
Self Masking for Hardening Inversions

(Preliminary Version)

Paweł Cyprys1, Shlomi Dolev1, and Shlomo Moran2

1 Ben-Gurion University of the Negev
2 Technion Israel Institute of Technology

September 26, 2022

Abstract. The question whether one way functions (i.e., functions that
are easy to compute but hard to invert) exist is arguably one of the cen-
tral problems in complexity theory, both from theoretical and practical
aspects. While proving that such functions exist could be hard, there
were quite a few attempts to provide functions which are one way “in
practice”, namely, they are easy to compute, but there are no known
polynomial time algorithms that compute their (generalized) inverse (or
that computing their inverse is as hard as notoriously difficult tasks, like
factoring very large integers).
In this paper we study a different approach. We provide a simple heuris-
tic, called self masking, which converts a given polynomial time com-
putable function f into a self masked version [f], which satisfies the
following: for a random input x, [f]−1 ([f] (x)) = f−1(f(x)) w.h.p., but
a part of f(x), which is essential for computing f−1(f(x)) is masked in
[f] (x). Intuitively, this masking makes it hard to convert an efficient al-
gorithm which computes f−1 to an efficient algorithm which computes
[f]−1, since the masked parts are available to f but not to [f].
We apply this technique on variants of the subset sum problem which
were studied in the context of one way functions, and obtain functions
which, to the best of our knowledge, cannot be inverted in polynomial
time by published techniques.

1 Introduction

The question whether one way functions (i.e., functions that are easy to compute
but hard to invert) exist is arguably one of the central problems in complexity
theory, both from theoretical and practical aspects. e.g., it is known that the ex-
istence of one way functions implies, and is implied by, the existence of pseudo
random number generators (see e.g. [6] for a constructive proof of this equiva-
lence).

While proving that one way functions exist could be hard (since it would
settle affirmatively the conjecture that P 6= NP), there were quite a few attempts
to provide functions which are one way “in practice” – namely, they are easy to
compute, but there are no known polynomial time algorithms which compute
their (generalized) inverses.

2 Cyprys, Dolev, Moran

In this paper we suggest a heuristic, called self masking, to cope with pub-
lished attacks on previous attempts to construct one way functions. Specifically,
the self masking versions of polynomial time computable functions "hide" in the
outputs of these functions parts which are essential for computing their inverse.

1.1 Preliminaries

To make the presentation self contained and as short as possible, we present only
definitions which are explicitly used in our analysis. For a more comprehensive
background on one way functions and related applications see, e.g., [7; 6].

The notation x∈UD indicates that x is a member of the (finite) set D, and
that for probabilistic analysis we assume a uniform distribution on D.

Following [6], we define one way functions using the notion of polynomial
time function ensembles.

Definition 1 A polynomial time function ensemble f = (fk)
∞
k=1 is a polynomial

time computable function that, for a strictly increasing sequence (nk)
∞
k=1 and a

sequence (mk)
∞
k=1, fk maps {0, 1}nk to {0, 1}mk . Both nk and mk are bounded

by a polynomial in k and are computable in time polynomial in k. The domain
of fk is denoted by Dk = {0, 1}nk .3

Definition 2 Let f = (fk)
∞
k=1 be a polynomial time function ensemble. Then

f is one way function if for any polynomial time algorithm AL, and for all but
finitely many k’s, the probability that AL(fk(x)) ∈ f−1

k (fk(x)) for x∈UDk is
negligible (i.e., asymptotically smaller than |x|−c for any c > 0) .

1.2 Previous work

Quite a few attempts to construct one way functions - typically in the context
of public key cryptosystems - are based on the hardness of variants of the subset
sum problem. However, algorithmic attacks which compute the inverses of the
suggested functions in expected polynomial time were later found for all these
attempts.

The public key cryptosystem of Merkle and Hellman [10] uses an easy to
solve variant of the subset sum problem, in which the input sequence is super
increasing, which is transformed to a sequence in which the super increasing
structure is concealed. This cryptosystem was first broken by Shamir in [12],
and subsequently more sophisticated variants of it were broken too [2].

Super increasing sequences are a special case of low density instances of the
subset sum problem. These low density instances were also solved efficiently
[8; 1; 3]. A comprehensive survey of these methods and of the corresponding
attacks can be found in [11].

3 For definiteness, inputs whose length ℓ is different from mk for all k are mapped to
1ℓ.

Self Masking for Hardening Inversions 3

1.3 Contribution

The basic variant of the self masking technique replaces a (polynomial time
computable) function f by a self masking version, denoted [f], as follows: Let
y = f(x) for arbitrary x in the domain of f , and let |x| denote the length of x.
Then a self masked version [y] = [f] (x) is obtained by replacing two “critical”
substrings, z1 and z2, of y, of length |x|Ω(1), by z1 ⊕ z2

4. Intuitively, z1 and z2
are critical in the sense that they are essential for computing f−1(y).

An immediate concern raised by this method is that it might significantly in-
crease the number of preimages associated with the masked output value [f] (x),

e.g. that [f]
−1

([f] (x)) may contain exponentially many preimages of [f] (x) even
if f−1(f(x)) contains only few elements. We cope with this difficulty by showing
that, by carefully selecting the parameters of the transformation, this is not the
case, and in fact that we can guarantee that, w.h.p., [f]

−1
([f] (x)) = {x}, i.e.

[f] is univalent.
We demonstrate this technique on functions associated with variants of the

subset sum problem, which were widely used in the context of one way functions
(see eg [10; 8; 7; 9]).

Organization of the paper. Section 2 introduces the self masked subset sum prob-
lem, and proves that this problem is NP hard.
Section 3 presents function ensembles associated with the self masked subset
sum problem, and present conditions under which the resulted functions are
univalent w.h.p.
Section 4 demonstrates that applying the self masking technique on super in-
creasing instances of the subset sum problem produces function which cannot
be inverted by the known attacks on cryptosystems based on super increasing
sequences.
Section 5 extends this result by showing that applying the self masking tech-
nique on low density instances of the subset sum problem provides functions
which cannot be inverted by the known algorithms for solving low density in-
stances of the (unmasked) subset sum problem.
Section 6, which is only sketched in this version, discusses extension of the self
masking technique to high density instances of the subset sum problem.
Finally, Section 7 summarizes the results of this paper and discusses possible
extensions.

2 Subset sum with self masking

The subset sum problem of dimensions k and ℓ, to be denoted SS(k, ℓ), is de-
fined as follows: Let Ak,ℓ = {(a1, . . . , ak) : ai ∈ [0, 2ℓ − 1]}. An input to SS(k, ℓ)
is a pair (A, b), where A ∈ Ak,ℓ and b is an additional integer. It is required to

4 z1⊕z2 denotes bitwise XOR of the binary representations of z1 and z2; leading zeros
are assumed when these representations are of different lengths.

4 Cyprys, Dolev, Moran

decide if there is a binary vector α = (α1, . . . , αk) s.t. AαT =
∑

αiai = b.

We use the subset sum problem to define the following function ensemble
(fk,ℓ)k,ℓ∈N

: For each k and ℓ, nk,ℓ = k(ℓ+ 1), mk,ℓ = ℓ(k + ⌈log(k)⌉). An input

x ∈ {0, 1}nk,ℓ represents a sequence x = (A,α) = ((a1, . . . , ak), α), where each
ai is encoded by ℓ bits, and α is a binary vector with k bits. fk,ℓ(x) = y is given
by

fk,ℓ(x) = fk,ℓ(A,α) = (A,AαT) = y , (1)

where AαT < k2ℓ is encoded by ℓ⌈log(k)⌉ bits.

Note that fk,ℓ(x) is necessarily a solvable instance of the subset sum problem,
and f−1

k,ℓ (fk,ℓ(x)) is the nonempty set of the solutions to this instance.

The self masking version of subset sum, denoted self masked subset sum,
consists of two independent instances of the problem, which mask each other (so
it actually uses the 2-dimensional subset sum problem [5]).

Specifically, the input is a triplet (A1, A2, b), where A1 and A2 are k dimen-
sional vectors of positive integers, and b is s positive integer. It is needed to
decide if there is a binary k-vector α and integers b1, b2, s.t.

A1α
T = b1, A2α

T = b2, and b = b1 ⊕ b2.

Lemma 1. The self masked subset sum problem is NP-Hard.

Proof. We prove the lemma by presenting a polynomial time reduction from
the subset sum problem to the self-masked subset sum problem. Let (A, b) be
an input to the subset sum of dimensions k and ℓ (for arbitrary k and ℓ). We
reduce (A, b) to an input (C,D, e) to the self masked subset sum, where C = A

and D and e are defined as follows: Let n = ⌈log(∑k

i=1 ai)⌉. Then D = 2nC =
(2na1, . . . , 2

nak), and e = (2n + 1)b.

Since n is linear in the input length, the reduction can be performed in
polynomial time. To prove its correctness, we need to show that there is a binary
vector α satisfying AαT = b if and only if there is a binary vector β satisfying
CβT ⊕DβT = e.

Let α = (α1, . . . , αk) be an arbitrary non-zero binary vector. Observe that in
the binary representation of the integer DαT , the n least significant bits are all
zeros, while in the binary representation of CαT (with possible leading zeros),
the only non-zero bits are among the n least significant bits. This implies that,
in this case, the XOR operation coincides with integer addition, i.e.

CαT ⊕DαT = CαT +DαT = (2n + 1)CαT = (2n + 1)AαT .

We conclude that if AαT = b for some α, then CαT ⊕DαT = (2n+1)b = e, and
vice versa - if, for some β, CβT ⊕DβT = e, then AβT = e/(2n + 1) = b. This
completes the correctness proof.

Self Masking for Hardening Inversions 5

3 Function ensembles associated with self masked subset

sum

Given k and ℓ, the function ensemble of dimensions k and ℓ associated with
the self masked subset sum is denoted by [f]k,ℓ. An input x to [f]k,ℓ is a triple
(A1, A2, α), and

[f]k,ℓ (x) = [f]k,ℓ (A1, A2, α) =
(

A1, A2, A1α
T ⊕A2α

T
)

(2)

That is, in [f]k,ℓ (x) the values of b1 and b2 mask each other by b1 ⊕ b2.

Lemma 2. Assume a uniform distribution on Ak,ℓ, and let α ∈ {0, 1}k \ {0k}.
Then the random variable rα on Ak,ℓ defined by

∀A ∈ Ak,ℓ, rα(A) = AαT (mod 2ℓ).

defines the uniform distribution on [0, 2ℓ − 1].

Proof. We need to show that for each integer c ∈ [0, 2l − 1], it holds that
Prob[r(A) = c] = 2−ℓ. For this we assume WLOG that α1 = 1, and we let β be
the vector obtained from α by setting α1 to 0. Then, for each A = (a1, . . . , ak),
rα(A) = AαT = AβT + a1. Hence we get, using arithmetic modulus 2ℓ:

Prob[rα(A) = c] =
∑

j∈[0,2ℓ−1]

(

Prob[AβT = j] · Prob[a1 = (c− j)]
)

=

∑

j∈[0,2ℓ−1]

(Prob[AβT = j]

 · 2−ℓ = 2−ℓ,

where the second equality holds since for all j, Prob[a1 = c− j (mod 2ℓ)] = 2−ℓ.
⊓⊔

Our proof uses the following variant of lemma 2

Lemma 3. Assume a uniform distribution on Ak,ℓ, and let α, β ∈ {0, 1}k s.t.
α 6= β. Then the random variable rα,β on Ak,ℓ defined by

∀A ∈ Ak,ℓ, rα,β(A) = [AαT (mod 2ℓ)] ⊕ [AβT (mod 2ℓ)]

defines the uniform distribution on [0, 2ℓ − 1].

Proof. Assume WLOG that α1 = 0 and β1 = 1. Let c = (c2, . . . , ck), where
the ci’s are arbitrary elements in [0, . . . , 2ℓ − 1]. Let Ac be the subset of all
vectors (a1, . . . , ak) ∈ Ak,ℓ in which a2 = c2, . . . , ak = ck. Then, on Ac, Aα

T is
fixed (since α1 = 0 and hence it is independent of the value of a1), and AβT

mod (2ℓ) distributes uniformly on [0, . . . , 2ℓ−1] (since a1 distributes uniformly in
[0, 2ℓ−1]). So the lemma holds for Ac. The lemma follows by observing that Ak,ℓ

is a disjoint union of Ac, where c varies over all 2ℓ(k−1) possible combinations of
(k − 1) tuples.

6 Cyprys, Dolev, Moran

Lemma 4. Let (A1, A2)∈U [Ak,ℓ]
2, and let α ∈ {0, 1}k. Then the probability that

there exists β ∈ {0, 1}k, β 6= α, s.t.

A1α
T (mod 2ℓ)⊕A2α

T (mod 2ℓ) = A1β
T (mod 2ℓ)⊕A2β

T (mod 2ℓ) (3)

is at most 2k−ℓ.

Proof. Fix A1 for now. Let β ∈ {0, 1}k, β 6= α be given. Denote for brevity
A1α

T = b1 and A1β
T = b2. Then (3) can be written as: b1⊕A2α

T = b2⊕A2β
T ,

which is equivalent to b1 ⊕ b2 = A2α
T ⊕ A2β

T . By Lemma 3, the probabilty of
this last equality to hold for a random A2 is 2−ℓ. The lemma for fixed A1 follows
by applying the union bound on all β ∈ {0, 1}k \ {α}. Since A1 was arbitrary,
the lemma is proven.

For given k and ℓ, let [f]k,ℓ be the self masking function associated with the
subset sum problem as defined in the beginning of Section 3, and let nk,ℓ be the
length of the corresponding inputs. As an immediate application of lemma 4 we
get:

Corollary 1 Let c be a positive constant. If ℓ > k+c log nk,ℓ = k+c log(k(ℓ+1)),
then the probability that for a random input x1 to [f]k,ℓ, there exists x2 6= x1

satisfying [f]k,ℓ (x1) = [f]k,ℓ (x2) is smaller than (nk,ℓ)
−c.

Proof. Let x1 = (A1, A2, α) be a random input to [f]k,ℓ. Then the probability
that there exists x2 s.t. [f]k,ℓ (x1) = [f]k,ℓ (x2) is equal to the probability that
there exists β 6= α satisfying Equation (3). By Lemma 4 this probability is
smaller than 2k−ℓ. The result follows since by our assumption k−ℓ < −c log nk,ℓ.

Note that the premises of Corollary 1 hold for almost all ℓ provided that
ℓ ≥ (1 + ε)k for some fixed ε > 0 - i.e. for low density instances of the subset
sum problem.

4 Subset sum with super increasing sequences

A sequence A = (a1, . . . , ak) is super increasing if:

for i = 2, . . . k,

i−1
∑

j=1

aj < ai .

A subset sum instance (A, b) is easily solved in polynomial time when A is super
increasing: start with an empty subset S, and at each stage add to S the largest
element in A which is not yet in S, provided that the sum of the elements in S
does not exceed b. Nevertheless, few cryptographic schemes are based on solving
instances with super increasing sequences, by concealing their super increasing
nature. [11] provides a detailed survey of these methods, and then describes the
efficient attacks that eventually broke them. In this section we observe that these

Self Masking for Hardening Inversions 7

attacks must use a value which is hidden by the self masking technique, implying
that the self masked version of subset sum with super increasing sequences are
likely to be immune to these attacks.

The super increasing variant of subset sum of dimensions k and ℓ, denoted
SSsi(k, ℓ), is defined by associating with each input sequence A = (a1, . . . , ak) ∈
Ak,ℓ a super increasing sequence Asi = (asi1 , a

si
k), where asi1 = a1, a

si
2 =

2ℓ + a2, a
si
3 = 3 · 2ℓ + a3, and in general asii = (2i−1 − 1)2ℓ + ai. It is easy to

check that Asi is super increasing. The functions fsi
k,ℓ are obtained from fk,ℓ in

Equation 1, by replacing AαT by AsiαT :

fsi
k,ℓ(x) = fsi

k,ℓ(A,α) = (A,AsiαT)

Since Asi is super increasing, inverting the function fsi
k,ℓ by finding the unique

vector α satisfying AsiαT = b, as outlined above, is easy. We now argue that, for
k and ℓ satisfying the premises of Corollary 1, the self masking version of fsi

k,ℓ is

likely to be immune to this inversion method. For this, we observe that fsi
k,ℓ is

univalent w.h.p.:
For all A and α it holds that AαT (mod 2ℓ) = AsiαT (mod 2ℓ). Hence Lemma 4

remains valid if, in eq. (3), we replace A1(A2) by Asi
1 (A

si
2 resp.). and hence the

following analogue of Corollary 1 for super increasing sequences holds.

Corollary 2 If ℓ > k+ c log nk,ℓ = k+ c log(k(ℓ+1)), the probability that there
are x1, x2 with fsi

k,ℓ(x1) = fsi
k,ℓ(x2) is smaller than (nk,ℓ)

−c.

Proof. Let
[

fsi
]

be the self masking version of fsi. Corollary 2 implies that if

ℓ > k+c log(nk,ℓ), then w.h.p.,
[

fsi
]

(A1, A2, α) = {(A1, A2, α)}. In this scenario,

inverting
[

fsi
]

(A1, A2, α) is at least as hard as reconstructing the integers b1 =
Asi

1 α and b2 = Asi
2 α from their xor b = b1 ⊕ b2 and the sequences A1, A2. This

last task appears to be non trivial.

Other variants based on super increasing sequences. As noted above,
few cryptosystems are based on subset sum with super increasing sequences. We
briefly survey them below (for a more comprehensive exposition we refer again
to [11]).

The most known variant is due to Merkle and Hellman [10]: Given a super
increasing sequence A = (a1, . . . , an) and b, select relatively prime integers W,M ,
where W < M and M > b, and then define a′i = Wai (mod M), b′ = Wb
(mod M). The original super increasing sequence A is then replaced by a random
permutation of A′ = (a′1, . . . , a

′
n), and b is replaced by b′. The resulting sequence

is not super increasing, and reconstructing the original super increasing sequence
(when W and M are not given) is not straightforwards. This process can be
iterated few times, yielding the multiply iterated Merkle Hellman system.
The first polynomial time algorithm which solves the original (singly iterated)
Merkel Hellman system was given by Shamir in [12] (this attack assumes certain
restrictions on the ratio between M and k, which are implied by properties of
the associated cryptosystem). Shamir’s attack was later followed by algorithms

8 Cyprys, Dolev, Moran

solving more sophisticated variants of such systems (eg [2]). These algorithms
essentially reconstruct the original sequence A and b from the hidden versions
A′ and b′, and in particular the value of b′ must be given for applying these
attacks. Since this value is hidden by our self masking technique, it appears that
these attacks cannot be directly applied to the self masked variants of Merkle
and Hellman systems, as well to their extensions.

5 The low density variant

The subset sum problem of dimensions k and ℓ, SS(k, ℓ), is said to be of low
density if ℓ is larger than k. Polynomial time algorithms for inverting low density
fk,ℓ were first obtained in [1; 8]. These algorithms reduce the inversion of fk,ℓ
to finding a shortest vector in an integer lattice. A detailed survey of these
algorithms and later improvements can be found in [11]. We briefly describe
below the algorithm of [8], as described in [3].

Let x = (A,α) be an input to fk,ℓ, where A = (a1, . . . , ak)∈UAk,ℓ and α =
(α1, . . . , αk)∈U{0, 1}k. Let further y = fk,ℓ(x) = (A, b), where b = AαT . The
algorithm of [8] reduces the computation of f−1

k,ℓ (y) to the problem of finding a
shortest vector in the k + 1 dimensional integer lattice L(y) = L(A, b) defined
by the basis

v1 = (1, 0, . . . , 0,−Ka1),
v2 = (0, 1, 0, . . . , 0,−Ka2)

· · ·
vk = (0, . . . , 0, 1,−Kak),
vk+1 = (0, . . . , 0,Kb).

where K is any integer larger than
√
k. Given that basis, each binary vector

β = (β1, . . . , βk) is mapped to a lattice-vector w(β) given by

w(β) =
∑

βivi + vk+1 =
(

β1, β2, . . . , βk, b−AβT
)

;

Observe that AβT = b iff w(β) = (β1, . . . , βk, 0). The main ingredient in the
correctness proof of the algorithm of [8] is showing that if k < 1.54725ℓ, then
w.h.p. α is the only vector satisfying AαT = b, and w(α) is the unique shortest
vector in L(y). [3] uses a similar proof technique, but reduces the vector y =
(A, b) to a different lattice L′(y), which enables to improve the required density to
k < 1.0639ℓ. For our sake it is sufficient to note that the use of the sum b = AαT

in the definition of the basis vector vk+1 is crucial in the above reductions.
Consider now the self masking function [f]k,ℓ

[f]k,ℓ (A1, A2, α) = (A1, A2, b1 ⊕ b2), where b1 = A1α
T , b2 = A2α

T .

In order to compute the inverse of [f]k,ℓ (A1, A2, α) = (A1, A2, b1 ⊕ b2) it is
necessary to compute from (A1, A2, b1⊕b2) two integers b′1 and b′2 s.t.: (i) b′1⊕b′2 =
b1 ⊕ b2, and (ii) for some binary vector α′ it holds that b′1 = A1α

′T , b′2 = A2α
′T .

Self Masking for Hardening Inversions 9

6 The high density variant

The subset sum problem of dimensions k and ℓ, is said to be of high density
if k > ℓ. In this case the corresponding self masking function [f]k,ℓ is w.h.p.
not univalent. Nevertheless, self masking functions which are univalent w.h.p.
can be obtained also for each high density variant of the subset sum problem,

SS(k, ℓ), by using a d dimensional self masking,
[

f (d)
]

, where d−1 > k+c log(nk)
ℓ

,
as sketched below.

An input x to f
(d)
k,ℓ contains d independent instances of the problem, i.e.

x = (A1, A2, . . . , Ad, α), and the self masked version of f (d) is

[

f (d)
]

k,ℓ
(x) =

[

f (d)
]

k,ℓ
(A1, A2, . . . , Ad, α) =

(

A1, A2, . . . , Ad, A1α
T ⊕A2α

T , A1α
T ⊕A3α

T , . . . , A1α
T ⊕Adα

T
)

,

Lemma 5. Let A1, . . . , Ad be mutually independent random vectors from Ak,ℓ,
and let c2, . . . , cd be arbitrary integers. Then the probability that there exists a
vector α ∈ {0, 1}k and integers b1, b2, . . . , bd s.t. for each i ∈ {2, . . . , d} it holds
that ci = b1 ⊕ bi and Ai · αT = bi, is at most 2k−(d−1)ℓ.

Proof. First we note that Ai · αT = bi iff A1α
T ⊕Aiα

T = ci, i = 2, . . . , d. As in
the proof of Lemma 4, we first fix A1. Then we get that for a given α, and for
each i ∈ {2, . . . , d}:

Prob[A1α
T ⊕Aiα

T = ci | A1, α] ≤ 2−ℓ.

Since the Ai are mutually independent, we get that for a fixed α the probability
that this equality holds for all i ∈ {2, . . . , d} is at most 2−ℓ(d−1). The lemma for a
fixed A1 follows by the union bound. Since A1 is arbitrary, the lemma holds. ⊓⊔

Similarly to the one dimensional case, Lemma 5 implies:

Corollary 3 If (d−1)ℓ > k+c log nk,ℓ, the probability that two independent ran-

dom inputs, x1, x2, to f
(d)
k,ℓ , satisfy f

(d)
k,ℓ (x1) = f

(d)
k,ℓ (x2), is smaller than (nk,ℓ)

−c.

7 Concluding Remarks

In this paper we introduced the self masking technique, which aims at mak-
ing the inversion of various polynomial time computable functions harder (see
the informal idea sketch suggested in [4]). In the basic version, [f] (x), the self
masking version of f(x), replaces two “critical” parts of f(x) by their bitwise
xor. A straight forwards approach for solving the resulted computational task of
computing [f]

−1
(x) requires examining numerous possible pairs of candidates

for the xored parts. Thus inversion is hard unless there is a way to bypass this
straight forwards approach in an efficient way. Specifically, this task is likely to
be difficult if, w.h.p., computing the inverse of [f] (x) requires to reconstruct

10 Cyprys, Dolev, Moran

the original critical parts from their bitwise xor, i.e. if [f]
−1

([f] (x)) = {x}. As
will be discussed in the full version the invesion task remains hard when the
univalence requirement is relaxed to the case when [f]

−1
([f] (x)) is of small car-

dinality. We note that, apriori, a self masking [f] of f could be hard to invert
even if f can be inverted in polynomial time.

We applied this technique on well studied functions based on variants of the
subset sum problem, where the critical parts were the sums of two independent
solvable inputs for this problem. As we discussed, these sums are indeed critical
for the polynomial time inversion algorithms surveyed in [11]. Thus it appears
that these inversion algorithms cannot be directly applied to the self masked
versions of subset sum problems presented in this paper.

Possible extensions. It is interesting if the self masking technique can be
shown to harden the inversion of other polynomial time computable functions.

The practicality of the self masking technique depends heavily on the hard-
ness to reconstruct the self masked parts. Ideally we would like it to imitate xor
with one time pad. A promising way to approach this goal is to use instances
from different functions, e.g. to mask a critical part of a function defined by an
instance to the subset sum problem by a critical part of an instance to a different
problem.

References

1. Brickell, E.F.: Solving low density knapsacks. In: Advances in cryptology.
pp. 25–37. Springer (1984)

2. Brickell, E.F.: Breaking iterated knapsacks. In: Proceedings of CRYPTO 84
on Advances in Cryptology. p. 342–358. Springer-Verlag, Berlin, Heidelberg
(1985)

3. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P.,
Stern, J.: Improved low-density subset sum algorithms. Computational com-
plexity 2(2), 111–128 (1992)

4. Dolev, H., Dolev, S.: Toward provable one way functions. IACR Cryptol.
ePrint Arch. p. 1358 (2020), https://eprint.iacr.org/2020/1358

5. Emiris, I.Z., Karasoulou, A., Tzovas, C.: Approximating multidimensional
subset sum and minkowski decomposition of polygons. Mathematics in Com-
puter Science 11(1), 35–48 (2017)

6. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM Journal of Computing 28, 12–24
(1999)

7. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as se-
cure as subset sum. Journal of cryptology 9(4), 199–216 (1996)

8. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems.
Journal of the ACM (JACM) 32(1), 229–246 (1985)

9. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primi-
tives provably as secure as subset sum. In: Theory of Cryptography Confer-
ence. pp. 382–400. Springer (2010)

Self Masking for Hardening Inversions 11

10. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor
knapsacks. IEEE transactions on Information Theory 24(5), 525–530 (1978)

11. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: In Cryptol-
ogy and Computational Number Theory. pp. 75–88. A.M.S (1990)

12. Shamir, A.: A polynomial-time algorithm for breaking the basic merkle -
hellman cryptosystem. IEEE Transactions on Information Theory 30(5),
699–704 (1984). https://doi.org/10.1109/TIT.1984.1056964

