
TOFU – Toggle Count Analysis
made simple

Michael Gruber1 and Georg Sigl1,2

1Technical University of Munich,
Chair for Security in Information Technology,

Munich, Germany,
{m.gruber, sigl}@tum.de

2Fraunhofer Institute for Applied and Integrated Security,
Garching, Germany,

georg.sigl@aisec.fraunhofer.de

Abstract

Protection against physical attacks is a major requirement for cryptographic imple-
mentations running on devices which are accessible to an attacker. Side-channel at-
tacks are the most common types of physical attacks, the most frequent side-channel
is the device’s power consumption. In this work we propose a novel open-source tool
called TOFU which synthesizes VCD simulation traces into power traces, with ad-
justable leakage models. Additionally, we propose a workflow which is only based on
open-source tools. The functionality of TOFU and the proposed workflow was verified
by a CPA of a AES hardware implementation. We also provide numbers for the re-
quired running time of TOFU for a trace synthesis with respect to the according VCD
file size. Furthermore, we provide TOFU’s source code.

1 Introduction

According to Kerckhoffs’s principle a cryptographic algorithm’s security should
only rely on the key everything else is expected to be public knowledge. While
this holds in general for a cryptographic algorithm, physical attacks deliberately
exploit the violation of Kerckhoffs’s principle. In the context of physical attacks
a possible extension of Kerckhoffs’s principle may be: A cryptographic algo-
rithm’s power consumption should not depend on the processed data, and key.
Which is essentially the precondition for Side-Channel Analysis (SCA), where
data-dependent power consumption is deliberately exploited. The most promi-
nent side channel used is the device’s power consumption. One approach to
exploit this data dependent power consumption is Differential Power Analysis
(DPA) as introduced by Kocher et al. [9]. Leakage occurs due to the physi-
cal properties of hardware, i.e., power consumption of Complementary Metal-
Oxide-Semiconductor (CMOS) circuits. To test if sensitive leakage occurs, one

1



2 Preliminaries 2

can measure the device’s power consumption during the execution of a cryp-
tographic algorithm. However, this approach has the disadvantage that some
hardware to run the algorithm is needed, as well as a device to record the power
consumption, such as an oscilloscope. Furthermore, the measurements acquired
by the oscilloscope are noisy by nature. An alternative to measure the power
consumption on an actual device is a simulation, which result ins absolutely
noiseless measurements.

Related Work: Veshchikov et al. proposed a simulator called SAVRASCA for
the AVR architecture [13] in 2017. Mc Cann et al. proposed another simulator
called ELMO in 2016 [11]. ELMO was developed as a profiled simulator and
is specifically targeted at the ARM Cortex-M0 architecture. Another approach
was taken by Le Corre et al. [3] with their simulator MAPS which was tailored
for the ARM Cortex-M3 architecture. MAPS was build based on the VHDL
model of an ARM Cortex-M3 microcontroller where the pipeline was analyzed
for instructions which exhibit data-dependent power consumption. In contrast,
Sadhukhan et al. [12] focused on hardware implementations and proposed an
SCA resistant design flow, they also proposed a toggle count based leakage
model. Commercial solutions are also available [4].

Contributions: In this work we propose TOggle Foul-Up (TOFU), a versatile
open-source tool to synthesize Value Change Dump (VCD) [1] simulation traces
into power traces. Furthermore, we propose a security evaluation workflow
based only on open-source tools. We verify the capabilities of TOFU at the
example of a Correlation Power Analysis (CPA) on the Advanced Encryption
Standard (AES).

Organization: The rest of the work is structured as follows: Section 2 in-
troduces the necessary preliminaries. Section 3 introduces TOFU. Section 4
evaluates TOFU’s performance. Section 5 introduces the proposed workflow,
while Section 6 showcases the workflow. Finally, Section 7 concludes our work.

2 Preliminaries

This section introduces the necessary preliminaries, i.e., leakage models, CMOS
power consumption, and CPA.

2.1 CMOS Power Consumption

According to [8] the power consumption of CMOS circuits can be divided into
static power consumption Pstat and dynamic power consumption Pdyn as shown
in Equation (1). Static leakage current occurs since N-Type Metal-Oxide-
Semiconductor (NMOS) and P-Type Metal-Oxide-Semiconductor (PMOS) tran-
sistors are not perfectly switching. The static power consumption can be cal-
culated as the product of the leakage current ICC and the supply voltage VCC

and is therefore assumed to be independent of switching activities. The dynamic
power consumption Pdyn can be divided into transient power consumption Ptran



2 Preliminaries 3

and capacitive-load power consumption Pcap load which is proportional to the
output’s capacitive load Pcap load. Transient power consumption occurs when
the input to the gate changes alternates which is indicated by fI . Switching
the value of the gate output leads to the charging or discharging of the output
capacitance which is indicated by fO.

Pstat = VCC × ICC

Pdyn = Ptran + Pcap load

Ptran = Cpd × VCC
2 × fI ×Nswitches

Pcap load = CL × VCC
2 × fO ×Nswitches

(1)

2.2 Leakage Models

A simplification of the power consumption calculation outlined in Section 2.1 are
leakage models [2]. These leakages models directly translate processed data into
a hypothetical power consumption, the most common ones are the Hamming
Weight (HW), and the Hamming Distance (HD). The calculation of the HW,
and the HD for processing the data sequence {D1, D2, ..., Dm} with n-bit data

words Di = d
(i)
1 d

(i)
2 ...d

(i)
n is shown in Eq. (2), where every d

(i)
n represents a single

bit.

HW (Di) =

n∑
j=1

d
(i)
j

HD(Di, Di+1) = HW (Di ⊕Di+1)

(2)

The most common leakage model used is the HW as it requires no knowledge
about previously processed data in contrast to the HD cf. Eq. (2).

2.3 Correlation Power Analysis

DPA is a type of side-channel attack proposed in 1999 by Kocher et al. [9] and
is based on partitioning. A similar attack called CPA which uses correlation as
a distinguisher was proposed by Brier et al. in 2004 [2]. For a CPA attack, the
power consumption of a cryptographic operation is measured multiple times,
i.e., different plaintexts with the same key (for AES). Next, an intermediate
value depending on known values, as well as an unknown key byte is chosen.
A possible intermediate value t during the encryption of AES is the output of

the first round’s S-box, i.e., t = S(k
(0)
0 ⊕ p0). For all key hypotheses of the key

byte k
(0)
0 , the intermediate value is calculated. By the application of a leakage

model to the intermediate value, the correlation of all key hypotheses with the
measured power traces can be calculated. The correct key byte is then identified
by the hypothesis which results in the highest absolute correlation.



3 TOFU 4

Key Description

vcdGlob Glob to find the VCD files.
signalsFileNameLiterals Signals used for the leakage synthesis.
leakageModel Leakage model used for the synthesis.
window Use only samples from a window.
windowFrom Specify window start.
windowTo Specify window stop.
valueExtractFunction Name of function which extracts values.
valueExtractIndex Store the trace index as value.
writeTraces Store traces in file or memory.
writeTracesBatchSize How many traces to write at once.
traceFileName Filename of the generated traces.
format Format of the generated traces.

Tab. 1: TOFU Settings Summary

3 TOFU

As TOFU is intended to be a helpful utility for research, and teaching the source
code can be found here1.

We will now introduce the most important settings of TOFU used during
trace synthesis. TOFU is implemented in Python, but parsing is done in C++
alternatively parsing can be done in Python as well what is helpful for testing,
e.g., new leakage models. There are various settings which can be passed to
TOFU the most important ones are shown in Table 1.

A regular expression describing the VCD files to parse is given by vcdGlob.
Supported leakage models are either HW, or HD and can be chosen by

leakageModel.
It is possible to filter the signals used for the leakage generation by specifying

them in signalsFileNameLiterals.
The value of a signal can be extracted for any timestamp by specifying a

valueExtractFunction. This can for instance be used to extract the value of, e.g.,
plaintexts, keys, or ciphertexts. Furthermore, values for multiple signals can be
extracted as a single value, which is for instance useful if the plaintext consists
of multiple signals like in masking. Alternatively, valueExtractIndex can be used
as value extraction function, which is useful in Test Vector Leakage Assesment
(TVLA) [5] for differentiating between traces with fixed plaintext and random
plaintext, based on the index of the current trace.

If window is set, the generated leakage is restricted to all timestamps between
windowFrom and windowTo which also speeds up the synthesis.

Setting writeTraces to true indicates that the generated traces should be
written to the file given by traceFileName with the batch size of writeTraces-
BatchSize.

1 https://gitlab.lrz.de/tueisec/tofu

https://gitlab.lrz.de/tueisec/tofu


4 Performance 5

As TOFU is tightly integrated with Ledger’s Advanced Side Channel Anal-
ysis Repository (LASCAR) [10] the currently only supported format is LAS-
CAR’s default format.

4 Performance

In order to evaluate the performance of TOFU in terms of synthesis speed we
evaluated the required time to parse VCD files of different sizes. Additionally,
we used either the Python based parser, or the C++ version.

Using C++ instead of Python is motivated by higher performance, which
mainly arises due to the C++ code being compiled and optimized. Moreover,
C++ offers more control than Python, for instance through pointers and manual
memory management.

Besides using a different programming language, the C++ implementation
employs additional optimizations. Firstly, VCD files are memory-mapped, thus
allowing for fast read operations of the VCD file. This is because no system
calls are necessary, among others.

The time required by the C++ implementation to parse a VCD file only
increases proportionally to the size of the VCD file, i.e., O(n). For instance, if
parsing a 5MB file takes 1 s, then parsing a 10MB file should take about 2 s.
This can only be achieved by constant lookup times of the values of symbols
in the value change section of the VCD file. These lookups are necessary for
calculating the leakage. For this reason, the C++ implementation uses a hash
table (std::unordered map), which gives average constant-time insertion and
search.

Figure 1 compares the running time of the C++ implementation with the
Python implementation for different VCD file sizes. For a better comparison,
the time required for LASCAR to write the resulting traces is omitted. As one
can see the required running time for the C++ implementation grows linearly
with respect to the file size.

TOFU was successfully used during the development of DOMREP a com-
bined countermeasure against Fault Injection Analysis (FIA), and SCA pro-
posed by Gruber et al. [7] cf. the biggest file of Table 1.

5 Workflow

One of the main objectives of this work was it to specify a workflow which is
only based on open-source tools. The necessary steps of the workflow can be
formulated as: Simulation, Synthesis, and Analysis.

Simulation: The Simulation step (behavioral) is based on GHDL an open-
source VHDL simulator developed by Gingold et al. [6]. GHDL compiles VHDL
files directly to machine code and allows native execution to allow high speed
simulations. We have also verified the Simulation step of the workflow with
Vivado 2020.2, which enables also simulations which take hardware specific
delays into account, e.g., post-implementation.



6 Example 6

341kB 2.1MB 33.0MB 90.8MB 278.6MB
0

100

200

300

400

0.02 0.06 0.83 2.4 5.060.27 2.58
34.4

102.6

419.2

File Size

R
u
n
n
in
g
T
im

e
in

S
ec
o
n
d
s

C++ Python

Fig. 1: Running Time Comparison

Synthesis: The Synthesis step is based on TOFU as introduced in this work.
Prior to the Synthesis suitable settings must be chosen as specified in Section 3.

Analysis: The Analysis step is based on LASCAR an open-source frame-
work developed by Ledger [10]. LASCAR is a versatile SCA framework which
supports several SCA attacks, e.g., DPA, and CPA. Also, LASCAR provides a
convenient container format to store, and access acquired traces.

6 Example

In the following section we will now outline the workflow introduced in Section 5
at the example of a CPA of AES2 using 10 000 traces. The implementation
applies all S-boxes simultaneously.

6.1 Simulation

The TOFU repository contains a testbench for the implementation of AES,
which can serve as the basis for other VHDL projects. The integration of the
AES’s testbench and GHDL was done with parallelism in mind, to utilize several
processor cores. Unfortunately, GHDL does not allow vectors as parameters [6].
Instead, it is possible to pass multiple integers as parameters and combine them
into a vector. Passing parameters to the GHDL simulation avoids repetitive
recompiling of the VHDL source to native code. The generation of the random
plaintexts required by the DPA is done in a pseudo-random manner where a
random number generator is seeded deterministically.

2 The AES implementation can be found inside TOFU’s repository.



6 Example 7

6.2 Synthesis

In order to demonstrate a subset of TOFU’s features we have done several syn-
theses. For the leakage model we either used the HW, or HD. Also, for the
filtering, i.e., signalsFileNameLiterals we either used all signals available in the
VCD file, or only the signals of the first S-box’s output only. The corresponding
VCD has a size of 26 kB. The synthesized trace for an exemplary AES encryp-
tion (unfiltered) is shown in Fig. 2a under the assumption of an HW leakage
model, while Fig. 2c shows the same encryption under the assumption of an HD
leakage model.

In contrast, if only the signals from the first S-box’s output are used for
the synthesis this is shown in Fig. 2b under the assumption of an HW leakage
model, while Fig. 2d shows the same encryption under the assumption of an HD
leakage model where the values take values between zero and eight as one may
expect due to the S-box used in AES.

Noteworthy, in Fig. 2c, and Fig. 2d every second sample has a value of zero,
as the circuit is only sensitive to the clock’s rising edge. The circuits sensitivity
to the clock’s rising edges can also be used to fasten up the Analysis step if
every second sample is discarded which results in a smaller power trace.

0 5 10 15 20 25 30
Sample

800

850

900

950

V
al

u
e

(a) Leakage, HW

0 5 10 15 20 25 30
Sample

2

2

3

4

4

V
al

u
e

(b) Leakage filtered, HW

0 5 10 15 20 25 30
Sample

0

100

200

300

400

500

V
al

u
e

(c) Leakage, HD

0 5 10 15 20 25 30
Sample

0

1

2

3

4

5

6

V
al

u
e

(d) Leakage filtered, HD

Fig. 2: AES Workflow – Synthesis



7 Conclusion 8

6.3 Analysis

In the last step of the proposed workflow the Analysis takes place, i.e., in the
context of a CPA on AES the first round key is attacked (encryption). As usual,
the DPA assumes the HW as underlying leakage model, the whole CPA is con-
ducted by LASCAR. For the analysis we consider two different cases, i.e., traces
generated from either all signals (unfiltered) or only the first S-box’s output
(filtered). The unfiltered correlation progression plot for all key hypotheses is
shown in Fig. 3a, as one can see the correlation of the correct key hypothesis
converged to approximately 0.25 after 1000 traces. Respectively for the filtered
case Fig. 3b shows that the correct key hypothesis converges to 1.0 instantly.
None of the other 15 bytes can be recovered from such filtered traces correctly
as the correlation of the remaining bytes does not converge towards a value in
their respective correlation progression plots.

1 2 3 4 5 6 7 8 9 10
Number of Traces ×103

0.00

0.05

0.10

0.15

0.20

0.25

C
or

re
la

ti
on

(a) Correlation, HW

1 2 3 4 5 6 7 8 9 10
Number of Traces ×103

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(b) Correlation filtered, HW

Fig. 3: AES Workflow – Analysis using 10 000 Traces

7 Conclusion

In this work we presented TOFU, a new robust tool for the synthesis of power
traces from VCD files with different leakage models. In addition, we evaluated
the running time of TOFU with respect to different VCD file sizes, and imple-
mentations of TOFU. Furthermore, we proposed a workflow which only relies on
open-source tools to verify the security of an implementation. The open-source
based workflow was verified at the example of AES using a CPA. We encourage
the usage of TOFU as a helpful tool for research, and teaching.

Acknowledgements

This work was partly funded by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy in the project MITHRIL through grant number
IUK-1903-0003 // IUK623/002. We would like to thank Florian Kasten for his
help with the C++ implementation of TOFU’s VCD parser.



7 Conclusion 9

References

[1] IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), pages 1–590, 2006.

[2] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a
Leakage Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, pages 16–29, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[3] Y. L. Corre, J. Großschädl, and D. Dinu. Micro-architectural Power Simu-
lator for Leakage Assessment of Cryptographic Software on ARM Cortex-
M3 Processors. In Constructive Side-Channel Analysis and Secure Design,
pages 82–98. Springer International Publishing, 2018.

[4] FortifyIQ. SideChannel STUDIO. https://www.fortifyiq.com/

sidechannel-studio.html. Accessed: 2022-02-02.

[5] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi, et al. A testing methodology
for side-channel resistance validation. In NIST non-invasive attack testing
workshop, volume 7, pages 115–136, 2011. https://csrc.nist.gov/csrc/
media/events/non-invasive-attack-testing-workshop/documents/

08_goodwill.pdf.

[6] T. Gingold. GHDL. https://github.com/ghdl/ghdl. Accessed: 2022-
02-02.

[7] M. Gruber, M. Probst, P. Karl, T. Schamberger, L. Tebelmann, M. Tem-
pelmeier, and G. Sigl. DOMREP – An Orthogonal Countermeasure for
Arbitrary Order Side-Channel and Fault Attack Protection. IEEE Trans-
actions on Information Forensics and Security, pages 1–1, 2021.

[8] T. Instruments. CMOS Power Consumption and Cpd Calcula-
tion. SCAA035B June, 1997. https://www.ti.com/lit/an/scaa035b/

scaa035b.pdf.

[9] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener,
editor, Advances in Cryptology — CRYPTO’ 99, pages 388–397, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[10] Ledger. LASCAR. https://github.com/Ledger-Donjon/lascar. Ac-
cessed: 2022-02-02.

[11] D. McCann, E. Oswald, and C. Whitnall. Towards Practical Tools for Side
Channel Aware Software Engineering: ’Grey Box’ Modelling for Instruction
Leakages. In 26th USENIX Security Symposium (USENIX Security 17),
pages 199–216, Vancouver, BC, Aug. 2017. USENIX Association.

[12] R. Sadhukhan, P. Mathew, D. B. Roy, and D. Mukhopadhyay. Count Your
Toggles: a New Leakage Model for Pre-Silicon Power Analysis of Crypto
Designs. Journal of Electronic Testing, 35(5):605–619, oct 2019.

https://www.fortifyiq.com/sidechannel-studio.html
https://www.fortifyiq.com/sidechannel-studio.html
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://github.com/ghdl/ghdl
https://www.ti.com/lit/an/scaa035b/scaa035b.pdf
https://www.ti.com/lit/an/scaa035b/scaa035b.pdf
https://github.com/Ledger-Donjon/lascar


7 Conclusion 10

[13] N. Veshchikov and S. Guilley. Use of Simulators for Side-Channel Analysis.
In 2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, apr 2017.


	Introduction
	Preliminaries
	CMOS Power Consumption
	Leakage Models
	Correlation Power Analysis

	TOFU
	Performance
	Workflow
	Example
	Simulation
	Synthesis
	Analysis

	Conclusion

