
Efficient Asymmetric Threshold ECDSA
for MPC-based Cold Storage

Constantin Blokh∗† Nikolaos Makriyannis† Udi Peled†

Abstract

Motivated by applications to cold-storage solutions for ECDSA-based cryptocurrencies, we present a
new threshold ECDSA protocol between n “online” parties and a single “offline” (aka. cold) party. The
primary objective of this protocol is to minimize the exposure of the offline party in terms of connected
time and bandwidth. This is achieved through a unique asymmetric signing phase, in which the majority
of computation, communication, and interaction is handled by the online parties.

Our protocol supports a very efficient non-interactive pre-signing stage; the parties calculate prepro-
cessed data for future signatures where each party (offline or online) sends a single independently-generated
short message per future signature. Then, to calculate the signature, the offline party simply receives a
single short message (approx. 300B) and outputs the signature. All previous ECDSA protocols either have
high exposure for all parties, or rely on non-standard coding assumptions. (We assume strong RSA, DCR,
DDH and enhanced unforgeability of ECDSA.)

To achieve the above, we present a new batching technique for proving in zero-knowledge that the
plaintexts of practically any number of Paillier ciphertexts all lie in a given range. The cost of the resulting
batch proof is very close to that of the non-batch proof for a single ciphertext, and the technique is
applicable to arbitrary Schnorr-style protocols.

∗Authors are listed in alphabetical order.
†Fireblocks. Emails: costy@fireblocks.com, nikos@fireblocks.com, udi@fireblocks.com

1

Contents
1 Introduction 4

1.1 Threshold ECDSA & Cold Storage . 4
1.2 Our Results . 5

1.2.1 Asymmetric Threshold ECDSA . 5
1.2.2 New Batch-Proving Technique . 8

1.3 Paper Organization . 9

2 Our Techniques 10
2.1 Party Virtualization & Proof Aggregation . 10
2.2 Soundness of Batch-Proving . 11
2.3 Pedersen Batch Extractability . 13
2.4 Security Analysis . 14

3 Preliminaries 16
3.1 Notation . 16
3.2 Signatures and Unforgeability . 17
3.3 MPC and Universal Composability . 18

3.3.1 Proactive Threshold Signatures . 19
3.3.2 Ideal Threshold-Signatures Functionality . 19
3.3.3 Global Random Oracle . 19

3.4 Group/Number-Theoretic Definitions . 20
3.5 Schnorr Protocols . 20

3.5.1 Embedded Schnorr Protocols . 21
3.5.2 NIZK and the Fiat-Shamir Transform . 21
3.5.3 Proof Aggregation in ROM . 22

4 Protocol 23
4.1 Pedersen Parameters . 23
4.2 Key-Generation & Presign . 24

4.2.1 ZK for Key-Generation & Presigning . 24
4.3 Signing . 27

4.3.1 init-tecdsa functionality . 27
4.3.2 ZK for Signing . 27

5 Security 29
5.1 Unforgeability & Simulatability imply UC Security . 29
5.2 Simulatability of Σecdsa . 30

5.2.1 Proof of Theorem 5.8 . 31

6 Proof of Soundness for Batch-Proving 34
6.1 Proof of Theorem 6.1 . 34
6.2 Putting Everything Together . 35

6.2.1 Extractability . 36
6.2.2 Robustness, Unpredictability and Collision Resistance 38

References 38

Ideal Threshold-Signatures Functionality 42

Appendix 43

A Realizing init-tecdsa via CMP 43
A.1 Simulator for CMP . 44

2

B Missing ZK Protocols/Proofs 44
B.1 Security Proof for Multi-Pedersen Membership . 44
B.2 Well-Formed Modulus & Ciphertext ZK Proof . 45

B.2.1 ZK Proof Description . 46

C Experimental Results 47
C.1 Concluding Remarks . 47

3

1 Introduction
The digital signature algorithm (DSA) [26] in its elliptic curve variant (ECDSA) [34] is one of the most
widely used signature schemes. ECDSA’s popularity has surged in recent years because it is ubiquitous in the
Blockchain space, where it is primarily used to sign transactions. For example, in Bitcoin, each transaction is
accompanied by a datum, called a signature, generated using a secret key, such that all participants (miners,
nodes, . . .) may verify the validity of the transaction using the signature and publicly available data.

However, ECDSA suffers from the “single point of failure” problem, meaning that if the secret key is
compromised, an attacker can impersonate the owner and sign any message/transaction on their behalf,
thereby compromising all security measures. The “single point of failure” problem admits a battle-tested
solution; threshold signatures, discussed next.

Threshold Signatures. Introduced by Desmedt [17] and Desmedt and Frankel [18], a t-out-of-n threshold
signature scheme is a mechanism for a group of n signatories that provides the following functionality and
security guarantee: any quorum of t ≤ n signatories may generate a valid signature σ for an arbitrary message
msg, and no adversary controlling fewer than t signatories can forge a signature, i.e. it cannot produce a
pair (msg′, σ′) such that σ′ is a valid signature for msg′ (provided msg′ was never signed before by a quorum
of t parties). In recent years, motivated by applications to cryptocurrency custody, many truly-practical
protocols have been proposed for “thresholdizing” ECDSA signatures. That is, the recent proposals replace
the signing algorithm with a secure interactive multi-party protocol involving n signatories, thus realizing
the “threshold” paradigm both in functionality and security (see Section 1.1 for related work on threshold
ECDSA). In fact, many companies have incorporated these protocols in their digital asset infrastructures,1
and the total transaction volume is estimated at trillions of US dollars.2

While recent protocols effectively solve the “single-point-of-failure” problem very efficiently for ECDSA-
based digital assets, the highly interactive nature of existing threshold-ECDSA protocols makes these solutions
incompatible (or at least cumbersome to use) with so-called cold storage, defined next.

Cold Storage. Cold storage refers to the general principle of safeguarding the secret material underlying
a digital asset (e.g. the ECDSA secret key for Bitcoin) on a platform that is disconnected from the internet,
thus providing an extra layer of security against theft. For example, an ECDSA secret key written on a piece
of paper constitutes a cold-storage solution (also known as a paper wallet). To ensure user convenience, most
cold wallets choose to store the secret key in a hardware device with limited computation and communica-
tion capabilities, such as a USB stick. This device is essential for receiving messages, performing signature
calculations, and transmitting the resulting signatures, and, the primary security objective is to minimize the
exposure of the cold-storage device, which is measured by the duration of its connection and the total amount
of bandwidth it utilizes.

1.1 Threshold ECDSA & Cold Storage
As mentioned above, all protocols for threshold ECDSA require multiple rounds of communication (at least
four). 3To make matters worse, the data sent in any given round depend on the data sent by all signatories
in previous rounds. Consequently, building a wallet infrastructure that simultaneously supports threshold
ECDSA (i.e. the key generation and the signing processes are distributed among many signatories) and cold
storage (i.e. at least one of the signatories has limited connectivity to the internet) seems impractical given
the current state of the art.

Pre-Signing. Beginining with Dalskov et al. [15], many recent protocols support a preprocessing mode
of operation (henceforth pre-signing4) that allows the signatories to execute (parts of) the protocol before
the message to be signed is known. At first, pre-signing appears as a good way to minimize exposure of a
cold storage device for the following reason: pre-signing gives rise to a non-interactive signing phase which is
cheaper than calculating a standard, non-threshold, ECDSA signature, because the message-dependent and

1We mention, e.g., Fireblocks, Unbound Security (acquired by Coinbase), Curv (acquired by Paypal) and ZenGo.
2Quote: “ . . . surpassing $2 trillion in assets transferred” retrieved from fireblocks.com (May 2023).
3We refer the reader to the survey of Aumasson et al. [2] for a more thorough overview of general threshold-ECDSA protocols.
4Pre-signing was first observed in [15] and then independently in [10, 16, 22, 23]

4

https://www.fireblocks.com/blog/550m-series-e-zero-to-crypto/
fireblocks.com

MPC-heavy part of the signature is calculated ahead of time. Thus, when the message for signing is presented,
each signatory locally calculates their signature-share and they communicate that share to the “world”; this
process is very lightweight and it does not involve any interaction.

Why the above protocols fall short on cold storage? On closer inspection, however, it is easy to see
that pre-signing does not truly limit the exposure of the cold-storage device; it simply shifts when the device
is exposed.5 In other words, while pre-signing renders the signing phase non-interactive, pre-signing itself is
highly interactive! So, the previous protocols are not particularly well suited for cold storage, because they
require at least three rounds of interaction during (pre-)signing, and each round requires heavy data processing
that depends on the previous rounds. In terms of resources, per (pre-)signature, previous protocols require
either hundreds of KB in communication complexity, e.g. for secp256k1 (the Bitcoin curve), or a large number
of expensive public-key operations (10s to 100s of exponentiations in an RSA or Class Group, depending on the
protocol). Concretely, for standard choice of parameters, the cold signatory consumes the following resources
for calculating 10000 (pre-)signatures: depending on the choice of protocol, the “cold” signatory sends and
receives gigabytes of data, or, it spends minutes to hours in pure computation-time, all while running an
interactive (pre-)signing protocol with the online signatories.6

A recent proposal. The recent work of Abram et al. [1] proposes a solution to the cold-storage problem
that relies on silent preprocessing via pseudorandom correlation generators (PCGs). To elaborate, similarly
to OT-Extensions, PCGs allow the signatories to incur a one-time cost in order to generate practically arbi-
trary “ECDSA correlations”. In turn, these give rise to a non-interactive signing phase where each signatory
independently publishes their signature-share using their part of the ECDSA correlation. However, PCGs for
ECDSA are based on fairly new cryptographic assumptions, and real-world deployment is at an early stage at
the time of writing.

In this work, we propose an different solution based on more conventional assumptions.7

1.2 Our Results
We present a new threshold-ECDSA protocol Σecdsa where one of the parties is distinguished, i.e. cold, and the
purpose of the protocol is to limit the exposure of the distinguished party. For this purpose, we present a novel
asymmetric signing protocol where the bulk of the interaction occurs among the online, non-distinguished,
parties. Furthermore, our protocol admits a lightweight and non-interactive pre-signing phase,8 and the signing
phase boils down to the distinguished party receiving a short message from the “outside” world (approx. 300
bytes per signature).

For reducing the communication complexity of the distinguished party (i.e. the bandwidth exposure of the
cold device), our protocol utilizes a new batch-proving technique for so-called Schnorr-style proofs, aka proofs
arising from one-way homomorphisms. Batching is used extensively in our protocol with significant complexity
gains, especially communication-wise (c.f. Section 1.2.2). Given the numerous applications of Schnorr-style
proofs,9 we view batch-proving as a contribution of independent interest.

1.2.1 Asymmetric Threshold ECDSA

Building on the two-party protocols of Lindell [28], MacKenzie and Reiter [30] and the n-party protocol
of Canetti et al. [10], we design a new (n + 1)-party protocol, denoted Σecdsa, involving n online signatories
P1, . . .Pn, dubbed the cosignatories, and a single offline signatory P0. To ease the presentation of our protocol,
we first describe the two-party “skeleton” between the offline party P0 and a single online party P∞, and then
we present the main ideas that give rise to our multi-party protocol.

5In fact, it can be argued that pre-signing increases the exposure of the cold device (e.g. when pre-signatures exceed the
expected future signatures).

6The stated values are extrapolated from the experimental results of [39] comparing the most competitive two-party protocols
from [8, 11, 12, 19, 28, 29, 39] (cf. Table 2)

7Note that [1] makes no distinction between online and offline signatories, so it exceeds the requirements of our use case,
wastefully-so, because of the computational overhead (cf. Appendix C).

8To handle rushing adversaries (cf. Section 3.3), the distinguished party waits to receive the outside data before it sends its
own. (this does not affect the application to cold-storage since communication is inherently non-simultaneous in the real world)

9Schnorr-style proofs have a three-decade history in academic cryptography and there is an ongoing standardization effort [27].

5

“Online” Party P∞ “Offline” Party P0

Sample k ← Fq, Sample δ ← Fq:

Set B = com(k) ∈ {0, 1}∗ Set H = g(δ
−1),W0 = enc0(x0)

B

H,W0

Store prs = (k,H,W0) pre-signing

When obtaining msg, do: signing

(†1) Compute (R,S) using (msg, prs, x∞)

(†2) Generate NIZK ψ

(R,S, ψ)

Verify ψ and output (R, σ)

for σ = δ · σ̂ and σ̂ = dec0(S)

Figure 1: Threshold ECDSA, 2PC Skeleton (Σecdsa for n = 1) – Write (G, q, g) for the group-order-
generator tuple associated with ECDSA and Fq for the prime-order field of size q, and x0, x∞ denote the secret-key
shares of P0 and P∞ respectively (sampled during key generation). Furthermore, enc0 and dec0 denote the encryption
and decryption processes of an additively-homomorphic scheme (henceforth AHE – later we instantiate enc0(·) with
Paillier encryption) and com(·) denotes a commitment. The dashed line separates the pre-signing and the signing
phases, and we remark that W0 can be sent prior to pre-signing during key-generation. Notice that pre-signing is
non-interactive since the parties’ messages are independent of one another, and the signing phase is asymmetric as
it boils down to P0 receiving a single message from P∞. The main challenge is showing how to “virtualize” P∞ and
the main challenge is realizing steps (†1) and (†2) efficiently in a distributed way. The resulting protocol inherits both
non-interactivity during pre-signing and asymmetry during signing, because P0’s view of the protocol is essentially the
same for any n.

Our MPC Protocol (Σecdsa for n + 1 ≥ 3). For the multi-party variant of our protocol, our strategy is
to virtualize P∞ by means of an MPC protocol. That is, we instruct the parties to jointly compute x∞, k, B
during key-generation and pre-signing, and (R,S, ψ) during signing. That way, the exposure of the offline
party to the outside world is the same as in the two-party variant of our protocol (which we view as a tolerable
baseline). The core technique for realizing the above is party virtualization (for †1) and proof aggregation (for
†2); both of which are realized via MPC. Furthermore, we present two optimization techniques with the aim
of reducing the communication complexity of the protocol (thus reducing the bandwidth exposure of P0).

First, our protocol supports packing, meaning that multiple partial signatures (σ̂1, . . . , σ̂λ) can be loaded
into a single ciphertext S (using the notation from Figure 1). Second, our protocol supports batch-proving,
meaning that a single short proof ψ is used to validate the well-formedness of many ciphertexts S1, . . . , Sm

(each of them containing λ packed partial signatures). All of the aforementioned techniques are discussed in
detail in Section 2.

Comparison. For the two-party variant of our protocol (when n = 1, the costs for the solitary online
party P1 are essentially identical to those of P0), our protocol is by far the most communication efficient
(the only protocol that achieves somewhat comparable efficiency is the Class group protocol of [11]), and, in
computation, our protocol is x5 more efficient compared to the most communication-efficient protocols.

For the case n > 1, the complexity of the online parties is dominated by the joint computation of the
short message that P0 receives. However, as we shall see in Section 2, there is a lot of flexibility in the choice
of MPC protocol for performing this computation, because the desired functionality is almost identical to
the ECDSA functionality. Therefore, the complexity costs for the cosignatories are very close to those of

6

Communication Computation

This Work: Pre-Signing 3nν/λ+ 2nγ (n · 300B) in N ′/λ+ n(N/λ+ 3s+ s′ + 2g)

2ν/λ+ nν/λ+ γ (n · 300B) out ≤ (2n + 1) ·N

This Work: Signing 3ν/λ+ 6γ (300B) in N ′/λ+N + s′ + 4g

(0B) out ≤ 3N

Best Computation [39] 8γ2 (90KB) 0.9N ≤ 11g

Best Communication [39] 16ν + 11γ (4.5KB) 14N ≤ 14N + 11g

Best Comm. (Class Groups) [11] 14γ (500B) 120N ≤ 4C + 8g

Table 1: Costs for Offline Signatory vs Best 2PC ECDSA. We compare the offline party’s costs versus the
most competitive two-party protocols, where n denotes the number of online signatories. The “communication” column
below displays total incoming (in) and outgoing (out) communication. In parentheses we report concrete estimates for
secp256k1 (the Bitcoin curve) with appropriate choice of parameters. N and N ′ denote the unit cost of exponentiation
modulo N and N2, respectively, where N is a ν-bit RSA modulus (s and s′ denote low-weight exponentiation, i.e. the
bit length of the exponent is at least 10 times smaller than ν), and C denotes exponentiation in the relevant class group.
When simplifying computational costs (in orange), we use the bounds 10N ′ ≤ C (inferred from the experimental results
of [39]), and the customary N ′ ≤ 3N , s′ ≤ 3s, s ≤ N/5. Similarly, g denotes the unit-cost of exponentiation in
the ECDSA group (and g is much cheaper than either N and C) and γ is the corresponding bit-length. Parameter
λ ∈ N represents the packing number (see Section 2) and it is assumed λ ≥ 3 in the concrete estimations. All costs
are amortized over the number of signatures (or pre-signatures). For [11, 39], we report only one of either signing or
pre-signing (the most expensive). For the round complexity, we note that all protocols consist of three uni-directional
rounds (this is not reported in the table).

any state-of-the-art threshold-ECDSA protocol (the one chosen to instantiate the so-called virtual party). In
our experiments (Appendix C),10 we opted for the protocol of Canetti et al. [10] (CMP) which is somewhat
expensive computation-wise.

Security & Composability. Most protocols in the literature show security against so-called static adver-
saries, where the corruption pattern of the attacker is fixed at the beginning of the execution. In contrast,
in this work, we show that our protocol achieves security against adaptive adversaries, i.e. the adversary may
choose which parties to corrupt as the protocol evolves and the identity of the corrupted parties may be
chosen adaptively as a function of the adversary’s view. Furthermore, we show that our protocol is compos-
able in the UC framework and it realizes the ideal threshold-signatures functionality Ftsig from [10], i.e. even
when it is composed arbitrarily with other components of some larger system, the protocol emulates the ideal
functionality.

Theorem 1.1 (Informal). Under suitable cryptographic assumptions, protocol Σecdsa UC-realizes Ftsig against
adaptive adversaries with arbitrary concurrent signatures.

To show the above, we simplify and generalize the proof technique of [10] where the indistinguishability
of the UC simulation is reduced to the unforgeability of the underlying non-threshold signature scheme. As
a corollary of independent interest, we find that all non-pathological threshold-signatures protocols effectively
UC-realize the Ftsig functionality (a protocol is non-pathological if forging signatures is unfeasible for all
adversaries corrupting fewer parties than the minimum signing threshold). We refer the reader to Section 2.4
for further details.
Remark 1.2 (Novelty compared to [10, 28, 30]). 2PC/MPC Protocol: As far as we know, we are the first
to identify the asymmetry in two-party signing that yields compatibility with cold storage, and the previous

10As a sample from our experimental findings, we mention the following. For calculating 10000 pre-signatures and n = 2
(i.e. two online parties), our protocol takes less than a minute of CPU time and roughly 3 megabytes of data are exchanged
between each online party and P0. For the signing phase, the online parties spend less than two minutes of CPU time to
aggregate the approximately 5MB “payload” which they send to P0, and P0 spends less than a minute of CPU time to process
the data and output the signatures. (In our experiments, the online parties run the CMP protocol among themselves prior to
the aggregation phase which slows downs the signature-generation process by approximately 300ms per signature; this choice is
arbitrary and CMP may be substituted for a more computation-friendly protocol, e.g. DKLs19 [19], if so desired.)

7

works of [28, 30] do not consider the multi-party case at all. In addition, Lindell [28] (the more recent and
more efficient of the two protocols) does not admit a (†2) step, i.e. it does not provide a ZK proof, and
it only proves security in a very restricted model (limited concurrency with “hard” aborts where one failed
execution terminates signing operations for good). So, our approach solves the concurrency and abort issue by
introducing a very efficient (and, looking ahead, batchable) ZK proof. Security Analysis: Compared to [10],
our security analysis has broad ramifications for general threshold signatures. Specifically, our work yields
an equivalence between the game-based definition of unforgeability and the UC definition of Ftsig (this result
clearly improves upon the claims and techniques of [10]), thus yielding that any non-pathological protocol for
an arbitrary signature scheme (not necessarily ECDSA) UC-realizes functionality Ftsig (modulo Footnote 16
p. 16). The reader is directed to Section 2 for further discussion.

1.2.2 New Batch-Proving Technique

Almost all zero-knowledge (ZK) proofs in this paper can be cast as Fiat-Shamir transforms of ZK protocols for
group homomorphism (defined further below and referred to as Schnorr Protocols in this document) and our
second main contribution is a new batching technique for proving in ZK that many instances X1, . . . , Xm ∈
{0, 1}∗ using a single proof. Specifically, we are interested in (1) homomorphisms where the origin group of the
homomorphism is the set of integers Z, and (2) the pre-image of each Xi in Z is “small”. We emphasize that
our new batching scheme is specifically tailored for proving such statements, and, to the best of our knowledge,
the proposed scheme is the first batching scheme for so-called range proofs with zero communication overhead,
i.e the proof size is independent of m. (The computation gains are also noteworthy, but more modest,
cf. Table 2.)

Schnorr-Style Protocols. In line with Bangerter [3] and Maurer [32], we define Schnorr protocols abstractly
(c.f. Section 3.5) as protocols for proving that the pre-image w ∈ H of a group element X ∈ G by some
homomorphism ϕ : H → G is “close” to a subset R ⊆ H. Throughout the paper, we will be using additive
notation for H and multiplicative notation for G and we assume that H is endowed with a suitable distance
function, and we write R′ = {α ∈ H s.t. α is “close” to R}.
Remark 1.3. For the simplest case, it may be useful to consider the following concrete parameters: ϕ :
Z → G with ϕ(w) = gw where H = Z and G is a hidden-order group (say an RSA subgroup). E.g.,
in this regime, E = R = {−2ℓ−1, . . . , 2ℓ−1} (signed ℓ-bit integers) and w is close to R if |w| < 22·ℓ−1,
i.e. R′ = {−22·ℓ−1, . . . , 22·ℓ−1}, where ℓ ∈ N. In the more elaborate cases, H = Zr ×K and is a group product
consisting of r independent copies of Z and an arbitrary group K and the range restriction on w ∈ H (for
defining R and R′) only relate to Zr; in the elaborate cases, G is a group product consisting of (copies of) the
elliptic curve, Paillier and RSA groups.11

Batching-Proving. With the aim of batching many instances X1, . . . , Xm for Xi = ϕ(wi) into a single
protocol/proof, we identify the following generic transformation parameterized by (ϕ,E,R)) where E ⊆ Z
(the related works of Gennaro et al. [24] and Thyagarajan et al. [38] can be cast as special cases of the generic
template below). We dub the resulting protocol an m-batch Schnorr protocol (the case m = 1 corresponds to
the vanilla Schnorr protocol).

1. The Prover sends A = ϕ(α) to the Verifier for random α← R′.

2. The Verifier replies with challenges (e1, . . . , em)← Em.

(a) In [24], (e1, . . . , em) = (e1, e2, . . . , em) for a random e← E

(b) In [38], (e1, . . . , em)← {0, 1}m, i.e. the ei’s are uniform independent bits.

(c) In this work, we sample (e1, . . . , em) such that each ei ← E is independently drawn.

For the NIZK, the Prover applies the Fiat-Shamir transform to locally calculate the e’s.

3. The Prover answers the challenge by sending z = α+
∑m

i=1 eiwi ∈ H.

The Verifier accepts if ϕ(z) = A ·
∏m

i=1X
ei
i and z ∈ R′.

11The Paillier group Z∗
N2 is the multiplicative group of inverses modulo N2 where N is a RSA modulus.

8

Comm. Prover Comp. Verifier Comp.

MacKenzie and Reiter [30] m · 5ν m · (N ′ +N + 2s) m · (N ′ +N + s′ + 2s)

≈ m · (4N + 2s) ≈ m · (4N + 5s)

Thyagarajan et al. [38] κ · 3ν κ ·N ′ κ ·N ′

≈ κ · 3N ≈ κ · 3N

Batch-Proving (Our Work) 5ν N ′ +N + (m+ 1) · s N ′ +N + s+m · (s′ + s)

≤ (0.2m + 4) ·N ≤ (0.8m + 3) ·N

Table 2: Batch-Proving Comparison. In the ROM, for security parameter κ, comparison of [30, 38] with our
work for proving that the plaintext values of m Paillier ciphertexts lie in a given range. The values ν, s, s′,N ,N ′

are as in Table 1, and the target range is [−2ν/10, 2ν/10]. The protocol of Thyagarajan et al. [38] achieves constant
soundness and requires amplification via parallel repetition; hence the dependency on κ.

Theorem 1.4 (Informal). If ϕ−1(Xi)∩R′ = ∅ for some i ∈ [m], then the verification process of the associated
m-batch Schnorr protocol fails with overwhelming probability, assuming the tuple (ϕ,E,R) is “well-behaved”.

In Section 2.1, we define “well-behavedness” and we give a proof-sketch of the above.

Comparison. In Table 2, we provide a comparison of our flavor of batch-proving vs the baseline protocol
of MacKenzie and Reiter [30], and the batch-proving protocol of Thyagarajan et al. [38]; the communication
complexity of our scheme compares favorably by orders of magnitude for any batch size (we note that [38]
overtakes our protocol in computation for large batches). Finally, our table does not include the batch-protocol
of Gennaro et al. [24] because the successive powers e, e2, e3, . . . , em are not well-suited for proving range (see
below).

Why previous batching techniques are not well suited for our purposes? We note that previous
batching techniques are either inapplicable (Gennaro et al. [24]) or not as efficient ([38]) as the one we propose.
First, regarding Gennaro et al. [24], the successive powers yields a 2m multiplicative blowup in the promised
range, where m is the batching number. In more detail, the bit-length of the last successive power em
determines the bit-length of the prover’s last message z = α+ e1 ·w1+ . . . + em ·wm, and thus using large w’s
for the first few e’s will yield valid proofs (because the first few e’s are very small compared to z). Concretely,
for proving e.g. that 106 w’s are smaller than 2100, [24] only guarantees that the w’s are smaller than 210

6

,
and this exponential slackness is a drawback of [24] for this use-case. Second, regarding [38], choosing Boolean
instead of non-Boolean values is an inherent limitation of [38]’s approach. In fact, a closer look at [38] yields
that soundness does not amplify by increasing the challenge space, e.g. ei ∈ {0, 1, 2, . . . , 2κ}, and, to achieve
suitable soundness, they use parallel repetition incurring a heavy communication-complexity penalty.12

1.3 Paper Organization
The next section contains a high-level overview of our key technical contributions. In Section 3, we introduce
notation, definitions and background concepts. In Section 4, we give the full description of the protocol. In
Section 5, we give the security analysis for the protocol (assuming soundness of batch-proving). In Section 6,
we give the proof of soundness for batch-proving. In the appendix, we present experimental results.

12As far as we can tell, previous approaches do not suffice for proving soundness of our flavor of batch-proving. To start, the
standard variant of special soundness (extracting the secret material using sufficiently many suitable transcripts with distinct
e’s) seems not to be applicable to our case, and, even when the secrets can be extracted, there is no guarantee that they lie in
the desired range. In addition, naive arguments that solely use the unpredictability of the e’s (i.e. the challenges) do not suffice
either: even if z = e⃗ · w⃗ is out of range for a malicious w⃗, there is no guarantee that the adversary is committed to w⃗ (unless ϕ is
injective which is not the case for us).

9

2 Our Techniques
In this section, we take a closer look at our techniques and we give a thorough (but still high-level) overview
of our main technical contributions. The present section is organized as follows. First, after introducing
the necessary notation, we present our main protocol in the honest-but-curious variation and we show how
to achieve malicious security by augmenting the protocol using ZK proofs (arising from Schnorr protocols).
Second, regarding batching, we present the soundness analysis for our batch-proving technique (by defining the
“well-behavedness” property from Section 1.2.2) and give a proof-sketch of so-called Pedersen Extractability
(one of the pillars of the analysis).

Finally, we give a high-level security analysis for the protocol as a whole. Specifically, we formulate
sufficient conditions for a threshold signature protocol (not-necessarily ECDSA) to UC-realizes functionality
Ftsig against adaptive security, and we conclude by showing that Σecdsa satisfies these conditions.

2.1 Party Virtualization & Proof Aggregation
Let (G, g, q) denote the group-generator-order tuple for ECDSA and write Fq for the finite field of prime order
q. For this high-level overview, we will abuse notation and write R ·x ∈ Fq to denote the field element obtained
by projecting13 R ∈ G in Fq and multiplying by x ∈ Fq. For secret key x ∈ Fq, letting m ∈ Fq denote the
hash of a desired message, we recall that ECDSA signatures have the form (R, σ) for σ = k(m + R · x) ∈ Fq

and R = gk
−1 ∈ G. Finally, letting x1, . . . , xn denote additive shares of the secret key x, consider the n-party

functionality tecdsa(·) between parties P1, . . . ,Pn such that each Pi uses its secret xi and an arbitrary value
ki ∈ Fq as input and tecdsa(·) returns the pair (R,χi) to each Pi satisfying the following.

tecdsag : (xi, ki)i∈[n] 7→ (R,χi)i∈[n]

s.t.

{
R = g(

∑n
i=1 ki)

−1 ∈ G
(χi)

n
i=1

$← Fn
q conditioned on x · (

∑n
i=1 ki) =

∑n
i=1 χi

Using the outputs of tecdsag, observe that the following values can be summed up to obtain an ECDSA
signature: {σi}i∈[n] for σi = kim+R · χi.

Fact. All multi-party ECDSA protocols from Section 1.1 compute the tecdsa(·) functionality.

Our Protocol (Σecdsa). Building on the two-party skeleton from Section 1.2.1, the following key observation
gives rise to the signing process of our multi-party protocol. By calling tecdsa(·) on point H provided by P0

(instead of g), the online parties can calculate an encryption S = enc0(σ̂) of a “partial” signature σ̂ such that
the pair (R, σ) = (Hk−1

, δ · σ̂) conforms to the signature format of ECDSA, where R is common output of
tecdsaH and S is jointly calculated using the homomorphic properties of enc0(·). Thus, by obtaining (R,S),
P0 can finalize σ̂ into the “full” signature σ (cf. Figure 2).

Malicious Security & Proof Aggregation. For malicious security, we compile the protocol using a
number of zero-knowledge proofs arising from Schnorr protocols detailed in the specification of our signing
protocol (Section 4). Here, we focus on the most involved ZK proof: succinctly proving well-formedness of
S during signing, i.e. how to generate a proof ψ validating that S contains the right σ̂. Using the notation
from Figure 2, notice that each Si (Pi’s contribution to the ciphertext S) may be viewed as the image of the
following homomorphism, letting (βi, γi) = (kim+R · χi, R · ki),

ϕ : (βi, γi) 7→ (βi ⊙ enc0(1))⊕ (γi ⊙W0). (1)

So, by considering the Schnorr protocol associated with ϕ, each Pi can prove well-formedness of Si by
generating a proof as per Section 1.2.2; this approach incurs O(n) communication overhead because each Pi

provides its own proof. To avoid the communication penalty, we devise a simple generic aggregation process
where, by jointly calculating the prover’s messages in the Schnorr protocol, P1, . . . ,Pn output a short proof
ψ, and the size of ψ is independent of n.

13We recall that (almost) all group elements R ∈ G may be viewed as pairs of field elements (a, b) with a, b ∈ [0, q − 1].

10

FIGURE 2 (Honest-But-Curious Variant of Σecdsa w/o Proofs.)

KeyGen. P1, . . . ,Pn run an key-generation protocol that returns the ECDSA public key X ∈ G and the
secret key share xi ∈ Fq to each Pi, for i ∈ {0, 1, 2, . . . , n}.

P0 sends an encryption W0 = enc0(x0) of its key-share under its own AHE.

PreSign. P0 samples δ ← Fq and each Pi ̸= P0 samples ki ← Fq, and

1. P1, . . . ,Pn send com(k1), . . . , com(kn) to P0.

2. P0 sends H = gδ
−1

∈ G to P1, . . . ,Pn.

(Fresh values δ, k1, . . . , kn are sampled for each signature)

Sign. When obtaining msg ∈ {0, 1}∗ for signing, set m = HASH(msg) and do:

1. P1, . . . ,Pn run a protocol for computing tecdsaH(x1, k1, . . . , xn, kn). They obtain (R,χi)i∈[n].

2. Each signatory Pi homomorphically evaluates

Si = enc0(kim+R · χi)⊕ (R · ki ⊙W0) = enc0(kim+R · (χi + kix0))

and they send (R,S) to P0, where S is the aggregate ciphertext S = ⊕n
i=1Si.

3. P0 calculates σ̂ = dec0(S) and outputs the ECDSA signature (R, σ) for σ = δ · σ̂.

Packing Optimization. When calculating λ signatures, letting τ denote the packing shift, the online
parties send R1, . . . , Rλ and a single S s.t. S = enc0(

∑τ
j=1 σ̂j · 2(j−1)τ). Then, P0 decrypts and

“unpacks” S, and outputs (Rj , σj)
λ
j=1 analogously to the non-packed case. We note that τ is a

constant that depends on the other parameters of the protocol (typically τ ≈ 2 log(q)).

Figure 2: Honest-but-curious variant of Σecdsa (i.e. w/o proofs). We recall that P0 denotes the offline signatory
and P1, . . . ,Pn denote the cosignatories and enc0(·) denotes P0’s AHE. Note that ⊕ and ⊙ denote the homomorphic
operations of addition and multiplication by scalar, respectively. Further recall that com(·) denotes a commitment
scheme. Observe that Item 2 in Figure 2 is equivalent to P0 receiving a message from a single virtual party and this
message is independent of the number of parties.

Remark 2.1. When using the packing optimization for multiple messages (mj)
λ
j=1, ϕ has the form

ϕ : (βi,j , γi,j)
λ
j=1 7→

λ⊕
j=1

(
(βi,j ⊙ enc0(2

(j−1)τ))⊕ (γi,j ⊙ (2(j−1)τ ⊙W0)
)
.

where (βi,j , γi,j) are analogously defined wrt. (mj , Rj)
λ
j=1 and fresh k’s and χ’s.

Batch-Proving Optimization. Finally, when performing µ · λ signatures at once, where λ denotes the
packing number, our new batch-proving technique allows us to validate well formedness of µ distinct packed
ciphertexts S1, . . . , Sµ, each one containing λ packed signatures, using a single short proof (we discuss batch-
proving in more detail in the next section). To conclude this section, compared to the non-batch, non-aggregate,
baseline, we note that our approach yields a multiplicative (n · µ)-improvement in proof size (where n is the
number of parties) in addition to the communication benefits achieved through packing.

2.2 Soundness of Batch-Proving
Hereafter, fix homomorphism ϕ : H → G, and sets E ⊆ Z and R,R′ ⊆ H where R′ consists of all those

elements which are “close” to R, e.g. if R consists of signed ℓ-bit integers, then R′ consists of signed 2ℓ-bit
integers. In this section, we define sufficient conditions for the security of batch-proving, i.e. we elaborate on
the “well-behavedness” of the tuple (ϕ,E,R) and we give a proof sketch that the associated batch protocol is
sound.

11

Let us recall the definition of an m-batch Schnorr protocol. (For concrete parameters, the reader is advised
to use the suggested values in Remark 1.3)
Definition 2.2 (m-batch Schnorr Protocol). Define the m-batch schnorr protocol associated with tuple
(ϕ,E,R) to consist of the following interactive process between the prover and the verifier:

1. The Prover sends A = ϕ(α) to the Verifier for random α← R′.

2. The Verifier replies with challenges e⃗ = (e1, . . . , em)← Em.

For the NIZK, the Prover applies the Fiat-Shamir transform to locally calculate the e’s.

3. The Prover answers the challenge by sending z = α+
∑m

i=1 eiwi ∈ H.

The Verifier accepts if ϕ(z) = A ·
∏m

i=1X
ei
i and z ∈ R′.

Definition 2.3. Let Π be the m-batch protocol defined by the tuple (ϕ,E,R). We associate the following
conditions on Π with respect to some arbitrary set V :

1. V -Extractability. For every PPTM B s.t. with noticeable probability over (τ1, . . . , τm+1)← B:

(a) τj = (X⃗, A, e⃗j , zj) where A ∈ G and X⃗ ∈ Gm (same A, X⃗ for all τj).

(b) τj is a valid accepting transcript for Π (for all τj).

(c) (e⃗1, . . . , e⃗m+1) ∈ V .

Then, there exists PPTM E s.t. with noticeable probability over (w1, . . . , wm) ← E(τ1, . . . , τm+1):
ϕ(wj) = Xj for all j ∈ [m] where X⃗ = (X1, . . . , Xm).

(Extractability is the analogue of special soundness for vanilla Schnorr protocols. Extractability is relates
to an explicit set V ⊆ 2E in the challenge space – not necessarily {(e⃗1, ..., e⃗m+1) s.t. e⃗i ̸= e⃗j)}. We also
note that B may take advice, i.e. it is non-uniform.)

2. V -Robustness. For all j ∈ [m], it holds that Pr
e⃗j+1←Em

[(e⃗1, . . . , e⃗j , e⃗j+1) ∈ V | (e⃗1, . . . , e⃗j) ∈ V] ≈ 1.

(V is close to the power set {∅} ∪E1 ∪ . . . ∪Em+1.)

3. Unpredictability. For every w1, . . . , wm, α ∈ H, if wj /∈ R′ for some j ∈ [m], then

Pr
e⃗←Em

[α+

m∑
k=1

ekwk ∈ R′] ≈ 0.

(If one of the w’s is out of range, then the entire linear cmbination is out of range, almost surely.)

4. Collision Resistance. For every PPTM B, it holds that Pr
(w,w′)←B

[ϕ(w) = ϕ(w′) ∧ w ̸= w′] ≈ 0.

(It is infeasible to find collisions in the homomorphism.)

Remark 2.4. We note that Extractability and Robustness are parameterized by a set V ⊆ 2E . Further
below, when discussing the Pedersen homomorphism, we prove that the associated batch-protocol satisfies
V -extractability for an explicit V (from Definition 2.7).

Theorem 2.5 (Batch Soundness – Informal). Let Π be the m-batch protocol defined by the tuple (ϕ,E,R)
and assume that Π satisfies Extractability, Robustness, Unpredictability and Collision Resistance with respect
to some set V . Let X⃗ = (X1, . . . , Xm) be such that ϕ−1(Xj)∩R′ = ∅ for some j ∈ [m]. Then, the probability
that the verifier accepts in Π(X⃗) is negligible.

Proof Sketch. Assume that there exists a cheting prover B that makes the verifier accept with noticeable
probability on common input X⃗. We use B to define PPTM D that violates the presumed collision resistance
property. B and D interact as follows: after B hands out its first-round message A ∈ G, D forks the protocol
into r parallel sessions (the value of r will be determined by the analysis). In the k-th session, D returns

12

an independently sampled verifier-challenge e⃗k ← Em to B. Let zk be B’s third-round message in the k-th
session. The theorem follows from the following observations.

Since B wins with suitable probability, it follows that at least m + 2 sessions are accepting by the ver-
ifier. For simplicity, we assume that the first m + 2 transcripts are accepting. By V -Extractability and
V -Robustness, we can extract all the pre-images α, w⃗ = (w1, . . . , wm) using the first m + 1 accepting tran-
scripts. By Unpredictability, with save but negligible probability, it holds that ẑ := α +

∑m
j=1 ek,j · wj /∈ R′

for random e⃗k = (ek,1, . . . , ek,m) (recall that at least one of the w’s is out of range). To conclude, we show
that ϕ(zm+2) = ϕ(ẑ) and zm+2 ̸= ẑm+2 thus violating collision resistance.

Indeed, for every (α,w1, . . . , wm) ∈ ϕ−1(A) × ϕ−1(X1) × . . . × ϕ−1(Xm), the homomorphic property of ϕ
yields that the equality test performed by the verifier is accepting on z = α +

∑m
j=1 ejwj . Thus, ϕ(ẑm+2) =

ϕ(zm+2). Finally, since the (m + 2)-th transcript τm+2 = (A, e⃗m+2, zm+2) is accepting, we observe that
zm+2 ∈ R′ and thus zm+2 ̸= ẑ, which concludes the proof.

2.3 Pedersen Batch Extractability
Our threshold ECDSA protocol makes extensive use of batch-proofs resulting from the Pedersen homomor-
phism (which gives rise to so-called Pedersen commitments, aka Fujisaki-Okamoto commitments [21]). As we
shall see next, showing that Pedersen commitments satisfy the conditions of Definition 2.3 is non-trivial, and
we view this contribution as an additional technical novelty of our work (for the high-level technical overview,
we focus on extractability).

Definition 2.6 (Pedersen Commitments – Informal). Let P be group and let t ∈ P and s ∈ ⟨t⟩ denote random
elements in P and ⟨t⟩ (the group generated by t) respectively. Let ϕ : Z× Z → P denote the homomorphism
ϕ(w, ρ) = tρsw. We say that C is a Pedersen commitment of w ∈ Z, if C = ϕ(w, ρ), for some ρ ∈ Z.

For the rest of this section, let Π denote the m-batch protocol for tuple (ϕ,E,R) where ϕ : Z2 → P denotes
the Pedersen homomorphism and E,R are arbitrary.

Definition 2.7 (Pedersen Extractability Set). Define V ⊆ 2E such that (e⃗1, . . . , e⃗i) ∈ V if there exists
e⃗i+1, . . . , e⃗m+1 ∈ Em such that det(E) ̸= 0 and det(E) is coprime with |P|, where:

E =


1 e⃗1
...

...
1 e⃗m+1

 =


1 e1,1 . . . e1,m
...

...
. . .

...
1 em+1,1 . . . em+1,m

 . (2)

Theorem 2.8 (Batch PoK – Informal). If the strong-RSA assumption holds in P then Π is V -extractable.

Proof Sketch. Recall the strong-RSA assumption: Pr
t←P

[(c, d) ← B(P, t) s.t. cd = t ∧ d /∈ {−1, 1}] ≈ 0,
for every PPTM B. Recall that V is defined as per equation Definition 2.7 above. We describe reduction
from Extractability to Strong RSA. So, we assume that Extractability does not hold and we will find a non-
trivial root for RSA challenge t ← P. First, the reduction chooses s = tλ where λ ≈ |P|2 (the size of λ is
crucial for the reduction). Next, letting C⃗ = (C1, . . . , Cm) ∈ Pm+1 denote the m Pedersen instances to be
batched, B generates m + 1 valid transcripts τ1 = (C⃗, A, e⃗1, (y1, z1)), . . . , τm+1 = (C⃗, A, e⃗m+1, (ym+1, zm+1))
for m + 1 where szityi = A ·

∏
j C

ei,j for every i. Further, assume that (e⃗1, . . . , e⃗m+1) ∈ V and write F for
the inverse of E over the rational numbers Q (the reduction cannot invert in Z|P| because it does not know
the order of the group – strong RSA is easy otherwise). Notice that if F · y⃗ ∈ Zm+1 and F · z⃗ ∈ Zm+1,
then (wi, ρi) = (Fi · z⃗, Fi · y⃗) ∈ Z2 is a valid decommitment for Ci where Fi denotes the i-th row of F , so
exctractability is not violated in this case. Else, write F = Ê/det(E) for some integer matrix Ê (standard
linear-algebra fact) and observe that tαλ+β = C

det(E)
i for α = Êi · z⃗ and β = Êi · z⃗, letting Êi denote the i-th

row of Ê. To conclude, we will produce a suitably-chosen pair (R, d) such that Rd = t which breaks strong
RSA. First, note that det(E) does not divide γ = αλ+ β because λ ≈ |P|2 is information-theoretically hidden
and λ is implicitely reduced modulo the order of the group. Consequently, letting b = gcd(det(E), γ), define
(R, d) such that d = det(E)/b and R = tuCv

i where (u, v) are the Bézout coefficients14 of det(E) and γ, and
14For x, y ∈ N, the Bézout coefficients u, v ∈ Z satisfy ux+ yv = gcd(x, y).

13

conclude that d /∈ {−1, 1} and

t = t
u det(E)+vγ

b = tud(tγ/b)v = tud · (Cd
i)

v = (tuCv
i)

d.

Remark 2.9. In subsequent sections, we instantiate Pedersen commitments in RSA groups.

2.4 Security Analysis
We conclude the high-level technical overview with the security analysis of our threshold ECDSA protocol.
Our key technique (inspired from [10]) is to show that our protocol UC-realizes Ftsig by way of reduction
to the assumed unforgeability of the underlying non-threshold scheme. So, let SGN denote an arbitrary
signature scheme (not-necessarily-ECDSA) and recall that SGN is a threetuple of algorithm for (i) generating
public/private key-pairs, (ii) signing messages, and (iii) verifying signatures. We begin by defining signing
oracles and unforgeability.

Definition 2.10 (Unforgeability – Informal). let G denote a signature oracle for SGN, i.e. G is a PPTM s.t.:

1. Upon activation, G samples a secret/public key-pair (sk, pk) as prescribed by SGN and returns pk.

2. When queried on a message msg ∈ {0, 1}, G returns a signature σ (NB. σ is a function of msg and sk).15

We say that SGN is G-unforgeable if the following holds for every adversary A interacting with G. For any
message m ∈ {0, 1}∗, if m was never queried to G by A, then the probability that A outputs a valid signature
for m is negligible. Intuitively, SGN is G-unforgeable if G is not useful for forging signatures.

MPC & Adversarial Model. Write Σ for an n-party protocol computing SGN, i.e. Σ is an interactive
protocol between parties P1, . . . ,Pn such that Σ emulates the key-generation, signature, and verification
algorithms of SGN. As usual, there is an adversary A corrupting a subset of parties, and the corrupted parties
are utterly controlled by A, e.g. they can send any message of A’s choosing. In this work, we assume that A
corrupts parties adaptively, i.e. A decides which parties to corrupt dynamically as the protocol evolves, and A
may even decide to decorrupt certain parties. Security of Σ is defined in the UC-framework, discussed next.

Universal Composability (UC). Consider the following two experiments in the presence of the so-called
environment Z; the purpose of Z is to distinguish between the two experiments. (Real) The first experiment
corresponds to the actual, i.e. real, execution of Σ where the honest parties interact with the adversary. (Ideal)
The second experiment corresponds to the following idealized process: All parties except Z interact by means
of an incorruptible trusted party F , dubbed the ideal functionality, according to the specifications of F .

In both experiments, Z has full control over the inputs of the Pi’s, i.e. Z chooses the messages for signing,
and Z can see the outputs of the Pi’s, i.e. the resulting signatures. Furthermore, we assume that Z has direct
communication with the adversary, and we write S for the ideal adversary to avoid confusion. Turning to the
security definition, intuitively, Σ is secure if Z cannot tell the difference between real and ideal experiments,
i.e. Z’s output is almost identically distributed in both experiments. Slightly more formally, letting EXECreal

Z,Σ
and EXECideal

Z,F denote the output of Z in the real and ideal experiments respectively, we say that Σ UC-realizes
F if:

∀A∃S ∀Z it holds that EXECreal
Z,Σ ≡ EXECideal

Z,F . (3)

15Later on, for additional functionality, we define signing oracles that support arbitrary queries of their state.

14

Ideal functionality. When choosing which functionality to realize, the most “natural” ideal functionality,
FSGN, simply runs the code of SGN. In other words, FSGN samples sk, pk as prescribed by SGN and interacts
with the parties as a signing oracle, similar to G above. However, as it is argued in [10, 31], this natural
approach has certain disadvantages. For one, it rules out many protocols that are “good enough”, i.e. maybe Σ
only outputs biased signatures (e.g. the first bit of σ is zero), and this bias is inconsequential to the security of
the protocol. In this case, Σ does not realize FSGN even though Σ is a “good” protocol. Second, UC-realizing
FSGN may require instantiating the protocol with UC-secure NIZKs and these incur substantial overhead, even
in the random oracle model, because, e.g., the Fiat-Shamir transform gives way to the Fischlin transform
[20] which is more expensive in both computation and communication. Finally, adaptive security (one of
the desiderata for our protocol) is notoriously hard and prohibitively expensive when realizing FSGN, and it
generally requires sophisticated cryptographic tools like non-committing encryption.

In this work, to circumvent the above limitations, we opt for the ideal threshold-signatures functionality
Ftsig from [10]. Intuitively, Ftsig may be viewed as a simple repository of signed messages, and, crucially for
the security analysis, Ftsig does not hold any internal secrets. In more detail, Ftsig operates according to the
following specifications.

Activation & Signature request. When activated, Ftsig requests a verification algorithm V from
the ideal adversary S (resulting from some externally calculated public key). Whenever a signature is
requested by the parties for m ∈ {0, 1}∗, Ftsig keeps record of m and marks it as “signed”.

Signature Verification. When a message-signature pair (m,σ) is presented for verification, if m
is marked as “signed”, then the functionality returns V(m,σ) ∈ {true, false}, i.e. the output of the
verification algorithm. Else, if m is not marked as “signed”, Ftsig returns false, regardless of V.

So, in a nutshell, Ftsig keeps a record of all messages that the parties agreed to sign, and it will outright
reject any signature for any message that was not submitted for signing, including signature-strings that verify
according to V. As such, any protocol that realizes Ftsig is a “good” threshold-signatures protocol.

Next, we describe sufficient conditions for a protocol to UC-realize Ftsig in relation to unforgeability (which
is a non-MPC security notion).

Definition 2.11 (Simulatability – Informal). Let A denote an adversary corrupting a subset of signatories
in a standalone execution of Σ (corresponding to a single public key). We say that Σ is G-simulatable, if, for
every A, for every not-too-small ε, there exists S such that, with distinguishing advantage at most ε, S can
simulate the interaction between A and the honest parties using the signing oracle G. Notationally, letting
VIEWA,Σ and OUTS,G denote (i) A’s view in an execution of Σ, and (2) S’s output when interacting with G
and A, we write:

∀A∀ε ∃S s.t. VIEWA,Σ
ε≡ OUTS,G . (4)

Remark 2.12. Simulatability is very weak compared to UC security, e.g. the simulator may depend on the
code of the adversary (vs. a single S for all Z in the UC definition). In fact, simulatability is weaker than
so-called “standalone” non-UC security (where Z does not interact with the experiments and simply outputs its
view), because, as Equation (4) suggests, the running time of the simulator may depend on the distinguishing
advantage ε.

Next we state our main security theorem. Intuitively, it state that if a single execution of Σ is simulatable
according to the above weak definition (where executions are distinguished by the public key), then Σ achieves
the strong security guarantee that it realizes Ftsig even when it is composed arbitrarily (e.g. for many public
keys).

Theorem 2.13. If SGN is G-Unforgeable and Σ is G-Simulatable, then Σ UC-realizes Ftsig.

Proof Sketch. Let A denote the real-world adversary and write Z for the environment. We begin by describing
the ideal adversary S for Equation (3) , and it is assumed that S has black-box access to A. First, S samples
secrets for the honest parties, as prescribed by Σ. Second, to simulate the interaction of the honest parties
with A, S simply runs the code of the honest parties as prescribed by Σ. Third, for interacting with the
ideal functionality, S submits V resulting from the public key of the interaction with A (as prescribed by Σ).
Finally, S interacts with Z by simply relaying message between A and Z.

15

Notice that S is trivial insofar as it simply runs the honest parties’ code against the A (exactly like the real
experiment) and it acts as a relaying vehicle between A and Z. Therefore, Z’s interaction with A in the real
experiment and Z’s interaction with S in the ideal experiment are identically distributed, in a perfect sense.
It follows that the only way for Z to distinguish between real and ideal experiments is to forge signatures.
Here is why: Assume that Z forges a signature σ⋆ for a message m⋆ that was never signed before. Then, Z
asks a party X to verify the validity of the string (m⋆, σ⋆), and X proceeds as follows. In the real world, X
runs the verification algorithm on (m⋆, σ⋆) and returns true (because the forgery verifies according to V). On
the other hand, in the ideal experiment, X queries Ftsig which returns false because m⋆ was never submitted
for signing, thus allowing Z to distinguish.

So, viewing A,Z and X as a single PPTM, if Z distinguishes with noticeable probability α, then there
exists PPTM A0 controlling a subset of parties in Σ that outputs a forgery with probability α at the end of
the execution. By G-simulatability, fixing ε ≤ α/2, there exists S0 that can simulate Σ in the presence of
A0 with distinguishing advantage at most ε. Therefore, since ε ≤ α/2, it follows that S0’s output contains a
forgery with probability at least α/2, and so G is useful for forging signatures of SGN, in contradiction with
the G-unforgeability assumption.

In conclusion, no such A0 exists and Σ UC-realizes Ftsig.

Remark 2.14. In a subsequent work, Makriyannis [31] extends the above to so-called oracle-aided signatures
where each signature-string may depend on the query-answer pairs of a random oracle. Thus, by modeling
the underlying hash function of the Schnorr signature scheme [36] as a random oracle, [31] shows that the
simplest known protocol for Schnorr signatures [33, 35, 37] UC-realizes Ftsig. We emphasize that we make no
assumptions about the underlying hash function of ECDSA in this paper.

Remark 2.15. Note that Theorem 2.13 has interesting ramifications for all non-pathological threshold-
signatures protocols, i.e. protocols which are not essentially “broken”. Namely, if a protocol Σ is not “broken”
(either because it standalone/UC-realizes the natural functionality FSGN, or it is unforgeable according to a
suitable definition, e.g. simulatability), then Σ UC-realizes Ftsig. Thus, our theorem yields an equivalence
between the game-based definition of unforgeability and the UC definition for realizing Ftsig.16

Finally, we note that Σecdsa supports arbitrary concurrent signatures, i.e. there is no restriction on the
number of concurrent signatures (or pre-signatures) being generated. So, by showing that our protocol Σecdsa

is simulatable against adaptive adversaries (cf. Section 5.2) , we deduce the following theorem.

Theorem 2.16 (Security of Σecdsa – Informal). Under suitable cryptographic assumptions, it holds that Σecdsa

UC-realizes Ftsig with arbitrary concurrent signatures (or pre-signatures) against adaptive adversaries.

3 Preliminaries
Hereafter, we write presign, presigning and presignature instead pre-sign, pre-signing and pre-signature.

3.1 Notation
Throughout the paper Q, Z and N denote the set of rational, integer and natural numbers, respectively. Secret
values are always denoted with lower case letters (p, q, . . .) and public values are usually denoted with upper
case letters (A,B,N, . . .). Upper case bold letters X,S, . . . denote sets and we write 2X = {A s.t. A ⊆X}
for the power set of X. Arrow-accented letters A⃗, ρ⃗, . . . denote ordered sets, i.e. tuples. Upper case bold
letters u,v.. denote random variables. Furthermore, for a tuple of both public and secret values, e.g. an
RSA modulus and its factors (N, p, q), we use a semi-colon to differentiate public from secret values (so we
write (N ; p, q) instead of (N, p, q)). For a, b ∈ N, we write a | b for “a divides b” and a ��| b for the negation.
We write gcd : N2 → N for the greatest common divisor operation, [a]q denotes the modular reduction

16In particular, the protocols [13, 15, 19, 23] UC-realize Ftsig with the following caveat: our equivalence merely preserves the
game-based security guarantee, and it does not extend the security guarantee beyond composability (where different sessions
of the protocol are identified with distinct public keys). To illustrate this point, if a protocol Σ is secure only against static
adversaries, then Σ realizes Ftsig only against static adversaries, or, if Σ is secure only when the signature-generation process
is sequential (non-concurrent), then Σ realizes Ftsig only for sequentially-generated signatures (though different sessions of the
protocol for different public keys can be composed arbitrarily).

16

operation a mod q, and φ(·) denotes Euler’s totient function (not to be confused with ϕ which denotes a
group homomorphism).

Groups & Fields. G,H,K denote groups and F is a field (typically we write Fq to specify that the field has
q elements). We write 1 ∈ G (or H or K) for the identity element in G (or H or K). Typically, (G, g, q) will
denote the group-generator-order tuple for ECDSA. Group products, e.g. K = G1 × . . . × Gn, are endowed
with the natural group-product operation i.e. A⃗ · B⃗ = (Ai)

n
i=1 · (Bi)

n
i=1 = (Ai ∗i Bi)

n
i=1, where ∗i is the group

operation of Gi. For t ∈ Z∗N , we write ⟨t⟩ = {tk mod N s.t. k ∈ Z} for the multiplicative group generated
by t. For e⃗1, . . . , e⃗n ∈ Fm, where F is a field, write ⟨e⃗1, . . . , e⃗n⟩ for the vector space generated by {e⃗i}ni=1. For
ℓ ∈ Z, we let ±ℓ denote the interval of integers {−|ℓ|, . . . , 0, . . . , |ℓ|}.

Algorithms, Polynomials & Negligible Functions. We use sans-serif letters (enc,dec, . . .) or calligraphic
(S,A, . . .) to denote algorithms. We write x ← E or x ← e for sampling x uniformly from a set E or as a
sample of e respectively, and x ← A or x ← gen for sampling x according to (probabilistic) algorithms A or
gen respectively. For g : N 7→ R we say that g is polynomially bounded and we write g ∈ poly if there exists
c ∈ N such that g(κ) ≤ κc for all-but-finitely-many κ’s. Furthermore, for ε : N 7→ R, we write ε ∈ 1/poly if 1/ε
is polynomially bounded (i.e. 1/ε ∈ poly). A function ν : N 7→ R is negligible if for every ε ∈ 1/poly it holds
that ν(κ) ≤ ε(κ) for all-but-finitely-many κ’s and we write negl for the set of negligible functions.

Distribution Ensembles & Indistinguishability. A distribution ensemble {vκ}κ∈N is a sequence of ran-
dom variables indexed by the natural numbers. We say two ensembles {vκ} and {uκ} are ε-indistinguishable
and we write {vκ}

ε≡ {uκ} if |Pr[D(1κ,uκ) = 1] − Pr[D(1κ,vκ) = 1]| ≤ ε(κ) for every efficient distinguisher
D, for all-but-finitely-many κ’s. Finally, we write SD(u,v) for the statistical distance of u and v, i.e.

SD(u,v) = sup
W
|Pr[v ∈W]− Pr[u ∈W]|

3.2 Signatures and Unforgeability
Definition 3.1 (Signature Scheme.). SGN = (gen, sign, vrfy) is a threetuple of algorithms such that

1. (pk, sk)← gen(1κ), where κ is the security parameter.

2. For msg ∈ {0, 1}∗, σ ← signsk(msg).

3. For msg, σ ∈ {0, 1}∗, vrfypk(σ,msg) = b ∈ {0, 1}.

Correctness. For σ ← signsk(msg), it holds that vrfypk(σ,msg) = 1.

Existential Unforgeability. Next, we define security for signature schemes.

FIGURE 3 (Augmented signature oracle G)
Parameters. Signature scheme SGN and randomized functionality f .

Operation.

1. On input (gen, 1κ), generate a key pair (pk, sk)← gen(1κ), initialize state = (sk, pk), and return pk.

Ignore future calls to gen.

2. On input x, sample r ← $ and return τ = f(x, state; r).

Update state := state ∪ {(x, τ ; r)}.

Figure 3: Augmented signature oracle G

Definition 3.2 (G-Existential Unforgeability.). We say that SGN is G-existentially unforgeable if for all A
there exists ν ∈ negl s.t. Pr[G-EU(A, 1κ) = 1] ≤ ν(κ), where G-EU(·) denotes the security game from Figure 4.

17

FIGURE 4 (G-Existential Unforgeability Experiment G-EU(A, 1κ))
1. Call G on (gen, 1κ) and hand pk to A.

2. The adversary A makes n(κ) adaptive calls to G for n ∈ poly.

3. A outputs (m,σ) given its view (randomness and query-answer pairs to G)

• Output: G-EU(A, 1κ) = 1 if vrfypk(m,σ) = 1 and m was not queried by A when calling G.

Figure 4: G-Existential Unforgeability Experiment G-EU(A, 1κ)

3.3 MPC and Universal Composability
We use the simplified variant of the UC framework (which is sufficient for our purposes because the identities of
all parties are assumed to be fixed in advance). In this section we provide a quick reminder of the framework.

The model for n-party protocol Π. For the purpose of modeling the protocols in this work, we consider
a system that consists of the following n + 2 machines, where each machine is a computing element (say,
an interactive Turing machine) with a specified program and and identity. First, we have n machines with
program Π and identities P1, . . . ,Pn. Next, we have a machine A representing the adversary an a machine Z
representing the environment. All machines are initialized on a security parameter κ and are polynomial in
κ. The environment Z is activated first, with an external input z. Z activates the parties, chooses their input
and reads their output. A can corrupt parties and instruct them to leak information to A and to perform
arbitrary instructions. Z and A communicate freely throughout the computation. The real process terminates
when the environment terminates. Let EXECZΠ,A(1

κ, z) denote the environment’s output in the above process.
We assume for simplicity that the parties are connected via an authenticated, synchronous broadcast

channel. That is, the computation proceeds in rounds, and each message sent by any of the parties at some
round is made available to all parties at the next round. Formally, synchronous communication is modeled
within the UC framework by way of Fsyn, the ideal synchronous communication functionality from [5, Section
7.3.3]. The broadcast property is modeled by having Fsyn require that all messages are addressed at all parties.

Ideal Process. the ideal process is identical to the real process, with the exception that now the machines
P1, . . . ,Pn do not run Π, Instead, they all forward all their inputs to a subroutine machine, called the ideal
functionality F . Functionality F then processes all the inputs locally and returns outputs to P1, . . . ,Pn. Let
EXECZF,S(1

κ, z) denote the environment’s output in the above process.

Definition 3.3. We say that Π UC-realizes F if for every adversary A there exists a simulator S such that
for every environment Z there exists ν ∈ negl such that

{EXECZΠ,A(1
κ, z)}z∈{0,1}∗

ν≡ {EXECZF,S(1
κ, z)}z∈{0,1}∗

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once
corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions
of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes
executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption. Finally, the real adversary is
assumed to be rushing, i.e. it receives the honest parties’ messages before it sends messages on behalf of the
corrupted parties.

Global Functionalities. It is possible to capture UC with global functionalities within the plain UC frame-
work. Specifically, having Π UC-realize ideal functionality F in the presence of global functionality G is represented
by having the protocol [Π,G] UC-realize the protocol [F ,G] within the plain UC framework. Here [Π,G] is the
n + 1-party protocol where machines P1, . . . ,Pn run Π, and the remaining machine runs G. Protocol [F ,G]
is defined analogously, namely it is the n+ 2-party protocol where the first n+ 1 machines execute the ideal
protocol for F , and the remaining machine runs G.

18

3.3.1 Proactive Threshold Signatures

Definition 3.4 (Proactive Threshold Signatures). Let Σ = (Σkgen,Σrefr,Σpres,Σsign) denote a protocol for
parties in P = {P0,P1, . . . ,Pn} parametrized by QRMs ⊆ 2P . We say that Σ is a proactive Threshold-
Signatures scheme for SGN = (. . . , vrfy) if it offers the following functionality.

1. Σkgen takes input 1κ from Pi ∈ P and returns (pk, si) to each Pi ∈ P .

2. Σrefr takes input (pk, si) from each Pi ∈ P and returns (a fresh) value si to each Pi ∈ P .

3. Σpres takes input (pk, si,Q, L) from each Pi ∈ Q and returns (wi,1, . . . , wi,L) to each Pi.

4. Σsign takes input msg ∈ {0, 1}∗ and (pk, si,Q, ℓ) from Pi ∈ Q and returns σ to (at least one) Pi.

Correctness. Using the notation above, if Q ∈ QRMs then vrfypk(σ,msg) = 1 in an honest execution.

Sets Q ∈ QRMs are called quorums and the span between two consecutive executions of Σrefr is referred to as
an epoch. By convention, the span before the first execution of Σrefr is the first epoch.

A protocol Σ is said to be secure if it UC-realizes functionality Ftsig, defined below.

3.3.2 Ideal Threshold-Signatures Functionality

We use the ideal functionality Ftsig of [10], which generalizes the non-threshold signature functionality of
Canetti [6]. We briefly outline Ftsig next and we refer the reader to the appendix (p. 42) for the full descrip-
tion.

For each signing request for a message msg, the functionality requests a signature string σ from the
adversary, which is submitted from the outside, i.e. the signature string σ is not calculated internally from
the ideal functionality. Once sigma is submitted by the adversary, the functionality keeps record of (msg, σ).
When a party submits a pair (msg′, σ′) for verification, the functionality simply returns true if it has record
of that pair and false otherwise.

For proactive security, the functionality admits an additional interface for recording corrupted and decor-
rupted parties. When a party is decorrupted, the functionality records that party as quarantined until it
is instructed to purge that record (via a special key-refresh interface). If all parties are corrupted and/or
quarantined at any given time, then the functionality enters a pathological mode of operation and it ignores
the message-signature repository it holds internally.

3.3.3 Global Random Oracle

We follow formalism of [4, 7] for incorporating the random oracle into the UC framework. In particular, we
use the strict global random oracle paradigm which is the most restrictive way of defining a random oracle,
defined below.

FIGURE 5 (The Global Random Oracle Functionality H)

Parameter: Output length h.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .

– Else sample a← {0, 1}h and store (m, a).

Output (answer, a) to X .

Figure 5: The Global Random Oracle Functionality H

19

3.4 Group/Number-Theoretic Definitions
Definition 3.5. We say that N ∈ N is a biprime if N admits exactly two non-trivial prime divisors. In
particular, a biprime N is a Paillier-Blum integer iff gcd(N,φ(N)) = 1 and N = pq for primes p, q ≡ 3 mod 4.

Definition 3.6 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple (gen, enc, dec) below.

1. Let (N ; p, q)← gen(1κ) where N = pq is Paillier-Blum and |p| = |q| ∈ O(κ). Write pk = N , sk = (p, q).

2. For m ∈ ZN , let encpk(m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗N .

3. For c ∈ ZN2 , letting µ = ϕ(N)−1 mod N ,

decsk(c) =

(
[cϕ(N) mod N2]− 1

N

)
· µ mod N.

Definition 3.7 (ECDSA). Let (G, g, q) denote the group-generator-order tuple associated with a given curve.
We recall that elements in G are represented as pairs a = (ax, ay), where the ax and ay are referred to as the
projection of a on the x-axis and y-axis respectively, denoted ax = a|x-axis and ay = a|y-axis, respectively. The
security parameter below is implicitly set to κ = log(q).

Parameters: Group-generator-order tuple (G, q, g) and hash function H : M → Fq.

1. (X;x)← gen(G, q, g) such that x← Fq and X = gx.

2. For msg ∈M , let signx(m; k) = (r, k(m+rx)) ∈ F2
q, where k ← Fq and m = H(msg) and r = gk

−1 |x-axis.

3. For (r, σ) ∈ F2
q, define vrfyX(m,σ) = 1 iff r = (gm ·Xr)σ

−1 |x-axis mod q.

Definition 3.8 (El-Gamal Commitment). For group-generator-order tuple (G, g, q) define algorithm com

which takes input (k, Y) ∈ Fq ×G and returns (B⃗;β) such that B⃗ = (gβ , Y βgk) for randomizer β ← Fq.

3.5 Schnorr Protocols
Let κ denote the security parameter. Hereafter, let ϕ : H → G denote a group homomorphism from (H,+)
to (G, ·) and E ⊆ Z, and R,S ⊆ H. It is assumed that (the description of) the tuple (ϕ,H,G,E,R,S) is
efficiently generated by a PPTM with input κ, and ϕ is efficiently computable as a function of κ.

Definition 3.9. An m-batch Schnorr protocol Π for tuple (ϕ,E,R,S) consists of the following interactive
process. For common input (Xi)

m
i=1 ∈ Gm and secret input (wi)

m
i=1 ∈ Hm:

1. Prover samples α← S and sends A = ϕ(α) to the verifier.

2. Verifier replies with e⃗ = (e1 . . . en)← Em.

3. Prover sends z = α+
∑m

j=1 ej · wj ∈ H, where e · w = w∗j + . . .+ w∗j︸ ︷︷ ︸
|e| times

and w∗j =

{
wj if e ≥ 0

−wj otherwise
.

Check: Verifier accepts if and only if ϕ(z) = A ·
∏m

j=1X
ej
j ∈ G and z ∈ S.

If R and S are not specified, then it is assumed that R = S = H. The protocol is (µ, ν)-secure if it satisfies

µ-HVZK. If Xi = ϕ(wi) and wi ∈ R for all i, then τ = (X⃗, A, e⃗, z) for z ← S, e⃗ ← Em and A =

ϕ(z) ·
∏m

j=1X
−ej
j is statistically µ-close to an honest transcript.

ν-Soundness. If ∃j such that ϕ(wj) ̸= Xj , for every w ∈ S, then, for every A ∈ G in Item 1, the
probability that the verifier accepts is at most ν.

Further define

(ε,V)-Extractibility. For all efficient A, if {τj = (X⃗, A, e⃗j , zj)}m+1
j=1 ← A are m+ 1 valid transcripts for

common input {Xj}m+1
j=1 such that {e⃗1, . . . , e⃗m+1} ∈ V , then, with all but probability ε, there exists an

efficient PPTM E such that A = ϕ(α) and Xj = ϕ(wj) for α, {wj}j ← E({Xj , τj}m+1
j=1).

20

3.5.1 Embedded Schnorr Protocols

Unfortunately, many tuples (ϕ,E,R,S) of interest do not give rise to sound Schnorr protocols. To guar-
antee soundness, we embed the desired homomorphism ϕ into a larger one ϕ̂. Namely, let (ϕ,E,R,S) and
(ϕ̂,E, R̂, Ŝ) for ϕ : H→ G and ϕ̂ : Ĥ→ Ĝ such that

• (Ĥ, Ĝ) = (H×K,G× L) and ϕ̂ : (u, v) 7→ (ϕ(u), θ(u, v)) for some arbitrary groups K and L and map θ.

• (u, v) ∈ R̂ and (u, v) ∈ Ŝ implies u ∈ R and u ∈ S respectively.

Definition 3.10. Define the m-batch embedded Schnorr protocol for tuples (ϕ̂,E, R̂, Ŝ) and (ϕ,E,R,S) to
consist of the following interactive process. For common input X⃗ ∈ Gm and secret input w⃗ ∈ Hm:

1. Prover samples (u⃗, v⃗)← R̂
m
|u⃗=w⃗ and α← Ŝ and sends (A, Y⃗) = (ϕ̂(α), θ(u1, v1), . . .).

2. Verifier replies with e⃗← Em.

3. Prover sends z = α+
∑m

i=1 ei · (ui, vi) ∈ Ĥ to the verifier.

Check: Verifier sets X̂i = (Xi, Yi) and accepts iff ϕ̂(z) = A ·
∏m

i=1 X̂
ei
i ∈ Ĝ and zi ∈ Ŝ, for all i.

Soundness and extractability are defined analogously to non-embedded protocols. For HVZK:

µ-HVZK. There exists an efficient sampler I for the extended input Y⃗ ∈ Km such that if Xi = ϕ(wi) and
wi ∈ R for all i, then τ = (X⃗, Y⃗ , A, e⃗, z) for Y⃗ ← I(X), z ← Ŝ, e⃗← Em and A = ϕ(z) ·

∏m
j=1(Xj , Yj)

−ej

is statistically µ-close to an honest transcript.

3.5.2 NIZK and the Fiat-Shamir Transform

We make extensive use of the Fiat-Shamir transform for converting an interactive zero-knowledge protocol
into an non-interactive zero-knowledge proof. Namely, consider the process from Figure 6. (The process is
analogous for embedded Schnorr protocols)17

FIGURE 6 (Schnorr Proof in ROM ψ ← ΠFS(aux, X⃗; w⃗))

Parameters: Schnorr protocol Π for tuple (ϕ,E,R,S) and random oracle H.

1. Sample α← S and set A = ϕ(α).

2. Calculate e⃗ = (e1, . . . , em) = H(aux, X⃗, A).
Output: ψ = (A, e⃗, z) for z = α+

∑m
j=1 ejwj ∈ H

Figure 6: Schnorr Proof in ROM ψ ← ΠFS(aux, X⃗; w⃗)

Notation 3.11. As shown above, for a m-batch Schnorr protocol Π for tuple (ϕ,E,R,S), we write ΠFS for
the non-interactive process resulting by applying the Fiat-Shamir transform to Π. Furthermore, we write
ψ ← ΠFS(aux, X⃗; w⃗) for the output of the process on common (public) input (aux, X⃗) and secret input w⃗.

Definition 3.12. We say that ψ = (A, e⃗, z) is a valid proof for ΠFS on input (aux, X⃗) if ϕ(z) = A ·
∏

kX
ek
k

for e⃗ = H(aux, X⃗, A) and z ∈ S. Furthermore, we say that ΠFS is a secure proof system in the ROM if

Zero-Knowledge. If Xi = ϕ(wi) and wi ∈ R for all i, then τ = (X⃗, A, e⃗, z) for z ← S, e⃗ ← Em and
A = ϕ(z) ·

∏m
j=1X

−ej
j is statistically close to ψ ← Π(X⃗, aux; w⃗), for every aux ∈ {0, 1}∗.

Soundness. If ∃j such that ϕ(w) ̸= Xj , for every w ∈ S, then the probability that an efficient PPTM
outputs a valid proof is negligible.

Fact 3.13. If Π is (µ, ν)-secure for µ, ν ∈ negl(κ), then ΠFS is a secure proof system in the ROM.
17Do not to forget to hash the extended input Y⃗ .

21

Remark 3.14 (Optimization in ROM). It is possible to reduce the communication complexity of ΠFS such that
ψ̂ = (u, z) where u = H(aux, A = ϕ(A)), using the notation from Figure 6. Accordingly, the verifier accepts ψ̂
if u = H(aux, gz ·

∏m
ℓ=1X

−eℓ) for e⃗ = H(aux, X⃗, u). Note that this optimization is mostly relevant for proofs
that cannot be batched (e.g. ψj,ℓ ← ΘFS

Rj
from Definition 4.7).

3.5.3 Proof Aggregation in ROM

Party Pi Party Pj

αi ← H and set Ai = ϕ(αi)

Set Ci = H(aux,Pi, X⃗i, Ai, ρi) for ρi ← {0, 1}κ

Ci

Cj

When obtaining all (Cj)j ̸=i

Ai, X⃗i, ρi

Aj , X⃗j , ρj

∀j, check Cj = H(aux,Pj , X⃗j , Aj , ρj)

Set A =
∏n

k=1Ak and calculate

e⃗ = H(aux, X⃗, A) and zi = αi +
∑

ℓ eℓwi,ℓ

zi

zj

Output (ψ, X⃗) where X⃗ =
∏

ℓ X⃗ℓ and ψ = (A, e⃗, z)

if ϕ(z) = A ·
∏

ℓX
eℓ
ℓ and z =

∑n
k=1 zk ∈ S

Figure 7: NIZK Aggregation ΠAGT for common input (aux, X⃗ =
∏

i X⃗i)

Let Π denote (µ, ν)-secure Schnorr protocol for (ϕ,E,R,S) and consider the proof-aggregation process
from Figure 7 among n provers P1, . . . ,Pn. In this section, we show that the properties of soundness and
zero-knowledge are preserved for the aggregated variant of the protocol. Regarding soundness, clearly, even if
all the parties collude, by Fact 3.13 it is not feasible to generate a valid proof ψ if the common input X⃗ does
not admit a suitable preimage. For zero-knowledge, we require the following notions.

Let A denote an adversary corrupting a strict subset of the Pi’s in Figure 7 and write RealΠA(1
κ, u, v) for

the adversary’s view in an execution of the protocol with common input u = (aux, X⃗) and auxiliary input
v ∈ {0, 1}∗. It is assumed that A has oracle access to the random oracle H and X⃗j = (Xj,1, . . . , Xj,m) admits
a suitable preimages {wj,ℓ ∈ R}ℓ∈[m] if Pj is not corrupted by A. Write S for a PPTM with taking auxiliary
input with blackbox access to A and oracle access to H, and let IdealS(1

κ, u, v) for the output of S.

Definition 3.15 (ZK for Aggregation). Using the notation above, we say that the Schnorr aggregation
protocol ΠAGT is µ-ZK if for all A, u = (aux, X⃗) and v ∈ {0, 1}∗, there exists S such that

SD(RealΠA(1
κ, u, v), IdealS(1

κ, u, v)) ≤ µ.

Claim 3.16. If Π is µ-HVZK then ΠAGT is (nµ)-ZK.

Proof. Write H for the parties not corrupted by A. For all Pj ∈ H, run the HVZK simulator from Defini-
tion 3.9 to obtain ψj = (Aj , e⃗, zj) (notice that each ψj contains the same e⃗). Set Cj = H(aux,Pj , Aj , ρj) for
ρj ← {0, 1}κ; hand over {Cj}j∈H to A. When obtaining Ci for all corrupted Pi’s, retrieve (aux,Pi, Ai, ρi) from
A’s oracle queries and set A =

∏k
i=1Ak. Define H′ such that H′ ≡ H except for H′(aux, X⃗, A) = e⃗; hereafter

22

answer oracle queries according to H′ (rather than H). Conclude the simulation by handing over (Aj , ρj) and
then zj for every Pj ∈ H. The claim follows from the µ-HVZK property of the underlying zero-knowledge
simulator, and union bound.

4 Protocol
In this section we define our proactive threshold-ECDSA protocol Σecdsa = (Σkgen,Σrefr,Σpres,Σsign). To keep
the protocol description as simple as possible, we opted to ignore the key-refresh; so Σrefr =⊥ herein. However,
key-refresh can be easily supported by essentially re-executing Σkgen (with appropriate checks), similarly to
the protocols of [8, 10]. The different phases of the protocol are defined in Figure 8 (key generation Σkgen),
Figure 9 (presigning Σpres) and Figure 11 (signing Σsign). Furthermore, we opted to present the protocol in its
two-party variant with a single online party P∞, and, to ease the transition to the multiparty case, we describe
the online party P∞ as if it locally emulates (mocks) the cosignatories P1, . . . ,Pn according to a running index
i ∈ [n]. Thus, the multiparty version of our protocol follows straightforwardly by simply “parallelizing” P∞
with respect to identifier i ∈ [n].

Notation and Conventions. Recall that κ denotes the security parameter and fix the ZK parameter ν
s.t. ν − 2κ ∈ ω(log(κ)). For M ∈ N, let I(M) = ±M/2 and J(M) = ±M · 2ν−1. Let λ and m denote the
packing parameter and batching parameter, respectively. Let τ denote the pack shift, i.e.

∑λ
j=1 wj−12

(j−1)τ

is a packing of the values w0, . . . , wλ for wj such that log(wj) < τ . The parties also hold a common input
aux ∈ {0, 1}∗ that specifies the session identifier (sid) as well as the parties’ identities (pid’s). Furthermore,
it is assumed that aux is provided as input to the random oracle when generating proofs and thus all proofs
ψ are generated as ψ ← ΠFS(aux, X;w) (we simply write ΠFS(X;w) to reduce clutter) where Π is a Schnorr
protocol, and each protocol is described in the relevant subsection, when needed.

Parameter Security/Soundness ZK Online Parties Packing Batching

Notation κ ν − 2κ n λ m

Running index N/A N/A i j ℓ

Table 3: Summary of parameters/indices of the protocol

To improve readability, we opted to suppress the randomizers in the protocol descriptions, e.g. we write
C = enci(k) for the encryption of k under the Paillier key of Pi and it is assumed that the randomizer is chosen
according to the encryption process; the randomizers are crucial for the ZK-proofs, so in the description of
the Schnorr protocols we do call attention to these values.

Furthermore, the protocol description does not explicitly mention proof verification. However, it goes
without saying, every time Pi obtains a proof ψ, the protocol instructs Pi to verify ψ against the available
data.

4.1 Pedersen Parameters
Before we turn to the protocol description, we introduce the Pedersen parameter, arguably the “secret sauce”
for achieving security.

Definition 4.1 (Pedersen Parameters). Define algorithm ped s.t. π = (N̂ , t, s1, . . . , sm, ψ)← ped(1κ) where

1. N̂ = pq of size O(κ) such that p = 2p′ + 1 and q = 2q′ + 1 and p′, q′ are all prime.

2. t← QR(Z∗
N̂
) and s1, . . . , sm ← ⟨t⟩.

3. ψ ← (Π∗)FS(s1, . . . , sm) where Π∗ is the m-batch Schnorr protocol for (ϕ,E) where E = {0, 1} and
ϕ(α) = tα mod N̂ .

Claim 4.2. It holds that Π∗ is (µ, ν)-secure for µ = 1− φ(N)
N and ν = 1

2 .

23

Proof. cf. Claim B.1, Appendix B.1. (Note that soundness may be amplified via parallel repetition)

Remark 4.3. We note that many Schnorr protocol herein arise as embedded Schnorr protocols (cf. Defini-
tion 3.10) where the underlying homomorphism is augmented to incorporate πi (the Pedersen parameter of a
party Pi). Looking ahead to the security analysis, note that the well-formedness of π is crucial for the sound-
ness of resulting Schnorr protocol, and partial well-formedness of π (according to Item 3 above) is crucial for
the HVZK property, cf. Claims 4.6 and 4.9.

Summary of Symbols. In Table 4, we provide a convenient summary for the different keys/params held
by the parties. We recall that Pallier encryption and El-Gamal commitments are described in Definitions 3.6
and 3.8 respectively.

Parameter ECDSA sk ECDSA pk El-Gamal pk Paillier pk Pedersen param

Notation x X Y N/A N/A

Pi’s Contribution /Value xi Xi Yi Ni πi

Table 4: Summary of keys/params held by the parties

4.2 Key-Generation & Presign
The key generation (cf. Figure 8) contains a ZK protocol, Φπ, which is not fully expressible as a Schnorr
protocol and we have we deferred the details of Φπ to Appendix B.2.18 For the remainder, it suffices to note
that Φπ yields the validity of the tuple (N,W,X) as described in Definition 4.4 below.

Definition 4.4. For fixed (G, g, q), define A to consist of all tuples (N,W,X; p1, p2, x) such that (i) N is a
Paillier-Blum modulus (cf. Definition 3.5) with prime factors p1, p2 and p1, p2 ≥ q, (ii) decφ(N)(W) = x and
X = gx ∈ G and (iii) x ∈ [0, q − 1]. If W and X are not specified, assume that (W,X) = (1,1) and x = 0.

4.2.1 ZK for Key-Generation & Presigning

Definition 4.5. For (N̂ , t, s1, . . .) = πi, define Ξi to be the Schnorr protocol for (ϕ,E,R,S) where E = I(2κ),

ϕ : Zλ × Fλ
q × Z∗N × Z→ G2λ × Z∗N2 × Z∗

N̂

(w⃗, µ⃗, v, ρ) 7→ (ϕ1(w⃗, µ⃗), ϕ2(w⃗, v), ϕ3(w⃗, ρ))

and 
ϕ1 : (w⃗, µ⃗) 7→ ((g, Y)µi · (1, g)wj)λj=1

ϕ2 : (w⃗, v) 7→
∏λ

j=1(1 + 2τ ·(j−1) ·N)wj · vN mod N2

ϕ3 : (w⃗, ρ) 7→ tρ ·
∏λ

j=1 s
wj

j mod N̂

and {
(w⃗, µ⃗, v, ρ) ∈ R ⇐⇒ ρ ∈ I(N̂ · 2κ) ∧ ∀j wj ∈ I(2κ)

(w⃗, µ⃗, v, ρ) ∈ S ⇐⇒ ρ ∈ J(N̂ · 2κ) ∧ ∀j wj ∈ J(2κ)

We view Ξi as an embedded Schnorr protocol, cf. Definition 3.10, where the homomorphism (ϕ1, ϕ2) is
augmented to (ϕ1, ϕ2, ϕ3). Below, we show that non-batch protocol Ξi is secure under properties enforced by
the protocol and suitable cryptographic assumptions. The security of the m-batch version of Ξi is a corollary
of our main theorem in Section 6 (Theorem 6.1). To avoid significant overlap with the later sections, the proof
of soundness below makes reference to the strong RSA assumption (Definition 5.7, Section 5.2) and the proof
of Theorem 6.7, Section 6.2.1, and it is thus somewhat schematic. For full details, the reader is directed to
the relevant references.

Claim 4.6. Using the notation above, for some δ ∈ negl, the following holds true under strong RSA.
18Φπ is a straightforward combination of ZK protocols found in [10] and [14].

24

“Online” Party P∞ “Offline” Party P0

For i ∈ [n], do:

Sample xi, αi, ui ← Fq, Yi ← G Sample x0, α0, u0 ← Fq, Y0 ← G

πi ← ped(1κ), (Ni; pi, qi)← gen(1κ). π0 ← ped(1κ), (N0; p0, q0)← gen(1κ),

Set Vi = H(aux,Pi, Xi, Ai, Ni, Yi, πi, ui) Set V0 = H(aux,P0, X0, A0, N0,W0, Y0, π0, u0)

(Xi, Ai) = (gxi , gαi) for (X0, A0) = (gx0 , gα0), W0 = enc0(x0)

V1, . . . , Vn

V0

(Xi, Ai, Yi, Ni, πi, ui)i

X0, A0, Y0, N0,W0, π0, u0

Verify V0 and set u = [
∑n

j=0 uj]q, ∀i Verify Vi and set u = [
∑n

j=0 uj]q,

Y =
∏n

j=0 Yj and reassign aux := (aux, u) Y =
∏n

j=0 Yj and reassign aux

∀i, ψi ← ΦFS
π0
(Ni; pi, qi) ∀i, ψ′

i ← ΦFS
πi
(N0,W0, X0; p0, q0, x0)

ei = H(Pi, Xi, Ai, u) and zi = [αi + eixi]q e0 = H(P0, X0, A0, u) and z0 = [α0 + e0x0]q

(ψi, zi)i

z0, (ψ
′
i)i

Calculate e0 and check gz0 = A0 ·Xe0
0 ∀i Calculate ei and check gzi = Ai ·Xei

i

Output (Y,X0, N0,W0, (Xi, Ni, πi)i; (xi)i) Output (Y,X0, N0,W0, π0, X∞, (Ni, πi)i;x0)

for X∞ =
∏n

i=1Xi

Figure 8: Threshold ECDSA, Key Generation (Σkgen) – The above protocol is essentially identical to the
key-generation from [9]. In the first round, the parties generate their ECDSA key-shares Xi, their El-Gamal key-
shares Yi, their Paillier keys Ni and their Pedersen parameters; the offline party P0 also generates a Paillier ciphertext
W0 encrypting its secret ECDSA key-share x0 ∈ Fq. After exchanging decommitments in the second round, the
parties generate proofs ψi, ψ

′
i validating that their parameters are well-formed according to Definition 4.4; notice that

P0’s proofs depend on identifier i because each ψ′
i depends on the i-th Pedersen tuple. Finally, in conjunction with

the above, the parties execute an interactive variant of the Schnorr protocol for discrete logarithm, i.e. each tuple
(Ai, ei = H(. . .), zi) is a proof of knowledge for the discrete logarithm of Xi in base g and the proof is generated
interactively over the three rounds.

25

“Online” Party P∞ “Offline” Party P0

For i ∈ [n], j ∈ [λ], ℓ ∈ [m], do: For j ∈ [λ], ℓ ∈ [m], do:

ki,j,ℓ ← Fq, B⃗i,j,ℓ = comY (ki,j,ℓ) αj,ℓ ← Fq, Hj,ℓ = gα
−1
j,ℓ

Ki,ℓ = enci(
∑λ

j=1 2
τ(j−1) · ki,j,ℓ) Cℓ = enc0(

∑λ
j=1 2

τ(j−1) · [α−1j,ℓ]q)

∀i, ψi ← ΞFS
0 ((Ki,j , B⃗i,j,ℓ)j,ℓ; (ki,j,ℓ)j,ℓ) ∀i, ψ′i ← ΞFS

i ((Cℓ, (Hj,ℓ)j)ℓ; (α
−1
j,ℓ)j,ℓ)

(ψi, (Ki,ℓ, (B⃗i,j,ℓ)j)ℓ)i

When obtaining (. . .)i∈[n]
(ψ′i)i, (Cℓ, (Hj,ℓ)j)ℓ

∀i output ∀j, ℓ set B⃗j,ℓ =
∏n

i=1 B⃗i,j,ℓ

(ki,j,ℓ, B⃗1,j,ℓ, . . . , B⃗n,j,ℓ, Hj,ℓ)j,ℓ output (αj,ℓ, Hj,ℓ, B⃗j,ℓ)j,ℓ

Figure 9: Threshold ECDSA, Presigning (Σpres) – In the first step, for identifier i and element ℓ in the
batch, P0 obtains (Ki,ℓ, B⃗i,1,ℓ, . . . , B⃗i,m,ℓ) where B⃗i,j,ℓ is an El-Gamal commitment to some ki,j,ℓ ∈ Fq under public
key Y ∈ G and Ki,ℓ is the packed ciphertext encrypting

∑λ
j=1 2

τ(j−1) · ki,j,ℓ under Ni. All tuples in the batch are
accompanied by a single batch-proof ψi which validates that the tuples are well formed according to Ξ0 as described
in Definition 4.5; notice that Ξ0 is an embedded Schnorr protocol augmented using the Pedersen parameters of P0.
When obtaining the above, P0 calculates its contribution Hj,ℓ to the future nonce for each j and ℓ, as well as a packed
ciphertext Cℓ encrypting

∑λ
j=1 2

τ(j−1) ·α−1
j,ℓ . Finally, viewing Hj,ℓ as the El-Gamal commitment (1, Hj,ℓ), P0 generates

a batch-proof ψ′
i (one for each identifier i) validating that the tuples (Cℓ, (Hj,ℓ)j)ℓ are well formed according to Ξi as

defined in Definition 4.5 and each ψ′
i depends on the Pedersen parameters of the i-th identifier.

1. If s1, . . . , sλ ∈ ⟨t⟩ then Ξi is γ-HVZK for γ = (λ+ 1) · 2−ν+2κ + 2−κ

2. If N = p1p2 is Paillier-Blum s.t. p1, p2 > q, then, for πi ← ped(1κ), it holds that Ξi is δ-sound.

Proof.
(HVZK) Since Ξi is an embedded protocol, we first define an efficient sampler I for the extended input

S = ϕ3(w⃗, ρ). First observe that S is 2−(κ+1)-close to a uniform element in the group ⟨t⟩ because ρ← I(N̂ ·2κ)
and |I(N̂ ·2κ)| > 2κ+1 · |⟨t⟩|, where |⟨t⟩| is the size of the group. Consequently, the HVZK simulator can sample
S by choosing an (almost) uniform element in ⟨t⟩; let I denote this process. Next we argue about the simulated
transcript.

For S ← I as above, letting (A⃗1, . . . , A⃗λ, C) = (ϕ1(w⃗, µ⃗), ϕ2(w⃗, v)) denote the common input, recall that the
simulator outputs (B⃗1, . . . , B⃗λ, D, T, e, z⃗, β⃗, v0, ρ0) where (z⃗, β⃗, v0, ρ0) ← S, e ← E and T = S−etρ0

∏λ
j=1 s

zj

mod N̂ , D = C−e
∏λ

j=1(1 + 2τ ·(j−1) ·N)zj · vN0 mod N2 and B⃗j = (1, g)zj (g, Y)βj · A⃗−ej , for j ∈ [λ]. Notice
that the simulated β⃗ and v0 are identically distributed with the real values and that each z1, . . . , zλ and ρ0
is (2−ν+2κ)-close to the corresponding real value because |E| · |I|/|J | = 2−ν+2κ. Thus the claimed HVZK
follows by triangle inequality.

(Soundness) Define V = {(e, e′) ∈ I(2κ)2 s.t. (e−e′) /∈ {−1, 0, 1} and p1, p2 ��| (e−e
′)}. Under the strong

RSA assumption, using the same analysis as Theorem 6.7, Section 6.2.1, letting τ = (. . . , e, z⃗, β⃗, v0, ρ0) and
τ ′ = (. . . , e′, z⃗ ′, β⃗′, v′0, ρ

′
0) denote two suitable transcripts s.t. (e, e′) ∈ V , we can extract all the witnesses

w⃗, µ⃗, v, ρ with probability 1−ε over the choice of πi ← ped(1κ), for ε ∈ negl. In particular, w⃗ = (z⃗− z⃗ ′)/(e−e′)
and ρ = (ρ0 − ρ′0)/(e − e′) over Z (the integers). Furthermore, since z⃗, z⃗ ′ ∈ J(2κ)λ, ρ0, ρ′0 ∈ J(N̂ · 2κ) and
|e − e′| ≥ 2, we have w⃗ ∈ J(2κ)λ and ρ ∈ J(N̂ · 2κ), i.e. w⃗ and ρ are in the right range. To conclude, notice
that |V |/|E|2 ≤ 1/2κ−3 ∈ negl since N does not admit small factors (smaller than q ≈ 2κ).

26

4.3 Signing
Without loss of generality, we assume that the signing phase consumes all the available presignatures. Further,
recall that the parties start with the same message to be signed, i.e. we are agnostic about how the parties
reach consensus on messages {msgj,t}j,t and we write mj,t = F(msgj,t), where F is the internal hash function
of ECDSA. The Schnorr protocols from Σsign are described in Definitions 4.7, 4.8 and 4.10. We note that ΘR

and Θ′′ have perfect HVZK and soundness 1/q (we do not prove this fact).

4.3.1 init-tecdsa functionality

The signing process is the only component of the protocol where the MPC among the cosignatories is not
trivial. Specifically the parties execute an interactive protocol for calculating the init-tecdsa functionality
described below (cf. Figure 10). By setting H = g, we recall that init-tecdsa is a distributed variant of the
ECDSA functionality for public key X∞ =

∏n
i=1Xi. As such, by allowing the parties to change the base-

point from g to H, any threshold-ECDSA protocol from the literature can be tweaked to realize init-tecdsa.
Herein, we implement the functionality via [10], aka the CMP protocol, and we give full details in Figure 15,
Appendix A .

FIGURE 10 (init-tecdsa functionality)

Common Input. (B⃗i, Xi)i∈[n] ∈ G3n and H ∈ G.

Secret Input. Each Pi holds input (ki, ρi, xi) s.t. B⃗i = (g, Y)ρi · (1, g)ki and Xi = gxi .

Operation. If the secret input is consistent with the public input do:

(a) Set k =
∑n

i=1 ki mod q and set R = Hk−1

∈ G.

(b) Sample random {χi ∈ Fq}ni=1 subject to
∑n

i=1 χi = k ·
∑n

i=1 xi mod q.

Output: (R,χi, r) to each Pi, where r = R|x-axis.

Figure 10: init-tecdsa functionality

4.3.2 ZK for Signing

Definition 4.7. Define ΘR to be the Schnorr protocol associated with (ϕ,E) for E = I(2κ) and

ϕ : F2
q → G3

(k, b) 7→ (gb, Y b · gk, Rb)

Definition 4.8. For (N̂ , t, s1, r1, . . .) = π0, define Schnorr protocol Θ′ for (ϕ,E,R,S) where E = I(2κ)

ϕ : Z2λ × F2λ
q × Z∗N0

× Z→ G4λ × Z∗N2
0
× Z∗

N̂

(w⃗, µ⃗, z⃗, γ⃗, v, ρ) 7→ (ϕ1(w⃗, µ⃗), ϕ1(z⃗, γ⃗), ϕ2(w⃗, z⃗, v), ϕ3(w⃗, z⃗, ρ))

and 
ϕ1 : (w⃗, µ⃗) 7→ (gµj , Y µj · gwj)λj=1

ϕ2 : (w⃗, z⃗, v) 7→
∏λ

j=1(1 + 2τ ·(j−1) ·N0)
wj ·W zj

0 · vN0 mod N2
0

ϕ3 : (w⃗, ρ) 7→ tρ ·
∏λ

j=1 s
wj

j r
zj
j mod N̂

with {
(w⃗, µ⃗, z⃗, γ⃗, v, ρ) ∈ R ⇐⇒ ρ ∈ I(N̂ · 2κ) ∧ ∀j (zj ∈ I(2κ) ∧ wj ∈ I(2κ+ν))

(w⃗, µ⃗, z⃗, γ⃗, v, ρ) ∈ S ⇐⇒ ρ ∈ J(N̂ · 2κ) ∧ ∀j (zj ∈ J(2κ) ∧ wj ∈ J(2κ+ν))

Similarly to Ξi from Definition 4.5, we view Θ′ as an embedded Schnorr protocol, cf. Definition 3.10, where
the homomorphism (ϕ1, ϕ1, ϕ2) is augmented to (ϕ1, ϕ1, ϕ2, ϕ3), and the security of the batch protocol is a
corollary of Theorem 6.1 . Below, in Claim 4.9, we state the security properties of (non-batch) Θ′; we do not
provide a proof for the claim since it is essentially identical to the proof of Claim 4.6.

27

“Online” Party P∞ “Offline” Party P0

Retrieve (B⃗i,j,ℓ)i,j,ℓ and (Hj,ℓ, ki,j,ℓ)j,ℓ and do:

Initialize tecdsa Functionality : (Figure 10 & Figure 15)

∀j, ℓ run init on ((B⃗i,j,ℓ, Xi)i, Hj,ℓ); (ki,j,ℓ, xi)i)

Obtain Rj,ℓ, rj,ℓ and (χi,j,ℓ)i and set (U⃗i,j,ℓ = comY (χi,j,ℓ))i

Prepare Payload:

∀i set ζi,j,ℓ = [ki,j,ℓ · rj,ℓ]q and ηi,j,ℓ ← I(2ε)

µi,j,ℓ = [rj,ℓ · χi,j,ℓ +mj,ℓ · ki,j,ℓ]q + q · ηi,j,ℓ

Si,ℓ = [
∏λ

j=1W
2τ(j−1)ζi,j,ℓ
0 · enc0(2τ(j−1) · µi,j,ℓ)]N2

0

Aggregate-Prove: (Figure 7)

ψj,ℓ ← ΘAGT
Rj,ℓ

((B⃗j,ℓ, Hj,ℓ); (ki,j,ℓ))i for B⃗j,ℓ =
∏

i B⃗i,j,ℓ

ψ′ ← Θ′AGT(((V⃗j,ℓ, Z⃗j,ℓ)j , Sℓ)ℓ; (ζi,j,ℓ, µi,j,ℓ)j,ℓ)

ψ′′ ← Θ′′AGT((B⃗j,ℓ, U⃗j,ℓ)j,ℓ; (ki,j,ℓ)i,j,ℓ)

for V⃗j,ℓ =
∏

i B⃗
rj,ℓ
i,j,ℓ and Sℓ =

∏
i Si,ℓ

U⃗j,ℓ =
∏

i U⃗i,j,ℓ and Z⃗j,ℓ =
∏

i B⃗
m
i,j,ℓ · U⃗

rj,ℓ
i,j,ℓ

ψ′, ψ′′, ((rj,ℓ, Uj,ℓ, ψj,ℓ)j , Sℓ)ℓ

∀j, ℓ decode σ̂j,ℓ s.t.

dec0(Sj) =
∑λ

j=1 2
τ(j−1)σ̂j,ℓ

Set σj,ℓ = [αj,ℓ · σ̂j,ℓ]q
∀ℓ, j output (rj,ℓ, σj,ℓ)

Figure 11: Threshold ECDSA, Signing (Σsign) – From the offline party’s perspective, P0 obtains nonces
Rj,ℓ and commitments U⃗j,ℓ to χj,ℓ and ciphertexts Sℓ. These values are accompanied by proofs ψj,ℓ and ψ′, ψ′′

(c.f. Definition 4.7, 4.8 and 4.10) which validate the following: ψj,ℓ validates that rj,ℓ is well-formed against Hj,ℓ and
B⃗j,ℓ. Batch-proof ψ′′ validates that each U⃗j,ℓ is an El-Gammal commitment to χj,ℓ = x∞ · kj,ℓ for all j, ℓ. Batch-proof
ψ′ validates that each Sℓ is a packed ciphertext encrypting

∑
j 2

τ(j−1)σj,ℓ/αj,ℓ where σj,ℓ is a valid signature for mj,ℓ

and nonce rj,ℓ, for all ℓ. For the online party, the protocol consists of the following three-step process. First, P∞
calculates the “initialization” data rj,ℓ and U⃗j,ℓ as per the V-MPC functionality in Figure 10, for every j and ℓ. Then,
for each ℓ ∈ [m], P∞ calculates the “payload” Si,ℓ encrypting the packed partial signatures for each identifier i, and,
lastly, P∞ generates the accompanying proofs and sends the data to P0. We note that the proofs {ψj,ℓ}j,ℓ are not
batchable because each proof corresponds to a different homomorphism depending on Rj,ℓ. When virtualizing P∞,
for the init phase, it suffices to run any threshold-ECDSA protocol (with appropriate tweaks) because, as mentioned
multiple times, almost any threshold-ECDSA procol can be tweaked to realize the init-tecdsa functionality. For the
proofs, the parties are instructed to run the proof-aggregation protocol from (Figure 7) .

Claim 4.9. Using the notation above, for some δ ∈ negl, the following holds true under strong RSA.

1. If s1, . . . , sλ ∈ ⟨t⟩ then Ξi is γ-HVZK for γ = (2λ+ 1) · 2−ν+2κ + 2−κ

2. If N = p1p2 is Paillier-Blum s.t. p1, p2 > q, then, for π0 ← ped(1κ), it holds that Θ′ is δ-sound.

28

Definition 4.10. Define Θ′′ to be the Schnorr protocol associated with tuple (ϕ,E) for E = Fq, ϕ : F3
q → G4

s.t. (k, b, v) 7→ (gb, Y b · gk, gv, Y v ·Xk
∞).

Remark 4.11 (Communication Complexity). Ignoring very small constant overheads, each (Sℓ)ℓ, ψ′ and
(Uj,ℓ, rj,ℓ, ψj,ℓ)j,ℓ has bit-length m log(N2), m log(N̂) and λm6 log(q) respectively. Thus, amortized over the
number of signatures, P0 recieves a message of bit-length cc = 1/λ · (log(N̂) + 2 log(N)) + 6 log(q). So, for
q ≈ 2256, using N̂ ,N ≈ 22048 and λ = 3, we get cc ≈ 320B. Using N̂ ,N ≈ 24096, and λ = 6, we get cc ≈ 288B.

5 Security
Theorem 5.1. Under suitable cryptographic assumptions, it holds that Σecdsa UC-realizes functionality Ftsig

in the presence of a global random oracle functionality H.

Our main theorem is a corollary of Theorems 5.5 and 5.8.

5.1 Unforgeability & Simulatability imply UC Security
Let SGN denote a signature scheme and let Σ be a threshold protocol for SGN. We show that if Σ and SGN
satisfy some limited security requirements, then Σ UC-realizes Ftsig in the strict global random oracle model.
We begin by defining the aforementioned security requirements.

Let A denote an adaptive adversary and write RealHΣ,A(1
κ, z) for the adversary’s view in an execution

of Σ in the presence of an adaptive PPTM adversary A given auxiliary input z. Recall that H denotes
the random oracle. Without loss of generality assume that RealHΣ,A(1

κ, z) = (pkΣ, . . .), where pkΣ denotes
the public key resulting from the execution of Σ. It is assumed that A chooses the messages for signing in
Σ. Next, for an oracle-aided algorithm S with black-box access to A and oracle access to G and H, write
IdealHG,S(1

κ, z) = (pkG ,OutS) for the pair of random variable consisting of the public key generated by G and
the simulator’s output.

Remark 5.2. In the above, the adversary chooses the messages for signing analogously to the environment
accessing the input-output tape of the parties in the UC experiment. Furthermore, it is assumed that the
parties agree on the message to be signed; this assumption does not incur any loss of generality since this can
be enforced via a consensus mechanism (assuming PKI).

Definition 5.3 (G-Simulatability). Using the notation above, we say that Σ is G-simulatable in the ROM if
the following holds for every adversary A and every ε ∈ 1/poly. There exists a simulator S with oracle access
to G and H, and black-box access to A, such that:

1. G is queried by S only on messages intended for signing as prescribed by Σ, and chosen by A.

2. If A does not corrupt all parties in some Q ∈ QRMs simultaneously in any given epoch, then

{RealHΣ,A(1
κ, z)}κ∈N,z∈{0,1}∗

ε≡ {IdealHG,S(1κ, z)}κ∈N,z∈{0,1}∗ (5)

Remark 5.4 (Simulatability vs Standalone Security). We observe that the notion of simulatability is quite
close to the MPC security notion of “standalone security”. We recall that a protocol Π standalone-realizes F if
for every adversary A there exists a simulator S such that for all ε ∈ 1/poly the joint distribution of the view
of A together with the honest parties’ outputs in an execution of the protocol is 1/ε-indistinguishable from
the output of S together with the honest parties’ outputs when interacting with a trusted party computing F .
So, viewing the signing oracle G as the ideal functionality, we note that simulatability is a weaker notion than
standalone security because the simulator may depend on the distinguishing advantage (standalone security
stipulates that there exists a single PPTM S for every ε ∈ 1/poly, i.e. the order of the quantifiers is reversed).

Theorem 5.5. Let SGN denote a signature scheme and let Σ denote a threshold-SGN protocol. Let G denote
an augmented signature oracle (cf. Figure 3) such that

1. SGN is G-existentially unforgeable according to Definition 3.2.

2. Σ is G-simulatable in the ROM according to Definition 5.3.

29

Then, Σ UC-realizes Ftsig in the strict global random oracle model.

Proof. (UC Simulation) First, we describe the UC simulation, which is trivial. The simulator simply runs
the code of the honest parties as prescribed by Σ, i.e. the simulator samples all the secrets as prescribed and
plays against the adversary in exactly the same way as in the real execution. To interact with the functionality,
the simulator proceeds as follows:

1. After key generation, the simulator submits the verification algorithm V which depends on the public
key pk calculated by S during the simulation Σkgen. If S fails to reconstruct pk, e.g. because Z aborted
certain parties or one of the decommitments failed, then S is instructed to halt.

2. Every time a signature is calculated during the simulation Σsign, then S submits the resulting signature-
string to the functionality. (The simulator does not interact with the functionality if it fails to calculate
the signature, or during the simulation of Σpres)

3. Depending on Z’s corruption pattern and the protocol’s key-refresh schedule, the simulator registers
parties as corrupted and/or quarantined. In other words, if Z decides to corrupt or decorrupt a party
Pi, then S informs the functionality via the relevant interface, and, after the simulation of Σrefr, all
decorrupted parties are marked as honest.

It is not hard to see that the above simulation is perfect unless Z can forge signatures in the protocol (i.e. in
the real world). Formally, using the notation from Figure 14, there is a PPTM X (not necessarily one of the
Pi’s) that verifies the tuple (sid,m, σ, pk) for a message m which was never signed before. In the ideal world,
X queries Ftsig which returns false to X since m was never signed before. In the real world, however, X runs
the verification algorithm V associated with pk and outputs true if σ is a valid forgery. In turn, this allows
Z to distinguish the real and ideal experiment. Thus, by viewing Z and X as a single PPTM, there exists
a PPTM A0 corrupting a subset of parties in Σ that outputs a forgery in an execution of Σ with noticeable
probability, say α /∈ negl. We will show that since Σ is simulatable we can use A0 to break the unforgeability
assumption on SGN (Item 1 in Theorem 5.5).

(Reduction to Unforgeability.) By definition, there exists β ∈ 1/poly such that β(κ) ≤ α(κ) for
infinitely many κ’s. Take ε = β/2 and fix S as per Definition 5.3. Deduce that IdealHG,S(1

κ, z) contains a
forgery with probability at least α/2 /∈ negl since, by Equation (5), IdealHG,S(1

κ, z) contains a forgery with
probability is at least α− ε ≥ α−β/2 ≥ α/2. In turn, this implies that G is useful for forging SGN signatures,
in contradiction with the hypothesis of the theorem.

On the Random Oracles & Rewinding. Recall that the oracle is strict in the UC definition (Figure 5),
i.e. S cannot tamper with the adversary’s queries; it cannot even observe these queries. Using the jargon from
the literature, the oracle in the UC-ideal experiment is non-programmable and non-observable. In contrast,
in the definition of simulatability, the adversary queries the random oracle through the simulator (i.e. S also
simulates the oracle in the experiment). It may appear strange that we handle the oracle differently in each
case, so we offer the following remark that clarifies this discrepancy (we also touch on rewinding in the remark).

Remark 5.6. Recall that our UC simulator is essentially trivial and it does not interfere with the random oracle
and it is straightline (non-rewinding). Next, in Theorem 5.5, specifically in the reduction to unforgeability, note
that the simulator has read/write-access to A0’s oracle tape (this is a truism of run-of-the-mill reductions). As
a result, if our trivial UC simulator fails for some Z, then the following PPTM B breaks the unforgeability of
SGN: B simply runs the simulator from Definition 5.3 on A0, where A0 is the well-defined PPTM mentioned
in the above proof. In particular, (i) B carefully tinkers with the oracle (as prescribed by Definition 5.3), and
(2) B may also rewind A0 at will (another truism of conventional reductions).

5.2 Simulatability of Σecdsa

In Figure 12, we define the enhanced signing oracle for ECDSA which gives rise to the notion of enhanced
unforgeability according to Definition 3.2. We note that enhanced unforgeability has been studied by Canetti
et al. [10] in the generic group model (GGM) and the ROM, where they rule out any efficient attack in this
model, and, recently, by Groth and Shoup [25] who provide a more fine-grained analysis in the GGM. Next
we define strong-RSA, decisional Diffie-Hellman (DDH), and decisional composite residuocity (DCR).

30

FIGURE 12 (Enhanced Signing Oracle G∗ for ECDSA)

Parameters. Hash function F : {0, 1}∗ →: {0, 1}∗.
Operation.

1. On input (gen, (G, g, q)), sample sk = x← Fq and return pk = X = gx.

Store (sk, pk) in memory and ignore future calls to gen.

2. On input pres, sample k ← Fq and return R = gk
−1

.

Store (R; k) in memory and standby.

3. On input (sign,msg, R), do:

(a) Retrieve (R; k) from memory.

If no such R exists or R is undefined, sample k ← Fq and (re)assign R := gk
−1

.
(b) Set σ = [k(m+ rx)]q where m = F(msg) and r = R|x-axis.
(c) Erase (R; k) from memory and return (r, σ).

Figure 12: Enhanced Signing Oracle G∗ for ECDSA

Let DDH, sRSA and DCR denote the following distriburions. (N,C)← sRSA(1κ) where N is a safe biprime
of size O(κ) and C ← Z∗N , (ga, gb, gab+cz, z)← DDH(1κ) for z ← {0, 1} and a, b, c← Fq and (G, g, q) generated
by 1κ, and (N, [(1 +N)z · ρN]N2 , z)← DCR(1κ) for z ← {0, 1} and ρ← Z∗N .

Definition 5.7. We say that strong RSA, DDH and DCR hold true if for every PPTM A there exists ν ∈ negl
such that the probability of following events is upper-bounded by ν(κ), 1/2+ν(κ), and 1/2+ν(κ), respectively.

1. (N,C)← sRSA(1κ) and (m, e /∈ {−1, 1})← A(1κ, N,C) such that [me = C]N .

2. (A,B,C, z)← DDH(1κ) and β ← A(1κ, A,B,C) such that z = β.

3. (N,C, z)← DCR(1κ) and β ← A(1κ, N,C) such that z = β

Theorem 5.8. Assuming DDH, DCR, and strong RSA, it holds that Σecdsa is G∗-simulatable.

5.2.1 Proof of Theorem 5.8

We will show that for every ε ∈ 1/poly, there exists a simulator S that interacts with A as per Definition 5.3.
Our simulator is parameterized by r ∈ poly to be determined by the analysis (and r depends on ε). Next
we give a high-level description of S and we refer the reader to in Figure 13 for the detailed description. At
the beginning of simulation, S chooses a random non-corrupted party, dubbed the special party, and all other
non-corrupted parties are simulated by running their code as prescribed. To deal with adaptive corruptions,
if the adversary decides to corrupt the special party the the simulation is reset, via rewinding, and the special
party is chosen afresh. Furthermore, we note that S simulates the random oracle and A queries S when it
needs to query H. In particular, in Figure 13, every time S “retrieves” a value, we mean that it obtains the
relevant value from A’s queries, and, the simulated message of S are consistent with the simulated oracle (by
programming the simulated oracle accordingly). Then, at a high level, our simulator proceeds as follows:

1. Invoke G to obtain a public key X and run the protocol with A to land on key X by suitably choosing
the special party’s message, i.e. set Xb = X · (

∏
j ̸=bXj)

−1.

2. Extract A’s Paillier keys and ECDSA key shares by rewinding.

If the adversary aborts during the first run, i.e. by quitting or returning an invalid proof, then the
simulator halts. Else, S rewinds the adversary until it obtains a second valid transcript to extract
the secrets and continue the rest of the simulation on the first valid execution, i.e. rewind one last
time (if extraction fails after r attempts, halt).

3. To calculate the special party’s message do:

31

FIGURE 13 (G∗-simulation for Σecdsa)

Parameters. Adversary A and RO H.

Operation.

init. Call G∗ on input (G, g, q). Obtain pk = X.

– (Σkgen) Choose Pb ←H = P \C and do:

1. Hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j ̸=b, retrieve (Xj , Aj , Yj , Nj , πj , uj)j ̸=b and do:

(a) Set Xb = X · (
∏

j ̸=bXj)
−1 and Yb = gy · (

∏
j ̸=b Yj)

−1 for y ← Fq.

(b) Sample zb, eb ← Fq and set Ab = X
eb
b · g

−zb . If b = 0, set W0 = enc0(0).
Calculate all other values as prescribed.
Hand over (Xb, Ab, Yb, Nb,Wb, πb, ub) to A (where Wb = ∅ if b ̸= 0).

3. When obtaining (Xj , Aj , . . .)j ̸=b, do:
(a) Calculate ψb (or ψ′

1, . . . , ψ
′
n if b = 0) by invoking the HVZK simulator.

Hand over zb, ψb (or z0, (ψ′
j)j ̸=0 if b = 0) to A.

4. Rewind A by providing fresh ub and eb to extract (xj , pj , qj) such that (Xj , Nj) = (gxj , pjqj).

– (Σpres) Make m · λ calls to G∗ on input pres. Obtain (Rj,ℓ)j,ℓ ∈ Gm·λ and do:

1. If Pb ̸= 0, sample B⃗b,j,ℓ ← G2 and set Kb,j = encb(0) and calculate ψb using the HVZK simulator.
Hand over ψb, (Kb,j , (B⃗b,j,ℓ)ℓ)j to A.
When obtaining (ψi)i ̸=0, (Cj , (Hj,ℓ)ℓ)j extract {αj,ℓ}j,ℓ by decrypting {Cj}j .

2. Else, when obtaining (ψi, (Ki,j , (B⃗i,j,ℓ)ℓ)j)i ̸=b, extract {ki,j,ℓ}i,j,ℓ by decrypting {Ki,j}i,j and do

(a) Set Hj,ℓ = R
kj,ℓ

j,ℓ for kj,ℓ =
∑

i̸=0 ki,j,ℓ.
(b) Set Cj = enc0(0) and calculate (ψ′

i)i̸=0 using the HVZK simulator.
Hand over (ψi)i ̸=0, (Cj , (Hj,ℓ)ℓ)j to A.

– (Σsign) Make m · λ calls to G∗ on input (sign,msgj,ℓ, Rj,ℓ). Obtain (rj,ℓ, σj,ℓ)j,ℓ ∈ F2m·λ
q and do:

If Pb = P0, when obtaining ψ′, ψ′′, ((rj,ℓ, Uj,ℓ, ψj,ℓ)ℓ, Sj)j from A, output (rj,ℓ, σj,ℓ)j,ℓ for P0.

Else, if Pb ̸= P0, retrieve {αj,ℓ}j,ℓ, set mj,ℓ = H(msgj,ℓ), and do:

1. Obtain (χ∗
j,ℓ =

∑
i̸=b χi,j,ℓ)j,ℓ from the Virtual Party MPC call (e.g. run sim for Σcmp in Figure 16).

Set ρj,ℓ = [χ∗
j,ℓrj,ℓ +

∑
i∈[n]\{b} ki,j,ℓ(rj,ℓx0 +mj,ℓ)]q.

2. Set Sb,j = enc0(
∑

ℓ 2
τ(ℓ−1)([σj,ℓ/αj,ℓ − ρj,ℓ]q + q · ηb,j,ℓ)) for ηb,j,ℓ ← I(2ν) and U⃗j,ℓ ← G2

3. Run the simulation for proof aggregation for Θ, Θ′ and Θ′′ (Claim 3.16).
When obtaining {U⃗i,j,ℓ = (Ui,j,ℓ, U

′
i,j,ℓ)}i ̸=b, set U⃗b,j,ℓ = U⃗j,ℓ · (1, g−χ∗

j,ℓ)
∏

i ̸=b(Ui,j,ℓ, U
y
i,j,ℓ)

−1.

Simulate ψ′′ according to U⃗b,j,ℓ

Figure 13: G∗-simulation for Σecdsa

32

(a) Extract the adversary’s randomness by decrypting the relevant Paillier messages (encrypted under
keys chosen by the adversary).

(b) Calculate the relevant message by (i) encrypting zeros under the Paillier and El-Gamal keys for
hidden data, e.g. Pb’s Paillier ciphertexts, and (ii) using the extracted randomness above and queries
to G for non-hidden data, e.g. the output signature.

To show that the above simulation is indistinguishable from the real protocol, we define two experiments
(hybrids) where the first experiment coincides with the simulated execution and the second experiment coin-
cides with the real execution. Namely:

Experiment 1. The first experiment is identical to Figure 13 except that S emulates G locally.

Experiment 2. The second experiment is identical to the above except that S uses the right Paillier
& El-Gamal ciphertexts, instead of zeroes; S can do this because it has access to all the secrets.

Clearly, the first experiment is identical to the simulation. Furthermore, the two experiments above are com-
putationally indistinguishable under DDH and DCR (via straightforward reduction to the semantic security
of El-Gamal and Paillier which are equivalent to DDH and DCR respectively). So, to conclude, we will show
that the the second experiment is ε-close to the real execution for carefully chosen r, and we will bound the
running time of S.

Claim 5.9 (Running Time). For every ρ ∈ poly, S halts in time O(ρ(κ) · n(r + timeΣ)) with probability at
most e−ρ(κ) where timeΣ denotes the running time of Σecdsa.

Proof. The blowup in the running time of S compared to timeΣ boils down the rewinding that the simulator
performs. Namely, we recall that the simulator rewinds the adversary (i) every time A decides to corrupt the
special party and (ii) during the simulation of the key-generation until S extracts the relevant data from A
– and S halts if it fails to do so after r attempts. So, each time the adversary guesses the special party, the
simulator spends r “time units” to extract the relevant secrets and then it spends another timeΣ to carry out
the rest of the simulation. So, the probability that S’s running time is greater than ρ(κ) · n(r + timeΣ) is
bounded by (1− 1/n)n·ρ(κ), i.e. the adversary guesses the honest party each and every time. Conclude using
the inequality log(1− 1/n) ≤ −1/n.

Claim 5.10 (ε-Closeness.). For r = 2κ/ε ∈ poly, it holds that Experiment 2 is ε-close to the real execution.

Proof. Write p for the probability that the adversary does not abort (i.e. quits or returns an invalid proof)
during the extraction event and notice that p is a random variable which depends on A’s random coins and
the transcript so far. Furthermore, for fixed µ← p, if µ ≥ ε/2, then the probability that S fails to extract is at
most e−κ/8 by Chernoff bound (cf. Fact 5.11 below with d = 1/2). To conclude, notice that the Experiment
2 is distinguishable from the real execution in one of the following events, and only then. For µ← p,

1. µ < ε/2 and the first run of the protocol does not lead to an aborting execution.

2. µ ≥ ε/2 and the simulator fails to extract after r attempts.

3. One of the simulated ZK proofs is distinguishable from the real proof.

4. The adversary breaks soundness in one of ZK proofs.

Item 1 happens with probability at most ε/2, Item 2 happens with probability at most e−κ/8 and Items 3
and 4 happen with probability at most η ∈ negl, because the output of each ZK simulator is statistically
indistinguishable from the real transcript of the proof with (2−ν+2κ)-closeness and ν − 2κ ∈ ω(log(κ)), and
all the proofs are computationally sound by Theorem 6.1 under strong RSA. Overall, the two experiments are
distinguishable with probability at most ε/2 + e−κ/8 + η ≤ ε.

Fact 5.11 (Chernoff Bound). Define σ =
∑n

i=1 yi for y1 . . .yr iid Boolean variables with Pr[yi = 1] = µ. It
holds that Pr[σ ≤ (1− d)r · µ] ≤ e−rµd2/2, for every d ≥ 0.

This concludes the proof of Theorem 5.8.

33

6 Proof of Soundness for Batch-Proving
In this section, we analyze the soundness and HVZK of a generic m-batch Schnorr protocol depending on
HVZK of the underlying non-batch protocol and some additional technical requirements. Then, in Section 6.2
we show that our batch protocols from Section 4 satisfy the hypothesis of Theorem 6.1 for suitable choice of
parameters.

Theorem 6.1. Let Π denote a non-batch µ-HVZK Schnorr Protocol for tuple (ϕ,E,R,S) and write Π∗ for
the associated m-batch protocol. Assume that

1. Π∗ satisfies (ε,V)-extractability for some set V ⊆ 2E
m

.

2. For all j ≤ m, if {e⃗1, . . . , e⃗j} ∈ V then Pr
e⃗j+1←Em

[{e⃗1, . . . , e⃗j , e⃗j+1} /∈ V] ≤ β.

3. For all w⃗ /∈ Sm, it holds that Pr
e⃗←Em

[α+
∑

j ejwj ∈ S] ≤ γ, for every α ∈ H.

4. For w,w′ ← A such that w ̸= w′, it holds that Pr[ϕ(w) = ϕ(w′)] ≤ δ, for every efficient A.

We refer to Items 2, 3 and 4 as β-Robustness, γ-Unpredictability and δ-Collision Resistance, resp.

Then, for ε, β, γ, δ ∈ negl(κ), it holds that Π∗ is (µ∗, ν∗)-secure for µ∗ = m · µ and ν∗ ∈ negl.

Before we prove Theorem 6.1 we point the reader to the relevant claims for showing that the batch Schnorr
protocols from Section 4 are sound.

Claim 6.2 (m-Batch Soundness, Section 4). Let (ϕ,E,R,S) denote the underlying tuple of Π ∈ {{Ξi}ni=1,Θ
′}

as per Definitions 4.5 and 4.8. Write Π∗ for the m-batch variant and let V denote the set from Definition 6.6.
Then, there exists ε, β, γ, δ ∈ negl such that

1. Under the strong RSA assumption, it holds that Π∗ is (ε,V)-Extractable over the choice π ← ped(1κ).

2. If N = p1p2 is Paillier-Blum s.t. p1, p2 > q, then V is β-Robust.

3. Unconditionally, Π∗ is γ-Unpredictable.

4. Under the factoring assumption (implied by strong RSA), ϕ is δ-Collision Resistant.

Proof. ε ∈ negl(κ) by Theorem 6.7, and β, γ, δ ∈ negl(κ) by Fact 6.11, Fact 6.12 and Fact 6.13 respectively.

6.1 Proof of Theorem 6.1
HVZK. First, we show the zero-knowledge property. Write σi for the random variable calculated as σi = α+∑i

j=1 ejwj where α and (e1, . . . , ei) are sampled from the distributions α← E and e⃗← Ei respectively. Note
that SD(σ0,σ1) ≤ µ by the HVZK property of the underlying protocol. Further observe that SD(σ0,σm) =
SD(σ0,σm−1 + emwm) ≤ SD(σ0,σm−1) + SD(σ0,σ0 + emwm) and the HVZK part of the claim follows by
simple induction.

Soundness. Hereafter, assume that X⃗ does not admit a suitable preimage in Sm and let A denote an
adversary that breaks soundness with probability λ, i.e. the probability that (A, e⃗, z) is a valid transcript for
X⃗ is at east λ, where A and z are chosen by the adversary for a random e⃗← Em (and z may depend on e⃗).
Consider the following experiment.

Experiment 6.3. For r ∈ poly, define EAr (X⃗) with black-box access to A as follows.

Operation.

1. Run the adversary to obtain the first message A← A(X1, . . . , Xm) for Π∗.

2. Sample e⃗1, . . . , e⃗r ← Em iid and hand it to A as the verifier’s response (in r parallel executions).

3. Obtain (possibly invalid) transcripts τ1, . . . , τr using the last message(s) of A.

34

Write f⃗1, . . . , f⃗m+1 for the (possibly shorter or empty) subsequence of e⃗1, . . . , e⃗r consisting of the first m + 1
vectors e⃗j such that A returns a valid transcript for e⃗j .

Output. If {f⃗1, . . . , f⃗m+1} /∈ V or there are fewer than m+2 accepting transcripts then output 0. Else,
output 1 together with the first m+ 2 accepting transcripts.

Claim 6.4. E outputs 0 in Experiment 6.3 with probability at most β · rm+ e−d
2λr/2 for d = 1− (m+1)/λr.

Proof. We recall the Chernoff bound. For y1 . . .yr iid Boolean random variables with Pr[yi = 1] = µ and
σ =

∑n
i=1 yi it holds that Pr[σ ≤ (1 − d)r · µ] ≤ e−rµd

2/2, for every d ≥ 0. Hence, the probability that E
extracts fewer than m + 1 valid transcripts in Item 1 of Experiment 6.3 is e−d

2λr/2 for d = 1 − (m + 1)/λr.
Furthermore, the probability that (f⃗1, . . . , f⃗m+1) /∈ V is at most β · rm, by union bound.

Consider the following sequence of events.

1. Run Experiment 6.3 and obtain m+ 2 valid transcripts.

2. Use the first m+ 1 transcripts to compute α, (wi)
m
i=1 such that A = ϕ(α) and ϕ(wj) = Xj .

Let τ⋆ = (A, e⃗ ⋆, z⋆) denote the last (unused) transcript.

3. z⋆ = α+
∑m

j=1 e
⋆
jwj /∈ S.

4. z⋆ ̸= α+
∑m

j=1 e
⋆
jwj and ϕ(z⋆) = ϕ(α+

∑m
j=1 e

⋆
jwj).

In summary, A breaks soundness only if one of the above does not happen, i.e. with probability at most

e−rλd
2/2 + β ·mr + ε︸ ︷︷ ︸
Items 1, 2

+ r · γ + δ︸ ︷︷ ︸
Items 3, 4

≥ λ (6)

Claim 6.5. If ε, β, γ, δ ∈ negl, then λ ∈ negl.

Proof. Suppose that λ /∈ negl i.e. there exists ℓ ∈ poly such that λ ≥ 1/ℓ infinitely often. Fix r ∈ poly
such r/ℓ ∈ ω(log(κ)) and m · ℓ/r ∈ o(1). By Equation (6), deduce that there exists η ∈ negl such that
η + βmr + ε+ rγ + δ ≥ 1/ℓ infinitely often, which yields a contradiction since ε, β, γ, δ ∈ negl.

This concludes the proof of Theorem 6.1.

6.2 Putting Everything Together
In this section we prove auxiliary claims for showing our batch protocols from Section 4 satisfy the hypothesis
of Theorem 6.1 for suitable choice of parameters. We first observe that all the protocols can be cast as Schnorr
protocols for (ϕ,E,R,S) such that

ϕ : Zr × Fα
q × Z∗β1

N1
× · · · × Z∗βn

Nn
× Z→ Gγ × Z∗β1

N2
1
× . . .× Z∗βn

N2
n
× Z∗

N̂

(w⃗, µ⃗, ν⃗1, . . . , ν⃗n, ρ) 7→ (ϕ0(w⃗, µ⃗), ϕ1(w⃗, ν⃗1), . . . , ϕn(w⃗, ν⃗n), θ(w⃗, ρ))

where 
r, α, β1, . . . , βn, γ ∈ Z
ϕi(w⃗, ν⃗) = (νNi

1

∏r
k=1A

wj

i,1,k, . . . , ν
Ni

βi

∏r
k=1A

wj

i,βi,k
) ∈ Z∗βi

N2
i

for (Ai,j,k ∈ Z∗
N2

i
)j∈[βi],k∈[r]

θ(w⃗, ρ) = tρ
∏r

j=1 s
wj

j mod N̂

(w⃗, . . . , ρ) ∈ R or S iff w⃗, ρ ∈ I(·) or J(·)

Definition 6.6. Let Π denote the m-batch protocol for the tuple above and define V ⊆ 2E
m

such that
{e⃗1, . . . , e⃗k} ∈ V iff there exists e⃗k+1 . . . e⃗m+1 ∈ Em such that the matrix below is invertible over Fq and
(ZNi ,+, ·), for all i ∈ [n].

E =


e⃗1 1
...

...
e⃗m+1 1

 =


e1,1 . . . e1,m 1
...

...
...

em+1,1 . . . em+1,m 1

 (7)

35

In the remainder, we state and prove Theorem 6.7 (Extractability) and Facts 6.11 (Robustness), 6.12
(Unpredictability) and 6.13 (Collision Resistance).

6.2.1 Extractability

Theorem 6.7. The following holds under the strong-RSA assumption. For (N̂ , t, s1, . . .) ← ped(1κ), letting
V be as above, there exists ε ∈ negl such that Π is (ε,V)-extractable.

Proof. For strong-RSA challenge (N, c) ← sRSA(1κ), the Pedersen parameters (N̂ , t, s1, . . .) are set as19
(N̂ , t) = (N, c) and sk = tλk mod N̂ for λk ← [N̂2] and let Q = |⟨t⟩| denote the size of the group gen-
erated by t ∈ Z∗N .20 We will show a reduction from Extractability to strong RSA; we will be using the λ’s in
the reduction. We prove the claim for ϕ such that21

ϕ : Zr × Z∗N0
× Z→ Z∗N2

0
× Z∗

N̂

(w⃗, ν, ρ) 7→ (νN0

r∏
k=1

Awk

k , tρ
r∏

k=1

swk

k)

So, for (C⃗, S⃗) ∈ (ZN2
0
× ZN̂)m, let {τi = ((D,T), e⃗i, (z⃗i, µi, γi))}i∈[m+1] denote m+ 1 valid transcripts i.e.

∀i,

{
µN0
i

∏r
k=1A

zi,k
k = D ·

∏m
j=1 C

ei,j
j mod N0

tγi
∏r

k=1 s
zi,k
k = T ·

∏m
j=1 S

ei,j
j mod N̂

(8)

and assume that {e⃗i}m+1
i=1 ∈ V . Define the square integer matrix E as in Equation (7) and let ∆e = det(E).

By assumption, ∆e is invertible over ZN0
, thus also over Q, and there exists an integer matrix E∗ satisfying

E∗ ·E = ∆e · id. Fix i ∈ [m+ 1] and define ∆γ =
∑m+1

j=1 e∗i,j · γj and ∆
(k)
z =

∑m+1
j=1 e∗i,j · zj,k, where e∗i,j is the

entry of E∗ indexed by (i, j). Observe that

t∆γ ·
r∏

k=1

s
∆(k)

z

k = R∆e mod N̂ s.t.

{
R = Si if i ̸= m+ 1

R = T otherwise
(9)

So, notice that if ∆e divides ∆γ and {∆(k)
z }rk=1 over the integers, then at least one of the following is true

1. ∆e ̸= 1 and gcd(∆e, Q) ̸= 1.

2. t∆γ/∆e ·
∏r

k=1 s
∆(k)

z /∆e

k = R mod N̂ .

Item 1 yields the factorization22 of N̂ and thus it suffices to bound the probability that ∆e does not divide
one of {∆(k)

z }rk=1 or ∆γ . Let ε̂ = Pr[∆e ��| ∆γ ∨ ∆e ��| ∆
(1)
z ∨ . . . ∨ ∆e ��| ∆

(r)
z] where the probability is

calculated over the prover’s coins and the choice of (N̂ , t, s1, . . .). Further define ∆Σ = ∆γ +
∑

k λk∆
(k)
z and

observe that ε̂ ≤ Pr[∆e ��| ∆Σ] +
∑r

k=1 Pr[∆e ��| ∆
(k)
z ∧ ∆e | ∆Σ]. Apply Claim 6.8, Claim 6.9 and Claim 6.10

and conclude that, since i ∈ [m+ 1] was chosen arbitrarily,

ε ≤ (m+ 1) · ε̂+ negl(κ) ∈ negl(κ). (10)

Claim 6.8. It holds that Pr[∆e ��| ∆Σ] ∈ negl(κ),

Proof. Let d = gcd(∆e,∆Σ). If ∆e ��| ∆Σ, then at least one the following is true.

1. d ̸= 1 and gcd(d,Q) ̸= 1.

2. tdΣ = Rde mod N̂ for d · de = ∆e and d · dΣ = ∆Σ.
19This is the right distribution for the Pedersen parameters
20We recall that Q = φ(N)/4 is a biprime where φ is the Euler function (with overwhelming probability).
21The general case follows straightforwardly.
22Factoring is reducible to strong RSA.

36

For Item 2, let (u, v) denote the Bézout coefficients of (de, dΣ) i.e. u · de + v · dΣ = 1, and deduce m = tuRv

mod N̂ and de solve strong RSA since t = tu·de+v·dΣ = tu·de ·Rv·de = (tu ·Rv)de = mde mod N.

Next, we prove that if ∆e ��| ∆
(j)
z for some j ∈ r, then the probability that ∆e | ∆Σ is bounded away from 1

(together with Claim 6.8, this yields Equation (10)).

Claim 6.9. Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z

]
≤ 1/2 + negl(κ), for every j.

Proof. Define ∆̂j = ∆γ +
∑

k ̸=j λk∆
(k)
z and write ∆Σ = ∆̂j + λ̂j ·∆(j)

z + ρj ·Q ·∆(j)
z where λ̂j = λj mod Q

and ρj is uniquely determined. We make the following preliminary observations. If ∆e ��| Q ·∆
(j)
z , then there

exists a prime power ab such that 
ab | Q ·∆(j)

z

ab+1
��| Q ·∆

(j)
z

ab+1 | ∆e

Finally, notice that if ∆e ��| Q ·∆
(j)
z and ∆e | ∆Σ, then, using the notation above,

∆̂j + λ̂j ·∆(j)
z + ρj ·Q ·∆(j)

z = 0 mod ab

and thus ρj is uniquely determined modulo a. Thus,

Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z

]
≤ Pr[gcd(∆e, Q) ̸= 1]

+ Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z ∧ gcd(∆e, Q) = 1

]

and Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z ∧ gcd(∆e, Q) = 1

]
≤ 1/a, which concludes the proof of the claim.

Next, set w⃗i, α⃗ ∈ Zr and ρi, η ∈ Z such that wi,k = (
∑

j e
∗
i,jzj,k)/∆e and ρi = (

∑
j e
∗
i,jγj)/∆e and αk =

(
∑

j e
∗
m+1,jzj,k)/∆e and η = (

∑
j e
∗
m+1,jγj)/∆e, and it remains to show that the w⃗i’s are the preimages of the

Ci’s and that we can extract the randomizers (the ν’s). From Equation (8) , since ∆e is coprime to N0 (by
assumption, since ∆e is invertible in ZN0

), deduce that m∏
j=1

µ
e∗i,j
j

N0

=

(
B ·

r∏
k=1

A
−wi,k

k

)∆e

mod N2
0 s.t.

{
B = Ci if i ̸= m+ 1

B = D otherwise

and use Claim 6.10 to extract the randomizers (the ν’s).

Claim 6.10. Suppose that yN = xk mod p, where k and N are coprime and x, y ∈ Z∗p. Then, there exists
α ∈ Z∗p such that αN = x mod p. Furthermore, α can be computed efficiently as a function |p|.

Proof. Since k and N are coprime, there exists u, v ∈ Z such that ku + Nv = 1. Thus xku+Nv = x, and
consequently (yu · xv)N = xku · (xN)v = x mod p. For the penultimate equality, notice that yu and xv are
well defined in Z∗p.

This concludes the proof Theorem 6.7.

37

6.2.2 Robustness, Unpredictability and Collision Resistance

Recall that I(M) = ±2κ and J(M) = ±M · 2ν where ν is chosen such that such that ν − 2κ ∈ ω(log(κ)).

Fact 6.11 (Robustness). Let p ∈ Z such that log(p) ≥ κ and assume that p is prime. If (e⃗1, 1) . . . (e⃗j , 1) ∈
Zm+1 are linearly independent over Zp then

Pr
e⃗j+1←I(2κ)m

[(e⃗j+1, 1) ∈ ⟨(e⃗1, 1), . . . , (e⃗j , 1)⟩Zp] ≤ 1/2κ−1.

Proof. Let v⃗ ∈ Zm+1
p be an (arbitrary) vector in the orthogonal complement of ⟨(e⃗1, 1), . . . , (e⃗j , 1)⟩Zp

. Clearly
Pr[v⃗ · (e⃗j+1, 1) = 0] ≤ 2/p, where v⃗ · u⃗ denotes the inner product of v⃗ and u⃗ in Zm+1

p .

Fact 6.12 (Unpredictability). For any α ∈ Z and K ∈ N, if w⃗ /∈ J(K)m then

Pr
e⃗←I(K)m

[α+
∑
j

ejwj ∈ J(K)] ≤ 3/2κ.

Proof. For any fixed α ∈ Z, for any |w| > K · 2ν ,

Pr
e←I(2κ)

[α+ we ∈ ±K · 2ν] = Pr[ew ∈ −α±K · 2ν] ≤ Pr[e ∈ ⌈−α/w⌋ ± 1] ≤ 3

2κ
.

Fact 6.13 (Collision Resistance – Pedersen Binding). The following holds under the factoring assumption,
for every PPTM A. For π = (N̂ , t, s⃗, . . .)← ped(1κ), it holds that

Pr

[
w⃗ ̸= x⃗← A(π) s.t. tw0

r∏
i=1

swi
i = tx0

r∏
i=1

sxi
i mod N̂

]
∈ negl(κ).

Proof. Similarly to the proof of Theorem 6.7, we will use A to break factoring. Assuming that si = tλi mod N̂
for λi ← [N̂2] with λ0 = 1, and write Q = |⟨t⟩|. Let ∆ =

∑r
i=1 λi(wi − xi) and note that t∆ = 1 mod N̂ . So,

either

1. Q divides ∆ (which yields the factorization of N̂).

2. or ∆ = 0.

To conclude the proof, we show that the probability (over the λ’s) of Item 2 is bounded away from 1. Fix i
such that xi−wi ̸= 0 and let λ̂, ρ such that λi = λ̂+Qρ and λ̂ = λi mod Q. For z =

∑
j ̸=i λj(wj−xj), deduce

that ρ = 1
Q ·
(
−z

wi−xi
− λ̂

)
which happens with negligible probability (since ρ is info-theoretically hidden).

References
[1] D. Abram, A. Nof, C. Orlandi, P. Scholl, and O. Shlomovits. Low-bandwidth threshold ECDSA via

pseudorandom correlation generators. In IEEE Symposium on Security and Privacy, pages 2554–2572.
IEEE Computer Society Press, May 2022. doi: 10.1109/SP46214.2022.9833559.

[2] J.-P. Aumasson, A. Hamelink, and O. Shlomovits. A survey of ECDSA threshold signing. Cryptology
ePrint Archive, Report 2020/1390, 2020. https://eprint.iacr.org/2020/1390.

[3] E. Bangerter. Efficient zero knowledge proofs of knowledge for homomorphisms. PhD thesis, Ruhr Uni-
versity Bochum, 2005.

[4] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The wonderful world of global
random oracles. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 280–312. Springer, Heidelberg, Apr. / May 2018. doi: 10.1007/978-3-319-78381-9_11.

38

https://eprint.iacr.org/2020/1390

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001. doi: 10.1109/SFCS.2001.959888.

[6] R. Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint
Archive, Report 2003/239, 2003. https://eprint.iacr.org/2003/239.

[7] R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In G.-J. Ahn,
M. Yung, and N. Li, editors, ACM CCS 2014, pages 597–608. ACM Press, Nov. 2014. doi: 10.1145/
2660267.2660374.

[8] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM
CCS 2020, pages 1769–1787. ACM Press, Nov. 2020. doi: 10.1145/3372297.3423367.

[9] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA,
November 9-13, 2020, pages 1769–1787. ACM, 2020.

[10] R. Canetti, N. Makriyannis, and U. Peled. UC non-interactive, proactive, threshold ECDSA. Cryptology
ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.org/2020/492.

[11] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party ECDSA from hash
proof systems and efficient instantiations. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 191–221. Springer, Heidelberg, Aug. 2019. doi: 10.1007/
978-3-030-26954-8_7.

[12] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient threshold
EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 266–296. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45388-6_10.

[13] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient thresh-
old EC-DSA revisited: Online/offline extensions, identifiable aborts, proactivity and adaptive security.
Cryptology ePrint Archive, Report 2021/291, 2021. https://eprint.iacr.org/2021/291.

[14] G. Couteau, T. Peters, and D. Pointcheval. Removing the strong RSA assumption from arguments over
the integers. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 321–350. Springer, Heidelberg, Apr. / May 2017. doi: 10.1007/978-3-319-56614-6_11.

[15] A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman. Securing DNSSEC keys via
threshold ECDSA from generic MPC. In L. Chen, N. Li, K. Liang, and S. A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 654–673. Springer, Heidelberg, Sept. 2020. doi:
10.1007/978-3-030-59013-0_32.

[16] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergård. Fast threshold ecdsa with
honest majority. Cryptology ePrint Archive, Report 2020/501, 2020.

[17] Y. Desmedt. Society and group oriented cryptography: A new concept. In C. Pomerance, ed-
itor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, Aug. 1988. doi:
10.1007/3-540-48184-2_8.

[18] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 307–315. Springer, Heidelberg, Aug. 1990. doi: 10.1007/0-387-34805-0_28.

[19] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA assumptions: The multiparty
case. In 2019 IEEE Symposium on Security and Privacy, pages 1051–1066. IEEE Computer Society Press,
May 2019. doi: 10.1109/SP.2019.00024.

[20] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg, Aug.
2005. doi: 10.1007/11535218_10.

39

https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2020/492
https://eprint.iacr.org/2021/291

[21] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 16–30. Springer, Heidelberg, Aug.
1997. doi: 10.1007/BFb0052225.

[22] A. Gągol, J. Kula, D. Straszak, and M. Świętek. Threshold ECDSA for decentralized asset custody.
Cryptology ePrint Archive, Report 2020/498, 2020. https://eprint.iacr.org/2020/498.

[23] R. Gennaro and S. Goldfeder. One round threshold ECDSA with identifiable abort. Cryptology ePrint
Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.

[24] R. Gennaro, D. Leigh, R. Sundaram, and W. S. Yerazunis. Batching Schnorr identification scheme with
applications to privacy-preserving authorization and low-bandwidth communication devices. In P. J. Lee,
editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 276–292. Springer, Heidelberg, Dec. 2004. doi:
10.1007/978-3-540-30539-2_20.

[25] J. Groth and V. Shoup. On the security of ECDSA with additive key derivation and presignatures. In
O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
365–396. Springer, Heidelberg, May / June 2022. doi: 10.1007/978-3-031-06944-4_13.

[26] D. Kravitz. Digital signature algorithm. US Patent 5231668A, 1993.

[27] S. Krenn and M. Orrù. Proposal : Sigma-protocols. 2021.

[28] Y. Lindell. Fast secure two-party ECDSA signing. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 613–644. Springer, Heidelberg, Aug. 2017. doi: 10.1007/
978-3-319-63715-0_21.

[29] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key generation and
applications to cryptocurrency custody. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM
CCS 2018, pages 1837–1854. ACM Press, Oct. 2018. doi: 10.1145/3243734.3243788.

[30] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 137–154. Springer, Heidelberg, Aug. 2001. doi: 10.1007/
3-540-44647-8_8.

[31] N. Makriyannis. On the classic protocol for mpc schnorr signatures. Cryptology ePrint Archive, Paper
2022/1332, 2022.

[32] U. Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Des. Codes Cryptogr., 77
(2-3):663–676, 2015.

[33] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In M. K.
Reiter and P. Samarati, editors, ACM CCS 2001, pages 245–254. ACM Press, Nov. 2001. doi: 10.1145/
501983.502017.

[34] National Institute of Standards and Technology. Digital signature standard (dss). Federal Information
Processing Publication 186-4, 2013.

[35] A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. Proactive two-party signatures for user authenti-
cation. In NDSS 2003. The Internet Society, Feb. 2003.

[36] C. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174, 1991.

[37] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a (t, n) threshold scheme
for implicit certificates. In V. Varadharajan and Y. Mu, editors, ACISP 01, volume 2119 of LNCS, pages
417–434. Springer, Heidelberg, July 2001. doi: 10.1007/3-540-47719-5_33.

[38] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and D. Schröder. Verifiable timed
signatures made practical. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages
1733–1750. ACM Press, Nov. 2020. doi: 10.1145/3372297.3417263.

40

https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2020/540

[39] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui. Efficient online-friendly two-party ECDSA signature.
In G. Vigna and E. Shi, editors, ACM CCS 2021, pages 558–573. ACM Press, Nov. 2021. doi: 10.1145/
3460120.3484803.

41

FIGURE 14 (Ideal Threshold-Signatures Functionality Ftsig)

Key-generation:

1. Upon receiving (init, ssid) from some party Pi, interpret ssid = (. . . ,P ,QRMs), where P = (P1, . . . ,Pn).

– If Pi ∈ P , send to S and record (init, ssid,Pi).

– Otherwise ignore the message.

2. Once (init, ssid, j) is recorded for all Pj ∈ P , send (pubkey, ssid) to the adversary S and do:

(a) Upon receiving (pubkey, ssid,X,V) from S, record (ssid,X,V).
(b) Upon receiving (pubkey, ssid) from Pi ∈ P , output (pubkey, ssid,X) if it is recorded.

Else ignore the message.

Signing:

1. Upon receiving (sign, sid = (ssid, . . .),m) from Pi, send to S and record (sign, sid,m, i).

2. Upon receiving (sign, sid = (ssid, . . .),m, j) from S, record (sign, sid,m, j) if Pj is corrupted.
Else ignore the message.

3. Once (sign, sid,m, i) is recorded for all Pi ∈ Q ⊆ P and Q ∈ QRMs, send (sign, sid,m) to S and do:

(a) Upon receiving (signature, sid,m, σ) from S,

– If the tuple (sid,m, σ, 0) is recorded, output an error.
– Else, record (sid,m, σ, 1).

(b) Upon receiving (signature, sid,m) from Pi ∈ Q:

– If (sid,m, σ, 1) is recorded, output (signature, sid,m, σ) to Pi.
– Else ignore the message.

Verification:

Upon receiving (sig-vrfy, sid,m, σ,X) from a party X , do:

– If a tuple (m,σ, β′) is recorded, then set β = β′.

– Else, if m was never signed and not all parties in some Q ∈ QRMs are corrupted/quarantined, set β = 0.

“Unforgeability”

– Else, set β = V(m,σ,X).

Record (m,σ, β) and output (istrue, sid,m, σ, β) to X .

Key-Refresh:

Upon receiving key-refresh from all Pi ∈ P , send key-refresh to S, and do:

– If not all parties in some Q ∈ QRMs are corrupted/quarantined, erase all records of (quarantine, . . .).

Corruption/Decorruption:

1. Upon receiving (corrupt,Pj) from S, record Pj is corrupted.

2. Upon receiving (decorrupt,Pj) from S:

– If not all parties in some Q ∈ QRMs are corrupted/quarantined do:

If there is record that Pj is corrupted, erase it and record (quarantine,Pj).

– Else do nothing.

Figure 14: Ideal Threshold-Signatures Functionality Ftsig

42

A Realizing init-tecdsa via CMP

Party Pi Party Pj

γi ← Fq, Γ⃗i = com(γi, Y)

Ki = enci(ki) and Gi = enci(γi)

∀j, ψj,i ← (Ξ1
j,i)

FS((Ki, B⃗i, Gi, Γ⃗i); (ki, γi))

ψj,i,Ki, Gi, Γ⃗i

ψi,j ,Kj , Gj , Γ⃗j

∀j, sample βi,j , β̂i,j ← I(22κ+ν) and do:

Set D̂j,i = [Kγi
j · encj(β̂i,j)]N2

j
and F̂i,j = enci(β̂i,j)

Dj,i = [Kxi
j · encj(βi,j)]N2

j
and Fi,j = enci(βi,j) and Hi = Hγi

ϕj,i ← (Ξ2
j,i)

FS((Hi, Xi, Γ⃗i, Dj,i, Fi,j , D̂j,i, F̂i,j); (xi, γi, βi,j , β̂i,j))

Hi, Dj,i, Fi,j , D̂j,i, F̂i,j , ϕj,i

Hj , Di,j , Fj,i, D̂i,j , F̂j,i, ϕi,j

Set δi = [kiγi +
∑

j ̸=i deci(D̂i,j)− β̂i,j]q

Set Λ =
∏

j Hj and ∆i = Λki

ωi ← (Ξ3
Λ)

FS(∆i, B⃗i; ki)

δi,∆i, ωi

δj ,∆j , ωj

Set δ =
∑

j δj , ∆ =
∏

j ∆j and check gδ = ∆

Set R = Hδ−1

and χi = [kixi +
∑

j ̸=i deci(Di,j)− βi,j]q
Set r = R|x-axis and output (R,χi, r)

Figure 15: Threshold ECDSA, initialize Signing. Protocol of Canetti et al. [10], aka CMP.

Definition A.1. For (N̂ , t, s1, . . .) = πj and N = Ni, define Schnorr protocol Ξ1
j,i for (ϕ,E,R,S) where

E = I(2κ)

ϕ : Z2 × Z∗2N × F2
q × Z→ (G2 × Z∗N2)2 × Z∗

N̂

(k, γ, ρ, λ, µ, ν, α) 7→ (ϕ0(k, µ), ϕ1(k, ρ), ϕ0(γ, ν), ϕ1(γ, λ), ϕ2(α, k, γ))

and 
ϕ0 : (k, µ) 7→ (gµ, Y µgk)

ϕ1 : (k, ρ) 7→ (1 +N)k · ρN

ϕ2 : (α, k, γ) 7→ tα · sk1 · s
γ
2

and (k, γ, . . . , α) ∈ R ⇐⇒ k, γ ∈ I(2κ) ∧ α ∈ I(N̂ · 2κ). Define S analogously with J(·).

Definition A.2. For (N̂ , t, s1, . . .) = πj and (N,M) = (Nj , Ni), define Schnorr protocol Ξ2
j,i for (ϕ,E,R,S)

where E = I(2κ)

ϕ : Z4 × Fq × Z∗2N × Z∗2M × Z→ G×G×G2 × (Z∗N2 × Z∗M2)2 × Z∗
N̂

(x, γ, β, β̂, µ, ν, ν̂, ρ, ρ̂, λ) 7→ (Hγ , gx, ϕ0(γ, µ), ϕ1(x, β, ν, ρ), ϕ1(γ, β̂, ν̂, ρ̂), ϕ2(λ, x, γ, β, β̂))

43

and 
ϕ0 : (γ, µ) 7→ (gµ, Y µgγ)

ϕ1 : (x, β, ν, ρ) 7→ (Kx · (1 +N)β · νN , (1 +M)β · ρM)

ϕ2 : (λ, x, γ, β, β̂) 7→ tλ · sx1 · s
γ
2 · s

β
3 · s

β̂
4

and {
(x, γ, β, β̂, . . . , λ) ∈ R ⇐⇒ x, γ ∈ I(2κ) ∧ β, β̂ ∈ I(22κ+ν) ∧ λ ∈ I(N̂ · 2κ)
(x, γ, β, β̂, . . . , λ) ∈ S ⇐⇒ x, γ ∈ J(2κ) ∧ β, β̂ ∈ J(22κ+ν) ∧ λ ∈ J(N̂ · 2κ)

Definition A.3. Define Schnorr protocol Ξ3
Λ for (ϕ,E) where E = Fq and

ϕ : F3
q → G×G2

(k, b, v) 7→ (Λk, gb, Y b · gk)

A.1 Simulator for CMP

FIGURE 16 (Simulator for Σcmp)

Parameters. Adversary A, RO H and nonce R ∈ G.

Operation.

Round 1. Set Kb, Gb = encb(0) and Γ⃗b ← G2.

1. Calculate (ψj,b)j ̸=b using the HVZK simulator
Hand over ((ψj,b)j ̸=b,Kb, Gb, Γ⃗b) to A.

Round 2. When obtaining (ψb,j ,Kj , Gj , Γ⃗j), extract kj , γj and do:

1. Set {Fb,j , F̂b,j = encb(0)}j ̸=b and {Db,j = encj(αj), D̂b,j = encj(α̂j)}j ̸=b for αj,b, α̂j,b ∈ I(22κ+ν)

2. Sample δ ← Fq and set Hb = Rδ ·
∏

j ̸=bH
−γj

3. Calculate (ϕj,b)j ̸=b using the HVZK simulator
Hand over (Hb, . . . , ϕj,b)j ̸=b to A.

Round 3. When obtaining (Hj , . . . , ϕb,j)j ̸=b, γj and do:

1. Extract {βj = decj(Fj,b), βj = decj(F̂j,b)}j ̸=b using Pj ’s secret key.
2. Set δb = [δ −

∑
j ̸=b(α̂j − β̂j)− (

∑
i,j ̸=b kiγj)]q and and ∆b = gδ ·

∏
j ̸=b Λ

−ki .
3. Calculate ωb using the HVZK simulator

Hand over (δb,∆b, ωb) to A.

Output. When obtaining (δj ,∆j , ωj)j ̸=b, do:

Output χ∗ = [
∑

j ̸=b(αj − βj) + (
∑

i,j ̸=b kixj)]

Figure 16: Simulator for Σcmp

B Missing ZK Protocols/Proofs

B.1 Security Proof for Multi-Pedersen Membership
Recall (Definition 4.1) the m-batch Schnorr protocol Π∗ for (ϕ,E) where E = {0, 1} and

ϕ : Zφ(N̂) → Z∗
N̂

α 7→ tα

Claim B.1. It holds that Π∗ is (µ, ν)-secure for µ = 1− φ(N)
N and ν = 1

2 .

44

Proof. Let s⃗ = (s1, . . . , sm) denote the common input. The HVZK part of the claim follows since (A, e, z) is
(1 − φ(N)

N)-close to a honest transcript, for z ← [0, N − 1], e⃗ ← {0, 1}m and A = tz ·
∏m

i=1 s
−ei
i mod N̂ . For

the soundness part of the claim, we assume the following. WLOG si /∈ ⟨t⟩ for all i ∈ [m] (otherwise remove
all the good s’s and consider the smaller batch). Next, let e⃗, f⃗ ∈ {0, 1}m be two Boolean vectors of hamming
distance 1 from each other, i.e. ei = fi if and only if i ̸= j, for some j ∈ [m]. Observe that

1. If tz = A ·
∏m

i=1 s
ei
i mod N̂ and tz

′
= A ·

∏m
i=1 s

fi
i mod N̂ then A ∈ Z∗

N̂
, sj ∈ ⟨t⟩.

2. Any subset of {0, 1}m larger than 2m−1 contains two vectors that are 1-far from each other.

The first item follows by simple algebraic manipulation. The second item is a fact from coding theory by
notting that the largest code in Fm

2 of distance 2 is smaller than the largest code in Fm−1
2 of distance 1.

B.2 Well-Formed Modulus & Ciphertext ZK Proof
Next we describe the missing ZK-proof Φ(·) [10] from Section 4.2. The proof is a combination of two Schnorr
protocols Π(·) and Θ(·) (“tight range proof” from [14] and “no small-factors proof” from [10]), and the ZK
protocol Ξ (“Paillier-Blum proof” from [10]), all described below. Soundness and HVZK follow from the
soundness and HVZK of the underlying protocols and Theorem 6.1. Recall that I(M) = ±M/2 and J(M) =
±M · 2ν−1. Let π = (N̂ , s, t, . . .) for s, t ∈ Z∗

N̂
. Recall that κ denotes the security parameter.

Paillier-Blum. The protocol is described in Figure 17. For the security properties (HVZK, soundness &
Extraction) of Ξ, we refer the reader to [10, p. 28].

FIGURE 17 (Paillier-Blum Modulus ZK – Ξ(N ; p, q))

• Inputs: Common input is N . Prover has secret input (p, q) such that N = pq.

1. Prover samples a random w ← ZN of Jacobi symbol −1 and sends it to the Verifier.

2. Verifier sends {yi ← Z∗
N}i∈[κ]

3. For every i ∈ [κ] set:

– xi = 4
√
y′i mod N , where y′i = (−1)aiwbiyi for unique ai, bi ∈ {0, 1} such that xi is well defined.

– zi = y
N−1 mod ϕ(N)
i mod N

Send {(xi, ai, bi), zi}i∈[κ] to the Verifier.

• Verification: Accept iff all of the following hold:

– N is an odd composite number.

– zNi = yi mod N for every i ∈ [κ].

– x4i = (−1)aiwbiyi mod N and ai, bi ∈ {0, 1} for every i ∈ [κ].

Figure 17: Paillier-Blum Modulus ZK – Ξ(N ; p, q)

Tight Range. Define Πσ for (ϕ,E) for E = I(2κ), σ = (π, T, A⃗,N) and

ϕ : Z4 × Z4 × Z × Z∗N → Z∗5
N̂
× Z∗N2 ×G

(x, α⃗, µ, ρ⃗, β, γ) 7→ (sxtµ, (sαitρi)3i=1, T
−x ·Aα1

1 ·A
α2
2 ·A

α3
3 · tβ , (1 +N)x · γN , gx)

(x, α⃗, µ, ρ⃗, β, γ) ∈ R iff x, µ, αi, ρi ∈ I(N̂ · 2κ), β ∈ I(N̂ · 22κ) and S is analogously defined with J(·).

No Small Factors. Define Θπ,Q for (ϕ,E,R,S) for E = I(2κ) and ϕ : Z2×Z3 :→ Z∗3
N̂

s.t. (p, q, u, v, w) 7→
(sptu, sqtv, Qptw) with (p, q, u, v, w) ∈ R iff p, q ∈ I(

√
N · 2κ), u, v ∈ I(N̂ · 2κ) and w ∈ I(22κ · N̂

√
N). Define

S analogously with J(·).

45

B.2.1 ZK Proof Description

Define Φπ for π = (N̂ , s, t, . . .) in Figure 18.

Prover

Common Input: N,W,X, κ

If not defined set (W,X) = (1,1).

Secret Input: p, q, x, γ s.t. N = pq and W = encN (x; γ), X = gx with p, q ∈ I(2κ
√
N) and x ∈ [0, 2κ].

1. Find α1, α2, α3 such that 4(2κ − x) · x+ 1 = α2
1 + α2

2 + α2
3

2. Sample (ρi ← I(2κ · N̂))i=1,2,3 and set {Ai = sαitρi mod N̂}i=1,2,3

3. Sample µ, u, v ← I(2κ · N̂) and set (S, T) = [(sxtµ, (s2
κ · S−1)4)]N̂ and (P,Q) = [(sptu, sqtv)]N̂

4. Set σ = (π, T, A⃗,N) and generate Proofs:
ψ ← Πσ((S, A⃗, s,W,X); (x, µ, α⃗, ρ⃗, β, γ)) for β = −4µx−

∑3
i=1 αiρi

ξ ← Θπ,Q((P,Q, s
N); (p, q, u, v, w)) for w = −pv

η ← Ξ((N); (p, q))

Output: ζ = (P,Q, S, A⃗, ψ, ξ, η).

Verifier

Common Input: N,W,X, κ.

Additional Input: Packing number λ & packing shift τ .

Proof : ζ ∈ {0, 1}∗.

1. Parse ζ = (P,Q, S, A⃗, ψ, ξ, η).

2. Set T = [(s2
κ · S−1)4]N̂ and σ = (π, T, A⃗,N) and check that N ≥ 2τ ·λ.

3. Verify ψ(S, A⃗, s,W,X), ξ(P,Q, sN) and η(N) according to Πσ, Θπ,Q and Ξ respectively.

Output: In case of failure output 0. Else, output 1.

Figure 18: Well-Formed Modulus & Ciphertext Φπ

46

C Experimental Results
We present experimental results for evaluating the predominant cost of our protocol, i.e. computation com-
plexity. So, in our experiments, we focus on pure computation time during presigning and signing ; we view
key generation as a one-time cost which does not affect performance in a significant way. Furthermore, the
communication between the parties is managed in a simplified way (namely, all parties run on the same shared
memory, and messages are “sent” and “received” by writing and reading the right memory slot). Finally, though
we focus on computation, we recall that communication complexity is one of the main attractive features of our
protocol, and, using our theoretical estimates (Table 1, p. 7), it is possible to infer real-world communication
costs.

What we implement. We implement a proof of concept of the following phases of the protocol: key
generation, presigning and signing. We recall that the signing phase consists of init/CMP and aggregation for
the online parties, and ZK verification and output finalization for the offline party. Our proof of concept is
written in C and the code is available online.23 For elliptic curve operations, big numbers and hash functions,
we use openSSL. We do not use other libraries.

What we measure. Plot 1: Computation time per message during presigning for the offline party as
a function of the batching parameter, i.e. how many presignatures are handled in a single batch. Plot 2:
Computation time per message during signing for each online party, as a function of the number of parties. Plot
3: Computation time for the aggregation phase during signing for each online party, as well as the verification
and finalization time for the offline party, as a function of the batching parameter. Plot 4: Performance
improvement (speedup) when using the packing optimization vs not using, as a function of the number of
parties.

Choice of Parameters & Machine Specs. We instantiate the random oracle with SHA-512 (for Fiat-
Shamir, commitments, etc. . .) and ECDSA is instantiated with hash function SHA-256 and elliptic curve
secp256k1, i.e. the most popular variant of ECDSA in the blockchain space. The bit length of the Paillier
modulus was accordingly set to 2048 to be eight times greater than the ECDSA key length. For the ZK proofs,
we chose 64 bits for the (statistical) zero-knowledge parameter and 256 bits for the (computational) soundness
parameter.

We performed our experiments on a MacBookPro with 2.4Ghz Quad-Core Intel Core i5 processor and
16 GB 2133 MHz LPDDR3 memory. Our experiments use single-threaded processes with default level of
compilation optimization.

C.1 Concluding Remarks
Plot 1. We note that the batching technique significantly reduces the computation costs for presigning;
e.g. for 9 parties, there is more than x2 speedup when batching 200 presignatures vs no batching. On the
other hand, this speedup appears to plateau when batching more than a few hundred presignatures.

Plot 2. We observe a linear correlation between the number of parties and the computation time per message.
This confirms our expectations, since each additional party adds a constant amount of work (≈ 200ms).

Plot 3. Notice that the aggregation process for the online parties is tiny (at most 15ms for any number of
parties) compared to the init/CMP part of the signing phase (≈ 200ms with linear dependence on the number
of parties, cf. Plot 3). We mention that there is a theoretical dependence on the number of parties even during
aggregation; there is no such dependency for the offline party. However, the dependency is unnoticeable for
small number of parties (e.g. fewer than 100). Finally, observe that the offline party’s computational costs are
rather insignificant during signing, and both of the aforementioned processes, i.e. aggregation for the online
parties and verification/finalization for the offline, benefit from the batching technique.

23https://github.com/udi0peled/asymmetric_offline_cmp (accessed February 2023).

47

https://github.com/udi0peled/asymmetric_offline_cmp
https://github.com/udi0peled/asymmetric_offline_cmp

.
Figure 19: (Plot 1) CPU time for presigning for the offline party, viewed as a function of the batching
parameter, i.e. number of future signatures in the batch. Reported values are amortized over the number of
future signatures (so total costs scale linearly with respect to this quantity). We ran four different experiments
for 1, 2, 4 and 9 online parties; recall that there is a single offline party and the protocol does not accommodate
additional offline parties. (Computation time for each online party is small compared to the offline party and
it does not increase with n – comparable to the blue line above)

Figure 20: (Plot 2) Total CPU time for the online-signing phase, i.e. init/CMP + aggregation, for each
online party (there is no offline party in this phase), per signature. The reported values were calculated by
running the protocol 100 times and taking the average. We note that the bulk of the online-signing phase
occurs during the init/CMP part of the protocol (cf. Plot 4 for the costs of the aggregation phase and those
of the offline party).

48

Figure 21: (Plot 3) CPU time for aggregation process for each online party and CPU running time for
verification/finalization process for the offline party, viewed as a function of the batching parameter amortized
over the number of signatures. We note that the displayed costs are not affected by the number of online
parties (though there is a theoretical dependency for the blue line, cf. concluding remarks).

Figure 22: (Plot 4) CPU time speedup for presigning when packing three plaintexts into one Paillier
ciphertext, compared to no packing at all, as a function of the number of online parties. E.g. when using
packing number 3 during presigning, the parties run roughly 2.5 times faster compared to packing number
1. We do not report experiments for larger packing number (> 3) because the speedup deteriorates as the
Paillier key length increases (cf. concluding remarks).

49

Plot 4. As mentioned in the caption of plot 4, the speedup deteriorates for larger packing because the Paillier
plaintext size (and thus the key length) is increased to avoid overflow. As a consequence, the overhead of
increasing the Paillier key length counteracts the benefits of packing (because Paillier encryption is basically
the most expensive component of our protocol). However, it may yet be desirable to increase the packing
number if the communication benefit outweighs the computation slowdown.

Comparison to the PCG-based protocol [1]. Form the offline party’s perspective, or when viewed as
a two-party protocol, we note that in [1] P0 receives 200B of data from the online word (compared to our
300B) and the authors estimate “1–2s per signature” [1, p. 27] (compared to our 100–200ms), so our protocol
compares favorably to [1] in computation and the communication complexity of our protocol is within striking
distance of [1] for the two-party case. For the multiparty case, [1] makes no distinction between online and
offline signatories, so it exceeds the communication requirements of our use case, wastefully-so, because of the
computational overhead.

50

	Introduction
	Threshold ECDSA & Cold Storage
	Our Results
	Asymmetric Threshold ECDSA
	New Batch-Proving Technique

	Paper Organization

	Our Techniques
	Party Virtualization & Proof Aggregation
	Soundness of Batch-Proving
	Pedersen Batch Extractability
	Security Analysis

	Preliminaries
	Notation
	Signatures and Unforgeability
	MPC and Universal Composability
	Proactive Threshold Signatures
	Ideal Threshold-Signatures Functionality
	Global Random Oracle

	Group/Number-Theoretic Definitions
	Schnorr Protocols
	Embedded Schnorr Protocols
	NIZK and the Fiat-Shamir Transform
	Proof Aggregation in ROM

	Protocol
	Pedersen Parameters
	Key-Generation & Presign
	ZK for Key-Generation & Presigning

	Signing
	init-tecdsa functionality
	ZK for Signing

	Security
	Unforgeability & Simulatability imply UC Security
	Simulatability of Sigma ecdsa
	Proof of Theorem 4.7

	Proof of Soundness for Batch-Proving
	Proof of 5.1
	Putting Everything Together
	Extractability
	Robustness, Unpredictability and Collision Resistance

	References
	Ideal Threshold-Signatures Functionality
	Appendix
	Realizing init-tecdsa via CMP
	Simulator for CMP

	Missing ZK Protocols/Proofs
	Security Proof for Multi-Pedersen Membership
	Well-Formed Modulus & Ciphertext ZK Proof
	ZK Proof Description

	Experimental Results
	Concluding Remarks

