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Abstract. In this work, we present a tool for the automated super optimization of
Armv8.1-M Helium assembly on Cortex-M55. It consists of two parts: Firstly, a generic
framework SLOTHY – Super (Lazy) Optimization of Tricky Handwritten assemblY
– for expressing the super optimization of small pieces of assembly as a constraint
satisfaction problem which can be handed to an external solver – concretely, we pick
CP-SAT from Google OR-Tools. Secondly, an instantiation HeLight55 of SLOTHY
with the Armv8.1-M architecture and aspects of the Cortex-M55 microarchitecture.
We demonstrate the power of SLOTHY and HeLight55 by using it to optimize two
workloads: First, a radix-4 complex Fast Fourier Transform (FFT) in fixed-point
arithmetic, fundamental in Digital Signal Processing. Second, the instances of the
Number Theoretic Transform (NTT) underlying CRYSTALS-Kyber and CRYSTALS-
Dilithium [SAB+22],[LDK+22], two recently announced winners of the NIST Post-
Quantum Cryptography standardization project [NIS16].
Keywords: Superoptimization · Software Pipelining · Constraint Solving · Phase
ordering problem · Arm · MVE · Helium · Post-Quantum Cryptography · Fast
Fourier Transform · FFT · Number Theoretic Transform · NTT

1 Introduction
The Armv8.1-M architecture [Armc] introduced the M-Profile Vector Extension (MVE),
or Arm® Helium™ technology, which brings the performance promise of vector extensions
to embedded microcontrollers, while taking into account their tight power/area profile.
The way Helium solves this conundrum is by putting emphasis on the efficient usage of
execution resources: Notably, MVE instructions may run for multiple cycles, but they may
overlap if they operate on different execution resources. Similarly, Helium’s vector register
file is smaller than that of (say) the Neon vector extension, but it offers scalar-vector
instructions which use vector and general purpose register files at the same time. To
leverage those capabilities, good Helium code must be carefully scheduled to mix different
classes of instructions – such as vector load/store vs. vector arithmetic – and manage the
register files very efficiently.

Autovectorization with standard C/C++, or C intrinsics for Helium, provide a means
to offload the complexities of instruction ordering and register allocation to the compiler,
but they naturally constitute a tradeoff between convenience and performance, as the
heuristics and time budgets of compilers aren’t sufficient to always find optimal solutions
within the huge search spaces for scheduling and register allocation problems.

In this work, we demonstrate the use of constraint programming for the practical
superoptimization of medium-sized kernels (≈50 instructions) of Helium assembly, tailored
for the Arm® Cortex®-M55 CPU. Specifically, we express the simultaneous optimization
of (a) register allocation, (b) instruction scheduling, and (c) software pipelining (in the
case of loops) as a mixed integer/boolean constraint satisfaction problem which can be
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passed to an external solver – here, we use CP-SAT from Google OR-Tools [PF] (version
v9.3). While our initial focus is on Helium and Cortex-M55, we decouple specifics of the
architecture and microarchitecture from the general constraint modelling, and expect our
approach and software to be useful for other (micro)architectures as well. We call the
general approach SLOTHY – Super (Lazy) Optimization of Tricky Handwritten assemblY;
its extension for Helium and Cortex-M55 is called HeLight55.

Contributions. Our contributions are threefold:

1. We describe and implement a (micro)architecture-agnostic superoptimizer SLOTHY
for the tasks of register allocation, instruction ordering and software pipelining based
on constraint solving.

2. We instantiate SLOTHY with the Armv8.1-M architecture and software optimization
aspects of the Cortex-M55r1 microarchitecture, resulting in the HeLight55 superopti-
mizer for Helium assembly on Cortex-M55.

3. We demonstrate the practicality of HeLight55 by superoptimizing a radix-4 complex
Fast Fourier Transform (FFT) in fixed-point arithmetic, as well as two instances of the
Number Theoretic Transform (NTT) underlying the post-quantum cryptography key
encapsulation and signature schemes CRYSTALS-Kyber and CRYSTALS-Dilithium.

Future work. There are (at least) two avenues of future work:
First, while we demonstrate the power and use of SLOTHY + HeLight55 in complex real

world examples, limitations remain, such as the modelling of superscalar microarchitectures
(like the Cortex-M85 CPU) and the automated and optimal introduction of stack spills in
case the register file is not large enough for the kernel under consideration. Nonetheless,
we hope that our work will stimulate interest and further use and extension of SLOTHY +
HeLight55 to address those limitations, as well as extending it to other (micro)architectures.

Second, we encourage research in the application of SLOTHY + HeLight55 for further
workloads. In the context of post-quantum cryptography, for example, we do deliberately
not build complete implementations of Kyber and Dilithium. We believe that doing so,
under consideration the numerous implementation techniques available (such as [AHKS22],
base multiplication strategies, CT vs. GS butterflies, ...), would make for an attractive
piece of research, while it exceeds the scope of this paper.

Structure. In Section 2, we briefly discuss some preliminaries on Armv8.1-M+Helium,
Google OR-Tools, software pipelining and super optimization. In Section 3, we describe
how we express simultaneous optimization of register allocation, instruction scheduling and
software pipelining as a mixed Boolean/integer constraint satisfaction problem. Section 4
then discusses how we extend SLOTHY to HeLight55 by pairing it with (micro)architectural
information on Armv8.1-M+Helium and Cortex-M55, and touch on the interfaces it
provides to the user. Finally, in Section 5 and Section 6 we work through the examples of
the Fast Fourier Transform and Number Theoretic Transform. We conclude with Section 8
containing some reflections and outlook.

Software. SLOTHY and HeLight55 are freely available under MIT license on https:
//gitlab.com/arm-research/security/pqmx/.

Related work. There is a rich literature on superoptimization in general and the potential
to use Integer Linear Programming (ILP) for it in particular [Mas87, SSA13, KL99, WGB94,
GW96, KW98, Rau94, Lam88a, Lam88b]. Yet, to the best of our knowledge, our approach
to using constraint solving for simultaneously addressing instruction scheduling, register
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1 vldrw.u32 q0, [inA]
2 vadd.u32 q0, q0, q0
3 vadd.u32 q0, q0, q0
4 vstrw.u32 q0, [inA]
5 vldrw.u32 q0, [inB]
6 vmul.u32 q0, q0, q0
7 vmul.u32 q0, q0, q0
8 vstrw.u32 q0, [inB]

1 vldrw.u32 q0, [inA]
2 vadd.u32 q0, q0, q0
3 vadd.u32 q0, q0, q0
4 vstrw.u32 q0, [inA]
5 vldrw.u32 q1, [inB]
6 vmul.u32 q1, q1, q1
7 vmul.u32 q1, q1, q1
8 vstrw.u32 q1, [inB]

1 vldrw.u32 q0, [inA]
2 vadd.u32 q0, q0, q0
3 vldrw.u32 q1, [inB]
4 vadd.u32 q0, q0, q0
5 vmul.u32 q1, q1, q1
6 vstrw.u32 q0, [inA]
7 vmul.u32 q1, q1, q1
8 vstrw.u32 q1, [inB]

Listing 1: Left: Two logically independent code paths using the same register. Middle:
Register renaming to separate register usage and enable interleaving. Right: Interleaving.

allocation, and software pipelining, is new. For software pipelining, prior art seems to focus
on achieving high loop initiation rates for small loops on superscalar microarchitectures,
while our initial goal is to optimize complex loops on the (largely) single-issue Cortex-M55
microarchitecture by interleaving at most 3 iterations at a time.

2 Preliminaries

2.1 Phase ordering problem

During compilation, two important code generation phases are instruction scheduling and
register allocation. Instruction scheduling assigns a linear order to the instructions in
a computational flow graph. Register allocation assigns architectural register names to
logical instruction arguments. Instruction scheduling and register allocation influence each
other, as the choice of scheduling restricts the set of valid register allocations, and vice
versa: An instruction must not overwrite a register (an aspect of register allocation) if
that instruction is placed in between a producer and consumer of said register (an aspect
of scheduling). The relation and ordering between instruction scheduling and register
allocation is an extensively studied problem called the phase ordering problem.

2.2 Software pipelining

Software pipelining [Lam88a, RG81] is a software optimization technique whereby multiple
iterations of a loop are interleaved to create instruction level parallelism and thereby
facilitate execution on the underlying microarchitecture. A popular approach is iterative
modulo scheduling [Rau94]. While originally devised for Very Long Instruction Word
(VLIW) processors, software pipelining is a well-known optimization technique also for
classical microarchitectures: When the execution of one loop iteration cannot progress due
to latency constraints or lack of availability of functional units, instructions from the next
iteration(s) may be pulled forward to fill the gaps. This is conceptually similar to how
out-of-order microarchitectures reorder instructions during execution, but explicit software
pipelining may still be beneficial even for such microarchitectures.

Software pipelining puts pressure on the register file since iterations may only be
interleaved once there is no collision in their register use. In an out-of-order microarchitec-
ture, this is a consequence of register renaming assigning a fresh physical register to each
instruction output, thereby benefiting from a physical register file that’s larger than the
architectural register file. Software pipelining, however, has to perform manual register
renaming within the architectural register file, which can be challenging. See Listing 1 for
a toy example of an interleaving opportunity created through register renaming.
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2.3 Superoptimization
The term superoptimization was introduced in [Mas87] as finding “the shortest program
that computes the same function as the source program by doing an exhaustive search over
all possible programs”. Here, we use the term more broadly for approaches to software
optimization that find optimal solutions rather than approximations. Superoptimization can
be studied from multiple angles, such its position within the overall software development
and compilation flow, the scope of superoptimization, and techniques for its (efficient)
implementation – we briefly comment on them and explain where our approach resides.

First, in terms of positioning, the original [Mas87] studies superoptimization at the
level of assembly. In contrast, the more recent [SCC+17] discusses superoptimization at
the level of the LLVM intermediate representation (IR), making it more broadly applicable.
Our superoptimizer operates at the level of assembly.

Second, in terms of techniques, numerous approaches have been explored, such as brute
force enumeration [Mas87], stochastic search [SSA13], and integer linear programming
(ILP) [KL99, WGB94, GW96]. Our approach falls into the last category, applying mixed
Boolean/integer constraint programming to express and solve the problem of finding
optimal code.

Third, we comment on the scope of superoptimization. Following [Emb15, Section
11], one can broadly distinguish two separate optimization phases: First, the search for
optimal (e.g. short) sequences of assembly expressing a given, typically loop-free, piece of
functionality – this requires awareness of instruction semantics. Second, once instructions
have been fixed, the search for an optimal scheduling and register allocation strategy – in
contrast to the first approach, this only requires knowledge of the architectural signature
of instructions, as well as microarchitectural information like the available functional units,
latencies and throughputs. Here, we focus on the second approach: Finding optimal
solutions for (simultaneous) instruction scheduling and register allocation. Further, we
also include software pipelining into the scope of our superoptimizer.

2.4 Google OR-Tools
Google OR-Tools [PF] is a software for combinatorial optimization, tailored at solving
problems such as vehicle routing, flows, integer and linear programming, and constraint
programming. We find that Google OR-Tools’s CP-SAT is very well suited to our assembly
superoptimization problem, in two ways: First, it’s fast. Second, CP-SAT’s API allows
for the specification of a mix of Boolean, integer, and interval variables, and moreover
offers convenient constraints such as non-overlapping for intervals, or mutual difference for
a set of integer variables. However, we expect our modeling approach to apply to other
constraint solvers as well, and encourage further research and comparison.

2.5 M-Profile Vector Extension/ Helium
The M-Profile Vector Extension (MVE) is a Single Instruction Multiple Data (SIMD)
extension that was introduced as part of the Armv8.1-M architecture [Armc]. Its primary
goal is to enable higher performance for signal processing and machine learning applications.
So far, MVE has been implemented in the Cortex-M55 CPU as well as the recently
announced Cortex-M85 CPU.

MVE is also referred to as Arm® Helium™ technology, in alignment with the Arm®

Neon™ Technology architecture extension for A-profile processors [Arma, Section C.3.5],
or Neon for short. However, despite the similarity in name, Helium is a new ground-up
architecture designed specifically for the tight area/power constraints of the embedded
market. We refer to [BBMK+21, Armd, Armf, Armg] for introductions to Armv8.1-
M+Helium and to the reference manual [Armc] for the details.
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Figure 1: Illustration of instruction overlapping for instructions relying
on separate functional units.

1 vldrw.u32 q0, [inA]
2 vldrw.u32 q1, [inA, #16] //-
3 vldrw.u32 q2, [inA, #32] //-
4 vldrw.u32 q7, [inB], #16 //-
5 vmulh.u32 q0, q0, q7
6 vmulh.u32 q1, q1, q7 //-
7 vmulh.u32 q2, q2, q7 //-
8 vadd.u32 q0, q0, q0
9 vadd.u32 q0, q0, q7 //-

10 vadd.u32 q1, q1, q1 //-
11 vadd.u32 q1, q1, q7 //-
12 vadd.u32 q2, q2, q2 //-
13 vadd.u32 q2, q2, q7 //-
14 vstrw.u32 q1, [inA, #16]
15 vstrw.u32 q2, [inA, #32] //-
16 vstrw.u32 q0, [inA], #48 //-

1 vldrw.u32 q1, [inB], #16
2 vldrw.u32 q2, [inA, #16] //-
3 vmulh.u32 q7, q2, q1
4 vldrw.u32 q4, [inA, #32]
5 vadd.u32 q7, q7, q7
6 vmulh.u32 q6, q4, q1
7 vadd.u32 q4, q7, q1
8 vldrw.u32 q2, [inA]
9 vadd.u32 q7, q6, q6

10 vmulh.u32 q6, q2, q1
11 vadd.u32 q7, q7, q1
12 vstrw.u32 q4, [inA, #16]
13 vadd.u32 q4, q6, q6
14 vstrw.u32 q7, [inA, #32]
15 vadd.u32 q7, q4, q1
16 vstrw.u32 q7, [inA], #48

Listing 2: Left: Poorly written snippet of Helium assembly with little potential for
instruction overlapping. Right: Improved scheduling + register allocation. An //-
annotation indicates a structural hazard preventing instruction overlapping.

What is most important about Helium for the sake of this work is how it carefully
introduces software constraints to lower hardware complexity and thereby retain suitability
for embedded microcontrollers: Most notably, instruction overlapping and the compact
vector register file of 8× 128-bit vector registers.

First, instruction overlapping allows to achieve up to 2× performance with the same
execution resources compared to non-overlapping, single-issued execution. However, it
requires instructions to be scheduled in such a way that they run on different functional
units and are therefore amenable to overlapping. Figure 1 provides an illustration, assuming
an implementation of Helium where each vector instruction takes two cycles (“dual beat
implementation”) and where there are separate functional units for vector load/store (LSU),
addition/logical operations (INT), and multiply operations (MUL) – the Cortex-M55 is an
example for this. We can see how the first instructions overlap, leading to high resource
utilization, but how the consecutive pair of VADD instructions stalls the pipeline. Typically,
there is significant flexibility in instruction scheduling, so that good interleaving of different
instruction types is possible. For example, Listing 2 shows two versions of the same piece
of (meaningless) Helium assembly, one poorly scheduled, making little use of instruction
overlapping, and another with a good mix of instructions, facilitating overlapping.

Second, the compact vector register file reduces the cost of CPUs implementing Helium,
but requires developers or compilers to manage register usage very carefully, and balance
it with the general purpose register file through the use of scalar-vector instructions.

The primary goal of this work is to demonstrate how to automate the process of solving
the software constraints posed by Helium through constraint solving.
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3 SLOTHY: Super optimization via constraint solving
This section, which is the heart of our work, describes SLOTHY – Super (Lazy) Optimization
of Tricky Handwritten assemblY – our approach to modeling assembly superoptimization
as a constraint solving problem. First, Section 3.1 clarifies the scope of our model and
provides an overview. We then separately discuss constraints for functional correctness
(Section 3.2, Section 3.3), software pipelining (Section 3.4, Section 3.5), and microarchitec-
tural performance (Section 3.6, Section 3.7). Section 3.8 discusses the modeling of memory
and stack, while Section 3.9 and Section 3.10 describe how we approach minimization of
stalls, and other objectives. Finally, Section 3.11 comments on the soundness of SLOTHY.

Figure 2: High-level overview of operation of SLOTHY

3.1 Scope and overview
SLOTHY optimizes instruction scheduling, register allocation and software pipelining.
That is, it considers reordering of instructions and change of the use of registers in
search for some functionally equivalent but optimally performing variant of the code.
Importantly, instruction scheduling and register allocation are considered simultaneously,
avoiding the phase ordering problem (Section 2.1). In case of a loop, SLOTHY also
simultaneously searches for suitable interleavings of iterations. Put differently, SLOTHY
retains the (isomorphism class of the) source’s computational flow graph. Figure 3 shows
the computational flow graph underlying both the naïve and optimized code in Listing 2.

Figure 2 provides an overview of SLOTHY’s operation: First, the input is parsed and
converted to a computational flow graph. Next, a constraint model is derived as explained
below, and passed to an external solver. Upon success, the (optimal) satisfying assignment
found by the solver is converted back into the output source. This source is then subject
to some post-processing and self-check before being returned to the caller.

Multiple aspects of optimization are currently out of scope for SLOTHY. First, SLOTHY
does not change instructions except for register renaming. In fact, it has no knowledge of
the semantics of instructions beyond their signatures, that is, the number and types of
inputs, outputs, and input/outputs. It thus remains the responsibility of the user to find
suitable ways to express the target computation in terms of the underlying instruction set
architecture (ISA). Second, SLOTHY has no notion of memory, and is therefore not able
to introduce stack spills in situations where the register files are not large enough to hold
all temporaries used by a computation. It is the responsibility of the user to introduce
stack spills in this case and re-run SLOTHY. See Section 3.8.
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Figure 3: The shared computational flow graph for the naïve and optimized versions
of Listing 2. The numbers indicate the program order used by both examples.

3.2 Correctness/Architecture constraints: Instruction scheduling
Every instruction I of the input source is assigned an integer variable I.pos defining
where the instruction is placed in the output code. To get a unique program order in the
output, we require {I.pos}I to be mutually distinct. Further, to maintain functional
correctness, consumers must come after producers: If instruction J consumes output O
produced by instruction I – that is, we have an edge I O−→ J in the computational flow
graph – then I.pos < J.pos.

3.3 Correctness/Architecture constraints: Register Allocation
For every instruction I, every output O of I, and every possible register R that I can use
for O, we assign a Boolean variable alloc(I,O,R) indicating whether the instruction I uses
register R for the output O. In analogy with the operation of out-of-order microarchitectures,
we call this process register renaming. Simultaneous input/output arguments are not
subject to register renaming. Note that the input source’s choice of registers is irrelevant
here – it is only used initially to construct the computational flow graph from the source.

Multiple constraints need to be satisfied: First, for the uniqueness of register renaming,
we require that for fixed I,O, exactly one Boolean variable in the family {alloc(I,O,R)}R
is set. Second, for functional correctness, we need to express that in between a register
being produced and consumed, no other instruction uses the register for register renaming.
We model this as a disjointness constraint as follows: First, for any instruction I and any
output O, we add a interval [I O−→ ] starting at I.pos, and bound its endpoint below by
J.pos for any I

O−→ J, as well as by I.pos + 1 (in case O has no consumers). For any
choice of output register R, we then add a copy [I O−→ ]R of [I O−→ ] as a conditional interval
constrained by alloc(I,O,R). Functional correctness then requires that for any R, the set
of conditional intervals {[I O−→ ]R}I,O is non-overlapping. For simultaneous input/output
variables – for which we cannot rename – [I O−→ ]R is instead conditioned on alloc(K,U,R),
where K,U is the transitively computed source of O, with U being an output (not merely an
input/output). For example, if I is an MLA in a MUL; MLA; ...; MLA chain and O is
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the accumulator, we’d always go back to the initial MUL which made the choice for which
register to use for the accumulator.

We note that our modelling of register usage is an instance of the flexible job shop
problem, with jobs being instructions and “machines” being registers.

Restricted instructions. Sometimes there are restrictions on the registers that an instruc-
tion can use. Such restrictions often apply to individual arguments (such as requiring
even or odd registers), but there are also more complex cases: For example, the output of
VCMUL in Helium must not coincide with an input, and the four (!) vector arguments to the
de-interleaving load VLD4x are constrained to the set {Qi,Q(i+1),Q(i+2),Q(i+3)} for
i = 0, 1, 2, 3, 4. Individual restrictions on output arguments are straightforwardly added to
the register renaming model by accordingly restricting the Boolean variables alloc(I,O,R).
To model restrictions for multiple register outputs, such as for VLD4x/VST4x, we intro-
duce Booleans for the various choices, constrain that precisely one is set, and then add
implications to the respective alloc(I,O,R) variables.

Jointly destructive instruction patterns. Armv8.1-M+Helium has instruction patterns
where each instruction individually overwrites only part of the destination register,
but where the sequence as a whole overwrites it entirely. Examples are blocks of
VLD4{0,1,2,3}, or pairs of VQDMLSDH+VQDMLADHX. In this case, the destination reg-
ister is by default modeled as an input/output argument, which leads to unnecessary
dependencies which in turn reduce reordering flexibility. To address this, SLOTHY allows
architecture specifications to modify instructions within the context of an entire compu-
tational flow graph. For HeLight55, we leverage this to detect and mark the destination
register in aforementioned patterns as a pure output for the first instruction of the sequence,
thereby allowing to reorder it past previous instructions which write to the same register.

3.4 Loop interleaving aka Software pipelining
A powerful feature of SLOTHY is software pipelining, that is, interleaving multiple iterations
in a loop: Some early instructions, such as initial loads, are moved into the previous iteration,
while some late instructions, such as final stores, are deferred to the next iteration. To
avoid having to unroll the entire loop, periodicity of code has to be maintained.

We model software pipelining as follows: To begin, for each instruction I, we add
three Boolean variables I.pre/I.late and I.core, indicating whether I will be an
early/late instruction for the previous/next iteration, or whether it stays in its original
iteration. Precisely one of {I.pre,I.core,I.late} must be set. For periodicity, we
first double the loop body C, say as C1 and C2; for an instruction I, we denote I1 and I2
its copies in C1 and C2, respectively. Note that this duplication is internal only and does,
by default, not enforce an unrolling of the loop in the final code. We then relate I1 and
I2 as follows: First, the choices of I.pre,I.core,I.late and of register allocations
must be the same for C1 and C2: I1.{pre,core,late}⇔ I2.{pre,core,late} and
alloc(i1,O,R)⇔ alloc(I2,O,R) for all I ∈ C. Second, “core” instructions are placed
exactly n instructions apart, where n is the length of C: I.core⇒ I2.pos = I1.pos+n.
Third, and perhaps somewhat non-canonically, we force early instructions in C1 to be
“seen” as early instructions for the next iteration C3, and late instructions in C2 to be
“seen” as late instructions for the previous iteration C0, by requiring I.pre ∨ I.late⇒
I2.pos = I1.pos − n (note the sign!) and by “cutting” the constraints derived from
I1

O−→ J1 if I.pre∧J.core, and from I2
O−→ J2 if I.core∧J.late. Finally, we require

that (I O−→ J) ∧ I.pre ⇒ ¬J.late – otherwise, cross-iteration dependencies could be
entirely and incorrectly cut by never setting I.core (a previous version of SLOTHY got
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this wrong and had astonishing optimization abilities). See Figure 4 for an illustration.
Note in particular how the constraints that we “cut” are retained through symmetry.

Figure 4: Illustration of how SLOTHY models software pipelining.

We do not model looping instructions themselves, such as counter decrements and
compare+jumps: First, we don’t expect those to have a meaningful impact on the
optimization. Second, on Armv8.1-M+Helium in particular, inner iterations in low overhead
loops do execute as if the loop had been unrolled, including the potential for instruction
overlapping. By modelling the last and first instructions of two successive iterations as
adjacent, HeLight55 correctly takes into account the overlapping for those instructions.

3.5 Address modifications.
A typical loop will modify the base address for the data to be operated on with each
iteration: For example, in Helium, data might be loaded via VLDR Qdest, [Raddr]
for some address register Raddr, and later stored via VSTR Qdst, [Radd], #16, in-
crementing the address register for the next iteration. Such patterns make deep software
pipelining impossible without further modelling of the semantics of the address increments,
as there is a data dependency between the final store of one iteration, incrementing
the address register, and the initial load for the next iteration. Since SLOTHY does
not know about the semantics of instructions beyond their signature and dependen-
cies, it cannot reorder load and store in this situation. With further semantic knowl-
edge, however, one could of course reorder load and store in such situations, leveraging
commutativity relations such as VSTR Qa, [Rptr], #16; VLDR Vb, [Rptr] ≡
VLDR Qb, [Rptr, #16]; VSTR Qa, [Rptr], #16.

We address this problem as follows: First, SLOTHY does not model any address
increments, but always treats address registers for load/store operations as input-only.
This gives SLOTHY the flexibility to freely reorder load/stores and identify complex
software pipelining opportunities. Second, after the optimization, we then iterate through
pairs of load/stores which depend on the same address register and have been reordered
by SLOTHY, and fix up their address offsets, leveraging commutativity relations such
as the one above. This approach works well for a variety of workloads, but it has some
limitations, as we now explain.

First, we currently require that any address register is only modified by at most one
load/store instruction per iteration. This is for simplicity only and could be easily overcome
if necessary. Second, manual address increments via add Raddr, Raddr, #16 do
currently still prevent software pipelining in SLOTHY: For loops were such increments
can not be realized as pre/post increments, further work on SLOTHY would be needed to
optimize them. Third, and most importantly, SLOTHY’s post-optimization address offset
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fix up assumes that there is no aliasing between memory pointed to by different address
registers. In C terminology, it behaves as if every pointer was qualified as restrict.

Listing 3 shows a simple example for a software pipelining opportunity requiring the
reordering of load/store instructions, and a corresponding address offset fix up.

3.6 Performance/µArch constraints: Latencies
To model performance of code on in-order microarchitectures, such as Cortex-M55 currently
targeted by HeLight55, we constrain the scheduling of instructions according to their
latencies: If I O−→ J, we demand J.pos ≥ I.pos + latency(I O−→ J), superseding the
previously introduced functional correctness constraint J.pos ≥ I.pos. We note that
while latency(I O−→ J) often depends on I only, dedicated forwarding paths provide
examples where latency(I O−→ J) may be smaller than the “generic” latency of I: In
Cortex-M55, for example, while vector multiplication instructions typically have a latency
of 2 cycles, sequences VMULx; VSTRx run stall-free.

The above approach to modelling latencies hinges on the program ordering I.pos
being the same as the execution time unit of I. For microarchitectures which support
multi-issuing for the code under consideration, further thought is required how to relate
I.pos to a notion of execution time which can then be used to express latency constraints.

3.7 Performance/µArch constraints: Instruction overlapping
Instruction overlapping is modeled by assigning to each instruction I a functional unit
Unit(I) (depending on the target microarchitecture) and a usage time block(I) capturing
for how long I keeps Unit(I) busy. We then demand that for any fixed functional unit
U, the set of intervals {[I.pos,I.pos + block(I)) | Unit(I) = U}I is non-overlapping.
This is a straightforward instance of the job shop problem. If an instruction may run
on multiple functional units, we create Boolean variables tracking where they actually
run, and condition the usage intervals accordingly – that is, we reduce to a flexible job
shop problem. On Cortex-M55, an example for an instruction that can run on multiple
functional units is the double vector-to-register move VMOV Ra, Rb, Qn[i], Qn[j].

We highlight that the latency of an instruction may be smaller than its usage time: On
Cortex-M55, for example, many vector instructions (e.g. VADD) occupy their functional
units for 2 cycles, but have 1 cycle latency: This is possible since instruction overlapping
supports data dependencies between the overlapping instructions.

3.8 Memory, register pressure and stack spills
SLOTHY does not have a notion of memory: Store instructions are instructions without
output, while load instructions are instructions without input. As a consequence, SLOTHY
is not sound for code relying on memory as a temporary storage, as it does not track data
dependencies through memory. To at least accommodate the optimization of code which
relies on stack spills, the following trick can be used: Stack locations are modeled as a
separate “register type” which are written to / read from via virtual instructions that that
have the same properties as loads/stores (e.g. in terms of latencies and functional units
used). With this simple trick, which fits into the existing framework of SLOTHY, data
dependencies can be tracked across stack spills, without having to model linear memory.

3.9 Modelling stalls
We consider two approaches for modelling and minimizing stalls. First, “externally”: We
pad the input code with a number of nop instructions and then search for a perfect variant
of the padded code. If such does not exist, we increase the nop-count and try again. Via
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binary search, we quickly find the minimum number of nops required. Alternatively, we
model stalls internally as a flexible integer variable which defines the amount of “slack”
allowed in the reordering of instructions: That is, rather than requiring that the reordering
be a permutation of {0, 1, . . . ,codesize}, we define it as map {0, 1, . . . ,codesize} →
{0, 1, . . . ,codesize + pad}. We then ask the solver to minimize pad.

Our experiments suggest that modelling stalls “externally” is faster. Moreover, it allows
us to set other optimization objectives, as we discuss next.

3.10 Other objectives
Beyond the minimization of stalls, the following are useful objectives: If software pipelining
is enabled, it is natural to maximize

∑
I I.core – that is, to minimize the amount of

interleaving between successive iterations. Second, register usage can be minimized. This
is particularly interesting if the code in question does not fit into the register file, and
“virtual registers” are used to approximate the amount of stack spilling needed.

3.11 Soundness
There are two forms of soundness for SLOTHY: Functional soundness and performance
soundness. The former means that SLOTHY emits code that is functionally equivalent to
the original code. For the most part, this is easy to check: As we do not change instructions
but only their order and register use, functional soundness amounts to the produced code
permutation yielding an isomorphism of computational flow graphs – which is easily
checked. However, our handling of address offsets (Section 3.5) has to be treated separately,
as we elide address increments during load/stores when passing to computational flow
graphs. We also emphasize again that address registers are assumed to be non-aliasing.

Performance soundness is more subtle: We do not expect SLOTHY to be used with
fully exact microarchitectural models. Instead, one only models key software optimization
aspects, such as instruction latencies or throughput, and optimizes code according to those.
Unmodeled microarchitectural aspects may therefore still lead to stalls in code which the
(micro)architectural model underlying SLOTHY considers “stall-free”. It is thus important
to validate the performance of code produced via SLOTHY.

4 HeLight55: Assembly optimization for Cortex-M55
Section 3 explained our generic approach for modeling assembly optimization via constraint
solving. We now describe our implementation for Armv8.1-M+Helium + Cortex-M55.

4.1 SLOTHY + (micro)architecture
HeLight55 combines our optimization framework SLOTHY with architectural information
about Armv8.1-M+Helium and microarchitectural aspects of Cortex-M55r1.

First, HeLight55 models and provides parsing/writing functionality for a subset of
Armv8.1-M+Helium: For now, it focuses on supporting basic Helium load/store/arithmetic
instructions required for Section 5, Section 6, but it can easily be extended. What SLOTHY
requires from HeLight55 is knowledge of the available register files (here, the general purpose
and vector register files, and potentially a “virtual” register file for stack spills Section 3.8),
and the signatures of instructions – that is: The number and types of arguments, and the
information of whether they are an input, an output, or a simultaneous input/output.

Second, HeLight55 models basic aspects of the Cortex-M55 microarchitecture important
for software optimization: The set of functional units and, for each instruction, the
assignment of functional unit(s) it belongs to, as well as its latency and throughput. We
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1 > ./helight-cli examples/simple0.s
2 INFO:Attempt with 0 stalls...
3 ...
4 INFO:Status: INFEASIBLE
5 INFO:Attempt with 1 stalls...
6 ...
7 INFO:helight:Status: OPTIMAL
8 vldrw.u32 q4, [inB], #16
9 nop

10 vldrw.u32 q0, [inA, #16]
11 vmulh.u32 q3, q0, q4
12 vldrw.u32 q2, [inA, #32]
13 vadd.u32 q3, q3, q3
14 vmulh.u32 q1, q2, q4
15 vadd.u32 q2, q3, q4
16 vldrw.u32 q0, [inA]
17 vadd.u32 q3, q1, q1
18 vmulh.u32 q1, q0, q4
19 vadd.u32 q3, q3, q4
20 vstrw.u32 q2, [inA, #16]
21 vadd.u32 q2, q1, q1
22 vstrw.u32 q3, [inA, #32]
23 vadd.u32 q3, q2, q4
24 vstrw.u32 q3, [inA], #48

1 > ./helight-cli examples/simple0.s --loop
2 INFO:Attempt with 0 stalls...
3 ...
4 INFO:helight:Status: OPTIMAL
5 INFO:helight:Wall time: 0.659182 s
6 vmulh.u32 q3, q3, q2 // ....*...........
7 vadd.u32 q4, q4, q2 // ............*...
8 vldrw.u32 q0, [inA, #16] // .*..............
9 vadd.u32 q5, q3, q3 // .......*........

10 vstrw.u32 q4, [inA, #32] // ..............*.
11 vadd.u32 q5, q5, q2 // ........*.......
12 vmulh.u32 q1, q0, q2 // .....*..........
13 vldrw.u32 q3, [inA, #48] // e...............
14 vadd.u32 q0, q1, q1 // .........*......
15 vldrw.u32 q6, [inA, #80] // ..e.............
16 vadd.u32 q7, q0, q2 // ..........*.....
17 vldrw.u32 q2, [inB], #16 // ...e............
18 vmulh.u32 q1, q6, q2 // ......e.........
19 vstrw.u32 q7, [inA, #16] // .............*..
20 vadd.u32 q4, q1, q1 // ...........e....
21 vstrw.u32 q5, [inA], #48 // ...............*

Listing 3: Example for the usage of command line tool helight-cli to optimize the
snippet from Listing 2 (left hand side), with and without software pipelining. Note how
the address offsets for early loads have been adjusted on the right hand side.

also model some exceptional conditions such as special latencies for specific instruction pairs
(such as VMULx; VSTRx which typically run stall-free even though an integer multiply
instruction usually has 2 cycles latency), or ST-LD hazards described below.

4.2 Convenience functions
In addition to providing the mandatory (micro)architectural complement to SLOTHY,
HeLight55 provides a number of convenience functions which make it more practical to use
than the bare bones optimization capabilities of SLOTHY.

First, when using software pipelining, HeLight55 automatically optimizes the preamble
and postamble of the loop and adds looping instructions to produce a working piece of
assembly that’s functionally equivalent to the original loop. Second, HeLight55 can operate
on specific parts of assembly files, making it convenient to maintain a set of functionally
correct and readable, yet poorly performing reference source files, and have them auto-
optimized to high performance assembly by HeLight55. Third, HeLight55 supports parsing
and unfolding of assembly macros, as well as a mixture of register names: Undefined
symbolic register names, defined symbolic register names (via .req directives), and raw
register names. Listing 5 (right) shows an assembly snippet using symbolic register names.

4.3 Interface
SLOTHY and HeLight55 are implemented in Python, building on the existing Python
interface to Google OR-Tools. They can be used from within Python or through a small
command line application, as we illustrate now.

HeLight55 via the command line. For quick experimental optimization of small assembly
snippets, helight-cli can be used. Listing 3 shows an example usage of helight-cli
for the optimization of the naïve snippet from the left hand side of Listing 2, with and
without software pipelining. Without software pipelining, we can see that a stall is
unavoidable due to the initial VLDR bottleneck. With software pipelining, those loads can
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1 helight = Helight()
2 helight.load_source_from_file("examples/naive/ntt_dilithium.s")
3 # Tell HeLight about the types of symbolic register names for which
4 # there is no unambiguous architectural typing.
5 # For example, in ‘vmul a, b, c‘, c could be either a GPR or a vector.
6 helight.config.typing_hints = { r : RegisterType.GPR for r in
7 [ "root0", "root1", "root2",
8 "root0_twisted", "root1_twisted", "root2_twisted" ] }
9 # Optimize a specific loop in the source. This replaces the respective loop

10 # by its optimized version, padded with optimized preamble and postamble.
11 helight.optimize_loop("layer12_loop")
12 helight.print_code()
13 helight.write_source_to_file("examples/opt/ntt_dilithium.s")

Listing 4: Example for the usage of HeLight55 in Python.

be pulled into the previous iteration, enabling a stall-free variant (for Cortex-M55). The
tool minimizes the interleaving, so there is no stall-free implementation with less than 5
early instructions. We also note how the address offsets have been adjusted as early VLDRs
are reordered before VSTR with post-increment, as discussed in Section 3.5.

HeLight55 via Python. HeLight55 can also be used from Python. For example, Listing 4
shows a script to optimize the layer12 loop from Listing 8 (further discussed below).
For more information, we refer to the source code.

5 Example: Fast Fourier Transform
5.1 Introduction
The Fourier Transform is a transformation for the decomposition of signals into frequency
components. It has numerous incarnations – such as Fourier series or the Number Theoretic
Transform (NTT) discussed in Section 6 – and a vast range of applications. Simply put, the
importance of the Fourier Transform cannot be overstated. Here, we are interested in the
Fourier Transform over the complex numbers, which can be viewed as Cn → Cn, (xi) 7→
(
∑
j xiζ

ij
n ) where ζn = exp(2πi/n) is the standard primitive n-th root of unity (algebraically,

this is the same as the splitting (evζi
n
) : C[X]/(Xn − 1)

∼=−→
∏
iC[X]/(X − ζin)).

The Fast Fourier Transform (FFT) is a method for the fast computation of the Fourier
Transform. While the above description of the Fourier Transform suggests quadratic
complexity, the FFT splits the computation into a logarithmic number of layers of linear
complexity each, giving an overall complexity of O(n logn). Each FFT layer operates on
strided blocks of r data units via so-called butterflies, and r is called the radix of the FFT.
Common choices are radix-2 and radix-4. Efficient implementations of the FFT are an
essential component of any Digital Signal Processing (DSP) library, with complex numbers
presented in either floating point or fixed point format.

In this section, we look at the optimization of a radix-4 layer of a fixed-point FFT in
Armv8.1-M+Helium: In Section 5.2, we show an implementation in C intrinsics and look
at the resulting assembly when compiled with Arm Compiler 6.18. In Section 5.3, we then
use HeLight55 to optimize an assembly version of the same code, and compare the results.

5.2 Radix-4 fixed-point FFT in intrinsics and handwritten assembly
Listing 5 (left) shows one layer of a radix-4 fixed-point FFT written in C Helium intrinsics
taken from [Arme]1. The right hand side shows the same code naïvely translated into

1Link to C intrinsics based implementation of radix-4 fixed-point FFT

https://github.com/ARM-software/CMSIS-DSP/blob/633b5284212e4e5dd5adb1e97039d1a8185a7eaa/Source/TransformFunctions/arm_cfft_q31.c#L38
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1 #define MVE_CMPLX_MULT_FX_AxB(A,B) \
2 vqdmladhxq(vqdmlsdhq( \
3 vuninitializedq(A), A, B), A, B)
4 #define MVE_CMPLX_SUB_FX_A_ixB(A,B) \
5 vhcaddq_rot270(A,B)
6 #define MVE_CMPLX_ADD_FX_A_ixB(A,B) \
7 vhcaddq_rot90(A,B)
8 vA = vld1q(inA); vC = vld1q(inC);
9 while (blkCnt > 0U) {

10 vB = vld1q(inB); vD = vld1q(inD);
11 vSm0 = vhaddq(vA, vC);
12 vDf0 = vhsubq(vA, vC);
13 vSm1 = vhaddq(vB, vD);
14 vDf1 = vhsubq(vB, vD);
15 vTmp0 = vhaddq(vSm0, vSm1);
16 vst1q(inA, vTmp0); inA += 4;
17 vTmp0 = vhsubq(vSm0, vSm1);
18 vW = vld1q(pW2); pW2 += 4;
19 vTmp1 = MVE_CMPLX_MULT_FX_AxB(vW, vTmp0);
20 vst1q(inB, vTmp1); inB += 4;
21 vTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vDf0, vDf1);
22 vW = vld1q(pW1); pW1 += 4;
23 vTmp1 = MVE_CMPLX_MULT_FX_AxB(vW, vTmp0);
24 vst1q(inC, vTmp1); inC += 4;
25 vTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vDf0, vDf1);
26 vW = vld1q(pW3); pW3 += 4;
27 vTmp1 = MVE_CMPLX_MULT_FX_AxB(vW, vTmp0);
28 vst1q(inD, vTmp1); inD += 4;
29 vA = vld1q(inA); vC = vld1q(inC);
30 blkCnt--;
31 }

1 loop_start:
2 vldrw.s32 vA, [inA]
3 vldrw.s32 vC, [inC]
4 vldrw.s32 vB, [inB]
5 vldrw.s32 vD, [inD]
6 vhadd.s32 vSm0, vA, vC
7 vhsub.s32 vDf0, vA, vC
8 vhadd.s32 vSm1, vB, vD
9 vhsub.s32 vDf1, vB, vD

10 vhadd.s32 vT0, vSm0, vSm1
11 vstrw.s32 vT0, [inA], #16
12 vhsub.s32 vT0, vSm0, vSm1
13 vldrw.s32 vW, [pW2], #16
14 vqdmladhx.s32 vT1, vW, vT0
15 vqdmlsdh.s32 vT1, vW, vT0
16 vstrw.s32 vT1, [inB], #16
17 vhcadd.s32 vT0, vDf0, vDf1, #270
18 vldrw.s32 vW, [pW1], #16
19 vqdmladhx.s32 vT1, vW, vT0
20 vqdmlsdh.s32 vT1, vW, vT0
21 vstrw.s32 vT1, [inC], #16
22 vhcadd.s32 vT0, vDf0, vDf1, #90
23 vldrw.s32 vW, [pW3], #16
24 vqdmladhx.s32 vT1, vW, vT0
25 vqdmlsdh.s32 vT1, vW, vT0
26 vstrw.s32 vT1, [inD], #16
27 le lr, loop_start
28 loop_end:

Listing 5: Left: One layer of radix-4 fixed-point FFT using C intrinsics. Right: Straight-
forward translation into pseudo-assembly using symbolic register names.

pseudo-assembly, using symbolic register names; this will be the input to HeLight55 below.
Listing 6 (left) shows the disassembly of the result of compiling Listing 5 (left) using

Arm Compiler 6.18. A //- annotation indicates a structural hazard, while //? indicates
the risk of a ST-LD-hazard resulting from a VSTR; xxx; VLDR sequence – whether such
a sequence actually leads to a stall depends on data alignment. Overall, we achieve good
instruction overlapping, but (unsurprisingly) there is potential for improvement left.

Next, Listing 6 (right) shows handwritten assembly from [Armb]2. We observe only
one structural hazard on Cortex-M55, but three alignment dependent ST-LD hazards.

5.3 HeLight55-optimized assembly implementation
Listing 7 shows the result of optimizing Listing 5 (right) through HeLight55. The comments
indicate where instructions were originally placed, and if they are early instructions for the
next iteration. We see that in each iteration, seven instructions are being pulled into the
previous iteration, enabling a stall-free optimized loop body – which we confirm by running
the code on real hardware. Further, HeLight55 has extracted and separately optimized the
loop preamble and postamble. Little reordering was necessary for postamble, which is
expected since the original postamble is a subset of the perfectly optimized loop body.

6 Example: Number Theoretic Transform
6.1 Introduction
The Number Theoretic Transform (NTT) is a variant of the Fourier Transform that’s defined
over the integers rather than the complex numbers: While the latter splits C[X]/(Xn − 1)
as

∏
i C[X]/(X − ζin) for the complex n-th root of unity ζn = exp(2πi/n), the NTT splits

2Link to handwritten assembly implementation of radix-4 fixed-point FFT

https://github.com/ARM-software/EndpointAI/blob/1d919526b7266da65f2383b690f1ba219ebd8066/Kernels/ARM-Optimized/DSP/Source/TransformFunctions/arm_cfft_q31/arm_cfft_q31.c#L225
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1 .LBB0_7:
2 vldrw.u32 q0, [r8] //-
3 vldrw.u32 q1, [r1] //-
4 vhadd.s32 q3, q1, q0
5 vldrw.u32 q2, [r2]
6 vhsub.s32 q0, q1, q0
7 vldrw.u32 q4, [r0]
8 vhadd.s32 q5, q2, q4
9 vhadd.s32 q6, q3, q5 //-

10 vstrb.8 q6, [r1], #16
11 vhsub.s32 q3, q3, q5
12 vldrw.u32 q5, [r9], #16 //?
13 vqdmlsdh.s32 q6, q5, q3
14 vhsub.s32 q1, q2, q4
15 vqdmladhx.s32 q6, q5, q3
16 vstrb.8 q6, [r2], #16
17 vhcadd.s32 q2, q0, q1, #270
18 vldrw.u32 q3, [r7], #16 //?
19 vqdmlsdh.s32 q4, q3, q2
20 vqdmladhx.s32 q4, q3, q2 //-
21 vstrb.8 q4, [r8], #16
22 vhcadd.s32 q2, q0, q1, #90
23 vldrw.u32 q0, [r11], #16 //?
24 vqdmlsdh.s32 q1, q0, q2
25 vqdmladhx.s32 q1, q0, q2 //-
26 vstrb.8 q1, [r0], #16
27 le lr, .LBB0_7

1 vldrw.32 q1, [in0]
2 vldrw.32 q6, [in2]
3 2:
4 vhadd.s32 q0, q1, q6
5 vldrw.32 q4, [in1] //?
6 vhsub.s32 q2, q1, q6
7 vldrw.32 q5, [in3]
8 vhadd.s32 q1, q4, q5
9 vhsub.s32 q3, q4, q5 //-

10 vldrw.32 q7, [t1], #16
11 vhadd.s32 q4, q0, q1
12 vstrw.32 q4, [in0], #16
13 vhsub.s32 q4, q0, q1
14 vldrw.32 q5, [t0], #16 //?
15 vqdmlsdh.s32 q0, q4, q5
16 vhcadd.s32 q6, q2, q3, #270
17 vqdmladhx.s32 q0, q4, q5
18 vstrw.32 q0, [in1], #16
19 vqdmlsdh.s32 q0, q6, q7
20 vldrw.32 q1, [in0] //?
21 vqdmladhx.s32 q0, q6, q7
22 vstrw.32 q0, [in2], #16
23 vhcadd.s32 q4, q2, q3, #90
24 vldrw.32 q5, [t2], #16
25 vqdmlsdh.s32 q0, q4, q5
26 vldrw.32 q6, [in2]
27 vqdmladhx.s32 q0, q4, q5
28 vstrw.32 q0, [in3], #16
29 le lr, 2b

Listing 6: Left: Compilation of Listing 5 (left) using Arm Compiler 6.18. Right: Hand-
written implementation of FFT from github.com/ARM-Software/EndpointAI.

a modular polynomial ring Fq[X]/(Xn − 1) as
∏
i Fq[X]/(X − ωi), for ω ∈ Fq a modular

primitive n-th root of unity, that is, ωn = 1 modulo q, but ωi 6= 1 modulo q for all i < n.
Structurally, the NTT is the same as the Fourier Transform, and in particular can be

implemented in O(n logn) time through a variant of the Fast Fourier Transform. However,
the underlying coefficient arithmetic relies on modular integer arithmetic rather than
floating point or fixed point arithmetic.

Fast implementations of the Number Theoretic Transform are essential for high perfor-
mance implementations of post-quantum cryptography, which use the NTT for polynomial
multiplication (using the analogue of the convolution theorem in digital signal processing).
The recently designated winners Kyber and Dilithium [SAB+22],[LDK+22] of the NIST
Post-Quantum Cryptography standardization project [NIS16] both rely on the NTT.

Basic aspects of NTT implementations are the merging of layers (depending on register
pressure), the growth of coefficients and insertion of modular reductions (depending on
the underlying prime), and the underlying primitive for modular multiplication.

6.2 Previous implementations
[BHK+21] explores how to map modular arithmetic in the NTT to the Arm architecture,
including Armv8.1-M+Helium. [BBMK+21, BHK+22] leverage those primitives for com-
plete implementations of 32-bit NTTs in Helium. These implementations keep the data in
vector registers but load constants in general purpose registers, allowing them to maintain
a good balance between the register files, and to merge two radix-2 layers at a time.

Coming up with the implementations from [BBMK+21, BHK+22] appears challenging
due to the complex interleaving necessary to achieve good overlapping. Loc.cit. achieves
this through loop unrolling and scripted register usage tracking. While the resulting code
is of very high performance, it is difficult both to read and to adapt to other contexts.

In the following, we demonstrate how HeLight55 can be used to derive high performance
Helium assembly implementations for the NTT from readable, handwritten base imple-
mentations. Beyond being considerably less effort and easier to reproduce, the resulting

https://github.com/ARM-Software
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vldrw.s32 q0, [inB] //*........
nop //.......*.
vldrw.s32 q2, [inD] //....*....
vhadd.s32 q1, q0, q2 //......*..
vldrw.s32 q7, [inA] //..*......
nop //........*
vldrw.s32 q4, [inC] //.*.......
vhadd.s32 q6, q7, q4 //...*.....
vldrw.s32 q5, [pW2] , #16 //.....*...
loop_start:
vhadd.s32 q3, q6, q1 //........*................
vstrw.u32 q3, [inA] , #16 //.........*...............
vhsub.s32 q6, q6, q1 //..........*..............
vqdmladhx.s32 q3, q5, q6 //............*............
vldrw.s32 q1, [pW1] , #16 //................*........
vqdmlsdh.s32 q3, q5, q6 //.............*...........
vldrw.s32 q5, [pW3] , #16 //.....................*...
vhsub.s32 q6, q0, q2 //.......*.................
vldrw.s32 q0, [inB, #16] //..e......................
vhsub.s32 q2, q7, q4 //.....*...................
vstrw.u32 q3, [inB] , #16 //..............*..........
vhcadd.s32 q7, q2, q6, #270 //...............*.........
vqdmladhx.s32 q3, q1, q7 //.................*.......
vldrw.s32 q4, [inC, #16] //.e.......................
vqdmlsdh.s32 q3, q1, q7 //..................*......
vldrw.s32 q7, [inA] //e........................
vhcadd.s32 q1, q2, q6, #90 //....................*....
vstrw.u32 q3, [inC] , #16 //...................*.....
vqdmladhx.s32 q3, q5, q1 //......................*..
vhadd.s32 q6, q7, q4 //....e....................

vldrw.s32 q2, [inD, #16] //...e.....................
vqdmlsdh.s32 q3, q5, q1 //.......................*.
vldrw.s32 q5, [pW2] , #16 //...........e.............
vhadd.s32 q1, q0, q2 //......e..................
vstrw.u32 q3, [inD] , #16 //........................*
le lr, loop_start

loop_end:
vhadd.s32 q3, q6, q1 //*...................
vstrw.u32 q3, [inA] , #16 //.*..................
vhsub.s32 q6, q6, q1 //..*.................
vqdmladhx.s32 q3, q5, q6 //...*................
vldrw.s32 q1, [pW1] , #16 //....*...............
vqdmlsdh.s32 q3, q5, q6 //.....*..............
vhsub.s32 q6, q0, q2 //.......*............
vldrw.s32 q5, [pW3] , #16 //......*.............
vhsub.s32 q2, q7, q4 //........*...........
vstrw.u32 q3, [inB] , #16 //.........*..........
vhcadd.s32 q7, q2, q6, #270 //..........*.........
vqdmladhx.s32 q3, q1, q7 //...........*........
nop //...................*
vqdmlsdh.s32 q3, q1, q7 //............*.......
vstrw.u32 q3, [inC] , #16 //..............*.....
vhcadd.s32 q1, q2, q6, #90 //.............*......
vqdmladhx.s32 q3, q5, q1 //...............*....
nop //..................*.
vqdmlsdh.s32 q3, q5, q1 //................*...
vstrw.u32 q3, [inD] , #16 //.................*..

Listing 7: HeLight55 optimization of pseudocode listing Listing 5 (right) for radix-4 fixed-
point FFT. No stalls remain on Cortex-M55 for the core of the loop.

code is also much smaller than that in the previous works.
We target the NTTs used for the post-quantum cryptography schemes Kyber and

Dilithium. Kyber uses a 7-layer incomplete 16-bit NTT with n = 256 and q = 3329.
Dilithium uses an 8-layer complete 32-bit NTT with n = 256 and q = 223 − 213 + 1.

6.3 Intrinsics-based implementation
Listing 12 shows an implementation of the last two layers of the Kyber NTT using C
intrinsics for Helium (left), as well as the resulting assembly after compilation with Arm
Compiler 6.18. We observe again how the compiler manages to interleave the different
kinds of instructions well, but that without software pipelining for this loop, the final block
of VST4x constitutes a large bottleneck. We also annotate by //l two instances of a stall
because of the 2-cycle latency of multiply instructions.

6.4 Readable base implementations
We now comment on the handwritten assembly that we will use as input to HeLight55.

Initial layers of Dilithium. Listing 8 shows a naïve implementation of the first two layers
of the forward NTT for Dilithium, using macros to keep the implementation readable.
While readable, however, it performs very poorly: The back-to-back instances of load/store
and multiplication instructions mean that only little use is made of instruction overlapping
– see the unfolded version of the code displayed on Listing 8 (right).

Last layers of Kyber. The most challenging part in the NTT are layers which require
intra-vector shuffling, like the last two layers in the Kyber NTT displayed in Listing 9
(right): We notice that VLD4x and VST4x are used for (de)interleaving at load/store time,
and that additional vector registers are needed for the roots. This puts significant pressure
on the vector register file: Not only are less vectors available for the actual data, but
the arguments of VLD4x and VST4x are constrained to {Qi,Q(i+1),Q(i+2),Q(i+3)}
for i = 0, 1, 2, 3, 4. Listing 9 also shows an alternative where the VLD4x in layers 6,7 are
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1 // Barrett multiplication
2 .macro mulmod dst, src, c, c_twist
3 vmul.s32 \dst, \src, \c
4 vqrdmulh.s32 \src, \src, \c_twist
5 vmla.s32 \dst, \src, q
6 .endm
7 // Cooley-Tukey butterfly
8 .macro ct_butterfly a, b, r, r_twist
9 mulmod tmp, \b, \r, \r_twist

10 vsub.u32 \b, \a, tmp
11 vadd.u32 \a, \a, tmp
12 .endm
13 ...
14 ldrd r0, r0_twist, [r_ptr], #+8
15 ldrd r1, r1_twist, [r_ptr], #+8
16 ldrd r2, r2_twist, [r_ptr], #+8
17 layer12_loop:
18 vldrw.u32 d0, [in_lo]
19 vldrw.u32 d1, [in_lo, #256]
20 vldrw.u32 d2, [in_hi]
21 vldrw.u32 d3, [in_hi, #256]
22 ct_butterfly d0,d2,r0,r0_twist
23 ct_butterfly d1,d3,r0,r0_twist
24 ct_butterfly d0,d1,r1,r1_twist
25 ct_butterfly d2,d3,r2,r2_twist
26 vstrw.u32 d0, [in_lo],#16
27 vstrw.u32 d1, [in_lo, #-240]
28 vstrw.u32 d2, [in_hi],#16
29 vstrw.u32 d3, [in_hi, #-240]
30 le lr, layer12_loop
31 layer12_loop_end:

1 layer12_loop:
2 vldrw.u32 d0, [in_lo]
3 vldrw.u32 d1, [in_lo, #256] //-
4 vldrw.u32 d2, [in_hi] //-
5 vldrw.u32 d3, [in_hi, #256] //-
6 vmul.s32 tmp, d2, r0
7 vqrdmulh.s32 d2, d2, r0_twist //-
8 vmla.s32 tmp, d2, q //-
9 vsub.u32 d2, d0, tmp

10 vadd.u32 d0, d0, tmp //-
11 vmul.s32 tmp, d3, r0
12 vqrdmulh.s32 d3, d3, r0_twist //-
13 vmla.s32 tmp, d3, q //-
14 vsub.u32 d3, d1, tmp
15 vadd.u32 d1, d1, tmp //-
16 vmul.s32 tmp, d1, r1
17 vqrdmulh.s32 d1, d1, r1_twist //-
18 vmla.s32 tmp, d1, q //-
19 vsub.u32 d1, d0, tmp
20 vadd.u32 d0, d0, tmp //-
21 vmul.s32 tmp, d3, r2
22 vqrdmulh.s32 d3, d3, r2_twist //-
23 vmla.s32 tmp, d3, q //-
24 vsub.u32 d3, d2, tmp
25 vadd.u32 d2, d2, tmp //-
26 vstrw.u32 d0, [in_lo],#16
27 vstrw.u32 d1, [in_lo, #-240] //-
28 vstrw.u32 d2, [in_hi],#16 //-
29 vstrw.u32 d3, [in_hi, #-240] //-
30 le lr, layer12_loop
31 layer12_loop_end:

Listing 8: Naïve implementation of two merged layers of a 32-bit, radix-2 Number Theoretic
Transform. Left: Using macros for readability. Right: Unfolded.

replaced by plain VLDRs, and where we instead use VST4x in layers 4,5, thereby spreading
the complexity of VLD4x/VST4x over two separate loops.

Merging three layers. We also study merging three radix-2 NTT layers a time, which
for Helium has not been considered before. Merging layers is natural to save load/store
operations, and particularly attractive for Kyber, which has an odd number of layers.

Despite the limited amount of 8 vector registers, we find that layers 4, 5, 6 in Dilithium
and 3, 4, 5 in Kyber can be merged with only 3 stack spills per iterations – a complete
load/store sequence would amount to 8 spills. Merging layers 3, 4, 5 in Kyber allows to
split its 7-layer NTT into 2 + 3 + 2 layers. For Dilithium, we also merge layers 1, 2, 3, but
we find that large pressure also on the general purpose registers requires 3 more spills.
Listing 10 shows a symbolic implementation layers 3, 4, 5 of a Dilithium NTT.

6.5 Auto-optimized implementation
We now comment on the HeLight55 optimizations of our base implementations.

Initial layers of Dilithium. Listing 11 shows the result of optimizing the first two layers
of the Dilithium NTT (Listing 8) through HeLight55. As before, comments indicate where
instructions were originally placed, and if they are early instructions for the next iteration
– this time, five instructions are being pulled into the previous iteration. The body of the
loop is stall-free, while the preamble and postamble have stalls, which should be attempted
to be filled through further interleaving with the surrounding code.

Last layers of Kyber. We next look at the last four layers of the Kyber NTT (Listing 9).
As explained before, they are very difficult to schedule due to the constraints on VLD4,
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1 layer45_loop:
2 load_next_roots
3 vldrw.u32 d0, [in]
4 vldrw.u32 d1, [in, #16]
5 vldrw.u32 d2, [in, #32]
6 vldrw.u32 d3, [in, #48]
7 ct_butterfly d0, d2, r0, r0_tw
8 ct_butterfly d1, d3, r0, r0_tw
9 ct_butterfly d0, d1, r1, r1_tw

10 ct_butterfly d2, d3, r2, r2_tw
11 vstrw.u32 d0, [in], #64
12 vstrw.u32 d1, [in, #-48]
13 vstrw.u32 d2, [in, #-32]
14 vstrw.u32 d3, [in, #-16]
15 // ALTERNATIVE:
16 // vst40.u32 {d0, d1, d2, d3}, [in]
17 // vst41.u32 {d0, d1, d2, d3}, [in]
18 // vst42.u32 {d0, d1, d2, d3}, [in]
19 // vst43.u32 {d0, d1, d2, d3}, [in]!
20 le lr, layer45_loop
21 layer45_loop_end:

1 layer67_loop:
2 vld40.u32 {d0, d1, d2, d3}, [in]
3 vld41.u32 {d0, d1, d2, d3}, [in]
4 vld42.u32 {d0, d1, d2, d3}, [in]
5 vld43.u32 {d0, d1, d2, d3}, [in]
6 // ALTERNATIVE:
7 // vldrw.u32 di, [in, #...] i=0,1,2,3
8 vldrh.u16 r0, [r_ptr] ,#96
9 vldrh.u16 r0_tw, [r_ptr, #-80]

10 ct_butterfly d0, d2, r0, r0_tw
11 ct_butterfly d1, d3, r0, r0_tw
12 vldrh.u16 r1, [r_ptr, #-64]
13 vldrh.u16 r1_tw, [r_ptr, #-48]
14 ct_butterfly d0, d1, r1, r1_tw
15 vldrh.u16 r2, [r_ptr, #-32]
16 vldrh.u16 r2_tw, [r_ptr, #-16]
17 ct_butterfly d2, d3, r2, r2_tw
18 vst40.u32 {d0, d1, d2, d3}, [in]
19 vst41.u32 {d0, d1, d2, d3}, [in]
20 vst42.u32 {d0, d1, d2, d3}, [in]
21 vst43.u32 {d0, d1, d2, d3}, [in]!
22 le lr, layer67_loop
23 layer67_loop_end:

Listing 9: Naïve implementation of last four layers of a Kyber NTT. The use of
VLD4x/VST4x puts pressure on the vector register file.

VST4. Indeed, when we run HeLight55 on it, it runs out of time without finding a solution.
However, for the alternative variant in Listing 9 – the one trading VLD4x in layer

6,7 for VST4x in layer 4,5 – there is indeed a stall-free version on Cortex-M55: First,
running HeLight55 unmodified does not find a solution. However, HeLight55 by default uses
an overapproximation of the ST-LD-hazard, forbidding instances of VSTx; ?; VLDx
because they may lead to memory bank conflicts depending on data alignment. Ignoring
ST-LD hazards leads to the solution in Listing 13: This solution does have instances of the
ST-LD patterns, but the displayed ordering of VST4x does not actually trigger any bank
conflicts. Even though HeLight55 minimizes interleaving, we need nine early instructions.

Triple merged layers. Optimizing our Kyber and Dilithium NTT implementations with
3 + 3 + 2 and 7 = 2 + 3 + 2 layer splittings, respectively, takes considerably longer than the
2 + 2 + 2 + 2 and 1 + 2 + 2 splittings: between 5 and 20 minutes on our machine. However,
we find that the triple merged layers admit almost stall-free interleavings even without
software pipelining (some ST-LD hazards remain). This leads to compact code, and the
lost cycles are compensated for by loads and stores saved by merging three layers.

7 Results
Table 1 compares our HeLight55-generated code to prior art. Beyond performance, we
consider readability and µarch-flexibility as metrics for the practicality of code.

For the complex fixed-point FFT, we observe a speedup of 14% compared to intrinsics,
and 5.7% compared to prior handwritten assembly. Given that the FFT is an exceptionally
important and well-studied workload for DSP, we consider this improvement proof of
the capabilities of HeLight55. Our code is readable and the approach adaptable to other
(Helium-based) microarchitectures, similar to intrinsics-based code.

For the 32-bit Dilithium NTT, we compare our 3 + 3 + 2-layer and 2 + 2 + 2 + 2-layer
implementations to the 32-bit NTT from [BBMK+21] and to the Cortex-M4 implementation
from [AHKS22]. For 16-bit Kyber NTT, we compare our 1 + 2 + 2 + 2-layer and 2 + 3 + 2-
layer implementations to the recent Cortex-M4 implementations from [AHKS22, HZZ+22];
there is no prior implementation in Helium.
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1 layer456_loop:
2 ldrd rt0, rt0_tw, [r_ptr],#(7*8)
3 ldrd rt1, rt1_tw, [r_ptr, #(-6*8)]
4 ldrd rt2, rt2_tw, [r_ptr, #(-5*8)]
5 ldrd rt3, rt3_tw, [r_ptr, #(-4*8)]
6 ldrd rt4, rt4_tw, [r_ptr, #(-3*8)]
7 ldrd rt5, rt5_tw, [r_ptr, #(-2*8)]
8 ldrd rt6, rt6_tw, [r_ptr, #(-1*8)]
9 vldrw.32 data0, [in]

10 vldrw.32 data1, [in, #16]
11 vldrw.32 data2, [in, #32]
12 vldrw.32 data3, [in, #48]
13 vldrw.32 data4, [in, #64]
14 vldrw.32 data5, [in, #80]
15 vldrw.32 data6, [in, #96]
16 vldrw.32 data7, [in, #112]
17 ct_butterfly data0, data4, rt0, rt0_tw
18 ct_butterfly data1, data5, rt0, rt0_tw
19 ct_butterfly data2, data6, rt0, rt0_tw
20 ct_butterfly data3, data7, rt0, rt0_tw
21 qsave QSTACK4, data4
22 qsave QSTACK5, data5
23 qsave QSTACK6, data6

1 ct_butterfly data0, data2, rt1, rt1_tw
2 ct_butterfly data1, data3, rt1, rt1_tw
3 ct_butterfly data0, data1, rt2, rt2_tw
4 ct_butterfly data2, data3, rt3, rt3_tw
5 vstrw.32 data0, [in], #128
6 vstrw.32 data1, [in, #(-128+16)]
7 vstrw.32 data2, [in, #(-128+32)]
8 vstrw.32 data3, [in, #(-128+48)]
9 qrestore data4, QSTACK4

10 qrestore data5, QSTACK5
11 qrestore data6, QSTACK6
12 ct_butterfly data4, data6, rt4, rt4_tw
13 ct_butterfly data5, data7, rt4, rt4_tw
14 ct_butterfly data4, data5, rt5, rt5_tw
15 ct_butterfly data6, data7, rt6, rt6_tw
16 vstrw.32 data4, [in, #(-128+64)]
17 vstrw.32 data5, [in, #(-128+80)]
18 vstrw.32 data6, [in, #(-128+96)]
19 vstrw.32 data7, [in, #(-128+112)]
20 le lr, layer456_loop

Listing 10: Symbolic implementation of three merged layers of a Dilithium NTT. Three
stack spills are introduced to ensure realizability within the Armv8.1-M register files.

We see that our Dilithium NTT matches the performance of that from [BBMK+21],
while achieving a much smaller code size and ensuring maintainability through the auto-
mated derivation from a readable base implementation. We do not consider the implemen-
tation [BBMK+21] practical from the latter perspective.

For our Kyber NTT, we observe a speedup of 6.4× compared to the Cortex-M4
implementation of [AHKS22] and of 4.8× compared to [HZZ+22], while maintaining
readability and code compactness.

8 Conclusion
In this work, we have demonstrated the practicality of the use of constraint programming for
the superoptimization of instruction scheduling, register allocation and software pipelining
(periodic loop interleaving). Based on the CP-SAT solver from Google OR-Tools, we
developed a (micro)architecture agnostic core SLOTHY and an instantiation HeLight55
for Armv8.1-M+Helium and Cortex-M55r1. We showcased the power of our approach by
optimizing, in a matter of seconds to minutes, two complex workloads from Digital Signal
Processing and Post-Quantum Cryptography. We believe that SLOTHY + HeLight55 can
be generalized and applied to other (micro)architectures and workloads.

For Armv8.1-M+Helium and Cortex-M55 we confirm once again that very efficient
implementations exist for critical and complex workloads, despite the numerous software
constraints to be solved. Somewhat surprisingly, we even identify highly non-trivial
opportunities for software pipelining despite the comparatively low number of vector
registers, further increasing performance while maintaining a compact code-size.

We also consider the use of intrinsics as a more convenient and generally perferred
alternative to handwritten assembly, and find very good results in terms of the compiler’s
leverage of instruction interleaving (using Arm Compiler 6.18). Yet, we consider our
superoptimization approach as a viable alternative for code that’s of very high complexity
or for which it’s essential to unlock the last % of performance. It is also a useful vehicle
to understand the implications of different (micro)architectural properties on theoretical
performance limits.
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vldrw.u32 q0, [in_hi, #256] //.*....
vqrdmulh.s32 q5, q0, r0_tw //...*..
vldrw.u32 q3, [in_lo, #256] //*.....
vmul.s32 q0, q0, r0 //..*...
nop //.....*
vmla.s32 q0, q5, modulus //....*.
layer12_loop:

vsub.u32 q4, q3, q0 //............*...............
vmul.s32 q6, q4, r2 //...................*........
vldrw.u32 q1, [in_hi] //..*.........................
vmul.s32 q5, q1, r0 //....*.......................
vadd.u32 q7, q3, q0 //.............*..............
vqrdmulh.s32 q3, q1, r0_tw //.....*......................
vldrw.u32 q0, [in_lo] //*...........................
vmla.s32 q5, q3, modulus //......*.....................
vldrw.u32 q3, [in_lo, #272] //.e..........................
vmul.s32 q1, q7, r1 //..............*.............
vsub.u32 q2, q0, q5 //.......*....................
vqrdmulh.s32 q7, q7, r1_tw //...............*............
vadd.u32 q5, q0, q5 //........*...................
vmla.s32 q1, q7, modulus //................*...........
vldrw.u32 q7, [in_hi, #272] //...e........................
vqrdmulh.s32 q0, q4, r2_tw //....................*.......
vadd.u32 q4, q5, q1 //..................*.........
vmla.s32 q6, q0, modulus //.....................*......
vstrw.u32 q4, [in_lo], #16 //........................*...
vadd.u32 q4, q2, q6 //.......................*....
vstrw.u32 q4, [in_hi], #16 //..........................*.
vmul.s32 q0, q7, r0 //.........e..................
vsub.u32 q5, q5, q1 //.................*..........
vqrdmulh.s32 q1, q7, r0_tw //..........e.................
vstrw.u32 q5, [in_lo, #240] //.........................*..
vsub.u32 q7, q2, q6 //......................*.....
vmla.s32 q0, q1, modulus //...........e................
vstrw.u32 q7, [in_hi, #240] //...........................*
le lr, layer12_loop

layer12_loop_end:
vldrw.u32 q4, [in_hi] //..*.....................
vmul.s32 q5, q4, r0 //...*....................
vadd.u32 q1, q3, q0 //....*...................
vmul.s32 q6, q1, r1 //........*...............
vsub.u32 q7, q3, q0 //*.......................
vqrdmulh.s32 q3, q4, r0_tw //.....*..................
vldrw.u32 q0, [in_lo] //......*.................
vmla.s32 q5, q3, modulus //.......*................
nop //.......................*
vqrdmulh.s32 q1, q1, r1_tw //..........*.............
vsub.u32 q2, q0, q5 //.........*..............
vmla.s32 q6, q1, modulus //............*...........
vadd.u32 q4, q0, q5 //...........*............
vmul.s32 q5, q7, r2 //.*......................
vadd.u32 q1, q4, q6 //..............*.........
vstrw.u32 q1, [in_lo], #16 //................*.......
vqrdmulh.s32 q0, q7, r2_tw //.............*..........
vsub.u32 q1, q4, q6 //...................*....
vmla.s32 q5, q0, modulus //...............*........
vstrw.u32 q1, [in_lo, #240] //....................*...
vsub.u32 q1, q2, q5 //.....................*..
vstrw.u32 q1, [in_hi, #256] //......................*.
vadd.u32 q1, q2, q5 //.................*......
vstrw.u32 q1, [in_hi], #16 //..................*.....

Listing 11: Optimal (for Cortex-M55) scheduling for two layers of the NTT for CRYSTALS-
Dilithium. Automatically derived via HeLight55 from Listing 8.

1 static void ct_butterfly( int16x8_t* d0,
2 int16x8_t* d1, int16x8_t r, int16x8_t r_tw)
3 {
4 int16x8_t tmp; const int16_t mod = -3329;
5 tmp = *d1 * r;
6 *d1 = vqrdmulhq(*d1, r_tw);
7 tmp += *d1 * mod;
8 *d1 = *d0 - tmp;
9 *d0 = *d0 + tmp;

10 }
11 void ntt_kyber_layer67_loop_intr(
12 int16_t* in, int16_t* r_ptr)
13 {
14 int16x8x4_t data;
15 int16x8_t r0, r0_tw, r1, r1_tw; r2, r2_tw;
16 for (int i = 0; i < 8; i++) {
17 data.val[0] = vld1q(in);
18 data.val[1] = vld1q(&in[16 / 2]);
19 data.val[2] = vld1q(&in[32 / 2]);
20 data.val[3] = vld1q(&in[48 / 2]);
21 r0 = vld1q(r_ptr);
22 r0_tw = vld1q(r_ptr + 8);
23 ct_butterfly(&data.val[0], &data.val[2],
24 r0, r0_tw);
25 ct_butterfly(&data.val[1], &data.val[3],
26 r0, r0_tw);
27 r1 = vld1q(r_ptr + (8* 2));
28 r1_tw = vld1q(r_ptr + (8* 3));
29 ct_butterfly(&data.val[0], &data.val[1],
30 r1, r1_tw);
31 r2 = vld1q(r_ptr + (8* 4));
32 r2_tw = vld1q(r_ptr + (8* 5));
33 ct_butterfly(&data.val[2], &data.val[3],
34 r2, r2_tw);
35 vst4q(in, data);
36 in += (8* 4); r_ptr += (96 / 2);
37 } }

1 .LBB0_1:
2 vldrh.u16 q2, [r1], #96 //-
3 vldrh.u16 q1, [r0, #32] //-
4 vmul.i16 q0, q2, q1
5 vldrh.u16 q3, [r1, #-80]
6 vqrdmulh.s16 q1, q1, q3
7 vldrh.u16 q6, [r0]
8 vmla.u16 q0, q1, r2
9 vldrh.u16 q1, [r0, #48]

10 vmul.i16 q4, q2, q1
11 vldrh.u16 q2, [r1, #-64]
12 vqrdmulh.s16 q1, q1, q3
13 vldrh.u16 q3, [r0, #16]
14 vmla.u16 q4, q1, r2
15 vadd.i16 q1, q4, q3 //l
16 vmul.i16 q5, q1, q2
17 vldrh.u16 q2, [r1, #-48]
18 vqrdmulh.s16 q1, q1, q2
19 vsub.i16 q3, q3, q4
20 vmla.u16 q5, q1, r2
21 vadd.i16 q1, q0, q6
22 vldrh.u16 q4, [r1, #-32]
23 vsub.i16 q2, q1, q5
24 vadd.i16 q1, q5, q1 //-
25 vmul.i16 q5, q4, q3
26 vldrh.u16 q4, [r1, #-16]
27 vqrdmulh.s16 q3, q3, q4
28 vsub.i16 q0, q6, q0
29 vmla.u16 q5, q3, r2
30 vsub.i16 q4, q0, q5 //l
31 vadd.i16 q3, q5, q0 //-
32 vst40.16 {q1-q4}, [r0] //-
33 vst41.16 {q1-q4}, [r0] //-
34 vst42.16 {q1-q4}, [r0] //-
35 vst43.16 {q1-q4}, [r0]!//-
36 le lr, .LBB0_1

Listing 12: Left: Intrinsics implementation of last two layers of Kyber NTT. Right: Result
of compilation with Arm Compiler 6.18.
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layer45_loop:
vadd.u16 q3, q2, q0 //................*..............
vmul.s16 q1, q3, r2 //.................*.............
vldrw.u32 q4, [in, #32] //.....*.........................
vmul.s16 q7, q4, r4 //.......*.......................
ldrd r2, r1, [r, #-8] //..*............................
vqrdmulh.s16 q6, q4, r6 //........*......................
vsub.u16 q0, q2, q0 //...............*...............
vmla.s16 q7, q6, mod //.........*.....................
vldrw.u32 q5, [in] //...*...........................
vqrdmulh.s16 q4, q3, r8 //..................*............
vadd.u16 q2, q5, q7 //...........*...................
vmla.s16 q1, q4, mod //...................*...........
vsub.u16 q7, q5, q7 //..........*....................
vmul.s16 q5, q0, r2 //......................*........
vadd.u16 q3, q2, q1 //.....................*.........
vqrdmulh.s16 q0, q0, r1 //.......................*.......
vsub.u16 q4, q2, q1 //....................*..........
vmla.s16 q5, q0, mod //........................*......
vldrw.u32 q0, [in,#112] //......e........................
vsub.u16 q6, q7, q5 //.........................*.....
vldrw.u32 q2, [in, #80] //....e..........................
vadd.u16 q5, q7, q5 //..........................*....
ldrd r4, r6, [r] , #24 //e..............................
ldrd r2, r8, [r, #-16] //.e.............................
vst40.u32 {q3-q6}, [in] //...........................*...
vqrdmulh.s16 q1, q0, r6 //.............e.................
vst41.u32 {q3-q6}, [in] //............................*..
vmul.s16 q0, q0, r4 //............e..................
vst42.u32 {q3-q6}, [in] //.............................*.
vmla.s16 q0, q1, mod //..............e................
vst43.u32 {q3-q6},[in]! //..............................*
le lr, layer45_loop
...

layer67_loop:
vmla.s16 q7, q1, mod //........*.........................
vldrw.u32 q5, [in, #16] //.*................................
vsub.u16 q3, q5, q0 //..............*...................
vldrh.u16 q2, [r, #-32] //.......................*..........
vadd.u16 q1, q5, q0 //...............*..................
vmul.s16 q4, q3, q2 //.........................*........
vldrh.u16 q5, [r, #-16] //........................*.........
vqrdmulh.s16 q2, q3, q5 //..........................*.......
vldrh.u16 q5, [r, #-48] //.................*................
vmla.s16 q4, q2, mod //...........................*......
vldrw.u32 q0, [in] //*.................................
vsub.u16 q3, q0, q7 //.........*........................
vqrdmulh.s16 q6, q1, q5 //...................*..............
vsub.u16 q5, q3, q4 //............................*.....
vldrh.u16 q2, [r, #-64] //................*.................
vadd.u16 q4, q3, q4 //.............................*....
vmul.s16 q1, q1, q2 //..................*...............
vadd.u16 q3, q0, q7 //..........*.......................
vmla.s16 q1, q6, mod //....................*.............
vldrh.u16 q7, [r] , #96 //....e.............................
vadd.u16 q2, q3, q1 //......................*...........
vldrw.u32 q6, [in,#112] //...e..............................
vsub.u16 q3, q3, q1 //.....................*............
vldrh.u16 q1, [r, #-80] //.....e............................
vmul.s16 q0, q6, q7 //...........e......................
vst40.u32 {q2-q5}, [in] //..............................*...
vqrdmulh.s16 q6, q6, q1 //............e.....................
vst41.u32 {q2-q5}, [in] //...............................*..
vmla.s16 q0, q6, mod //.............e....................
vldrw.u32 q6, [in, #96] //..e...............................
vmul.s16 q7, q6, q7 //......e...........................
vst42.u32 {q2-q5}, [in] //................................*.
vqrdmulh.s16 q1, q6, q1 //.......e..........................
vst43.u32 {q2-q5},[in]! //.................................*
le lr, layer67_loop

Listing 13: Optimal (for Cortex-M55) scheduling for the periodic parts of the last four
laysers of the NTT for CRYSTALS-Kyber. Note the significant amount of interleaving.

Type Cycles Code size Readable Flexible
µarch

32
-b
it
D
ili
th
iu
m

N
T
T Cortex-M4

[AHKS22] Handwritten ASM 8093 1.5 KB ! %

Cortex-M55
[BBMK+21] Scripted ASM 2027 7.8 KB % %

Our work
2+2+2+2 layers HeLight55 2088 1.1 KB ! !

Our work
3+3+2 layers HeLight55 2037 1.1 KB ! !

16
-b
it
K
yb

er
N
T
T Cortex-M4

[AHKS22] Handwritten ASM 5992 2.2 KB ! %

[HZZ+22] Handwritten ASM 4474‡ ?‡ ?‡ %

Cortex-M55
Our work

1+2+2+2 layers HeLight55 1018 0.9 KB ! !

Our work
2+3+2 layers HeLight55 926 1.0 KB ! !

C
FF

T
Q
.3
1

Cortex-M55
[Arme] Intrinsics 5000 1.1 KB ! !

[Armb] Handwritten ASM 4560 1.3 KB ! %

Our work HeLight55 4300 1.4 KB ! !

‡: The code for [HZZ+22] is not publicly available yet.

Table 1: Comparison of various FFT and NTT implementations.
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