
sMGM: parameterizable AEAD-mode

Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva,
Andrey Bozhko and Stanislav Smyshlyaev

CryptoPro LLC, Moscow, Russia
{lah, alekseev, babueva, bozhko, svs}@cryptopro.ru

Abstract

The paper introduces a new AEAD-mode called sMGM (strong Multilinear Galois Mode).
The proposed construction can be treated as an extension of the Russian standardized MGM
mode and its modification MGM2 mode presented at the CTCrypt’21 conference. The dis-
tinctive feature of the new mode is that it provides an interface allowing one to choose specific
security properties required for a certain application case. Namely, the mode has additional
parameters allowing to switch on/off misuse-resistance or re-keying mechanisms.

The sMGM mode consists of two main «building blocks» that are a CTR-style gamma
generation function with incorporated re-keying and a multilinear function that lies in the
core of the original MGM mode. Different ways of using these functions lead to achiev-
ing different sets of security properties. Such an approach to constructing parameterizable
AEAD-mode allows for reducing the code size which can be crucial for constrained devices.

We provide security bounds for the proposed mode. We focus on proving the misuse-
resistance of the sMGM mode, since the standard security properties were already analyzed
during the development of the original MGM and MGM2 modes.

Keywords: MGM, MGM2, AEAD mode, security notion, security bounds, nonce-misuse,
misuse-resistant, SIV, re-keying

1 Introduction

In this paper we study nonce-based Authenticated Encryption with Associated Data
(AEAD) schemes, which aim to provide both integrity and confidentiality of data. The
widespread use of AEAD schemes motivates the study of its non-standard security prop-
erties, such as misuse-resistance [14], leakage resilience [4] and others [3, 8]. In our work
we focus on misuse-resistance and “defense in depth”.

Commonly nonce-based AEAD schemes are analyzed in a setting where each new
message is encrypted with a previously unused nonce (actually, nonce is a “number used
only once”), and the corresponding ciphertext has to be indistinguishable from a random
string. However, in some high-level applications nonce uniqueness requirement is hard to
fulfill. For example, a nonce can be reused in FDE (Full Disk Encryption) schemes [9], in
the case of processes parallelization [5], or as a result of tamper attacks [14]. Hence, the
need for misuse-resistant schemes arises. Misuse-resistance is formalized with the MRAE
security notion [14], where a ciphertext of each unique message (encrypted with even
non-unique nonce) has to be indistinguishable from a random string.

There are several ways to construct a misuse-resistant mode. The first one is wide-
PRP constructions with an AEZ mode [13] as an example. Another approach is a SIV
(synthetic IV) construction combining arbitrary encryption and tag generation mecha-
nisms in a certain way. The most vivid example of a SIV-based mode is GCM-SIV mode
[12]. Both these approaches do not provide high efficiency and have a lack of exploitation
properties that can be a deal for constrained devices. As a result, crypto libraries should
support various modes and its consumers should be competent enough to select the most
efficient mode providing desired security properties. From that our aim is to construct a

1

single mode that provides a user-friendly interface allowing consumers to simply select
the desired security properties, and then the mode would be automatically configured to
the optimal way of data processing.

Additionally, we are focusing on increasing the key lifetime which is a critical issue for
most applications. This can be achieved by incorporating an internal re-keying technique
from [2]. The internal re-keying approach modifies the base mode of operation in such a
way that each message is processed starting from the same key, which is changed using
a certain key update technique during the processing of the current message. The string
consisting of all input cipher blocks processed under the same key is called a section and
the key is called a section key. We notice that the internal re-keying also allows us to
achieve better security against side channel attacks.

Inspired by ideas used to design the MGM [11, 15] and MGM2 modes [1] and following
the aim outlined in the previous paragraphs, we develop a new AEAD mode sMGM
(strong MGM). By adjusting certain parameters this mode allows to 1) switch on/off
misuse-resistance, which is achieved by applying the SIV construction, and 2) increase
the key lifetime using internal re-keying. We design sMGM in such a way that it can be
implemented as a single mode and its code size is almost the same as for the conventional
modes.

Moreover, sMGM is built with provable security in mind and we provide strict proofs
for our security claims in Sections 5.2 and 5.3. In Section 2 we analyze the obtained
bounds for several use cases and discuss sMGM design. We notice that the presented
proofs contain a new hybrid PRP/PRF switching technique for schemes with re-keying
and a new security proof for СTR scheme with re-keying and a random IV in IND-CPA$
[6] model.

2 Our contribution

In this section we discuss a new AEAD mode sMGM. The encryption and decryption
algorithms of sMGM as well as their domain and range sets are formally defined in Section
4. The sMGM mode is parameterized by the following values:

sMGM

[
E, r, l0, l, siv

a block cipher a nonce length re-keying sections lengths misuse-resistance on/off

]

The first and foremost property of sMGM is an optional resistance to nonce misuse,
which is achieved by applying SIV-like design [14]. Nonce misuse resistance can be switch
on by setting a flag siv to 1. Further for simplicity, we will write sMGMs, when we need
to address sMGM with siv = 1. In order to support both options and reduce the code size
we define two “building blocks”, which are СTR-KM and MultTag functions. First one is a
CTR-style gamma generation function with incorporated re-keying as in [2]. The second
one is a multilinear function used for tag generation, which lies in the core of the original
MGM mode [11]. These blocks are used in the Encrypt-then-Mac way, if siv = 0, and
in Mac-then-Encrypt way (where tag is used as IV during encryption) if siv = 1 . The
approach is schematically depicted on Figure 1.

2

Figure 1: SIV approach

Moreover, sMGM is incorporated with a parameterizable internal re-keying. The major
difference between the re-keying in sMGM and other re-keying instantiations lies in a
presence of a separate parameter l0 ⩾ 0 for the size of the initial section. The size of
subsequent sections is defined by a parameter l > 0. The l0 parameter was introduced to
control the main key lifetime, since in the sMGM mode the main key is used for processing
data more frequently than the subsequent keys. For example, it can be set to 0 and the
main key will be used only for generation of subsequent section keys. We notice, that by
setting l0 to maximum data length, the re-keying can be switch off completely.

As a result, sMGMs, specially when combined with re-keying, provides a high security
level in MRAE model (see Theorem 3) even if a single nonce is used in all queries.
Moreover, sMGMs with re-keying has beyond birthday bounds in MRAE-int model (see
Theorem 2). In this paper we focus on the security of the misuse resistant version of
sMGM, since misuse resistance wasn’t previously provided by MGM-like schemes. Security
of another sMGM instance (with siv flag equal to 0) is somewhat similar to those of
MGM2 with re-keying and can be obtained by combining MGM2 security proof from [1]
and hybrid technique form GCM-ACPKM proof [2]. We also notice, that the integrity of
non-SIV version of sMGM still holds in a nonce misuse setting.

Now we consider two instances of misuse resistant sMGM – with and without re-
keying. We consider EK to be a random permutation with n = 128 and k = 256. The
section sizes for the re-keyed instance are l0 = 0 and l = 26. In the Table 1 we provide
security bounds for these two cases with a growing number q of encryption queries and
a single nonce value used in all queries. The number of forgery attempts is fixed and
equal to 1, the length mP of plaintexts is bounded by 210 blocks or 214 bytes (which is
the maximum size of TLS 1.3 records) and there is no additional data in all queries. In
the table we denote by δpriv upper bounds for success probabilities of attack on privacy
in MRAE model and by δint of forgery in MRAE-int model.

3 Definitions

Let |a| be the bit length of the string a ∈ {0, 1}∗. For a bit string a we denote by
|a|n = ⌈|a|/n⌉ the length of the string a in n-bit blocks. By {0, 1}⩽s we denote the set of
bit strings which length is less or equal to s.

For a string a ∈ {0, 1}∗ and a positive integer l ⩽ |a| let msbℓ(a) be the string,
consisting of the leftmost l bits of a. For nonnegative integers l and i let strl(i) be l-bit
representation of i with the least significant bit on the right, let int(M) be an integer i such

3

q
non re-keyed sMGM re-keyed sMGM

δint δpriv δint δpriv

232 2−62 2−43 2−62 2−49

240 2−46 2−27 2−46 2−33

248 2−30 2−11 2−30 2−17

256 1 1 2−14 1

Table 1: sMGMs security bounds

that strℓ(i) = M . For bit strings a ∈ {0, 1}n and b ∈ {0, 1}n we denote by a ⊗ b a string
which is the result of their multiplication in GF (2n) (here strings encode polynomials in
the standard way). If the value s is chosen from a set S uniformly at random, then we
denote s

U←− S. We define a function Set11: {0, 1}n → {0, 1}n, Set11(x) = x or (110 . . . 0).
For any set S, define Perm(S) as the set of all bijective mappings on S (permutations

on S), and Func(S) as the set of all mappings from S to S. A block cipher E with a block
size n and a key size k is the permutation family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
,

where K is a key.

4 sMGM mode

In this section we define a new AEAD mode – sMGM. The parameters of
sMGM[E, r, l0, l, siv] are defined in Section 2. For the nonce length the following limits
should be observed: 0 ⩽ r ⩽ n− 2−⌈log2(2⌈k/n⌉)⌉. The СTR-KM and MultTag functions
are defined in Figure 2.

СTR-KM(K,N, IV, f, len)

K0 ← K

t← max(0, ⌈(len− l0)/l⌉)
st← 1, end← l0

for j = 0 . . . t do :

for i = st . . . end do :

Xi ← EKj
(0∥f∥strn−2(IV + i− 1))

if j ̸= t : Kj+1 ← KM(Kj , N)

st← end+ 1

end← min(end+ l, len)

return X1, . . . Xlen

KM(K,N)

s← ⌈k/n⌉
for i = 1 . . . s do :

Ki ← EK(10∥strn−2(N + i− 1))

return msbk(K
1∥K2∥ . . . ∥Ks)

MultTag(K, {H1, . . . , Hlen},M, len)

M1∥ . . . ∥Mlen ←M

τ ← Set11

(
len⊕
i=1

Mi ⊗Hi

)
T ← EK(τ)

return T

Figure 2: СTR-KM and MultTag functions

The key, plaintext, associated data, ciphertext and tag sets for sMGM[E, r, l0, l, siv] are
defined as follows: K = {0, 1}k, N = {0, 1}r, A = P = C = {0, 1}⩽n(2n−2−2), T = {0, 1}n.
Moreover, the following condition should be satisfied: 0 < |A|+ |P | ⩽ n(2n−2−2). The key
generation function sMGM.Gen() is defined as K

U←− {0, 1}k, encryption and decryption
algorithms are defined in Figures 3a and 3b respectively.

4

sMGM[E, r, l0, l,0].Enc(K,N,A, P)

h← |A|n, q ← |P |n, len← h+ q + 2, s← ⌈k/n⌉
N ← int(N∥0n−r−2)

.Encryption.

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s,N, 1, q)

C ← P ⊕msb|P |(Γ1 ∥ . . . ∥ Γq)

. Padding .

a← n|A|n − |A|, c← n|C|n − |C|
M ← A∥0a∥C∥0c∥strn(|A|)∥strn(|C|)

.Tag generation.

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ← MultTag(K, {H1, . . . ,Hlen},M, len)

return (C, T)

sMGM[E, r, l0, l,1].Enc(K,N,A, P)

h← |A|n, q ← |P |n, len← h+ q + 2, s← ⌈k/n⌉
N ← int(N∥0n−r−2)

. Padding .

a← n|A|n − |A|, p← n|P |n − |P |
M ← A∥0a∥P∥0p∥strn(|A|)∥strn(|P |)

.Tag generation.

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ← MultTag(K, {H1, . . . ,Hlen},M, len)

.Encryption.

IV ← int(msbn−2(T))

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s, IV, 1, q)

C ← P ⊕msb|P |(Γ1 ∥ . . . ∥ Γq)

return (C, T)

(a) sMGM.Enc algorithm

sMGM[E, r, l0, l,0].Dec(K,N,A,C, T)

h← |A|n, q ← |C|n, len← h+ q + 2, s← ⌈k/n⌉
N ← int(N∥0n−r−2)

. Padding .

a← n|A|n − |A|, c← n|C|n − |C|
M ← A∥0a∥C∥0c∥strn(|A|)∥strn(|C|)

. Tag verification

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ′ ← MultTag(K, {H1, . . . ,Hlen},M, len)

if T ′ ̸= T : return ⊥

.Decryption.

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s,N, 1, q)

P ← C ⊕msb|C|(Γ1 ∥ . . . ∥ Γq)

return P

sMGM[E, r, l0, l,1].Dec(K,N,A,C, T)

h← |A|n, q ← |C|n, len← h+ q + 2, s← ⌈k/n⌉
N ← int(N∥0n−r−2)

.Decryption.

IV ← int(msbn−2(T))

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s, IV, 1, q)

P ← C ⊕msb|C|(Γ1 ∥ . . . ∥ Γq)

. Padding .

a← n|A|n − |A|, p← n|P |n − |P |
M ← A∥0a∥P∥0p∥strn(|A|)∥strn(|P |)

. Tag verification

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ′ ← MultTag(K, {H1, . . . ,Hlen},M, len)

if T ′ ̸= T : return ⊥
return P

(b) sMGM.Dec algorithm

Figure 3: sMGM mode

5

5 Security analysis

In this section we provide security analysis of misuse resistant sMGM instance (i.e.
sMGM[E, r, l0, l, 1]) in the corresponding models. There are separate results for integrity
formalized by MRAE-int model, and chosen ciphertexts confidentiality formalized by
MRAE model.

We will denote by AdvMRAE-int
AEAD (A) and AdvMRAE

AEAD (A) the advantage of an adversary A
succeeding in breaking the properties of the AEAD mode in MRAE-int and MRAE models
respectively. The advantage in the MRAE-int model is the probability that an adversary,
which may repeat nonces in its queries, is able to forge a ciphertext that will be accepted
as valid. The advantage in the MRAE model is the increase in the probability that an
adversary, which may repeat nonces in its queries, is able to successfully distinguish an
AEAD ciphertext from the output of an ideal cipher. In the MRAE model the adversary
also has access to the Decrypt oracle, which in ideal world always return an error. These
two models are formally defined in Appendix A.

Standard security notion for block ciphers are PRP-CPA («PseudoRandom Permu-
tation under Chosen Plaintext Attack») and PRF («PseudoRandom Function») [6]. We
will denote by AdvPRP

E (A) and AdvPRF
E (A) the advantage of an adversary A succeeding in

distinguishing EK from a random permutation and a random function respectively.

5.1 Auxiliary results

In this section we introduce some auxiliary results, which will be used throughout
subsequent proofs. We begin with Bernstein’s result for switching between random per-
mutation and random function.

Theorem 1 (Theorem 2.3 [7]). For any distinguisher Df with an oracle f : {0, 1}n →
{0, 1}n, making at most q queries, the following inequality holds:

Pr[Dπ → 1] ⩽ Pr[Dρ → 1] ·
(
1− q − 1

2n

)−q/2

,

where π
U←− Perm(n) and ρ

U←− Func(n).

Hereafter we will denote an expression
(
1− q−1

2n

)−q/2 by Bq. The next statement will
allow us to switch between a single random function and a set of independent random
functions, when applying them to a number of non-overlapping subsets.

Statement 1. For any finite set A, any integer k ≤ |A|, any subsets A1, . . . , Ak ⊆ A,
such that A = A1 ⊔ . . . ⊔ Ak, Ai ∩ Aj = ∅ for i ̸= j, and any distinguisher Df with an
oracle f : A→ A, the following equality holds:

Pr[Dρ → 1] = Pr
[
Dρ̂ → 1

]
,

where ρ
U←− Func(A) and ρ̂ = {ρ1, . . . , ρk}, ρi

U←− Func(A), ρ̂(a) = ρi(a) for a ∈ Ai.

5.2 MRAE integrity of sMGMs

Theorem 2. For any MRAE-int-adversary A for sMGMs, making at most qE queries to
the Encrypt oracle and at most qD queries to the Decrypt oracle, where the block-length of
associated data in each query is at most mA, the block-length of plaintexts and ciphertexts

6

in each query is at most mP and the number of distinct nonce values in all queries is at
most qN , there exist PRP-adversaries C and C0 for block cipher E, such that

AdvMRAE-int
sMGM[E,r,l0,l,1]

(A) ≤

≤
(
q(q − 1)

2n−1
+

qD
2n

+ qN tIAdv
PRP
E (C)

)
·BqN tI

l+s ·Bq(2l0+2s+1) + AdvPRP
E (C0),

where q = qE + qD, s = ⌈k/n⌉ and tI = ⌈(mA +mP + 2 − l0)/l⌉. Adversary C makes at
most l + s queries to its oracle and C0 makes at most q(2l0 + 2s+ 1) queries.

Proof. For processing the messages sMGMs uses the same block cipher with distinct key
values: master key K and section keys Ki that depend on nonce values. We will consider
a block cipher with each distinct key as a separate block cipher. Our foremost goal in the
first part of the proof is to replace all block ciphers in sMGMs with random functions.
This will allow us to apply Corollary 1 from [1] and obtain the bound. Recall, that we
write sMGMs instead of sMGM[E, r, l0, l, 1] for simplicity.

Now we proceed with the first step of the proof. At this step we replace the block cipher
with a master key K by a random permutation π0. Note that the block cipher EK is used
for the initial section processing, first re-keying mechanism and tag generation. We write
sMGMs[EK] to specify the used block cipher. Let us consider experiments ExpMRAE-int

sMGMs[EK]

and ExpMRAE-int
sMGMs[π0]

. In a straightforward manner we construct such an adversary C0, that

Pr
[
ExpMRAE-int

sMGMs[EK](A)→ 1
]
≤ Pr

[
ExpMRAE-int

sMGMs[π0]
(A)→ 1

]
+ AdvPRP

E (C0).

The adversary C0 uses the adversary A as a black box. It intercepts the queries of the
adversary A and process them by itself using its own oracle instead of calling EK or π0.
Therefore, to simulate q queries C0 makes at most q(2l0+2s+1) calls to its oracle, where
2l0 term defines the number of processed blocks in the initial section during encryption
and tag generation steps, 2s term defines the number of processed blocks in the re-keying
mechanism and +1 arises from a call in a tag generation process. The adversary C0 outputs
the same bit as the adversary A.

The next step is to replace the random permutation π0 with a random function ρ0.
Applying Bernstein’s result (Theorem 1), we have

Pr
[
ExpMRAE-int

sMGMs[π0]
(A)→ 1

]
≤ Pr

[
ExpMRAE-int

sMGMs[ρ0]
(A)→ 1

]
·Bq(2l0+2s+1).

Since all inputs to this random function in the cases of 1) computing values Hj for ini-
tial section and computing first intermediate key in the tag generation part; 2) computing
values Γj for initial section and computing first intermediate key in the encryption part;
3) computing the tag are different (because of fixed bits in inputs), using one random
function is indistinguishable from using three independent random functions ρI , ρC , ρt for
these three cases due to Statement 1.

From this, our aim is to replace every block cipher in the tag generation part of
sMGMs with a corresponding random function. We denote the keys appearing within the
re-keying during processing the i-th, 1 ⩽ i ⩽ qN , adversarial query with a new nonce by
K(i−1)tI+1, K(i−1)tI+2, . . . , Ki·tI , where tI defines the maximum number of sections. Keys
K(i−1)tI+1, are generated using random function ρI and, since ρI inputs are separated
with fixed bits for Hj generation and for the re-keying processing, they can be considered
random for every new nonce value (follows from Statement 1). Other keys Kj+1 are gen-
erated as KM(Kj, N). In a case, when a key is chosen randomly, we will write it with calli-
graphic font –Kj. We will also write sMGMs[ρI , EK1 , EK2 , . . . , EKi·tI+1

, EKi·tI+2
. . . , EKqN ·tI

]

7

to specify the block ciphers used in each integrity re-keying section in order of appearance
(throughout all queries).

Now let us consider experiments ExpMRAE-int
sMGMs[ρI ,ρ1,...,ρi−1,EKi

,EKi+1
,...] and

ExpMRAE-int
sMGMs[ρI ,ρ1,...,ρi−1,πi,EKi+1

,...]. In a straightforward manner we construct such an
adversary Ci, that

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,EKi
,...](A)→ 1

]
⩽ Pr

[
ExpMRAE-int

sMGMs[...,ρi−1,πi,...]
(A)→ 1

]
+ AdvPRP

E (Ci).

The adversary Ci uses the adversary A as a black box. It intercepts the queries of the
adversary A and process them by itself using its own oracle instead of calling EKi

or πi.
Therefore, Ci makes at most l + s calls to its oracle. It outputs the same bit as A.

Next, we replace the random permutation with a random function, applying Bern-
stein’s result (Theorem 1):

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,πi,EKi+1
,...](A)→ 1

]
≤ Pr

[
ExpMRAE-int

sMGMs[...,ρi−1,ρi,EKi+1
,...](A)→ 1

]
·Bl+s,

where ρi is used both for Hj and Ki+1 generation. However, since ρi inputs are separated
with fixed bits for these two cases, we can claim, that the key Ki+1 is generated randomly
and independently from Hj (follows from Statement 1). Thus,

Pr
[
ExpMRAE-int

sMGMs[...,ρi,EKi+1
,...](A)→ 1

]
= Pr

[
ExpMRAE-int

sMGMs[...,ρi,EKi+1
,...](A)→ 1

]
.

Bringing all together, we have the following inequality:

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,EKi
,EKi+1

...](A)→ 1
]
≤

≤ Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,ρi,EKi+1
...](A)→ 1

]
·Bl+s + AdvPRP

E (Ci).

Note that in the case, when Ki is the key of the last section, the same transition can
be applied with small differences in justifications. The randomness of the next key (first
intermediate key in the next query processing) is achieved earlier, since it is generated by
ρI function.

Hence, starting from the experiment ExpMRAE-int
sMGMs[ρI ,EK1

,...] and subsequently applying
the described transition qN · tI times, we obtain

Pr
[
ExpMRAE-int

sMGMs[ρI ,EK1
,...](A)→ 1

]
≤

≤
(
. . .
(
Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI]
(A)→ 1

]
·Bl+s + AdvPRP

E (CqN ·tI)
)
Bl+s +

+ AdvPRP
E (CqN ·tI−1)

)
Bl+s + . . .+ AdvPRP

E (C2)
)
Bl+s + AdvPRP

E (C1) =

= Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI]
(A)→ 1

]
·BqN tI

l+s +

qN ·tI∑
i=1

AdvPRP
E (Ci) ·Bi−1

l+s . (1)

It is easy to see, that in the experiment ExpMRAE-int
sMGMs[ρI ,ρ1,...,ρqN ·tI]

intermediate keys for
tag generation process are produced, but not used — random functions, used to produce
coefficients Hj, are selected independently from them. From here, we can consider an
experiment, where intermediate keys are not generated. Moreover, since the inputs to
the functions ρI , . . . , ρqN ·tI do not intersect (for repeating nonces we just reuse previously

8

computed coefficients Hj), due to Statement 1, we can unite them under a single random
function ρh. Hence,

Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI]
(A)→ 1

]
= Pr

[
ExpMRAE-int

sMGMs[ρh]
(A)→ 1

]
The next step is to proceed only with the tag generation part of sMGMs[ρh]. For this

let us introduce an auxiliary MAC construction sMGM-MAC.

sMGM-MAC.Gen()

ρt, ρh
U←− Func(n)

K ← (ρt, ρh)

return K

PreTag(ρh, N,M)

l← |M |n
for i = 1 . . . ℓ do :

Hi ← ρh(00∥strn−2(N + i− 1))

τ ← Set11r

(
l⊕

i=1

(Mi ⊗Hi)

)
return τ

sMGM-MAC.Tag(K,N,M)

τ ← PreTag(ρh, N,M)

T ← ρt(τ)

return T

sMGM-MAC.Verify(K,N,M, T)

τ ← PreTag(ρh, N,M)

T ′ ← ρt(τ)

if T ′ ̸= T : return false

return true

Figure 4: The sMGM-MAC scheme

We claim that there exists an UF-CMA-adversary D, making at most qE queries to
the Tag oracle and at most qD queries to the V erify oracle, such that

Pr
[
ExpMRAE-int

sMGMs[ρh]
(A)→ 1

]
≤ Pr

[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
.

Indeed, let us construct the adversary D, that uses the adversary A as a black box.
The adversary D intercepts the queries of the adversary A and process them by itself
using its own oracles. For encryption/decryption D implements lazy sampling for ρC . For
tag generation/tag verification the adversary D implements the padding procedure and
sends the appropriate queries to its oracles.

If A makes a non-trivial valid query (N,A,C, T) to the Decrypt oracle, then the
adversary D decrypts C using ρC to obtain a plaintext P and then makes corresponding
non-trivial query (N,M = A∥0a∥P∥0c∥lenA∥lenP , T) to the V erify oracle. Hence, if the
adversary A forges, then the adversary D also forges in ExpUF-CMA

sMGM-MAC.
Finally, we can apply Corollary 1 from [1] to obtain a bound for

Pr
[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
:

Pr
[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
≤ q(q − 1)

2n−1
+

qD
2n

.

9

Summarizing all the obtained bounds, we have

Pr
[
ExpMRAE-int

sMGMs[EK](A)→ 1
]
≤

≤
((

q(q − 1)

2n−1
+

qD
2n

)
·BqN tI

l+s +

qN ·tI∑
i=1

AdvPRP
E (Ci) ·Bi−1

l+s

)
·Bq(2l0+2s+1) + AdvPRP

E (C0) ≤

≤

(
q(q − 1)

2n−1
+

qD
2n

+

qN ·tI∑
i=1

AdvPRP
E (Ci)

)
·BqN tI

l+s ·Bq(2l0+2s+1) + AdvPRP
E (C0). (2)

Denoting by C the adversary with the the biggest advantage among Ci, we obtain the
statement of the Theorem.

5.3 MRAE security of sMGMs

Theorem 3. For any MRAE-adversary A for sMGMs, making at most qE queries to the
Encrypt oracle and at most qD queries to the Decrypt oracle, where the block-length of
associated data in each query is at most mA, the block-length of plaintexts and ciphertexts
in each query is at most mP , the number of distinct nonce values in all queries is at
most qN and the number of queries with the same nonce is at most qR, there exist PRP-
adversaries B0,BI and BC for block cipher E, such that

AdvMRAE
sMGM[E,r,l0,l,1]

(A) ≤ q2

2n−1
+

q2max(l, l0)

2n−2
+

qD
2n

+
q2(2l0 + 2s+ 1)2

2n+1
+ qN tI

(l + s)2

2n+1
+

+ qN tC
(qRl + s)2

2n+1
+ AdvPRP

E (B0) + qN tIAdv
PRP
E (BI) + qN tCAdv

PRP
E (BC),

where q = qE + qD, s = ⌈k/n⌉, tI = ⌈(mA + mP + 2 − l0)/l⌉ and tC = ⌈(mP − l0)/l⌉.
Adversary B0 makes at most q(2l0 + 2s+ 1) queries to its oracle, BI makes at most l + s
queries and BC makes at most qRl + s queries.

Proof. We start with replacing all block ciphers with random functions. This will allow us
to use the MRAE security theorem for SIV constructions from [14] to bound the security
of sMGMs by PRF security of sMGM-MAC and IND-CPA$ security of СTR-KM (with
random IV and independent random functions used for processing each section).

First of all, we replace EK with a random function ρ0. As in the previous proof, we
firstly replace it with a random permutation, building a PRP adversary B0. After that we
use PRP/PRF Switching Lemma to replace random permutation with a random function.
It is easy to see, that there are at most q(2l0 + 2s+ 1) calls to EK , hence, we have

Pr
[
ExpMRAE−0

sMGMs[EK ,E](A)→ 1
]
≤ Pr

[
ExpMRAE−0

sMGMs[ρ0,E](A)→ 1
]
+

+
q(2l0 + 2s+ 1)(q(2l0 + 2s+ 1)− 1)

2n+1
+ AdvPRP

E (B0).

At the next step we replace all other block ciphers with random functions as in
the previous proof. However, we can’t use Bernstein’s lemma to switch from pseudoran-
dom permutation to pseudorandom function, thus we have to apply PRP/PRF Switching
Lemma [10]. There are at most qN · tI keys in the tag generation part and qN · tC keys
in the encryption part. We construct adversaries BI

i and BC
i for each block cipher used

in the tag generation and encryption parts respectively. For each block cipher in the tag
generation part an adversary BI

i makes at most l + s queries (for processing the section

10

and re-keying). For each block cipher in the encryption part an adversary BC
i makes at

most qRl + s queries (we multiply by qR since block cipher inputs for Γj generation are
distinct even if the same nonce is used). We denote a mode with independent random
functions by sMGMs[ρ0, ρ̂]. At this point we have

Pr
[
ExpMRAE−0

sMGMs[ρ0,E](A)→ 1
]
≤ Pr

[
ExpMRAE−0

sMGMs[ρ0,ρ̂]
(A)→ 1

]
+ qN tI

(l + s)(l + s− 1)

2n+1
+

+ qN tC
(qRl + s)(qRl + s− 1)

2n+1
+

qN ·tI∑
i=1

AdvPRP
E (BIi) +

qN ·tC∑
i=1

AdvPRP
E (BCi).

In sequel we denote by BI (BC) an adversary with the biggest advantage among BI
i (BC

i

resp.).
We will denote by СTR-KM[ρ̂C] a СTR-KM (see Figure 2) construction, in which for

each unique nonce in each re-keying section an independent random function is used to
produce Γi (in queries with a repeating nonce the same sequence of independent functions
is used). Encryption and decryption algorithms for СTR-KM[ρ̂C] are defined naturally.

Since inputs to random functions in the tag generation and encryption parts of sMGMs
do not intersect, due to Statement 1, we claim, that these two parts are independent from
each other. Finally we apply Theorem 1 [14]. There exist adversaries D and C such that

Pr
[
ExpMRAE−0

sMGMs[ρ0,ρ̂]
(A)→ 1

]
− Pr

[
ExpMRAE−1

sMGMs[EK,E](A)→ 1
]
=

= Pr
[
ExpMRAE−0

sMGMs[ρ0,ρ̂]
(A)→ 1

]
− Pr

[
ExpMRAE−1

sMGMs[ρ0,ρ̂]
(A)→ 1

]
=

= AdvMRAE
sMGMs[ρ0,ρ̂]

(A) ≤ AdvPRF
sMGM-MAC[ρt,ρh]

(D) + AdvIND-CPA$
СTR-KM[ρ̂C](C) +

qD
2n

.

The only thing left is to derive a bound for AdvIND-CPA$
СTR-KM[ρ̂C](C). The idea is similar to the

classical proof of IND-CPA$ security of СTR from [6]. In that proof the bad case happens
if counters in two queries overlap. In our case, since each section is processed with its own
independent random function, the bad case happens if for two queries counters in the
same section overlap. We denote that event by Bad and an event, that counters overlap
in queries j1 and j2, by Badj1j2 .

We notice, that if in queries j1 and j2 counters overlap in the i-th section, then the
following inequality holds

IVj1 + k′(i)− l′(i) + 1 ≤ IVj2 + k′(i) ≤ IVj1 + k′(i) + l′(i)− 1⇔

IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1,

where l′(i) is a length of the i-th section (equal to l0 if i = 0 and to l otherwise) and
k′(i) is the counter offset in the begining of the i-th section (equal to 0 if i = 0 and to
l0 + l(i− 1) otherwise). Hence, for the probability of the event Badj1j2 we have

Pr[Badj1j2] = Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : ∃i : IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1
]
.

Since for every 0 ≤ i ≤ tC it is true, that l′(i) ≤ max(l0, l), we can bound the

11

probability in the following way

Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : ∃i : IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1
]
≤

≤ Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : IVj1 −max(l0, l) + 1 ≤ IVj2 ≤ IVj1 +max(l0, l)− 1
]
=

=
2max(l0, l)− 1

2n−2
.

From that we obtain a bound for the event Pr[Bad] (and, therefore for the adversarial
advantage), going through all possible pairs of queries:

AdvIND-CPA$
СTR-KM[ρ](C) ≤ Pr[Bad] ≤

∑
1≤j1<j2≤q

Pr[Badj1j2] ≤

≤ q(q − 1)

2
· 2max(l0, l)− 1

2n−2
≤ q2max(l0, l)

2n−2
.

Finally, using Lemma 1 from [1] to obtain a bound for AdvPRF
sMGM-MAC[ρt,ρh]

(D) and
connecting everything together, we have the required bound.

6 Open problems

In the future work we are going to develop the proposed parameterizable AEAD con-
ception by adding new security features provided by the mode with respect to exploitation
properties. Such properties as leakage resilience, RUP-security, Key-dependent messages
security are to be considered in particular. We believe that the designated goal can be
achieved in sMGM without significant difficulties by combining the building blocks of the
mode in an appropriate way.

References

[1] Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva, Andrey Bozhko, Stanislav
Smyshlyaev, (2022) Misuse-resistant MGM2 mode, International Journal of Open Information Tech-
nologies, Vol 10, No 1.

[2] Akhmetzyanova L., Alekseev E., Smyshlyaev S., Oshkin I. (2020) On Internal Re-keying. In: van der
Merwe T., Mitchell C., Mehrnezhad M. (eds) Security Standardisation Research. SSR 2020. Lecture
Notes in Computer Science, vol 12529. Springer, Cham. https://doi.org/10.1007/978-3-030-64357-
7_2

[3] Andreeva E., Bogdanov A., Luykx A., Mennink B., Mouha N., Yasuda K. (2014) How to Securely
Release Unverified Plaintext in Authenticated Encryption. In: Sarkar P., Iwata T. (eds) Advances in
Cryptology – ASIACRYPT 2014. ASIACRYPT 2014. Lecture Notes in Computer Science, vol 8873.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45611-8_6

[4] Davide Bellizia and Olivier Bronchain and Gaëtan Cassiers and Vincent Grosso and Chun Guo
and Charles Momin and Olivier Pereira and Thomas Peters and François-Xavier Standaert,
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography: A Practical
Guide Through the Leakage-Resistance Jungle, Cryptology ePrint Archive, Report 2020/211, 2020,
https://eprint.iacr.org/2020/211

[5] Brandstetter L., Fischlin M., Schröder R.L., Yonli M. (2020) On the Memory Fault Resilience of TLS
1.3. In: van der Merwe T., Mitchell C., Mehrnezhad M. (eds) Security Standardisation Research. SSR
2020. Lecture Notes in Computer Science, vol 12529. Springer, Cham. https://doi.org/10.1007/978-
3-030-64357-7_1

[6] Bellare M., Rogaway P. Introduction to modern cryptography //Ucsd Cse. – 2005. – Т. 207. – С. 207.
[7] Bernstein, D.J.: Stronger Security Bounds for Permutations (2005), http://cr.yp.to/papers.html

(accessed on May 31, 2012)

12

[8] John Black, Phillip Rogaway, and Thomas Shrimpton. 2002.Encryption-Scheme Security in the Pres-
ence of Key-Dependent Messages. In Revised Papers from the 9th Annual International Workshop
on Selected Areas in Cryptography (SAC ’02). Springer-Verlag, Berlin, Heidelberg, 62–75.

[9] Chakraborty, D., López, C.M. & Sarkar, P. Disk encryption: do we need to preserve length?. J
Cryptogr Eng 8, 49–69 (2018). https://doi.org/10.1007/s13389-016-0147-0

[10] D. Chang and M. Nandi, A Short Proof of the PRP/PRF Switching Lemma // IACR ePrint Archive,
2008, Report 2008/078, https://eprint.iacr.org/2008/078.

[11] Federal Agency on Technical Regulating and Metrology, Information technology. Cryptographic data
security. Authenticated encryption block cipher operation modes, R 1323565.1.026-2019, 2019.

[12] Gueron S., Lindell Y. GCM-SIV: full nonce misuse-resistant authenticated encryption at under one
cycle per byte //Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. – 2015. – С. 109-119.

[13] Hoang V.T., Krovetz T., Rogaway P. (2015) Robust Authenticated-Encryption AEZ and the Problem
That It Solves. In: Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015.
EUROCRYPT 2015. Lecture Notes in Computer Science, vol 9056. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-46800-5_2

[14] Rogaway P., Shrimpton T. A provable-security treatment of the key-wrap problem //Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. – Springer, Berlin,
Heidelberg, 2006. – С. 373-390.

[15] Smyshlyaev, S., Nozdrunov, V., Shishkin, V., and E. Smyshlyaeva Multilinear Galois Mode (MGM)
// 2019, <https://tools.ietf.org/html/draft-smyshlyaev-mgm-17>

A Security models

This section introduces models for an adversary that may repeat nonces in its queries.
We begin with the strongest model, which formalizes both integrity and confidentiality
properties – MRAE («Misuse-Resistant Authenticated Encryption - integrity»), firstly
introduced in [14].

Definition 1. For an AEAD-scheme Π the advantage of a MRAE-adversary A is defined
as follows:

AdvMRAE
Π (A) = Pr

[
ExpMRAE−1

Π (A)→ 1
]
− Pr

[
ExpMRAE−0

Π (A)→ 1
]
,

where experiments ExpMRAE-int
Π are defined below:

ExpMRAE−b
Π (A)

K
$←− Π.Gen()

sent← ∅

b′
$←− AEncryptb,Decryptb()

return b′

Oracle Encryptb(N,A, P)

if (N,A, P, ·, ·) ∈ sent :

return ⊥
if b = 1 :

(C, T)← Π.Enc(K,N,A, P)

else :

C ∥ T U←− {0, 1}|P |+s

sent← sent ∪ {(N,A, P,C, T)}
return (C, T)

Oracle Decryptb(N,A,C, T)

if (N,A, ·, C, T) ∈ sent :

return ⊥
if b = 1 :

return Π.Dec(K,N,A,C, T)

else :

return ⊥

We also separately define a model formalizing the integrity property of AEAD schemes
in nonce misuse setting – MRAE-int.

Definition 2 (MRAE-int). For an AEAD-scheme Π the advantage of a MRAE-int-
adversary A is defined as follows:

AdvMRAE-int
Π (A) = Pr

[
ExpMRAE-int

Π (A)→ 1
]
,

where experiment ExpMRAE-int
Π is defined below:

13

ExpMRAE-int
Π (A)

K
$←− Π.Gen()

sent← ∅
win← false

AEncrypt,Decrypt()

return win

Oracle Encrypt(N,A, P)

(C, T)← Π.Enc(K,N,A, P)

sent← sent ∪ {(N,A,C, T)}
return (C, T)

Oracle Decrypt(N,A,C, T)

P ← Π.Dec(K,N,A,C, T)

if (P ̸= ⊥) ∧ ((N,A,C, T) /∈ sent) :

win← true

return P

14

K
M

𝐷
0 0
=
1
0
||𝑁

′+
0

𝐷
1 0
=
1
0
||𝑁

′+
1

𝐾

0
0
||𝑁

′+
0

E
𝐻
1

E
𝐻

𝑙

K
M

. . .
K

M

𝐻
(𝑡−

1
)𝑙+

1
𝐻

𝑞
+
ℎ
+
2

𝐾
1 0

𝐾
2 0

𝐾
𝑡 0

E
E

0
0
||𝑁

′+
(𝑙

−
1
)

𝐷
0 0

𝐷
1 0

𝐷
0 0

𝐷
1 0

0
0
||𝑁

′+
 𝑡

−
1
 𝑙

0
0
||𝑁

′+
𝑞
+

ℎ
+
1

𝑃
𝑞

𝑃
1

𝐻
ℎ
+
1

𝐻
ℎ
+
𝑞

. . .

𝐴
ℎ

𝐻
1

𝐻
ℎ

. . .

𝐴
1

𝐻
ℎ
+
𝑞
+
1

𝑙𝑒
𝑛
 𝐴

𝐼𝑉
=

𝑇

S
et1

1
𝐸
𝐾

K
M

𝐾

0
1
||𝐼𝑉

+
0

E
Γ
1

E
Γ
𝑙

K
M

. . .
K

M

Γ
(𝑟

−
1
)𝑙+

1
Γ
𝑞

𝐾
1 1

𝐾
2 1

𝐾
𝑡′ 1

E
E

0
1
||𝐼𝑉

+
(𝑙

−
1
)

𝐷
0 1

𝐷
1 1

𝐷
0 1

𝐷
1 1

0
1
||𝐼𝑉

+
 𝑟

−
1
 𝑙

0
1
||𝐼𝑉

+
𝑞
−
1

𝐷
0 1
=
1
0
||𝑁

′+
2

𝐷
1 1
=
1
0
||𝑁

′+
3

𝑃
1

𝐶
1

𝑃
𝑙

𝐶
𝑙

𝑃
 𝑟

−
1
 𝑙+

1

𝐶
 𝑟

−
1
 𝑙+

1

𝑃
𝑞

𝐶
𝑞

𝐻
ℎ
+
𝑞
+
2

 𝑙𝑒
𝑛
(𝑃
)

Figure 5: sMGM mode with l0 = 0, s = 2 (sketch)

15

