
On the Invalidity of Lin16/Lin17 Obfuscation
Schemes

Yupu Hu1B, Siyue Dong1, Baocang Wang1, and Xingting Dong2

1 State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an, Shaanxi, China

yphu@mail.xidian.edu.cn
2 School of Computer Science and Information Security, Guilin University Of

Electronic Technology,
Guilin, Guangxi, China

Abstract. Indistinguishability obfuscation (IO) is at the frontier of
cryptography research. Lin16/Lin17 obfuscation schemes are famous pro-
gresses towards simplifying obfuscation mechanism. Their basic structure
can be described in the following way: to obfuscate a polynomial-time-
computable Boolean function c(x), first divide it into a group of com-
ponent functions with low-degree and low-locality by using randomized
encoding, and then hide the shapes of these component functions by
using constant-degree multilinear maps (rather than polynomial degree
ones).

In this short paper we point out that Lin16/Lin17 schemes are in-
valid. More detailedly, they cannot achieve reusability, therefore they
are not true IO schemes, but rather garbling schemes which are one-time
schemes. Besides, this short paper presents more observations, to show
that component functions cannot be overly simple.

Keywords: Indistinguishability obfuscation · Multilinear maps · Yao’s
garbling · Randomized encoding.

1 Introduction

Both indistinguishability obfuscation (IO) and garbling can make the function
unintelligent which, for chosen value of independent variable, provides nothing
except the function value. In the basic scene of these two cryptographic primitives
there are two sides, encoding-side and decoding-side. Encoding-side presents
unintelligent form c of the function c, while decoding-side chooses value x and
computes c(x) (which equals to c(x)). The unique difference is that an IO scheme
is a “reusable scheme” while a garbling scheme is a “one-time scheme”. In IO
schemes, decoding-side can repeatedly use c to compute c(x) for different x of
his choice, without contacting encoding-side for each computation. In garbling
schemes c can be used only once, otherwise the security is not guaranteed. (There
was a “reusable garbling scheme” [1,2] but we pointed [3] that it is still a one-time
scheme). This is the reason of following three facts.

Fact 1 Garbling is much easier to be constructed than IO. The former
does not use novel cryptographic tools, while the latter needs multi-linear maps,
maybe fully-homomorphic encryption, zero-knowledge proof, and so on.

Fact 2 Garbling is much more mature than IO. The former has complete
security proof, while each candidate of the latter is not clear about the security.

Fact 3 Garbling has much less applications than IO. The former is mainly
applied for multi-party computation and some similar scenes, while the latter,
if exists, is a revolutionary advance in public-key cryptography.

IO was first defined by Barak [4], and has received a lot of attentions in the
community [5–29]. Early candidates of IO schemes directly make use of mul-
tilinear maps [30], which is a novel technology. However it is extremely huge
in size. Since then, many efforts have been made on simplifying obfuscation
mechanism, among which Lin16 and Lin17 obfuscation schemes [16, 18] are fa-
mous progresses. Their basic structure can be described in the following way:
in order to obfuscate any polynomial-time-computable boolean function c(x),
they first divide this c(x) into a group of component functions with low-degree
and low-locality functions, and then hide the shapes of all these component
functions through using constant-degree multilinear maps. The most important
novelty of Lin16/Lin17 schemes is the significant bootstrapping process from
constant-degree multilinear maps, rather than polynomial-degree ones. Besides,
one essential ingredient in the Lin16/Lin17 construction is the usage of random-
ized encoding, which can be instantiated by IK00/IK02/AIK04/AIK06 [31–34].
Besides, Lin17 scheme has an additional step to increase the number of variables
so as to decrease the degree of component function, therefore Lin17 scheme uses
lower degree multi-linear maps than Lin16 scheme.

In this short paper we point out that Lin16/Lin17 schemes are invalid.
More detailedly, they cannot achieve reusability, therefore they are not true IO
schemes, but rather garbling schemes which are one-time schemes. The reason
is that randomized encoding, a ground structure of Lin16/Lin17 schemes, is not
reusable, and that the computation procedure of the decoding-side can obtain
{input, output} of such randomized encoding.

Besides, this short paper presents more observations to a large class of de-
signing ideas including Lin16/Lin17 schemes, to show that component functions
cannot be overly simple.

2 Preliminaries: IO, Graded Encoding, Garbling, and
Randomized Encoding

2.1 Definition and Two Notes of Indistinguishability Obfuscation
(IO)

Definition 2.1 A uniform PPT machine IO is called an indistinguishability
obfuscator [5] for a circuit class {Cλ} if the following two conditions are satisfied:

(1) Correctness. For all security parameters λ, for all circuits c ∈ Cλ, for all
inputs x,Pr [c (x) = c (x) : c← IO (λ, c)] = 1

2

(2) Indistinguishability. For any PPT distinguisher D, there exists a negli-
gible function α such that the following holds. For all security parameters λ,
for all pairs c0, c1 ∈ Cλ, we have that if c0(x) = c1(x) for all inputs x, then
|Pr [D (IO (λ, c0)) = 1]− Pr [D (IO (λ, c1)) = 1]| ≤ α (λ).

Note 1. c should be reusable. That is, once c is constructed, it should be fixed
and repeatedly used for computing c(x) (= c(x)) of different values of x. If c is
used only once, it is much easier to be constructed, and is the component of
garbling, a weaker primitive.

Note 2. c should be a “real white box” and an “essential black box”. First, most
applicable c is white box, that is, each component of c is clearly defined, without
any black box implementation. For example, a previously published truth table
is a white box obfuscator. If c is not a white box obfuscator, it is hoped to be
as white as possible. The whiter c would be, the more applicable it is. Second, c
should be essential black box, that is, c leaks nothing about c except c (x) = c (x).

2.2 Graded Encoding

Graded encoding (also called multi-linear map) [40, 41] is the most important
component of IO and sometimes unique component (That is, sometimes graded
encoding itself is IO).

For a Boolean circuit c, operations of encoding-side are as follows. He encodes
c into c, and encodes independent variable range X into X (That is, encodes
each value from {0, 1} of each entry Xi of X = (X1, · · · , Xn). So that X =(
X1,0, X1,1, · · · , Xn,0, Xn,1

)
). He also constructs the decoding tool T (also called

zero-testing tool, which can test value just at one point, neither sooner nor later).
Then he submits {X, c, T}.

Decoding-side obtains {X, c, T}, and chooses x fromX according to his choice
of x. Then he can compute T (x, c) which is equal to c(x).

The first challenge is to guarantee T (x, c) = c(x) for any x with leaking
nothing else, and the second challenge is to reduce the huge size. All candidates
of graded encoding are not very sure to face such two challenges, so that an
effort is to ease the role of graded encoding in the IO structure.

2.3 About Garbling and Randomized Encoding

Garbling [31–34, 37, 38] can be taken as a one-time version of IO, so that it is
much simpler than IO. Although some garbling schemes [31] have limited ability
for small number of reusability, no garbling candidate can be taken as a true
reusable scheme. Besides, there was a “reusable garbling scheme” [1, 2], but we
pointed [3] it is still a one-time scheme.

A technical difference of garbling is that,X is not completely sent to decoding-
side, but rather by using “one-out-two oblivious transfer”. That is, for each entry
Xi of X = (X1, · · · , Xn), decoding-side can and only can choose to receive one
from {Xi,0, Xi,1}, while encoding-side doesn’t know the choice of decoding-side.

3

Randomized encoding [31–34] is a special type of garbling, to express a func-
tion in terms of a group of low-degree low-locality functions with random pa-
rameters.

3 Lin16/Lin17 IO Schemes [16] [18]

Suppose c is a polynomial-time-computable Boolean function. The schemes have
two stages, the first stage is for operations of encoding-side, and the second for
decoding-side.

3.1 Lin16 Scheme: Operations of Encoding-side

Step 1 (garbling)Use Yao’s garbling of c [1,31,32,37–40] to construct I Boolean
functions c∗i (x, k) = Y aoi (x, PRF (k)), i ∈ {1, 2, · · · , I}, where k is ran-
domly chosen, PRF is a pseudorandom function.

Step 2 (randomized encoding)For each i ∈ {1, 2, · · · , I}, use AIK random-
ized encoding of c∗i [31–34] to construct J Boolean functions c∗∗ij (x, k, s) =
AIKij (x, k, PRG (s)), j ∈ {1, 2, · · · , J}, where s is randomly chosen, PRG
is a low-degree low-locality pseudorandom generator. Notice that AIKij is
a low-degree low-locality Boolean function, therefore c∗∗ij (x, k, s) is a low-
degree low-locality Boolean function.

Step 3 For each i ∈ {1, 2, · · · , I}, j ∈ {1, 2, · · · , J} define function c∗∗∗ij as

c∗∗∗ij (x, k, s, b) =

{
c∗∗ij (x, k, s) , for b = 0
any function, for b = 1

The purpose of constructing such c∗∗∗ij is to make so called “decryption key”
complicated enough, so as to hide the shape of c∗∗ij .

Step 4 (graded encoding) Up to now, each c∗∗∗ij is a low-degree low-locality
Boolean function. Then use graded encoding to encode independent vari-
able range X into X =

(
X1,0, X1,1, · · · , Xn,0, Xn,1

)
, encode parameters

(k, s, b) into (k, s, b), and encode c∗∗∗ij into c∗∗∗ij . Construct decoding tool

(zero-testing tool) T , to guarantee that for any x, corresponding x ∈ X,
T (x, k, s, b, c∗∗∗ij) = c∗∗∗ij (x, k, s, b). Submit {X, k, s, b, c∗∗∗ij , T}.

3.2 Lin16 Scheme: Operations of Decoding-side

Step 1 (graded decoding) By obtained {X, k, s, b, c∗∗∗ij , T} and chosen x, pick

corresponding x from X and compute T (x, k, s, b, c∗∗∗ij)(= c∗∗∗ij (x, k, s, b) =
c∗∗ij (x, k, s)).

Step 2 (randomized decoding) Use {c∗∗ij (x, k, s), i = 1, · · · , I, j = 1, · · · , J} to
compute {c∗i (x, k), i = 1, · · · , I}.

Step 3 (degarbling)Use {c∗i (x, k), i = 1, · · · , I} to compute c(x).

4

3.3 Lin17 Scheme: Operations of Encoding-side

Step 1∼3 Same as Step 1∼3 of operations of encoding-side of Lin16 scheme
(see subsection 3.1).

Step 4 (increasing the number of variables to decrease the degree) Take x ×
x = {xuxv}, and we know xu · xu = xu. Similarly, take x × k = {xukv},
x×s = {xusv}, x×b = {xub}, k×k = {kukv}, k×s = {kusv}, k×b = {kub},
s×s = {susv}, s×b = {sub}. For each i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, express
c∗∗∗ij as the function of (x×x, x×k, x×s, x×b, k×k, k×s, k×b, s×s, s×b,
b), rather than only the function of (x, k, s, b). That is, take an expression
c∗∗∗∗ij (x×x, x×k, x×s, x×b, k×k, k×s, k×b, s×s, s×b, b) = s∗∗∗ij (x, k, s, b),
then c∗∗∗∗ij has a lower degree than c∗∗∗ij .

Step 5 (graded encoding) Each entry of x×x should have graded encodings for 0
and 1 respectively, therefore graded encoding of x×x is denoted by X ×X =
(X ×X(1,1),0, X ×X(1,1),1, X ×X(1,2),0, X ×X(1,2),1, · · · , X ×X(n,n),0, X ×X(n,n),1).
Each entry of x×k should have graded encodings for 0kv and 1kv respectively,
therefore graded encoding of x×k is denoted byX × k = (X × k(1,1),0, X × k(1,1),1,

X × k(1,2),0, X × k(1,2),1, · · · , X × k(n,I),0, X × k(n,I),1). In other words, al-
though 0kv = 1kv = 0 if kv = 0, we should still take two graded encodings
for 0kv and 1kv respectively, because kv should not be known by decoding-
side. Similar cases are X × s and X × b. Each entry of k × k should have
only one graded encoding for just one value kukv, therefore graded encoding
of k × k is denoted by k × k = (k × k(1,1), k × k(1,2), · · · , k × k(I,I)). Similar

cases are k × s, k × b, s× s, s× b, b. Graded encoding of c∗∗∗∗ij is denoted by

c∗∗∗∗ij . Construct decoding tool (zero-testing tool) T . Submit {X ×X, X × k,

X × s, X × b, k × k, k × s, k × b, s× s, s× b, b, {c∗∗∗∗ij } , T}.

3.4 Lin17 Scheme: Operations of Decoding-side

Step 1 (graded decoding) By received {X ×X, X × k, X × s, X × b, k × k,
k × s, k × b, s× s, s× b, b, {c∗∗∗∗ij }, T} and chosen x, pick corresponding

x× x from X ×X, x× k from X × k, x× s from X × s, and x× b from
X × b. Then compute T (x× x, x× k, x× s, x× b, k × k, k × s, k × b, s× s, s× b, b, c∗∗∗∗ij) =
c∗∗∗∗ij (x×x, x×k, x×s, x×b, k×k, k×s, k×b, s×s, s×b, b) = c∗∗∗ij (x, k, s, b) =
c∗∗ij (x, k, s).

Step 2∼3 Same as Step 2∼3 of operations of decoding-side of Lin16 scheme
(see subsection 3.2).

4 The Invalidity of Lin16/Lin17 Schemes

From operations of decoding-side, he can obtain values of c∗∗ij (x, k, s) and c∗i (x, k)
for his choice of x. If the secret parameters (k, s) are reused for different x, the
garbling circuit {c∗i , i = 1, · · · , I} are reused, which is not secure. If (k, s) are used
only once, Lin16/Lin17 schemes are nothing different with a garbling scheme.

5

It may be considered that (k, s) are kept fixed, and {c∗∗ij (x, k, s), c∗i (x, k)}
unknown by decoding-side. It seems that the unique method is to integrate
operations of decoding-side into a black box, so that he can only input x and
obtain c(x). However, such “IO” is far from the original idea, and much less
applicable.

5 More Observations

Besides Lin16/Lin17 schemes, several works for simplifying IO [5,19,23,27] have
similar idea which, for a polynomial-time-computable function, first to express
it into a group of simple component functions, second to hide shapes of these
component functions (by using low-degree multi-linear maps or some other cryp-
tographic tools). Now always suppose that component functions are reusable,
and that decoding-side can repeatedly choose values of independent variable.

Our first observation When component functions are overly simple, their
shapes cannot be hidden, and can be computed by several chosen values of inde-
pendent variable. An example is low-degree low-locality functions in Lin16/Lin17
schemes.

Our second observation Up to now, there is no such IO scheme, for that
shapes of component functions cannot be hidden while that of original function
can. For Lin16/Lin17 schemes, leakage of shapes of component functions implies
leakage of that of original functions, because the protection of garbling and
randomized encoding is limited to one-time using.

Our third observation IO scheme of Garg et al [5] is a successful example.
The shapes of component functions are not leaked. Why? Because that com-
ponent functions are from NC1 (“verifying circuit of fully-homomorphic evalu-
ation” + “fully-homomorphic decryption”), and that relation between compo-
nent functions and original function is covered by fully-homomorphic encryption
(FHE). The advantage of expressing a polynomial-time-computable function into
a group of NC1 functions is still decreasing the degree of multi-linear maps, but
the decreased degree is not “constant degree”.

From the observations above, we can say that the idea of “component func-
tions as simple as possible” itself is wrong.

References

1. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC, pp.
555–564, 2013.

2. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3-35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

3. Hu, Y, P., Dong, S, Y., Wang, B, C., Liu, J.: Notes on Reusable Garbling. Cryptology
ePrint Archive, Paper 2022/1208.https://eprint.iacr.org/2022/1208

6

https://eprint.iacr.org/2022/1208

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 1

5. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October 2013, Berkeley, CA, USA, pp. 40-49 (2013).

6. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1-25.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 15

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EU-
ROCRYPT 2014. LNCS, vol. 8441, pp. 221-238. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 13

8. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from se-
mantically secure multilinear encodings. In: Gary, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 500-517. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 28

9. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM CCS 2014, Scottsdale, AZ, USA, pp. 646-658, 3-7
November 2014.

10. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Y. Dodis, Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528-
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

11. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439-467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

12. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol
9215, pp 308-326. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

13. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: Guruswami, V. (ed.)
56th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2015,
17-20 October 2015, Berkeley, CA, USA, pp. 151-170 (2015).

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2015, 17-20 October 2015, Berkeley, CA, USA, pp.
171–190(2015).

15. Miles, E., Sahai, A., Zhangdry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. In: IACR Cryptology
ePrint Archive, vol. 2016, p. 147 (2016).

16. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, LNCS, vol.9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

17. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, JS., Nielsen, J.
(eds.) EUROCRYPT 2017, Part I. LNCS, vol 10210, pp 152-181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

7

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-54242-8_15
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-56620-7_6

18. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.10401,
pp. 599-629. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-
7 20

19. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

20. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear
maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology ePrint
Archive, Report 2018/615 (2018).

21. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation Using Tensor Products. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 25 (2018).

22. Lin, H., Matt, C.: Pseudo Flawed-Smudging Generators and Their Application
to Indistinguishability Obfuscation. Cryptology ePrint Archive, Report 2018/646
(2018).

23. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol 11476, pp. 191-225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

24. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constantdegree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V.(eds.) EU-
ROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 251-281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

25. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating
conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS,
vol 11478, pp 636-666. Springer, Cham(2019). https://doi.org/10.1007/978-3-030-
17659-4 22

26. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfus-
cation without multilinear maps: new paradigms via low degree weak pseudo-
randomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol 11694, pp 284-332. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 10

27. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: at-
tacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol 12105, pp. 110-140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 5

28. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from ho-
momorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol 12105, pp. 79-109. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 4

29. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: A framework for obfuscation and witness encryption. In: 11th Innova-
tions in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, (2020).

30. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
T. Johansson, P.Q. Nguyen (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1-17.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

31. Ishai, Y., Kushilevitz, E.: Randomizing Polynomials: A new representation with ap-
plications to round-efficient secure computation. In: Proceedings of the 41st FOCS,
pp. 294-304 (2000).

8

https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-642-38348-9_1

32. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M., (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244-256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

33. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. In: Proceedings
of the 45th FOCS, pp. 166-175 (2004).

34. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: Computational Complexity, vol. 15 (2006),
pp. 115 – 162. https://doi.org/10.1007/s00037-006-0211-8

35. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In: Journal of computer and system sciences, vol.
38, no. 1, pp. 150 – 164 (1989), Elsevier 1989.

36. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp.
545-554. ACM Press, June 2013.

37. Yao, A.C.: Protocols for secure computations (extended abstract). In: Proceedings
of the 23th FOCS, pp. 160-164 (1982).

38. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: Proceed-
ings of the 27th FOCS, pp. 162-167 (1986).

39. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM conference on Computer and Communications Security
(CCS), pp. 784-796. October 2012.

40. Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayagamurthy, D.:
How to compress (reusable) garbled circuits. In: IACR eprint 2013/687.

41. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

9

https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/s00037-006-0211-8

	On the Invalidity of Lin16/Lin17 Obfuscation Schemes

