
Garrison: A Novel Watchtower Scheme for
Bitcoin

Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Faculty of Information Technology, Monash University, Melbourne, Australia
{arash.mirzaei,amin.sakzad,jiangshan.yu,ron.steinfeld}@monash.edu

Abstract. In this paper, we propose Garrison, which is a payment chan-
nel with watchtower for Bitcoin. For this scheme, the storage require-
ments of both channel parties and their watchtower would be O(log(N))
with N being the number of channel updates. Furthermore, using proper-
ties of the adaptor signature, Garrison avoids state duplication. It means
both parties store the same version of transactions for each state and
hence the number of off-chain transactions does not exponentially in-
crease with the number of applications built on top of each other in the
channel. Moreover, the new proposal avoids punish-per-output pattern,
meaning that all outputs of a revoked state can be claimed using a sin-
gle revocation transaction. Garrison can be implemented without any
update in Bitcoin script.

Keywords: Bitcoin · payment channel · watchtower

1 Introduction

Payment channel is a promising technique to mitigate the scalability issue of
blockchains. To establish a payment channel, two parties lock their funds in a 2-
of-2 multisignature address on the blockchain. Then, parties privately carry out
multiple payments by exchanging off-chain transactions. Finally, parties close
the channel by publishing the last channel state on-chain.

Since the channel parties are generally untrusted and blockchain miners are
unaware of the off-chain transactions, a mechanism must be adopted to pre-
vent parties from publishing an old state. In Lightning Network [18], as the
most widely used Bitcoin payment channel network, with 31,483 nodes, 82,776
channels and total capacity of 159 Million US dollars1, when a channel party
publishes an old channel state on the blockchain, a period called dispute period
starts. In this period, the other party can publish a revocation transaction and
penalize the cheating party by claiming all the channel funds.

However, the dispute process works based on the assumption that parties are
always online to detect malicious behaviours. This requirement can be practically
violated due to crash failures or DoS attacks against the channel party [15, 18]. To
relax this assumption, [18] suggests that channel parties delegate the monitoring

1 https://1ml.com/statistics, data fetched on 06/12/2021



2 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

task to a third party called the watchtower. The watchtower is an always-online
service provider that monitors the blockchain and acts on behalf of its customers
to secure their funds. In other words, once channel parties update their channel,
each party gives the revocation transaction to the watchtower. Then, once an
old state appears on the ledger, the watchtower broadcasts its corresponding
revocation transaction.

Monitor [18] and DCWC [4] are two watchtower schemes for the Lightning
Network where the storage size of the watchtower in both schemes linearly in-
creases with each channel update and hence the watchtower’s storage costs would
be O(N) with N being the number of channel updates. Generalized channel [1],
Cerberus [5] and FPPW [16] are also other payment channels that work based
on the dispute period idea. However, for all these schemes, the storage size of
the watchtower linearly increases with the number of channel updates.

Outpost [13] is a novel payment channel with watchtower scheme that reduces
the watchtower’s storage requirements per channel from O(N) to O(log(N)).
This consequently reduces the operational costs of maintaining watchtowers.
Although elegantly designed, Outpost suffers from following shortcomings,

– The storage cost of each channel party is still O(N).
– Each party has his own version of the channel state where this state du-

plication causes the number of transactions to exponentially increase with
the number of applications on top of each other [1]. In other words, to add
an application (e.g. Virtual channel [2]) on top of the channel, parties must
split their channel into sub-channels. If parties recursively split their channel
k times, then to update their last layer sub-channel, they must create O(2k)
different versions of the channel state.

– Outpost works based on “punish-per-output” pattern, meaning that if there
are M outputs in the published old state, the cheated party must claim each
output separately [1]. Then, the required on-chain transactions upon dispute
would be O(M) with M being the number of outputs in the published old
state.

Therefore, the main motivation of this paper is designing a Bitcoin payment
channel with watchtower scheme which is storage-efficient for channel parties
and the watchtower and also avoids state duplication and punish-per-output
pattern.

1.1 Our Contributions

The contribution of this paper is to present a new payment channel with watch-
tower for Bitcoin, called Garrison, for which the storage cost of channel parties
and the watchtower would be logarithmic in the maximum number of channel
updates. Furthermore, both channel parties store the same version of transac-
tions. Additionally, regardless of the number of outputs in each channel state,
there exists a single revocation transaction per state. Table 1 presents a compar-
ison between Garrison and other Bitcoin payment channels that work based on
dispute period. We also prove security of the Garrison channel under security of
its underlying cryptographic primitives.



Garrison: A Novel Watchtower Scheme for Bitcoin 3

Table 1. Comparison of different dispute period-based payment channels with N chan-
nel updates, M outputs on average per state and k channel splits on top of each other.

Scheme Party’s Watch. on-chain off-chain

St. Cost St. Cost TX.a TX.b

Lightning [10] O(log(N)) O(N) O(M) O(2k)
Generalized [4] O(log(N)) O(N) O(1) O(1)

Outpost [13] O(N) O(log(N)) O(M) O(2k)
FPPW [16] O(N) O(N) O(1) O(1)

Cerberus [5] O(N) O(N) O(M) O(2k)
Garrison O(log(N)) O(log(N)) O(1) O(1)
aNumber of on-chain transactions upon dispute.
bNumber of off-chain transactions per state.

1.2 Related Works

The first payment channels were introduced in [21] but they suffered from being
unidirectional. DMC [8] and Lightning [18] were the first bidirectional payment
channels where the former uses decrementing timelocks to replace the current
channel state with a newer one and the latter revokes the current state upon
authorizing a new state. Generalized channels [1] use adaptor signatures to avoid
state duplication. Then, both parties would store the same copy of the channel
transactions.

Lightning and generalized channels require parties to be always online to
prevent their counter-parties from finalizing the channel with an old state. Since
this requirement could be difficult to achieve, parties might delegate it to watch-
towers. Monitor [18] is a privacy preserving watchtower scheme for Lightning
Network. DCWC [4] proposes using a network of watchtowers to minimize the
chance of malicious channel closure. In the above mentioned watchtower schemes,
the watchtower is unaccountable, i.e. watchtowers do not guarantee their clients’
funds. Cerberus [5] and FPPW [16] are two payment channel with watchtower
schemes that focus on fairness with respect to the watchtowers’ clients. Outpost
[13] presents a payment channel with watchtower that reduces the storage costs
of the watchtower from O(N) to O(log(N)) where N denotes the number of
channel updates.

The payment channels eltoo [7] and Daric [17] use a new Bitcoin signature
type called ANYPREVOUT [6] (also known as NOINPUT) that reduces the storage
costs of channel parties and their watchtowers to O(1). However, deployment of
the ANYPREVOUT signature type requires a soft fork in Bitcoin. Sleepy channel [3]
is a payment channel without watchtower where parties are allowed to go offline
for a long time period.



4 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

2 Preliminaries and Notations

In this section, we closely follow [16] and [1] to introduce the underlying cryp-
tographic primitives of Garrison and notations.

2.1 Preliminaries

Digital Signature A digital signature scheme Π includes three algorithms as
following:

– Key Generation. (pk, sk)← Gen(1κ) on input 1κ (κ is the security param-
eter), outputs the public/private key pair (pk, sk).

– Signing. σ ← Signsk(m) on inputs the private key sk and a message m ∈
{0, 1}∗ outputs the signature σ.

– Verification. b← Vrfypk(m;σ) takes the public key pk, a message m and a
signature σ and outputs a bit b.

In this work, we assume that the utilized signature schemes are existentially
unforgeable under an chosen-message attack (EUF− CMA). It guarantees that it
is of negligible probability that an adversary, who has access to a signing oracle,
outputs a valid signature on any new message. In this paper, we call such signa-
ture schemes secure. ECDSA [12] is a secure signature scheme that is currently
being used in Bitcoin. Schnorr [20] is another important secure signature scheme
that has been proposed to be introduced in Bitcoin due to its key aggregation
and signature aggregation properties.

Hard relation A relation R with statement/witness pairs (Y ; y) is called a
hard relation if (i) There exists a polynomial time generating algorithm (Y ; y)←
GenR(1κ) that on input 1κ outputs a statement/witness pair (Y ; y) ∈ R; (ii) The
relation between Y and y can be verified in polynomial time, and (iii) For any
polynomial-time adversary A, the probability that A on input Y outputs y is
negligible. We also let LR := {Y | ∃Y s.t. (Y, y) ∈ R}. Statement/witness
pairs of R can be public/private key of a signature scheme generated by Gen
algorithm.

Adaptor Signature Given a hard relation R and a signature scheme Π, an
adaptor signature protocol Ξ includes four algorithms as follows:

– Pre-Signing. σ̃ ← pSignsk(m,Y ) is a probabilistic polynomial time (PPT)
algorithm that on input a private key sk, message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̃.

– Pre-Verification. b← pVrfypk(m,Y ; σ̃) is a deterministic polynomial time
(DPT) algorithm that on input a public key pk, message m ∈ {0, 1}∗, state-
ment Y ∈ LR and pre-signature σ̃, outputs a bit b.

– Adaptation. σ ← Adapt(σ̃, y) is a DPT algorithm that on input a pre-
signature σ̃ and witness y, outputs a signature σ.



Garrison: A Novel Watchtower Scheme for Bitcoin 5

– Extraction, Ext(σ, σ̃, Y ) is a DPT algorithm that on input a signature σ,
pre-signature σ̃, and statement Y ∈ LR, outputs ⊥ or a witness y such that
(Y, y) ∈ R.

An adaptor signature scheme is “secure” if it is existentially unforgeable un-
der chosen message attack (aEUF− CMA security), pre-signature adaptable and
witness extractable. The aEUF− CMA security guarantees that it is of negligi-
ble probability that any PPT adversary with access to signing and pre-signing
oracles outputs a valid signature for any arbitrary new message m even given
a valid pre-signature and its corresponding Y on m. Pre-signature adaptablity
guarantees that every pre-signature (possibly generated maliciously) w.r.t. Y
can adapt to a valid signature using the witness y with (Y, y) ∈ R. Witness ex-
tractablity guarantees that it is of negligible probability that any PPT adversary
with access to signing and pre-signing oracles outputs a valid signature and a
statement Y for any new message m s.t. the valid signature does not reveal a
witness for Y even given a valid pre-signature on m w.r.t. Y . The ECDSA-based
and Schnorr-based adaptor signature schemes were constructed and analyzed
in [1].

2.2 Notations

Throughout this work, we define different attribute tuples. Let U be a tuple of
multiple attributes and one of its attributes is denoted by attr. To refer to this
attribute, we use U.attr.

Our focus in this work is on Bitcoin or any other blockchains with UTXO
model. In this model, units of value which we call coins are held in outputs.
Formally, an output θ is a tuple of two attributes, θ = (cash, φ), where θ.cash
denotes the amount of coins held in this output and θ.φ denotes the condition
that needs to be fulfilled to spend the output θ. The condition θ.φ is encoded
using any script supported by the underlying blockchain. If the condition θ.φ
contains a user P ’s public key, we say that P controls or owns the output θ
because satisfying the condition requires a valid signature corresponding with
that public key. Satisfying a condition might require authorizations by multiple
parties. Such conditions contain public keys of all the involved parties separated
by ∧ operation(s). The relative timelock of T rounds in an output condition is
denoted by ∆T . It means the output cannot be spent within T rounds of the
blockchain.

A condition might also have several subconditions, one of which must be
satisfied to spend the output. Different subconditions of an output are separated
by ∨ operation(s). The OP RETURN output is a special output which does not
hold any coins and is used to add some arbitrary data to the blockchain. Such
an output is denoted by θ = (0, data) where data is its arbitrary data.

A transaction changes ownership of coins, meaning that it takes a list of
existing outputs and transfers their coins to a list of new outputs. To distinct
between these two lists, we refer to the list of existing outputs as inputs. A
transaction TX is formally defined as the tuple (txid, Input,Output,Witness). The



6 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

identifier TX.txid ∈ {0, 1}∗ is computed as TX.txid := H([TX]), where [TX] is called
the body of the transaction defined as [TX] := (TX.Input, TX.Output) and H is a
hash function which is modeled as a random oracle. The attribute TX.Input is a
list of identifiers for all inputs of TX. The attribute TX.Output = (θ1, . . . , θn) is a
list of new outputs. The attribute TX.Witness = (W1, . . . ,Wm) is a list of tuples
where its ith tuple authorizes spending the output that is taken as the ith input
of TX. The tuple Wi = (η, ζ) of the witness TX.Witness contains two attributes
where Wi.ζ denotes the data, e.g. the signature(s), that is (are) required to
meet the Wi.η

th subcondition of the output that is taken as the ith input of TX.
The signature (pre-signature) of P for TX.Witness.Wi.ζ is denoted by σP,i

TX (σ̃P,i
TX ),

where i can be removed for single-input transactions. The ith entry of a list L is
denoted by L[i] with i > 0. Table 2 summarizes the notations.

Table 2. Notations

Notation Description

U.attr Attribute attr of the tuple U
θ = (cash, φ) Output with value cash and script condition φ
θ = (0, data) OP RETURN output with data as its data
TX Transaction TX = (txid, Input,Output,Witness)
[TX] Tuple (TX.Input, TX.Output)
TX.txid Identifier of the transaction TX

TX.Input List of identifiers for all inputs of TX
TX.Output List of new outputs (θ1, . . . , θn) for TX
TX.Witness List of witnesses (W1, . . . ,Wm) for TX where Wi

corresponds with ith input of TX

W = (η, ζ) Witness that fulfills ηth subcondition of an output
using data ζ

σP,i
TX Signature of party P on TX for TX.Witness.Wi.ζ

σ̃P,i
TX Pre-signature of P on TX for TX.Witness.Wi.ζ

∆T Relative timelock of T rounds

L[i] ith entry of a list L

We additionally use charts to illustrate the connections between different
transactions. Doubled edge and single edge rectangles respectively illustrate
transactions that are already published on-chain or are ready to be published.
Dotted edge rectangles show transactions that still lack the required witness for
at least one input and hence are unprepared to be propagated in the blockchain
network. Directional arrows from ith output of transaction TX to jth input of
transaction TX′ shows that the transaction TX′ takes ith output of the transac-
tion TX as its jth input. If an output has multiple subconditions, it is shown by
a diamond shape with multiple arrows where each arrow corresponds with one
subcondition. OP RETURN outputs are illustrated by blocked lines (instead of
directional arrows). As an example, Fig. 1 shows that TXi and TXj are published



Garrison: A Novel Watchtower Scheme for Bitcoin 7

and unpublished, respectively. The transaction TXk is still unprepared to be pub-
lished on the ledger. The transaction TXi has two subconditions, where one of
the subconditions is owned by both A and B and is relatively timelocked by T
rounds and another subcondition is owned by C. The second output of TXk is an
OP RETURN output.

Fig. 1. A sample transaction flow.

3 Garrison Overview

3.1 System Model

Channel parties exchange data using an authenticated and secure communica-
tion channel. Channel participants might deviate from the protocol if it increases
their profit. Furthermore, the underlying blockchain contains a distributed ledger
that achieves security [11]. If a valid transaction is propagated in the blockchain
network, it is included in the blockchain ledger within τ rounds (i.e. the confir-
mation delay is τ).

3.2 Garrison Overview

This section overviews the Garrison channel between A (Alice) and B (Bob). We
start with a simple payment channel and then modify it step by step to mitigate
its limitations.

A Simple Payment Channel Fig. 2 depicts the simple payment channel,
introduced in [16]. This channel is created once channel parties publish a funding
transaction on the blockchain and hence fund a 2-of-2 multisignature output on
the ledger. The ith channel state includes a commit transaction TXCM,i as well as
a split transaction TXSP,i. The commit transaction sends the channel funds to a
new joint account which is shared between the channel parties. Output of the
commit transaction has two subconditions. The first subcondition which is not
timelocked, as we will explain later, is used for revocation purposes. The second



8 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

subcondition is relatively timelocked by T rounds with T > τ and is met by the
corresponding split transaction. Split transaction distributes the channel funds
among the channel parties and hence represents the channel state.

The transaction TXCM,i requires signatures of both parties A and B to be pub-
lished. To generate σB

TXCM,i
, party A generates a statement/witness pair (YA,i, yA,i)

and sends the statement YA,i to B. Then, party B uses the pre-signing algorithm
pSign of the adaptor signature and A’s statement YA,i to generate a pre-signature
σ̃B
TXCM,i

on [TXCM,i] and sends the result to A. Thus, whenever it is necessary, A is
able to use the adaptation algorithm adapt of the adaptor signature to transform
the pre-signature to the signature σB

TXCM,i
and publish TXCM,i on-chain. This also

enables B to apply the extraction algorithm Ext on the published signature and
its corresponding pre-signature to extract the witness value yA,i. The witness
value, as will be seen, allows the honest party to punish the dishonest channel
party by claiming all the channel funds.

As one may submit an intermediate state (which is already replaced by a
later state) to the blockchain, the channel parties will need to punish such mis-
behaviours. Thus, upon channel update from state i to i+1, a revocation trans-
action TXRV,i is created by parties. Unlike the split transaction, the revocation
transaction can immediately spend output of the corresponding commit trans-
action TXCM,i using its first subcondition which does not contain any timelock.
Thus, if the revoked commit transaction TXCM,i is published by a channel party,
let’s say A, party B can immediately publish the revocation transaction TXRV,i.
Moreover, since commit transactions are signed using the adaptor signature,
once TXCM,i is published by A, the witness yA,i is revealed to B. Thus, only B
who knows both yA,i and yB,i can meet the condition YA,i ∧ YB,i in the output
of the revocation transaction and hence B will actually be the owner of all the
channel funds. Broadcast of the latest commit transaction does not pose any risk
to its broadcaster because parties have not signed its corresponding revocation
transaction yet.

Fig. 2. A Simple Payment Channel

Reducing the Storage Requirements of the Watchtower All revocation
transactions in the introduced scheme must be stored by channel parties or their



Garrison: A Novel Watchtower Scheme for Bitcoin 9

watchtowers to be published upon fraud. To reduce the storage requirements of
the watchtower, similar to Outpost [13], our main idea is storing the revocation
transaction TXRV,i inside the commit transaction TXCM,i. Then, once TXCM,i is pub-
lished, the watchtower extracts TXRV,i and records it on the blockchain. However,
we have TXRV,i.Input = TXCM,i.txid∥1. Thus, if TXRV,i is created, signed and finally
stored inside TXCM,i, then [TXCM,i] and hence TXCM,i.txid and TXRV,i change. Thus,
there is a self-loop situation [13]. To solve this issue, we add an auxiliary out-
put with the value of ϵ to commit transactions where ϵ is the minimum value
supported by the Bitcoin blockchain. We also add an auxiliary transaction be-
tween each commit transaction and its corresponding split transaction. This new
transaction TXAU,i spends the auxiliary output of the commit transaction. The
signatures of party A and party B on [TXRV,i] are stored in an OP RETURN
output of the auxiliary transaction TXAU,i. The split transaction TXSP,i spends
the main output of TXCM,i as well as the main output of the auxiliary transaction
TXAU,i. Based on this design, parties can be sure that once the revoked com-
mit transaction TXCM,i is published on the blockchain, its split transaction TXSP,i
cannot be published unless TXAU,i is also on the blockchain. Furthermore, due
to the timelock in the main output of TXAU,i, once this transaction is published
on-chain, TXSP,i cannot be published within T − 1 rounds. However, the honest
party or the watchtower can extract the signatures on [TXRV,i] from TXAU,i and
publish TXRV,i immediately. Fig. 3 depicts the transactions flows.

Fig. 3. Reducing the Storage Requirements of the Watchtower

However, this scheme has the following issues:

– To create and publish the revocation transaction, the watchtower must also
know the value of YA,i and YB,i.

– Typically, revocation transaction of state i must be created once parties
update the channel state from state i to i + 1. However, in the proposed
scheme signatures for TXRV,i is stored in TXAU,i and hence TXRV,i must actually
be created once parties update the channel state from state i−1 to i. It means
if an honest party records the latest commit and auxiliary transactions on
the blockchain, the counter-party might publish the revocation transaction
and take all the channel funds.



10 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

To solve the first mentioned issue, YA,i and YB,i are stored in an OP RETURN
output that is added to the commit transaction TXCM,i. To solve the second men-
tioned issue, we add two statements from the hard relation R, RA,i and RB,i, to
the first subcondition of the main output of TXCM,i, where RA,i (RB,i) is generated
by A (B) for the state i. Then, once the latest commit and auxiliary transac-
tions are published by A, party B cannot record the revocation transaction as
he does not know his counter-party’s witness rA,i. The witnesses rA,i and rB,i

are exchanged between the parties and are given to the watchtower once parties
have created TXCM,i+1, TXAU,i+1 and TXSP,i+1. Thus, TXFU.txid, public keys pkARV,
pkBRV, pk

A
SP and pkBSP as well as r values of both parties are all data needed by the

watchtower to watch the channel for both parties. Fig. 4 depicts the mentioned
modifications.

The security requirement for r values is that B (or the watchtower) must not
be able to compute rA,j given that he knows rA,i with i < j. Otherwise, when A
submits the latest commit transaction TXCM,j , party B uses rA,i to compute rA,j .
Then, B publishes the revocation transaction TXRV,j and claims its output. If r
values are randomly generated, the mentioned security requirement is met but
storage cost of channel parties and the watchtower would be O(N). To reduce
the storage and meeting the stated security requirement, parties generate their
r values in a binary Merkle tree and use them from the deepest leaf nodes in
the tree to the root [9]. In more details, in a binary Merkle tree, each node has
two child nodes where having the value of a node, the value of each of its child
nodes can simply be computed using a one-way function. But deriving the value
of a node from its child nodes’ values is computationally infeasible. Thus, since
r values are used from the deepest leaf nodes in the tree, the stated security
requirement is achieved. Moreover, the storage needed by each channel party
(or the watchtower) to store r values, received from her counter-party, will be
O(log(N)) because upon receipt of a node value, its child nodes’ values can be
removed from the storage.

Fig. 4. Adding Y and R Values to Commit Transactions

Reducing the Storage Requirements of channel parties Although the
storage of the watchtower is O(log(N)), channel parties still have to store all the



Garrison: A Novel Watchtower Scheme for Bitcoin 11

signatures of their counter-parties on the revocation transactions. Otherwise, the
dishonest channel party publishes a revoked commit transaction TXCM,i without
publishing its auxiliary transaction TXAU,i. Then, the channel funds could be
locked forever. This raises a hostage situation. The scheme Outpost suffers from
this problem which is why storage requirement of channel parties is O(N). To
solve this problem, we add one subcondition, YA,i∧YB,i∧∆3T , to the main output
of the commit transaction TXCM,i. This subcondition allows the honest channel
party to claim all the channel funds in such hostage situations. In other words,
if party A publishes the revoked commit transaction TXCM,i, she has 3T rounds
time to publish TXAU,i and TXSP,i before B can claim the channel funds by meeting
the subcondition YA,i ∧ YB,i ∧ ∆3T . If during this interval, TXAU,i is published,
party B instantly establishes and publishes TXRV,i and claims its output. To do
so, each party must have r values of both parties stored. Since these keys are
generated in a Merkle tree, the storage requirements of each channel party for
storing these values would be O(log(N)) (See Fig. 5).

Once party A publishes TXCM,i, party B must be able to use Ext algorithm to
extract the value of yA,i. To do so, he must know the corresponding pre-signature
σ̃B
TXCM,i

. If parties store all their own pre-signatures, their storage cost would be
O(N). To acquire lower storage costs, parties must be able to regenerate the
required pre-signature, once a commit transaction is published. To achieve this
goal, random values which are required to generate pre-signatures must be gen-
erated in a Merkle tree and be used from the root to the deepest leaf node
in the tree. In this way, once the commit transaction TXCM,i is published by A,
party B can regenerate the required random value, recompute the correspond-
ing pre-signature σ̃B

TXCM,i
and finally extract the value of yA,i. Thus, the storage

requirements would be still O(log(N)).

Additionally, party B must know the value of yB,i to meet YA,i ∧ YB,i. The
security requirement for y values is that A must not be able to compute yB,i

given that he knows yB,j with j > i. Otherwise, once B submits the latest
commit transaction TXCM,j , A computes yB,j and hence derives yB,i with i < j
and then try to publish TXCM,i before TXCM,j being published on the ledger. Then,
Amight be able to claim all the channel funds by meeting the third sub-condition
of the main output of TXCM,i or by publishing the revocation transaction TXRV,i
and claiming its output. If y values are randomly generated, the mentioned
security requirement is met but parties’ storage cost would be O(N). To reduce
the storage and simultaneously meet the stated security requirement, parties
generate their y values in a Merkle tree and give the corresponding Y values to
their counter-parties from the root to the deepest leaf nodes in the tree.

4 Garrison Channel

We introduce different transactions of a Garrison channel in section 4.1. Then,
in section 4.2, we explain its protocol.



12 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Fig. 5. Reducing Storage Requirements of Channel Parties

4.1 Garrison Transactions

Transactions of a Garrison channel are as following:

Funding transaction Parties A and B fund the channel by recording the fund-
ing transaction TXFU on the blockchain. The output of the funding transaction is
a 2-of-2 multisignature address shared between A and B. If A (B, respectively)
uses the xth (yth, respectively) output of a transaction with transaction identifier
of txidA (txidB , respectively) to fund the channel with a (b, respectively) coins,
the funding transaction is as follows2:

TXFU.Input := (txidA∥x, txidB∥y),
TXFU.Output := {(a+ b, pkA ∧ pkB)},

TXFU.Witness := ((1, σA,1
TXFU

), (1, σB,2
TXFU

)).

Commit transaction The commit transaction for state i is denoted by TXCM,i
and is as follows:

TXCM,i.Input := TXFU.txid∥1,
TXCM,i.Output := ((a+ b, φ1 ∨ φ2 ∨ φ3),

(ϵ, pkAAU ∧ pkBAU),

(0, (YA,i, YB,i)))

TXCM,i.Witness := {(1, {σA
TXCM,i

, σB
TXCM,i
})}

with φ1 := (pkARV ∧ pkBRV ∧ RA,i ∧ RB,i), φ2 := (YA,i ∧ YB,i ∧ ∆3T ), and
φ3 := (pkASP ∧ pkBSP ∧ ∆T ) where YA,i and RA,i (YB,i and RB,i) are statements
of a hard relation R generated by A (B) for the ith state and T is any number
such that T > τ . The first and second output of the transaction are the main
and auxiliary outputs. Normally, if TXCM,i is the last commit transaction and
is published on-chain, first its auxiliary output and then its main output are

2 We assume that funding sources of TXFU are two typical UTXOs owned by A and B.



Garrison: A Novel Watchtower Scheme for Bitcoin 13

spent by the auxiliary and split transactions, respectively. The third output of
TXCM,i is an OP RETURN output containing values of YA,i and YB,i. Parties A
and B use their counter-parties’ statements YB,i and YA,i and the underlying
adaptor signature to generate a pre-signature on the commit transaction for
their counter-parties. Thus, once A publishes the commit transaction TXCM,i, she
also reveals her witness yB,i.

Remark 1. Each Bitcoin transaction can have at most one OP RETURN out-
put with the size constraint of 80 bytes. To store YA,i and YB,i inside an
OP RETURN output, their compressed version, each with 33-byte length, are
stored.

Revocation transaction The revocation transaction for state i is denoted by
TXRV,i and is as follows:

TXRV,i.Input := TXCM,i.txid∥1,
TXRV,i.Output := {(a+ b, YA,i ∧ YB,i)},
TXRV,i.Witness := {(1, {σA

TXRV,i
, σB

TXRV,i
, rA,i, rB,i})}

The TXRV,i spends the main output of TXCM,i using its non-timelocked subcon-
dition pkARV ∧ pkBRV ∧ RA,i ∧ RB,i and sends all the channel funds to an output
with the condition YA,i∧YB,i. When a dishonest party, let’s say A, publishes the
revoked TXCM,i, she must publish TXAU,i and then wait for T rounds before being
able to publish TXSP,i. However, given that the state i is revoked, B knows the
value of rA,i and hence creates the revocation transaction TXRV,i and instantly
publishes it on the blockchain. The output of TXRV,i can only be claimed by B
because no one else knows the witness yB,i.

Auxiliary transaction Auxiliary transaction for state i is as follows:

TXAU,i.Input := TXCM.txid∥2,
TXAU,i.Output := ((ϵ, pkASP ∧ pkBSP ∧∆T ),

(0, (σA
TXRV,i

, σB
TXRV,i

)))

TXAU,i.Witness := {(1, {σA
TXAU,i

, σB
TXAU,i
})}

This transaction spends the auxiliary output of the commit transaction and
its output is spent by the split transaction. In other words, split transaction
cannot be published unless auxiliary transaction is on the blockchain. The second
output of TXAU,i is an OP RETURN output containing signatures of both parties
on the corresponding revocation transaction.

Remark 2. Each encoded Bitcoin signature can be up to 73 bytes long. Thus, due
to the size constraint of the OP RETURN output, two separate signatures do



14 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

not fit into the auxiliary transaction. To solve this issue, A and B can aggregate
their public keys pkARV and pkBRV to form an aggregated public key pkRV [14] and
change φ1 in TXCM,i to (pkRV ∧ RA,i ∧ RB,i). Then, rather than two separate
signatures on the revocation transaction, they generate a multisignature (with
up to 73 byte size) and store it inside the OP RETURN output of TXAU,i.

Split transaction TXSP,i actually represents the ith channel state and is as
follows:

TXSP,i.Input := (TXCM,i.txid∥1, TXAU,i.txid∥1),
TXSP,i.Output := (θ1, θ2, · · · ),
TXSP,i.Witness := ((3, {σA

TXSP,i
, σB

TXSP,i
}), (1, {σA

TXSP,i
, σB

TXSP,i
}))

The split transaction spends the main output of the commit transaction and
the first output of the auxiliary transaction.

4.2 Garrison Protocol

The lifetime of a Garrison channel can be divided into 4 phases including create,
update, close, and punish. These phases are explained, hereinafter.

Create The channel creation phase completes once the funding transaction
TXFU, the commit transactions TXCM,0, the split transaction TXSP,0, the auxiliary
transaction TXAU,0 and body of the revocation transaction [TXRV,0] are created,
and TXFU is published on the blockchain. In this phase, parties do not have access
to TXRV,0 as they have not exchanged rA,i and rB,i yet. At the end of the channel
creation phase, the channel would be at state 0. Since output of the funding
transaction can only be spent if both parties agree, one party might become
unresponsive to raise a hostage situation. To avoid this, parties must sign the
commit, revocation, auxiliary and split transactions before signing and publish-
ing the funding transaction. Fig. 6 summarizes the channel creation phase.

Update Let the channel be in state i ≥ 0 and channel parties decide to update
it to state i+1. The update process is performed in two sub-phases. In the first
sub-phase, channel parties create TXCM,i+1, TXSP,i+1, TXAU,i+1, and [TXRV,i+1] for
the new state. In the second sub-phase, channel parties revoke the state i by
exchanging rA,i and rB,i and giving these values to the watchtower. We assume
that the watchtower is also paid after each channel update. Fig. 7 summarizes
the channel update phase.

Close Assume that the channel parties A and B have updated their channel
n times and then A and/or B decide to close it. They can close the channel



Garrison: A Novel Watchtower Scheme for Bitcoin 15

Fig. 6. Summary of Garrison channel creation phase.

Fig. 7. Summary of Garrison channel update phase from state i to i+ 1.

cooperatively. To do so, A and B create the below transaction, called modified
split transaction TXSP, and publish it on the blockchain:

TXSP.Input := TXFU.txid∥1,
TXSP.Output := TXSP,n.Output,

TXSP.Witness := {(1, {σA
TXSP

, σB
TXSP
})}.



16 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

If one of the channel parties, e.g. party B, becomes unresponsive, A can still
non-collaboratively close the channel. To do so, she publishes TXCM,n and TXAU,n
on the ledger. Then, she waits for T rounds, and finally publishes TXSP,n.

Punish Let the channel be at state n. If a channel party, e.g. party A, publishes
TXCM,i and then TXAU,i with i < n on the blockchain, party B or his watchtower
can create the transaction TXRV,i and publish it within T rounds. If only TXCM,i
is published, party B claims its first output by meeting its second subcondition
YA,i ∧ YA,i ∧∆3T .

Remark 3. If the watchtower is non-responsive, the channel might be closed with
an old state. The paper [19] proposes a reputation system, called HashCashed,
which forces watchtowers to be responsive without requiring them to lock any
funds as collateral. We assume that Garrison is used with HashCashed system.

5 Security Analysis

In this section we prove that for the Garrison channel, it is of negligible proba-
bility that an honest party loses any funds.

Lemma 1. Let Π be a EUF− CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with
n channel updates, the broadcast of TXRV,i with i < n causes the honest channel
party P ∈ {A,B} to lose any funds in the channel with negligible probability.

Proof. Without loss of generality let P = A. The transaction TXRV,i with i < n
spends the main output of the revoked TXCM,i and hence cannot be published
unless TXCM,i is on-chain. The transaction TXCM,i spends the output of TXFU. Since
the condition in TXFU.Output contains pkA, this output cannot be spent without
A’s authorization. Otherwise, security of the underlying digital signature would
be violated. Based on the protocol, the honest party A never broadcasts the
revoked TXCM,i on-chain and her pre-signature σ̃TXCM,i on the transaction TXCM,i is
the only authorization he grants for spending TXFU.Output using TXCM,i. Thus,
if TXCM,i is published, the probability that A fails to obtain yB,i is negligible.
Otherwise, aEUF− CMA security or witness extractability of the used adaptor
signature is violated. Furthermore, TXRV,i has only one output with the condition
of YA,i∧YB,i and the value of a+ b. Since A privately preserves its witness value
yA,i, the probability that any PPT adversary claims TXRV,i.Output is negligible.
Otherwise, the utilized hard relation would break. Therefore, it is of negligible
probability that A (who knows both yA,i and yB,i) fails to claim TXRV,i.Output
and obtain all the channel funds.

Lemma 2. Let Π be a EUF− CMA secure digital signature, R be a hard rela-
tion and Ξ be a secure adaptor digital signature. Then, for a Garrison channel
between A and B with P ∈ {A,B} being the honest party, if P ’s counter-party
publishes TXCM,i, it is with negligible probability that



Garrison: A Novel Watchtower Scheme for Bitcoin 17

– P fails to obtain the data required to meet the second subcondition of TXCM,i.
Output[1].φ.

– any PPT adversary can meet the second subcondition of TXCM,i.Output[1].φ.

Proof. Without loss of generality let P = A. Similar to the proof of Lemma 1,
if B publishes TXCM,i, the probability that A fails to obtain yB,i is negligible.
Otherwise, aEUF− CMA security or witness extractability of the used adaptor
signature is violated. The witness yA,i has also been created by A and hence he
has the whole data required to meet YA,i∧YB,i∧∆3T . Furthermore, given that A
privately preserves its witness value yA,i, the probability that any PPT adversary
meets this subcondition is negligible. Otherwise, the utilized hard relation would
break.

Lemma 3. Let Π be a EUF− CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with n
channel updates, if the honest party P ∈ {A,B} publishes TXCM,n, P loses funds
in the channel with negligible probability.

Proof. Without loss of generality let P = A. We assume that A publishes TXCM,n
in the block Bj of the blockchain and prove that it is of negligible probability
that A fails to publish TXSP,n. Then, since TXSP,n corresponds with the latest
channel state, its broadcast cannot cause A to lose any funds.

The condition TXCM,n.Output[2].φ contains pkAAU and hence it is of negligible
probability that this output is spent without A’s authorization. Otherwise, the
security of the underlying digital signature is violated. The honest party A grants
such an authorization only on the transaction TXAU,n which is held by both A and
B. Based on the protocol, once TXCM,n is published on the blockchain by A, he
also instantly submits TXAU,n to the blockchain. According to our assumptions
regarding the blockchain, TXAU,n is published on the blockchain in the block
Bj+k with 0 < k ≤ τ < T . Similarly, the first output of TXAU,n can only be
spent by TXSP,n. According to the protocol, A holds TXSP,n and submits it to
the blockchain T rounds after TXAU,n is published on-chain. Thus, given that the
first input of TXSP,n (or equivalently the first output of TXCM,n) is still unspent,
based on our assumptions regarding the blockchain, TXSP,n is published on the
blockchain in the block Bj+k+l+T with 0 < l ≤ τ < T . Now, we prove that,
when Bj+k+l+T with 0 < l, k < T is added to the blockchain, the first output of
TXCM,n, TXCM,n.Output[1], is still unspent.

The first and third subconditions of TXCM,n.Output[1] contains RA,n and pkASP,
respectively and hence it is of negligible probability that these two subconditions
are met without A’s authorization. Otherwise, the underlying hard relation or
digital signature would break. Party A grants such an authorization only on
TXSP,n. Moreover, the second subcondition YA,i ∧ YB,i ∧ ∆3T cannot be met in
block Bj+k+l+T with 0 < l, k < T because j + k + l + T < j + 3T .

Lemma 4. Let Π be a EUF− CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with



18 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

n channel updates and with P ∈ {A,B} being the honest party, if P ’s counter-
party publishes TXCM,n, it is of negligible probability that P loses any funds in the
channel.

Proof. Without loss of generality let P = A. The proof is similar to the proof
of Lemma 3. The only difference is that following Lemma 2, it is of negligible
probability that A fails to meet the second subcondition of TXCM,n.Output[1].
Therefore, A can either publishes both TXAU,n and TXSP,n or claim TXCM,n.Output[1]
by meeting its second subcondition. None of these two cases can cause the honest
party A to lose any funds in the channel.

Lemma 5. Let Π be a EUF− CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with
n channel updates and with P ∈ {A,B} being the honest party, if any adversary
publishes TXCM,i with i < n, it is of negligible probability that P loses any funds
in the channel.

Proof. Without loss of generality let P = A. The output TXCM,i.Output[1] in-
cludes 3 subconditions, one of which must be met to cheat A out of its funds.
The first subcondition contains pkARV and hence it is of negligible probability that
this output is spent without A’s authorization. Otherwise, the security of the
used digital signature is violated. The honest party A grants such an autho-
rization only on the transaction TXRV,i. However, according to Lemma 1, it is of
negligible probability that broadcast of TXRV,i causes A to lose any funds. More-
over, according Lemma 2, it is of negligible probability that any PPT adversary
can meet the second subcondition. Now, we prove that if the third subcondition
is used to cheat A out of her funds, it leads to a contradiction.

Assume that the third subcondition of TXCM,i.Output[1] is used to cheat A
out of her funds. This subcondition contains pkASP and hence it is of negligible
probability that this condition is met without A’s authorization. Otherwise,
the security of the underlying digital signature is violated. The honest party A
grants such an authorization only on the transaction TXSP,i. Assume that TXSP,i
is included in the block Bk of the blockchain. The transaction TXSP,i cannot
be added to the blockchain unless its inputs are some unspent outputs on the
blockchain. It means that TXAU,i is also on the blockchain and following the
condition in TXAU,i.Output[1], the transaction TXAU,i must have been published
in the block Bj with j ≤ k − T . However, based on the protocol, once A or
her watchtower observes TXAU,i on the blockchain, they create the corresponding
revocation transaction TXRV,i and submit it to the blockchain. According to our
blockchain assumptions, this transaction is published on the blockchain in block
Bl with j < l ≤ j + τ < j + T ≤ k. However, once TXRV,i is published in the
block Bl of the blockchain, the transaction TXSP,i becomes invalid and cannot be
published in block Bk of the blockchain which leads to a contradiction.

Theorem 1. Let Π be a EUF− CMA secure digital signature, R be a hard rela-
tion and Ξ be a secure adaptor digital signature. Then, for a Garrison channel,
an honest party P ∈ {A,B} loses any funds in the channel with negligible prob-
ability.



Garrison: A Novel Watchtower Scheme for Bitcoin 19

Proof. Without loss of generality let P = A. Funds of A are locked in TXFU.
Output. It is of negligible probability that any PPT adversary A spends the
output of TXFU without the honest party A’s authorization. Otherwise, the un-
derlying digital signature would be forgeable. Furthermore, TXSP, TXCM,i with
i = [0, n − 1], TXCM,n are the only transactions in the protocol that spend the
output of TXFU and A grants authorization for. Thus, these transactions will be
discussed further. Since TXSP represents the final agreed state of the channel, its
broadcast cannot cause A to lose any funds. Moreover, according to Lemmas
3 and 4, it is of negligible probability that broadcast of TXCM,n causes A to be
cheated out of her funds. Also, based on the protocol, A never publishes TXCM,i
with i = [0, n−1] and according to Lemma 5, if one of these transactions is pub-
lished by the adversary, it causes A to lose any funds with negligible probability.
This concludes the proof.

References

1. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. IACR Cryptol.
ePrint Arch. 2020, 476 (2020)

2. Aumayr, L., Maffei, M., Ersoy, O., Erwig, A., Faust, S., Riahi, S., Hostáková, K.,
Moreno-Sanchez, P.: Bitcoin-compatible virtual channels. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP). pp. 901–918. IEEE (2021)

3. Aumayr, L., Thyagarajan, S.A., Malavolta, G., Moreno-Sanchez, P., Maffei,
M.: Sleepy channels: Bitcoin-compatible bi-directional payment channels without
watchtowers. Cryptology ePrint Archive (2021)

4. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

5. Avarikioti, G., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: Incentivizing
watchtowers for bitcoin. Financial Cryptography and Data Security (FC) (2020)

6. Decker, C.: Bip 118 - sighashnoinput. URl:
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki (2017)

7. Decker, C., Russell, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.
White paper: https://blockstream. com/eltoo. pdf (2018)

8. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems. pp.
3–18. Springer (2015)

9. Developers, L.: Bolt# 3: Bitcoin transaction and script formats (2017)
10. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Talk

transcript) https://diyhpl. us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring (2016)

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of
variable difficulty. In: Annual International Cryptology Conference. pp. 291–323.
Springer (2017)

12. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International journal of information security 1(1), 36–63 (2001)

13. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: A responsive lightweight
watchtower. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. pp. 31–40 (2019)



20 Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

14. Lindell, Y.: Fast secure two-party ecdsa signing. In: Annual International Cryptol-
ogy Conference. pp. 613–644. Springer (2017)

15. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. pp. 16–30 (2019)

16. Mirzaei, A., Sakzad, A., Yu, J., Steinfeld, R.: Fppw: A fair and privacy preserv-
ing watchtower for bitcoin. Cryptology ePrint Archive, Report 2021/117 (2021),
https://eprint.iacr.org/2021/117

17. Mirzaei, A., Sakzad, A., Yu, J., Steinfeld, R.: Daric: A storage efficient pay-
ment channel with penalization mechanism. Cryptology ePrint Archive, Report
2022/1295 (2022), https://eprint.iacr.org/2022/1295

18. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

19. Rahimpour, S., Khabbazian, M.: Hashcashed reputation with application in de-
signing watchtowers. In: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). pp. 1–9. IEEE (2021)

20. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4(3), 161–174 (1991)

21. Spilman, J.: [bitcoin-development] anti dos for tx replacement. available at:
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/ 2013-April/002433.html
(2013)


