
Garrison: A Novel Watchtower Scheme for
Bitcoin

Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Faculty of Information Technology, Monash University, Melbourne, Australia
{arash.mirzaei,amin.sakzad,jiangshan.yu,ron.steinfeld}@monash.edu

Abstract. In this paper, we propose Garrison, which is a payment chan-
nel with watchtower for Bitcoin. For this scheme, the storage require-
ments of both channel parties and their watchtower would be O(log(N))
with N being the maximum number of channel updates. Furthermore,
using properties of the adaptor signature, Garrison avoids state duplica-
tion, meaning that both parties store the same version of transactions for
each state and hence the number of transactions does not exponentially
increase with the number of applications on top of the channel.

1 Introduction

Scalability of blockchains is a grand open challenge limiting the adoption of
blockchain technologies. Payment channel is one of the promising techniques to
mitigate this issue. To establish a payment channel, two parties lock their funds
in a 2-of-2 multisignature address on the blockchain. Then, parties privately carry
out payments among themselves and update the channel’s state by exchanging
off-chain transactions. Finally, each party can close the channel by publishing
the last state of the channel on-chain.

However, since the channel parties are generally untrusted and blockchain
miners are unaware of the off-chain transactions, a mechanism must be adopted
to prevent cheating parties from publishing an old state. In Lightning network,
Raiden network and many other proposals, when a channel party publishes a
channel state on the blockchain, a period called revocation period starts, in which
their counter-party can provide some evidence proving that the published state
is invalid and hence prevent the channel from getting finalized with an old state.

However, the revocation process works based on the assumption that the
parties are always online and synced with the blockchain to detect malicious
behaviour. This requirement has always been a drawback for payment channels
because it can be practically violated due to crash failures or DoS attacks on the
channel party. Watchtower was introduced to relax this strong assumption by
allowing users to delegate their tasks to the watchtower [10]. To do so, for each
revoked state, some evidence is given to the watchtower. Then, the watchtower
as an always-online service provider, monitors the blockchain and acts on behalf
of its customers to secure their funds.



Several watchtower schemes have been proposed, some for Bitcoin and some
for Turing complete blockchains, each scheme focusing on some particular prop-
erties. Monitor [4] is the first watchtower proposal and mainly focuses on channel
privacy against watchtower. However, firstly, payment to the watchtower is done
upon fraudulent channel closure and secondly dishonest watchtowers are not
penalized if do not act upon fraud. These two issues are related to the fair-
ness with respect to the watchtower and its customer, respectively. DCWC and
DCWC* [2] provide a solution to incentivize different watchtowers to cooperate
with each other. However, for these proposals, payment to the watchtower is still
conditional and the watchtower is also unaccountable.

For Cerberus [3], PISA [8] and FPPW [9], watchtower must lock some funds
as collateral. This collateral is given to the hiring party given that the watch-
tower is non-responsive. Furthermore, the watchtower is unconditionally paid
per channel update. Thus, these schemes are fair w.r.t both the hiring party and
the watchtower. However, this comes at the cost of decrease in currency liquidity
or limitations in total capacity of channels that can be covered by a particular
watchtower. This is parameterized using a factor called coverage [9]. Towards
a different direction, [11] proposes a reputation system based on proof of work
which forces watchtowers to be responsive without requiring them to lock any
funds.

Outpost [6] is a novel scheme which reduces the watchtower’s storage re-
quirements per channel from O(N) to O(log(N)) with N being the maximum
number of channel updates. This consequently reduces the operational cost of
maintaining watchtowers. Although elegantly designed, Outpost suffers from fol-
lowing shortcomings: 1) The storage requirements of each channel party is still
O(N), 2) The payment channel does not avoid state duplication and hence the
number of transactions exponentially increases with the number of applications
on top of the channel [1], 3) Outpost works based on ”punish-per-output” pat-
tern, meaning that if there are multiple outputs in the published revoked state,
the cheated party must claim each output separately. This increases the number
of on-chain transactions.

Therefore, the main motivation of this paper is designing a payment channel
with watchtower scheme which is storage efficient for both channel parties and
the watchtower and avoids state duplication as well as output-based revocation.

2 Preliminaries and Notations

In this section the underlying cryptographic primitives of Garrison as well as
notations are introduced. We closely follow the notations stated in [9].

2.1 Preliminaries

Digital Signature A digital signature scheme Π includes three algorithms as
following:

2



– Key Generation. (pk, sk)← Gen(1κ) on input 1κ (κ is the security param-
eter), outputs the public/private key pair (pk, sk).

– Signing. σ ← Signsk(m) on inputs the private key sk and a message m ∈
{0, 1}∗ outputs the signature σ.

– Verification. b← Vrfypk(m;σ) takes the public key pk, a message m and a
signature σ as input and outputs a bit b.

In this work, we assume that the utilized signature schemes are existentially
unforgeable under an adaptive chosen-message attack. It guarantees that it is of
negligible probability that an adversary, who has access to a signing oracle, out-
puts a valid signature on any new message. In this paper, we call such signature
schemes secure. ECDSA [5] is a secure signature scheme that is currently being
used in Bitcoin. Schnorr [12] is another important secure signature scheme that
has been proposed to be introduced in Bitcoin due to its key aggregation and
signature aggregation properties.

Hard relation A relation R with statement/witness pairs (Y ; y) is called a
hard relation if (i) There exists a polynomial time generating algorithm (Y ; y)←
GenR(1κ) that on input 1κ outputs a statement/witness pair (Y ; y) ∈ R; (ii) The
relation between Y and y can be verified in polynomial time, and (iii) For any
polynomial-time adversary A , the probability that A on input Y outputs y
is negligible. We also let LR := {Y | ∃Y s.t. (Y, y) ∈ R}. Statement/witness
pairs of R can be public/private key of a signature scheme generated by Gen
algorithm.

Adaptor Signature Adaptor signatures appeared first in [1]. Adaptor signa-
ture is used in generalized channels to tie together the authorization of a commit
transaction and the leakage of a secret value. In what follows, we recall how an
adaptor signature works. Given a hard relation R and a signature scheme Π, an
adaptor signature protocol Ξ includes four algorithms as follows:

– Pre-Signing. σ̃ ← pSignsk(m,Y ) is a probabilistic polynomial time (PPT)
algorithm that on input a private key sk, message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̃.

– Pre-Verification. b← pVrfypk(m,Y ; σ̃) is a deterministic polynomial time
(DPT) algorithm that on input a public key pk, message m ∈ {0, 1}∗, state-
ment Y ∈ LR and pre-signature σ̃, outputs a bit b.

– Adaptation. σ ← Adapt(σ̃, y) is a DPT algorithm that on input a pre-
signature σ̃ and witness y, outputs a signature σ.

– Extraction, Ext(σ, σ̃, Y ) is a DPT algorithm that on input a signature σ,
pre-signature σ̃, and statement Y ∈ LR, outputs ⊥ or a witness y such that
(Y, y) ∈ R.

Correctness of an adaptor signature guarantees that for an honestly gener-
ated pre-signature σ̃ on the message m w.r.t. a statement Y ∈ LR, we have

3



pVrfypk(m,Y ; σ̃) = 1. Furthermore, when σ̃ is adapted to the signature σ, we
have Vrfypk(m;σ) = 1 and Ext(σ, σ̃, Y ) outputs y such that (Y, y) ∈ R.

An adaptor signature scheme is secure if it is existentially unforgeable un-
der chosen message attack (aEUF–CMA security), pre-signature adaptable and
witness extractable. The aEUF–CMA security guarantees that it is of negligible
probability that any PPT adversary who has access to signing and pre-signing
oracles outputs a valid signature for any arbitrary new message m even given
a valid pre-signature and its corresponding Y on m. Pre-signature adaptablity
guarantees that every pre-signature (possibly generated maliciously) w.r.t. Y
can adapt to a valid signature using the witness y with (Y, y) ∈ R. Witness
extractablity guarantees that it is of negligible probability that any PPT adver-
sary who has access to signing and pre-signing oracles outputs a valid signature
and a statement Y for any new message m such that the valid signature does
not reveal a witness for Y even given a valid pre-signature on m w.r.t. Y . The
ECDSA-based and Schnorr-based adaptor signature schemes were constructed
and analyzed in [1].

2.2 Notations

Throughout this work, we define different attribute tuples. Let T be a tuple of
multiple attributes and one of its attributes is denoted by attr. To refer to this
attribute, we use T.attr.

Our focus in this work is on Bitcoin or any other blockchains with UTXO
model. In this model, units of value which we call coins are held in outputs.
Formally, an output θ is a tuple of two attributes, θ = (cash, φ), where θ.cash
denotes the amount of coins held in this output and θ.φ denotes the condition
that needs to be fulfilled to spend the output θ. The condition θ.φ is encoded
using any script supported by the underlying blockchain. If the condition θ.φ
contains a user P ’s public key, we say that P controls or owns the output θ
because satisfying the condition requires a valid signature corresponding with
that public key. Satisfying a condition might require authorizations by multiple
parties. Such a condition contains public keys of all the involved parties separated
by ∧ operation(s). A condition might also have several subconditions, one of
which must be satisfied to spend the output. Different subconditions of an output
are separated by ∨ operation(s). The OP RETURN output is a special output
which does not hold any coins and is used to add some arbitrary data to the
blockchain. Such an output is denoted by θ = (0, data) where data is its arbitrary
data.

A transaction changes ownership of coins, meaning that it takes a list of
existing outputs and transfers their coins to a list of new outputs. To distinct
between these two lists, we refer to the list of existing outputs as inputs. A
transaction Tx is formally defined as the tuple (txid, Input,Output,Witness). The
identifier Tx.txid ∈ {0, 1}∗ is computed as Tx.txid := H([Tx]), where [Tx] is
called the body of the transaction defined as [Tx] := (Tx.Input, Tx.Output) and
H is a hash function which is modeled as a random oracle. The attribute Tx.Input
is a list of identifiers for all inputs of Tx. The attribute Tx.Output = (θ1, . . . , θn)

4



is a list of new outputs. The attribute Tx.Witness = (W1, . . . ,Wm) is a list
of tuples where its ith tuple authorizes spending the output that is taken as
the ith input of Tx. The tuple Wi = (η, ζ) of the witness Tx.Witness contains
two attributes where Wi.ζ denotes the data, e.g. the signature(s), that is (are)
required to meet the Wi.η

th subcondition of the output that is taken as the
ith input of Tx. The signature (pre-signature) of party P for Tx.Witness.Wi.ζ

is denoted by σP,i
Tx (σ̃P,i

Tx), where i can be removed for transactions with single
input. Table 1 summarizes the stated notations.

Table 1. Notations

Notation Description

T.attr Attribute attr of the tuple T
θ = (cash, φ) Output with value cash and script condition φ
θ = (0, data) OP RETURN output with data as its data
Tx Transaction Tx = (txid, Input, nLT,Output,Witness)
[Tx] Tuple (Tx.Input, Tx.Output)
Tx.txid Identifier of the transaction Tx
Tx.Input List of identifiers for all inputs of Tx
Tx.Output List of new outputs (θ1, . . . , θn) for Tx

Tx.Witness List of witnesses (W1, . . . ,Wm) for Tx where Wi corresponds with ith

input of Tx

W = (η, ζ) Witness that fulfills ηth subcondition of an output using data ζ

σP,i
Tx Signature of party P on Tx for Tx.Witness.Wi.ζ

σ̃P,i
Tx Pre-signature of party P on Tx for Tx.Witness.Wi.ζ

We additionally use charts to illustrate the connections between different
transactions. Transactions that are already published on-chain are illustrated by
doubled edge rectangles. Transactions that are ready to be published are illus-
trated by single edge rectangles. Dotted edge rectangles show transactions that
still lack the required witness for at least one input and hence are unprepared to
be propagated in the blockchain network. Directional arrows from ith output of
transaction Tx to jth input of transaction Tx′ shows that the transaction Tx′

takes ith output of the transaction Tx as its jth input. As an example, Fig. 1
illustrates that Txi and Txj are published and unpublished, respectively. The
transaction Txk is still unprepared to be published on the ledger. According to
the figure, we have: Txi.Output := {(x, φ1 ∨ φ2)}, Txj .Input = Txi.txid∥1 (the
string obtained from concatenation of Txi.txid and the number 1, representing
the 1st output of Txi), Txj .Output = (θ1, θ2), and Txj .Witness = {(1, ζ)} (show-
ing that Txj .Witness satisfies the first subcondition of Txi.Output, φ1, using the
data ζ). The output θ2 is an OP RETURN output.

5



Fig. 1. A sample transaction flow.

3 Garrison Overview

In this section we start with a simple payment channel introduced in [9]. Al-
though this scheme provide state duplication avoidance, its parties’ and watch-
tower’s storage requirements linearly increase with each channel update. Then,
we modify this simple scheme step by step to mitigate its limitations.

3.1 A Simple Payment Channel

Fig. 2 depicts the simple payment channel, introduced in [9]. This simple channel
is created once channel parties publish a funding transaction on the blockchain.
By doing so, they fund a 2-of-2 multisignature output on the ledger. The ith

channel state includes a commit transaction TxCM,i as well as a split transaction
TxSP,i. The commit transaction sends the channel funds to a new joint account
which is shared between the channel parties. Output of the commit transaction
has two subconditions where its second subcondition is relatively timelocked by T
rounds and can be satisfied after T rounds by the corresponding split transaction
and the first subcondition which is not timelocked, as we will explain later, is
used for revocation purposes. Split transaction distributes the channel funds
among the channel parties and hence represents the channel state.

The transaction TxCM,i requires signatures of both parties A and B to
be published. To generate σB

CM,i, party A generates a statement/witness pair
(YA,i, yA,i) and sends the statement YA,i to B. Then, party B uses the pre-signing
algorithm pSign of the adaptor signature and A’s statement YA,i to generate a
pre-signature σ̃B

CM,i on [TxCM,i] and sends the result to A. Thus, whenever it is
necessary, A is able to use the adaptation algorithm adapt of the adaptor signa-
ture to transform the pre-signature to the signature σB

CM,i and publish TxCM,i

on-chain. This also enables B to use the extraction algorithm Extract, the pub-
lished signature and its corresponding pre-signature to extract the witness value
yA,i. The witness value, as will be seen, allows the honest party to punish his
dishonest channel party by claiming all the channel funds.

As one may submit an intermediate state (which is already replaced by a
later state) to the blockchain, the channel parties will need to detect and pun-
ish such misbehaviours. To achieve this goal, upon channel update from state i
to i + 1, a revocation transaction is created by parties. This revocation trans-
action corresponds to the state i of the channel. Unlike the split transaction,
the revocation transaction can immediately spend output of the corresponding

6



commit transaction TxCM,i using its first subcondition which does not contain
any timelock. Thus, if the revoked commit transaction TxCM,i is published by
a channel party, let’s say A, party B can immediately publish the revocation
transaction TxRV,i. Moreover, since commit transactions are signed using the
adaptor signature, once TxCM,i is published by A, his witness yA,i is revealed
to B. Thus, only B who knows both yA,i and yB,i can claim the output of the
revocation transaction and hence he will be actually the owner of all the channel
funds. Broadcast of the latest commit transaction does not pose any risk to its
broadcaster because parties have not signed the revocation transaction for the
latest state yet.

Fig. 2. A Simple Payment Channel

3.2 Reducing the Storage Requirements of the Watchtower

For the simple scheme, introduced in the previous section, all revocation trans-
actions must be stored by channel parties or their watchtowers to be published
upon fraud. In this section, based on the same idea as Outpost [6], we reduce the
storage requirements of the watchtower. To achieve this goal, the main idea is
storing the revocation transaction TxRV,i inside the commit transaction TxCM,i.
Then, once TxCM,i is published, the watchtower extracts TxRV,i and records
it on the blockchain. However, we have TxRV,i.Input = TxCM,i.txid∥1. Thus, if
TxRV,i is created, signed and finally stored inside TxCM,i, then [TxCM,i] and
hence TxCM,i.txid and TxRV,i change. Thus, there is a self-loop situation [6].

7



To solve this issue, we add an auxiliary output with the value of ϵ to commit
transactions where ϵ is the minimum value supported by the Bitcoin blockchain.
We also add an auxiliary transaction between each commit transaction and its
corresponding split transaction. This new transaction TxAU,i spends the auxil-
iary output of the commit transaction. The signatures of party A and party B
on [TxRV,i] are stored in an OP RETURN output of the auxiliary transaction
TxAU,i. The split transaction TxSP,i spends the main output of TxCM,i as well as
the main output of the auxiliary transaction TxAU,i. Based on this design, parties
can be sure that once the revoked commit transaction TxCM,i is published on
the blockchain, its split transaction TxSP,i cannot be published unless TxAU,i is
also published on the blockchain. Furthermore, due to the timelock in the main
output of TxAU,i, once this transaction is published on-chain, TxSP,i cannot be
published within T −1 rounds. However, the honest party or his watchtower can
extract the signatures on [TxRV,i] from TxAU,i and publish TxRV,i immediately.
Fig. 3 depicts the transactions flows.

Fig. 3. Reducing the Storage Requirements of the Watchtower

However, this scheme does not work as it has two following issues:

– If the watchtower is supposed to create the revocation transaction and pub-
lish it on the blockchain, he must also know the value of YA,i and YB,i.

– Typically, revocation transaction of state i must be created once parties
update the channel state from state i to i + 1. However, in the proposed
scheme signatures on revocation transaction of state i is stored in auxiliary
transaction of state i. It means that if an honest party records the latest
commit and auxiliary transaction on the blockchain, her counter-party might
publish the revocation transaction and take all the channel funds.

To solve the first mentioned issue, YA,i and YB,i are stored in an OP RETURN
output in the commit transaction TxCM,i. To solve the second mentioned issue,
we add two statements from the hard relation R, RA,i and RB,i, to the first
subcondition of the main output of TxCM,i, where RA,i (RB,i) is generated by A
(B) for the state i. Then, once the latest commit and auxiliary transactions are
published by A, party B cannot record the revocation transaction as he does not
know his counter-party’s witness rA,i. The witnesses rA,i and rB,i are exchanged

8



between the parties and are given to the watchtower once parties have created
TxCM,i+1, TxAU,i+1 and TxSP,i+1. Thus, TxFU.txid, public keys pk

A
RV, pk

B
RV, pk

A
SP

and pkBSP as well as r values of both parties are all data needed by the watchtower
to watch the channel for both parties. In Section 5 we will explain that if parties
generate their r values in a Merkle tree and use them from the deepest point of
the tree to the top, then the storage requirements of the watchtower would be
O(log(N)). Fig. 4 depicts the mentioned modifications.

Fig. 4. Reducing the Storage Requirements of the Watchtower

3.3 Reducing the Storage Requirements of channel parties

Although in the introduced scheme, the storage of the watchtower is O(log(N)),
channel parties still have to store all the signatures of their counter-parties on
the revocation transactions. Otherwise, the dishonest channel party publishes a
revoked commit transaction TxCM,i without publishing its auxiliary transaction
TxAU,i. Then, the channel funds could be locked forever. This raises a hostage
situation. The scheme Outpost suffers from this problem which is why for this
scheme, storage requirement of channel parties is O(N). To solve this problem,
one subcondition, YA,i ∧ YB,i ∧∆3T , is added to the main output of the commit
transaction TxCM,i. This subcondition allows the honest channel party to claim
all the channel funds in such hostage situations. In other words, if party A
publishes the revoked commit transaction TxCM,i, he has 3T rounds time to
publish TxAU,i and TxSP,i before B claiming the channel funds with meeting
the subcondition YA,i ∧ YB,i ∧∆3T . If during this interval, TxAU,i is published,
party B instantly establishes and publishes TxRV,i and claims its output. To do
so, each party must have r values of both parties stored. Since these keys are
generated in a Merkle tree, the storage requirements of each channel party for
storing these values would be O(log(N)).

Once party A publishes TxCM,i, party B must be able to extract the value of
yA,i. To do so, he must know the corresponding pre-signature σ̃B

TxCM,i
. The naive

method is storing all these pre-signatures. However, this method requires storage
of O(N). To avoid this, parties must be able to regenerate the corresponding pre-
signature once a commit transaction is published. To achieve this goal, random

9



values which are required to generate pre-signatures must be generated in a
Merkle tree and are used from the top to the deepest point in the tree. In this
way, once the commit transaction TxCM,i is published by party A, party B can
regenerate the required random values and recompute the corresponding pre-
signature σ̃B

TxCM,i
and extract the value of yA,i. Thus, the storage requirements

would be still O(log(N)). More details will be provided in Section 5. Fig. 5
depicts the mentioned modifications.

Fig. 5. Reducing the Storage Requirements of Channel Parties

4 Garrison Channel

We introduce different transactions of a Garrison channel in section 4.1. Then,
in section 4.2, we explain its protocol.

4.1 Garrison Transactions

In this section, different transactions of a Daric channel are introduced.

Funding transaction A Daric channel is created once channel parties A and
B, by recording the funding transaction of the channel on the ledger, fund it with
the initial balance of a and b coins, respectively. The output of funding transac-
tion is a 2-of-2 multisignature address shared between A and B. Assuming that
A (B) funds the channel using xth (yth) output of a transaction with transac-
tion identifier of txidA (txidB), the funding transaction, denoted by TxFU, is as
follows1:

TxFU.Input := (txidA∥x, txidB∥y),
TxFU.Output := {(a+ b, pkA ∧ pkB)},

TxFU.Witness := ((1, σA,1
TxFU

), (1, σB,2
TxFU

)).

1 We assume that funding sources of TxFU are two typical UTXOs owned by A and
B.

10



Commit transaction The commit transaction for state i is denoted by TxCM,i

and is as follows:

TxCM,i.Input := TxFU.txid∥1,
TxCM,i.Output := ((a+ b, φ1 ∨ φ2 ∨ φ3),

(ϵ, pkAAU ∧ pkBAU),

(0, (YA,i, YB,i)))

TxCM,i.Witness := {(1, {σA
TxCM,i

, σB
TxCM,i

})}

with φ1 := (pkARV ∧ pkBRV ∧ RA,i ∧ RB,i), φ2 := (pkASP ∧ pkBSP ∧ ∆T ), and
φ3 := (YA,i ∧ YB,i ∧∆3T ) where YA,i and RA,i (YB,i and RB,i) are statements
of a hard relation R generated by A (B) for the ith state. The first and second
output of the transaction are the main and auxiliary outputs. Normally, if TxCM,i

is the last commit transaction and is published on-chain, first its auxiliary output
and then its main output are spent by the auxiliary and split transactions,
respectively. The third output of TxCM,i is an OP RETURN output containing
values of YA,i and YB,i. Parties A and B use their counter-parties’ statements
YB,i and YA,i and the underlying adaptor signature to generate a pre-signature
on the commit transaction for their counter-parties. Thus, once A publishes the
commit transaction TxCM,i, he also reveals his witness yB,i.

Remark 1. Each Bitcoin transaction can have at most one OP RETURN out-
put with the size constraint of 80 bytes. To store YA,i and YB,i inside an
OP RETURN output, their compressed version, each with the length of 33 bytes,
can be stored.

Revocation transaction The revocation transaction for state i is denoted by
TxRV,i and is as follows:

TxRV,i.Input := TxCM.txid∥1,
TxAU,i.Output := {(a+ b, YA,i ∧ YB,i)},
TxAU,i.Witness := {(1, {σA

TxRV,i
, σB

TxRV,i
, rA,i, rB,i})}

The TxRV,i spends the main output of TxCM,i using its non-timelocked sub-
condition pkARV∧pkBRV∧RA,i∧RB,i and sends all the channel funds to an output
with the condition YA,i ∧ YB,i. When a dishonest party, let’s say A, publishes
the revoked TxCM,i, he must publish TxAU,i and then wait for T rounds before
being able to publish TxSP,i. However, given that the state i is revoked, B knows
the value of rA,i and hence can create the revocation transaction TxRV,i and in-
stantly publish it on the blockchain. The output of TxRV,i can only be claimed
by B because no one else knows the witness yB,i.

11



Auxiliary transaction Auxiliary transaction for state i is as follows:

TxAU,i.Input := TxCM.txid∥2,
TxAU,i.Output := ((ϵ, pkASP ∧ pkBSP ∧∆T ),

(0, (σA
TxRV,i

, σB
TxRV,i

)))

TxCM,i.Witness := {(1, {σA
TxCM,i

, σB
TxCM,i

})}

This transaction spends the auxiliary output of the commit transaction and
its output is spent by the split transaction. In other words, split transaction
cannot be published unless auxiliary transaction is on the blockchain. The second
output of TxAU,i is an OP RETURN output containing signatures of both parties
on the corresponding revocation transaction.

Remark 2. Each encoded Bitcoin signature can be up to 73 bytes long. Thus,
due to the size constraint of the OP RETURN output, two separate signatures
do not fit into the auxiliary transaction. To solve this issue, parties A and B
can aggregate their public keys pkARV and pkBRV to form an aggregated public
key pkRV [7] and change φ1 in TxCM,i to (pkRV ∧ RA,i ∧ RB,i). Then, rather
than two separate signatures on the revocation transaction, they generate a
multisignature (with up to 73 byte size) and store it inside the OP RETURN
output of the auxiliary transaction [7].

Split transaction TxSP,i actually represents the ith channel state and is as
follows:

TxSP,i.Input := (TxCM,i.txid∥1, TxAU,i.txid∥1),
TxSP,i.Output := (θ1, θ2, · · · ),
TxSP,i.Witness := ((2, {σA

TxSP,i
, σB

TxSP,i
}), (1, {σA

TxSP,i
, σB

TxSP,i
}))

The split transaction spends the main output of the commit transaction as
well as the first output of the auxiliary transaction.

4.2 Garrison Protocol

The lifetime of a Garrison channel can be divided into 4 phases including “cre-
ate”, “update”, “close”, and “Punish”. These phases are explained, hereinafter.

Create The channel creation phase completes once the funding transaction
TxFU, the commit transactions TxCM,0, the split transaction TxSP,0, the auxiliary
transaction TxAU,0 and body of the revocation transaction [TxRV,0] are created,
and TxFU is published on the blockchain. In this phase, parties do not have
access to TxRV,0 as they have not exchanged rA,i and rB,i yet. At the end

12



of the channel creation phase, the channel would be at state 0. Since output
of the funding transaction can only be spent if both parties agree, one party
might become unresponsive to raise a hostage situation. To avoid this, parties
must sign the commit, revocation, auxiliary and split transactions before signing
and publishing the funding transaction. Fig. 6 summarizes the channel creation
phase.

Fig. 6. Summary of Daric channel creation phase.

Update Let the channel be in state i ≥ 0 and channel parties decide to update
it to state i+1. The update process is performed in two sub-phases. In the first
sub-phase, channel parties create TxCM,i+1, TxSP,i+1, TxAU,i+1, and [TxRV,i+1]
for the new state. In the second sub-phase, channel parties revoke the state i by
exchanging rA,i and rB,i. Fig. 7 summarizes the channel update phase.

Close Assume that the channel parties A and B have updated their channel
n times and then A and/or B decide to close it. They can close the channel
cooperatively. To do so, A and B create a new transaction, called modified split
transaction TxSP, and publish it on the blockchain. For TxSP we have:

TxSP.Input := TxFU.txid∥1,
TxSP.Output := TxSP,n.Output,

TxSP.Witness := {(1, {σA
TxSP

, σB
TxSP
})}.

If one of the channel parties, e.g. party B, becomes unresponsive, its counter-
party A can still non-collaboratively close the channel. To do so, he publishes
TxCM,n and TxAU,n on the ledger. Then, he waits for T rounds, and finally
publishes TxSP,n.

13



Fig. 7. Summary of Daric channel update phase from state i to i+ 1.

Punish Let the channel be in state n. If a channel party, e.g. party A, publishes
TxCM,i and then TxAU,i with i < n on the blockchain, party B or his watchtower
can create the transaction TxRV,i and publish it within T rounds. If only TxCM,i

is published, party B claims its first output by meeting its third subcondition
YA,i ∧ YA,i ∧∆3T .

5 Optimization

Assuming that party B publishes the revoked commit transaction TxCM,i on the
ledger, A requires:

– rA,i and rB,i to publish TxRV,i,
– σ̃A

TxCM,i
to extract yB,i, and

– yA,i to be used along with yB,i to claim the output of TxRV,i or to meet the
third subcondition of the main output of TxCM,i.

However, if these values for each state are stored independently, the required
storage would be O(N). We optimize this storage and reduce the storage to
O(log(N)).

We start with r values. The security requirement for r values is that B must
not be able to compute rA,j given that he knows rA,i with i < j. Otherwise, when
A submits the latest commit transaction TxCM,j , party B using rA,i computes
rA,j and hence publishes the revocation transaction TxRV,i and claims its output.
If r values are randomly generated, the mentioned security requirement is met
but party A’s storage requirement would be O(N). To reduce the storage and
meeting the stated security requirement, parties generate their r values in a
Merkle tree and give the corresponding R values to their counter-parties from
the deepest point in the tree to the top.

14



A similar approach can be adopted for y values. However, the security re-
quirement for y values is that B must not be able to compute yA,i given that he
knows yA,j with j > i. Otherwise, once A submits the latest commit transaction
TxCM,j , B computes yA,j and hence derives yA,i with i < j and then try to
publish TxCM,i before TxCM,j being published on the ledger. Then, B might be
able to claim all the channel funds by meeting the third sub-condition of the
main output of TxCM,i or by publishing the revocation transaction TxRV,i and
claiming its output. If y values are randomly generated, the mentioned security
requirement is met but party A’s storage requirement would be O(N). To reduce
the storage and meeting the stated security requirement, A generates his y val-
ues in a Merkle tree and gives the corresponding Y values to his counter-party
from the top to the deepest point in the tree.

We assume that once a revoked commit transaction TxCM,i is published, the
honest party A computes the value of the witness yB,i. Otherwise, he cannot
punish his dishonest counter-party. To extract yB,i, both signature σA

TxCM,i
and

pre-signature σ̃A
TxCM,i

are required. Since the published transaction TxCM,i con-

tains σA
TxCM,i

, if A has stored either all the pre-signatures or all the random values
which are required to generate the pre-signatures, then he can extract yB,i. How-
ever, it would require storage requirement of O(N). To reduce the storage, A
generates the random values which are required to generate the pre-signatures
in a Merkle tree and use those random values from the top to the deepest point
in the tree.

References

1. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. IACR Cryptol.
ePrint Arch. 2020, 476 (2020)

2. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

3. Avarikioti, G., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: Incentivizing
watchtowers for bitcoin. Financial Cryptography and Data Security (FC) (2020)

4. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Talk
transcript) https://diyhpl. us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring (2016)

5. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International journal of information security 1(1), 36–63 (2001)

6. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: A responsive lightweight
watchtower. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. pp. 31–40 (2019)

7. Lindell, Y.: Fast secure two-party ecdsa signing. In: Annual International Cryptol-
ogy Conference. pp. 613–644. Springer (2017)

8. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. pp. 16–30 (2019)

9. Mirzaei, A., Sakzad, A., Yu, J., Steinfeld, R.: Fppw: A fair and privacy preserv-
ing watchtower for bitcoin. Cryptology ePrint Archive, Report 2021/117 (2021),
https://eprint.iacr.org/2021/117

15



10. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

11. Rahimpour, S., Khabbazian, M.: Hashcashed reputation with application in de-
signing watchtowers. In: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). pp. 1–9. IEEE (2021)

12. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4(3), 161–174 (1991)

16


