ZEBRA: Anonymous Credentials with Practical
On-chain Verification and Applications to KYC in DeFi

Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn Song
University of California, Berkeley
{deevashwer, guruvamsip, tianc.x, rcottone, dawnsong} @berkeley.edu

Abstract—ZEBRA is an Anonymous Credential (AC) scheme,
supporting auditability and revocation, that provides practical
on-chain verification for the first time. It realizes efficient
access control on permissionless blockchains while achieving
both privacy and accountability. In all prior solutions, users
either pay exorbitant fees or lose privacy since authorities
granting access can map users to their wallets. Hence, ZEBRA
is the first to enable DeFi platforms to remain compliant with
imminent regulations without compromising user privacy.

We evaluate ZEBRA and show that it reduces the gas cost
incurred on the Ethereum Virtual Machine (EVM) by 11.8x
when compared to Coconut [NDSS 2019], the state-of-the-art
AC scheme for blockchains. This translates to a reduction
in transaction fees from 94 USD to 8 USD on Ethereum in
August 2022. However, 8 USD is still high for most applications,
and ZEBRA further drives down credential verification costs
through batched verification. For a batch of 512 layer-1 and
layer-2 wallets, the gas cost is reduced by 35x and 641x on
EVM, and the transaction fee is reduced to just 0.23 USD
and 0.0126 USD on Ethereum, respectively. For perspective,
these costs are comparable to the minimum transaction costs
on Ethereum.

1. Introduction

Over the last decade, blockchains have gained popularity
over their centralized counterparts, owing to their strong
integrity and availability, and transparent and permissionless
nature. Although a majority of blockchain applications bene-
fit from permissionless access, there are applications where
access control is useful and sometimes even legally man-
dated. For instance, recently proposed guidelines from the
Financial Action Task Force (FATF) require decentralized
finance (DeFi) applications to restrict their service to KYC-
verified users [59]. In prior access control solutions [120],
[117], [100], [118], [30], [7], certificate authorities (CAs)
issue an on-chain credential to a user nominated wallet after
ensuring the user satisfies the application’s access policy.
These credentials can be thought of as signatures from the
CA attesting to a user’s access privileges. This approach,
however, comes at a huge privacy cost for users: the CA
can link users to their wallets, potentially even across chains,
and this sensitive information could even be leaked if the
CA suffers from a data breach.

The natural solution to resolve this privacy tension is to
use an anonymous credential (AC), which is a cryptographic
primitive that enables a user to prove that they hold a valid
credential in an unlinkable way, i.e., even if the verifier
and the CA collude, they cannot identify the user or link
multiple showings of the same credential. Hence, the CA can
issue an AC instead, and the user can prove on-chain that
they hold a valid credential without revealing any additional
information. To ensure accountability for misbehaving users,
the AC scheme must be auditable to enable authorized
auditors to identify the owner of a maliciously behaving
wallet. Additionally, revocation support is also necessary
as credentials are often lost or stolen, and credentials of
malicious users need to be revoked.

Insufficiency of Existing Anonymous Credentials.
While there is a long line of work on AC schemes [42], [41],
[109], [104], [77], [35], [36], [63], [127], [47], with some
also supporting revocation and auditability [42], [43], [39],
[40], [26], none of them are suitable for implementing access
control on permissionless blockchains. In particular, existing
AC schemes are very expensive to verify on-chain (§ 8.1.3),
and this high cost is due to the following reasons: (i)
their verifier relies on operations that are not efficiently
supported on Ethereum Virtual Machine (EVM) [124], the
de-facto runtime environment for smart contracts [89], and
(i1) their verifier performance degrades linearly with verifica-
tion predicate complexity. Consequently, Coconut [109], the
state-of-the-art AC scheme for blockchains requires 4.2M
gas for on-chain verification on EVM (§ 8.1.3), which is
equivalent to 94 USD on Ethereum in August 2022 [6].
Moreover, this is not a one-time cost paid by users when
they join the system. Credential verification has to be per-
formed for every transaction that interacts with an access-
controlled application since it is not and in fact should not
be possible to know if the previous verification of a wallet
was associated with a credential that has since been revoked.

Anonymous Credentials for Blockchains. In this work,
we propose an AC scheme ZEBRA! that provides practical
on-chain verification for the first time and supports auditabil-
ity and revocation. With the primary goal of minimizing

1. ZEBRA stands for zero-knowledge (or anonymous), batched,
revocable, and auditable credentials.

verifier cost’ (and thereby transaction fees), we build our
scheme on top of zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKS) because they ad-
dress both sources of inefficiency in existing AC schemes:
SNARKSs can be verified efficiently on EVM and their
verifier is sublinear in the verification predicate complexity.
However, the use of SNARKS by itself does not lead to a
practical AC scheme:

« SNARKS typically have high proof generation costs which
are often unreasonable for weak end-user devices.

o The SNARK with cheapest on-chain verification [71] still
costs 8 USD on Ethereum, which is too high to pay for
every transaction.

ZEBRA addresses both of these issues by designing a
small credential verification circuit (§ 2.3.4) and leveraging
existing access control solutions to avoid credential verifi-
cation with every transaction (§ 2.3.1). Moreover, ZEBRA
further reduces the cost of credential verification through
batched verification as 8 USD is quite expensive for most
applications, especially on layer-2 (L2). Batched verification
relies on an untrusted aggregator to verify many credential
verification proofs and recursively prove their validity to the
contract with a single SNARK proof, the cost of which is
amortized across multiple users. While this idea may seem
straightforward, it has two efficiency challenges:

« Due to restrictions imposed by EVM for efficient on-chain
verification, prior works on proof recursion either have
high aggregator latency or high user overhead (§ 8.2.3).

o Each credential proof is accompanied with transaction
data that needs to be processed on-chain for each user
in the batch, and this imposes a high lower bound on the
gas cost per user, especially for L2 wallets (§ 8.2.1).

To this end, we propose a new EVM-compatible solution
with practical aggregator and user overhead (§ 2.3.2) that
reduces and even removes per-user costs from batched ver-
ification of L1 and L2 wallets, respectively (§ 2.3.3).

Our performance evaluation demonstrates the practi-
cality of ZEBRA: the single (core) verification protocol
requires 355K gas on EVM or 8 USD on Ethereum (§ 8.1.2),
and the user overhead is under 6s on a smartphone with
single thread (§ 8.1.1). The aggregator can batch verification
of 512 credentials within 4 minutes (§ 8.2.2) on a 64-core
machine, while achieving 10.2K and 561 gas per L1 and L2
wallet (§ 8.2.1), respectively. For perspective, the average
gas usage per transaction on Ethereum is around 87K [4] in
August 2022, and the minimum transaction gas cost is 21K
and 500 for L1 and L2 [130] wallets, respectively.

Practical and Privacy-Preserving KYC in DeFi.
Recently, some DeFi platforms have moved towards
implementing KYC checks [93], [116], [9], [99], [52]
in response to FATF’s guidelines [59] and to attract
institutional investors. While the steps taken by these
platforms are important in regulating DeFi and establishing
it as a mainstream financial technology, they are similar to
prior access control approaches [120], [117], [100], [118],

2. By verifier cost, we mean both the verifier runtime and the proof size.

[30], [7] and come with a huge privacy loss to users. To
this end, ZEBRA provides the first practical solution that
protects user’s privacy and enables KYC in DeFi at the same
time. This solution leverages the minimal gas costs of our
batched verification since KYC in DeFi requires frequent
credential verifications to support over 600K users and
1.8M transactions every day [5]. To enable credentials from
multiple CAs, we also add multi-CA support to ZEBRA
using which credentials from different CAs can be verified
with a unified function without revealing which CA issued
the credential. As a result, users holding credentials from
multiple CAs can be batched together and the anonymity
set of users is also increased. Finally, since ZEBRA relies
on SNARKS, it is easy to extend it to richer attributes
and predicates to support expressive selective disclosure
without significantly changing the on-chain verification cost
(see § 5.4 for discussion and more extensions). Hence, it is
ideal for implementing more complex checks when further
regulation is mandated, and is of independent interest for
implementing on-chain privacy-preserving access control in
general. In particular, some other applications of ZEBRA
are decentralized voting, proof-of-personhood, private NFT
drops, authentication and authorization.

In summary, we make the following contributions:

o We propose an AC scheme ZEBRA that provides prac-
tical on-chain verification for the first time and offers
auditability, revocation, and multi-CA support with prac-
tical user overheads (§ 8.1). ZEBRA also leverages and
extends the existing access control solutions to avoid
credential verification overhead per transaction.

« We propose a practical and EVM-compatible solution for
batching ZEBRA credentials. Compared to our solution,
simply using prior proof recursion works leads to 9x
higher gas cost (§ 8.2.1), and either 6.3 x higher aggre-
gator latency or 11x higher user overhead (§ 8.2.3).

o We implement (§ 7) and benchmark all components of
ZEBRA and demonstrate their practicality on EVM. Our
core verification protocol improves gas cost of existing
AC schemes by 11.8x (§ 8.1.3), and with batched veri-
fication of just 512 credentials, ZEBRA achieves further
gas improvements of 35x and 641 x for L1 and L2 wallets
(§ 8.2.1), respectively.

e We address the problem of privacy-preserving KYC in
DeFi for permissionless blockchains and enable the first
practical solution for it using ZEBRA. For a discussion
on related work, see § 9.

2. Overview

In this section, we first discuss the system model and
high-level goals of our system in § 2.1 and § 2.2, respec-
tively, and then provide a summary of our techniques in
§ 2.3 that realize these goals.

2.1. System Model

Figure 1 summarizes the system architecture and the var-
ious entities and protocols in our system. Now, we describe

1. CredGen @®
pkU /7(

cred = User
‘/\Aa

"~ 2A. CredVerify
T, pkW

2B. BatchVerify

S n1 pk¥Y I (pki"}
Tfa;Pk3
Aggregator/
™ Rollup Server Contract 2
Users Blockchain
(a) Credential Generation and Verification
6. RvkList Update _=
— - — =
; vk, 1d =0
5. CredRevoke - .
CA1 id Coordinator
4. Us.er Reveal 3 Tx Audit @—@
«— ide —> -« » —
P~ (77
CAz Auditors Contract &
Blockchain

(b) Transaction Audit and Credential Revocation
Figure 1: System Architecture.

the role of each entity while referring to the corresponding
protocols:

o Credential Verification Smart Contract: This smart con-
tract is responsible for verifying a credential (protocols
2A and 2B) and issuing an on-chain access token to the
nominated wallet. These tokens can then be efficiently
checked by the smart contract of the access-controlled
application before granting access to the wallet. It also
stores the list of approved CAs and their revocation lists.

o Users: Users can obtain a credential cred associated with
their public-key pkY from any CA approved by the access-
controlled application if the user satisfies the issuance
policy (protocol 1). They can then prove on-chain that
they hold a valid credential in a privacy-preserving way
by providing a proof 7 to get an access token for their
wallet pkW (protocol 2A). We assume users are malicious
and can act arbitrarily to get verified without holding a
valid credential.

o Certificate Authorities (CAs): CAs are organizations
trusted to issue credentials to users if they satisfy the
application’s credential issuance policy (protocol 1). A
CA can revoke a credential it issued by adding its unique
identifier id to the revocation list (protocol 5). They also
help auditors in deanonymizing malicious users of their
issued credentials (protocol 4). We assume the CAs are
trusted for integrity since they are reputed organizations
authorized by the application, but even if they behave
arbitrarily, we prove that they cannot deanonymize users.
Furthermore, in § 5.4, we discuss how ZEBRA can be
extended to support other issuance models.

o Aggregator/Rollup Server: The aggregator/rollup server
is an untrusted party that batches credential verification

transactions for L1 and L2 wallets, respectively, to reduce
on-chain verification costs. It does so by sending a short
proof II to the contract which ensures that the server
knows a valid credential verification proof 7; for each
pk in the batch (protocol 2B). As in zk-rollups [34],
the only thing a malicious server can do is censor user’s
transactions. In case of a censoring aggregator, the users
can simply move to another aggregator. For a censoring
rollup server, we can use standard techniques from zk-
rollups [130], [85].

e Auditors: Auditors can audit a credential verification
transaction via its associated audit token v if a majority
of them agree to it (protocol 3). This could happen, for
instance, in case law enforcement requests it. The audit
reveals a unique credential identifier id that embeds the
CA that issued it. The auditors then share id with the
issuing CA, and the CA deanonymizes the user by sending
its user’s public key pkY or any other identity information
to the auditors (protocol 4). Our system can handle a
minority of malicious auditors. We also note that it is
relatively easier to find a large committee of auditors
to sufficiently distribute trust since they are called upon
infrequently.

e Contract Coordinator: The coordinator is responsible
for managing the credential verification contract, and its
responsibilities are updating the list of approved CAs
according to the access policy, and batched updates to
revocation lists of all CAs®. We don’t trust the coordinator
to post correct updates to the revocation list and require
that it provide a proof m,x ensuring that it knows a
valid signature from the CA associated with the credential
identifier id it is adding to the revocation list (protocol 6).

2.2. System Goals

Privacy Goal

o The credential verification transaction from a wallet does
not reveal any information that can be used to identify the
wallet’s user among the set of all verified users (across
all approved CAs), unless a majority of auditors agree to
audit the transaction.

Integrity Goals

o Only approved CAs can generate credentials that will be
successfully verified by the credential verification con-
tract, and the integrity of this verification is equivalent to
the integrity of the underlying blockchain.

e Only users with non-revoked credentials can get access
tokens for their wallets.

o Each verified wallet can be traced back to a credential
and its issuing CA by the auditors, and from there to the
wallet’s user with the help of the CA.

o A credential can only be revoked by its issuing CA.

Performance Goals
We first look at our goals for on-chain verification costs:

o Access tokens are verified with minimal gas cost before
granting access to a wallet. All access tokens expire

3. The CAs can also post the update themselves.

when users are revoked, and credential verification is only
performed to renew access tokens.

o The gas cost of single credential verification should be
practical enough for applications where accesses or re-
vocations are infrequent, both of which imply infrequent
credential verifications.

o The gas cost of batched verification should be comparable
to the cheapest on-chain transaction. Batched verification
is suitable for L1 applications with a large volume of
transactions and users, and for L2 applications. Such
applications have many users and they require frequent
credential verifications to reduce the latency in enforcing
revocations.

Throughout this paper, we use EVM gas cost as our on-
chain cost metric as EVM is the de-facto runtime environ-
ment for smart contracts [89], and stress that our discussion
and ideas are applicable to any blockchain that supports
smart contracts. Next, we look at off-chain overhead goals:

o The user can create a credential verification proof on a
smartphone within a few seconds.

o The overheads on the coordinator and the CAs are rea-
sonable with commodity hardware.

o The aggregator’s latency is reasonable to verify a batch
of wallets large enough to match the cheapest on-chain
transaction cost. The monetary cost incurred by aggregator
in performing this computation is negligible compared to
the monetary cost of batched verification.

2.3. Technical Overview
2.3.1. Access Tokens with Universal Revocation

Although SNARKS significantly improve credential ver-
ification overhead, it still costs 4x the average transaction
cost on Ethereum in August 2022 [4], which is impractical to
incur with every transaction. To circumvent this limitation,
we leverage the existing access control solutions to issue
an on-chain access token to the wallet which is verified.
Subsequently, the application can do a cheaper access token
verification before granting access. Revocations, however,
pose a problem: each credential revocation requires all ac-
cess tokens to be revoked in our setting because the mapping
between credentials and wallets is not known. Since existing
access control solutions only support selective revocation, it
would be intractable to selectively revoke all tokens one-
by-one. To this end, we extend the existing solutions with
a simple mechanism that revokes all tokens at once with
just 5K gas. Our idea is to simply add an epoch identifier
to each token that denotes the epoch when the token was
assigned. A token is only valid if its epoch identifier matches
the current epoch. Every time a batch of credentials is re-
voked, the current epoch is incremented, invalidating all the
tokens. Consequently, users perform credential verification
that costs 355K gas once per epoch, and for all subsequent
transactions within the epoch, the application can simply
check the access token using just 4200 gas.

Users Aggregator Contract
| :
I O
: Verify 7] :
ﬂ21 O Vi, Verify m; > Verify it

(data-parallel)

ﬂ31 O é HZ Hl

Figure 2: Batched verification workflow. Circles denote
computations inside a SNARK and the circle labels de-
note the respective SNARK proofs. Grey circles represent
pairing-based SNARK' over BN254 and white circle rep-
resents the (data-parallel) discrete-log-based simdSNARK?
over Grumpkin.

2.3.2. Batched Verification of SNARK Proofs

The idea behind batched verification is simple: the ag-
gregator recursively proves to the contract that /N credential
verification proofs are valid using a single SNARK proof.
However, to keep gas costs low for reasonable batch sizes®,
the proof sent to the contract should be a pairing-based
SNARK proof over the BN254 curve [21], the only curve
supported by EVM. Due to this restriction, none of the prior
proof recursion approaches lead to a practical solution in
our setting: they either have high aggregator latency or high
user overhead (§ 8.2.3). To this end, we propose a new ap-
proach that relies on recursively verifying discrete-log-based
SNARKS, which are not suitable for recursion in general as
their verifier complexity is at least Oy (y/n) for a circuit of
size n°. Despite this limitation, we still manage to achieve
a practical solution through careful use of the discrete-log-
based SNARK and two layers of recursion. In particular,
our solution, illustrated in Figure 2, uses the discrete-log-
based SNARK over Grumpkin [64] to verify pairing-based
SNARK proofs over BN254 from users, and this offers the
following efficiency benefits: (i) SNARK' and simdSNARK?
can efficiently verify each other’s proofs because BN254
forms a cycle with Grumpkin, (ii) simdSNARK? is veri-
fying a data-parallel or SIMD computation which greatly
improves its concrete cost for both prover and verifer, and
(iii) although simdSNARK? verification circuit is large, it
is sublinear in number of users. Additionally, user over-
heads and on-chain costs are practical due to the use of
pairing-based SNARK®'. We instantiate simdSNARK? with
Spartan [106] in our implementation, and observe that the
R1CS constraints for its verifier improve by 8x due to data-
parallelism (§ 7). We further improve its verifier constraints
by 1.6x; importantly, this optimization was necessary to
batch 512 users with our batching solution (§ 7). Overall, our
batching solution either has at least 6.3x smaller aggregator
overhead or 11 x smaller user overhead (§ 8.2.3).

4. STARK-based verification requires 16x higher gas cost [130]
5. In contrast, pairing-based and FRI-based SNARKs have O, (1) and
Oy (log(n)) verifiers, respectively.

2.3.3. Audit Token Caching

Proof batching mitigates the bottleneck in credential
verification, but there are still costs that scale linearly with
batch size and lower-bound the amortized gas cost per user.
In particular, batched verification posts a 256-Byte audit
token ; for each user ¢ in the batch, which is then input
to the SNARK and a signature w.r.t. pkl.N is also verified
on-chain in case of L1. Even ignoring the SNARK, this
lower bounds the gas cost at around 20K per L1 wallet and
around 5K per L2 wallet (§ 8.2.1). We circumvent these
lower bounds following the observation that there is no need
to post v; with each credential verification of pk\iN as it can
be made static and cached. We can do so because changing
credentials or posting a new audit token for each verification
does not provide any additional privacy. Thus, when a wallet
is verified for the first time, we can simply cache 1); for pk;N
on-chain for L1 and within the rollup state for L2, provided
the SNARK and signature verification are successful. Addi-
tionally to save storage and lookup costs, we use a smart-
contract friendly hash function CRH* like SHA256 to store
a 32-Byte commitment h; = CRH*(pk)',v;) instead of
256-Byte ;. This is especially important for L1 because
retrieving cached 1; alone would require 16.8K gas, as
opposed to just 2.1K for h;. Overall, the lower bound is
reduced to 9K for L1 wallets, removed entirely for L2
wallets, and we demonstrate at least 9x improvement in
batching L2 wallets (§ 8.2.1).

2.3.4. SNARK-friendly Verification Circuit

Although we obtain efficient verification due to succinct-
ness of SNARKSs, the prover overhead also has to be prac-
tical. To this end, we carefully design a SNARK-friendly
circuit that satisfies the properties outlined in § 2.2 using
primitives which are efficient to compute within SNARKS.
The simplest instantiation of a credential is just a signature
from CA on user’s public key pkY. To improve performance
and usability of this baseline, we embed a unique 40-bit
credential identifier id in our credentials that also stores
the issuing CA’s ID. Specifically, this offers the following
benefits: (i) we can revoke id instead of 256-bit pk' and
this reduces the non-membership proof costs from 148K to
just 23K constraints using merkle trees, improving credential
verification circuit size by 3%, (ii) we can encrypt id in audit
token ¢ instead of pkY, and this directly reveals the issuing
CA to the auditors, and (iii) id ensures that CAs can only
revoke credentials they have issued. Overall, our credential
verification circuit has 62K constraints and takes under 6
seconds to prove on a smartphone (§ 8.1.1).

3. Preliminaries

We provide high-level description of preliminaries
mainly focusing on notation in this section and defer detailed
security definitions to Appendix A.

3.1. zk-SNARKSs
A zk-SNARK is a tuple of three algorithms:

o Setup(1*,R) — crsg: On input security parameter \ and
relation R, outputs a common reference string crsg.

e Prove(crsg,x,w) — m: On input crsg and a statement-
witness pair (z,w) € R, outputs a proof .

o Verify(crsg,z,m) — {0,1}: On input crsg, statement x
and proof 7, outputs a bit to indicate if the proof is valid.

We use the security definitions of [71] and write SNARK

when we demand perfect completeness, perfect zero-

knowledge, and computational knowledge soundness from

the argument system.

We also use simdSNARK to denote a “data-parallel”
SNARK which takes as input multiple statement-witness
pairs and outputs a single succinct proof 7. Importantly,
we relax the security definition here and require all the
above properties except for zero-knowledge. We note that
every simdSNARK can be viewed as a SNARK by redefining
the relation. However, we make the distinction for ease of
presentation.

3.2. Digital Signature

We use signature schemes that are existentially un-
forgeable under chosen message attacks (EUF-CMA). They
consists of three algorithms SIG = (Gen, Sign, Verify):

e Gen(1*) — (sk,vk): on input security parameter \, out-
puts a secret key sk and a public verification key vk.

o Sign(sk,m) — o: on input sk and message m, output
signature o.

o Verify(vk,m,o) — {0,1}: on input vk, m and o, outputs
1 if o is a valid signature for m w.r.t. vk.

3.3. Threshold Public-Key Encryption

We use threshold public key encryption (TPKE) satisfy-
ing the simulation based IND-CCA?2 security notion defined
in [45]. We also restrict the syntax of TPKE to consist of
five algorithms:

e Setup(1*,n,t) — {pk, vk, (ski,...,sk,)}: on input
threshold ¢ for n parties, outputs the public key pk and
verification key vk, along with secret keys for each party.

e Enc(pk,m;p) — ct: encrypts message m under public
key pk using randomness p.

o Dec(ct,sk;) — m;: computes a partial decryption of ct.

o Verify(pk,vk,m;) — {0,1}: checks whether m; was
correctly computed using pk and vk.

o Combine(pk, vk, {m;}icscn] st |s|>t+1) — m: recovers
message m given t 4 1 partial decryptions which verify
successfully.

3.4. Merkle Trees

Sparse Merkle trees [56] are authenticated data structures

MT on key-value pairs (k,v) supporting the following op-

erations:

e Add(k,v): inserts a key-value pair (k,v) in MT. If the
key already exists, the value is updated.

o Root: outputs the current merkle-root of MT.

o MProve(k) — P: outputs a membership proof for key k.

o MVerify(rt, k,v, P) — {0,1}: on inputs root rt, key k,
value v and proof P, outputs 1 if (k,v) exists in rt.

o NMProve(k) — P: outputs a non-membership proof for
key k.

o NMVerify(rt, k, P) — {0, 1}: on inputs root rt, key k and
proof P, outputs 1 if k does not exist in rt.

4. Definitions

At the core of our system is an anonymous credential
scheme coupled with a decentralized organization which
verifies user credentials and maintains a list of pseudonyms
corresponding to verified users. In our concrete instantiation
this organization is simply a smart contract residing on the
blockchain. Users register on the system using a pseudonym
(such as their wallet address) and obtain an access token
for their pseudonym from the organization by providing
auxiliary information justifying the same. Concretely, this
translates to the user’s pseudonym being added to a list
maintained by the smart contract. In any future transactions
with service providers involving this wallet, a user can prove
their wallet has been verified by simply pointing to the
appropriate location in the smart contract’s storage.

By changing the definition of what constitutes valid
auxiliary information our system can be adapted to a wide
range of applications. For example:

« In the simplest case, a single CA issues credentials to
users in the form of signatures on their identity. This
can be extended to support revocation through a public
revocation list.

« It is also possible to accommodate threshold/hierarchical
credential issuance with multiple CAs [109], [35], [26].

In our concrete instantiation we use the following policy:

« A CA must have issued the user a credential that has not
been previously revoked.

« When requesting verification for a pseudonym, the request
must be authenticated by the pseudonym owner (in the
form of a signature).

4.1. Security

We consider two notions of security (Appendix A) with
three different corruption scenarios as follows:

« Simulation-based security against a fully malicious adver-
sary corrupting up to ¢ auditors and any number of users.

« Simulation-based security against a semi-honest CA that
does not collude with any other party.

« Privacy against against a fully malicious adversary cor-
rupting up to ¢ auditors, any number of users and the CA.
In this setting, we do not provide any guarantees regarding
the correctness of an honest party’s output but ensure that
the adversary does not learn any information about an
honest party’s inputs. However, we demand correctness
when all parties are honest to rule out trivial protocols.

In Figure 3 we describe the ideal functionality involving
users {U7, ...,Un} and a list of auditors (Audy, ..., Aud,).

Credentials are awarded to users when they make a request

to the ideal functionality. This is done by sending a message

doc “justifying” the issue of a credential to F, which is then
forwarded to the CA who decides to approve/reject a request.

If the request is approved, the corresponding user is added

to a list £. Users interact with access controlled applications
through pseudonyms which have been awarded an “access
token”. To do so, a user U first registers a pseudonym pk"Y
and sends appropriate auxiliary information aux justifying
the issue of the access token to the ideal functionality. If the
request satisfies the verification policy and the user U € L,
then the pseudonym is awarded a token by adding (pk", U)
to a key-value database where the keys (pseudonyms) are
made public but the values (users) are hidden. When a CA
revokes a credential it has issued, the database of verified
pseudonyms is archived and a fresh database is used in its
place.

As a technical detail, we allow multiple users to obtain
an access token on the same pseudonym or even the same
user to obtain an access token on the same pseudonym
multiple times. When this happens, all parties are privy
to number of times access tokens were requested for a
particular pseudonym. During the audit of a pseudonym
pk", all users who requested verification for a particular
pseudonym are revealed to the set of auditors.

Multiple Certificate Authorities. For simplicity, we focus
on a single CA in the definition of JF. This can be easily
extended to support the issuance of credentials from mul-
tiple CAs. Moreover, by defining the verification policies
appropriately, one can increase the anonymity set of users
from those that obtained a credential from a particular CA
to the set of all users who obtained a credential from any
CA. In our concrete instantiation (§ 5) we show that this
can indeed be done efficiently.

5. Anonymous Credential Scheme

In this section, we describe the core protocols in our
scheme, i.e., credential generation, verification, revocation
and auditing in § 5.1. Then, we describe how to efficiently
batch credential verification for L1 and L2 wallets to amor-
tize costs in § 5.2 and § 5.3. Finally, we discuss some
potential extensions in § 5.4.

5.1. Core Protocols
5.1.1. Credential Generation (Figure 4)

Our system supports multiple CAs, where each CA is
assigned a unique group-id g. Each CA issues indepen-
dent credentials but any of these credentials can be used
for verification on-chain. This offers the advantage of an
increased anonymity set which now comprises of all users
who obtained a credential from any of the CAs.

To obtain a credential, user U first samples a signature
key pair (pkY sk") <« SIG®.Gen(1*), where SIG? is a
signature scheme instantiated as defined in § 6. U then sends
a credential generation request (pkU,doc) to CA; (a CA
with group-id g) where doc is used to justify the issuance
of a credential. CA, reviews the supplied information and
if it satisfies the issuance policy, it samples a unique user-
id v and grants the user a credential. Granted credential
cred contains a credential identifier id = g||u, an expiration

‘7.'
Parties: Users {Uy,...,Un}, Certificate Authority CA
and Auditors (Audy,...,Audy,).

Parameters: A verification policy C, pseudonym space N/,

user space U/ and auxiliary information space X.

o Setup. On input (Setup,C) from the organization,
publish a verification issue policy C.

o Credential Generation. On input (ReqCred,doc)
from user U, forward (doc,U) to CA. On input
(AprCred,U) from CA, add U to list of users who
have been awarded credentials £ and send 1 to U.

e Credential Verification. Maintain a database D of
tuples from the space N x U. The pseudonyms in
each tuple are made public while the corresponding
users are hidden. On input (ReqVer, pk", aux) from
user U,

- If C(pkW,aux) = 1 and U € £, add (pk",U) to
the database and publish aux.
— Else, return L to U.

« Audit. On input (Audit, pk") from any ¢ + 1 auditors

— Scan D for all occurrences of pk" and gather
corresponding users. Send this list of users to all
auditors.

— If pk" does not appear in the database, then return
L to all auditors.

« Revocation. On input (Revoke, U) from party CA

- If U ¢ L return L to CA.

— Else, add U to a public ban-list Lp.

— Archive the database D and create a fresh database
D. Use D for any future credential issuance.

Figure 3: Ideal Functionality for an Anonymous Credential
Scheme supporting Audits and Revocations.

Credential Generation

User U:

o Sample (skY, pkV) := SIG®.Gen(1*).

U — CA,: pkY, doc

CA with group-id g (CAy):

« Validate doc w.r.t. credential issuance policy.

« Sample a unique user-id v and set id := g||u.

o Choose an expiration epoch e and create a credential:
o := SIG".Sign(sk$", CRH(pk", id, e)).

CAy; — U: cred = (o,id, e)

Figure 4: Credential Generation Protocol

epoch e after which the credential is no longer valid, and a
signature o on pk||id||e using signature scheme SIG'.

Although it may seem like the credential identifier is
redundant given that a user’s public key is already unique,
using a separate identifier lends the protocol to further
optimization. Note that in a real system there are far fewer
users than the number of public keys. We leverage this by
using compact 40-bit identifiers as opposed to 256-bit public
keys, which in turn reduces the credential verification circuit
size by 3x and also leads to smaller on-chain storage costs
during revocation. Credential identifier also embeds the

group-id of the CA that issued the credential, which helps
during audits and prevents a malicious CA from revoking
credentials it did not issue.

5.1.2. Credential Revocation (Figure 11)

We allow CAs to revoke any credential they have previ-
ously issued and accumulate all revoked credentials through
two merkle trees®:

« MT": stores credential identifiers revoked by CA,.
. MT'qr: stores merkle-roots of each CA’s revocation list.

To revoke credentials, CA, first updates MT;I with newly
revoked id’s and computes the updated root rt;'. Then, the
CAs send their updated roots to an untrusted coordinator
who posts a batch update for the revocation lists of all
CAs.To ensure that the coordinator cannot change the revo-
cation roots or replay old roots, CA, signs the tuple (rt'g', E),
where F is the current epoch number, with its secret key
skgA and sends it along with rt[]' to the coordinator. The
coordinator then locally updates MT™ and creates a proof
7 attesting to the correctness of new revocation root rt"™:

1) rtgyy, known by the contract, is the old root of revocation
merkle tree with (g, rt[)'ldg) as leaves.

2) rt", provided by the coordinator, is the new root of
revocation merkle tree with (g, rt)) as leaves.

3) rt'¥, known by the contract, is the root of CA’s verifica-
tion key merkle tree with (g, vk;:A) as leaves.

4) Vg € G st rt{)'Idg #+ rt_[]', I know a signature oy 4

kCA

on (rtf, E) wrt. vk;",

number.

The coordinator sends this proof and associated revocation
information to the smart contract which verifies the proof,
updates the root and increments the epoch number. All the
revoked ids are also signed by the CAs and published by
the coordinator to allow users to compute proofs of non-
membership.

5.1.3. Credential Verification (Figure 5)

A user owning a credential cred from a CA, say CA, can
use it to issue an ephemeral access token for any wallet pkW
it owns. These tokens are checked by the access-controlled
application before granting access and they are only valid
for one epoch.

As discussed in § 5.1.2, the epoch number is incre-
mented when the revocation list is updated, and all tokens
expire as it is not possible to determine which wallets were
verified with a revoked credential. We realize the ephemeral
nature of tokens through a simple yet effective mechanism:
we embed an epoch identifier in each token that refers to the
epoch in which it was issued. Access token verification is
done by checking if the epoch identifier matches the current
epoch. For the sake of exposition, we consider the simplest
implementation of a badge: the contract maintains a hash-
map LV that maps wallet addresses to the epoch when they

where FE is the current epoch

6. RSA accumulators [22], [82], [43] were shown to be more efficient
than merkle-trees in applications with many accesses [96], but for our
application, we require one access on a tree of size at most 249, for which
(sparse) merkle trees are much more efficient and cost just 23K constraints.

Credential Verification

User (owner of wallet pk"):

o Parse cred = (o,id, e) and id = g||u.

o Set P** := MT"* MProve(g).

o Retrieve {rt!}, update local MT™:
Vi, MT"™.Add(s,rt!), and set P" =
MT".MProve(g).

o Retrieve ids revoked {id,,;}; by CA4, update lo-

cal MTY: Vj,MT}.Add(idg,;, 1), and set P" :=

MT5.NMProve(u).

Set 1) := TPKE.Enc(pk*, id; p), p is randomness.

Set 0" := SIG?.Sign(sk", pk™).

Let z = (rt*™*, rt™, pk", pk?, 4, F).

Letw = (vkgA, cred, pkY, skY, rt’g', oV, p, P, P", P").

Create a proof m := SNARK.Prove(crsyer,z,w),

where ver is defined as follows:

ver = { (z,w) | MTVk.MVerify(rt"k,g,vkgA7 PVk) =1
A SIG Verify(vkS®, CRH(pk"id, e),0) = 1
Ne>FE
AMT".MVerify(rt”, g, rt), P") = 1
A MT".NMVerify(rt), u, P") = 1
A SIG* Verify(pk, pk", o) = 1
A9 = TPKE.Enc(pk?, id; p)

——

pk" — Smart Contract:
o mand TX = (pk",) signed by pk™.
Smart Contract:

o Verify the signature on TX, w.rt. pk".
o Check if SNARK.Verify(crsyer, z,) = 1.
o If both checks pass, set LV(pk™) := E.

Figure 5: Credential Verification Protocol

were last verified. Thus, a wallet pkW holds an access token
iff LV(pk") = E where E is the current epoch.

Importantly, credential verification hides all information
except for the fact that a wallet wishes to obtain an access
token and whether it is backed by a valid credential. Hence,
this ensures that users cannot be linked to their wallets, and
no information is revealed which could be used to link two
wallets belonging to the same user. This is made possible by
a zkSNARK 7 which proves the conjunction of following
statements:

1) T know credential cred = (o, id, €) such that:
e o is a valid signature under vkgA on three values:

owner’s public key pkY, cred’s unique identifier id,
and cred’s expiration epoch number e.

. vkgA is a member of MT¥ at index g.

« cred is not expired, i.e., cred’s expiration epoch num-
ber e > E, the current epoch number.

o cred has not been revoked:

rl : rl
g with root rtg.

- rt}) is a member of MT™ at index g.

— u is not a member of MT

o id = g|lu.

2) 9 is a well-formed audit token for cred, i.e, it encrypts
id under the public key pk”® of the auditors.

3) pkW is the wallet intended for verification i.e., I know
a signature o on pk"™ w.rt. pkY. This prevents an
adversary from reusing the proof to verify another wallet.

The credential verification transaction TX = (pk",) is
also signed by pk" to ensure that it was indeed approved
by the owner of pk'V.

Almost all of the information required by a user to
prepare the above proof does not change over time and can
hence be stored locally. The only information that needs to
be updated every epoch is the revocation list. In particular,
the user has to retrieve the new ids revoked by CA,, since the
last proof was generated, the revocation roots {rt!'}; from all
CAs, and the root rt"™" of the merkle tree MT™ which stores
CA’s revocation roots. It is easy to retrieve this information
as it is posted as part of the revocation procedure (see
§ 5.1.2). In practice, for users with computationally-weak
devices, merkle tree proofs can be queried from an untrusted
server. This query will only reveal id to the server, which is
not revealed as part of the credential verification, and thus,
can’t be used to link the user to the wallet. The user doesn’t
have to trust the server for integrity as the user can very
efficiently verify the proofs locally given rt" and rt;'.

5.1.4. Transaction Audit (Figure 6)

Transaction Audit

Input: TX verifying a malicious wallet

Auditor a, a € AC {1,...,n} st |A| >t+ 1

« Extract the audit token v from TX and compute id, =
TPKE.Dec(sk?,).

e Vi € A\{a}, collect decryption result id; from auditor
A; and verify that TPKE.Verify(pk*, vk?,id;) = 1.

o Using any t + 1 shares that pass verification each
auditor computes id = TPKE.Combine({id; }ica).

Figure 6: Transaction Audit Protocol

A threshold number (¢ + 1-out-of-n) of auditors can de-
anonymize the user associated with a wallet, if they deem
the wallet has displayed malicious behaviour. In particular,
before a wallet is issued an access token, a user must
undergo credential verification, and an audit token 1) is pro-
duced as part of each such credential verification transaction
TX. The audit token is simply an encryption of the unique
credential identifier id corresponding to the credential used
for verification. Since id is encrypted using the public key
pk? of the auditors, t+1 of them can collaboratively decrypt
¢ to recover id, which is of the form id = g|ju. This
points the auditors to the issuing CA, i.e., CA;, who can
then reveal user’s identity and revoke the corresponding
credential if required.

We provide formal statements of our security guaran-
tees below, and the definitions and corresponding proofs
of security are deferred to Appendix A and Appendix B,
respectively.

Theorem 1. The protocol in § 5 securely emulates the
ideal functionality F (Figure 3) for any PPT malicious A
corrupting a threshold number of auditors and an arbitrary
number of users provided NIAoK and Public-Key Encryption
schemes exist.

Theorem 2. The protocol in § 5 securely emulates the ideal
Sfunctionality F (Figure 3) for any semi-honest PPT A cor-
rupting the CA provided NIAoK and Public-Key Encryption
schemes exist.

Theorem 3. The protocol in § 5 privately emulates the
ideal functionality F (Figure 3) for any PPT malicious A
corrupting the CA, a threshold number of auditors and an
arbitrary number of users provided NIAoK and Public-Key
Encryption schemes exist.

5.2. Batched Verification (Figure 7)

In § 5.1.3, we described a credential verification protocol
that allows a user to obtain an on-chain access token for its
wallet. Even though this protocol has much smaller gas cost
than the existing AC schemes (§ 8.1), it is still unreasonable
for applications like KYC despite using the cheapest on-
chain SNARK verifier [71]. In this section, we describe how
multiple users can batch credential verification of their L1
wallets with the help of an untrusted aggregator, and pay
significantly lower gas costs.

5.2.1. Batching SNARK Verification.

We first look at how credential verification SNARK
proofs, which are the bottleneck for on-chain cost, can be
batched across users through proof recursion [119], [48],
[23], [21]. The high-level idea is simple: the aggregator
collects credential verification proofs from N users, verifies
them and recursively proves to the contract that it performed
the verification correctly using another SNARK proof. Since
the SNARK has sublinear verification, the contract has to
spend sublinear effort in verifying the whole batch, and in
turn, the amortized gas cost per user is much smaller.

In practice, to keep gas costs low for reasonable batch
sizes, it is desirable to have the contract verify a pairing-
based SNARK proof over the BN254 [21] curve — the
only curve supported by EVM. The problem, however, is
that none of the prior approaches to proof recursion lead
to a practical solution with this restriction (§ 8.2.3). In
more detail, prior works use the following approaches: (i)
pairing-based [21], [76], (ii) FRI-based’” [101], and (iii)
accumulation-based [33], [32], [29], [81]. Approach (i) ei-
ther requires a 2-chain (or cycle) of pairing-friendly elliptic
curves which is not known® for BN254, or the use of
expensive non-native arithmetic which leads to intractable

7. Concurrent work on ZKEVM [115], [62] improves upon the prior work
on FRI-based approach and builds a system that can batch EVM contracts.
At the moment, however, it doesn’t support cryptographic operations re-
quired for credential verification of ZEBRA and prior AC schemes.

8. Even outside the context of EVM, the most efficient known 2-chain
with 128-bit security is BLS12-377/BW6-761 [76], where BW6-761 is 6x
slower than BN254 [75], albeit at a higher security level.

Batched Verification

User i,i € [N]:

« Create a credential verification TX; = (pk?, ;) with
proof 7; using SNARK! as in Figure 5.

User i — Aggregator:

o m and TX; = (pk¥, ;) signed by pk!

Aggregator:

e Set Hy = 0, Vi, set H; = CRH*(H;_1, h;), where
hi := CRH*(pk}", ;).

o Let Vi, x; = (I’th,I’trr7pkA,E,Hi,17Hi), w; =
(pk\zN7 1//’1» Trzl)

o Create IT? := simdSNARK? Prove(crsp,e2, {x: }:, {w: }:),
where bat? is defined as follows:

bat® = {(xi,wi) |
x = (rt, it pkY, pk*, ¥, E)
hi = CRH™(pk}", 1)
A H; = CRH (H;_1, h)
A SNARK' Verify(crsl, z, 7)) = 1}
o Letx = (rt**, rt", pk®, E, Hy), w = (I1%, {hs, H; }2).

o Create proof II' := SNARK®.Prove(crsp,:,x, w),
where bat! is defined as follows:

bat' = {(x7 w) |
Vi € [N], z; := (™, t™, pk™, B, H; 1, H;)
simdSNARK? Verify(crsy 2, {z: }s, 11%) = 1}

Aggregator — Smart Contract: INIT

o« {TX; = (pk\l-N,wi) signed by pk\l-N}ie[N],Hl

Smart Contract:

o Vi € [N], verify signature on TX; w.r.t. pk\iN, set h; =
CRH*(pk¥, 1), and set h := CRH*(h1, ..., hx).

o If SNARK! .Verify(crsp,.1,x, IT') = 1, Vi € [N], set
LV(pk?) := E and HC(pkY) := h,.

Aggregator — Smart Contract: CACHED

o {TXi = pk}" Yierny, I

Smart Contract:

o Vi € [N], set h; := HC(pk).

e Set h:= CRH*(h1,... hy).

o If SNARK! Verify(crsp,,x, IT') = 1, Vi € [N], set
LV(pkY) := E.

Figure 7: Batched Verification Protocol

aggregator overhead. Approach (ii) has tractable aggregator
overhead, but the prover cost is high which also leads to
high user overhead. Finally, approach (iii) has a linear
verification step independent of number of users, which
alone imposes a huge aggregator overhead in our setting.
Hence, none of the prior approaches are suitable for our
setting and we justify it concretely in § 8.2.

In this work, we adopt a new approach that relies
on recursively verifying a discrete-log-based SNARK. In
general, discrete-log-based SNARKSs are not suitable for

recursion as their verifier complexity is at least Ox(y/n)
for a circuit of size n. Despite this limitation, we manage
to get a practical solution in our setting because of the way
we use the discrete-log-based SNARK. Before we discuss
why our solution is practical, we first describe it in detail.

We use two SNARKSs, namely, pairing-based SNARK®
(over BN254) and discrete-log-based simdSNARK? (over
Grumpkin [64]), and our batching solution (see Figure 2 for
illustration) works as follows with two layers of recursion:

o A batch of N users independently create credential veri-
fication proofs {7} };c[n using SNARK®, and send them
along with transaction data {TX; = (pk\z-/v,@/)i)}ie[]v] to
the aggregator.

o First, the aggregator verifies the proofs {7} };c(n] using
simdSNARK? to output I12.

o Then the aggregator verifies IT?> using SNARK' to out-
put IT', which is then sent to the contract for batched
verification along with {TX;};cnp.

o Finally, the contract processes {TX;};c;n) and verifies
IT' to ensure the validity of user proofs {; };c[n) before
updating access tokens for {pk)’v}iew].

Now, we discuss the efficiency benefits of our ap-
proach: (i) there are no compatibility issues as BN254
forms a cycle with (non-pairing-friendly) Grumpkin, and
thus, simdSNARK? over Grumpkin can efficiently verify
SNARK! proofs over BN254 and vice-versa, (ii) since
simdSNARK? is verifying N independent SNARK' proofs,
i.e., a data-parallel (or SIMD) computation, the con-
crete cost for both prover and verifier can be improved
by 8x (§ 7), (iii) simdSNARK? verifier complexity is
Ox(VN -n)?, where n is cost of verifying a single user
proof, which is sublinear in N, and (iv) the users generate
SNARK! proofs which impose reasonable overheads. As a
result, we get a solution with SNARK' on-chain verification
that has either 6.3x less aggregator overhead or 11x less
user overhead compared to prior solutions (§ 8.2.3).

5.2.2. Audit Token Caching

Proof batching mitigates the bottleneck in credential
verification, but there are still costs that scale with batch
size and lower-bound the amortized gas cost per user.
Specifically, operations on user-specific inputs ({TX; =
(pk)’v,wi)}ie[~])» such as verifying the signature on TX;
w.rI.t. pk}N and SNARK input processing on TX;, still scale
linearly with batch size and these inputs along with signa-
tures also have to be stored on-chain. Even ignoring the
SNARK verification completely, this places a lower bound
of 20K gas per L1 wallet, and also of 5K gas per L2
wallet (§ 8.2.1).

We observe that this issue can be circumvented by
leveraging the fact that user-specific information posted on-
chain does not change across epochs if the same wallet is
re-verified using the same credential. We expect this to be
the typical use case as using different credentials does not

9. This is better than accumulation approach which has verifier com-
plexity Ox(n), as N < n in our setting.

10

provide any additional privacy. Therefore, one can hope that
user-specific inputs can be processed once and then cached
on the smart contract for subsequent verifications. While
it is easy to avoid repeated signature verification, it is not
straightforward to cache the SNARK input processing which
is quite expensive (83.7K gas for each TX;) for the SNARK*
we use in our concrete instantiation. This is so because the
indices of user-specific inputs can potentially change with
every new batch and the index determines the processing
applied to an input.

We resolve the issue of expensive input processing
by making public inputs to the batch verification circuit
independent of the batch size. This is achieved by mov-
ing user-specific public inputs to private witnesses through
the use of a smart-contract-friendly collision-resistant hash
function CRH*“. In particular, for each user ¢ € [N], the
smart contract first computes a hash of user-specific inputs
h; := CRH*(TX;), then verifies the signature on h; w.r.t.
pk!, and finally computes a hash h = CRH*(hy, ..., hy).
h is then used as input to the SNARK and the ag\)%regator
proves within I12 that Vi € [N],h; = CRH*(pk;", ;) A
H; = CRH**(H;_1, h;), where (pk!’,);) were inputs used
to verify }, Hy = 0, and Hy = h. If the verification of IT!
is successful, the smart contract caches h; for wallet pk;N in
a hashmap HC. Note that in the next epoch when the wallet
has to be verified again with the same credential, the con-
tract can simply retrieve h;’s from cache HC using pk\iN’s,
compute h = CRH*(hq,...,hy), and check if the proof
II? verifies successfully with h as input. This technique not
only reduces user-specific costs in batched verification, it
also avoids expensive SNARK input processing per user,
both of which make our L1 batched verification 10x cheaper
overall (Figure 8).

5.3. L2 Verification

In this section, we explain how we take advantage of
the zk-rollup [34] design to deliver very low gas costs per
credential verification for an L2 wallet. Our L2 verification
protocol is very similar to the batched verification of L1
wallets, except the last-verified map (LV) and audit-token
cache (HC) are stored within the state maintained by the
rollup server, as opposed to being stored on the contract.

Access token verification is very simple with this design:
L2 transactions can check if wallets possess an access token
by simply looking up their LV value and proving that it
matches the current epoch to the contract as part of the
transaction rollup proof.

To cache the audit token ; for user ¢ in HC, similar
to batched verification, v; will be first posted on-chain.
Signature verification on the transaction, on the other hand,
will be performed inside the rollup as usual. v; needs to
be posted for data availability to ensure that the audit token
whose validity is verified by the contract is always available
to the auditors. If all verifications are successful, the contract
allows a state update that stores 1; as part of the account
state of wallet pk;’. Consequently, in the next epoch, when
any of these pk}’s need to renew their access tokens, the
rollup can prove that the wallet is verified with respect to the

cached audit token and doesn’t have to send any inputs that
scale with batch size to the contract. Thus, the contract just
performs SNARK verification, the cost of which remains
constant irrespective of batch size.

5.4. Potential Extensions

In this section, we discuss some potential extensions to
ZEBRA which are orthogonal to our work:

« We’ve considered a simple issuance model where some
CAs are trusted to issue credentials. It is easy to extend
our scheme to support other issuance models that are
decentralized [67], [103], legacy-compatible [86], [129],
[128], and threshold/hierarchical [109], [35], [26].

e We embed our credentials with only three attributes
(see § 5.1.1), but it is straightforward to extend our cre-
dentials to include arbitrary many attributes and prove ar-
bitrarily complex statements on them. Hence, our creden-
tials can also embed the credential/claim schemas defined
by W3C [51] and iden3 [2], [102] for interoperability.

e Our current scheme allows verifying any wallet using
a credential, but one can consider credentials restricted
to a few user selected wallets through the use of blind
signatures. Here a user obtains a signature on pk”||{pk}" }
instead of pkY as done in Figure 4, thereby preventing
the credential from being used to verify arbitrary wallet
addresses. This prevents abuse when credentials are stolen
and could be essential in some applications.

« We can support single-use credentials which are useful
for decentralized voting by introducing a nullifier attribute
(unknown to the CA) to the credentials. The nullifier is
posted on-chain during verification and the credential is
verified w.r.t. the nullifier. The contract can ensure that
the same nullifier is not used twice, and this ensures that
a credential is only used once.

« Like any threshold system, a major concern in our scheme
is that if a threshold number of auditors are corrupted
then privacy of all users is lost. This can be mitigated
by refreshing shares regularly [74], [87], [70] to protect
against mobile adversaries that can eventually corrupt all
parties over time.

6. Concrete Instantiation

In this section, we discuss how we concretely instantiate
the primitives used in § 5 and our rationale behind these
choices. In our implementation, we use 40-bit long creden-
tial identifiers, where 8-bits are reserved for the group-id of
the CA, and 32-bits are reserved per CA to assign unique
identifiers for the its issued credentials. This means that in
the current instantiation, we can support up to 256 CAs and
around 4 billion issued credentials per CA. Note that the
expired credentials can be reissued with the same identifier.

6.1. Core Protocols

Collision-Resistant Hash. We use MiMC [8] to instantiate
the correlation-resistant hash (CRH) in our scheme. A
MiMC call on two field elements costs 550 constraints.

11

zk-SNARK. We use Grothl16 [71] instantiated over the
BN254 curve [20], [105] as the zk-SNARK in our evalu-
ation. The circuit-specific trusted setup for Groth16 can be
performed by the CAs and the auditors in our setting.

Alternatively, one could use PLONK [66], a pairing-
based SNARK with universal trusted setup, for more
flexibility in performing the setup. The gas costs for
PLONK are comparable to Grothl6, and the prover can
be made just as fast with custom gates [121], [126]. We
use Grothl6 in our evaluation because it has much better
development support.

Digital Signature We instantiate SIG' with EdDSA [84] on
BabyJubJub curve [122], which is efficient to verify within
Groth16 instantiated over the BN254 curve [21]. Venfym%
an EdDSA signature costs around 6500 constraints. SIG
is the simulation-extractable NIZKPoK+OWF signature
scheme by Bellare [18], where instead of a simulation
extractable NIZK we use Grothl6 which is only weakly
simulation extractable. However, it can be shown that the
scheme satisfies EUF-CMA which is sufficient to prove
security of our overall protocol. See Appendix C for a full
proof. The one way function is instantiated with MiMC [8].
Generating this signature costs just 1K constraints.

Threshold Public Key Encryption We instantiate TPKE
with the threshold variant of CCA-2 secure Cramer-Shoup
encryption described in [45]. Verifying well-formedness of
this encryption scheme costs around 24K constraints.

Sparse Merkle Tree We use the iden3’s implementation
of Sparse Merkle Tree [78] instantiated with MiMC. With
40-bit credential identifiers, it costs around 6K, 5K, and
18K constraints for verifying membership of vkgA in rtvk,
membership of rt;I in rt", and non-membership of u in rt;I
(see Figure 5).

6.2. Batched and L2 Verification

We instantiate SNARK' with pairing-based Groth16 [71]
(over BN254) and simdSNARK? with discrete- -log-based
Spartan [106] (over Grumpkin) optimized for data-
parallelism. Both of these SNARKSs use R1CS arithmetiza-
tion. In this work, we’ve focused on R1CS because it has the
best development support currently, and the prior works in
proof recursion literature are also based on R1CS. Although
our batching costs with R1CS are already practical (§ 8.2),
they can be further improved significantly using plonk arith-
metization [66], [65] and its custom gates, specifically for
non-native arithmetic and MSMs [126].

7. Implementation

The implementation details of ZEBRA are as follows:

o Credential verification smart contract was implemented

with 0.5K lines of Solidity (excluding benchmarks and
autogenerated code).

o Data-parallel Spartan
constraints for its

implementation and RICS
verifier were implemented in

arkworks [14] with 3K and 1.8K lines of Rust,
respectively. Data-parallelism improves the Spartan
prover performance by 8x [106], and also reduces its
verifier constraints by close to 8x in our setting. We
also optimize constraints for multi-scalar multiplications
(MSMs) by 2.05x (Appendix D), which further reduces
the verifier constraints by 1.6x. It is worth noting that
without this optimization, the constraints for Spartan
verifier would be > 228 for a batch of 512 users, which
is impossible to verify within Groth16 over BN254 due
to limitations on 2-adicity of BN254’s scalar field.

o Grumpkin operations and its constraints, and BN254 con-
straints in arkworks with 1K lines of Rust.

o Credential verification and credential revocation circuit in
gnark [50] with 0.5K lines of Go.

All the Grothl6 circuits are proven in gnark as it is
more efficient than arkworks, and Spartan prover and the
constraint generation for its verifier are run in arkworks.

8. Evaluation

In this section, we evaluate our implementation of ZEBRA
and answer the following questions:
1) For single credential verification:
e What is the computational cost imposed on users,
especially on weak devices like smartphones (§ 8.1.1)?
o What is the gas cost incurred for verifying a single
ZEBRA credential on EVM (§ 8.1.2)?
o How does ZEBRA compare with existing anonymous
credentials (§ 8.1.3)?
2) For batched credential verification:

« What is the improvement in gas cost incurred per user
with batched verification (§ 8.2.1)?

o For a large enough batch, what is the computa-
tional and monetary overhead on ZEBRA’s aggrega-
tor (§ 8.2.2)?

« How does our proof batching solution compare with
prior approaches to proof recursion (§ 8.2.3)?

For evaluation of credential revocation, we defer the
reader to Appendix E and note that credential generation
and transaction audit are very lightweight in terms of
cryptographic tools and not time-sensitive.

Experimental Setup. We evaluate the client on two se-
tups: (i) a 2019 MacBook Pro with 2.4 GHz 8-Core Intel
Core i9 processor and 16 GB RAM, and (ii) an Android
mobile device with Qualcomm Snapdragon 855 processor
and 6 GB RAM. The aggregator is benchmarked on an
m6i.32xlarge AWS instance which has a 3.5 GHz Intel
Xeon processor with 128 vCPUs and 512 GB of RAM. To
benchmark EVM gas costs, we’ve used ganache v7.0.3 [111]
and truffle suite v5.4.22 [110].

8.1. Credential Verification
8.1.1. User Overhead

Before SNARK proof generation, the user creates an
audit token, a non-revocation proof, and a signed transac-

12

TABLE 1: Comparison of ZEBRA’s single verification with
prior AC works in context of permissionless blockchains for
three private attributes.

Technique Verifier Complexity Gas Cost
ZEBRA * 9 mul-G1, 9 add-G, 4 Pairings 360K
7 mul—Gl, 8 add—Gl, 2 mul—Gg
BASS? [127) 2 add-Gg, 8 Pairings, > 12.57TM*
4 mul—(GT, 5 add—GT

: Reduces to 1 mul-G1, 1 add-G1, 4 Pairings after caching

: does not support revocation or auditability

: does not support auditability

: assuming G operation cost > corresponding G2 operation cost

¥ 4+ =

tion. Out of these, the cost for creating the non-revocation
proof, which depends on the number of revoked users and
is dominated by the cost of updating the tree, is discussed
in Appendix E; the runtime for the rest of the operations is
less than 100 ms with a single thread.

The total constraints in our credential verification circuit
are 62K and the proof generation takes just 250 ms on Mac-
book Pro using 16 threads. We also compiled the SNARK
prover into WASM through gnark playground [28]. When
run on an Android mobile device, it just took under 6s for
proof generation with a single thread.

8.1.2. Gas Costs

A credential verification transaction costs 355K gas, out
of which, 290K gas is for SNARK verification (including
input processing), making it the bottleneck. Other than that,
base transaction fee is 21K gas, signature verification on
audit token and wallet address takes 9K gas, updating the
access token takes 20K gas, and finally, posting the proof,
the audit token, and the signature on-chain requires another
11K gas; the remaining gas cost is due to miscellaneous
factors. If we have the audit token already cached, the gas
cost comes down to 245K. With the current average gas
price of 12 Gwei and the price of Ethereum (1866.32 USD)
on August 15, 20229 our credential verification would
require 7.95 USD for 355K gas, which is reasonable for
applications with low transaction volume or rare revocations,
both of which imply infrequent credential verification.

8.1.3. Comparison with Existing AC Schemes

We now compare the gas cost of ZEBRA'’s single veri-
fication with existing AC schemes''. Table 1 shows the ver-
ifier complexity and gas cost for ZEBRA, Coconut [109],
[72] which is the state-of-the-art AC scheme in context of
blockchains, and a subsequent work BASS [127] that adds
revocation to Coconut. Neither Coconut nor BASS provide
auditability. The verifier complexity in Table 1 for Coconut
and BASS is for three private attributes (user public key,
credential identifier, and expiration epoch) as is required
in our system. We swapped the G; and G, operations for

10. This price was recommended by https://ethereumprice.org/gas/ for
transaction confirmation within 5 minutes.

11. We focus this comparison on pairing-based AC schemes as an RSA-
based AC scheme [91] requires at least 32M gas which is over the block
limit on Ethereum.

https://ethereumprice.org/gas/

both Coconut and BASS as suggested by Coconut to reduce
their gas costs. We used the costs from EIP-1108 [123]
to estimate the cost of G and pairing operations, and the
benchmarks from Coconut’s code [90] for G2 operations.
For G operations, we assume the cost to be equal to that
of Go operations as there’s no implementation available
and Gp operations are always more expensive than Go
operations. We stress that while the verifier complexity and
gas costs for ZEBRA are accurate and also include the gas
cost for posting credential verification data on-chain, the
costs for Coconut and BASS are only lower bounds since
they would require additional verifier operations to prove
predicates on the attributes.

Table 1 highlights both issues with existing AC schemes
that we pointed out in § 1. First, verifier of existing AC
schemes rely on Go and G operations that are not natively
supported by EVM and cost more than 300x compared
to Gy operations. Consequently, Coconut requires at least
11.8x more gas than ZEBRA. Second, the verifier com-
plexity of existing AC schemes grows linearly with predicate
complexity. As a result, introducing revocation to Coconut
in BASS makes the verifier significantly more complex and
increases its gas cost by 3x. In contrast, adding revocation
to ZEBRA had a marginal impact on gas cost as verifier
complexity is independent of the predicate and only depends
on number of inputs.

8.2. Batched Verification
8.2.1. Gas Costs

Figure 8 compares the gas cost per user for five kinds
of credential verification: (i) ZEBRA’s single verification
as evaluated in § 8.1 (Single), (ii) L1 batched verification
without (audit token) caching (L1-Naive), (iii) ZEBRA’s
L1 batched verification with caching (L1-Cached), (iv) L2
batched verification without caching (L.2-Naive), and finally,
(v) ZEBRA’s L2 batched verification with caching (L2-
Cached). We include (ii) and (iv) as baselines in this graph to
highlight the significance of audit token caching, and the gas
costs reported for batched verification with caching assume
that the token is already cached.

We first analyze the gas cost for L1 batching. The figure
demonstrates that ZEBRA’s L1 batching reduces the gas
cost by up to 35x and requires just 13.7K and 10.2K gas
per user for a batch of 64 and 512 users, respectively. For
a batch of 512 users, this translates to just 0.23 USD on
Ethereum. Without caching, the gas cost improvement is
just 3.9x, which is largely due to expensive SNARK input
processing with Groth16 which costs around 9.3K gas per
32-Byte input. Even ignoring the cost from Groth16 entirely,
the gas cost without caching would still be around 20K. This
shows that our caching technique is essential for batching
with Groth16 on-chain verification, and it leads to at least
2x improvement in gas cost for L1 batching.

Now, we focus on the gas cost for ZEBRA’s L2 batch-
ing. The gas for L2 is reduced linearly with batch size and
the reduction is up to 641x for a batch of 512 users. For
the same, the gas cost is just 561, which costs 0.0126 USD

13

Gas Cost / User (x1K)
0 100 200 300

snoic
L1-Naive T 3.4x

L1-Cached [26.3x

L2-Naive] 3.9x

L2-Cached | 80.1x

L1-Naive] 3.5x

L1-Cached [35.4x

L2-Naive 4%

L2-Cached | 641.1x

64

Batch Size

512

Figure 8: Gas cost per user comparison of single and batched
verification of L1 and L2 wallets for batches of 64 and
512 users. The numbers next to the bars represent the
improvement w.r.t. single verification.

and is comparable with the L2 transaction gas costs for
ZkSync [130] and Loopring [85], the most cost-efficient L2
solutions [94]. Again, the benefit from batching is minimal
without caching due to Grothl6. However even ignoring
Groth16 in this case, the gas cost is still as high as 5K from
just posting the audit token on-chain. This is at least 9x
worse than ZEBRA, demonstrating that caching is crucial
for batching L2 wallets.

Previously we assumed that audit tokens were already
cached, and now we report the gas costs for (init) caching
audit tokens. The gas cost for caching is just 62K and
13K for L1 and L2 wallets, respectively, given a batch
of 512 users. This costs just 1.4 USD and 0.3 USD on
Ethereum, respectively, which we believe is reasonable for
any application as this is a one-time cost per user.

8.2.2. Aggregator Overhead

We first focus on aggregator overhead for L1 batching:
Table 2 summarizes the aggregator runtimes for generating
both proofs as well as the number of R1CS constraints they
prove for a batch of 64 and 512 users. The aggregator
runtime is just 98 seconds for 64 users, which already
leads to a good amortization of gas costs. For a better
amortization with 512 users, the total runtime is around 4
minutes, which is reasonable given credential verification
is done once per epoch. Even though Spartan has a linear
prover, the runtime doesn’t scalar linearly with /V due to im-
perfect parallelization in our implementation. The runtimes
can be further improved with better parallelization of our
Spartan implementation, and by replacing R1CS with plonk
arithmetization as summarized in § 6.2.

The additional overhead for L2 batching on top of
L1 is just a lookup into the rollup state and a signature
verification. This is cheaper than a transfer, which costs
around 30K constraints in Loopring [85] for a rollup state
with 232 accounts [60]. In contrast, the L1 batching requires
around 334 K constraints per user. Clearly, the rollup com-
putation doesn’t affect the total runtime significantly, and
the rollup server overhead for L2 batching is the same as

TABLE 2: Aggregator overhead for N users. Times are in
seconds (s) and RICS constraints are in millions (M).

[SNARK | Meuic | N—=64 [N =512 |
SPARTAN Time 31.67 s 116.42 s
(data-parallel) | #Constraints | 21.4 M 171 M
Time 66.79 s 117.18 s
GROTHI® | —nstraints | 96 M | 169 M
[Total Aggregator Time [98465 [233.6s |

the aggregator overhead.

Now, we analyze the monetary cost of batched verifi-
cation. The m61i.32x1large we rented from AWS costs
1.3409 USD/hour (US East - Ohio). We can batch around
8K users an hour with this instance, 512 at a time. Thus,
the compute cost incurred by the aggregator per user is
just 0.00017 USD. This cost is negligible compared to the
minimum price of gas cost per user we achieve which
is 0.0126 USD, underscoring the significance of primarily
minimizing gas costs.

8.2.3. Cost of Prior Recursion Approaches

We discussed why prior approaches to recursion are not
suitable in our setting in § 5.2, and now we concretely
justify our claim. For prior approaches, we consider number
of constraints proven within Grothl6 as representative of
the aggregator cost, and compare that against the total con-
straints proven by ZEBRA’s aggregator for N = 512. Note
that this is a fair comparison because (i) we’re comparing
part of the baselines with our entire solution, and (ii) the
prover time per constraint is almost the same for Spartan
and Groth16 in our solution for N = 512 (Table 2).

First, we have the pairing-based approach that requires
use of non-native arithmetic which introduces ~ 1000x
overhead in R1CS [12]. As a result, this approach requires
~ 226 . N constraints for N users, or =~ 23° constraints for
N = 512. Second, the FRI-based approach has a recursion
threshold of 22° constraints for our credential verification
circuit [101], resulting in 229 constraints for N = 512.
Finally, the cost of just the decider in accumulation-based
recursion is > 2 . n [13], where n is the number of
constraints in each accumulated instance. In our setting,
n > 218 (see Spartan constraints in Table 2), and thus, the
decider cost is > 23! constraints.

In contrast, the total overhead in our solution is just
22834 constraints (227-3% within Groth16), which is at least
101x and 6.3 better than pairing and accumulation-based
approach, respectively. Although FRI-based approach is
comparable to ZEBRA in terms of aggregator overhead, it
imposes an 11x higher prover overhead on users (Figure 7
in [106]). Thus, prior approaches to recursion either increase
aggregator overhead by 6.3 or the user overhead by 11x.

9. Related Work

Anonymous Credentials. Following the initial work of
Chaum [47], there has been a long line of work [36],
[42], [31], [27], [104], [41], [17], [77], [73], [36], [63],
[114], [49] with successively more efficient and expressive
anonymous credentials that have been widely deployed

14

in a number of real-world applications [97], [37], [10],
[58]. Today, we have credentials that can be used a
limited number of times [31], [38], [15], revoked [43],
[39], [40], audited [42], delegated [16], [46], [24], [55],
[35], updated [53], [25], and issued by a decentralized
organization [109], [72], [67], [103]. Recent years have also
witnessed a synergy between ACs and blockchains. ACs
are being used in permissioned blockchains for identity
management [107], [11], [26], and blockchains are being
leveraged as a verifiable data registry to improve off-chain
certificates [51], [95], [2], [102].

Private On-chain Access Control. Like ZEBRA, several
concurrent works, namely, iden3 [1], Polygon ID [102]
and Semaphore [3], propose a privacy-preserving on-chain
access control solution using zk-SNARKSs. However, unlike
ZEBRA, they don’t support auditability and batching,
which are necessary for accountability and achieving
practical verification costs on Ethereum, respectively.

Regulation on Blockchains. Concurrent work [98] also
considered the problem of privacy-preserving KYC in DeFi.
Their approach relies on a decentralized oracle that verifies
a credential, and reports the result to a smart contract.
However, the integrity of this solution is equivalent to the
integrity of the oracle, which is a much weaker guarantee
compared to our solution'?.

Espresso Systems’s CAPE [113], [112] is a concurrent
work that enables anonymous asset transfer on Ethereum
with configurable policies per asset; one such policy is KYC
credential verification. Unlike our solution, CAPE uses the
UTxO model, and does not support batching and revocation.

Concordium [57] proposed another solution for incor-
porating regulation while preserving privacy through trans-
action anonymity and an identity management layer. Thus,
their design is not compatible with existing widely-used per-
missionless blockchains. Moreover, unlike permissionless
blockchains, all Concordium users have to perform identity
verification before accessing the chain which limits adoption
and decentralization, and unlike ZEBR A, the credentials are
tied to their chain and can’t be used across chains.

Other works include Azeroth [79] that provides
privacy-preserving transactions with auditing. In a similar
vein, there are works adding auditability and regulation
to existing privacy-preserving cryptocurrencies like
ZCash [68] and Monero [83], and central bank digital
currencies (CBDCs) [125]. Finally, zkLedger [92] proposed
privacy-preserving ledgers that can be used by banks to
settle cross-organization transactions while also allowing
third-party auditing.

10. Conclusion
We presented ZEBRA, an anonymous credential (AC)
scheme that provides practical on-chain verification for

12. Only recently, 600 million USD were lost from an exploit on the
decentralized oracle of the Ethereum sidechain Ronin [88].

the first time with support for auditability and revocation.
ZEBRA crucially relies on zk-SNARKSs to reduce on-chain
verification costs and to batch credential verifications. Use
of SNARKSs alone, however, leads to an inefficient AC
scheme and we proposed several techniques to address
these inefficiencies and achieve practicality in all aspects.
The on-chain verification of ZEBRA credentials costs
11.8x less compared to prior AC schemes, and with
batched verification, we get even further improvements
of up to 35x and 641x for verification of L1 and L2
wallets, respectively. Consequently, ZEBRA enables the
first practical and privacy-preserving access control solution
for permissionless blockchains, which implies the first
practical solution for privacy-preserving KYC regulation in
DeFi. In contrast, users of prior solutions either had to pay
exorbitant fees or lose privacy.

Acknowledgements. We thank Weikeng Chen, Pratyush
Mishra and Jens Ernstberger for their valuable advice, and
Gonzalo Munilla Garrido, Vivek Nair, Julien Piet and Sky-
Lab security students for their helpful feedback in improving
the presentation of this paper. This work is supported by
the Center for Responsible, Decentralized Intelligence at
Berkeley (Berkeley RDI).

References

[1] “iden3 On-chain Verification Contracts,” https://github.com/iden3/

contracts/tree/master/contracts/validators.
2] “iden3.io0,” https://iden3.io/.
(3]
(4]
[5]
[6]
(7]
[8]

“Semaphore V2,” https://semaphore.appliedzkp.org/.

“Coin Metrics Network Chart,” https://charts.coinmetrics.io/, 2022.
“DappRadar Industry Overview,” https://dappradar.com/, 2022.
“Ethereum Gas Charts,” https://ethereumprice.org/gas/, 2022.
“Lukso,” https://www.lukso.network/, 2022.

M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen,
“Mimc: Efficient encryption and cryptographic hashing with mini-
mal multiplicative complexity,” in ASIACRYPT. Springer, 2016.
[91

I. Allison, “Aave’s push for institutional defi gets second kyc
provider proposal,” CoinDesk, 2021.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich ez al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in EuroSys, 2018.

E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya,
K. Elkhiyaoui, and B. Tackmann, “Privacy-preserving auditable
token payments in a permissioned blockchain system,” ser. AFT
’20. Association for Computing Machinery, 2020.

[10]

[11]

[12] arkworks rs, “nonnative,” https://github.com/arkworks-rs/nonnative,

2021.
——, “rlcs-std,” https://github.com/arkworks-rs/rlcs-std, 2021.
——, “arkworks-rs,” https://github.com/arkworks-rs, 2022.

[13]
[14]
[15] F. Baldimtsi and A. Lysyanskaya, “Anonymous credentials light,” in
CCS. ACM, 2013.

M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyan-
skaya, and H. Shacham, “Randomizable proofs and delegatable
anonymous credentials,” in CRYPTO. Springer, 2009.

M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “P-
signatures and noninteractive anonymous credentials,” in TCC.
Springer, 2008.

[16]

(171

15

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Bellare, “Lectures on nizks: A concrete security treatment,”
August 2021. [Online]. Available: https://cseweb.ucsd.edu/~mihir/
cse208- Wi20/main.pdf

M. Bellare, S. Meiklejohn, and S. Thomson, “Key-versatile signa-
tures and applications: Rka, kdm and joint enc/sig,” in EUROCRYPT.
Springer, 2014.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, 1. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from bitcoin,” in [EEE S&P. IEEE, 2014.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in CRYPTO. Springer,
2014.

J. Benaloh and M. d. Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in EUROCRYPT. Springer, 1993.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “Recursive
composition and bootstrapping for SNARKS and proof-carrying
data,” in STOC. ACM, 2013.

J. Blomer and J. Bobolz, “Delegatable attribute-based anonymous
credentials from dynamically malleable signatures,” in ACNS, ser.
Lecture Notes in Computer Science. Springer, 2018.

J. Blomer, J. Bobolz, D. Diemert, and F. Eidens, “Updatable anony-
mous credentials and applications to incentive systems,” in CCS.
ACM, 2019.

D. Bogatov, A. D. Caro, K. Elkhiyaoui, and B. Tackmann, “Anony-
mous transactions with revocation and auditing in hyperledger fab-
ric,” CANS, 2021.

D. Boneh and X. Boyen, “Short signatures without random oracles,”
in EUROCRYPT. Springer, 2004.

G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie, “gnark
playground.”

S. Bowe, J. Grigg, and D. Hopwood, “Recursive proof composi-
tion without a trusted setup,” Cryptology ePrint Archive, Report
2019/1021, 2019.

P. Braendgaard, “Eip-1812: Ethereum verifiable claims,” March
2019. [Online]. Available: https://github.com/ethereum/EIPs/pull/
1812

S. Brands and F. Légaré, “Digital identity management based on
digital credentials,” in GI Jahrestagung, ser. LNL. GI, 2002.

B. Biinz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner, “Proof-
carrying data without succinct arguments,” in CRYPTO. Springer,
2021.

B. Biinz, A. Chiesa, P. Mishra, and N. Spooner, “Recursive proof
composition from accumulation schemes,” in TCC. Springer, 2020.

V. Buterin, “On-chain scaling to potentially 500 tx/sec through
mass tx validation,” 2018. [Online]. Available: https://ethresear.ch/t/
on-chain-scaling-topotentially- 500-tx-sec-through-mass- tx- validation

J. Camenisch, M. Drijvers, and M. Dubovitskaya, “Practical uc-
secure delegatable credentials with attributes and their application
to blockchain,” in CCS, 2017.

J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss,
“Composable and modular anonymous credentials: Definitions and
practical constructions,” in ASTACRYPT. Springer, 2015.

J. Camenisch and E. V. Herreweghen, “Design and implementation
of the idemix anonymous credential system,” in CCS. ACM, 2002.

J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich, “How to win the clonewars: efficient periodic n-
times anonymous authentication,” in CCS. ACM, 2006.

J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator
based on bilinear maps and efficient revocation for anonymous
credentials,” in PKC. Springer, 2009.

——, “Solving revocation with efficient update of anonymous cre-
dentials,” in SCN. Springer, 2010.

https://github.com/iden3/contracts/tree/master/contracts/validators
https://github.com/iden3/contracts/tree/master/contracts/validators
https://iden3.io/
https://semaphore.appliedzkp.org/
https://charts.coinmetrics.io/
https://dappradar.com/
https://ethereumprice.org/gas/
https://www.lukso.network/
https://github.com/arkworks-rs/nonnative
https://github.com/arkworks-rs/r1cs-std
https://github.com/arkworks-rs
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://github.com/ethereum/EIPs/pull/1812
https://github.com/ethereum/EIPs/pull/1812
https://ethresear.ch/t/on-chain-scaling-topotentially-500-tx-sec-through-mass-tx-validation
https://ethresear.ch/t/on-chain-scaling-topotentially-500-tx-sec-through-mass-tx-validation

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
(511

[52]

[53]

(541

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

J. Camenisch and A. Lysyanskaya, “Signature schemes and anony-
mous credentials from bilinear maps,” in CRYPTO. Springer.

——, “An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation,” in EUROCRYPT.
Springer, 2001.

——, “Dynamic accumulators and application to efficient revocation
of anonymous credentials,” in CRYPTO. Springer, 2002.

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in FOCS. 1EEE, 2001.

R. Canetti and S. Goldwasser, “An efficient threshold public key
cryptosystem secure against adaptive chosen ciphertext attack,” in
EUROCRYPT. Springer, 1999.

M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn,
“Malleable signatures: New definitions and delegatable anonymous
credentials,” in CSF. IEEE, 2014.

D. Chaum, “Security without identification: Transaction systems to
make big brother obsolete,” Commun. ACM, 1985.

A. Chiesa and E. Tromer, “Proof-carrying data and hearsay argu-
ments from signature cards,” in /CS. Tsinghua University Press,
2010.

A. Connolly, P. Lafourcade, and O. Perez-Kempner, “Improved
constructions of anonymous credentials from structure-preserving
signatures on equivalence classes,” in PKC. Springer, 2022.

ConsenSys, “gnark,” https://github.com/ConsenSys/gnark, 2021.

W. W. W. Consortium et al., “Verifiable credentials data model
v1.1,” W3C First Public Working Draft, https://www.w3.org/TR/
ve-data-model/, 2019.

B. Cooper, “Announcing alkemi network & kyc-chain partnership,”
Medium, 2021.

S. E. Coull, M. Green, and S. Hohenberger, “Controlling access
to an oblivious database using stateful anonymous credentials,” in
PKC. Springer, 2009.

R. Cramer and V. Shoup, “A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack,” in CRYPTO.
Springer, 1998.

E. C. Crites and A. Lysyanskaya, “Delegatable anonymous creden-
tials from mercurial signatures,” in CT-RSA. Springer, 2019.

R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees,”
in NordSec. Springer, 2016.

I. Damgérd, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and L. Sinis-
calchi, “Balancing privacy and accountability in blockchain identity
management,” in CT-RSA. Springer, 2021.

A. Davidson, 1. Goldberg, N. Sullivan, G. Tankersley, and F. Val-
sorda, “Privacy pass: Bypassing internet challenges anonymously,”
PETS, 2018.

N. De, “State of crypto: Fatf’s new guidance takes aim at defi,”
CoinDesk, 2021.

B. Devos, “Loopring’s zksnark prover optimizations,” Medium,
2020.

Y. Dodis, K. Haralambiev, A. Lépez-Alt, and D. Wichs, “Efficient
public-key cryptography in the presence of key leakage,” in ASI-
ACRYPT. Springer, 2010.

B. Farmer, “Introducing plonky2,” Polygon Blog, 2022.

G. Fuchsbauer, C. Hanser, and D. Slamanig, “Structure-preserving
signatures on equivalence classes and constant-size anonymous cre-
dentials,” J. Cryptol., 2019.

A. Gabizon, Z. Williamson, and T. Walton-Pocock, “Aztec yellow
paper,” hackmd, 2021.

A. Gabizon and Z. J. Williamson, “plookup: A simplified polyno-
mial protocol for lookup tables,” Cryptology ePrint Archive, Paper
2020/315, 2020.

16

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments
of knowledge,” Cryptology ePrint Archive, Report 2019/953, 2019.

C. Garman, M. Green, and 1. Miers, “Decentralized anonymous
credentials,” 2013.

——, “Accountable privacy for decentralized anonymous payments,”
in Financial Cryptography. Springer, 2016.

0. Goldreich, Foundations of cryptography: volume 2, basic appli-
cations. Cambridge university press, 2009.

V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song,
“Storing and retrieving secrets on a blockchain,” Cryptology ePrint
Archive, Report 2020/504, 2020.

J. Groth, “On the size of pairing-based non-interactive arguments,”
in EUROCRYPT. Springer, 2016.

H. Halpin, “Nym credentials: Privacy-preserving decentralized iden-
tity with blockchains,” in CVCBT. IEEE, 2020.

L. Hanzlik and D. Slamanig, “With a little help from my friends:
Constructing practical anonymous credentials,” in CCS, 2021.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive
secret sharing or: How to cope with perpetual leakage,” in annual
international cryptology conference. Springer, 1995, pp. 339-352.

Y. E. Housni, “Benchmarking pairing-friendly elliptic curves li-
braries,” hackmd, 2021.

Y. E. Housni and A. Guillevic, “Optimized and secure pairing-
friendly elliptic curves suitable for one layer proof composition,”
Cryptology ePrint Archive, Paper 2020/351, 2020.

C. Hébant and D. Pointcheval, “Traceable constant-size multi-
authority credentials,” Cryptology ePrint Archive, Report 2020/657,
2020.

iden3,
2021.

G. Jeong, N. Lee, J. Kim, and H. Oh, “Azeroth: Auditable
zero-knowledge transactions in smart contracts,” Cryptology ePrint
Archive, Report 2022/211, 2022.

A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou,
R. Pass, E. Shi et al., “C) ¢ 0: A framework for building com-
posable zero-knowledge proofs,” Cryptology ePrint Archive, Report
2015/1093, 2015.

A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive zero-
knowledge arguments from folding schemes,” Cryptology ePrint
Archive, Report 2021/370, 2021.

“go-merkletree,” https://github.com/iden3/go-merkletree,

J. Li, N. Li, and R. Xue, “Universal accumulators with efficient
nonmembership proofs,” in International Conference on Applied
Cryptography and Network Security. Springer, 2007.

Y. Li, G. Yang, W. Susilo, Y. Yu, M. H. Au, and D. Liu, “Traceable
monero: Anonymous cryptocurrency with enhanced accountability,”
IEEE Trans. Dependable Secur. Comput., 2021.

I. Liusvaara and S. Josefsson, “Edwards-curve digital signature
algorithm (eddsa),” IETF, 2017.

Loopring, “Loopring,” URL: https://loopring.org/, 2022.

D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do
decentralized identity with legacy compatibility, sybil-resistance, and
accountability,” in JEEE S&P. IEEE, 2021.

S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels,

and D. Song, “Churp: dynamic-committee proactive secret sharing,”
in CCS, 2019, pp. 2369-2386.

M. McSweeney, “Axie infinity’s ethereum sidechain ronin hit by
$600 million exploit,” The Block Crypto, 2022.

MetisDAO, “Evm equivalence vs. evm compatibility,” Medium,
2021.

https://github.com/ConsenSys/gnark
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://github.com/iden3/go-merkletree

[90]

(911

[92]

[93]

[94]

[95]

[96]

[971

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]
[114]

[115]

musalbas, “coconut-ethereum,”
coconut-ethereum, 2018.

R. Muth, T. Galal, J. Heiss, and E. Tschorsch, “Towards smart
contract-based verification of anonymous credentials,” Cryptology
ePrint Archive, Report 2022/492, 2022.

https://github.com/musalbas/

N. Narula, W. Vasquez, and M. Virza, “zkledger: Privacy-preserving
auditing for distributed ledgers,” in NSDI. USENIX Association,
2018.

B. Newar, “Aave launches its permissioned pool aave arc, with 30
institutions set to join,” Cointelegraph, 2022.

B. News, “Which layer 2 rollup for ethereum is the best?” Medium,
2022.

N. Otto, S. Lee, B. Sletten, D. Burnett, M. Sporny, and K. Ebert,
“Verifiable credentials use cases,” W3C First Public Working Draft,
https://www.w3.org/TR/vc-use-cases/, 2019.

A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh, “Scaling
verifiable computation using efficient set accumulators,” in USENIX.
USENIX Association, 2020.

C. Paquin, “U-prove technology overview v1. 1,” Microsoft Corpo-
ration Draft Revision, vol. 1, 2011.

P. Pauwels, J. Pirovich, P. Braunz, and J. Deeb, “zkkyc in defi: An
approach for implementing the zkkyc solution concept in decentral-
ized finance,” Cryptology ePrint Archive, Report 2022/321, 2022.

Polkadex, “What is decentralized kyc and why polkadex is imple-
menting it,” Medium, 2022.

C. Potti and P. Bhattacharya, “Eip-1261: Membership verification
token,” July 2018. [Online]. Available: https://github.com/ethereum/
eips/issues/1261

F. Protocol, “Fractal protocol,” 2021. [Online]. Available: https:
/Iprotocol.fractal.id/

A. Radmilac, “A look at polygon id, a new zk-proof based web3
identity solution,” CryptoSlate, 2022.

M. Rosenberg, J. White, C. Garman, and 1. Miers, “zk-creds:
Flexible anonymous credentials from zksnarks and existing identity
infrastructure,” Cryptology ePrint Archive, Paper 2022/878, 2022.

O. Sanders, “Efficient redactable signature and application to anony-
mous credentials,” in PKC. Springer, 2020.

scipr lab, “libsnark,” https://github.com/scipr-lab/libsnark, 2020.

S. T. V. Setty, “Spartan: Efficient and general-purpose zksnarks
without trusted setup,” in CRYPTO. Springer, 2020.

W. Shao, C. Jia, Y. Xu, K. Qiu, Y. Gao, and Y. He, “Attrichain:
Decentralized traceable anonymous identities in privacy-preserving
permissioned blockchain,” Computers & Security, 2020.

V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in EUROCRYPT. Springer, 1998.

A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis,
“Coconut: Threshold issuance selective disclosure credentials with
applications to distributed ledgers,” in NDSS. The Internet Society,
2019.

T. Suite, “Truffle suite - your ethereum swiss army knife.” URL:
http://truffleframework.com/, 2018.

——, “Ganache,” https://github.com/trufflesuite/ganache, 2022.

E. Systems, “Cape overview,’
espresso-systems/cape/overview, 2022.

https://docs.cape.tech/

——, “Specification: Configurable asset privacy,” Github, 2022.

S. Tan and T. Grof3, “Monipoly - an expressive g-sdh-based anony-
mous attribute-based credential system,” in ASTACRYPT. Springer,
2020.

P. Team, “The future is now for ethereum scaling: Introducing
polygon zkevm,” Polygon Blog, 2022.

[116] A. Thurman, “Aave proposal enlists fireblocks to aid defi protocol’s

mainstream finance push,” CoinDesk, 2021.

[117] J. Torstensson, “Eip-780: Ethereum claims registry,” November
2017. [Online]. Available: https://github.com/ethereum/EIPs/issues/
780

[118] M. Tsuberi, B. Kaufman, A. Levi, and O. Sokolowsky, “Eip-1480:
Access control standard,” October 2018. [Online]. Available:
https://github.com/ethereum/EIPs/issues/1481

[119] P. Valiant, “Incrementally verifiable computation or proofs of knowl-
edge imply time/space efficiency,” in TCC, ser. Lecture Notes in
Computer Science. Springer, 2008.

[120] E. Vogelsteller, “Eip-735: Claim holder,” October 2017. [Online].
Available: https://github.com/ethereum/eips/issues/735

[121] T. Walton-Pocock, “Plonk benchmarks i — 2.5x faster than groth16
on mime,” Medium, 2019.

[122] B. WhiteHat, M. Belles, and J. Baylina, “Eip-2494: Baby jubjub el-
liptic curve,” https://github.com/ethereum/EIPs/pull/2494, Jan 2020.

[123] Z. Williamson and A. S. Cardozo, “Eip-1108: Reduce alt-bn128
precompile gas costs,” https:/github.com/ethereum/EIPs/pull/1108,
May 2018.

G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, 2014.

[124]

[125] K. Wiist, K. Kostiainen, V. Capkun, and S. Capkun, “Prcash: Fast,

private and regulated transactions for digital currencies,” in Financial
Cryptography. Springer, 2019.

[126] A. L. Xiong, B. Chen, Z. Zhang, B. Biinz, B. Fisch, F. Krell,
and P. Camacho, “Veri-zexe: Decentralized private computation with
universal setup,” Cryptology ePrint Archive, Paper 2022/802, 2022.

[127] Y. Yu, Y. Zhao, Y. Li, X. Du, L. Wang, and M. Guizani, “Blockchain-
based anonymous authentication with selective revocation for smart
industrial applications,” IEEE Trans. Industr. Inform., 2019.

[128] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in CCS, 2016.

[129] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco:
Liberating web data using decentralized oracles for tls,” in CCS.
ACM, 2020.

[130] ZKSync, “Zksync,” URL: https://zksync.io/, 2022.
Appendix

1. Extended Preliminaries

The security parameter is denoted by A € N. A
function f : N — [0,1] is said to be negligible if for
every ¢ € N, there exists N € N such that for all n > N,
f(n) < n~¢, and we write negl(-) to denote such a function.
A probability is overwhelming if it is equal to 1 — negl()\)
for some negligible function negl(\). An algorithm A is
PPT (probabilistic polynomial-time) if its running time
is bounded by some polynomial in the size of its input.
Given a distribution D, we write d < D to indicate that d
is sampled according to D. For two ensembles of random
variables {Dg x}ren, {D1x}ren, we write Dy ~. D; to

indicate that for all PPT A4, it holds that ’ Prqcp, ,[A(d) =
1] = Pracp, ,[A(d) = 1]’ < 1 4 negl(N).
The random oracle model. In the random oracle model

(ROM), parties are given oracle access to some function
H that is sampled uniformly at random from the space

https://github.com/musalbas/coconut-ethereum
https://github.com/musalbas/coconut-ethereum
https://www.w3.org/TR/vc-use-cases/
https://github.com/ethereum/eips/issues/1261
https://github.com/ethereum/eips/issues/1261
https://protocol.fractal.id/
https://protocol.fractal.id/
https://github.com/scipr-lab/libsnark
https://github.com/trufflesuite/ganache
https://docs.cape.tech/espresso-systems/cape/overview
https://docs.cape.tech/espresso-systems/cape/overview
https://github.com/ethereum/EIPs/issues/780
https://github.com/ethereum/EIPs/issues/780
https://github.com/ethereum/EIPs/issues/1481
https://github.com/ethereum/eips/issues/735
https://github.com/ethereum/EIPs/pull/2494
https://github.com/ethereum/EIPs/pull/1108

of all functions H : X —), where X and) are finite
non-empty sets. Parties can query the oracle on an input
x € X and receive in return H(z) €). When proving
security of a protocol II in the random oracle model, the
simulator Sim is able to “control” the oracle, observing
queries made by the adversary and simulating responses.

Simulation-based security. We prove security via simula-
tion, following the standard real/ideal world paradigm [69].
A cryptographic scheme specifies an interactive protocol II
that takes place between some parties P, ..., P, initialized
with inputs x1, ..., x,. The protocol II is meant to emulate
some ideal functionality F that takes an input x1,...,2,
from each party and delivers an output yi,...,y, to each
party.

In the real execution, the protocol II is executed in
the presence of an adversary A that corrupts some subset
M C [n] of n parties. The honest parties [n] \ M follow
the instructions of II, while .4 sends messages on behalf
of parties in M. If A is malicious, these messages may be
computed following an arbitrary polynomial-time strategy,
while if A is semi-honest, these messages must be computed
following the instructions of II. The real execution of the
protocol REALp 4[1*, #, 2, M], is defined as the output pair
of honest parties and the adversary A from the real execution
of II. We also denote the view of party ¢ during the execution
of II by View}'(Z), which consists of its input z;, internal
random coins 7; and messages received by party ¢ during
the execution.

In the ideal execution, a simulator Sim controlling some
subset M C [n] of n parties interacts with a trusted party
Zr implementing the functionality F. Sim takes as input
the security parameter 1%, a set of inputs {x;};crs, and
an auxiliary input z. Each honest party P, € [n] \ M
sends their input z; to Z, while Sim sends an input a7
on behalf of each party P, € M. Let af,...,z), be
the entire set of inputs received by Z. Next, Z computes
(Y1, -y Yn) = F(xh, ..., 2)) and delivers {y; };cas to Sim.
The ideal execution IDEALx sim[1%, 7, 2, M], is defined as
the output pair of the honest party and Sim from the above
ideal execution.

We now present two notions of security. The first is
the standard notion of simulation-based security against
malicious parties. The second is a weaker notion that only
guarantees privacy of honest parties’ inputs. In particular,
this does not guarantee correctness of an honest party’s
output against malicious parties who may tamper arbitrarily
with the output. To rule out trivial protocols we demand that
when all parties are honest, they obtain the correct output.

Definition 4. An n-party protocol 11 securely emulates
an ideal functionality F in the presence of malicious
(resp. semi-honest) adversaries corrupting a subset of par-
ties M C [n] if for any PPT malicious (resp. semi-
honest) A corrupting parties M, there exists a PPT Sim
such that for any set of inputs T, and auxiliary input z,
REALp 4[1%, %, 2, M] ~. IDEAL £ sim[1*, 7, 2, M].

18

Definition 5. An n-party protocol 11 privately emulates an
ideal functionality F if it is correct and if in the presence
of malicious adversaries corrupting a subset of parties
M C [n] if for any PPT malicious (resp. semi-honest) A
corrupting parties M, and every two series of inputs X1 =
{#L} and Xy = {22}, {View'L(z1)} ~. {View'}(#)},
where for every k € N, all elements of T. and T are equal
in length.

zk-SNARKS. Given a field F, and an [F-arithmetic circuit

C :F" x F" — F! we denote a corresponding language by

associated binary relation by R¢ = {(z,a) € F* x F* —

F! : C(a,x) = 0'} and a language Lo = {x € F" : Ja €

F", C(z,a) = 0'}. A zk-SNARK for F is a triple of PPT

algorithms (Setup, Prove, Verify):

o Setup(1*,C) — crs: Takes as input a security parameter
and circuit description C, and outputs a common reference
string crs.

e Prove(crs, z,w) — m: Takes as input crs and any pair
(r,w) € R¢ and outputs a proof 7 for the statement
x € Lc.

o Verify(crs,x,) — b: Takes as input crs, statement x
and proof 7 and outputs a bit b with 1 indicating that
verification passes.

A zk-SNARK satisfies Completeness which states that a

proof computed from any (z,w) € R¢ will verify correctly

with overwhelming probability. In addition it satisfies the
following properties:

o Proof of knowledge (and soundness). For every PPT
adversary A, there is a PPT extractor ¢ such that
Verify(crs,z,m) = 1 and (z,w) ¢ R¢ with probability
negl(\) where crs « Setup(1*, 0), (=, 7) < A(crs) and
w < e(crs).

o Perfect Zero-knowledge. There exists a simulator Sim
such that for all stateful distinguishers .4 the following
probabilities are equal:

A
(crs) < Setup(1*,C)
Pr (x,w)_e Ro (x,w) < Alcrs) |,
A(m) =1
7 < Prove(crs, z, w)
DY
(crs,) « Sim(1*,C)
Pr (x,w)f Ro (x,w) < Alcrs)
A(r) =1 .
7+ Sim(crs, z, T)

Finally, a zk-SNARK also satisfies succinctness where
an honestly-generated proof 7 has O(1) bits and
Verify(vk, =, 7) runs in time O(|z|) up to a fixed polynomial
factor in \. If a proof system satisfies all the above properties
except succinctness we refer to it as a Non-Interactive
Argument of Knowledge (NIA0K).

Digital Signature. We use signature schemes that are
existentially unforgeable under chosen message attacks.
They consists of three algorithms (Gen, Sign, Verify), where
Gen(1*) outputs a secret key sk and a public verification
key vk, Sign(sk,m) outputs a signature o on the message
m, and Verify(vk, m, o) outputs either 1 to indicate that o
is a valid signature on m, or O otherwise.

Definition 6. A signature scheme (Gen,Sign, Verify) is ex-
istentially unforgeable under chosen message attacks if for
any PPT adversary A, the following probability is negligible

(vk,sk) « Gen(1*)
(m,) + ASEnk) (vk)

pe| ™ ¢Q AN
"1 Verify(vk,m,0) = 1

where @ is the set of message queries that A makes to
Sign(sk, -).

Threshold Public-Key Encryption. We use a simula-

tion based definition of adaptive CCA secure Thresh-

old Public-Key Encryption (TPKE) as defined by Canetti
and Goldwasser [45]. However, we restrict protocols

IItpke for TPKE to consist five PPT algorithms

(Setup, Enc, Dec, Verify, Combine) as defined below:

e Setup(1”,n,t) — {pk, vk, (skq,...,sky,)}: Takes as input
a security parameter and positive integers n, ¢t and outputs
a public, verification key and secret keys with threshold
t+1.

o Enc(pk,m;p) — ct: Takes as input the public key pk, a
message m and randomness p and outputs a ciphertext ct.

o Dec(ct, sk;) — m;: Takes as input a secret key and a
ciphertext Dec(sk;,ct) and outputs a partial decryption
of the message m;.

o Verify(pk,vk,m;) — {0,1}: Takes as input the public
key, verification key and a partial decryption of message
and outputs 0/1. If it outputs 1, we say the share is a
valid decryption.

o Combine(pk, vk, {m;};cscn]) — m takes as input ¢ + 1
partial decryptions of the message and reconstructs m.

We require the above restriction as we create proofs of
knowledge about ciphertexts in conjunction with proving
predicates on the message which requires an algorithmic
description of the protocol. We also demand perfect cor-
rectness of the above protocol where for all 0 < ¢t < n,
{pk, vk, (ski,...,sky)} + Setup(1¥,n,t),

« For any ciphertext ¢, if m; = Dec(pk, sk;, ¢), then
Verify(pk, vk, ¢, m;) = 1.

o If ¢ = Enc(pk,m), and {m;};cs where S C [n]isat+1
sized subset such that m; = Dec(pk, sk;, ¢), then

Combine(pk, vk, ¢, {m;}cs) = m.

For a protocol Iltpke to be t-secure, it must emulate the
following ideal functionality as described in Definition 4'3.

Canetti and Goldwasser show that the Cramer-Shoup
cryptosystem [54] can be modified by having servers prove
correctness of partial decryptions using zero knowledge
proofs to achieve the above definition.

13. In the original paper the authors actually define and construct pro-
tocols satisfying the stronger Universally Composable notion of security
[44]

19

FTPKE

Parties: Encrypting user E and Servers (S1,...,Sn).
Parameters: Space of receipts C, number of servers n and
threshold 0 < t < n.

o Setup. Adversary specifies a distribution I" over C.

« Encryption. When E sends (Enc,m), sample a re-
ceipt ¢ « I' and store (¢,m). Send ¢ to E.

o Decryption. When ¢ + 1 servers send (Dec,c), if
a tuple (¢, m) has been stored, send with m to the
servers. Else, send L to the servers.

Figure 9: Ideal Functionality for a Threshold Public-Key
Encryption scheme.

2. Proof of Security

We first focus on a static adversary A that corrupts
fewer than a threshold number of auditors and arbitrary
many clients. The decentralized organization is assumed to
be semi-honest and does not collude with anyone.

We provide a proof sketch for the security of our scheme
by describing a simulator S that interacts with the ideal
functionality Figure 3 such that the transcript of A interact-
ing with honest parties in the real world is computationally
indistinguishable from the transcript produced by .4 when
interacting with the simulator. We use the following policy:

o User must have been issued a credential by a CA that has
not been revoked.

o When requesting verification for a pseudonym, the request
must be authenticated by the pseudonym owner (possibly
in the form of a signature).

2.1. Security against colluding Auditors and Users

Theorem 1. The protocol in § 5 securely emulates the
ideal functionality F (Figure 3) for any PPT malicious A
corrupting a threshold number of auditors and an arbitrary
number of users provided NIAoK and Public-Key Encryption
schemes exist.

The adversary begins by corrupting ¢ auditors {Aud;}cg
for S C [n], |S| = t along with an arbitrary number of
users.

Setup. Sim runs the TPKE simulator Simtpkg which
outputs the public key and secret keys of malicious
parties {pk”, {sk/*};cg} for the TPKE scheme which
are sent to A. The simulator also runs and publishes
crs < NIAoK.Setup(1?,.). Next, it simulates the CA by
sampling (vk*, sk“*) < Sig.Gen(1*) and publishing vk“*.

Credential Generation. When Sim receives a request
for a credential from a corrupt user U containing
(pkY, 7, doc) (Figure 4), it first sends (ReqCred,doc) to
F on behalf of U. If Sim receives 1 as response from
F indicating the credential was approved, and the proof
of knowledge 7 verifies successfully, then Sim creates a
credential using the secret key of simulated CA and sends
it to U. Otherwise Sim sends L to U. During this time Sim
also creates a mapping from each corrupted user U to its

user-id id whenever a credential is issued.

Credential Verification. When a corrupt user U sends a
proof 7w along with an audit token i and wallet address
pk", Sim simulates SmrtCont by faithfully following the
protocol. That is Sim issues a verification badge by adding
pk" to the public list of verified pseudonyms, if the proof
provided by a user controlled by .4 passes verification.

Sim extracts id by running Simtpke on the audit token
which outputs the underlying message id to be sent to
Frpke. It then finds the corresponding user by checking
the mapping it created earlier. As part of the proof, A also
attaches a signature that verifies under pk . This is sufficient
for Sim to prepare aux and send (ReqVer, pk", auzx) to F.

When an honest party obtains a verification badge, Sim
must simulate the view of .4 which contains a proof =
and audit token ¢ with a signature that verifies with public
key pkW. Since Sim simulates the CA, it also knows the
secret key and can issue credentials on arbitrary public
keys. Thus when the ideal functionality announces that a
pseudonym pk" has been verified, Sim samples a random
public-key pair as pkY = PRF? r(skU), skY «— {0,1}*,
a random user-id i¢d and creates a signature on pk szHe
as described in Figure 4. In addition, it runs the simulator
of the TPKE scheme Simtpke to simulate the adversary’s
view of ciphertexts.

Audit. When an audit of a pseudonym pk" occurs, Sim
receives the user(s) that requested a verification badge
from the ideal functionality. Recall that when simulating
Credential Verification, Sim ran Simtpkg to simulate the
adversary’s view of ciphertexts. For each audit token that is
decrypted, Sim runs Simtpke With the corresponding honest
party’s user-id id as input and simulates the adversary’s
view of decryption such that decrypted message is id.

Revocation. When a user is banned they appear on a
public list £p maintained by the ideal functionality. When
this happens, Sim updates the revocation list of CA by
faitfully following the protocol and adding the user-id of
the corresponding user as described in Figure 11.

Argument for successful simulation. In the initial hybrid,
the adversary is in the real world interacting with honest
parties. The next hybrid is identical except that Sim runs
the Setup for the NIAoK instead of the trusted party. Since
this is done exactly as done in the real execution, this hybrid
is indistinguishable from the previous hybrid.

In the next hybrid, Sim simulates the CA as described
during credential generation and revocation. This is in-
distinguishable from the previous hybrid because Sim ap-
proves/revokes a credential only when done by the honest
CA and the rest of the simulation is carried out in a manner
identical to the real execution.

Now Sim simulates the honest auditors by simply sim-
ulating the trusted party who distributes keys and then
responding to audit requests as described in the protocol.
This hybrid is identically distributed to the previous hybrid

20

as the simulator samples the keys in manner identical to the
trusted party and the simulated auditors follow the protocol
faithfully.

Next, Sim simulates the honest parties and their verifi-
cation requests by using the simulated CA’s public key to
generate a credential for a random user-id and public key
and running Simtpkg to simulate ciphertexts in the audit
tokens. In a real execution a single honest party could have
obtained verification for multiple pseudonyms. Whereas in
the simulation, Sim samples a fresh public key for each
pk" that it receives from the ideal functionality and treats
each verification as coming from a different honest user.
However, when an audit of an honest party occurs, Sim
runs SimTpke to ensure the decrypted message is consistent
with the id received from the ideal functionality as described
earlier. Due to the zero-knowledge property of the NIAoK,
and the fact that Simypkg is a good simulator for the TPKE
scheme emulating Figure 9, this hybrid is computationally
indistinguishable from the previous hybrid.

Finally, Sim simulates SmrtCont. When a malicious user
U attempts to obtain a verification badge, Sim receives a
proof 7, pseudonym pk" and audit token v as described in
Figure 5. Recall that the ideal functionality runs a creden-
tial verification policy before verifying a pseudonym. Sim
now has to prepare a request (ReqVer, pkW,au:c) where
C(pk",auz) = 1. It can be seen that the constraints in
Figure 5 capture the verification policy outlined earlier,
therefore if 7 passes verification, then the verification policy
is satisfied. However, Sim must still determine the user
who submitted this request and then submit the verification
request on behalf of that user'*. This can be determined by
running Simypke and decrypting the audit token to obtain
the id of the party that created the request.

Let K¢ denote the set of public keys for which A
obtained a credential from CA, and Ly denote the tuples of
pseudonym — user public keys pairs verified by the simulated
honest parties. Note that a pseudonym can potentially appear
multiple times in Lz in connection with (possibly repeated)
public keys.

Claim 7. For every verification request (v, pk" 1)) submit-
ted by A, on input 1), Simtpkg either outputs a public key
pkY € K or outputs pkY such that (pkW, pkU) € Ly.

Due to the proof of knowledge and soundness prop-
erty of the NIAoK scheme, there exists an extractor that
outputs the witness. From the EUF-CMA property, colli-
sion resistance of CRH, perfect correctness of the TPKE
scheme and the security property of accumulators, the same
id that results from decrypting the audit token must have
been awarded a credential by a valid CA that has also not
been revoked. Suppose pkY ¢ K and (pk",pk") ¢ Ly,
then this implies that the extractor outputs a signature on
CRH(pkU7 id, .) for which CA has not issued a credential

14. Note that this user is not necessarily the same malicious user U who
communicated with Sim as U’ could have prepared a proof and U could
have sent it on behalf of U’.

Suppose this was not true, then this implies that
the extractor outputs two signatures o, o such
that SIG! Verify(vk*, CRH(pk",id,e),0) = 1 and
SIG2 Verify(pk”, ka\?, oW) = 1. Since pkY ¢ K, there are
two possibilities:

o (pkY,.) ¢ Ly, in which case the adversary has pro-

duced SIG' on a pk” which has never been signed by
CA Vlolatlng the EUF-CMA property.

o (pkY,.) € Ly but (pkY, pk 2 ¢ Ly, in which case the
adversary has produced SIG” on a wallet that verifies
under a simulated honest party’s public key, again,
violating the EUF-CMA property.

2.2. Security against a semi-honest CA

Theorem 2. The protocol in § 5 securely emulates the ideal
functionality F (Figure 3) for any semi-honest PPT A cor-
rupting the CA provided NIAoK and Public-Key Encryption
schemes exist.

We also guarantee security against a semi-honest CA,
by constructing a simulator. Here Sim only needs to prepare
the view of the CA for credential requests, which it can do
by sampling a fresh public-key pair for each request that
arrives from an honest user via the ideal functionality and
then preparing a proof of knowledge of the secret key and
attaching doc that was received. This is a good simulator
as the public keys generated are indistinguishable from
those generated by an honest party.

2.3. Privacy against colluding CA, Auditors and Users

Theorem 3. The protocol in § 5 privately emulates the
ideal functionality F (Figure 3) for any PPT malicious A
corrupting the CA, a threshold number of auditors and an
arbitrary number of users provided NIAoK and Public-Key
Encryption schemes exist.

Finally, we argue privacy (Definition 5) against an adver-
sary A that corrupts the CA, up to ¢ auditors and an arbitrary
number of users. The view of the adversary consists of the
public keys of honest parties on which credentials were
issued, credential verification proofs sent by honest users to
the smart contract along with the corresponding audit token.
The CA has no input, the auditors have pseudonyms they
wish to audit as input (since the functionality is reactive,
the auditors can send their inputs over the course of the
protocol) and users have pseudonyms they wish to obtain a
verification badge for as input.

In all of our constructions we implicitly assume that
a user can submit a credential verification request anony-
mously such that the adversary does not know which user
submitted the request. This can be achieved through standard
techniques of onion routing. If this were not the case, a CA
could trivially map users to their pseudonyms.

Now, observe that the public key pair of each hon-
est party is sampled uniformly at random, independent of
the input. During credential verification, due to the zero-
knowledge property of the NIAoK scheme, the proof 7 does
not reveal any information about the credential being used

21

cred and due to the CCA property of TPKE scheme, the ad-
versary cannot distinguish between TPKE. Encpk(pk0) and
TPKE. Enc (pkW) for two different pseudonyms pk0 , pkW
The above statement is not immediate as we use a simulation
based definition (Appendix A). However, this was shown to
imply the indistinguishability notion of Threshold Public-
Key Encryption found in [108]. Thus for any two series
of inputs {#1}, {Z1} which consist of pseudonyms to
obtain verification badges for and 1qseudonyms that are to
be audited {View'j(71)} ~. {View;(i2)}.

3. EUF-CMA from Weak-SE NIZKs + OWF

It is know that standard simulation extractability com-
bined with one way functions can be used to create
Strongly Unforgeable signatures under Chosen Message At-
tacks (SUF-CMA) [18], [61], [19]. In this section we show
how to build an Existentially Unforgeable Signature scheme
secure against Chosen Message Attacks (EUF-CMA) using
a weak Simulation-Extractable NIAoK (weak-SE NIAoK)
combined with One Way Functions. We begin by recalling
the weak-SE property of NIAoKs from [80]. Here, the
setup outputs an additional trapdoor 7 which facilitates the
creation of proofs for false statements. The definitions of
knowledge soundness and zero knowledge in Appendix A
are adapted accordingly.

Definition 8 (Weak Simulation-Extractability). A Non-
Interactive Argument system is weak simulation extractable
for a relation R, if for every non-uniform PPT adversary A
there exists a PPT extractor € 4 such that

(crs,7) < Setup(1*,R) Verify(crs,z,7) = 1

Pr (z,7) + ASesm(crs) Az, w) ¢ R
W 4— €4 ANr ¢ Q
< negl(\)

where Scrs () is a simulator oracle that calls Sim(crs, T, x)
internally, and also records x in a list of queries Q.

In standard (strong) Simulation-Extractability the adver-
sary must not be able to produce a new proof on a statement
it has previously queried whereas here, the adversary needs
to produce a proof on an entirely new statement that has not
been previously queried.

Our construction of EUF-CMA signatures is identical to
the construction of SUF-CMA signatures found in [18], ex-
cept that we use weak-SE NIA0Ks in place of SE NIA0oKs.
For completeness, we describe the scheme in Figure 10.

Theorem 9. The protocol described in Figure 10 is an EUF-
CMA signature scheme assuming the existence of weak-SE
NIAOKSs.

Proof. To prove security of the above scheme we provide
a reduction from an adversary Agyr that violates the EUF-
CMA property of the NIAoK based signature scheme to
an adversary Ay, that inverts one way functions with
non-negligible property. The EUF-CMA game between a
challenger C' and adversary Agyr is defined as follows:

NIAoK based EUF-CMA signature

Parameters: A weak-SE NIAoK NIAoK, a family of
one-way functions F : {0, 1}*™) x {0,1}%™), message
space M and relation R := {((K,Y,m),sk) | ¥ =
F(K,sk)}.
o Gen(1?) — (vk,sk):
- K+ {0,1}F®); sk« {0,1}4N; ¥ « F(K, sk).
— crs + NIAoK.Setup(1*, R); vk + (K,Y).
- Return (vk, sk).

o Sign(vk,sk,m) — o:

- Return o < NIAoK.Prove(crs, (K, Y, m),sk)).
o Verify(vk,m, o) — {0,1}:

— Return NIAoK Verify(crs, (K, Y, m), o).

Figure 10: EUF-CMA signature scheme from weak
Simulation-Extractable NIZK and one way functions

1) C sends (vk,sk) < Gen(1*) to Agye.

2) Agur asks C for signatures on message m;.

3) C responds with o; = Sign(vk,sk,m;) and adds m to
the list of queries Q.

4) Repeat steps 2 and 3 as long as Agyr desires.

5) Agur provides a final answer (m*, c*).

Agur wins the game if m* ¢ Q and Verify(vk, m*,0*) = 1.
The advantage of Agyr is defined as the probability that
Aguyr wins the game. For a protocol to be secure the
advantage of every PPT adversary Agyr in the above game
must be negligible.

Suppose there exists a PPT adversary Agyr that has
non-negligible advantage € in the EUF-CMA game when
instantiated with the scheme in Figure 10, then we give
below an adversary A, that can successfully invert a one
way function with probability negligibly close to e.

1) Cows samples a one way function and sends a challenge
(K,Y) to Agws computed as Y = F(K, X) where X +
{0, 1340,

2) Aows generates (crs, 7) < NIAoK.Setup(1*,R)

3) Aows sets vk := (K,Y).

4) Aows internally runs Agyg with vk and crs computed as
above.

5) Aowf creates signatures as o —
NIAoK.Sim(crs, 7, (K,Y,m)) in response to queries
made by Agye.

6) Agur outputs (m*,0*) where m* ¢ @ and verifica-
tion passes NIAoK.Verify(crs, (K,Y,m),o) with non-
negligible probability.

Now Aqwf runs the extractor ¢ 4,,, and obtains X*. From
the weak-SE property of the NIAoK, the probability that
((K,Y,m*),X’) ¢ R is negligible. Thus, F(K,X') =Y
with probability negligibly close to e. Hence by contradic-
tion, Figure 10 is a signature scheme satisfying EUF-CMA
security. [

22

Credential Revocation
Il’lpllti Ug{idg’i = g||u1}z
CA with group-id g (CA,):
o Vi,MT}.Add(idg,:, 1) and set rt}) := MT}.Root.
o Sign the revocation root and the current epoch E:
On,g := SIG*.Sign(sk$*, CRH(rt], E)).
o Sign the revoked ids:
0id,g := SIG".Sign(sk$*, CRH({idg,i }:)).
CA, — Coordinator: rt), ov,g, {idg,;i}i, 0,
Coordinator:
o Let old roots be {rt{)'ld, g and rtgg.
o Vg, set Ulg] :=1if rtyy, # rty.
« Vg, MT™.Add(g, rtj) and set rt" := MT".Root.
o Let x = (rt™, rt", rt"y, E).
o Letw = ({vkgA, rtrg', rtg',d,g, On,gtg,U).
« Create proof m := SNARK.Prove(crsnc, x, w), where
rvc is defined as follows:

rvc = { (x,w) |
Vge G:
MT** Add(g, vks™); MT 4. Add(g, rtha)
if Ulg] = 1,rty := rt;'7 else rty := rtﬂ.d,g
MT".Add(g, rty)
if Ulg]=1:
SIG" Verify(vkS", CRH(rt), E), on,g) = 1
AMT" Root = rt*
A MTgq.Root = rtgq
AMT".Root = rt"

Coordinator — Smart Contract (periodically):
o m,1t", Vg, (rth, On,g, {idg,i }i, 0id g).

Smart Contract:

o If SNARK.Verify(crswe, x, m) = 1:

— Update revocation root from rt{y to rt".
— Increment current epoch number FE.

Figure 11: Credential Revocation Protocol

4. Optimized Multi-scalar Multiplication Con-
straints

A multi-scalar multiplication (MSM) is defined as fol-
lows: compute g = Zie[g] si * g;, where scalars s; € F are
field elements and bases g; € G and result g € G are group
elements. The constraints for a multi-scalar multiplication
(MSM) are naively implemented as follows: (i) the scalars
are converted to bits (971¢ constraints), and (ii) each base
is independently multiplied by the corresponding scalar bits
using the double-and-add algorithm and added to the result
(2869¢ constraints). We make changes to both steps to
optimize the constraints.

First, if the scalars are computed by the verifier, then
we precompute them and include their bit representation in
the proof. Now, the verifier uses the scalars bits from the
proof for the MSM and checks their consistency with the
computed scalars (3014 constraints). Otherwise if the scalars
are supplied by the proof itself, then we simply provide their

bit representation directly instead.

Second, we scalar-multiply all bases together. In each
step of scalar-multiplication using double-and-add, the base
is selectively added to the accumulator based on the scalar
bit, and then the accumulator is doubled. Our optimized
solution hoists the doubling step and performs it once per
bit for all bases, which costs 1576¢ constraints.

Overall, these two optimizations improve the constraints
for MSM by 2.05x from 3840¢ to 1877¢.

5. Credential Revocation Evaluation

Credential revocation involves two entities: the CAs and
the coordinator, and we discuss their performance overheads
in this section. First, we look at the overhead on each
CA to update its revocation list and post updates to the
coordinator. The runtime to revoke 2'° credentials is just
110 ms with a single thread, and grows to 242 seconds
for 220 revoked credentials at a quasi-linear rate. Even with
a single thread, the runtime is practical for the CA that
has to do this once per epoch, and can be made much
better with multi-threading. Note that the users also have to
expend similar computation to update their local revocation
tree before creating a non-revocation proof. For up to 22
revoked IDs, it takes the user a minimal runtime of 440 ms
to update its tree and create a non-revocation proof with a
single thread, and requires a download of just around 20
KiB. We expect a significant improvement in runtimes for
larger batches of revoked IDs with multithreading, and the
communication for even 22 revoked IDs is just around 5
MiB. In practice, we expect that most users will simply
ask an untrusted service for the non-revocation path. As we
discuss in § 5.1.2, this does not reveal any information that
links the wallet to a user, and it is easy for the client to
verify the non-revocation path w.r.t. the current root.

Next, we consider the performance overhead of the
coordinator with 16 threads. The runtime and constraints
of the coordinator grow linearly with the number of CAs,
and it takes just 10 (2.6, resp.) seconds and around 2.8 M
(0.69 M, resp.) constraints for 256 (64, resp.) CAs. Finally,
we evaluate the gas cost the coordinator incurs to update
the revocation root at the end of an epoch. The gas cost
is just 271K for the SNARK verification, and an additional
3072G + 80R gas for storing signed revocation roots and
revoked IDs on the blockchain with the current gas cost of
16 gas per Byte, where G is the number of CAs and R is
the number of revoked IDs.

23

	Introduction
	Overview
	System Model
	System Goals
	Technical Overview
	Access Tokens with Universal Revocation
	Batched Verification of SNARK Proofs
	Audit Token Caching
	SNARK-friendly Verification Circuit

	Preliminaries
	zk-SNARKs
	Digital Signature
	Threshold Public-Key Encryption
	Merkle Trees

	Definitions
	Security

	Anonymous Credential Scheme
	Core Protocols
	Credential Generation ([fig:cred-gen]Figure 4)
	Credential Revocation ([fig:cred-revoke]Figure 11)
	Credential Verification ([fig:cred-verify]Figure 5)
	Transaction Audit ([fig:tx-audit]Figure 6)

	Batched Verification ([fig:batch-verify]Figure 7)
	Batching SNARK Verification.
	Audit Token Caching

	L2 Verification
	Potential Extensions

	Concrete Instantiation
	Core Protocols
	Batched and L2 Verification

	Implementation
	Evaluation
	Credential Verification
	User Overhead
	Gas Costs
	Comparison with Existing AC Schemes

	Batched Verification
	Gas Costs
	Aggregator Overhead
	Cost of Prior Recursion Approaches

	Related Work
	Conclusion
	References
	Appendix
	Extended Preliminaries
	Proof of Security
	Security against colluding Auditors and Users
	Security against a semi-honest CA
	Privacy against colluding CA, Auditors and Users

	EUF-CMA from Weak-SE NIZKs + OWF
	Optimized Multi-scalar Multiplication Constraints
	Credential Revocation Evaluation

