\frac{c_{1} c_{2}}{42}-\frac{c_{1}+c_{2}}{4}
$$

3.2 An Identity

We observed that $\forall q \in \mathbb{N}, \forall u \leq q$ all $P(x, y)=x^{u} y^{q-u}$ have the same μ.

3.3 A Related Application

In a private communication, Éric Brier notes that taking $P(x, y)=1$ it is possible to prove that the number of even derangements is equal to:

$$
\frac{\left\lfloor\frac{n!}{e}\right\rceil+(-1)^{n}(n-1)}{2}
$$

Which is indeed a new explicit formula for oeis.org sequence A000387.

