ON A CONJECTURE FROM A FAILED CRYPTOANALYSIS

SHENGTONG ZHANG

1. Introduction

Let $P(x, y)$ be a bivariate polynomial with coefficients in \mathbb{C}. Form the $n \times n$ matrices L_{n} whose elements are defined by $P(i, j)$. Define the matrices $M_{n}=I_{n}-L_{n}$.

We show that $\mu_{n}=\operatorname{det}\left(M_{n}\right)$ is a polynomial in n, thus answering a conjecture of Naccache and Yifrach.

2. The Proof

Our proof is based on the folklore identity of Sylvester.
Theorem 2.1. Let A be an $n \times m$ matrix, and B be an $m \times n$ matrix. Then

$$
\operatorname{det}\left(I_{n}-A B\right)=\operatorname{det}\left(I_{m}-B A\right)
$$

In our case, there exists a constant D such that

$$
P(x, y)=\sum_{i=0}^{D} \sum_{j=0}^{D} a_{i j} x^{i} y^{j}
$$

where $a_{i j} \in \mathbb{C}$ are coefficients. If we let $A(n)$ be the $(D+1) \times n$ matrix given by

$$
A(n)_{i j}=j^{i}
$$

for $0 \leq i \leq D$ and $1 \leq j \leq n$, and let C be the $(D+1) \times(D+1)$ matrix given by $C_{i j}=a_{i j}$, then we can compute that

$$
L_{n}=A(n)^{T} C A(n)
$$

Thus by Sylvestor's identity, we have

$$
\mu_{n}=\operatorname{det}\left(I_{n}-L_{n}\right)=\operatorname{det}\left(I-C A(n) A(n)^{T}\right)
$$

The matrix $A(n) A(n)^{T}$ is a $(D+1) \times(D+1)$ matrix with entries

$$
\left(A(n) A(n)^{T}\right)_{i j}=\sum_{k=1}^{n} k^{i+j}
$$

which is a polynomial in n by Faulhaber's formula [1]. Thus, the dimensions of $C A(n) A(n)^{T}$ is independent of n, and each entry of $C A(n) A(n)^{T}$ is a polynomial in n. As the determinant of a constant size matrix is a polynomial in the entries, we conclude that μ_{n} is a polynomial in n.

References

[1] Carl Jacob, De usu legitimo formulae summatoriae Maclaurinianae. Journal für die reine und angewandte Mathematik. Vol. 12. pp. 263-72 (1834)
[2] David Naccache and Ofer Yifrach-Stav, A Conjecture From a Failed Cryptanalysis. Cryptology ePrint Archive, Paper 2022/1273. https://eprint.iacr.org/2022/1273

Stanford University, Stanford, CA, USA

Email address: stzh1555@stanford.edu

