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ABSTRACT. It is well-known that the subset product problem is NP-hard. We give a proba-
bilistic polynomial time algorithm for the special case of high F2-rank.

1. INTRODUCTION

The subset product problem (SP) [GJ79] is about solving a multivariable exponential
equation

n∏
i=1

axi
i = X

for a binary solution (x1, . . . , xn) ∈ {0,1}n, where a1, . . . ,an, X ∈Z. Andrew Yao shown its NP-
completeness in a private communication in 1978 [GJ79, p. 224, p. 325]. This means that
worst-case SP cannot be solved in polynomial time unless P = NP. We show that the special
case of SP with characteristic matrix of F2-rank ≥ n− log2(nc) for some constant c can be
solved in probabilistic polynomial time.

2. CHARACTERISTIC MATRIX

Let p1, . . . , pm be the prime factors of a1, . . . ,an in ascending order. We call a matrix A ∈
Zm×n the characteristic matrix of the SP if

ai =
m∏

j=1
pA j,i

j

for all i ∈ [n]. In other words, a1, . . . ,an are products of primes selected by the columns of A
from p1, . . . , pm. Also notice that m is possibly greater than, equal to, or smaller than n.

We call the row rank (over any possible field) of the characteristic matrix the rank (over
the same field) of the SP. The rank (over a specified field) is an invariant of an SP instance.

3. ALGORITHM

Step 1. Choose k ≥ m random integers s1, . . . , sk. Reduce the equation
n∏

i=1
axi

i = X

to k modular equations of the form
n∏

i=1
axi

i ≡ X (mod s j),

for j ∈ [k].
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Step 2. Take the Jacobi symbols of a1, . . . ,an, X for each equation to get k equations
n∏

i=1

(
ai

s j

)xi

=
(

X
s j

)
,

for j ∈ [k].
Step 3. Extract from the above system a matrix equation

Bx ≡ b (mod 2),

where B ∈ {0,1}k×n, B j,i = [1−(ai/s j)]/2; and b ∈ {0,1}k, b j = [1−(X /s j)]/2. In other words, the
entries of B and b are obtained by mapping the Jacobi symbols from −1 to 1 and 1 to 0.

We call B the characteristic matrix of the Jacobi symbol matrix {(ai/s j)} j∈[k],i∈[n]; and b
the characteristic vector of the Jacobi symbol vector ((X /s j)) j∈[k].

Step 4. Search in the solution set of Bx ≡ b (mod 2) for one that satisfies
∏n

i=1 axi
i = X .

4. MAXIMIZING RANK(B)
Note that all solutions to the SP are solutions to the equation

Bx ≡ b (mod 2).

We want the rank of B over F2 to be as high as possible to reduce the searching complexity
of Step 4.

Let P ∈ {0,1}k×m be the characteristic matrix of the Jacobi symbol matrix {(pi/s j)} j∈[k],i∈[m]
with respect to the primes pi. We have

B = P A,

where A = {A j,i}m×n is the characteristic matrix of the SP. The rank of B over F2 is

rankF2(B)= rankF2(P A)≤ rankF2(A)≤min{m,n},

where rankF2(B) achieves its maximum value rankF2(A) when P achieves its maximum rank
m.

We show the existence of m integers s1, . . . , sm such that the characteristic matrix P ∈
{0,1}m×m of the Jacobi symbol matrix {(pi/s j)} j∈[m],i∈[m] is of full F2-rank. It is sufficient
to prove the following lemma, which is about achieving an arbitrary row of an arbitrary
P ∈ {0,1}m×m.

LEMMA 1. Let p1, . . . , pm be distinct primes. For any vector v ∈ {−1,1}m, there exists an
integer s such that the vector of Jacobi symbols ((p1/s), . . . , (pm/s))= v.

Proof. Case (1). All pi are odd. By the law of quadratic reciprocity, the Jacobi symbols
satisfy ( pi

s

)
=

(
s
pi

)
if and only if pi ≡ 1 (mod 4) or s ≡ 1 (mod 4). Take s ≡ 1 (mod 4). Then(( p1

s

)
, . . . ,

( pm

s

))
= v

if s satisfies the following m+1 equations:

s ≡ 1 (mod 4); and
(

s
pi

)
= vi, for i ∈ [m].
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Since pi are odd primes, the Jacobi symbols (s/pi) are Legendre symbols. So if vi = 1 then
we can define the corresponding equation to be

s ≡ 1 (mod pi),

because 1 is always a quadratic residue. Otherwise if vi =−1 then we define the correspond-
ing equation to be

s ≡ r i (mod pi),

where r i is any quadratic non-residue modulo pi
1. So the m+1 equations boil down to

s ≡ 1 (mod 4); and
s ≡ 1 (mod pi) if vi = 1, or s ≡ r i (mod pi) if vi =−1, for i ∈ [m].

By the Chinese remainder theorem (CRT), there is a unique solution s ∈Z4
∏m

i=1 pi .
Case (2). There is an even prime pa = 2 and va = 1, for some a ∈ [m]. Note that the Jacobi

symbol (
2
s

)
= 1

if s ≡ 1,7 (mod 8). We take s ≡ 1 (mod 8). This also implies that s ≡ 1 (mod 4) and thus( pi

s

)
=

(
s
pi

)
for the odd primes pi. Then the m equations that s needs to satisfy is

s ≡ 1 (mod 8); and
(

s
pi

)
= vi, for i ∈ [m], i ̸= a.

They boil down to

s ≡ 1 (mod 8); and
s ≡ 1 (mod pi) if vi = 1, or

s ≡ r i (mod pi) if vi =−1, for i ∈ [m], i ̸= a.

By CRT there is a unique solution s ∈Z8
∏

i∈[m],i ̸=a pi .
Case (3). There is an even prime pa = 2 and va = −1, for some a ∈ [m]. Note that the

Jacobi symbol (
2
s

)
=−1

if s ≡ 3,5 (mod 8). We take s ≡ 3 (mod 8). This also implies s ≡ 3 (mod 4).
Again, notice that for the odd primes pi, if pi ≡ 1 (mod 4), then( pi

s

)
=

(
s
pi

)
;

hence for
( pi

s
)= vi it suffices to require (

s
pi

)
= vi.

1If necessary, it is easy to find r i by sampling random elements from Z×
pi

because half of the elements in
Z×

pi
are quadratic non-residues.
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Otherwise if pi ≡ s ≡ 3 (mod 4), then( pi

s

)
=−

(
s
pi

)
;

hence for
( pi

s
)= vi it suffices to require (

s
pi

)
=−vi.

Hence the m equations s needs to satisfy is

s ≡ 3 (mod 8); and(
s
pi

)
= vi if pi ≡ 1 (mod 4), or(

s
pi

)
=−vi if pi ≡ 3 (mod 4), for i ∈ [m], i ̸= a.

They boil down to

s ≡ 3 (mod 8); and
s ≡ 1 (mod pi) if: [vi = 1 and pi ≡ 1 (mod 4)] or

[vi =−1 and pi ≡ 3 (mod 4)], or
s ≡ r i (mod pi) if: [vi =−1 and pi ≡ 1 (mod 4)] or

[vi = 1 and pi ≡ 3 (mod 4)], for i ∈ [m], i ̸= a.

By CRT there is a unique solution s ∈Z8
∏

i∈[m],i ̸=a pi . □

However, since we do not have the prime factors p1, . . . , pm of the integers a1, . . . ,an, we
cannot find s deterministically as in the proof of Lemma 1. We therefore choose k ≥ m
random integers s1, . . . , sk as in Step 1, and expect that for a polynomial size k the matrix
P ∈ {0,1}k×m achieves its full rank m. Then B achieves its maximum rank rankF2(A).

5. THEOREM

We state the theorem in terms of average-case SP with uniform characteristic matrix. The
conclusion about best-case SP with high rank characteristic matrix, as stated in Abstract
and Introduction, is implied.

THEOREM 1. Let m,n,d ∈ N with m ≥ n, and d ≥ 2 even. There exists a probabilistic
polynomial time algorithm that solves SP with uniform characteristic matrix A ∈Zm×n

d with
respect to random prime factors p1, . . . , pm with probability ⪆∏m

i=m−n+1(1−1/2i).

Proof. Consider the algorithm given by Section 3. It is clear that the time complexity is
polynomially in n assuming polynomial many solutions to Bx ≡ b (mod 2). Now we prove
that this happens with probability ⪆∏m

i=m−n+1(1−1/2i).
By the randomness of p1, . . . , pm we expect that by polynomially many random inte-

gers s1, . . . , sk, the F2-rank of P ∈ {0,1}k×m achieves m with overwhelming probability. I.e.,
rankF2(B)= rankF2(A) with overwhelming probability.
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Again, the probability [Lan93; Ber80; BS06] that a uniform matrix in Fm×n
2 with m ≥ n is

of full F2-rank is

p =
m∏

i=m−n+1

(
1− 1

2i

)
.

Now A ∈Zm×n
d and d is even. I.e., the entries of A are from {0, . . . ,d−1}, where half numbers

are odd and half numbers are even. Hence A (mod 2) is uniform over F2 and that it is of full
F2-rank with probability p.

If A is really full rank, we solve for the unique x and check if it gives a solution to the SP.
Else if A is not full rank but close to full rank, namely 2n−rankF2 (A) ≤ nc for some constant c,
we can still check all solutions of Bx ≡ b (mod 2) and see if there is one that satisfies the SP.
Hence the probability of solving SP is ≥ p assuming rankF2(B)= rankF2(A).

Combining the overwhelming probability of rankF2(B) = rankF2(A), we have the claimed
probability of ⪆ p. □

The following Corollary gives a better idea of what Theorem 1 means.

Corollary 1. Let m,n,d ∈ N with m ≥ 2n, and d ≥ 2 even. There exists a probabilistic
polynomial time algorithm that solves average-case SP with uniform characteristic matrix
A ∈ m×n

d with respect to random prime factors p1, . . . , pm with overwhelming probability.

Proof. Simply plug m ≥ 2n in p we have that rankF2(A)= n with probability

p =
m∏

i=m−n+1

(
1− 1

2i

)
≥

2n∏
i=n+1

(
1− 1

2i

)
>

(
1− 1

2n

)n
,

which is overwhelming in n. □
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