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Abstract. Time-based One-Time Password (TOTP) provides a strong second factor for user authentica-
tion. In TOTP, a prover authenticates to a verifier by using the current time and a secret key to generate
an authentication token (or password) which is valid for a short time period. Our goal is to extend TOTP
to the group setting, and to provide both authentication and privacy. To this end, we introduce a new
authentication scheme, called Group TOTP (GTOTP), that allows the prover to prove that it is a member
of an authenticated group without revealing its identity. We propose a novel construction that transforms
any asymmetric TOTP scheme into a GTOTP scheme. Our approach combines Merkle tree and Bloom
filter to reduce the verifier’s states to constant sizes.
As a promising application of GTOTP, we show that GTOTP can be used to construct an efficient privacy-
preserving Proof of Location (PoL) scheme. We utilize a commitment protocol, a privacy-preserving lo-
cation proximity scheme, and our GTOTP scheme to build the PoL scheme, in which GTOTP is used
not only for user authentication but also as a tool to glue up other building blocks. In the PoL scheme,
with the help of some witnesses, a user can prove its location to a verifier, while ensuring the identity and
location privacy of both the prover and witnesses. Our PoL scheme outperforms the alternatives based on
group digital signatures. We evaluate our schemes on Raspberry Pi hardware, and demonstrate that they
achieve practical performance. In particular, the password generation and verification time are in the order
of microseconds and milliseconds, respectively, while the computation time of proof generation is less than
1 second.

Keywords: Group Time-based One-Time Passwords· Proof of Location· Anonymity· Authentication· Se-
curity Model.

1 Introduction

Time-based One-Time Password (TOTP) is widely used in many two-factor authentication systems, for example,
Google Authenticator [16] and Duo [9]. TOTP allows a prover to generate a time-dependent password that
remains valid for a pre-defined time duration. A verifier checks the authenticity of the password by using the
current time and some other information. There are two types of TOTP: symmetric one based on a shared secret
key between the prover and verifier [32], and asymmetric one that can be verified publicly [30]. The first type
uses the shared secret key and message authentication code to prove the authenticity of a generated password.
The second type relies on hash chains, and it is one important building block of this work. An asymmetric
TOTP prover randomly generates a hash chain head (pw0) and keeps hashing the value to construct a hash
chain. Namely, given a hash function H, the i-th node pwi is computed as pwi := H(pwi−1). The last node (tail)
of the chain will be shared with verifiers for verification. To authenticate itself, the prover sends the verifier the
chain’s nodes in reverse order from tail to head. The verifier can quickly verify every received node but cannot
forge an unseen node due to the one-wayness of the underlying hash function. Furthermore, any attackers who
compromise the public key of an asymmetric TOTP cannot infer any unused passwords (unlike the first type).

TOTP is designed for the prover to prove its identity to the verifier. As such, it does not provide privacy,
i.e., the verifier has to know the identity of the prover beforehand, in order to check the validity of every
TOTP. In this paper, our goal is to extend TOTP to the group setting in order to achieve a meaningful notion
of privacy. To this end, we propose Group Time-based One-Time Password (GTOTP) scheme, in which a
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prover belonging to a group can generate one-time passwords to convince a verifier of its membership to the
group without revealing its identity. GTOTP is useful in applications that need group-based, privacy-preserving
authentication. One example is a service provider offering service (e.g., printing, consulting) only to the people
within one community while the service user wants to preserve its privacy [4]. Another example is to combine
GTOTP with any unilateral (server-only) authenticated handshake protocol [31,8] (supported by transport layer
security protocol (TLS) [6,39]) following the password-based mutual authentication approach (over TLS) [12]
to build privacy-preserving secure channels.

The main challenge in realizing GTOTP is efficiency. One way to construct GTOTP is to use group digital
signatures (GDS) [4,28]. In particular, the group members share a group public key gpk for signature verification,
while each member has its own secret signing key corresponding to gpk. During authentication, the member signs
the current time-stamp, and the resulting signature is the one-time password for a fixed duration. However,
this approach is expensive because it involves many public-key operations, which renders it impractical for
resource-constrained devices.

We address this challenge with an efficient construction based on hash functions. Our key insight is to let
each group member initialize multiple hash chain-based TOTP instances, with each instance used for only a
short duration (like in a pseudonym scheme [25]). Because each TOTP instance yields a verify point (e.g., a tail
node of the hash chain as in TOTP schemes [30] with public verifiability) for password verification, the result
is a large number of states that the verifier must manage. In particular, the verifier needs to keep track of all
verify points for all members, which does not scale to large group sizes or long validity duration for each TOTP
instance. Our solution is to compress these states to a constant-sized group verification state (GVST). More
specifically, we use a combination of Merkle and Bloom filter to store the states.

We then describe an application of GTOTP in building an efficient, privacy-preserving Proof of Location
(PoL) scheme. A prover generates tamper-proof location proofs, with the help of some nearby witnesses, that
convince a verifier that it was at the specific location at a given time. PoL has many real-world applications, such
as tracking goods moving in supply chains, pandemic contact tracing, and monitoring home arrest. Our PoL
construction combines GTOTP, a commitment scheme, and a privacy-preserving location proximity (PPLP)
scheme. A prover first broadcasts the GTOTP passwords and a PPLP request generated based on its location
to nearby parties. If a close-by party wants to be a witness, it replies with its own GTOTP passwords and a
commitment of the PPLP response showing the close proximity. Since the location proof is not required to be
verified immediately, we use the secret seeds of the corresponding GTOTP passwords as the keys for generating
commitments. Namely, we leverage GTOTP as a tool to glue up other building blocks in our PoL scheme.
During verification, the prover and the corresponding witnesses, who contributed to the proof, can open their
secret seeds for commitment verification after the passwords become expired.

Contributions. We make the following contributions:
– We define group time-based one-time passwords (GTOTP), an extension of the traditional TOTP to the

group setting. GTOTP provides membership authentication and privacy. Our security model adopts the
game-based approach [2] to formulate anonymity and traceability (covering password unforgeability) based
on a group with fixed members.

– We design an efficient and generic GTOTP construction that transforms an asymmetric TOTP scheme into
a GTOTP. Our construction achieves constant memory cost at the verifier.

– To show the application of GTOTP, we construct an efficient, privacy-preserving PoL scheme using GTOTP.
We formally define a security model for PoL that can be used to analyze the security properties of a PoL
construction.

– We evaluate the performance of GTOTP and the PoL scheme on a Raspberry Pi. The results show that the
cost (latency) of password generation is 4.12 microseconds on average, and of password verification is on the
order of milliseconds. The proof generation time for the PoL scheme is less than 1 second when the number
of witnesses is smaller than 10. In summary, both GTOTP and PoL schemes are practical.

Organization. Section 2 reviews the related works. Section 3 describes necessary preliminaries. Section 4
introduces the security model and construction of GTOTP. Section 5 presents the PoL construction. The
evaluation results are discussed in Section 6. Section 7 concludes the paper.

2 Related Work

Time-based One-Time Password. A TOTP scheme can be constructed from a shared secret between the
prover and verifier. The first asymmetric TOTP scheme, one that does not require a shared secret, is proposed
by Lamport [32] based on one-way functions. In the Lamport scheme, the one-time passwords are organized in
a chain in which the i-th password is generated by applying a one-way function to the (i-1)-th password. Jin
et al. [26] provide the formal proof for the Lamport scheme in the standard model, and use TOTP to build a
new primitive called proof of aliveness. Kogen et al. [30] proposed T/Key scheme that extends the Lamport
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and S/Key scheme [20] by integrating time constraints to the passwords. These TOTP schemes are designed
for authenticating one single prover to the verifier, and therefore do not have the privacy property of our group
based scheme.

Proof of Location. Waters and Felten [48] proposed the first proof of location scheme in a centralized setting,
in which a location manager is trusted to sign the proof based on measurement of the round-trip communication
with the prover. The provider identity is encrypted with the verifier’s public key, therefore is hidden from the
location manager. Graham and Gray [17] proposed a scheme called SLVPGP that removes the need for the
location manager. The proof in SLVPGP is based on distance related to a number of devices specified by the
verifier. The scheme uses public keys of the prover, therefore it does not provide privacy.

In the decentralized settings, Zhu and Cao [51] proposed APPLAUS, in which either provers or users peri-
odically change their pseudonyms and exchange signed messages and location proofs with each other. However,
location privacy in this scheme depends on user behaviors. In other words, it assumes a user-centric location
privacy model and may suffer non-negligible location privacy loss. King [29] proposed FOAM that relies on
decentralized and trusted zone anchor beacons with synchronized clocks. The beacons determine the location of
a user via triangulation, and store the signed location on a blockchain as the proof. The scheme, however, does
not address privacy of the users. Wu et al. [49] proposed a blockchain-based zero-knowledge proof of location
scheme. The user obtains a location certificate from a number of location beacons, as in FOAM, and generates a
zero-knowledge proof of its with the help of the beacons. Dupin et al. [10] proposed another privacy-preserving
scheme using group signatures for identity privacy, combining with secure multi-party computation for loca-
tion privacy. It achieves strong privacy guarantees, but suffers high performance overhead due to the expensive
cryptographic primitives.

The existing decentralized proof of location schemes use digital signatures, which may render them imprac-
tical for running frequently on low-power devices. Furthermore, they lack formal security analysis. Our PoL
based on GTOTP is efficient because it does not use digital signatures, and it is provably secure. We compare
our scheme against other state-of-the-arts in Section 6.3.

3 Preliminaries

We denote the security parameter by κ, an empty string by ∅, and the set of integers between 1 and n by

[n] = {1, . . . , n} ⊂ N. We denote with x
$← X the operation of sampling x uniformly at random from X. If

X is a probabilistic algorithm, x
$← X means that x is the output of running X with fresh random coins.

Let ∥ be the string concatenation operation. We represent a location LA of a user A as the two-dimensional
coordinates (xA, yB). Other notations can be found in Appendix A. In the following, we describe the syntax of
the main cryptographic primitives used in our constructions. The security notions of these primitives are review
in Appendix B.

Time-based One-time Passwords.An asymmetric TOTP scheme consists of 4 algorithms (Setup,PInit,PGen,Verify).
Setup(1κ, Ts, Te, ∆s) takes as input the security parameter 1κ, the start and end times Ts and Te, and the pass-
word generation interval ∆s, and outputs the password number pms = N = (Te − Ts)/∆s. PInit(sd) takes as
input a secret seed sd ∈ KTOTP, and outputs the initial verify point vp, where KTOTP is the key space for the
input secret seed. PGen(sd, T ) takes as input the secret seed sd and a time slot T , and outputs a one-time pass-
word pw ∈ PWTOTP for T , where PWTOTP is a password space. Verify(vp, pw, T ) takes as input the verify-point
vp, a password pw, and time slot T , and outputs 1 if the password is accepted and 0 otherwise.6 For a secure
TOTP scheme, the adversary cannot forge a valid password for a future time.

Pseudo-random Function Family. A pseudo-random function (PRF) family consists of two algorithm al-
gorithms (Setup,Eval). Setup(1κ) takes as input the security parameter 1κ, and outputs random secret key

k
$← KPRF and system parameters pmsPRF, where KPRF is the key space of PRF. Eval(k, x) takes a input the

secret key k and a message x ∈ MPRF, and output the evaluation result r ∈ RPRF, whereMPRF and RPRF are
the message space and the range space of PRF, respectively. For a specific PRF function family F, we may write
F(k, x) to represent F.Eval(k, x) for short.

Bloom Filter. A Bloom filter BF is a probabilistic data structure that allows efficient membership testing
without false negatives. BF consists of three algorithms (Init, Insert,Check). Init(ϵ,N) takes as input ϵ representing
the rate of false positive, and the number of elements N , and initializes a BF which is a bit array of length
1.44ϵ ·N . Insert(m) inserts the element m into BF. Check(m) returns 1 if an element m is in the BF, and returns
0 otherwise.

6 Note that we define a stateless verification other than the stateful one in prior work [30], but the security of stateful
TOTP (with a stateful verification algorithm) implies the security of stateless TOTP in our definition. All passwords
in a stateful TOTP can be verified by the initial verification state (IVS). This fact still holds even if the verification
state is updated later.
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Privacy-preserving Location Proximity Schemes. A PPLP protocol runs between a checker P and a
responder W to determine if the two entities are in close proximity. It consists of five algorithms
(Setup,KGen, LPInit, LPResp, LPCheck). Setup(1κ) takes as input the security parameter 1κ, and outputs the
system parameters pms which contains a threshold θ. KGen(rk) takes as input a secret seed rk ∈ KPPLP, and
outputs a key pair for the checker P, where KPPLP is the range of the secret seed. LPInit(pk,LP , θ) takes as input
the public key pk, a location LP = (xP , yP) of a checker P and a distance threshold θ for proximity test, and
outputs a proximity challenge CP . LPResp(pk, CP ,LW) takes as input the public key pk and a challenge CP from
a checker P, and the location of the responder W. It outputs a proximity response CW . LPCheck(sk, CW) takes as
input the secret key of a checker P and the response CW , and outputs 1 if the checker and the responder are in
close proximity, and 0 otherwise. Here we require a PPLP scheme to be secure against semi-honest adversaries
who are interested in the locations of uncorrupted participants.

Authenticated Symmetric Encryption. Let KASE be the key space, MASE be the message space, and
CASE be the ciphertext space. An authenticated symmetric encryption scheme ASE consists of three algorithms

(Setup,Enc,Dec). Setup(1κ) takes as input 1κ, and outputs the parameter pms and a random key k
$← KASE.

Enc(k,m) takes as input an encryption key k, and a message m ∈ MASE, and outputs a ciphertext C ∈ CASE.
We say an ASE is randomized if Enc is a randomized algorithm. Dec(k,C) takes as input an encryption key
k, and a ciphertext C ∈ CASE, and outputs a message m ∈ MASE. We require that the ASE scheme can resist
adaptive chosen ciphertext attacks.

Collision-resistant Hash Functions. Let KCRHF be the key space,MCRHF be the message space, and YCRHF
be the hash value space. A collision-resistant hash function CRHF consists of two algorithms (Setup,Eval).

Setup(1κ) takes as input 1κ, initializes the CRHF, and outputs the parameter pms and a random key hk
$← KCRHF.

Eval(hk,m) takes as input a random key hk and a message m ∈ MCRHF, and outputs a hash value y ∈ YCRHF.
For a specific collision-resistant hash function H, we write H(m) to represent H.Eval(hkCRHF,m) when hkCRHF is
clear from the context.

Merkle Tree. A Merkle tree [34] allows efficient and secure verification of a large data set. Let H1 be a colli-
sion resistant hash function. The Merkle tree consists of three algorithms (MT.Build,MT.GetProof,MT.Verify).
MT.Build({Lfi}i∈[ℓ]) takes as input ℓ data items and build a Merkle tree MTr on top of them. The leaf nodes are
the data items, and the value of a non-leaf node is H1(node.LeftChild||node.RightChild)).MT.GetProof(MTr,Lfi)
takes as input a Merkle tree MTr and a leaf Lfi, and outputs a proof showing that Lfi is included in the tree.
Specifically, the proof includes the siblings of every node on the path from Lfi to the tree’s root MTr.Rt.
MT.Verify(MTr.Rt,Lfi,PfLfi) takes as input the root MTr.Rt, a leaf node Lfi, and the corresponding proof
PfLfi . It computes a root Rt′ based on Lfi and proof PfLfi , and returns 1 if Rt′ = MTr.Rt and 0 otherwise. For a
secure Merkle tree scheme, the adversary must not forge the Merkle proof for a leaf node which does not belong
to the Merkle tree.

4 Group Time-based One-time Passwords

In this section, we present a new primitive, called Group Time-based One-time Password (GTOTP), which
extends asymmetric TOTP to the group setting. With GTOTP, the prover belonging to a group can convince
the verifier of its group membership without revealing its identity. A GTOTP scheme has three main properties.
First, only members of the group can generate valid time-based one-time passwords for authentication. Second,
any party that has the password can verify whether it is a valid password generated by a member of the
corresponding group, without learning the identity of the password owner. Finally, the group manager can
recover the identity of a password owner if necessary.

Applications that benefit from GTOP are ones that need group-based, privacy-preserving authentication.
In particular, GTOTP can be used in some applications that otherwise depend on group signatures. As an
example, GTOTP can enable privacy-preserving secure channels, by combining with any unilateral (server-only)
authenticated handshake protocol [31,8] (supported by transport layer security protocol (TLS) [6,39]) following
the password-based mutual authentication approach (over TLS) [12]. Based on such a channel, a service provider
can offer services such as printing or legal advice to members of a certain group while protecting the group
members’ privacy [4]. In the next section, we will particularly show another application example of GTOTP in
constructing a privacy-preserving proof of location scheme.

In this section, we define the security model and present an efficient construction for GTOTP. Here, we
assume a group with fixed members.

4.1 Security Model

We consider a group with U members. There is a registration authority (RA) that handles parameter initializa-
tion and member enrollment. We assume that the RA is trusted by all participants of the system and works as
a certificate authority to digitally sign information (e.g., group verification state) of members.
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GExp
A,GTOTP(κ,U,Ts, Te,∆e,∆s) :

Initialize(GP) : Finalize(b∗, pw∗, T ∗) :

pms← GTOTP.Setup(1κ, Ts, Te,∆e,∆s) IF Exp = GTOTP Anony and b = b∗ and no Corrupt query to either ˆID0 or ˆID1

kRA
$← KRA, create list HL← ∅ OUTPUT 1

FOR ∀IDj ∈ GP: (skIDj , vstIDj )← GTOTP.PInit(IDj) and IF Exp = GTOTP Trace and GTOTP.Verify(vstG, pw
∗, T ∗) = 1

(vstG, {AxIDj}IDj∈GP)← GTOTP.GVSTGen(GP, {vstIDj}IDj∈GP) and (GTOTP.Open(kRA, pw
∗, T ∗) /∈ (⊥ and GP) or GTOTP.Open(kRA, pw

∗, T ∗) = ⊥)
IF Exp = GTOTP Anony, OUTPUT pms,GP, vstG and (pw∗, T ∗) /∈ HL and no GetNextPw query after time T ∗ −∆s

IF Exp = GTOTP Trace, OUTPUT kRA, pms,GP, vstG and no Corrupt query to the owner ID∗ of pw∗

and no CompromiseSD query returns sdiID∗ where i := ⌈T∗−Ts⌉
∆e

Challenge( ˆID0, ˆID1) : OUTPUT 1

IF ( ˆID0, ˆID1) /∈ GP or ˆID0 = ˆID1, OUTPUT ⊥ OUTPUT 0

b
$← {0, 1}

Suspend game until the start of the next verify epoch GetNextPw() :

sd ˆIDb
← GTOTP.GetSD(sk ˆIDb

,Tcurrent) FOR ∀IDj ∈ GP: sdiIDj
← GTOTP.GetSD(skIDj ,Tcurrent) and pwIDj ← GTOTP.PwGen(sdiIDj

,Tcurrent)

pw ˆIDb
← GTOTP.PwGen(sd ˆIDb

,Tcurrent) APPEND ({pwIDj}IDj∈GP∗ ,Tcurrent)→ HL

Suspend game until the start of the next verify epoch OUTPUT {pwIDj}IDj∈GP∗

OUTPUT sd ˆIDb
, pw ˆIDb

ReceivePw(pw) :

Corrupt(IDj) : OUTPUT GTOTP.Verify(vstG, pw,Tcurrent)

OUTPUT skIDj

OpenID(pw,T ) :

CompromiseSD(IDj) : OUTPUT GTOTP.Open(kRA, pw, T )

OUTPUT sdiIDj
← GTOTP.GetSD(skIDj ,Tcurrent)

Fig. 1: Procedures Used to Define the Security of a GTOTP Scheme.

Each GTOTP instance has a life-span of ∆t. Each group member generates one password per ∆s. Since
many passwords may correspond to the same verify point, so we assume that each verify point (if any) has a
validity period of ∆e, called the verify epoch.

Syntax. A GTOTP scheme involving U ∈ N parties (or provers) GP = (ID1, . . . , IDU ), one verifier V, and one
registration authority RA, consists of seven algorithms described below.

– (pms, kRA)← Setup(1κ, Ts, Te, ∆e, ∆s): This setup algorithm is run by the RA. It takes as input the security
parameter 1κ, the start and the end time of the protocol instance Ts and Te, the verify epoch ∆e, and the

password generation interval ∆s. It outputs the system parameters pms and a secret key kRA
$← KRA for RA,

where KRA is a secret key space.
– (skIDj

, vstIDj
)← PInit(IDj): This is initialization algorithm run by the group members. It takes as input the

member identity IDj , and outputs the secret key skIDj

$← KGTOTP and the initial verification state vstIDj
for

IDj .
– (vstG, {AxIDj}j∈[U ])← GVSTGen(GP, {vstIDj}j∈[U ]): This initialization algorithm is run by the RA. It takes as

input the identity and verification state of all the group members, and outputs the initial group verification
state vstG and auxiliary outputs for the group members {AxIDj

}j∈[U ].
– sdiIDj

← GetSD(skIDj
, T ): This seed generation algorithm is run by the group member. It takes as input the

secret key skIDj ∈ SGTOTP and a time slot T , and outputs the secret seed sdiIDj
for generating the password

at T , where SGTOTP is a secret seed space.
– pwi,z

IDj
← PwGen(sdiIDj

, T ): The password generation algorithm is run by a group member. It takes as input

the secret seed sdiIDj
for the time slot T , and outputs one-time password pwi,z

IDj
, where z is an index of the

password in the i-th verify epoch.
– {0, 1} ← Verify(vstG, pw

i,z
IDj

, T ): This password verification algorithm is run by the verifier. It takes as input

the state vstG, the password pwi,z
IDj

, and time slot T , and outputs 1 if pwi,z
IDj

is accepted, and 0 otherwise.

– IDj ← Open(kRA, pw
i,z
IDj

, T ): This identity extraction algorithm is run by the RA. It takes as input the key

kRA, the password pwi,z
IDj

, and the time slot T , and outputs IDj if successful, and ⊥ otherwise.

Given (pms, kRA)← Setup(1κ, Ts, Te, ∆e, ∆s), {(skIDj , vstIDj )← PInit(IDj)}IDj∈GP and GVST (vstG, {AxIDj}j∈[U ])←
GVSTGen(GP, {vstIDj

}j∈[U ]), the GTOTP scheme is correct if Verify(vstG,PwGen(sd
i
IDj

, T ), T ) outputs 1 for all

IDj ∈ GP and time slot T ∈ [Ts, Te].

Threat Model. We consider the common threats that widely exist in password-based authentication schemes
(e.g., [30,22,47]) and group signatures (e.g., [4,11]). The provers are honest, but an attacker might corrupt
the secret key of a prover. The RA is a trustful (and non-colluding) third party that will not be corrupted or
controlled by any attackers. The communication between a prover and the RA is secure. The verifier can be
malicious, who may be curious about the identity of a prover. There also exist attackers who can control the
communication among parties, and therefore can intercept, inject, and tamper with the communication. The
attackers may also want to impersonate an honest prover without learning its secret key. Moreover, the attackers
may try to avoid being identified when she behaves as a malicious prover. We assume that each party in the
system also has an internal clock that is synchronized with other parties in the system.

Security Definition. Following the game-based approach in [2], we define two security games for GTOTP
to formulate security properties regarding anonymity (GTOTP Anony) and traceability (GTOTP Trace), respec-
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tively. That is, we let Exp ∈ {GTOTP Anony,GTOTP Trace} be a variable to indicate one of the games, where
these games will share procedures. We also discuss the achievable privacy of GTOTP in Appendix D.

We present the relevant procedures of the security games in Figure 1. The games can be started by calling
the Initialize procedure and ended by calling the Finalize procedure. The adversary can specify a set of unique
identities of her own choice for running the game when calling Initialize. During the game, the adversary A can
sequentially call other procedures. The games are defined in a multiparty setting. We model the corruption of
parties via a Corrupt procedure, the compromise of secret seed via CompromiseSD procedure, and the revelation
of identity via OpenID procedure. Besides, the adversary can get passwords of group members via the GetNextPw
procedure, and test the validity of a password via the ReceivePw procedure.

The traceability property of GTOTP is adapted from the unforgeability of TOTP [30] and the traceability
of GDS [1]. We note that this property covers the password unforgeability property that is similar to the
formalization of traceability of GDS [1]. More specifically, the adversary cannot create a password associated
with an uncompromised secret seed of an uncorrupted member, such that the password is valid but cannot be
opened to the corresponding member.

We model anonymity using the indistinguishability based formalization widely used in pseudonym schemes [14,44].

Specifically, we customize a Challenge( ˆID0, ˆID1) procedure for the GTOTP Anony game. That is, the adversary
can ask the challenge query at any time with two honest identities based on which the challenger would flip
a random bit b, and return an unused secret seed and a password of one of the challenged parties. The re-
turned secret seed will be called as challenge secret seed, and the verify epoch for the verify-point generated
by the challenge secret seed will be called as challenge verify epoch. To get an unused challenge secret seed,
the challenger would suspend the game until the start of the next verify epoch, so that this would invalidate
the current verify-point. Since the adversary can ask GetNextPw() to get the passwords of challenged parties,
the challenger will suspend the game again until the end of the challenge verify epoch to prevent the adversary
from learning the passwords of the ˆID0 and ˆID1 in the challenge verify epoch (that would allow the adversary to
trivially win the game). Note that the adversary can ask a Corrupt(IDj) query to compromise the secret key of
a party IDj and learn all passwords of this party, so we require all challenge parties to be uncorrupted ( namely,
there is no Corrupt(·) query to them). Moreover, we also allow the adversary to compromise the secret seeds of
uncorrupted parties via the CompromiseSD(·) procedure. Note that our suspensions in the Challenge procedure
ensure that the challenge secret seeds will not be compromised in the GTOTP Anony game. Also, A cannot
ask the OpenID query to obtain the identities of challenge parties. Furthermore, in the GTOTP Trace game A
should not compromise the secret seed that is supposed to generate the forged password pw∗ of the adversary.

The goal of the adversary in the GTOTP Anony game is to distinguish the owner of the challenge secret seed
from ( ˆID0, ˆID1). Note that with the given challenge secret seed and password, the adversary can compute all
other passwords of the corresponding party by herself in the challenge verify epoch. In the GTOTP Trace game,
the adversary attempts to produce a forgery (pw∗, T ∗), and we say it wins the game (i.e., the experiment returns
1), if (pw∗, T ∗) is a valid password-time pair and the opening algorithm returns ⊥, or some valid identity IDj

such that IDj /∈ GP.

Definition 1. We say that a GTOTP scheme GTOTP is secure if for any PPT adversary A, the advantages

AdvGTOTP Anony
A,GTOTP (pms) :=

∣∣∣Pr [GGTOTP Anony
A,GTOTP (pms) = 1

]
− 1/2

∣∣∣ and AdvGTOTP Trace
A,GTOTP (pms) := Pr

[
GGTOTP Trace
A,GTOTP (pms) = 1

]
of A in the corresponding games are negligible under the parameters pms = (κ, U, Ts, Te, ∆e, ∆s).

4.2 An Efficient GTOTP Scheme

Here we introduce an efficient GTOTP protocol GTOTP-MT.

Building Blocks. We mainly use an asymmetric TOTP scheme TOTP, a Merkle tree scheme MT, an unpre-

dictable permutation scheme [37] π(kp, ·) with a random key kp
$← {0, 1}κ, a Bloom filter BF, a PRF family

F, a randomized authenticated symmetric encryption scheme ASE (i.e., it consists of a randomized encryption
algorithm), and a collision resistant-hash function H1. The permutation scheme π(kp, ·) takes as input a set
of elements and outputs a permuted set. For privacy, we require the TOTP scheme to not use any identity
relevant information in the whole protocol execution. For example, the one-way function based TOTP in [26]
meets such a requirement. To use T/Key [30], one can assign each TOTP instance of a party with a random
salt. We also need a TOTP that a verify point vpiIDj

can be obtained from any passwords being verified by it.

All chain-based TOTP (e.g., [30,26]) can achieve this requirement.

A Naive Solution. One solution for realizing GTOTP is to use multiple instances of a TOTP protocol, for
example [26], to generate passwords. Each instance is used only for a short period ∆e to avoid linkability
between verify points. The number E of the TOTP instances is determined by the life-span ∆t = Te − Ts and
∆e, that is E = ∆t/∆e. The seed sdiIDj

for the key generation can then be created by applying a PRF to kIDj
.

To achieve anonymity, we store verify points of multiple members into a single Bloom filter BF, which serves as
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the group verification state (GVST). The verifier checks the verify point’s membership against BF, and whether
the password is based on the verify point.

The limitation of this solution is space overhead of the verification state, which is O(U · E). For example,
assume a reasonable password generation frequency of ∆s = 5s, five-day usage ∆t = 432000s, a Bloom filter’s
false positive rate of ϵ = 40, and the group size of U = 100, the size of vstG becomes 1.44·40·100· ∆t

∆s
· 1
1024·1024·8 ≈

59MB. This cost grows larger with more members (larger U) or longer usage period (larger ∆t). Thus, the
main challenge in constructing a GTOTP scheme is to reduce this cost for a long-time period and larger group
size. We address this by using Merkle tree to achieve constant-sized verification states.

Overview. We observe that a Merkle tree supports the same functionality of a Bloom filter, that is, to prove
the authenticity of the verify point of a group member. In other words, we can build a Merkle tree on the verify
points generated by the naive scheme above. This introduces additional cost at the member to store and send
Merkle proofs for the passwords. We choose Merkle tree for our construction because it has short proofs.

Our first design is to build one single tree for all verify points, such that the group verification state is the tree
root. To achieve anonymity, we first shuffle the verify-points from group members using π, in order to remove
the relationship among them before building the Merkle tree. By permuting the leaf nodes, a non-leaf nodes may
be computed based on the verify points from different members. However, this permutation destroys the time
order implied by the indices of the verify points. To overcome this, we use the collision-resistant hash function
H1 to explicitly bind each verify point with the index of the verify epoch. We stress that the above operations
will be done by a trustful RA which is not controlled by the attackers, so an attacker cannot distinguish the
owner of the verify points not generated by her.

Fig. 2: Overview of GTOTP-MT.GVSTGen for U = 4, E = 2, and ϕ = 2. Red nodes (shown as an example) in the

first Merkle tree is the Merkle proof of leaf node v̂p1ID1
.

We note that both the storage cost at each member, and the verification cost at the verifier, are linear in the
height of the tree. Our final design reduces these costs by partitioning the leaf nodes into disjoint sets and build
a Merkle tree on each set. These trees have smaller heights than the original one, and the size of the Merkle

proofs of a group member becomes O(E · log
U·E
ϕ ) which is practical even when the ∆t is large (e.g., half a year).

Finally, we store the Merkle roots in a Bloom filter. Figure 2 illustrates the GVST generation process.
To achieve traceability, the RA encrypts each identity E times with ASE, binding each ciphertext with the

corresponding verify point using H1. The binding combined with the security of the Merkle tree prevents the
encrypted identity from being forged. Finally, to verify a password for a time slot, the verifier first recovers the
corresponding verify point, checks the Merkle tree proof, and then verifies that the tree root is in the Bloom
filter.

Detailed Construction. Our construction GTOTP-MT, realizes the seven GTOTP algorithms as follows.
– Setup(1κ, Ts, Te, ∆e, ∆s): RA runs this algorithm to sample a secret key kRA, calculates the number of pass-

words in a chain N := (Te − Ts)/∆s and the number of TOTP protocol instances E := (Te − Ts)/∆e,
and sets the start time Ts := Tcurrent to be current system time. Moreover, It also runs the setup algo-
rithm hk ← H1.Setup(1

κ) to initialize a hash key hk, and generates a parameter ϕ denoting the num-

ber of sub-sets of verify points. A random key kp
$← {0, 1}κ for permutation is sampled. The parameters

pms = (hk, kp, N,E, Ts, Te, ϕ) are returned.

– PInit(IDj): The group member IDj first runs (pms, kIDj
)← F.Setup(1κ) to sample a random key kIDj

$← KPRF

as its secret key, where KPRF is a secret key space of PRF. For i ∈ [E], IDj first initializes the i-th protocol
instance pmsi := TOTP.Setup(1κ, Ti, Ti + ∆e, ∆s), where Ti = Ti−1 + ∆e and T0 := Ts. Then it computes
the i-th secret seed sdiIDj

:= F(kIDj
, IDj ||i), and the verify point vpiIDj

:= TOTP.PInit(sdiID). This algorithm

returns secret key skIDj = kIDj and verification state vstIDj = {vpiIDj
}i∈[E].

– GVSTGen(GP, {vstIDj
}j∈[U ]): Upon receiving all verification states from the group members via a MASC,

for j ∈ [U ] and i ∈ [E], RA computes Ci
IDj

= ASE.Enc(kRA, IDj), and updates the verify point v̂piIDj
:=

H1(vp
i
IDj
||Ci

IDj
||i) to bind the index and identity-ciphertext Ci

IDj
to the verify point. As ASE.Enc is randomized,

we have that Ci
IDj
̸= Ci+1

IDj
. Let V = {vstIDj

}j∈[U ] = {v̂piIDj
}i∈[E],j∈[U ]. RA shuffles V to generate a random
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set V ′ := π(kp, V ). Next, RA divides leaf nodes in V ′ into ϕ sub-sets {V ′1 , V ′2 , . . . , V ′ϕ}. Then, RA generates
ϕ Merkle trees {MTrι := MT.Build(V ′ι )}ι∈[ϕ], and computes the Merkle proof of each leaf node as Pfv̂pi

IDj

:=

MT.GetProof(MTrι, v̂p
i
IDj

) for all i ∈ [E] and j ∈ [U ], where MTrι is the Merkle tree containing the leaf node

v̂piIDj
. To this end, RA initiates an empty Bloom filter instance BF := BF.Init(ϵ, ϕ), and inserts all Merkle

tree roots {MTrι.Rt}ι∈[ϕ] into a Bloom filter, i.e., BF.Insert(MTrι.Rt) for all ι ∈ [ϕ]. Eventually, RA sends
back the corresponding Merkle proofs of the corresponding leaf nodes as auxiliary output of this algorithm
AxIDj

= {Pfv̂pi
IDj

}i∈[E] to each party IDj via a MASC. Each party privately stores secret key skIDj
:= kIDj

,

random identity-ciphertexts {Ci
IDj
}i∈[E], and Merkle proofs {Pfv̂pi

IDj

}i∈[E]. The initial group verification state

is vstGP := BF which has a constant-size in O(ϕ).

– PwGen(skIDj
,Tcurrent): The party IDj first computes the index i associated with Tcurrent as i :=

⌈T−Ts⌉
∆e

. Next,

IDj computes the secret seed sdiIDj
:= F(kIDj

, IDj ||i) and gets the password p̄wi,z
IDj

:= TOTP.PGen(sdiIDj
,Tcurrent),

where z is password index in the i-th verify epoch, i.e., z := ⌈Tcurrent−Ts−i·∆e⌉
∆s

. The password returned by this

algorithm is pwi,z
IDj

:= (p̄wi,z
IDj

, Ci
IDj

,Pfv̂pi
IDj

).

– GetSD(skIDj
, T ): It calculates the index of sub-chain i := ⌈T−Ts⌉

∆e
and returns i-th seed sdiIDj

:= F(kIDj , IDj ||i).
– Verify(vstG, pw

i,z
IDj

, T ): The verifier first initializes the verification result vr := 0, and computes the verify point

vpiIDj
based on pwi,z

IDj
and T and updates it to be v̂piIDj

:= H1(vp
i
IDj
||Ci

IDj
||i). Next, the verifier computes the

corresponding root MTrι.Rt based on v̂piIDj
and the Merkle proof Pfv̂pi

IDj

. Eventually, the verifier sets vr := 1

if and only if BF.Check(MTrι.Rt) = 1 and TOTP.Verify(vpiIDj
, p̄wi,z

IDj
, T ) = 1, and outputs vr.

– Open(kRA, pw
i,z
IDj

, T ): If Verify(vstG, pw
i,z
IDj

, T ) = 0, then RA aborts. Otherwise, RA returns IDj := ASE.Dec(kRA, C
i
IDj

).

Security Analysis. Our construction achieves both anonymity and traceability, as stated by the two theorems
below.

Theorem 1. Suppose that the time-based one-time passwords scheme TOTP, the collision-resistant hash func-
tion H1, the pseudo-random function family F, the Merkle tree scheme MT are secure, π is an unpredictable
permutation function, the authenticated symmetric encryption ASE is randomized and secure, and the Bloom
filter has a negligible false positive error 2−ϵ. Then GTOTP-MT provides anonymity.

The proof of Theorem 1 is included in Appendix E. Here, we sketch the high-level idea behind the proof.
Since the secret seeds created by F are indistinguishable and the outputs of ASE.Enc and H1 are random, the
adversary cannot distinguish two verify points computed from these challenge secret seed and password. As the
permutation is unpredictable, the adversary cannot learn the leaf nodes’ owners (when they are not corrupted)
from the Merkle proofs. Furthermore, since each Merkle tree root is mapped to m bit positions of the Bloom
filter, and many roots may share the same bit positions, the adversary cannot recover the relationship of two
inserted roots from the Bloom filter. Finally, because ASE is IND-CCA secure, the adversary cannot extract the
member identity from the ciphertext included in the challenge password.

Theorem 2. With the same assumptions in Theorem 1, GTOTP-MT provides traceability.

The proof for Theorem 2 is included in Appendix F. We first exclude the collision among secret keys of parties
based on the security of PRF. Next, we change the game to exclude the collision among the verify points due
to the security of H1. Then, we reduce the security to PRF again, so that we can replace the secret seeds of
each TOTP instance with random values. Now, if the adversary can forge an unused password, then it must be
able to break the security of either the TOTP scheme or the Merkle tree. Since the adversary cannot forge the
Merkle proofs, it cannot bind a password to a maliciously chosen ciphertext.

5 Proof of Location

This section presents a novel application of GTOTP that enables an efficient, privacy-preserving proof of location
(PoL) scheme. A PoL is a verifiable, tamper-proof statement attesting that a user is at a specific location at
a specific time. A PoL scheme has many real-world applications, such as address verification, tracking and
tracing of goods in supply chain systems, monitoring of health status, or humanitarian aid. For example, a bank
customer can use PoL to securely prove the physical presence at a certain location to the bank as part of the
verification of transactions. Due to the global COVID-19 pandemic, there is an increasing demand for contact
tracing which is based on the close proximity of users. A PoL can help solve this problem. In this work, we focus
on decentralized settings, that is, the participants of PoL can choose for themselves the source of locations, e.g.,
GPS or location beacons [29].
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5.1 System Model

The PoL system consists of five entities: prover, witness, verifier, Registration Authority (RA), and Public
Bulletin Board (PBB). The prover is a user device, e.g. a mobile phone or a smart vehicle, that generates a
location proof for a specific location and time. The witness is a device near the prover that generates a proof
ceritifying the proximity between itself and the prover. A witness could be a device like the prover, or a location
beacon like a road side unit (RSU). The verifier is the entity that verifies the prover’s location base on the proof.
The RA handles enrollment of the prover, witness, and verifier. In particular, it ceritfies the other entities’ keys,
and reveals their identities if necessary.

The PBB is a secure storage to which entities can publish messages and read each other’s messages. It
provides append-only and integrity properties such that messages stored in PBB cannot be deleted or modified.
We use PBB to realize anonymous data exchange and storage. In particular, the data owner and PBB establish
a unilateral (PBB-only) authenticated secure channel [7,6,39] to protect integrity of the data while hiding the
data owner’s identity. One popular instantiation of PBB is Certificate Transparency [15], another is blockchains.
We refer the reader to [5] for the formal model of PBB.
Syntax. We consider a PoL scheme with the following interactive sub-protocols.
– (vkG, {skIDi

}i∈[U ], kRA) ← Registration(GP, Ts, Te, ∆e, ∆s). RA and a group of parties with identities GP =
{IDi}i∈[U ] (which could be either prover or witness) can run this protocol together to generate a group
verification key vkG based on the public protocol parameters (including the start and end times Ts and Te,
length of each verify epoch ∆e, and proof generation generation interval ∆s). Meanwhile, each group member
IDi (for i ∈ [U ]) will keep the generated secret key skIDi

privately. RA generates a secret key kRA for realizing
traceability.

– LPP ← Location-Proof -Gen(skP , {skWj
}j∈[M ], vkG,LP , {LWj

}j∈[M ]). A prover P andM witnesses {Wj}j∈[M ]

run this protocol to generate the location proof LPP for the prover’s location LP , based on their secret keys
(skP , {skWj}j∈[M ]), witnesses’ locations {LWj}j∈[M ], current time slot Tcurrent, and verification key vkG, where
M is the number of the witnesses and (P, {Wj}j∈[M ]) ∈ GP.

– vr ← V erification(vkG, LPP , skP , {skWj
}j∈[M ],LP). The verifier V can check the validity of the location proof

LPP with the help of the proof contributors including the prover P and the corresponding witnesses {Wj}j∈[M ],
in which the proof contributors may provide V necessary confidential information used to compute LPP . The
verification result vr ∈ {0, 1} is returned.

A PoL scheme has an additional non-interactive algorithm:
– cIDi ← Open(kRA, LPP , i): This is an identity extraction algorithm (run by RA) that takes as input a location

proof LPP , and outputs the identity cIDi of the i-th contributor of the proof or a failure symbol, where
cIDi ∈ GP.

The correctness of PoL means that if honest entities with adjacent locations follows the algorithms, they will
generate location proofs that pass the verification.

5.2 An Efficient Privacy-Preserving Proof of Location Scheme

In this section, we introduce an efficient PoL construction based on our proposed GTOTP.

Threat Model. Here we consider three most desirable security properties including anonymity, traceability
and location privacy in our PoL scheme. The threats against anonymity and traceability are similar to these
against GTOTP. Informally speaking, anonymity requires that the prover can attest its location to the verifier
while preserving the anonymity of all other participants. A PoL scheme with traceability should prevent the
adversaries from forging a valid location proof that involves either an invalid or a dishonest identity. Although
we allow the attackers to corrupt participants, we assume the majority of the witnesses and the prover are
uncorrupted while jointly generating a location proof. Moreover, location privacy is achieved if no adversaries
can infer any information of the locations of the uncorrupted witnesses from the location proofs. In Appendix C,
we define a security model to formulate those security properties.

Building Blocks. Our construction uses a GTOTP scheme GTOTP, a PRF family F, a cryptographic hash
function H2 : {0, 1}∗ → Rh, and a PPLP scheme PPLP. H2 is used to realize a random oracle based commitment
scheme (as in [45]). We assume that the entities establish either mutual authenticated or unilateral (server-only)
authenticated secure channel depending on their roles.
Overview. One common approach for a prover to attest its presence at a certain location is to collect proofs
from nearby witnesses who can testify the prover’s location. However, there are three problems: (i) guaranteeing
the anonymity of entities; (ii) protecting the witnesses’ location privacy; (iii) binding the location proofs with
the entities.

To solve these problems, we first leverage our new GTOTP scheme to achieve anonymity with efficiency. We
build a GTOTP group with members being either the witnesses or prover. We assume that the location proof
requests and responses are transmitted via a short-range communication (e.g., Bluetooth), such that only the
nearby witnesses can receive proof requests from the prover. However, the prover still needs to show a location
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Fig. 3: Overview of Proof of Location.

proximity proof with the witness to the verifier. To protect the witnesses’ location privacy, we leverage a PPLP
scheme to attest the proximity between the witness and the prover. We use ephemeral public keys, each of which
is associated with a location proof, for the PPLP scheme to ensure privacy.

To address the third problem, we combine a hash-based commitment scheme with the above GTOTP scheme
and PPLP scheme. In particular, the prover and witnesses commit the location proximity proof generated by
PPLP to the verifier as the location proof. These commitments are called location commitments. Here, the key
of the location commitment is the secret seed of the GTOTP scheme. Note that the secret seed is verifiable since
it can be used to generate the passwords in GTOTP. To enable the prover to verify the messages (including
the location proofs) from witnesses, each witness generates a commitment keyed by the next password being
used to commit the sent message. Such a commitment is called message commitment. We leverage a password
to be the commitment key rather than a key derived from the secret seed since the message commitment key
should be verifiable in a shorter time than the life-span of a secret seed. During verification, the prover and the
witnesses can open their commitments to the verifier to prove the location. The verifier accepts the location of
prover if all involved passwords and commitments of witnesses and prover are valid, and most of the witnesses’
locations are close to that of the prover. Figure 3 illustrates the steps for generating location proofs.

Input: Group members with identities GP = {IDi}i∈[U ] which are either witness or prover, the start and end times
Ts and Te, length of each verify-epoch ∆e, and proof generation generation interval ∆s

Output: Verification key vkG
1. RA generates system parameters by running pms1 := GTOTP.Setup(1κ, Ts, Te,∆e,∆s) and pms2 :=

PPLP.Setup(1κ) publishes the parameter pms = (pms1, pms2).
2. Each group member IDi initializes its secret key and verification state by running (sk1

IDi
, vstIDi) :=

GTOTP-MT.PInit(IDi) and sk2
IDi

:= F.Setup(1κ), and sends vstIDi to RA via a mutual authenticated secure channel
as registration request.

3. Upon receiving registration request, RA generates the group verification state (vstG, {AxIDj}j∈U ) :=
GVSTGen(GP, {vstIDj}j∈[U ]), and sends AxIDj (if any) back to the corresponding party via the secure channel.
Moreover, RA publishes the verification key vkG = vstG.

4. Each party IDi keeps its secret key skIDi = (sk1
IDi

, sk2
IDi

) privately, and the prover would additionally store a
counter cnt (which is initialized to be zero) to record the times of proof request.

Fig. 4: Registration of PoL

Detailed Construction. The details of sub-protocols Registration, Location-Proof-Gen, and Verification are
shown in Figure 4, 5, and 6. The open algorithm is realized as follows.
Open(kRA,LP , i). This algorithm invokes the GTOTP-MT.Open algorithm. Specifically, RA retrieves the pass-
word pwi of the i-th contributor and the time-stamp T of the proof, and returns GTOTP-MT.Open(kRA, pwi, T ).
Application to Contact Tracing for COVID-19. Our PoL scheme can support contact tracing, because
the one-time passwords are exchanged via short-range communication, and the passwords of the contributors
are recorded in the location proof. Such grouped passwords indicate contact. Meanwhile, a prover can regularly
run the PoL protocol, e.g., every minute. More specifically, when the prover is confirmed to have been infected,
she can let the verifier (who can be a hospital) publish the corresponding location proof in a high risk list.
The RA extracts identities of the contributors of the location proof, and informs the corresponding witnesses
about potential transmission. The witnesses of a location proof may not cover all close-contacts of the prover.
Bluetooth-based contact tracing schemes [42,40] have certain limitations, because some people may refuse to
run the contact-tracing application, or they do not have any Bluetooth-enabled devices. However, in our scheme,
after the verifier (anonymously) releases the prover’s past locations after verifying the corresponding location
proofs (generated by PoL), the other entities can check whether they are in close contact with the prover. In
other words, our scheme can help other people outside of the system achieve contact tracing based on the
possibly contaminated location released by our scheme. This is not achievable by other proximity-tracing only
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Input: Prover P’s secret key skP and location LP , M witnesses’ secret keys {skWj}j∈[M ] and their locations
{LWj}j∈[M ], current time slot Tcurrent, and verification key vkG
Output: Location proof LPP

1. The prover P generates a location proof request via the following steps:
- Compute cnt := cnt+ 1 and the secret seed rkcnt = F(sk2

P , ‘PPLP’||cnt), and run key generation algorithm of
the PPLP scheme (epkcnt

P , eskcnt
P ) := PPLP.KGen(rkcnt) to get an ephemeral public and secret key pair;

- Compute the i-th secret seed sdiP := GTOTP-MT.GetSD(sk1
P ,Tcurrent), and password pwi,z

P :=

GTOTP-MT.PwGen(sdiP ,Tcurrent);
- Encrypt its location CP := PPLP.LPInit(pkcnt

P ,LP).

2. P broadcasts (pwi,z
P , CP) to nearby witnesses as location proof challenge via a short range communication channel

(such as Bluetooth);
3. Upon receiving (pwi,z

P , CP), each witness rejects if GTOTP-MT.Verify(vstG, pw
i,z
P ,Tcurrent) = 0, otherwise it does

the following:
- Generate the PPLP response CWj := PPLP.LPResp(epkcnt

P , CP ,LWj );

- Run sdiWj
:= GTOTP-MT.GetSD(sk1

Wj
,Tcurrent), and compute pwi,z

Wj
:= GTOTP-MT.PwGen(sdiWj

,Tcurrent) for

the current time slot Tcurrent.
- Abort if Tcurrent + ∆s belongs to the next verify-epoch (which means there is no enough password to use
in the current verify-epoch), otherwise initialize a commitment key using the next password pwi,z+1

Wj
:=

GTOTP-MT.PwGen(sdiWj
,Tcurrent +∆s);

- Set TrWj := pwi,z
P ||CP ||CWj ||LWj ||Tcurrent, and compute the location relevant commitment LCTWj :=

H2(sd
i
Wj
||TrWj ) and message relevant commitment MCTWj := H2(pw

i,z+1
Wj

||LCTWj );

- Send its proof piece (pwi,z
Wj

, CWj , LCTWj ,MCTWj ) to prover P via a short range communication channel;

- Record the tuple (Tcurrent, CWj ) locally, and put (pwi,z+1
Wj

,MCTWj ) on a public bulletin board after time Tcurrent+
2∆s.

4. Upon receiving all proof pieces RLP = {pwi,z
Wj

, CWj , LCTWj ,MCTWj}j∈[M ] from witnesses, P removes invalid pair

from RLP if one of the following conditions holds:
- GTOTP-MT.Verify(vstG, pw

i,z
Wj

,Tcurrent) = 0;

- MCTWj ̸= H2(pw
i,z+1
Wj

||LCTWj ), where pw
i,z+1
Wj

can be obtained from the public bulletin board after time Tcurrent+
∆s;

- 0 = PPLP.LPCheck(eskcnt
P , CWj ).

5. If the number of valid location proof pieces in RLP is equal or greater than ρ ≤M , P prepares a transcript TrP :=
epkcnt

P ||RLP ||LP ||Tcurrent||cnt and computes the location relevant commitment LCTP := H2(sd
i
P ||TrP); otherwise P

aborts with failure.
6. P sends the location proof LPP = (pwi,z

P , epkcnt
P ,Tcurrent, LCTP ,RLP) to verifier V, and put LP on a public bulletin

board.
7. V records LPP if: for all ID ∈ {P, {Wj}j∈[M ]}, GTOTP-MT.Verify(vstG, pw

i,z
ID ,Tcurrent) = 1

Fig. 5: Location Proof Generation of PoL

Input: Verification key vkG, location proof LPP , prover P’s secret key skP , M witnesses’ secret key {skWj}j∈[M ], and
location LP relevant to LPP

Output: Verification result in {0, 1}
1. P does the following:

- Get Td ∈ LPP and return ⊥ if Tcurrent and Td belong to the same verify-epoch;
- Compute the i-th secret seed sdiP := GTOTP-MT.GetSD(sk1

P , Td), and t-th the ephemeral random seed rkt =
PRF(sk1

P , ‘PPLP’||cnt′);
- If sdiID has expired, open (sdiP , rkt,LP) to verifier V over a unilateral authenticated secure channel, otherwise
abort;

- Put all passwords of witnesses in LPP as testifying request on the public bulletin board.
2. Upon receiving notification, each witness Wj returns ⊥ if Tcurrent and Td belong to the same verify-epoch, otherwise

it opens sdiWj
:= GTOTP-MT.GetSD(sk1

Wj
, Td) and LWj to verifier V over a unilateral authenticated secure channel

analogously;
3. Upon receiving secret seed and location pairs from all parties, for all ID ∈ {P, {Wj}j∈[M ]}, V verifies each proof

piece in LPP , i.e., V marks it as invalid if one of the following conditions holds:

- The epkcnt′

P obtained by running (epkcnt′

P , eskcnt′
P ) := PPLP.KGen(rkcnt′) is not in LPP , , where cnt′ ∈ LPP ;

- A password computed based on sdiID, i.e., pw
i,z
ID := GTOTP-MT.PwGen(sdiID, Td), is invalid or pwi,z

ID /∈ LPP ;
- LCTID ̸= H2(sd

i
ID||TrID) where LCTID ∈ LPP and TrID = RLP ||CP ||Ti if ID = P and TrID = pwi

P ||CP ||CWj ||Ti

otherwise;
- ID = P and CP is an invalid ciphertext of LP that is verified based on the secret key skP .

- ID = Wj and 0 = PPLP.LPCheck(eskcnt′
P , CWj ).

4. V returns 0 (meaning invalid location proof) if the number of invalid location proof pieces (as checked above) is
not greater than ρ ≤M , otherwise 1 is returned;

Fig. 6: Verification of PoL



12 Z. Yang et al.

schemes [42,40]. The contact locations may also help the centre for disease control to make strategic decisions
to stop the propagation of the Covid-19.
Security Analysis. We show that our PoL scheme achieves security via the following theorems. Due to limit
of space, their proofs will be given in the full version of this paper.

Theorem 3. Suppose that the GTOTP scheme and the PPLP scheme are secure, and the hash function H2 is
modeled as a random oracle. Then PoL achieves anonymity.

Since the public keys used for running the PPLP scheme are ephemeral for generating a location proof, they
do not leak any identity related information. In addition, the anonymity of the GTOTP scheme implies the
privacy of the entities in PoL. We present the proof in Appendix G.

Theorem 4. With the same assumptions in Theorem 3, PoL also achieves traceability.

The full proof of this theorem is presented in Appendix H. This property is derived directly from the
traceability of GTOTP. We note that the traceability of GTOTP covers the unforgeability of unused passwords
and secret, the commitments computed using them are also unforgeable.

Theorem 5. With the same assumptions in Theorem 3, PoL achieves location privacy.

Since the adversary cannot forge the commitments due to the traceability property, the location privacy of the
entities in PoL is derived from that of the PPLP scheme. The proof of this theorem is presented in Appendix I.

Discussion on Insider Threats. In recent years, insider attacks [46,33,38] have become a major threats against
cryptographic schemes. Our PoL construction can resist against insider witnesses, who intend to falsify or tamper
with the location proof, as long as the dishonest witnesses are the minority in generating the target location
proof. To establish the majority of the honest witnesses, the prover can invite more witnesses for executing the
PoL protocol at a time. However, our construction cannot prevent an insider prover from installing malicious
witnesses to provide dishonest proof of a location. The detailed solutions regarding preventing insider attackers
are out of the scope of this paper. Alternatively, we allow the RA to reveal the identity of any misbehaved
participants due to the traceability of PoL. To prevent insider prover, it might be possible to restrict the prover
to generate the location proof with witnesses which encompass physically faithful location beacons (such as
FOAM [29]). However, it is an open question to design a PoL scheme that can resist insider attackers without
trustworthy location beacons.

6 Evaluation

We implement our GTOTP-MT and PoL schemes on Raspberry Pi 3. For the GTOTP-MT implementation, we
use the TOTP scheme with a single hash-chain introduced in [26]. The hash functions, including H1 and H2, are
implemented using SHA256. We implement the PPLP scheme as proposed by Järvinen et al. [23,24] which uses
ElGamal based additively homomorphic encryption and Elliptic Curve Cryptography (ECC). We use NIST
Curve P-256 for the implementation. Since all entities can share ECC parameters, the expensive operations
in PPLP.LPResp, which is to initialize blind distance sets by, are performed offline, as in [23,24]. We do not
report this cost in our experiments. The authenticated symmetric encryption ASE is implemented as 128-bit
AES-GCM-SIV [19,18].

In the experiments, we set a fixed life-span ∆e = 5 minutes (m) for each verify point, but vary the number
of verify points for each entity. We set the password generation interval ∆s = 5 seconds (s), which gives N = 60.
We set ϵ = 40 for the Bloom filter, which is sufficient to guarantee a negligible false-positive rate for a duration
of less than 1 year. The number of Merkle trees in the GTOTP-MT scheme is ϕ = 213 = 8192, and the distance
threshold in PoL is θ = 50 (meters).

We run prover, verifier, and witness on Raspberry Pi 3, and the RA on a PC with Intel i7 CPU and 2GB
RAM. The results reported below are averaged over 1000 runs. We note that our current implementation is not
yet optimized, for example, we do not exploit all available CPU cores. In other words, the results below can be
further improved with multi-threadings.

6.1 Performance of GTOTP

Initialization Time. Figure 7 (a) shows the computational cost of GTOTP-MT.PInit. Although the cost in-
creases linearly with E, we note that each initialization takes approximately 10ms, which is practical.
Password Generation Time. To evaluate the cost of password generation, we assume that there is enough
storage for caching passwords [26]. This is reasonable since each TOTP instance is used only for a short verify
epoch with a small number of passwords. In particular, for N = 60 the storage cost is less than 2KB. Once the
GTOTP instance starts, the prover can use one password in one segment in the reverse order and generates one
password in the next verify epoch. This way, the prover always has one full segment of passwords in memory,



Group Time-based One-time Passwords and its Application to Efficient Privacy-Preserving Proof of Location 13

(a) GTOTP-MT.PInit

102 103 104 105

10−1

100

101

102

E

R
u
n
ti
m
e
(s
)

(b) GTOTP-MT.GVSTGen

102 103 104 105
100

101

102

103

U · E

R
u
n
ti
m
e
(m

s)

Fig. 7: Runtimes of GTOTP-MT.PInit and GTOTP-MT.GVSTGen.

and only needs to compute one hash function in the average case, and one more PRF in the worst case to switch
TOTP instances. In our experiments, we observe that the cost is low: 4.12µs and 19.1µs for the average and
worst case, respectively.

Group Verification State Generation Time. Figure 7 (b) shows the cost of GTOTP-MT.GVSTGen with
increasing U ·E. As expected, this cost grows linearly with the total number of verify points. Each verify point
contributes less than 1ms to the total time. We emphasize that this cost can be significantly improved with
better hardware and implementation.

Password Verification Time. We measure the worst-case performance, in which the password being verified
is the last one in a TOTP instance. The verifier needs to first go through the whole chain to verify it, which
requires N hash functions, then verify the Merkle proof associated with the password, which requires log(U ·E)/ϕ

times function. On average, the verifier may only compute N/2 hash functions per verify point. Figure 8 (a)
shows verification costs in terms of the height of the Merkle trees. It can be seen that the verification time is
in the order of milliseconds, which is practical. Since the chain length N is fixed, the costs vary in terms of the
height of Merkle trees. As N is larger than the height, one can reduce the cost by decreasing the life-span of
each verify point.
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Fig. 8: Runtime of GTOTP-MT.Verify and Communication Cost.

Identity Open Time. The overhead of GTOTP-MT.Open consists of the costs of the verification algorithm
and a decryption of ASE. The performance of GTOTP-MT.Verify is 10 times faster on RA (simulated by PC)
than on the Raspberry Pi (as shown in Figure 8). The runtime of ASE.Dec is about 0.5µs on PC.

Communication Cost. The communication cost is determined by the size of the password, which consists of
a TOTP password and the Merkle proof. Figure 8 (b) shows the communication cost, which increases with the
height of the Merkle tree, as expected. Even for big trees with height of 60, the verifier receives less than 2KB
for each verify point.
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6.2 Performance of PoL

During registration, PoL mainly invoke the GTOTP algorithms, thus its cost is the sum of the cost of GTOTP-MT.PInit

and GTOTP-MT.GVSTGen. In the PoL experiments, we fix the height of the Merkle tree to be log
U·E
ϕ = 30 to

reduce the dimension of the parameters.
Proof Generation Time. We measure the time of proof generation (PfGen) as the sum of the cost of the
prover and the witnesses. Table 1 summarizes the results for different number of witnesses M . The prover

performs 4 +M(Ñ + log
U·E
ϕ +2) hash evaluations and M + 10 EC point multiplications (EPM), where Ñ = N

for worst case and Ñ = N/2 for average case. The main cost of the witness consists of N + log
U·E
ϕ +8 hash

evaluations and 12 EC point multiplications.

Table 1: Runtimes of Location Proof Generation and Verification, and the Size of Location Proof.

M
Computation time (s)

PfSize (KB)PfGen Verify
Prover Witness Total Verifier

5 0.116/0.133 0.089/0.098 0.205/0.231 0.00065 1.16

10 0.237/0.276 0.089/0.098 0.326/0.347 0.0011 2.17

15 0.331/0.382 0. 0.089/0.098 0.42/0.48 0.0018 3.19

Verification Time. During verification, the prover and the witnesses open their secret seeds. This opening
requires one PRF evaluation, which takes 10µs. Table 1 reports the cost of the verifier which includes 5M hash
evaluations and 2M EC point multiplications.

Proof Size. Table 1 shows the sizes of the location proofs (PfSize) when the Merkle’s tree height is 30. Each
time stamp costs 32 bits, H2 costs 256 bits, and an EC point (P) 448 bit. Each ciphertext has the size of 128
bits. Thus, the total size is 32+ 2H2 +P + (3H +2P +C) ∗M = (992+ 1792M) bits. Even with M = 15, each
proof is only 3KB, which is practical.

6.3 Comparison

(G)TOTP Comparison. Here we generically compare GTOTP-MT with a state-of-the-arts TOTP scheme [30]
and a group signature scheme [11] from the perspectives of security properties and performance. In the com-
parison, we use the same setting and parameters as in the above benchmarks. We let ‘PwSize’ denote the sie of
password (which implies the communication cost), ‘Unforg’ denote the unforeability, ‘BFc’ denote the cost of
BF.Check, and ‘BFi’ denote the cost of BF.Insert. Meanwhile, we compare the worst-case performance between
GTOTP and TOTP for simplicity. Moreover, we let ‘Ex’ and ‘Par’ denote an exponentiation and a pairing
operation relative to bilinear groups, respectively.

The comparison results are shown in Table 2. The initialization and password generation algorithms of
GTOTP-MT scheme does not introduce significant overheads comparing with the TOTP scheme in [26]. The
verification cost of GTOTP-MT mainly involves additional operations regarding verifying the Merkle proof and
checking the membership of the Bloom filter. The GVSTGen algorithm of GTOTP-MT is done by a powerful
RA, so it can run very fast. Note that GTOTP-MT can provide more security properties than the TOTP scheme
without many additional computational overheads. And the password generation and verification algorithms
of GTOTP-MT are much more efficient than the GDS[11], since it does not require any expensive pairing and
exponentiation operations, and N ≤ 60 is small in GTOTP-MT. For example, from the result in [11], we can
roughly estimate the costs of EPM and pairing as 300 and 2000 times the cost of H1, respectively.

Table 2: (G)TOTP Comparison

Security
Properties

Performance

Init PwGen Verify GVSTGen
APwSize
(Bytes)

TOTP [30] Unforg E ·N · H1 H1 N · H1 - 32

GDS [11]
Anony
Trace

3EPM
21Mul + 2Ex
+4Par + 1H1

21EPM+ 3Ex
+6Par + 1H1

40EPM+ 1H1 892

GTOTP-MT
Anony
Trace

E ·N · H1

+E · PRF N · H1 + PRF (N + 31)H1 + 1BFc
2U · E · H1

+ϕ · BFi 992

PoL Comparison. In Table 3, we compare our proposed PoL scheme with some existing related schemes in the
perspectives of witness setting, the security properties regarding entity privacy (Enti-Priv) and location privacy
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(Loc-Priv), and the performance. The number of witness is set to M = 5. Since the current communication
techniques (such 5G and Bluetooth) are very fast, we do not take the propagation delay of communication into
account. Here we consider the location privacy of all parties (including verifier). Since most of prior works do
not have any implementation, we only count the major operations and proof size for performance comparison.
For simplicity and fairness, we instantiate the regular digital signature and group digital signature used by
prior works with ECDSA [27] and the one [11], respectively. The public encryption scheme used by previous
schemes are instantiate with the ElGamal [13]. Futhermore, we let ‘ExN’ denote an exponentiation in the Pailiar
encryption scheme.

The witness setting may implicitly reflect the system model (incl. functionalities). We let ‘CLS’ denote the
centralized location server (which might be used to either provide the positioning and location-certifying service
for the prover), and ‘Ad Hoc’ denote the setting that the witnesses could be any entity (as long as they can be
used for testifying the location for the prover, e.g., a mobile device or location beacon), and ‘DLB’ denote the
distributed location beacon (which achieves the similar functionality of CLS by distributed beacons). Note that
the witness setting and the security properties of a PoL scheme imply the functionalities that can be achieved
by the corresponding PoL scheme.

From Table 3, we can see that only few schemes consider entity privacy. Meanwhile, only [10] and our scheme
provide traceability while preserving the entity privacy and location privacy. The PoL scheme by Zhu et al. [51]
utilizes some kinds of mathematical combination operations to achieve entity and location privacy (without
achieving traceability), but the adversary may have non-negligible advantages in breaking these two security
properties. Compared with [51], our scheme leverages provably secure cryptographic building blocks. Moreover,
our scheme adopts a more flexible witness setting. Although our scheme only provides the location privacy of
prover to witnesses (but not to verifier), it might be weaker than that of [49] (which uses zero-knowledge proof
scheme to achieve the location privacy to verifier). However, Wu et al. [49] scheme needs distributed access
points to be the location beacons (whose locations are known to the verifier) to make the zero-knowledge proofs
verifiable to the verifier. Moreover, in many applications, the location privacy of the prover to the verifier is not
mandatory. For example, in contact-tracing, the verifier needs to know the location of the prover for disinfection.
In contrast, the entity and location privacy of both witnesses and prover to each other is the main concern in
our scheme. While comparing with [10] (that provides similar security properties as our proposal), it uses much
more expensive building blocks than ours.

Table 3: PoL Comparison

Witness
Setting

Security Properties Performance

Trace
Enti-Priv Loc-Priv PfGen

Verify
PfSize
(KB)Prover Witness Prover Witness Prover Witness

[48] CLS
√

× × × × 7EPM+ 1H1 3EPM+ 1H1 6EPM+ 2H1 0.36

[17] Ad Hoc
√

× × × × 27EPM+ 3H1 4EPM+ 2H1 28EPM+ 6H1 1.4

[51] CLS ×
√ √ √

× 10EPM+ 5H1 3EPM+ 1H1 15EPM+ 5H1 1.4

[36] Ad Hoc
√

× × × × 8EPM+ 2H1 5EPM+ 3H1 17EPM+ 5H1 1.3

[29] DLB
√

× × × × 10EPM+ 5H1 3EPM+ 1H1 15EPM+ 5H1 1.3

[49] DLB ×
√

×
√

× 28EPM+ 8H1 56EPM+ 4Mul + 2H1 11Par + 5EPM+ 5Mul + 1H1 0.56

[10] Ad Hoc
√ √ √

×
√ 87ExN + 252EPM+ 34Ex

+68Par + 12H1

597ExN + 42EPM+ 2Ex
+8Par + 2H1

5ExN + 126EPM+ 12Ex
+24Par + 6H1

7.94

Ours Ad Hoc
√ √ √

×
√

464H1 + 15EPM 98H1 + 12EPM 25H1 + 10EPM 1.16

7 Conclusions

In this paper, we proposed Group time-based one-time passwords scheme (GTOTP) that extends TOTP to
the group setting. GTOTP achieves membership authentication and privacy. We presented an efficient GTOTP
construction, which is based on an asymmetric TOTP scheme and other standard cryptographic building blocks
including Merkle tree, pseudo-random function family, and collision-resistant hash function. We showed how to
apply GTOTP to construct an efficient proof of location (PoL) scheme, which can be used for contact tracing.
We believe that the GTOTP is useful in many other applications beyond PoL.

For future work, we plan to formulate our security models with Universally Composable (UC) Security [3]
which admits stronger adversaries. We will also extend our GTOTP scheme to support dynamic groups.
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A Lists of Notions

Some important notations used in this paper are listed in Table 4.

Table 4: Some Important Notations for GTOTP
U Number of group members

GP Identifies of group members GP = {ID1, . . . , IDU}
Ts, Te Start and end times of a protocol instance, respectively

∆e, ∆s life-spans of verify-point and password, respectively.

E, N Numbers of verify-points and passwords (that can be verified by
each verify-point), respectively.

vpID Verify-point of a party ID

vstID Verification state of a party, s.t., vstID = {vpiID} for i ∈ [∆t/∆e].

vstG Group verification state vstG = {vstIDj} for j ∈ [U ].

sdiID The i-th secret seed for generating the i-the verify-point of ID.

skID Secret key for generating the secret seeds of ID.

pwi,z
ID The z-th password of ID in the i-th verify-epoch.

Ti, Tcurrent The i-th time slot and the current system time slot, respectively.

M Number of witness

Pj ,Wj Identities of prover and witness, respectively

GP Identifies of group members GP = {P1, . . . ,PU}
MCT, LCT Commitments of location and message, respectively

RLP Location proof pieces received by prover P

LPP Location proof generated by prover P

www.cs.princeton.edu/research/techreps/TR-667-03
www.cs.princeton.edu/research/techreps/TR-667-03
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B Security Definitions of Building Blocks

Pseudo-Random Functions. The security of PRF requires that, on given r = F(k, x) for a random key

k
$← KPRF and a message x ∈ MPRF, no efficient algorithm can distinguish r from a truly random value. We

define a security game GPRF
A,F (κ, qf ) (shown in Figure 9) that is played between a probabilistic polynomial time

(PPT) adversary A and a challenger based on a pseudo-random function family F and the security parameter
κ.

GPRF
A,F(κ, qf) :

Initialize() : Finalize(b∗) :

(pms, k)← F.Setup(1κ) IF b∗ = b and x∗ /∈ FL, OUTPUT 1
OUTPUT pms: ELSE OUTPUT 0

Challenge(x∗) : FuncQ(x) :

b
$← {0, 1}, r0

$←RPRF, r1 ← F.Eval(k, x∗) APPEND x→ FL
OUTPUT rb OUTPUT F.Eval(k, x)

Fig. 9: Procedures Used to Define Security for PRF.

Definition 2. We say F is secure if no PPT adversary has a non-negligible advantage AdvPRFA,F (κ, qf ) :=∣∣∣Pr[GPRF
A,F (κ, qf ) = 1]− 1

2

∣∣∣ in breaking the security of a pseudo-random function family F under κ.

Authenticated Symmetric Encryption. We define a security game GIND-CCA
A,ASE (κ, qe) in Figure 10 to formulate

the standard notion of indistinguishability under chosen-ciphertext attack (IND-CCA), that is played between
a probabilistic polynomial time (PPT) adversary A and a challenger based on ASE and the security parameter
κ.

GIND-CCA
A,ASE (κ, qe) :

Initialize() : Finalize(b∗) : Challenge(m0,m1) :

(pms, k)← ASE.Setup(1κ) IF b∗ = b and C∗ /∈ CL b
$← {0, 1}

OUTPUT pms: OUTPUT 1 C∗ ← ASE.Enc(k,mb)
OUTPUT 0 OUTPUT C∗

DecP(C) :

APPEND C → CL EncP(m) :

OUTPUT ASE.Dec(k, C) OUTPUT ASE.Enc(k,m)

Fig. 10: Procedures Used to Define Security for ASE.

Definition 3. We say ASE is secure if no PPT adversary has a non-negligible advantage AdvIND-CCA
A,ASE (κ, qe) :=∣∣∣Pr[GIND-CCA

A,ASE (κ, qe) = 1]− 1
2

∣∣ in breaking the security of a authenticated symmetric encryption ASE under κ.

Collision-resistant Hash Functions. The CRHF security game GCR
A,H(κ) based on an adversary A and a

CRHF family H is defined in Figure 11.

GCR
A,H(κ) :

Initialize() : Finalize(m,m′) :

hk ← H.Setup(1κ) IF m ̸= m′ and H.Eval(hk,m) = H.Eval(hk,m′)
OUTPUT hk OUTPUT 1

OUTPUT 0

Fig. 11: Procedures used to define security for CRH.

Definition 4. We denote with AdvCRA,H(κ) := Pr[GCR
A,H(κ) = 1] the advantage of a PPT adversary A in breaking

the security of H under the security parameter κ. We say H is secure if no PPT adversary has non-negligible
advantage AdvCRHFA,H (κ) under κ.
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Time-based One-time Passwords. We define a security game GTOTP Forge
A,TOTP (κ, Ts, Te, ∆s) for a time-based

one-time passwords scheme TOTP in Figure 12. The goal adversary in the game is to forge a valid password of
TOTP for a future time.

GTOTP Forge
A,TOTP (κ, Ts, Te,∆s) :

Initialize(Ts, Te,∆s) : Finalize() :

pms← TOTP.Setup(1κ, Ts, Te, ∆s) IF ∃(pw∗, T∗) ∈ HD

sd
$← KTOTP s.t. (TOTP.Verify(vp, pw∗, T∗) = 1

vp← TOTP.PInit(sd) and no GetNextPw() at T̃ s.t. T̃ > T∗

OUTPUT pms, vp OUTPUT 1
OUTPUT 0

GetNextPw() : ReceivePw(pw) :

OUTPUT TOTP.PGen(sd,Tcurrent) APPEND (pw,Tcurrent)→ HD
OUTPUT TOTP.Verify(vp, pw,Tcurrent)

Fig. 12: Procedures used to define security for TOTP

Definition 5. We say a TOTP protocol is secure if no PPT adversary has a non-negligible advantage

AdvTOTP Forge
A,TOTP (κ, Ts, Te, ∆s) := Pr

[
GTOTP Forge
A,TOTP (κ, Ts, Te, ∆s) = 1

]
in breaking the security of a TOTP protocol

TOTP with the given parameters.

Bloom filter. We define a security game (derived from [35]) GAR
A,BF(κ, T,N, ϵ) that is played between an

adversary A and a challenger based on a Bloom filter BF scheme and the parameters (κ, T,N, ϵ), where T is
the time of the Bloom filter being used. Also, the parameter T defines the running time of adversaries in the
game. We assume that the Bloom filter instance BF itself does not record any randomness used during the
execution of the initiation algorithm BF.Init. If a Bloom filter has a randomized initialization algorithm but a
deterministic query algorithm that does not change the representation of the a set IS = {m1, . . . ,mN} (inserted
into the Bloom filter), then we say it has a steady representation. The procedure of GAR

A,BF(κ, T,N, ϵ) is defined
in Figure 13. Meanwhile, we let Get CurrentTime() be a public function to get the current system time. Note
that we model a polynomial time adversary with explicit time parameter T that is similar to the approach [35]
on restricting query number of adversaries.

Initialize(T,N, ϵ) : Finalize(m∗) :

BF.Init(N, ϵ) If m∗ /∈ IS and BF.Check(m∗) = 1
IS ← A(T,N, ϵ) and Get CurrentTime()− Ts ≤ T
BF.Insert(mi) for ∀ mi ∈ IS OUTPUT 1
Ts := Get CurrentTime() ELSE OUTPUT 0
OUTPUT BF, Ts

Fig. 13: Procedures used to define security for BF.

Definition 6. Let AdvARA,BF(κ, T,N, ϵ) := Pr[GAR
A,BF(κ, T,N, ϵ) = 1] be the advantage of a PPT adversary A in

breaking the security of a Bloom filter BF under the security parameter κ. We say BF is secure if no PPT
adversary has non-negligible advantage AdvARA,BF(κ, T,N, ϵ).

Merkle Tree. We define a security game GMT Forge
A,MT (κ) in Figure 14 for a Merkle tree scheme MT, which

encompasses the following procedures. For a secure Merkle tree scheme, the adversary must not forge the
Merkle proof for a leaf node which does not belong to the Merkle tree.

GMT Forge
A,MT (κ) :

Initialize({Lfi}i∈[ℓ]) : Finalize(Lf∗,Pf∗) :

MTr← MT.Build({Lfi}i∈[ℓ]) IF 1← MT.Verify(Rt,Lf∗,Pf∗)
OUTPUT MTr: and Lf∗ /∈ {Lfi}i∈[ℓ], OUTPUT 1

OUTPUT 0

Fig. 14: Procedures Used to Define Security for MT.

Definition 7. We say MT is secure if no PPT adversary has a non-negligible advantage AdvMT Forge
A,MT (κ) :=

Pr[GMT Forge
A,MT (κ) = 1] in breaking the security of a Merkle tree scheme MT under κ.
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Privacy-preserving Location Proximity Schemes. In Figure 15, we define a game GLP
A,PPLP(κ, ql) between

a semi-honest adversary A and a challenger C. The adversary could be the responder who is curious about the
location of the checker. In the game, the challenger would provide the adversary with the following procedures
to query, where the protocol execution procedure Execute can be asked at most ql times.

GLP
A,PPLP(κ, ql) :

Initialize() : Finalize(b∗) :

pms← PPLP.Setup(1κ), rk
$← KPPLP IF b∗ = b

(pk, sk)← PPLP.KGen(rk, pms) OUTPUT 1
OUTPUT pms, pk OUTPUT 0

Challenge(L∗
W) : Execute(LP ,LW) :

b
$← {0, 1} CP ← PPLP.LPInit(pk,LP , θ)

Sample L∗
P s.t. Dist(L∗

P ,L
∗
W) < θ if b = 1 CW ← PPLP.LPResp(pk, CP ,LW)

and Dist(L∗
P ,L

∗
W) > θ if b = 0 OUTPUT CW

C∗
W ← Execute(L∗

P ,L
∗
W)

OUTPUT C∗
W

Fig. 15: Procedures Used to Define Security for PPLP.

Definition 8. We say PPLP is secure if no PPT adversary has a non-negligible advantage AdvLPA,PPLP(κ, ql) :=∣∣∣Pr[GLP
A,PPLP(κ, ql) = 1]− 1

2

∣∣ in breaking the security of a PPLP scheme PPLP under κ.

C Security Model of PoL

Under semi-honest threat model, we aim to achieve the following two security properties for PoL. The first is
unforgeability and traceability of location proofs. The second is anonymity for the prover and witnesses. The
third is location privacy of witnesses. To formulate these security properties, we define three security games
PoL Unforge, PoL Anony , and PoL LocPriv, respectively. We let Exp ∈ {PoL Unforge,PoL Anony,PoL LocPriv}
be a variable to indicate one of the games.

We present the relevant procedures of the security games in Figure ??. The procedures are adapted from
PPLP and GTOTP models to fit in the PoL setting. The Initialize(GP) procedure is defined to simulate the
Registration protocol with the given parameters, which returns the protocol execution transcript TrI and the
group verification key vkG to the adversary. If the game is not PoL Anony, the secret key kRA is also returned.
We use a LocProofGen(LP , {LWj

}j∈[M ],P, {Wi}i∈[M ]) procedure to simulate the protocol execution of Location-
Proof-Gen protocol, with which the adversary can specify the locations and participants for running the protocol,
and get the protocol execution transcript TrL and the resultant location proof LPP , where (P, {Wi}i∈[M ]) ∈
GP. The procedure LocProofVerify(LPP ,LP) is defined to simulate the Verification protocol, which enables the
adversary to test the validity of a (forged) location proof and get the protocol execution transcript TrV .

During the game, the adversary can ask once the Challenge query to challenge either anonymity or location-

privacy of the PoL scheme. The challenger samples two random bits (ba, bl)
$← {0, 1} to test the capability of the

adversary in the PoL Anony game and the PoL LocPriv game, respectively. The adversary can specify the initial
identities of the prover P and the M witnesses {Wi} as well as their initial locations. But in the PoL Anony
game, if ba = 1, the challenger would replace the identity of either the prover or the first witness with another
identity ˆID1 depending on the role role ∈ {Prover,Witness} of the challenged party specified by the adversary.
Similarly, W1’s location is changed to be L∗W1

(provided by the adversary either) in the PoL LocPriv game if
bl := 1. The goal of the adversary is to distinguish whether or not the corresponding initial information of either
P or W1 is modified by the challenger in the run of the Location-Proof-Gen protocol. Meantime, we formulate
the fault tolerance via two parameters ρ (s.t. ρ ≤ M) and M : for a correct location proof, we only need ρ
location valid proofs from the witness, thereby tolerating M − ρ failures or inaccuracies.

Definition 9. We say that a PoL scheme PoL is secure if the advantages

AdvPoL Anony
A,PoL (pms) :=

∣∣∣Pr [GPoL Anony
A,PoL (pms) = 1

]
− 1/2

∣∣∣, AdvPoL Trace
A,PoL (pms) := Pr

[
GPoL Trace
A,PoL (pms) = 1

]
, and

AdvPoL LocPriv
A,PoL (pms) :=

∣∣∣Pr [GPoL LocPriv
A,PoL (pms) = 1

]
− 1/2

∣∣∣ of any PPT adversary A in the corresponding games

are negligible under given parameters pms = (κ, U, Ts, Te, ∆e, ∆s).
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D Discussion on GTOTP Privacy

In this section, we discuss the achievable privacy for our GTOTP schemes. We stress that each verify point
of a party (i.e., the verify point of a TOTP instance) in the GTOTP scheme can be seen a pseudonym used
for a verify-epoch. As other pseudonym schemes (such as IFAL [44]), we assume that each verify point is used
for a short period of time, e.g., 5 mins (such a time period for a pseudonym is recommended by European
Telecommunications Standards Institute (ETSI) [21]). We do not consider the privacy leakage because of the
user’s behaviour (or password usage pattern) within the verify-epoch. Instead, we build GTOTP schemes to
guarantee that the verify points cannot be linked to leak a party’s real identity.

Since a Dedicated Short Range Communications (DSRC) or Bluetooth enabled device would periodically
execute service discovery protocol by sending probe requests which includes the device’s Media Access Control
(MAC) address, so the attackers may exploit the MACs to trace the owner of the device. To prevent this kind of
threat, each mobile device can use a local a randomized and continuously-refreshed MAC instead of its unique
physical global MAC, which is possible in the recent version of either IOS or Android [43,25].

E Proof of Theorem 1

Let BKanony
i denote an event that there exists an adversary wins in the i-th (modified) GTOTP Anony game.

Game 0. This game equals the real security game. Thus, we have that Pr[BKanony
0 ] = AdvGTOTP Anony

A,GTOTP (κ, U, Ts, Te, ∆e, ∆s).
Game 1. We change this game from the previous game by letting the challenger abort if secret keys of two
parties are identical (i.e., two F.Setup executions output the same key). If this abort event occurs with non-
negligible probability, then we could break the security PRF. We assume that there is an algorithm F who
tries to break the security of F in the PRF game. In this case, the PRF challenger may run F.Setup to get a
challenge key k∗. Meanwhile, F may run the public algorithm F.Setup algorithms herself U −1 times to get keys
k1, . . . , kU−1. By our assumption, there are two keys (k′1, k

′
2) in the set (k∗, k1, . . . , kU−1) are identical. Since

it holds with a probability 2/U that either k′1 or k′2 equals to k∗, in which case, the adversary knows the k∗

and then can break the security of PRF with the knowledge of k∗. Since the adversary only has a negligible
probability AdvPRFA,F (κ, 1) to break the PRF by assumption, we have Pr[BKanony

0 ] ≤ Pr[BKanony
1 ]+ U

2 ·Adv
PRF
A,F (κ, 1).

Game 2. This game proceeds exactly like the previous game, but the challenger aborts if she fails to guess
which two TOTP instances that the adversary chooses for the challenge. Hence, we have that Pr[BKanony

1 ] =
2U · E · Pr[BKanony

2 ]. As a result, the challenge knows the challenge TOTP instances in advance.
Game 3. In this game, we change the secret seed sdID∗

i
in the challenge verify-epoch to be a truly random value.

If there exists an adversary A that can distinguish this game from the previous game, then it can be used to build
an efficient algorithm B to break the PRF security. B can run A as a subroutine and simulate the game for her.
As for the secret seed sdID∗

i
, B can obtain it from the challenger which simulates the security game of PRF. Note

that in the PRF game the challenger will provide an PRF oracle OPRF(m) to evaluate the function F(sdID∗
i
,m)

except for the challenge message. So B can get all other secret seeds of ID∗i by querying OPRF(ID
∗
i ||j) for j ∈ [E].

Note that we compute identity-ciphertext C∗
ÎDb

in the challenge password as C∗
ÎDb

= ASE.Enc(kRA, pw
∗
ÎDb

, T ∗),

where ˆIDb ∈ {ID∗i , ID
∗
j}, pw∗ÎDb

:= PwGen(sdÎDb
, T ∗), and T ∗ is the start time of the challenge verify-epoch. Note

that the change is this game takes effective if and only if ID∗i is selected as challenge party (which happens with
probability 1/2). Thus we have Pr[BKanony

2 ] ≤ Pr[BKanony
3 ] + 2AdvPRFA,F (κ,E).

Game 4. The challenger proceeds as before, but sets sdID∗
j
= sdID∗

i
. That is, the challenger always returns

a random secret seed regardless of the bit b. Obliviously, distinguishing this game from the previous game
implies an algorithm breaking the security of PRF, we thus have that Pr[BKGTOTP Anony

3 ] ≤ Pr[BKGTOTP Anony
4 ]+

AdvPRFA,F (κ,E). The modification in this game implies that the adversary cannot gain any non-negligible advantage
from the secret seeds.
Game 5. As the permutation is unpredictable, so adversaries cannot infer the order of verify-points in input
on given the output of π with non-negligible advantage. After the adversary cannot infer the leaf nodes’ owners
(when they are not corrupted) from the order of verify-points (which are, therefore, just random values to
the adversary. Moreover, each Merkle tree root is mapped to m bit positions (which are set to be ‘1’) of
the Bloom filter. And many roots may share the same bit positions. So it is impossible for an adversary to
recover the relationship from two inserted roots from the resultant Bloom filter. Now, if the adversary can
distinguish the bit b, she can only try to break the security of the authenticate key encryption scheme ASE.
So we can build an algorithm C running A as a subroutine. As for the challenge identity-ciphertext C∗

ÎDb
(in

the challenge password), C can query the messages ( ˆID0, ˆID1) to the ASE challenger which should encrypts one
to generate the challenge ciphertext. All other identity-ciphertexts can be obtained by calling an encryption
oracle simulated by the ASE challenger. Note that C can simulate the rest of the values using the secret
keys of her own choice. B forwards the bit b∗ returned by A to the ASE challenger. Thus, we have that
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Pr[BKGTOTP Anony
4 ] ≤ Pr[BKGTOTP Anony

5 ] + AdvIND-CCA
A,ASE (κ,E). The modification in this game implies that the

adversary cannot gain any non-negligible advantage from the secret seeds. The advantages in the above games
only give the adversary a negligible overall advantage that proves Theorem 1.

F Proof of Theorem 2

Let BKtrace
i denote an event that there exists an adversary wins in the i-th (modified) GTOTP Trace game.

Game 0. This game equals the real security game, and all queries are answered honestly according to our
protocol specification. Thus, we have that Pr[BKtrace

0 ] = AdvGTOTP Trace
A,GTOTP (κ, U, Ts, Te, ∆e, ∆s).

Game 1. The challenger proceeds as before, but aborts if the secret keys of two parties are identical. With the
same argument in the Game 1 of the proof of Theorem 1, we have that Pr[BKtrace

0 ] ≤ Pr[BKtrace
1 ]+U

2 ·Adv
PRF
A,F (κ, 1).

So the challenge parties should have distinct secret keys.

Game 2. In this game, we add an abort rule that the challenger aborts if the adversary outputs a password which
results in a verify-point vp∗ such that H1(vp

∗||CID∗
j
||β) = H1(vp

α
IDj
||Cα

IDj
||α) and IDj is not corrupted, where

vpαIDj
is generated by the challenger, and β and α are arbitrary indices. I.e., the adversary finds a hash collision to

an honest verify-point. If such an abort event occurs non-negligible, we could make use of the adversary to break
the security of the collision-resistant hash function H1. Thus, we have Pr[BKtrace

1 ] ≤ Pr[BKtrace
2 ] + AdvCRHFA,H1

(κ).

Game 3. The challenger proceeds as before, but rejects any password resulting in a Merkle tree root which
is not generated by herself. This abort rule excludes the case that the adversary successfully exploits the false
positive error 2−ϵ of BF within the lifespan (i.e., Te−Ts) of a GTOTP-MT instance. Note that by appropriately
choosing the parameters of the Bloom filter we can make the AdvARA,BF(κ, T, ϕ, ϵ) to be negligible. Thus, we have

that Pr[BKtrace
2 ] ≤ Pr[BKtrace

3 ] + AdvARA,BF(κ, T, ϕ, ϵ).

Game 4. In this game we want to reduce the security to that the Merkle tree scheme. To realize this, We
consider a Merkle-forge event that an adversary A outputs a password pw∗ which can pass the verification
process with a forged Merkle proof Pfv̂p∗ ∈ pw∗. I.e., Pfv̂p∗ is not computed by the challenger during the
execution of GVSTGen, where v̂p∗ is the verify-point generated based on pw∗. We change this game from the
previous game by letting the challenger abort when the Merkle-forge event occurs. If this abort event occurs
with non-negligible probability, then we can make use of A to break the security of the Merkle tree scheme.
Thus, we have that Pr[BKtrace

3 ] ≤ Pr[BKtrace
4 ] + AdvMT Forge

A,MT (κ).

As the adversary cannot forge the Merkle proof in this game, then she cannot bind a password with either
an identity-ciphertext which is not the owner of the password or an invalid identity-ciphertext. In the sequel,
we will show that the adversary cannot forge the other values of a password.

Game 5. This game proceeds exactly like the previous game, but the challenger aborts if she fails to guess
which TOTP instance that the adversary can break. Since there are U ·E TOTP instances at all, the probability
of a correct guess is at least 1

U ·E . Thus, we have that Pr[BKtrace
4 ] = U · E · Pr[BKtrace

5 ]. We assume that the
guessed instance is the i∗-th TOTP instance of the party IDj without loss of generality.

Game 6. In this game, we replace the secret seed sdi
∗

IDj
= F(kIDj , IDj ||i∗) with a random value for the guessed

i∗-th TOTP instance of the party IDj . If there exists an adversary A who can distinguish this game from the
previous game with non-negligible advantage, then we can build an algorithm B which uses A to break the
security of PRF. Specifically, B can submit a challenge query with a message (IDj ||i∗) to the PRF challenger
to get back the corresponding challenge value rb which is a value of PRF(k∗, IDj ||i∗) or a truly random value,
where k∗ is a secret key chosen by the PRF challenger. Then B and sets sdi

∗

IDj
:= rb.

The corresponding passwords of that instance are computed based on sdi
∗

IDj
. For other secret seeds of IDj ,

can query the PRF oracle OPRF(IDj ||ι) for ι ∈ [E]\i∗. B can choose all other secrets to simulate the game for A
(including answering the CompromiseSD(IDj) queries of A). Note that if rb is the real value, then the simulated
game is identical to the previous game; otherwise, it is identical to this game. Therefore, the capability of A
on distinguishing between the games implies the breach of PRF. Due to the security of PRF, we have that
Pr[BKtrace

5 ] ≤ Pr[BKtrace
6 ] + AdvPRFA,F (κ,E).

Game 7. The challenger proceeds as before, but aborts if an adversary A outputs a valid password p̄w∗ of a
TOTP instance at some time T ∗ such that T ∗ is greater than all previously opened password values. Obviously,
such impersonation attempt (p̄w∗, T ∗) can be used to break the guessed TOTP instance. We can build an
algorithm F (as in the previous game) by running A as a sub-routine to break the TOTP scheme. Note that F
can resort to the TOTP challenger to simulate the passwords of the guessed TOTP instance before time T ∗.
All other TOTP instances can be simulated based on the F ’s own secrets. Since the TOTP scheme is secure by
assumption, we have that Pr[BKtrace

6 ] ≤ Pr[BKtrace
7 ] + AdvTOTP Forge

A,TOTP (κ, Ts, Te, ∆s).

In this game, adversaries cannot use a password resulting in a verify-point that is not generated by any
honest party to win the security game. So the advantage of this game is 0 as well, which concludes this proof.



Group Time-based One-time Passwords and its Application to Efficient Privacy-Preserving Proof of Location 23

G Proof of Theorem 3

In the following, we show the proof in a sequence of games following [41]. Let BKanony
i denote an event that

there exists an forgery-adversary wins in Game i.
Game 0. This game equals the real security experiment, and we have that Pr[BKanony

0 ] = AdvPoL Anony
A,PoL .

Game 1. This game proceeds exactly like the previous game, but the challenger aborts if it fails to guess
the following cases: (i) the identities ˆID0 and ˆID1 in the call of Challenge procedure; (ii) the verify-epoch being
challenged. If B finds out that she fails to guess one of the above cases during the game, then she would
abort the game with failure. The probability on a correct guess is bounded by 1

U2·E . Thus we have that
Pr[BKanony

0 ] = U · E · Pr[BKanony
1 ].

Game 2. In this game, we will show that if there exists an adversary A which can break the anonymity of
PoL then we can use it to construct an efficient algorithm B to break the anonymity of the underlying GTOTP
scheme GTOTP. Specifically, B simulates the game for A. In the simulation, B can corrupt the parties which
are not ˆID0 and ˆID1, and compromise all secret seeds which are not used for the challenge verify-epoch in the
GTOTP game, so that B can faithfully simulate the PoL Anony game with all necessary secrets. Meanwhile, B
would ask the GTOTP Anony challenge procedure Challenge( ˆID0, ˆID1) to get the secret seed sd∗

ÎDb
, and use sd∗

ÎDb

to simulate the challenge procedure Challenge asked by A. Eventually, B will return the bit b′ obtained from
A as its output in the GTOTP Anony game. Hence, if A can win the GTOTP Anony game with non-negligible
advantage, so can B in the PoL Anony game. Therefore, Pr[BKanony

1 ] = Pr[BKanony
2 ] = AdvGTOTP Anony

A,GTOTP . Putting
together the advantages of A in the above games concludes the proof.

H Proof of Theorem 4

Let BKtrace
i denote an event that there exists an adversary wins in Game i.

Game 0. This game equals the real security experiment, and we have that Pr[BKtrace
0 ] = AdvPoL Trace

A,PoL .
Game 1. This game proceeds exactly like the previous game, but the challenger aborts if it fails to guess
the following cases: (i) the victim party ID∗ that the adversary can break; (ii) the index i∗ of the secret seed
for generating the key of the corresponding commitment that the adversary can forge. Since there are U · E
TOTP instances at all, the probability of a correct guess is at least 1

U ·E . Thus, we have that Pr[BKtrace
0 ] =

U · E · Pr[BKtrace
1 ].

Game 2. The challenger proceeds exactly like the previous game, but aborts if the adversary A queries either

cki
∗,z
ID∗ or sdi

∗

ID∗ in a random oracle query before it is opened by the corresponding party, where (i∗, ID∗) are the
information guessed in the previous game. Note that the outputs of random oracle are unique and random.
Therefore, this abort rule means that the adversary successfully forges a commitment of an uncorrupted party.
If this abort event happens with non-negligible probability, then we can build an algorithm B by using the
adversary A to break the security of GTOTP. Specifically, B could simulate the game for A by answering
her oracle queries as in the previous game. B can ask the Corrupt or CompromiseSD procedure to obtain the
corresponding secrets for computing all other commitments that the adversary does not forge. When B needs

to simulate the values that are generated by H2(k
∗||Tr∗) involving k∗ ∈ {cki

∗,z
ID∗ , sdi

∗

ID∗} and Tr∗ ∈ {TrWj ,TrP} in
LocProofGen queries, B can just use a random function RF(Tr∗) instead. This does not change the distribution
of the generated location proof. Since A will query H2(k

∗||·) with non-negligible probability by assumption, B
can get the target k∗ which could enable her to break the GTOTP. Note that B can check whether k∗ queried
by A is a true secret by using the public verify-point of the i∗-th verify-epoch. By applying the traceability of
GTOTP, we have that Pr[BKtrace

1 ] ≤ Pr[BKtrace
2 ] + AdvGTOTP Trace

A,GTOTP (κ, U, Ts, Te, ∆e, ∆s).
Game 3. The challenger proceeds exactly like the previous game, but rejects any location proof pieces which
are not generated by herself. Let lh = |Rh| be the bit-length of the range of the hash value of H2. Since the
adversary does not know the secrets for generating the commitment due to the previous game, the adversary
can only randomly guess the valid value of the commitments with a successful probability qh/2

lh . Hence we have
Pr[BKtrace

2 ] ≤ Pr[BKtrace
3 ]+ qh/2

lh . Because the adversary cannot win this game, the advantage of the adversary
in this game is zero. This concludes the proof.

I Proof of Theorem 5

Let BKlocpriv
i denote an event that there exists an adversary wins in Game i.

Game 0. This game equals the real security experiment, and we have that Pr[BKlocpriv
0 ] = AdvPoL LocPriv

A,PoL .
Game 1. This game proceeds exactly like the previous game, but the challenger aborts if it fails to guess the
following cases: (i) the victim party ID∗ that the adversary can break; (ii) the counter cnt∗ of the ephemeral

key epkcnt
∗

ID∗ used in the challenge query. Since there are U parties, and each party can run at most E ·N times
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location proof generation protocol, the probability of a correct guess is at least 1
U ·E·N . Thus, we have that

Pr[BKlocpriv
0 ] = U · E ·N · Pr[BKlocpriv

1 ].
Game 2. This game is proceeded with exactly as the previous game, but the challenger sets the random seed
rkcnt∗ = F.Eval(sk2ID∗ , ‘PPLP’||cnt∗) with a truly random value. We can reduct the security to that of PRF

following the similar arguments of the Game 6 in the proof of Theorem 2. We thus have that Pr[BKlocpriv
1 ] ≤

Pr[BKlocpriv
2 ] + AdvPRFA,F (κ, 1).

Game 3. Now we reduce the security of PoL to that of PPLP. If there exists an adversary which can distinguish
the bit bl with non-negligible advantage in this game, then we can build an efficient algorithm B to break the
security of PPLP scheme. In the simulation, B should first guess one uncorrupted witness W1 queried in the
challenge procedure in this game. The probability for a correct guess is bound by 1

U . Based on such a correct
guess, B ask a challenge query to the PPLP challenger using the location L1 queried in the challenge procedure
in this game. Then B will use the transcript obtained from the PPLP challenger to simulate the protocol
transcript between P and W1 in this PoL LocPriv game. All other protocol steps are simulated based on the
secrets chosen by B. Eventually, B will return the bit b′ obtained from A as its output in the PPLP game.
Hence, if A can win the PPLP game with non-negligible advantage, so can B in the PoL LocPriv game. Thus
we have Pr[BKlocpriv

2 ] = Pr[BKlocpriv
3 ] = U · AdvLPA,PPLP. This concludes the proof.
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