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Bool Network: An Open, Distributed, Secure
Cross-chain Notary Platform

Zeyuan Yin, Bingsheng Zhang, Jingzhong Xu, Kaiyu Lu, Kui Ren,

Abstract—With the advancement of blockchain technology,
hundreds of cryptocurrencies have been deployed. The bloom
of heterogeneous blockchain platforms brings a new emerging
problem: typically, various blockchains are isolated systems,
how to securely identify and/or transfer digital properties
across blockchains? There are three main kinds of cross-chain
approaches: sidechains/relays, notaries, and hashed time-lock
contracts. Among them, notary-based cross-chain solutions have
the best compatibility and user-friendliness, but they are typically
centralized. To resolve this issue, we present Bool Network – an
open, distributed, secure cross-chain notary platform powered
by MPC-based distributed key management over evolving hidden
committees. More specifically, to protect the identities of the com-
mittee members, we propose a Ring verifiable random function
(Ring VRF) protocol, where the real public key of a VRF instance
can be hidden among a ring, which may be of independent
interest to other cryptographic protocols. Furthermore, all the
key management procedures are executed in the TEE, such
as Intel SGX, to ensure the privacy and integrity of partial
key components. A prototype of the proposed Bool Network is
implemented in Rust language, using Polkadot Substrate.

Index Terms—cross-chain, evolving committee, threshold cryp-
tography, ring VRF, trusted execution environment

I. INTRODUCTION

Following the success of Bitcoin, many blockchain-based
cryptocurrencies have been developed and deployed. To meet
different requirements in various scenarios, a great number
of heterogeneous blockchains have emerged. However, each
blockchain platform is an isolated system; therefore, interop-
erability between blockchains become one of the key issues
that prevent the blockchain technology from wide adoption.

To address this problem, many cross-chain solutions have
been proposed. A typical cross-chain token transfer from a
source blockchain to a target blockchain involves three steps:
a. locking (or destroying) the source blockchain token; b.
cross-chain transfer commitment; c. creation of a represen-
tation of the corresponding token on the target blockchain [4].
There are three main categories: sidechains/relays, notaries,
and hashed time-lock contracts. First, sidechains/relays [19],
[32] rely on a so-called two-way peg to communicate between
the sidechain and the mainchain. However, a sidechain/relay is
typically associated with one concrete blockchain ecosystem,
and it is not compatible with other blockchains. Second,
notaries, such as Binance [8], Coinbase [15] and Huobi
Global [22], are mostly centralized exchanges; therefore, this
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type of methods inevitably introduces the risk of single-point-
of-failure. For example, on 7 May 2019, Binance has revealed
a large scale security breach, and over 7,000 Bitcoins have
been stolen [24]. Meanwhile, decentralized exchange based
solutions, e.g., 0x [38] and Uniswap [1], have been proposed.
However, for example, Uniswap only supports Ethereum Re-
quest for Comment 20 (ERC-20) trades, and they are less
convenient to the users than the conventional centralized
notaries. Third, hashed time-lock contracts [33] use hashlocks
and timelocks to enforce atomicity of operations, but, by its
design, the fluctuation of exchange rate may lead to unfair
trade. Specifically, the trader who issues the transaction can
watch the exchange rate, if the exchange rate is for him/her,
he/she will finish the transaction; otherwise, he/she will refuse
to publish the secret and the transaction will abort.

On the other hand, the new concept of “blockchain of
blockchains” becomes increasingly popular for application-
specific homogeneous blockchains. Those frameworks, such as
Polkadot [39] and Cosmos [26], naturally support blockchain
interoperability within their own community, but not for the
other heterogeneous blockchains.

Our approach. In this work, we present Bool Network
– an open, distributed, secure cross-chain notary platform. It
preserves the advantage of centralized notary solutions, e.g.,
excellent user-convenience and great blockchain compatibility,
while making the platform decentralized and open. More
specifically, Bool Network is an open blockchain where hidden
committees elected by cryptographic sortition are incentivized
to handle the cross-chain operations. The committee members
can anonymously communicate over blockchain, while their
identities are protected from the public. Initially, the committee
members collaboratively create an account on each supported
blockchain via multi-party computation (MPC). To transfer
a token from chain-A to chain-B, the user first transfers the
token to Bool Network’s account on chain-A, and sends the
transfer request to the Bool Network platform. The committee
then jointly sign (by threshold signature scheme) a transaction
on chain-B that issues the representative token to the user’s
account on chain-B. The system structure of a notary-based
cross-chain scheme is shown in Fig. 1.

To achieve evolving and hidden committee, Benhamouda
et al. [5] proposed a complicated two-committee scheme,
where a public nominating committee is first selected by
cryptographic sortition, and then each nominating committee
members will randomly select a holding committee member.
Alternatively, we present a much more efficient solution based
on a new notion, called Ring VRF (R-VRF). In Ring VRF, the
real public key of a verifiable random function (VRF) instance
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TABLE I: Comparison among cross-chain solutions. Here, we denote openness as the property that any party can freely
join/leave the system. By decentralization, we mean the transfer cannot be confirmed by a single entity. Fairness refers to the

property that no exchange party can benefit from the fluctuation of exchange rate. For compatibility, “low” means only
supporting a certain blockchain; “medium” means supporting a certain type of blockchains; “high” means supporting almost

all common blockchains. A bullet sign means some solutions in this type satisfy the property.

Solutions Openness Decentralization Hidden Committee Fairness Support Heterogeneous Chains Compatibility
Sidechains/Relays [19] • • – ! ! low

Centralized Exchanges [8], [15], [22] # # – ! ! high
Decentralized Exchanges [38], [1] ! ! – ! ! medium
Hashed time-lock contracts [33] ! ! – # ! medium

Blockchain of Blockchains [39], [26] ! ! – ! # medium
Fusion [17] # ! # ! ! high

Bool Network (this work) ! ! ! ! ! high
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Fig. 1: System structure of a notary-based cross-chain
scheme

can be hidden among a ring. More specifically, we design a
non-interactive zero knowledge protocol that allow the prover
to show that he/she knows the sk corresponding to one of
the public keys among the ring and the output of the pseu-
dorandom function (PRF) PRFsk(x) is correct. In particular,
showing PRFsk(x) = v w.r.t. the ring (pk0, . . . , pkN−1), we
have the following relation

RVRF =

 ((pk0, . . . , pkN−1, x, v), sk, `) |
` ∈ {0, . . . , N − 1} ∧ (pk`, sk) ∈ Rpk ∧
v ← PRFsk(x)


Remark: Furthermore, to avoid identity leakage from the

network-layer, only an anonymous broadcast channel is not
enough because the adversary can leverage network delays to
identify who is the committee member [25]. A sanitization
protocol on the application layer such as SABRE [2], or
reliable broadcast mechanisms [9], [10] can be utilized to
address this problem, as suggested in [25]. However, this is
out of scope of this paper.

In addition, to achieve minimal malware attack interface,
we deploy all the key-related programs on a trusted execution
environment (TEE), such as Intel SGX, to make sure that
even a malicious committee member cannot extract his/her
secret shares. Moreover, TEE enforces key share erasure after
committee switching. Note that, TEEs can be heterogeneous;
namely, the TEEs of the MPC participants can be from
different manufactories. Therefore, the threshold cryptosystem
used in our scheme ensures that even if side channel attacks
against some TEE chips are possible, the adversary cannot

reconstruct the secret as long as the majority of TEEs remain
secure.

Comparison with evolving committee proactive se-
cret sharing. Evolving committee proactive secret sharing
(ECPSS) scheme [5] typically considers proactive/mobile ad-
versary corruption, while the security of the schemes proposed
in this paper are proven in the static corruption model.
Although our security model is somewhat weaker, it enables
much more efficient protocols in practice. In particular, the
ECPSS scheme requires two committees, i.e., nominating
committee and holding committee, to hide the identities of the
holding committee; we only need one committee by utilizing
the Ring VRF protocol. Second, in ECPSS the previous-epoch
committee member needs to send a proof that the ciphertexts
lie on a degree-(t−1) polynomial; In contrast, we let the next-
epoch committee member raise a complain if he receives an
incorrect share along with a proof of decryption correctness.
The NIZK of decryption correctness is much more efficient
than the zk proof used in ECPSS.

Comparison with Fusion. Fusion [17] is a pioneer that
uses distributed control right management (DCRM) to manage
the secret keys. In a nutshell, Fusion deploys secret sharing
scheme to split the secret keys among multiple nodes, and uses
threshold signature scheme to jointly sign the transactions.
Compared with our scheme, they have four main drawbacks.

• Fusion’s committee who holds the secret key never
changes. The probability that the committee becomes
compromised increases along the time.

• The committee members’ identities are publicly known,
which makes the system at the risk of coercion or DoS
attacks.

• Fusion is not an open platform. Namely, operation nodes
cannot freely leave or join Fusion.

• Fusion does not use any hardware guard to protect
the secret key. This means that a malicious committee
member can easily extract his/her secret shares.

Finally, TABLE I compares popular existing cross-chain
schemes with our solution. Here, we denote openness as the
property that any party can freely join/leave the system. By
decentralization, we mean the transfer cannot be confirmed
by a single entity. Moreover, unlike Fusion, the identities of
the committee members in Bool Network are hidden from the
public; therefore, it offers more security guarantees against
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DoS, coercion, and colluding attacks. Fairness refers to the
property that no exchange party can benefit from the fluctu-
ation of exchange rate. For compatibility, Sidechains/Relays
only support a certain designated mainchain. Decentralized
exchanges usually support a particular cryptocurrency token
standard, e.g., ERC-20; Hashed time-lock contracts require
the blockchain to support smart contracts; Blockchain of
blockchains only supports homogeneous blockchains within
their community. Therefore, we mark the three aforementioned
solutions as medium compatibility. On the contrary, central-
ized exchanges, Fusion and Bool Network support almost all
common blockchains.

II. PRELIMINARIES

A. Hybrid Encryption

Our scheme utilizes hybrid encryption over blockchain for
peer-to-peer communication. The hybrid encryption scheme
HEnc consists of the following 4 PPT algorithms.

• σ ← Setup(1λ): take input as security parameter λ ∈ N,
and output a group parameter σ.

• (pk, sk) ← KeyGen(σ): pick random s ← Z∗q and set
h := gs, and output (pk := (g, h), sk := s).

• C ← Encpk(σ;m): pick random r ← Zq; compute
c1 := gr and c2 := hr; set k ← hash(c2); compute
u := AES-GCMk(m); output C = (c1, u).

• m ← Decsk(σ;C): compute c2 := (c1)sk; set k ←
hash(c2); output m := AES-GCM−1

k (u).

Clearly, the above hybrid encryption scheme HEnc is IND-
CPA secure under the DDH assumption and the semantic
security of AES-GCM encryption mode. In the actual imple-
mentation, hybrid encryption requires a trusted curve group
parameter, and we adopt the well-known curve 25519.

B. Commitment

A commitment scheme allows a sender to commit to a
value, and later he can reveal the value by opening the
commitment. A secure commitment scheme shall have two
properties: hiding and binding. We denote a commitment as
c = Com(m; r), where m is the committed value(message)
and r is the randomness. The hiding property and binding
property are defined as follows:

• Hiding: for any PPT adversary A, Pr[(m0,m1) ←
A; b← {0, 1}; c← Com(mb) : A(c) = b] ≈ 1

2
• Binding: for any PPT adversary A, the proability

Pr[(m0, r0,m1, r1) ← A : m0 6= m1,Com(m0; r0) =
Com(m1, r1)] ≈ 0

A Petersen commitment [31] is defined as follows. c :=
Comck(m; r) := gmhr, where ck = h is the commitment
key whose discrete logarithm is unknown to the committer.
Pedersen commitment is additively homomorphic; namely,
Comck(m0; r0) · Comck(m1; r1) = Comck(m0 +m1; r0 + r1).

In some use case, we don’t need homomorphic property.
We simple use the salted hash based commitment defined as
c := Com(m; r) = hash(m, r).

C. Blockchain
Our system is built on top of a blockchain platform. We

assume parties can use the underlying blockchain as a non-
blocking broadcast channel. Namely, if party P1 posts a
message m1 over the blockchain at the i-th round, any other
parties will receive it no later than (i+ δ)-round, where δ is a
known bound. For recording wealth, the blockchain also serves
as an account model ledger so that stake holders can lock some
amount of tokens to apply for a committee member. Formally,
we abstract the blockchain platform as a UC functionality
Gblockchain in Fig. 4 in Sec. III, below.

D. Verifiable Random Functions and Cryptographic Sortition
A verifiable random function (VRF) [29] is a pseudorandom

function that enables the key holder to prove the correctness
of the output. A VRF scheme VRF consists of the following
3 PPT algorithms:
• (pk, sk) ← KeyGen(λ): The key generation algorithm

produces a public key pk and a secret key sk.
• (v, π)← Evalsk(x): The evaluation algorithm takes secret

key sk and pre-image x, and image v and a proof π.
• 0/1 ← Verifypk(x, v, π): The verifier algorithm takes

input as the public key pk, the pre-image x, the image
v, and the proof π, and it outputs 0 for rejection or 1 for
acceptance.

Besides pseudo-randomness, a secure VRF scheme should
also have the following properties.
• Completeness: for any x, given (v, π) ← Evalsk(x), we

have Verifypk(x, v, π) = 1.
• Uniqueness: no PPT adversary A can output a public key

pk, a pre-image x, and (v1, π1, v2, π2) such that v1 6= v2

and Verifypk(x, v1, π1) = Verifypk(x, v2, π2) = 1.
A formal definition can be found in [29].
It is well-known that cryptographic sortition [13] can be

realized by VRF schemes. Over the blockchain, suppose
(pki, ski) are associated with party Pi. For a public input x,
each party Pi can compute (vi, πi)← VRF.Evalski(x). Then,
vi can be used to select the committee with public verification.
In our system, we would like to further hide the committee
member’s identities by proposing a new notion called Ring
VRF (cf. Sec. IV-A, below).

E. Trusted Execution Environment
Trusted execution environment (TEE) is designed to guar-

antee confidentiality and integrity of computations. It is an
isolated part that can store sensitive data and can issue
attestation to prove correctness of computation. In practice,
Intel SGX and ARM Trustzone are popular candidates of TEE.
Although a few side-channel attacks, e.g. [40], [27], [37], have
been explored against those TEE candidates, new designs and
fixes are proposed on a monthly basis [7], [34], [28], [30],
[36]. Hence, we take TEE as an acceptable hardware guard
to ensure privacy of secret key components. In this work, our
benchmarks are executed on the Intel SGX platform for its
readily deployed remote attestation infrastructure; however, we
emphasize that our protocol can also be implemented on any
other TEE platforms.
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III. SYSTEM OVERVIEW AND SECURITY MODEL

A. System Architecture

In this section, we will give an overview of Bool Network
platform with the example of cross-chain transfer between
Bitcoin (BTC) and Ethereum (ETH). As depicted in Fig. 2,
(C1, C2) denotes the cross-chain channel creation procedures;
(A1, A2, A3) denotes the lock-in procedures; (B1, B2, B3)
denotes the lock-out procedures.

Initially, a user creates an Bool Network account on the
Bitcoin blockchain through the Bool Network committee (cf.
C1) and a smart contract anchored to the Bool Network
account on Ethereum (cf. C2); subsequently, the Bool Network
committee members will sign a test message to check the
channel’s availability.

Each committee member runs light nodes of BTC and ETH
to verify transactions. When the user wants to lock-in 1 BTC,
he makes a transfer of 1 BTC to the address that was created
in step C1 (cf. A1). After confirming the transaction, the Bool
Network committee will use threshold signature to sign a
transaction that creates 1 wBTC on Ethereum (cf. A2). Finally,
the signed transaction will be submitted to Ethereum (cf. A3).
The lock-out process is similar: first, the user destroys 1 wBTC
on the Ethereum Anchor contract and specify the beneficiary
address (cf. B1). Then, the committee will monitor the event
and generate the corresponding Bitcoin transaction (cf. B2).
Lastly, the transaction will be broadcast on Bitcoin network
(cf. B3).

Bool Network

A2.sign the message

B2.sign the transaction

C1.create an account

BTC ETH

A3.mint

B1.destroy

A1.lock

B3.release

C2.create the contract

Fig. 2: Bool Network overview

Bool Network supports evolving hidden committee. We
assume the underlying blockchain has a weak beacon oracle
that can periodically produce an unpredictable but presumably
biased random string. For instance, the hash digest of latest
blocks. Define an epoch as a pre-defined number of rounds. At
the beginning of each epoch, a new committee will be selected
by cryptographic sortition using Ring VRF. The old committee
will then handover the secret keys to the new committee in
a secure and verifiable way. Fig. 3 shows an overview of the
evolving hidden committee. More specifically, it consists of
the following phases.
1. Registration. Before an epoch starts, all Bool Network

stakeholders can register for becoming an committee mem-
ber. The registration phase works as follows. A stakeholder
locks a certain amount of stake together with a public key.
Later, the associated public key will be used for crypto-
graphic sortition. For the sake of fairness and animosity, our
system utilizes the flat mode, i.e., there is a fixed amount

of stake to be locked per registration. If a stakeholder holds
more stake, he/she can register several times to get a larger
winning probability.

2. Sortition. For committee sortition, everyone first generates
the weak beacon string x over Bool Network blockchain,
which can be the hash of the previous blocks. Then, each
stakeholder takes x as input and computes PRFsk(x). If
PRFski(x) = v < T , then Pi randomly selects a ring
(pk1, . . . , pk`) and posts message (pk1, . . . , pk`, v, π, epk)
over the blockchain, where π is the Ring VRF proof, v is
the PRF output, epk is a freshly generated ephemeral public
key. Winning nodes are elected for next-epoch committee.
From then on, they can be communicated with, using the
ephemeral public key epk. As we can see, the ephemeral
public key reveals nothing about the committee member’s
identity, and the real identity is hidden within the ring
(pk1, . . . , pk`).

3. Handover. When a new committee is elected, the shared
secret keys need to be passed from the previous-epoch
committee to the new committee while keeping the public
keys unchanged. Our protocol is maliciously secure with
identifiable aborts. See sec. IV-E for details.

4. Threshold Signature. All transactions in our Bool Network
shall be jointly signed by the committee using a threshold
signature scheme. In particular, the threshold signature
scheme for ECDSA [23] is adopted from the GG20 scheme
by Gennaro and Godfeder [20] where the malicious party
can be identified in a protocol abortion.

Committee
(self selecting)

Ring VRF

Block

handover

…
…

Ring VRF

Block

Ring VRF

Block

handover handover

Fig. 3: Evolving committee overview

B. Key Management
As we mentioned above, all the key-related programs are

deployed on a trusted execution environment (TEE). Specif-
ically, on the initialization stage, a committee member loads
the program ΠDKG,Πhandover and Πsign into his/her TEE and
generates an remote attestation σ which proves that the
initialization process is correct. He/she then sends σ to the
attestation service and gets the attestation verification report
π. Finally, the attestation verification report π is put on the
blockchain to be publicly verifiable. Note that merely using
cryptographic tools cannot guarantee a malicious committee
would faithfully delete his/her secret shares upon request. The
deployment of TEE prevents the secret shares from being
extracted and enforces key share erasure after the handover
protocol, providing better confidentiality of secret keys.
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C. Universal Composability

We will do security analysis under the Universally Com-
posable (UC) [11], [12] model. In the UC framework, a
protocol is represented by a set of interactive Turing machines
(ITMs), and each ITM represents the program to be run by
a participant. In the following, we assume that all ITMs are
probabilistic polynomial time (PPT).

The security proof is based on the indistinguishability
between the real/hybrid world and the ideal world. Let
EXECΠ,A,Z be the execution of protocol Π in the real world
with adversary A and environment Z; let EXECF,S,Z be the
execution in the ideal world interacting with ideal functionality
F , simulator (ideal adversary) S and environment Z . We say
that Π UC-realizes F if for any PPT adversary A, there exists
a simulator S such that no PPT environment Z can distinguish
between EXECΠ,A,Z and EXECF,S,Z .

D. UC Ideal Functionalities

Our system utilizes the following UC functionalities as
building blocks.

Blockchain. As shown in Fig. 4, the functionality Gblockchain
consists of three interfaces: READ, WRITE and CHECK. Both
broadcasting messages and modification of the balance are
through the WRITE interface. There is a predicate Validate
that ensures the validity of the blockchain content.

The ideal functionality Gblockchain is globally available to all
participants. It is parameterized with a predicate Validate.
Initialization:
• Upon initialization, set Storage := ∅.

Storage:
• Upon receiving (READ, sid) from P :

– let val := Storage[sid];
– return (READ, sid, val) to the requestor.

• Upon receiving (WRITE, sid, inp) from P , do the
following:

– let val := Storage[sid];
– if Validate(val, inp) = 1, then set

Storage[sid] := val||(inp, P ), return (RECEIPT, sid) to
the requestor;

– Otherwise, return (REJECT, sid) to the requestor.
Check:
• Upon receiving (CHECK, sid, val), if val ∈ Storage[sid]

then return (CHECK, sid, true); else return
(CHECK, sid, false) to the requestor.

Functionality Gblockchain

Fig. 4: The ideal blockchain functionality Gblockchain

Distributed Key Generation. We propose a UC secure
distributed key generation (DKG) protocol with identifiable
aborts in Sec. 10. The DKG functionality is captured by
FDKG[G]. As shown in Fig. 5, the functionality chooses a
random global secret gsk and shares it to the participants using
Shamir’s secret sharing. The adversary S is able to determine
corrupted parties’ secret shares, as, in the rushing adversary
model, the corrupted parties can send messages after seeing
the honest parties’ messages in the real protocol.

The ideal functionality Ft,nDKG[G] interacts with key generators
P := {P1, . . . , Pn}, an ideal adversary S. It’s parameterized
with threshold t. Denote Pc as the set of corrupted generators,
Ph := P \ Pc as the set of honest generators, and |Pc| ≤ t− 1.
FDKG maintains a set N (initially set to ∅).
• Upon receiving (KEYGEN, sid, Pi) from Pi ∈ P , set
N := N ∪ Pi, send (KEYGENNOTIFY, sid, Pi) to S. Wait
until |N | = n.

• Upon receiving (CORRUPTSHARES, sid, ({j, pskj}Pj∈Pc ))
from S:

– Pick gsk← Zq , and compute gpk := ggsk;
– Construct random polynomial F (x) :=

∑t−1
b=0 ab · x

b

under the restriction F (j) = pskj for Pj ∈ Pc, and
F (0) = gsk;

– Compute pski := F (i) and ppki = gpski for i ∈ [n];
– Send (ABORT, sid) to S and wait for an

answer(ABORT, sid, b);
– Upon receiving the answer, if b = 1 then halt;
– Otherwise, sand (KEYGEN, sid, ({ppkj}j∈[n])) to S

and send (KEYGEN, sid, (pski, {ppkj}j∈[n])) to
Pi, i ∈ [n].

• Upon receiving (READPK, sid) from any party, return
(READPK, sid, gpk) to the requestor.

Functionality F t,nDKG[G]

Fig. 5: DKG ideal functionality F t,nDKG[G]

Anonymous Cryptographic Sortition. The anonymous
sortition functionality FpAnon-sortition is an abstraction that cap-
tures our Ring VRF-based sortition protocol, as depicted in
Fig. 6. Unlike the conventional cryptographic sortition, when
an elected committee member reveal his/her winning the sor-
tition, he/she does not publish his/her identity. Instead, he/she
can publish a message mi through the REVEAL interface,
which is an ephemeral public key in our scheme.

Handover. We design a UC secure handover protocol that
allows the old committee to pass the shared secret keys to the
new committee. Its functionality is captured by Fhandover[G]
as depicted in Fig. 7, the adversary can determine corrupted
parties’ secret shares.

IV. EVOLVING COMMITTEE

This section will describe the evolving committee secret
sharing in detail, as well as Ring VRF ΠRing-VRF and zk proof
for decryption correctness ΠDec as building blocks.

A. Ring VRF

In this section, we introduce a new notion, called Ring
Verifiable Random Function (Ring-VRF). Given a set of public
keys {pk0, . . . , pkN−1} and an input x ∈ {0, 1}∗, R-VRF
allows the user to invoke its private key sk to generate
v ← PRFsk(x), and convince the public that

RVRF =

 ((pk0, . . . , pkN−1, x, v), sk, `) |
` ∈ {0, . . . , N − 1} ∧ (pk`, sk) ∈ Rpk ∧
v ← PRFsk(x)


where Rpk = {(pk, sk)|pk = gsk}.
We give a formal definition of Ring VRF as follows. It

consists of 3 PPT algorithms.
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The functionality FpAnon-sortition interacts with a set of parties
P := {P1, . . . , Pn} and adversary S. It is parameterized with a
variable p ∈ [0, 1], and tables Pub and T . Let Pc be the set of
corrupted parties, Ph := P \ Pc be the honest parties.
Initially, set Pub := ∅, T := ∅.
Initialization:
• Upon receiving (INIT, sid) from the adversary S, for each

party Pi, pick a random bit bsidPi with Pr[bsidPi ] = p and set
T [sid] := {< Pi, b

sid
Pi
>}Pi∈Pc , and then send

(INIT, sid, T [sid]) to the adversary S.
• Upon receiving (REFRESH, sid) from S, last step will be

repeated.
Query:
• Upon receiving (QUERY, sid) from Pi ∈ P , if bsidPi is

initialized, send (QUERY, sid, bsidPi ) to the requestor.
Reveal:
• Upon receiving (REVEAL, sid,mi) from Pi ∈ P:

– If bsidPi = 1, then set Pub[sid] := Pub[sid] ∪ {mi}.
Send (REVEAL, sid,mi) to the adversary S.

– Otherwise, ignore the request.
• Upon receiving (STATE, sid) from any party Pi ∈ P , send

(STATE, sid,Pub[sid]) to the requestor.

Functionality FpAnon-sortition

Fig. 6: Anonymous cryptographic sortition ideal functionality
FpAnon-sortition

Ft1,t2,c1,c2handover [G] interacts with previous-epoch committee
members P := {P1, . . . , Pc1}, next-epoch committee members
Q := {Q1, . . . , Qc2} and adversary S. It is parameterized
with threshold t1, t2, previous-epoch committee size c1, next-
epoch committee size c2. Denote Pc as the set of previous-epoch
corrupted parties, Ph := P \ Pc as the set of previous-epoch
honest parties, and |Pc| ≤ t1 − 1. Denote Qc as the set of
next-epoch corrupted parties, Qh := Q \ Qc as the set of
next-epoch honest parties, and |Qc| ≤ t2 − 1. It maintains
sets M,N (initially set to ∅).
• Upon receiving (HANDOVER, sid, pski, {ppk

(i)
j }j∈[c1])

from Pi:
– Set N := N ∪ i, send (HANDOVERNOTIFY, sid, Pi)

to S. Wait until |N | = c1;
– Set {ppkj}j∈[c1] as the majority of
{{ppk(i)j }j∈[c1]}i∈[c1];

– Set M as the first t1 parties that satisfy
ppkj = gpskj , set pskj := pskj .

• Upon receiving
(CORRUPTSHARES, sid, ({j, npskj}Qj∈Qc )) from S:

– Compute gsk =
∏
j∈M λj · pskj , where {λj}j∈M

are Lagrange coefficients, i.e., λj :=
∏
`∈M\{j}

`
`−j ;

– Construct random polynomial F (x) :=
∑t2−1
b=0 ab · xb

under the restriction F (j) = npskj for Qj ∈ Qc, and
F (0) = gsk;

– Compute npski := F (i) and nppki = gnpski for
i ∈ [c2];

– Send (ABORT, sid) to S and wait for an
answer(ABORT, sid, b);

– Upon receiving the answer, if b = 1 then halt;
– Otherwise, send (HANDOVER, sid, ({nppkj}j∈[c2]))

to S and (HANDOVER, sid, (npski, {nppkj}j∈[c2]))
to Qi, i ∈ [c2].

Functionality F t1,t2,c1,c2handover [G]

Fig. 7: Handover ideal functionality F t1,t2,c1,c2handover [G]

• (pk, sk) ← KeyGen(λ): The key generation algorithm
produces a public key pk and a secret key sk.

• (v, π) ← Eval(sk, x, {pk0, . . . , pkN−1}): The evaluation
algorithm takes as input secret key sk, x and a set of
public keys {pk0, . . . , pkN−1}. It outputs v and a proof
π for RVRF.

• 0/1 ← Verify(x, v, π): The verifier algorithm takes as
input (x, v, π) and outputs 0 or 1.

1) PRF: Let G be a cyclic group with prime order q, and
denote g as the generator. H : {0, 1}∗ 7→ G is a hash function
that maps an arbitrary length string to a group element. In
this work, we adopt PRF PRF : {0, 1}∗×Zq 7→ G as follows:
PRFsk(x) := H(x)sk. Note that, in the actual implementation,
H can be implemented by the “Elligator 2” mapping proposed
in [6].

2) Our construction: We first describe the intuition of the
protocol. In the first step of our protocol, the prover create a
new commitment of sk, denoted as c = Comck(sk; t). Then, the
protocol can be viewed as two parts run in parallel. One part
is inspired by one-out-of-many protocol [21] that ensures pk`
is in the ring. The other part ensures that c and v corresponds
to the same sk. Combining the two parts together we get the
protocol for Ring VRF. In practice, Pedersen commitment can
be used as the additive homomorphic commitment scheme,
i.e., Comck(a; r) = gahr.

In this paragraph we specify the polynomial pi(e) used in
the protocol. Following the idea of [21], we write i = i1 . . . in
and ` = `1 . . . `n in binary, and we let δij be Kronecker’s delta,
i.e., δ`` = 1 and δi` = 0 for i 6= `. We let fj = `je + aj ,
let fj,1 = fj = `je + aj = δ1`je + aj and fj,0 = e − fj =
(1− `j)e−aj = δ0`je−aj . Then, pi(e) =

∏n
j=1 fj,ij has the

form:

pi(e) =

n∏
j=1

(δij`je) +

n−1∏
k=0

pi,ke
k = δije

n +

n−1∏
k=0

pi,ke
k (1)

Finally, Fig. 8 shows the Sigma protocol for the relation
RVRF. By Fiat-Shamir heuristic [16] we can transform it into
a non-interactive zero knowledge proof. Moreover, we add a
tag in the hash input, which is the ephemeral public key in
our application scenario.

Theorem 1. Let Com be an additive homomorphic non-
interactive commitment scheme that is perfectly hiding and
computationally binding with adversarial advantage ε. Pro-
tocol Πzk-VRF as described in Fig. 8 for relation RVRF is a
three-move public coin zero-knowlege protocol with perfect
completeness, (n+ 1)-special soundness with adversarial ad-
vantage ε and perfect special honest verifier zero-knowledge.

Proof. To prove that protocol ΠRing-VRF is perfect complete
observe that

∏n
j=1 fj,ij is a polynomial in the challenge e of

the form pi(e) = δi`e
n +

∏n−1
k=0 pi,ke

k. When pk` = gsk,

c` is a commitment to 0 we therefore get that c
∏n
j=1 fj,`j

`

in the verification equation is a commitment to 0. Since
cdk =

∏
i c
pi,k
i Comck(0; ρk), by the additive homomorphic

property of Com, the terms involving pi,k are all cancelled.

Hence, the verification equation
∏
i c

∏n
j=1 fj,ij

i ·
∏n−1
k=0 c

−ek
dk

=
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CRS: the commitment key ck = h;
Statement: pk0, . . . , pkN−1, x, v;
Witness: sk, ` such that ` ∈ {0, . . . , N −1} ∧ pk` = gsk ∧ v =
H(x)sk.

Prover:
• t← Zq , c = gskht;
• For i = 0, . . . , N − 1, compute ci = pki/c;
• For j = 1, . . . , n

– rj , aj , sj , tj , ρk ← Zq ;
– c`j = Comck(`j ; rj);
– caj = Comck(aj ; sj);
– cbj = Comck(`jaj ; tj);
– cdk =

∏
i c
pi,k
i Comck(0; ρk), using k = j − 1 and

pi,k from Eq. 1;

• s′, t′ ← Zq , m1 = gs
′
ht
′
,m2 = us

′
, using u = H(x);

• P → V :
(c, c`1 , ca1 , cb1 , cd0 , . . . , c`n , can , cbn , cdn−1

,m1,m2).
Verifier:
• e← Zq ;

In the non-interactive version, e =
hash(tag, ck, pk0, . . . pkN−1, r, x, c, c`1 , ca1 , cb1 , cd0 . . . , c`n ,
can , cbn , cdn−1

,m1,m2).
• V → P : e.

Prover:
• For j = 1, . . . , n

– fj = `je+ aj ;
– zaj = rje+ sj ;
– zbj = rj(e− fj) + tj ;
– zd = (−t)en −

∑n−1
k=0 ρke

k;
• y1 = s′ + sk · e, y2 = t′ + te;
• P → V : (f1, za1 , zb1 , . . . , fn, zan , zbn , zd, y1, y2).

Verifier:
• For i = 0, . . . , N − 1, compute ci = pki/c;
• For all j ∈ {1, . . . , n}, check

– ce`j
caj = Comck(fj ; zaj );

– c
e−fj
`j

cbj = Comck(0; zbj );

• check
∏
i c

∏n
j=1 fj,ij

i ·
∏n−1
k=0 c

−ek
dk

= Comck(0; zd), using
fj,1 = fj and fj,0 = e− fj ;

• check gy1hy2 = m1ce, uy1 = m2ve, using u = H(x);
• Output 1 iff all the checks pass.

Sigma protocol for Ring VRF ΠRing-VRF

Fig. 8: Sigma protocol for Ring VRF ΠRing-VRF

Comck(0; zd) always holds. And gy1hy2 = m1c
e, uy1 = m2v

e

also hold. Therefore the protocol is complete.
To prove that protocol ΠRing-VRF is (n+1)-sound, we show

that an adversary with probability ε of breaking (n + 1)-
soundness can be converted into an adversary that has proba-
bility ε of breaking the binding property of the commitment
scheme.

Suppose the cheating prover creates n + 1 accepting
responses f

(0)
1 , . . . , y

(0)
2 , . . . , y

(n)
2 , . . . , z

(n)
d to n + 1 differ-

ent challenges e(0), . . . , e(n) on the same initial message
c, c`1 . . . ,m2, we first show that `j ∈ {0, 1}. Pick two
responses f

(0)
j , z

(0)
aj , z

(0)
bj

and f
(1)
j , z

(1)
aj , z

(1)
bj

to challenges
e(0), e(1) on the commitments caj , cbj . By combining the
verification equations we get ce

(0)−e(1)
`j

= Comck(f
(0)
j −

f
(1)
j ; z

(0)
aj − z

(1)
aj ) and c

e(0)−f(0)
j −e

(1)+f
(1)
j

`j
= Comck(0; z

(0)
bj
−

z
(1)
bj

). Defining `j =
f
(0)
j −f

(1)
j

e(0)−e(1) and γj =
z(0)aj
−z(1)aj

e(0)−e(1) we
extract an opening of c`j = Comck(`j ; γj). Furthermore,

since c
e(0)−f(0)

j −e
(1)+f

(1)
j

`j
= c

(1−`j)(e(0)−e(1))
`j

= Comck(`j(1−
`j)(e

(0)−e(1)); γj(1−`j)(e(0)−e(1))) = Comck(0; z
(0)
bj
−z(1)

bj
),

we either get a breach of the binding property of the com-
mitment scheme or we have `j(1 − `j) = 0, which implies
`j ∈ {0, 1}.

Let aj be the number commited in caj , from the verification
equation ce`jcaj = Comck(fj ; zaj ) we get that f (0)

j = `je
(0) +

aj , . . . , f
(n)
j = `je

(n) + aj for all j = 1, . . . , n unless the
adversary breaks the binding property of the commitment
scheme, it must hold for all challenges. From fj,1 = fj and
fj,0 = e−fj we get fj,1 = `je+aj and fj,0 = (1−`j)e−aj .
For i 6= ` we therefore get that

∏n
j=1 fj,ij is a degree at most

n − 1 polynomial pi(e), and for i = ` it is a polynomial
of the form p`(e) = en + . . . This means we can rewrite∏
i c

∏n
j=1 fj,ij

i ·
∏n−1
k=0 c

−ek
dk

= Comck(0; zd) as

ce
n

` ·
∏n−1

k=0
ce
k

∗k = Comck(0; zd)

for some fixed c∗0 , . . . , c∗n−1 , which can be computed from
commitments in the statement and the initial message.

Observe that the vectors (1, e(β), . . . , (e(β))n), β = 0, . . . , n
can be viewed as rows in a Vandermonde matrix because
e(0), . . . , e(n) are all different. The matrix is invertible and
we can therefore find a linear combination (α0, . . . , αn) of
the rows that gives us the vector (0, . . . , 0, 1). Combining the
n+ 1 accepting verification equations we therefore get

c` =

n∏
β=0

(c
(e(β))n

` ·
n−1∏
k=0

c
(e(β))k

∗k )αβ = Comck(0;

n∑
β=0

αβz
(β)
d )

This gives us an extracted opening of c` to 0. Since ci =
pki/c, denote pk` = gsk` we have c = gsk`ht.

As to the PRF part, to show c and v corresponds to the
same sk = sk`, we pick two responses y(0)

1 , y
(0)
2 , y

(1)
1 , y

(1)
2

to the challenges e(0), e(1). We have gy
(0)
1 hy

(0)
2 = m1c

e(0) ,
gy

(1)
1 hy

(1)
2 = m1c

e(1) . Divide the two equations we get
c = g(y

(0)
1 −y

(1)
1 )(e(0)−e(1))−1

h(y
(0)
2 −y

(1)
2 )(e(0)−e(1))−1

. Similarly,
we have uy

(0)
1 = m2v

e(0) , uy
(1)
1 = m2v

e(1) . Divide the two
equations we get v = u(y

(0)
1 −y

(1)
1 )(e(0)−e(1))−1

. Thus we extract
sk = (y

(0)
1 − y

(1)
1 )(e(0)− e(1))−1 and t = (y

(0)
2 − y

(1)
2 )(e(0)−

e(1))−1.
To prove that protocol ΠRing-VRF is perfect special hon-

est verifier zero-knowledge, we build a special honest
verifier zero-knowledge simulator that is given a chal-
lenge e ∈ {0, 1}λ. First, it picks the elements of
the response uniformly at random as f1, . . . , y2 ← Zq .
It picks c = gahr at random and computes ci =
pki/c. It picks c`1 , . . . , c`n , cd1 , . . . , cdn−1

← Comck(0)
as random commitments to 0. Then, it computes caj =

c−x`j Comck(fj ; zaj ), cbj = c
fj−x
`j

Comck(0; zbj ), cd0 =∏
i c

∏n
j=1 fj,ij

i ·
∏n−1
k=1 c

−xk
dk

· Comck(0;−zd), m1 =
gy1hy2c−e, m2 = uy1v−e. Finally, it returns the simulated
initial message and response (c, c`1 , . . . ,m2, f1, . . . , y2).
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Now we argue that the simulated proof and the real
proof are perfectly indistinguishable. First, in both real
proofs and simulated proofs f1, . . . , y2 are uniformly
random in Zq . Furthermore, by the verification equa-
tions, ca1 , cb1 , . . . , can , cbn , cd0 ,m1,m2 are determined by on
f1, . . . , y2 and c, c`1 , . . . , cdn−1

both in real and in simulated
proofs. Since the commitment scheme Com is perfectly hiding,
the adversary cannot distinguish between the real and simu-
lated commitments c, c`1 , . . . , c`n , cd1 , . . . , cdn−1 . Hence, the
protocol is perfect zero-knowledge.

B. ZK Proof for Hybrid Decryption

In this section, we construct a Sigma protocol to show the
correctness of decryption w.r.t. the hybrid encryption scheme,
and then use Fiat-Shamir heuristic to transform it into a
non-interactive version. The non-interactive zero knowledge
protocol will be used later in our DKG protocol and handover
protocol. To prove the correctness of decryption, actually,
the prover only needs to provide c2 = (c1)sk. The verifier
can then computes k ← hash(c2) and checks the decryption
by m = AES-GCM−1

k (u) (cf. II-A). The Sigma protocol
is depicted in Fig. 9. Similar to Ring VRF, by Fiat-Shamir
heuristic we can transform it into a non-interactive zero
knowledge proof. We denote the NIZK protocol as ΠNIZKDec

.

Statement: pk := (g, h), c1, c2

Witness: sk such that c2 = csk1 ∧ h = gsk

Prover:
• Pick random t← Zq and compute w1 := gt, w2 := ct1;
• P → V : (w1, w2).

Verifier:
• e← Zq ;

In the non-interactive version, e = hash(pk, c1, c2, w1, w2).
• V → P : e.

Prover:
• Compute z := t+ e · sk (mod q);
• P → V : z.

Verifier:
• Output 1 if and only if the following holds:

– he · w1 = gz ;
– ce2 · w2 = cz1 .

Sigma protocol for decryption correctness ΠDec

Fig. 9: Sigma protocol for decryption correctness ΠDec

Theorem 2. The Sigma protocol in Fig. 9 for relation R
is perfectly complete, 2-special sound and perfectly special
honest verifier zero-knowledge.

Proof. To see that the Sigma protocol is perfectly complete
observe that c2 = csk1 and h = gsk. Thus we have gz = gt ·
ge·sk = gt · (gsk)e = he ·w1 and cz1 = ct1 · ce·sk1 = ct1 · (csk1 )e =
ce2 · w2.

To see that the Sigma protocol is 2-special sound, we
assume the prover respond to two different challenges e, e′

with z, z′. Divide the verification equation we get gz−z
′

=
he−e

′
and cz−z

′

1 = ce−e
′

2 . From gz−z
′

= he−e
′

we extract

sk = (z− z′)(e− e′)−1. Combining it with cz−z
′

1 = ce−e
′

2 we
can prove that c2 = csk1 .

To see that the Sigma protocol is perfectly special honest
verifier zero-knowledge we build a special honest verifier zero-
knowledge simulator that is given a challenge e. It picks z ←
Zp, then computes w1 = gz/he and w2 = cz1/c

e
2. We can see

that for a real statement, i.e., c2 = csk1 , we have w2 = wr1 for
both real proof and simulated proof, which means real proof
and simulated proof have the same distribution.

C. Distributed Key Generation

For distributed key generation, we modify the distributed
key generation protocol by Gennaro and Goldfeder [20] to
achieve UC secure. We use a NIZK proof and split the
broadcast step into two phase. In phase 1 parties broadcast
the ciphertexts; In phase 2 parties broadcast the verifica-
tion components. This allows the ideal world simulator to
compute the verification components reversely to achieve
indistinguishability. The protocol Πt,n

DKG is depicted in Fig. 10.

Setup: Each party Pi ∈ P is associated with a ephemeral public
key epki, and Pi holds the corresponding ephemeral secret key
eski.

• Upon receiving (KEYGEN, sid, Pi) from Z , Pi ∈ P does
the following:

– Select ui ← Zq and compute ci = Com(gui ), where
Com(gui ) = hash(gui ; ri). Send (WRITE, sid, ci) to
Gblockchain. Wait until all parties have broadcast ci;

– Choose a random degree-(t− 1) polynomial Gi with
Gi(0) = ui;

– For each k ∈ [n], Set σi,k = Gi(k) and use the k’s
ephemeral public key to encrypt it with hybrid
encryption scheme, setting cti,k = Encepkk (σi,k);

– Let the coefficients of Gi(x) be ai,0, . . . , ai,t−1.
Compute Ai,0 = gai,0 = gui , . . . , Ai,t−1 = gai,t−1 ;

– Send (WRITE, sid, (cti,1, . . . , cti,n)) to Gblockchain;
– Send (READ, sid) to Gblockchain and use eski to

decrypt them to get {σj,i}j∈[n]\{i};
– Send (WRITE, sid, ((gui ; ri), Ai,1, . . . , Ai,t−1)) to
Gblockchain(Gi(0) = ui implies Ai,0 = gui );

– Send (READ, sid) to Gblockchain to get
{(guj ; rj), Aj,1, . . . , Aj,t−1}j∈[n]\{i};

– Check if ci = hash(gui ; ri);
– Check if the shares are right, i.e.,
gσk,i =

∏t−1
j=0(Ak,j)

ij . If not, the receiver will
generate a NIZK proof π to prove that he receives the
wrong share(cf. non-interactive version of Fig. 9) and
send (WRITE, sid, π) to Gblockchain.(One valid
complaint against Pj will disqualify Pj , and the
protocol will abort.);

– Compute secret key share pski =
∑
j∈[n] σj,i;

– Set public key as gpk =
∏
j∈[n] g

uj , secret key as
gsk =

∑
j∈[n] uj , each party’s partial public key as

ppkj = gxj =
∏
`∈[n] g

σ`,j =∏
`∈[n](

∏t−1
k=0(A`,k)

jk );
– Return (KEYGEN, sid, (pski, {ppkj}j∈[n])) to Z .

• Upon receiving (READPK, sid) from Z , return
(READPK, sid, gpk) to Z .

Distributed key generation protocol Πt,n
DKG[G]

Fig. 10: Distributed key generation protocol Πt,n
DKG[G]



9

D. Anonymous Committee Sortition

In the committee sortition process, we hope to hide the
committee members so as to avoid coercion or DoS attack. The
committee sortition protocol works as follows. For protocol
setup, each party owns his/her secret key sk and there is an
agreed-upon random number x from the blockchain. At the
beginning of the protocol, each party computes v = PRFsk(x)
and check if v is less than a certain threshold T , which repre-
sents his/her winning the sortition. The sortition winners will
broadcast a Ring VRF proof π along with his/her ephemeral
public key epk. Other members watch the blockchain and
record the valid ephemeral public keys.

The ideal functionality FpAnon-sortition can be realized by a
Ring VRF-based sortition protocol in the {FRO,Gblockchain}-
hybrid model. The simulator S performs as follows: Upon
receiving (INIT, sid, T [sid]) from FpAnon-sortition, S simulates
FRO so that vi < T for i : bsidPi = 1. Upon receiving
(REVEAL, sid,mi) from FpAnon-sortition, S simulates a Ring
VRF proof π and sends (WRITE, sid, (π,mi)) to Gblockchain.
Since FRO is simulated by S , the real world and ideal world
are indistinguishable.

E. Handover

The handover protocol utilizes the Shamir secret sharing
scheme to re-share the secret keys from the previous commit-
tee to the new committee. In particular, it uses Feldman’s VSS
to achieve verifiability and accountability. Similar to the DKG
protocol, a NIZK proof for decryption correctness is used to
identify the malicious behaviors and the broadcast step is split
into two phase to ensure UC security. The detail of handover
protocol is depicted in Fig. 11.

Note that, our handover protocol achieves identifiable abort.
Namely, if a malicious committee member does not follow the
protocol, the honest party will raise a complain against him/her
and he/she will be disqualified. Then, the remaining parties
will re-run the protocol so the the protocol will eventually
terminate. In Bool Network, these disqualified committee
members will be punished when the handover protocol fin-
ishes.

F. Threshold Signature

For threshold signature, we support common signature
schemes used in blockchain cryptocurrencies, including
BLS [3], Schnorr [35] and ECDSA [23]. To generate a BLS
signature, the committee only needs to reconstruct the secret
in the exponent. A Schnorr signature can be generated by the
additive homomorphism property of Shamir secret sharing. As
to the most difficult ECDSA, we adopt the threshold signature
protocol proposed by Gennaro and Goldfeder [20], which
achieves one round threshold ECDSA with identifiable abort.

V. SECURITY ANALYSIS

In this section, we will formally prove that our DKG
protocol Πt,n

DKG[G] and handover protocol Πt1,t2,c1,c2
handover [G] UC-

realize DKG ideal functionality F t,nDKG[G] and handover ideal
functionality F t1,t2,c1,c2handover [G], respectively.

Setup: Each next-epoch committee member Qi ∈ Q is
associated with an ephemeral public key epki, and Qi holds
the corresponding ephemeral secret key eski. The protocol is
parameterized with threshold t1, t2, previous-epoch committee
size c1, next-epoch committee size c2. The shares held by C1
define a degree-(t1 − 1) polynomial F1 with F1(0) = σ, where
each seat j holds a share pskj = F1(j). All parties agree on
the non-zero evaluations points I = {1, 2, . . . , c1} used for a
t1-of-c1 Shamir secret-sharing scheme.

Upon receiving (HANDOVER, sid, pski, {ppkj}j∈[c1]) from Z:
• Previous-epoch committee member Pi ∈ P does the

following:

– Send (WRITE, sid, {ppk(i)j }j∈[c1]) to Gblockchain;
– Send (READ, sid) to Gblockchain and set {ppkj}j∈[c1]

as the majority of {{ppk(k)j }j∈[c1]}k∈[c1];
– Choose a random degree-(t2 − 1) polynomial Gi with
Gi(0) = pskj ;

– For each k ∈ [c2], Set σi,k = Gi(k) and use the k’s
ephemeral public key to encrypt it with hybrid
encryption scheme, setting cti,k = Encepkk (σi,k);

– Let the coefficients of Gi(x) be ai,0, . . . , ai,t2−1.
Compute Ai,1 = gai,1 , . . . , Ai,t2−1 = gai,t2−1

(Ai,0 = ppki, which is publicly known, so there is no
need to broadcast it);

– Send (WRITE, sid, (cti,1, . . . , cti,c2 )) to Gblockchain.
Wait until all parties have broadcast
(ctj,1, . . . , ctj,c2 );

– Send (WRITE, sid, (Ai,1, . . . , Ai,t2−1)) to Gblockchain.
• Next-epoch committee member Qi ∈ Q does the following:

– Send (READ, sid) to Gblockchain and use esk to decrypt
the ciphertexts to get {σj,i}j∈[c1];

– Send (READ, sid) to Gblockchain to get {Aj,k}j∈[c1];
– Check if the shares are right, i.e.,
gσj,k =

∏t2−1
n=0 (Aj,n)

kn , where Aj,0 = ppkj . If not,
the receiver will broadcast a NIZK proof to prove that
he receives the wrong share(cf. non-interactive version
of Fig. 9);(One valid complain against Pj will
disqualify Pj and the protocol will abort.)

– Let the indices of the first t1 valid messages be set I,
I ⊆ [c1] and |I| = t1. Compute the share of the
global secret corresponding to seat i as
npski =

∑
j∈I λj · σj,i, where

λj :=
∏
`∈I\{j}

`
`−j ;

– Compute each new committee member’s partial public
key as nppkk =

∏
j∈I

(gσj,k )λj =∏
j∈I

(
∏t2−1
n=0 (Aj,n)

kn )λj , k = 1, . . . , c2, where

λj :=
∏
`∈I\{j}

`
`−j ;

– Return (HANDOVER, sid, (npski, {nppkj}j∈[c2])) to
Z .

The handover protocol Πt1,t2,c1,c2
handover [G]

Fig. 11: The handover protocol Πt1,t2,c1,c2
handover [G]

Theorem 3. Let the hybrid encryption scheme HEnc be IND-
CPA secure with adversary advantage AdvIND-CPA

HEnc (A, λ). Let
the NIZK protocol for decryption correctness ΠNIZKDec

be
statistically sound with soundness error AdvsoundNIZKDec

(A, λ) and
perfect zero-knowledge. The protocol Πt,n

DKG[G] described in
fig. 10 UC-realized F t,nDKG[G] against static corruption up
to t − 1 parties in the {Gblockchain,FRO}-hybrid model with
distinguishing advantage

n2 · AdvIND-CPA
HEnc (A, λ) + n(t− 1) · AdvsoundNIZKDec

(A, λ) .
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Proof. We first construct a simulator S such that any non-
uniform PPT environment Z cannot distinguish between the
ideal world execution EXECFt,nDKG[G],S,Z and the real world
execution EXECGblockchain,FRO

Πt,nDKG[G],A,Z . In the ideal world, the parties

interact with functionality F t,nDKG[G] and the corrupted parties
are controlled by S; in the real world, the parties P =
{P1, . . . , Pn} run protocol Πt,n

DKG[G] in the {Gblockchain,FRO}-
hybrid world and the corrupted parties are controlled by a
dummy adversary A who simply forwards messages from/to
Z .

Simulator. The simulator S internally runs A, forwarding
messages to/from the environment Z . The simulator simulates
the following interactions with A:
• Upon receiving (KEYGENNOTIFY, sid, Pi) from the ideal

functionality F t,nDKG[G] about an honest generator Pi, the
simulator S controls Pi to do the following:

– Compute ci = Com(g0), where Com(g0) =
hash(g0; ri). Send (WRITE, sid, ci) to Gblockchain.
Wait until all parties have broadcast ci.

– For Pk ∈ Ph, set σi,k = 0; for Pk ∈ Pc, select
rk ← Zq and set σi,k = rk. Use the k’s ephemeral
public key to encrypt it with hybrid encryption
scheme, setting cti,k = Encepkk(σi,k);

– Send (WRITE, sid, (cti,1, . . . , cti,n)) to Gblockchain.
• Once the simulated Gblockchain receives

(WRITE, sid, (cti,1, . . . , cti,n)) from all corrupted
parties, the simulator S does the following:

– Use honest parties’ secret keys to decrypt the corre-
sponding ciphertexts to get σi,j , Pi ∈ Pc, Pj ∈ Ph.

– For all Pj ∈ Pc, compute pskj =
∑
i∈[n] σi,j

and send (CORRUPTSHARES, sid, ({j, pskj}Pj∈Pc))
to the ideal functionality F t,nDKG[G].

• Once the simulated Gblockchain receives
(WRITE, sid, (Aj,1, . . . , Aj,t−1)) from all corrupted
parties, the simulator S does the following:

– If ci = hash(gui ; ri) and gσi,k =
∏t−1
j=0(Ai,j)

kj hold
for all Pi ∈ Pc, set b = 0, else set b = 1. Send
(ABORT, sid, b) to the ideal functionality F t,nDKG[G].

• Upon receiving (KEYGEN, sid, (pski, {ppkj}j∈[n])) from
the ideal functionality F t,nDKG[G], the simulator S does the
following:

– Compute {Ai,j}Pi∈Ph,0≤j≤t−1 that satisfies gσi,k =∏t−1
j=0(Ai,j)

kj , Pi ∈ Ph, Pk ∈ Pc and ppki =∏
j∈[n](

∏t−1
k=0(Aj,k)i

k

), Pi ∈ Ph.
– For all honest parties Pi ∈ Ph, send

(WRITE, sid, ((Ai,0, ri), Ai,1, . . . , Ai,t−1)) to
Gblockchain, where simulated FRO opens ci to
(Ai,0, ri).

• Once an honest party receives (READPK, sid) from the
environment Z , compute gpk =

∏
i∈[n] ppki, return

(READPK, sid, gpk).
Indistinguishability.
The indistinguishability is proven through a series of hybrid

worlds H0, . . . ,H3.
Hybrid H0: It is the real world execution EXECGblockchain,FRO

Πt,nDKG[G],A,Z .

Hybrid H1: H1 is the same as H0 except that in H1,
the messages (cti,1, . . . , cti,n) sent by the honest user Pi are
replaced by simulated encryptions of 0.

Claim: If the hybrid encryption scheme HEnc is IND-CPA
secure with adversary advantage AdvIND-CPA

HEnc (A, λ), H0 and
H1 are indistinguishable with distinguishing advantage at most
n2 · AdvIND-CPA

HEnc (A, λ).
Proof: The indistinguishability under chosen plaintext attack

means that the adversary cannot distinguish encryption of 0
and encryption of a number. There are at most n2 simu-
lated ciphertexts, so the advantage in H1 is no more than
n2 · AdvIND-CPA

HEnc (A, λ).
Hybrid H2: H2 is the same as H1 except that in H2, when

Pj ∈ Pc produce a valid complaint against an honest party, S
will abort.

Claim: If the NIZK protocol is statistically sound with
soundness error AdvsoundNIZKDec

(A, λ), H1 and H2 are indistin-
guishable with distinguishing advantage at most n(t − 1) ·
AdvsoundNIZKDec

(A, λ).
Proof: By the soundness of the NIZK protocol the prob-

ability that S will give up is negligible. There are at most
n(t− 1) statements, so the advantage in H1 is no more than
n(t− 1) · AdvsoundNIZKDec

(A, λ).
Hybrid H3: H3 is the same as H2 except that in H3, ci is

opened with the simulated FRO.
Claim: H2 and H3 are perfectly indistinguishable.
Proof: As long as the encoding of FRO has not been

exhausted, the simulated FRO is the same as real FRO.
The adversary’s view of H3 is identical to the simulated

view EXECFt,nDKG[G],S,Z . Therefore, no PPT Z can distinguish
the view of the ideal execution from the view of real execution
with advantage more than n2 · AdvIND-CPA

HEnc (A, λ) + n(t− 1) ·
AdvsoundNIZKDec

(A, λ).

Theorem 4. Let the hybrid encryption scheme HEnc be IND-
CPA secure with adversary advantage AdvIND-CPA

HEnc (A, λ). Let
the NIZK protocol for decryption correctness ΠNIZKDec

be
statistically sound with soundness error AdvsoundNIZKDec

(A, λ) and
perfect zero-knowledge. The protocol Πt1,t2,c1,c2

handover [G] described
in fig. 11 UC-realized F t1,t2,c1,c2handover [G] against static corruption
up to t1−1 previous-epoch parties and up to t2−1 next-epoch
parties in the Gblockchain-hybrid model with distinguishing
advantage

c1c2 · AdvIND-CPA
HEnc (A, λ) + c1(t2 − 1) · AdvsoundNIZKDec

(A, λ) .

Proof. We first construct a simulator S such that any non-
uniform PPT environment Z cannot distinguish between the
ideal world execution EXECFt1,t2,c1,c2handover [G],S,Z and the real

world execution EXECGblockchain
Π
t1,t2,c1,c2
handover [G],A,Z

. In the ideal world,

the parties interact with functionality F t1,t2,c1,c2handover [G] and the
corrupted parties are controlled by S; in the real world, the
parties P = {P1, . . . , Pc1} and Q = {Q1, . . . , Qc2} run
protocol Πt1,t2,c1,c2

handover [G] in the Gblockchain-hybrid world and the
corrupted parties are controlled by a dummy adversary A who
simply forwards messages from/to Z .
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Simulator. The simulator S internally runs A, forwarding
messages to/from the environment Z . The simulator simulates
the following interactions with A:

• Upon receiving (HANDOVERNOTIFY, sid, Pi) from the
ideal functionality F t1,t2,c1,c2handover [G] about an honest gener-
ator Pi, the simulator S controls Pi to do the following:

– Send (WRITE, sid, {ppk(i)
j }j∈[c1]) to Gblockchain;

– Send (READ, sid) to Gblockchain and set {ppkj}j∈[c1]

as the majority of {{ppk(k)
j }j∈[c1]}k∈[c1];

– For Pk ∈ Ph, set σi,k = 0; for Pk ∈ Pc, select
rk ← Zq and set σi,k = rk. Use the k’s ephemeral
public key to encrypt it with hybrid encryption
scheme, setting cti,k = Encepkk(σi,k);

– Send (WRITE, sid, (cti,1, . . . , cti,c2)) to Gblockchain.
• Once the simulated Gblockchain receives

(WRITE, sid, (cti,1, . . . , cti,c2)) from all corrupted
parties, the simulator S does the following:

– Use honest parties’ secret keys to decrypt the corre-
sponding ciphertexts to get σi,j , Pi ∈ Pc, Qj ∈ Qh.

– Let the indices of the first t1 valid messages be set I,
I ⊆ [c1] and |I| = t1. Compute corrupted parties’
new partial secret key as npski =

∑
j∈I λj · σj,i,

where λj :=
∏
`∈I\{j}

`
`−j , Qi ∈ Qc;

– Send (CORRUPTSHARES, sid, ({j, npskj}Qj∈Qc)) to
the ideal functionality F t1,t2,c1,c2handover [G].

• Once the simulated Gblockchain receives
(WRITE, sid, ((gui , ri), Aj,1, . . . , Aj,t−1)) from all
corrupted parties, the simulator S does the following:

– If gσi,k =
∏t2−1
n=0 (Ai,n)k

n

holds for all Pi ∈ Pc ∩I,
set b = 0, else set b = 1. Send (ABORT, sid, b) to
the ideal functionality F t1,t2,c1,c2handover [G].

• Upon receiving (HANDOVER, sid, {nppkj}j∈[c2]) from
the ideal functionality F t1,t2,c1,c2handover [G], the simulator S
does the following:

– Compute {Ai,j}Pi∈Ph,1≤j≤t2−1 satisfies gσi,k =∏t2−1
j=0 (Ai,j)

kj , Pi ∈ Ph, Qk ∈ Qc and nppkk =∏
j∈I

(gσj,k)λj =
∏
j∈I

(
∏t−1
n=0(Aj,n)k

n

)λj , Qk ∈ Qh.

– For all honest parties Pi ∈ Ph, send
(WRITE, sid, (Aj,1, . . . , Aj,t2−1)) to Gblockchain.

Indistinguishability.
The indistinguishability is proven through a series of hybrid

worlds H0, . . . ,H2.
Hybrid H0: It is the real world protocol execution

EXECGblockchain
Π
t1,t2,c1,c2
handover [G],A,Z

.

Hybrid H1: H1 is the same as H0 except that in H1, the
messages (ctj,1, . . . , ctj,c2) sent by the honest user Pi are
replaced by simulated encryptions of 0.

Claim: If the hybrid encryption scheme HEnc is IND-CPA
secure with adversary advantage AdvIND-CPA

HEnc (A, λ), H0 and
H1 are indistinguishable with distinguishing advantage at most
c1c2 · AdvIND-CPA

HEnc (A, λ).
Proof: The indistinguishability under chosen plaintext attack

means that the adversary cannot distinguish encryption of 0
and encryption of a number. There are at most c1c2 simulated

ciphertexts, so the advantage in H1 is no more than c1c2 ·
AdvIND-CPA

HEnc (A, λ).
Hybrid H2: H2 is the same as H1 except that in H2, when

Pj ∈ Pc produce a valid complaint against an honest party, S
will abort.

Claim: If the NIZK protocol is statistically sound with
soundness error AdvsoundNIZKDec

(A, λ), H1 and H2 are indistin-
guishable with distinguishing advantage at most c1(t2 − 1) ·
AdvsoundNIZKDec

(A, λ).
Proof: By the soundness of the NIZK protocol the prob-

ability that S will give up is negligible. There are at most
c1(t2−1) statements, so the advantage in H1 is no more than
c1(t2 − 1) · AdvsoundNIZKDec

(A, λ).
The adversary’s view of H2 is identical to the simulated

view EXECFt1,t2,c1,c2handover [G],S,Z . Therefore, no PPT Z can dis-
tinguish the view of the ideal execution from the view of real
execution with advantage more than c1c2 ·AdvIND-CPA

HEnc (A, λ)+
c1(t2 − 1) · AdvsoundNIZKDec

(A, λ).

VI. IMPLEMENTATION AND BENCHMARKS

1) Test network: We launched a local network of 30 full
nodes with a (10,15)-committee to test Bool Network in the
real environment. It worked for several days with a number of
successful committee switches.

Fig. 12: DKG protocol execution time depending on the
number of committee members

Fig. 13: Handover protocol execution time depending on the
number of committee members
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Fig. 14: Threshold signature protocol execution time
depending on the number of committee members

2) Evaluations: To evaluate the performance of the cryp-
tographic protocols, a special set of tests were conducted on
a workstation equipped with Intel Xeon(Ice Lake) Platinum
8369B CPU @2.9 GHz and 64GB RAM running Ubuntu 20.04
LTS. We deploy 3 virtual key servers, which are responsible
for executing the protocol, and 1 manage server, which is
responsible for giving instructions, on the workstation. Each
key server has 3 threads and we divide the task into pieces to
simulate the real execution time.

We benchmarked the running time of distributed key gener-
ation protocol, handover protocol and threshold ECDSA w/o
Intel SGX for different number of committee members: from
3 to 50. Results were given in Fig. 12, Fig. 13, Fig. 14,
respectively.

For Ring VRF, we benchmarked the prover running time,
verifier running time and proof with respect to different ring
size: from 3 to 50. Results were given in Fig. 15.

Fig. 15: The prover’s running time, verifier’s running time
and the size of the Ring VRF proof

VII. RELATED WORK

A cross-chain platform is aimed at transferring prop-
erty or information between different blockchains. Existing
cross-chain solutions can be classified into three categories:
sidechains/relays, notaries, and hashed time-lock contracts.
Sidechains/relays are layer one solutions that allow the main-
chain to offload transactions to the sidechain, e.g., [19] ,

[32]. A notary (e.g., [8], [38], [1]) is responsible to trigger
transactions upon monitoring an event on another chain, which
usually has better compatibility compared with other solutions.
Hashed time-lock contracts [33] ensure the atomicity of trans-
actions by hashlocks and timelocks, but it has the problem of
unfair trade due to fluctuation of exchange rate.

For notary schemes, to enhance the security of the secret
key, distributed secret key management approach is a potential
solution. Generally speaking, in distributed secret key man-
agement, there is a committee for managing the secret key
and signing transactions, with threshold cryptosystem ensuring
fault tolerance.

Fusion [17] is an existing project that uses distributed
control right management (DCRM) to manage secret keys.
However, in Fusion the committee who holds the secret key
does not change, which results in the risk of compromised
secret keys after a long period of time.

Benhamouda et al. proposed a notion called Evolving-
Committee Proactive Secret Sharing [5], where the secret can
be passed from the old committee to the new committee, bring-
ing more security to the system. They design a nominating
committee, which is self-elected, and a holding committee,
which is nominated by the nominating committee and is
identity-hidden, but the complicated two-committee scheme
makes it theoretic and impractical.

In [18], Ganesh, Orlandi and Tschudi focus on the problem
of how to build a private proof-of-stake blockchain. They
formally define the ideal functionalities and design protocols to
realize these functionalities. However, they use a Merkle tree
based zk proof to hide the identities, which is very inefficient.

[14] builds a platform for smart contracts with TEE to
address the problem of blockchains’ lacking of confidentiality
and poor performance. In this work, we propose a cross-chain
platform based on TEE to achieve secret key confidentiality
and integrity.

VIII. CONCLUSION

In this work, we present Bool Network blockchain platform
for cross-chain service. In particular, we propose an effi-
cient Ring-VRF scheme that enables evolving committee with
hidden identities. Besides, all the key management process
are executed in the TEE for confidentiality and integrity.
Compared with existing schemes, our system is efficient and
can be compatible with all off-the-shelf blockchains.
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