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Abstract. In CRYPTO 2019, Gohr successfully applied deep learning to differential
cryptanalysis against the NSA block cipher Speck32/64, achieving higher accuracy
than traditional differential distinguishers. Until now, the improvement of neural
differential distinguishers is a mainstream research direction in neural aided crypt-
analysis. But the current development of training data formats for neural distin-
guishers forms barriers: (1) The source of data features is limited to linear combina-
tions of ciphertexts, which does not provide more learnable features to the training
samples for improving the neural distinguishers. (2) Lacking breakthroughs in con-
structing data format for network training from deep learning perspective. In this
paper, considering both the domain knowledge about deep learning and information
of differential cryptanalysis, we use the output features of the penultimate round to
propose a two-dimensional and non-realistic input data generation method of neural
differential distinguishers. Then, we validate that the proposed new input data for-
mat has excellent features through experiments and theoretical analysis. Moreover,
combining the idea of multiple ciphertext pairs, we generate two specific models
for data input construction: MRMSP(Multiple Rounds Multiple Splicing Pairs) and
MRMSD(Multiple Rounds Multiple Splicing Differences), and then build new neural
distinguishers against Speck and Simon family, which effectively improve the perfor-
mance compared with the previous works. To the best of our knowledge, our neural
distinguishers achieve the longest rounds and the higher accuracy for NSA block
ciphers Speck and Simon.
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1 Introduction
Differential cryptanalysis [1] is one of the most powerful analysis techniques in cryptog-
raphy. This statistical cryptanalysis exploits how a specific input difference propagates
through the cipher into the output difference. The most important step of differential
cryptanalysis is to find differential characteristics with high probability. This technique
has been widely applied to block ciphers and hash functions, and many new constructions
of these primitives are specifically designed to withstand this attack. In order to evaluate
the security of block ciphers against differential cryptanalysis, Lai et al. [2] introduced
Markov ciphers in 1991. Following the Markov cipher assumption, the probability of a
differential characteristic can be computed by multiplying the probability of differential
propagation of each round. Then, the Markov cipher assumption is used in differential
attacks on block ciphers practically.

Deep learning has made remarkable improvement in many fields: machine translation
[3, 4], imageNet classification [5] and so on. It is worth mentioning that some researchers
have investigated the viability of applying deep learning to cryptanalysis. In CRYPTO
2019, Gohr [6] first presented differential-neural cryptanalysis combined deep learning with
differential analysis. He trained neural distinguishers of Speck32/64 based on the deep
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residual neural networks (ResNet). The labeled data used as training data is composed
of ciphertext pairs: half of the training data comes from ciphertext pairs encrypted by
plaintext pairs with a fixed input difference, half from random values. Gohr obtained a
high accuracy for 6-round and 7-round neural distinguishers of Speck32/64 and achieved
11-round and 12-round key recovery attacks based on the neural distinguishers. The
advantage of the high accuracy of neural distinguishers is reflected in distinguish attack
and the key recovery phase. Improving the accuracy of neural distinguishers is helpful to
distinguish block ciphers from pseudo-random permutations. Meanwhile, the complexity
of key recovery decreases as the accuracy of neural distinguishers increases. And if the
accuracy rate is improved, the key recovery attack can be implemented on longer rounds.

To improve the accuracy of neural distinguishers, the researchers have explored two
mainstream directions. One is adopting different neural networks. Bao et al. [7] used
Dense Network and Squeeze-and-Excitation Network with deep architectures to train
neural distinguishers, and obtained effective (7-11)-rounds neural distinguishers for Si-
mon32/64. Zhang et al. [8] adopted the idea of the inception block of GoogLeNet to con-
struct the new neural network architecture to train neural distinguishers for (5-8)-rounds
Speck32/64 and (7-12)-rounds Simon32/64 and achieved significant accuracy raise.

The other popular research direction is changing the input data format of neural
distinguishers. Chen et al. [9] proposed multiple groups of ciphertext pairs instead of
single ciphertext pair [6] as the training sample of the neural network and effectively
improved the accuracy of the (5-7)-rounds neural distinguishers of Speck32/64. Hou et
al. [10] built multiple groups of output differences pairs instead of multiple groups of
ciphertext pairs [9] to further improve the accuracy of neural distinguishers. Lu et al. [11]
proposed groups in combination with ciphertext pairs and output differences pairs as the
training sample and significantly improved the accuracy of the neural distinguishers of the
Simon and Simeck family. We view the existing input data formats of neural distinguishers
as the same type since the sources of features provided for the neural network directly
come from ciphertext pairs.

To achieve a breakthrough in input data format and improve neural distinguishers, we
draw inspiration from cryptanalysis and deep learning.

In cryptanalysis, if an iterated cipher is a Markov cipher and its round subkeys are
independent and uniformly random, the sequence of differences at each round output
forms a homogenous Markov chain. The characteristics of the i-round difference feature
are determined by the statistical properties of the (i-1)-round difference, which enlight-
ens us to concentrate on the penultimate round differential information. Besides, in
EUROCRYPT 2021, Benamira et al. [12] gave a detailed explanation of Gohr’s neural
distinguishers. Their explanation showed that Gohr’s neural distinguishers made their de-
cisions on the difference of ciphertext pair and the internal state difference in penultimate
and ante-penultimate rounds. These conclusions inspired us to investigate the feasibility
of providing penultimate round information to train the neural distinguishers without
knowing the last round subkey.

In deep learning, excellent results rely on large networks, which usually require large
amounts of data to be properly trained. So data augmentation technology has been hot
research in recent years. In 2019, Torres et al. [13] proposed a new method of data
augmentation in autonomous driving. The neural network requires a database of road
images containing traffic signs, and Torres et al. used a clever combined approach for
substitution. They used the combination of traffic sign templates and arbitrary natural
background images as training databases. The new models of constructing databases
have solved three problems: expensive annotation, real images from the target domain,
and balanced data sets. After training, their deep detector showed excellent results and
indicated that detection models can still achieve good performance trained out of the
context of the problem. The results are quite surprising because this is the opposite of
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common sense for deep learning.
Inspired by the above works, we have done some pioneering works to train better neural

distinguishers by modifying the input data format. Our novelty input data generation
methods are applied to the NSA ciphers Speck and Simon [14], which archive outstanding
training results.

1.1 Our contributions
In this paper, our major contributions are listed as follows:

• First, we propose a new data generation model. The existing data format improve-
ments stop in two directions: increasing the amount of ciphertext pairs in a single
sample and changing the combination method with ciphertext pairs. Our model ex-
tends the data format from r-round to (r-1)-round, which is equivalent to improving
the data format of training from one-dimensional to two-dimensional. Specifically,
based on the round subkeys of the Markov cipher being assumed to be independent
we first use randomly generated subkeys to decrypt one round of the ciphertext pair.
And then we splice the results and ciphertext pairs to develop a new input data
format.

• Next, we validate that the proposed new input data format has excellent features
through experiments and theoretical analysis. We design three experiments step-by-
step to present the validity and innovativeness of the new data generation model and
obtain positive results. (1) Validity: the training dataset generated by using the new
model can obtain effective neural distinguishers with high accuracy. (2) Discrepancy:
the new data format provided new learnable features for neural networks compared
to the single ciphertext pair(Gohr’s input data format). (3) Scalability: stitching
two different data formats can further improve the accuracy of neural distinguishers.
Besides, as supplementary, we show with an experiment that expanding the number
of rounds in the data format may not improve the accuracy but increases the amount
of data for a single sample.

• Finally, considering the neural distinguishers in the above experiments do not fully
capture the features contained in the spliced data format, we provide more ciphertext
pairs in a single sample and generate a new data format MRMSP(Multiple Rounds
Multiple Splicing Pairs). Then we convert the ciphertext pairs to output differences
and generate a new data format MRMSD(Multiple Rounds Multiple Splicing Differ-
ences). We apply the new two formats to build neural distinguishers for Speck and
Simon families. To the best of our knowledge, we achieve the longest rounds and
the highest accuracy of neural distinguishers for Speck32, Speck48, and Speck64.
Specifically, for Speck48, we obtain an effective 8-round distinguisher for the first
time. For Simon48, we obtain the highest accuracy of the (10-11)-rounds neural
distinguishers and first obtain an effective 12-round distinguisher. For Simon64, we
achieve a breakthrough in accuracy on the existing number of rounds. Table 1 shows
the new results of the neural distinguishers for Speck and Simon.

1.2 Outlines
This paper is organized as follows. In Section 2, we introduce Markov cipher and give a
brief description of Speck and Simon as well as review the existing neural distinguishers
model. Section 3 presents a new method of input data generation and verifies the proper-
ties of the proposed new data format through experiments and theoretical analysis. We
adopt the ideas of multiple cipher pairs and multiple output differences in a single sample
to improve the new input data format and then apply them to Speck and Simon in Section
4. Finally, our work is summarized in Section 5.
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Table 1: Summary of the neural distinguishers for Speck and Simon family

Ciphers Data Format Round Input Difference Accuracy Source

Speck32/64

MCP 7 (0x40, 0x0) 66.94% [9]
MCP2 7 (0x40, 0x0) 89.63% [8]
MOD 7 (0x40, 0x0) 88.19% [10]

MRMSP 7 (0x40, 0x0) 89.16% Sect. 4.2
MRMSD 7 (0x40, 0x0) 94.11% Sect. 4.2

MCP2 8 (0x2800, 0x10) 58.53% [8]
MOD 8 (0x2800, 0x10) 56.49% [10]

MRMSP 8 (0x2800, 0x10) 57.74% Sect. 4.2
MRMSD 8 (0x2800, 0x10) 65.02% Sect. 4.2

Speck48/96

MOD 7 (0x20082,0x120200) 63.43% [10]
MRMSP 7 (0x20082, 0x120200) 57.17% Sect. 4.2
MRMSD 7 (0x20082, 0x120200) 71.38% Sect. 4.2
MRMSD 8 (0x20082, 0x120200) 54.62% Sect. 4.2

Speck64/128 MOD 8 (0x1202, 0x2000002) 63.20% [10]
MRMSD 8 (0x1202, 0x2000002) 71.81% Sect. 4.2

Simon32/64

MOD 9 (0x0, 0x80) 82.27% [10]
MOD-CP 9 (0x0, 0x80) 99.34% [11]
MRMSP 9 (0x0, 0x80) 96.30% Sect. 4.2
MRMSD 9 (0x0, 0x80) 99.08% Sect. 4.2

MOD 10 (0x0, 0x80) 61.09% [10]
MOD-CP 10 (0x0, 0x80) 86.08% [10]
MRMSP 10 (0x0, 0x80) 78.72% Sect. 4.2
MRMSD 10 (0x0, 0x80) 83.02% Sect. 4.2
MOD-CP 11 (0x20, 0x88) 59.55% [11]
MRMSP 11 (0x0, 0x80) 56.16% Sect. 4.2
MRMSD 11 (0x0, 0x80) 60.81% Sect. 4.2

Simon48/96

MOD 10 (0x0, 0x100000) 81.40% [10]
MRMSP 10 (0x1000, 0x4400) 82.13% Sect. 4.2
MRMSD 10 (0x1000, 0x4400) 99.55% Sect. 4.2

MOD 11 (0x1000, 0x4400) 61.43% [10]
MRMSP 11 (0x1000, 0x4400) 66.19% Sect. 4.2
MRMSD 11 (0x1000, 0x4400) 78.35% Sect. 4.2
MRMSD 12 (0x1000, 0x4400) 61.59% Sect. 4.2

Simon64/128

MOD 11 (0x0, 0x10) 73.79% [10]
MOD-CP 11 (0x0, 0x4) 99.28% [11]
MRMSP 11 (0x0, 0x10) 95.01% Sect. 4.2
MRMSD 11 (0x0, 0x10) 99.95% Sect. 4.2

MOD 12 (0x0, 0x10) 69.57% [10]
MOD-CP 12 (0x0, 0x4) 83.78% [11]
MRMSP 12 (0x0, 0x10) 75.06% Sect. 4.2
MRMSD 12 (0x0, 0x10) 93.86% Sect. 4.2
MOD-CP 13 (0x0, 0x40) 60.32% [11]
MRMSD 13 (0x0, 0x10) 70.10% Sect. 4.2

1 We choose the highest accuracy of NDs in these papers.
2 MCP: Multiple Ciphertext Pairs. MOD: Multiple Output Differences. MCP2: Adding the correct

part of decrypting one round into MCP. MOD-CP: Multiple Output Differences and Ciphertext
Pairs. MRMSP: Multiple round Multiple Splicing Pairs. MRMSD: Multiple round Multiple
Splicing Differences.
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Table 2: The notations

Notation Description

Simon 2n/nm
Simon acting on 2n-bit plaintext blocks
and using nm(k)-bit key

Speck 2n/nm
Speck acting on 2n-bit plaintext blocks
and using nm(k)-bit key

⊕ Bitwise XOR
& Bitwise AND
Sα(x) Circular left shift of x by α bits
K Master key
rki i-round subkey
∆in Input difference
(P, P ′) Plaintext pair
(C, C ′) Ciphertext pair
(Pl, Pr, P ′

l , P ′
r) P = Pl ∥ Pr and P ′ = P ′

l ∥ P ′
r

(Cl, Cr, C ′
l , C ′

r) C = Cl ∥ Cr and C ′ = C ′
l ∥ C ′

r

(∆Cl, ∆Cr) ∆Cl = Cl ⊕ C ′
l and ∆Cr = Cr ⊕ C ′

r

2 Preliminaries
2.1 Notations
Table 2 presents the major notations.

2.2 Markov Cipher
Markov chain is defined in [15] which is a sequence of random variables v0, v1, ..., vr, the
current state of variable v only depends on the previously adjacent state.

Definition 1 (Markov Chain [15]). Given a sequence of discrete random variables
v0, v1, ..., vr is a Markov chain, if for 0 < i < r,

Pr (vi+1 = βi+1 | vi = βi, vi−1 = βi−1, . . . , v0 = β0) = Pr (vi+1 = βi+1 | vi = βi) .

Given a group operation ⊗, we define the corresponding input differences as ∆Y0, ∆Y1, . . . , ∆Yr,
where ∆Yi = Yi ⊗ Y ′

i . Then, Lai et al. [2] introduce the following definition of Markov
cipher as given in Definition 2.

Definition 2 (Markov Cipher [2]). An iterated cipher with round function Y =
f(X, K) is a Markov cipher if there is a group operation ⊗ for defining differences such
that, for all choices of α(α ̸= 0) and β(β ̸= 0), Pr(∆Y = β | ∆X = α, X = γ) is
independent of γ when the subkey K is uniformly random, or equivalently, if Pr(∆Y =
β | ∆X = α, X = γ) = Pr (∆Y (1) = β1 | ∆X = α) for all choices of γ when the sub-key
K is uniformly random.

The concept of Markov cipher is introduced by Lai et al. in [2] due to its significance
in differential cryptanalysis. He also proved that if an r-round iterated cipher is a Markov
cipher, and the r-round subkeys are independent and uniformly random, then the sequence
of differences ∆ = ∆Y (0), ∆Y (1), ..., ∆Y (r) is a homogenous Markov chain.

2.3 Brief Description of Speck and Simon
Speck and Simon are two iterated block ciphers proposed by the National Security Agency
(NSA) [14]. They adopt ARX construction that applies a combination of rotation, XOR,
and either addition (Speck) or the logical AND (Simon) iteratively over some rounds.



6 Improved Neural Distinguishers with Multi-Round and Multi-Splicing Construction

Both cipher families are defined for state sizes 2n and key sizes k: 32/64, 48/72, 48/96,
64/96, 64/128, 96/96, 96/144, 128/128, 128/192, and 128/256.

For Speck 2n/nm, the round function F : F k
2 × F 2k

2 → F 2k
2 takes as input a k-bit

subkey rki and a cipher state consisting of two w-bit words (Li, Ri) and produces from
this the next round state (Li+1, Ri+1) as follows:

Li+1 =
((

S−αLi

)
&Ri

)
⊕ rki, Ri+1 = Li+1 ⊕

(
SβRi

)
(1)

where α, β are constants specific to each member of the Speck cipher family (α = 7, β =
2 for Speck32/64 and α = 8, β = 3 for the other variants).

For Simon 2n/mn, the round function F : F k
2 × F 2k

2 → F 2k
2 as follows:

Li+1 = f (Li) ⊕ Ri ⊕ rki, Ri+1 = Li (2)

where f(x) =
((

S1x
)

&
(
S8x

))
⊕

(
S2x

)
.

2.4 Overview of Existing Neural Distinguishers Model
Gohr [6] trained a deep neural network for classifying accurately random from real ci-
phertext pairs. It is the first known machine learning model that successfully performed
cryptanalysis tasks on modern ciphers. Chen et al. [9] and Hou et al. [10] improved Gohr’s
neural distinguishers, respectively, by changing the input data format of the neural dis-
tinguishers. We take Speck32/64 as an example to introduce three input data formats in
detail.

Figure 1: Single Ciphertext Pair

Figure 1 shows Gohr’s input data generation process. The single plaintext pair (P, P ′)
is encrypted by a random master key to obtain single ciphertext pair (C, C ′) as a training
sample. During the training of the neural network, each sample is given a label taking
the value 0 or 1. The value 1 means that data pairs are generated from encrypting (P, P ′)
with input difference ∆in, and the value 0 means that the data pair is generated from
random pair.

Figure 2 presents Chen’s data generation, the m plaintext pairs {(P1, P ′
1), ..., (Pm, P ′

m)}
are encrypted by a random master key to obtain m ciphertext pairs (C1, C ′

1), ..., (Cm, C ′
m)

as a training sample. Same as Gohr’s method, each training sample labeled by a value 0 or
1, where 0 means (C1, C ′

1), ..., (Cm, C ′
m) is generated randomly, and 1 means (C1, C ′

1), ..., (Cm, C ′
m)

generation from (P1, P ′
1), ..., (Pm, P ′

m) with a particular input difference ∆in.
Comparing with multiple ciphertext pairs, Hou et al. converted the m ciphertext pairs

(C1, C ′
1), ..., (Cm, C ′

m) to output differences. So Hou’s input data format is

{(∆C1,l, ∆C1,r) , ..., (∆Cm,l, ∆Cm,r)},
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Figure 2: Multiple Ciphertext Pairs

Figure 3: Multiple Output Differences
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together with a label taking the value 0 or 1. The detailed input data generation process
is shown in Figure 3.

We define the format of Gohr’s, Chen’s, and Hou’s input data as SCP(Single Cipher-
text Pair), MCP(Multiple Ciphertext Pairs), and MOD(Multiple Output differences), and
define the corresponding neural distinguishers as NDSCP , NDMCP and NDMOD.

To assure the neural accuracy of distinguishers, a large number of samples are used
for network training. If a neural distinguisher can obtain a stable distinguishing accuracy
higher than 0.5 on a validation dataset, it can effectively distinguish ciphertext and a
random value.

The neural distinguishers model can be described as:

Pr (Y = 1 | X0, · · · , Xm−1)
= F (f (X0) , · · · , f (Xm−1) , φ (f (X0) , · · · , f (Xm−1))) (3)

when m = 1, X0 = (C0, C ′
0) for NDSCP , m ∈ {2, 4, 8, 16} , Xi = (Ci, C ′

i) for NDMCP and
m ∈ {32, 48, 64} , Xi = (∆Ci, ∆C ′

i) for NDMOD. If Pr (Y = 1 | X0, · · · , Xm−1) > 0.5, the
label of (X0, · · · , Xm−1) predicted by a neural distinguisher is 1, otherwise the prediction
result is 0.

3 New Input Data Generation Model
3.1 Motivation
In the beginning, Gohr [6] used the ciphertext pairs (C, C ′) as the input of the network
for training distinguishers. Then, Chen et al. [9] proposed multiple groups of ciphertext
pairs (C1, C ′

1), .., (Cm, C ′
m) as the training sample for providing more features to improve

the accuracy of neural distinguishers. Recently, Hou et al. [10] built multiple groups of
output differences pairs {(∆C1,l, ∆C1,r) , ..., (∆Cm,l, ∆Cm,r)} instead of multiple groups
of ciphertext pairs and further improved accuracy of neural distinguishers on several ver-
sions of Speck and Simon. By summarizing the existing neural distinguishers model, we
find that the current approaches are suffering from the following disadvantages. (1) The
source of data features is limited to linear combinations of ciphertexts and provides lim-
ited learnable features to the training samples for increasing the accuracy, which can be
improved by constructing data fully utilizing the traditional cryptanalysis technique, like
differential features and inner state information as Markov cipher. (2) Lacking break-
throughs in data format construction from a deep learning perspective. Deep learning
is becoming more and more mature in various fields, and there are abundant ways to
construct sample formats for network training. We can select some reasonable ideas and
apply them to neural distinguishers.

To overcome the above drawbacks, we propose a new data format to train neural dis-
tinguishers, considering both the domain knowledge about deep learning and information
on differential cryptanalysis.

First, in deep learning, solving challenging tasks with deep neural networks usually
requires an annotated database with real samples belonging to the context of the problem.
The human effort and other costs of gathering such data have motivated research on
alternative ways to train the models. In autonomous driving, Torres et al. [13] proposed
a more flexible and effortless construction method of the training dataset by superposing
the templates on natural images. The generation of the training database consists of
three steps. Primarily, templates of the traffic signs of interest are acquired. Then,
background images that do not belong to the domain of interest are collected (i.e., random
natural images). Lastly, the training samples (i.e., images with annotated traffic signs)
are generated. The novelty training data generation method showed that detectors can
be trained without problem domain data for the background. This is quite surprising
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because it is the opposite of common sense for deep learning. Therefore, we will explore
ways to apply the idea of non-realistic training samples to the neural distinguishers.

Second, in cryptanalysis, Benamira et al. [12] indicates NDSCP can identify some
information for the penultimate rounds. The conclusion inspires us to investigate the
feasibility of providing penultimate round information to construct training templates of
the neural distinguishers. However, the subkeys for each round are unknown, which makes
it impossible to obtain the real output of the penultimate round from the ciphertexts. We
combine the concept of Markov cipher and assume the round subkeys are independent
and uniformly random, thus we can use random subkeys to decrypt one round of the
deterministic ciphertext pairs for one round to generate a non-realistic output for the
penultimate round. Based on the result, we design the new input data generation mode
and verify the validity and correctness through a series of experiments.

3.2 A New Input Data Generation Model
Considering a cipher E and a plaintext difference ∆in, the new generation model of the
positive sample consists three-step.
Step 1. Ciphertext pair acquisition

The first step is to generate cipher pair (P, P ′) with ∆in. For the plaintext pair (P, P ′),
it is encrypted using a randomly generated encryption key to obtain the ciphertext pair
(C, C ′).
Step 2. “Decryption" process

The second step is using random subkey to decrypt one round of (C, C ′) and defining
the result as (C(1), C ′(1)).
Step 3. Training samples generation

The last step is splicing the ciphertext pair (C, C ′) and the corresponding (C(1), C ′(1))
to generate the training sample (C, C ′, C(1), C ′(1)).

Figure 4: New data generation process

The proposed method (illustrated in Figure 4) mainly comprises the generation of
input data which requires a random last round subkey to decrypt the ciphertext pair.
Gohr used (C, C ′) as a single training sample, and we splice (C(1), C ′(1)) directly after
(C, C ′) to form a novel sample format (C, C ′, C(1), C ′(1)). Compared to Gohr’s format,
our training data generation process has three advantages:

1. The more information contained in a single training sample, the more features
neural distinguishers can learn. The new input data format provides two different forms
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Table 3: Parameters of the Network Architecture for training ND

Hyperparameters Value Hyperparameters Value
Train size 107 Conv size(ks) 3
Validation size 106 Regularization parm 10−4

Batch size 10000 Optimizer Adam
Epochs 50 Loss function MSE

Table 4: Results of Experiment 1: Accuracy of NDSDP and NDSCP

Round Accuracy
NDSDP NDSCP

Speck32/64 5 0.9033 0.9290
6 0.7326 0.7880

of features for neural distinguishers which contributes to improving the accuracy of neural
distinguishers.

2. A largescale database can be generated without much cost, since there are a lot of
different possible combinations between the random subkeys and the ciphertext pairs, we
can construct large amounts of data to be properly trained.

3. The new input data format opens up a new direction of data format generation for
neural differential distinguishers and provides more room for improvement in the future
development of neural differential cryptanalysis.

3.3 Analyzing the Input Data Generation Model
In this section, we experimentally verify the properties of the new input data format. For
comparison with Gohr’s results, the network used for training in the experiments is the
same as Gohr’s except for the input, which consists of four components: input repre-
sentation, initial convolution, convolutional block, and prediction head. And the neural
network training parameters are shown in Table 3. Meanwhile, we limit and focus the
discussions and results on the neural distinguishers for 5-round and 6-round Speck32/64.

We refer to (C(1), C ′(1)) as SDP(Single Decryption Pair), and refer to the new proposed
data format (C, C ′, C(1), C ′(1)) as SOP(Splicing Output Pair). The new data format
generation model is effective when the accuracy of the neural distinguishers trained with
the new data format is higher than 0.5. Meanwhile, the higher the accuracy rate is, the
more effective the new data format is. So, a natural question is:

Are the distinguishers trained with the new data format valid?
We do the following experiments to verify the validity.

Experiment 1: Validity verification
1. Generate 107 plaintext pairs such that 1

2 of the pairs satisfy with initial difference
∆in = 0x0040/0000.

2. Encrypt the plaintext pairs with random keys for 5(6)-round Speck32/64 to generate
107 ciphertext pairs as the training samples.

3. Randomly generate 107 “subkeys” to decrypt one round of ciphertext pairs.
4. Train the neural network with 107 “decrypt one round" results and record validation

database accuracy.
The results of Experiment 1 are shown in Table 4 including the accuracy of NDSDP

and comparison with Gohrs’s NDSCP for Speck32/64 in [6]. For 5-round Speck32/64,
the accuracy of NDSDP is 90.33%. For 6-round Speck32/64, the accuracy of NDSDP

is 73.26%. Observation results, our neural distinguishers are slightly less effective than
NDSCP . But the accuracy of (5-6)-rounds NDSDP both exceeded 50%, indicating that
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Table 5: Results of Experiment 2: Summary of evaluation accuracy

Round Evaluation accuracy
Experiment 2-1 Experiment 2-2

Speck32/64 5 0.4954 0.5048
6 0.5028 0.4995

our new input data format can provide effective features for the neural distinguishers. So
the validity of the new data generation model is established.

Since the trained distinguishers using two different data formats obtain similar accu-
racy, we start to look at the differences between them. Neural distinguishers learn the
features from the training dataset. The foundation of neural distinguishers trained by
using different data formats is different. Thus, we decide to use each of the two data
formats as the validation set for the corresponding neural distinguishers of the other, and
then explore the differences between them. Based on this, we conduct another experiment
to answer the following question:

Are the features provided by the two data formats the same?
Experiment 2: Discrepancy verification
Experiment 2-1:

1. Generate 107 plaintext pairs such that 1
2 of the pairs satisfy with initial difference

∆in = 0x0040/0000.
2. Encrypt the plaintext pairs with random keys for 5(6)-round Speck32/64 to generate

107 ciphertext pairs.
3. Randomly generate 107 subkeys to decrypt one round of ciphertext pairs to obtain

107 SDP.
4. Use 107 SDP as the evaluation dataset for NDSCP to obtain the evaluation accuracy.

Experiment 2-2:
1. Generate 107 plaintext pairs such that 1

2 of the pairs satisfy with initial difference
∆in = 0x0040/0000.

2. Encrypt the plaintext pairs with random keys for 5(6)-round Speck32/64 to generate
107 ciphertext pairs.

3. Use 107 SCP as the evaluation dataset for NDSDP to obtain the evaluation accuracy.

In Table 5, we show the evaluation accuracies derived using each other’s data formats
for (5-6)-rounds of Speck32/64 which are both close to 50%. Indicating that the learned
features by NDSCP and NDSDP are different. In other words, two data formats provide
different features for neural networks. Thus, we verify that there are discrepant between
the two data formats.

At the same time, we find that in the process of training both neural networks, the
accuracy of the training sets is going to exceed the accuracy of the validation set, producing
an overfitting phenomenon. So we believe that the neural network has adequately captured
the features contained in both data formats. Then, we can improve the accuracy of
the neural distinguisher by adding more learnable features to the existing data formats.
Considering the methods of data augmentation in the field of image recognition, we venture
the following conjecture:

Splicing the two formats together can provide more learnable features, which can
further improve the accuracy of neural distinguishers.

We denote the splicing pair(C, C ′, C(1), C ′(1)) as SOP(Splicing Output Pair). In order
to verify the conjecture, we perform the following experiment:
Experiment 3: Scalability verification

1. Generate 107 plaintext pairs such that 1
2 of the pairs satisfy with initial difference

0x0040/0000.
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Table 6: Results of Experiment 3: Accuracy of NDSOP and compare to NDSDP

Round Accuracy
NDSDP NDSOP

Speck32/64 5 0.9033 0.9293
6 0.7326 0.7881

Table 7: Results of Experiment 4: Accuracy of ND3r−SOP and compare to NDSOP

Round Accuracy
ND3r−SOP NDSOP

Speck32/64 5 0.9104 0.9127
6 0.7538 0.7619

2. Encrypt the plaintext pairs with random keys for 5(6)-round Speck32/64 to generate
107 ciphertext pairs.

3. Randomly generate 107 subkeys to decrypt one round of ciphertext pairs to generate
107 SDP.

4. Splice the SCP and SDP together to generate 107 new training samples and donate
them as SOP(Splicing Output Pair).

5. Train the neural network with 107 SOP and the parameters in Table 3 and record
validation dataset accuracy.

The results of Experiment 3 are shown in Table 6 including the accuracy rates of two
neural distinguishers. The accuracy of NDSOP is better than the accuracy of NDSDP

for (5-6)-rounds of Speck32/64, which indicates that our extensions based on SDP are
successful.

In addition, we consider possible directions for further expansion of the data format.
In [12], Benamira et al. gave a detailed explanation of Gohr’s neural distinguishers which
showed neural distinguishers make their decisions on the difference of ciphertext pair and
the internal state difference in penultimate and ante-penultimate rounds. So we decide to
continue to extend our data format with the conjecture verified by Experiment 3. We con-
sider the feasibility of providing ante-penultimate round information for neural networks,
thus extending the data format from a two-round structure to a three-round structure.
We splice the data from two rounds using random key decryption after ciphertext pairs,
allowing more data information to be contained in a single training sample. Combining
the above discussion, we pose the following key question and designed an experiment to
explore the answers.

Can the accuracy of the distinguisher be improved by expanding the number of rounds
in the data format? We perform the following experiment as supplementary:
Experiment 4: Continuability verification

1. Generate 107 plaintext pairs such that 1
2 of the pairs satisfy with initial difference

0x0040/0000.
2. Encrypt the plaintext pairs with random keys for 5(6)-round Speck32/64 to generate

107 ciphertext pairs.
3. Randomly generate 107 two-round subkeys to decrypt two rounds of ciphertext

pairs to generate 107 results.
4. Splicing the SCP and results together to generate 107 new training samples and

donate this format as 3r-SOP(3-round Splicing Output Pair).
5. Train the neural network with 107 3r-SOP and the parameters in Table 3 and record

validation dataset accuracy.
Table 7 shows the accuracy comparison of the above experiment with (5-6)-rounds

Speck32/64. The accuracy of ND3r−SOP is approximated by the accuracy of NDSOP .
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Therefore, the 3-round structure does not improve the accuracy but increases the amount
of data for a single sample. According to the above analysis, we find that there is little
evidence showing the longer of randomly decrypted rounds in the input data format, the
higher the accuracy of the obtained neural distinguishers.

In our data format generation process, only the ciphertext pairs obtained by master
key encryption are real, while the rest of the data decrypted using random subkeys are
non-real. For Speck, the characteristics of the i-round difference feature are completely
determined by the statistical properties of the (i-1)-round difference as the Markov ciphers.
So the results of the two rounds of decryption by random keys have little connection with
the real ciphertext pairs. This is a possible explanation of the experimental results in
Table 7.

Through the four experiments described above, we verify the properties of the proposed
new data format generation model. First, we validate the effectiveness of the proposed
data generation model in Experiment 1 by observing the accuracy of the neural distin-
guishers trained using the new data generation model. Second, we perform a preliminary
exploration of the features contained in our data format and conclude that it contains
learnable features that are different from those contained in Gohr’s data format in Exper-
iment 2. Third, we borrow the idea of data augmentation in deep learning to propose an
improvement on the new data format by extending the data format into two rounds and
using it to train the neural distinguishers in Experiment 3, which achieves better results.
Finally, as supplementary, we explore the feasibility of further improving the data format
by extending it from two rounds to three rounds in Experiment 4. However, the 3-round
structure does not improve the accuracy but increases the amount of data for a single
sample.

There is still a problem that remains to be solved. The accuracy of NDSOP is not
as good as the accuracy of NDSCP . It may be the reason that the input data format
SOP contains more features for the network, but the limitation of the amount of data in
a single sample causes NDSOP not fully utilize the features in the sample. To address
the problem, we propose two improved neural distinguishers and apply them to improve
the neural distinguishers of Speck and Simon.

4 Improved Neural Distinguishers of Speck and Simon
For 5-round and 6-round Speck, the accuracies of NDSOP are higher than NDSDP , but
still lower than NDSCP . It could be the limitation of data volume that the distinguish-
ers do not fully utilize the features in the sample. We take inspiration from the format
MCP(Multiple Ciphertext Pairs) [9] and MOD(Multiple Output Difference) [10] to im-
prove our new format SOP and present new distinguisher models, which can apply to
obtain the high accuracy of neural distinguishers for Speck and Simon.

4.1 New Neural Distinguishers mdoels
• Improved input data format by multiple ciphertext pairs

Extending a single ciphertext pair into multiple ciphertext pairs:
As shown in Figure 5, the m plaintext pairs (P1, P ′

1, ..., Pm, P ′
m) are encrypted by

random master keys to generate m ciphertext pairs (C1, C ′
1, ..., Cm, C ′

m). The m ciphertext
pairs (C1, C ′

1, ..., Cm, C ′
m) are decrypted one round by random “subkeys" to generate m

pairs:

(C(1)
1 , C

′(1)
1 , ..., C

(1)
m , C

′(1)
m ).

Finally, we splice two type pairs to generate a new input data format:
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Figure 5: Multiple Rounds Multiple Splicing Pairs

(C1, C ′
1, C

(1)
1 , C

′(1)
1 , ..., Cm, C ′

m, C
(1)
m , C

′(1)
m ),

we define the new data format as MRMSP(Multiple Rounds Multiple Splicing Pairs).

• Improved input data format by multiple output differences

Converting the output pairs in MRMSP to output differences:

Figure 6: Multiple Rounds Multiple Splicing Differences

As shown in Figure 6, the m plaintext pairs (P1, P ′
1, .., Pm, P ′

m) are encrypted by a
random master key to generate m ciphertext pairs:

(C1, C ′
1, ......, Cm, C ′

m).
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Figure 7: Multiple Rounds Multiple Splicing Differences

The result of decrypting one round of (C1, C ′
1, ..., Cm, C ′

m) with randomly generated sub-
keys are recorded as

(C(1)
1 , C

′(1)
1 , ..., C

(1)
m , C

′(1)
m ).

The (C1, C ′
1, ..., Cm, C ′

m) and (C(1)
1 , C

′(1)
1 , ..., C

(1)
m , C

′(1)
m ) are converted to output differ-

ences. Finally, we splice two output differences to generate a new input data format:

(∆C1, ∆C
(1)
1 , ..., ∆Cm, ∆C

(1)
m ).

We define the new input data format as MRMSD(Multiple Rounds Multiple Splicing
Differences).

Similar to Gohr’s training dataset [6], each sample will be attached a label Y according
to the following equation:

Y =
{

1, if Pi ⊕ P ′
i = ∆in, i ∈ [1, m]

0, if Pi ⊕ P ′
i ̸= ∆in, i ∈ [1, m] (4)

If the label is 1, the data is denoted as a positive sample. Otherwise, it is denoted
as a negative sample. Because the neural distinguishers learn the features of the target
cipher instead of the features of the plaintext or key. So we request the plaintext pairs in
a sample are randomly generated and the encryption keys are also randomly generated
and different. All the requirements are designed to ensure that the m splicing output
pairs(MRMSP and MRMSD) do not have any identical properties except for the same
plaintext difference constraint. Due to the increased data amount in a single sample, for
the same number of training sets, MRMSP and MRMSD require 2m and m times more
data than Gohr’s data generate the model(SCP), respectively.

To illustrate the effect of data format, we train the new neural distinguishers and focus
on the accuracy rate. We use the network similar to Gohr’s work [6]. The network consists
of four parts: an input layer for processing training datasets, an initial convolutional layer,
a residual tower consisting of multiple two-layer convolutional neural networks, and a
prediction head consisting of fully connected layers. Because only the channel dimension
is changed, we refer to Figure 7 for the description of network architecture.

We define the new neural distinguishers using MRMSP data format as NDMRMSP

and neural distinguishers trained with MRMSD data format as NDMRMSD.
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Table 8: Summary of the neural distinguishers for Speck family

Ciphers Data Format Round Input Difference Accuracy Source

Speck32/64

MCP 7 (0x40, 0x0) 66.94% [9]
MOD 7 (0x40, 0x0) 88.19% [10]
MCP2 7 (0x40, 0x0) 89.63% [8]

MRMSP 7 (0x40, 0x0) 89.16% Sect. 4.2
MRMSD 7 (0x40, 0x0) 94.11% Sect. 4.2

MOD 8 (0x2800, 0x10) 56.49% [10]
MCP2 8 (0x2800, 0x10) 58.53% [8]

MRMSP 8 (0x2800, 0x10) 57.74% Sect. 4.2
MRMSD 8 (0x2800, 0x10) 65.02% Sect. 4.2

Speck48/96

MOD 7 (0x20082, 0x120200) 63.43% [10]
MRMSP 7 (0x20082, 0x120200) 57.17% Sect. 4.2
MRMSD 7 (0x20082, 0x120200) 71.38% Sect. 4.2
MRMSD 8 (0x20082, 0x120200) 54.62% Sect. 4.2

Speck64/128 MOD 8 (0x1202, 0x2000002) 63.20% [10]
MRMSD 8 (0x1202, 0x2000002) 71.81% Sect. 4.2

1 We choose the highest accuracy NDs in these papers.
2 MCP: Multiple Ciphertext Pairs. MOD: Multiple Output Differences. MCP2: Adding the

correct part of the decrypting a round into MCP. MRMSP: Multiple round Multiple Splicing
Pairs. MRMSD: Multiple round Multiple Splicing Differences.

4.2 Applications to the NSA Block Ciphers
The training parameters are shown in Table 3 and setting Nf = state size as channels
number of convolution kernel in convolutional blocks. For training data format, we set
group size m = (word size)/2.

• Application to Speck

The results are presented in Table 8, the SCP refers to the input data format of Gohr’s
input data format: single ciphertext pair. The MOD refers to the input data format of
Hou’s multiple output differences. The MCP refers to the input data format of Chen’s
multiple ciphertext pairs. The MRMSP and MRMSD refer to our new input data format
as shown in Section 4.1.

For Speck32/64, Chen et al. [9] trained effective (5-7)-rounds neural distinguishers
against Speck32/64 and Hou et al. [10] improved the effective round to 8-round. Then,
Zhang et al. [8] further improved accuracy in (5-8)-rounds for Speck32/64. For Speck48/96
and Speck64/128, Hou et al. [10] gave a 7-round neural distinguisher with the accuracy
of 63.43% and an 8-round neural distinguisher with the accuracy of 63.20%, respectively.

Based on the new input data format MRMSP and MRMSD, we comprehensively im-
prove the accuracy of neural distinguishers for Speck32/64, Speck48/96, and Speck64/128.
We build neural distinguishers against Speck32/64 cover to (7-8)-rounds with the accu-
racy of 94.11% and 65.02%, respectively. For Speck48/96, our new neural distinguishes
not only greatly improve the accuracy of the 7-round neural distinguisher to 71.38%, but
first achieve an effective 8-round neural distinguisher with the accuracy of 54.62%. For
Speck64/128, our neural distinguisher obtained by training with the MRMSD input data
format is valid, with the accuracy of 71.81%.

• Applications to Simon
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Table 9: Summary of the neural distinguishers for Simon family

Ciphers Data Format Round Input Difference Accuracy Source

Simon32/64

MOD 9 (0x0, 0x80) 82.27% [10]
MOD-CP 9 (0x0, 0x80) 99.34% [11]
MRMSP 9 (0x0, 0x80) 96.30% Sect. 4.2
MRMSD 9 (0x0, 0x80) 99.08% Sect. 4.2

MOD 10 (0x0, 0x80) 61.09% [10]
MOD-CP 10 (0x0, 0x80) 86.08% [10]
MRMSP 10 (0x0, 0x80) 78.72% Sect. 4.2
MRMSD 10 (0x0, 0x80) 83.02% Sect. 4.2
MOD-CP 11 (0x20, 0x88) 59.55% [11]
MRMSP 11 (0x0, 0x80) 56.16% Sect. 4.2
MRMSD 11 (0x0, 0x80) 60.81% Sect. 4.2

Simon48/96

MOD 10 (0x0, 0x100000) 81.40% [10]
MRMSP 10 (0x1000, 0x4400) 82.13% Sect. 4.2
MRMSD 10 (0x1000, 0x4400) 99.55% Sect. 4.2

MOD 11 (0x1000, 0x4400) 61.43% [10]
MRMSP 11 (0x1000, 0x4400) 66.19% Sect. 4.2
MRMSD 11 (0x1000, 0x4400) 78.35% Sect. 4.2
MRMSD 12 (0x1000, 0x4400) 61.59% Sect. 4.2

Simon64/128

MOD 11 (0x0, 0x10) 73.79% [10]
MOD-CP 11 (0x0, 0x4) 99.28% [11]
MRMSP 11 (0x0, 0x10) 95.01% Sect. 4.2
MRMSD 11 (0x0, 0x10) 99.95% Sect. 4.2

MOD 12 (0x0, 0x10) 69.57% [10]
MOD-CP 12 (0x0, 0x4) 83.78% [11]
MRMSP 12 (0x0, 0x10) 75.06% Sect. 4.2
MRMSD 12 (0x0, 0x10) 93.86% Sect. 4.2
MOD-CP 13 (0x0, 0x40) 60.32% [11]
MRMSD 13 (0x0, 0x10) 70.10% Sect. 4.2

1 We choose the highest accuracy NDs in these papers.
2 MOD: Multiple Output Differences. MOD-CP: Multiple Output Differences and Ciphertext

Pairs. MRMSP: Multiple round Multiple Splicing Pairs. MRMSD: Multiple round Multiple
Splicing Differences.
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The new training data format can also be applied to Simon effectively. Compared with
previous works, our new distinguishers improve the number of rounds and accuracy. For
Simon 48/96, we obtain (10-12)-rounds neural distinguishers with the accuracy of 99.55%,
78.35%, and 61.59%, respectively. For Simon64/128, our new neural distinguishers achieve
an overall improvement, which covers (11-13)-rounds with the accuracy of 99.95%, 93.86%,
and 70.10%, respectively. The results of Simon64/128 demonstrate the advantages of our
data format: MRMSD has the advantage in a larger state size version of Simon. The full
results are displayed in Table 9.

5 Conclusion
In this paper, we propose a new method of constructing training data for neural differential
distinguishers from the perspective of traditional cryptanalysis, combined with the meth-
ods of constructing training data formats in the fields of deep learning. The new data for-
mat utilizes the output features of the penultimate round and performs a two-dimensional
and non-realistic input data generation method. We verify the properties of the proposed
new data format generation model through experiments and theoretical analysis step-by-
step. Besides, by simultaneously considering multiple ciphertext pairs and multiple output
differences, we propose two improved input data formats: MRMSP(Multiple Rounds Mul-
tiple Splicing Pairs) and MRMSD(Multiple Rounds Multiple Splicing Differences). We
apply them to train the new neural distinguishers for NSA ciphers, Speck and Simon.
As far as we know, our neural distinguishers achieve the longest rounds and the higher
accuracy for Speck and Simon.
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