JACOBI SYMBOL PARITY CHECKING ALGORITHM FOR SUBSET PRODUCT

TREY LI

ABSTRACT. It is well-known that the subset product problem is NP-hard. We give a probabilistic polynomial time algorithm for the special case of high \mathbb{F}_{2}-rank.

1. Introduction

The subset product problem (SP) [GJ79] is about solving a multivariable exponential equation

$$
\prod_{i=1}^{n} a_{i}^{x_{i}}=X
$$

for a binary solution $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$, where $a_{1}, \ldots, a_{n}, X \in \mathbb{Z}$. Andrew Yao shown its NPcompleteness in a private communication in 1978 [GJ79, p. 224, p. 325]. This means that worst-case SP cannot be solved in polynomial time unless $\mathrm{P}=$ NP. We show that the special case of SP with characteristic matrix of \mathbb{F}_{2}-rank $\geq n-\log _{2}\left(n^{c}\right)$ for some constant c can be solved in probabilistic polynomial time.

2. Characteristic matrix

Let p_{1}, \ldots, p_{m} be the prime factors of a_{1}, \ldots, a_{n} in ascending order. We call a matrix $A \in$ $\mathbb{Z}^{m \times n}$ the characteristic matrix of the SP if

$$
a_{i}=\prod_{j=1}^{m} p_{j}^{A_{j, i}}
$$

for all $i \in[n]$. In other words, a_{1}, \ldots, a_{n} are products of primes selected by the columns of A from p_{1}, \ldots, p_{m}. Also notice that m is possibly greater than, equal to, or smaller than n.

We call the row rank (over any possible field) of the characteristic matrix the rank (over the same field) of the SP. The rank (over a specified field) is an invariant of an SP instance.

3. Algorithm

Step 1. Choose $k \geq m$ random integers s_{1}, \ldots, s_{k}. Reduce the equation

$$
\prod_{i=1}^{n} a_{i}^{x_{i}}=X
$$

to k modular equations of the form

$$
\prod_{i=1}^{n} a_{i}^{x_{i}} \equiv X \quad\left(\bmod s_{j}\right)
$$

for $j \in[k]$.
This is the $2^{\text {nd }}$ paper of the series. Previously: [Li22].
Date: October 2, 2022.
Email: treyquantum@gmail.com

Step 2. Take the Jacobi symbols of a_{1}, \ldots, a_{n}, X for each equation to get k equations

$$
\prod_{i=1}^{n}\left(\frac{a_{i}}{s_{j}}\right)^{x_{i}}=\left(\frac{X}{s_{j}}\right),
$$

for $j \in[k]$.
Step 3. Extract from the above system a matrix equation

$$
B x \equiv b \quad(\bmod 2),
$$

where $B \in\{0,1\}^{k \times n}, B_{j, i}=\left[1-\left(a_{i} / s_{j}\right)\right] / 2$; and $b \in\{0,1\}^{k}, b_{j}=\left[1-\left(X / s_{j}\right)\right] / 2$. In other words, the entries of B and b are obtained by mapping the Jacobi symbols from -1 to 1 and 1 to 0 .

We call B the characteristic matrix of the Jacobi symbol matrix $\left\{\left(a_{i} / s_{j}\right)\right\}_{j \in[k], i \in[n]}$; and b the characteristic vector of the Jacobi symbol vector $\left(\left(X / s_{j}\right)\right)_{j \in[k]}$.

Step 4. Search in the solution set of $B x \equiv b(\bmod 2)$ for one that satisfies $\prod_{i=1}^{n} a_{i}^{x_{i}}=X$.

4. Maximizing rank(B)

Note that all solutions to the SP are solutions to the equation

$$
B x \equiv b \quad(\bmod 2) .
$$

We want the rank of B over \mathbb{F}_{2} to be as high as possible to reduce the searching complexity of Step 4.

Let $P \in\{0,1\}^{k \times m}$ be the characteristic matrix of the Jacobi symbol matrix $\left\{\left(p_{i} / s_{j}\right)\right\}_{j \in[k], i \in[m]}$ with respect to the primes p_{i}. We have

$$
B=P A,
$$

where $A=\left\{A_{j, i}\right\}_{m \times n}$ is the characteristic matrix of the SP . The rank of B over \mathbb{F}_{2} is

$$
\operatorname{rank}_{\mathbb{F}_{2}}(B)=\operatorname{rank}_{\mathbb{F}_{2}}(P A) \leq \operatorname{rank}_{\mathbb{F}_{2}}(A) \leq \min \{m, n\}
$$

where $\operatorname{rank}_{\mathbb{F}_{2}}(B)$ achieves its maximum value $\operatorname{rank}_{\mathbb{F}_{2}}(A)$ when P achieves its maximum rank m.

We show the existence of m integers s_{1}, \ldots, s_{m} such that the characteristic matrix $P \in$ $\{0,1\}^{m \times m}$ of the Jacobi symbol matrix $\left\{\left(p_{i} / s_{j}\right)\right\}_{j \in[m], i \in[m]}$ is of full \mathbb{F}_{2}-rank. It is sufficient to prove the following lemma, which is about achieving an arbitrary row of an arbitrary $P \in\{0,1\}^{m \times m}$.

Lemma 1. Let p_{1}, \ldots, p_{m} be distinct primes. For any vector $v \in\{-1,1\}^{m}$, there exists an integer s such that the vector of Jacobi symbols $\left(\left(p_{1} / s\right), \ldots,\left(p_{m} / s\right)\right)=v$.

Proof. Case (1). All p_{i} are odd. By the law of quadratic reciprocity, the Jacobi symbols satisfy

$$
\left(\frac{p_{i}}{s}\right)=\left(\frac{s}{p_{i}}\right)
$$

if and only if $p_{i} \equiv 1(\bmod 4)$ or $s \equiv 1(\bmod 4)$. Take $s \equiv 1(\bmod 4)$. Then

$$
\left(\left(\frac{p_{1}}{s}\right), \ldots,\left(\frac{p_{m}}{s}\right)\right)=v
$$

if s satisfies the following $m+1$ equations:

$$
s \equiv 1 \quad(\bmod 4) ; \quad \text { and }\left(\frac{s}{p_{i}}\right)=v_{i}, \text { for } i \in[m] .
$$

Since p_{i} are odd primes, the Jacobi symbols (s / p_{i}) are Legendre symbols. So if $v_{i}=1$ then we can define the corresponding equation to be

$$
s \equiv 1 \quad\left(\bmod p_{i}\right),
$$

because 1 is always a quadratic residue. Otherwise if $v_{i}=-1$ then we define the corresponding equation to be

$$
s \equiv r_{i} \quad\left(\bmod p_{i}\right),
$$

where r_{i} is any quadratic non-residue modulo $p_{i}{ }^{1}$. So the $m+1$ equations boil down to

$$
s \equiv 1 \quad(\bmod 4) ; \text { and }
$$

$$
s \equiv 1 \quad\left(\bmod p_{i}\right) \text { if } v_{i}=1, \text { or } s \equiv r_{i} \quad\left(\bmod p_{i}\right) \text { if } v_{i}=-1, \text { for } i \in[m] .
$$

By the Chinese remainder theorem (CRT), there is a unique solution $s \in \mathbb{Z}_{4 \prod_{i=1}^{m} p_{i}}$.
Case (2). There is an even prime $p_{a}=2$ and $v_{a}=1$, for some $a \in[m]$. Note that the Jacobi symbol

$$
\left(\frac{2}{s}\right)=1
$$

if $s \equiv 1,7(\bmod 8)$. We take $s \equiv 1(\bmod 8)$. This also implies that $s \equiv 1(\bmod 4)$ and thus

$$
\left(\frac{p_{i}}{s}\right)=\left(\frac{s}{p_{i}}\right)
$$

for the odd primes p_{i}. Then the m equations that s needs to satisfy is

$$
s \equiv 1 \quad(\bmod 8) ; \quad \text { and }\left(\frac{s}{p_{i}}\right)=v_{i}, \text { for } i \in[m], i \neq a .
$$

They boil down to

$$
\begin{gathered}
s \equiv 1 \quad(\bmod 8) \text {; and } \\
s \equiv 1 \quad\left(\bmod p_{i}\right) \text { if } v_{i}=1, \text { or } \\
s \equiv r_{i} \quad\left(\bmod p_{i}\right) \text { if } v_{i}=-1, \text { for } i \in[m], i \neq a .
\end{gathered}
$$

By CRT there is a unique solution $s \in \mathbb{Z}_{8 \prod_{i \in[m], i \neq a} p_{i}}$.
Case (3). There is an even prime $p_{a}=2$ and $v_{a}=-1$, for some $a \in[m]$. Note that the Jacobi symbol

$$
\left(\frac{2}{s}\right)=-1
$$

if $s \equiv 3,5(\bmod 8)$. We take $s \equiv 3(\bmod 8)$. This also implies $s \equiv 3(\bmod 4)$.
Again, notice that for the odd primes p_{i}, if $p_{i} \equiv 1(\bmod 4)$, then

$$
\left(\frac{p_{i}}{s}\right)=\left(\frac{s}{p_{i}}\right)
$$

hence for $\left(\frac{p_{i}}{s}\right)=v_{i}$ it suffices to require

$$
\left(\frac{s}{p_{i}}\right)=v_{i}
$$

[^0]Otherwise if $p_{i} \equiv s \equiv 3(\bmod 4)$, then

$$
\left(\frac{p_{i}}{s}\right)=-\left(\frac{s}{p_{i}}\right)
$$

hence for $\left(\frac{p_{i}}{s}\right)=v_{i}$ it suffices to require

$$
\left(\frac{s}{p_{i}}\right)=-v_{i}
$$

Hence the m equations s needs to satisfy is

$$
\begin{gathered}
s \equiv 3 \quad(\bmod 8) ; \text { and } \\
\left(\frac{s}{p_{i}}\right)=v_{i} \text { if } p_{i} \equiv 1 \quad(\bmod 4), \text { or } \\
\left(\frac{s}{p_{i}}\right)=-v_{i} \text { if } p_{i} \equiv 3 \quad(\bmod 4), \text { for } i \in[m], i \neq a .
\end{gathered}
$$

They boil down to

$$
\begin{aligned}
& s \equiv 3 \quad(\bmod 8) ; \text { and } \\
& s \equiv 1\left(\bmod p_{i}\right) \text { if: }\left[v_{i}\right. \\
&\left.=1 \text { and } p_{i} \equiv 1 \quad(\bmod 4)\right] \text { or } \\
& {\left[v_{i}\right.}\left.=-1 \text { and } p_{i} \equiv 3 \quad(\bmod 4)\right], \text { or } \\
& s \equiv r_{i}\left(\bmod p_{i}\right) \text { if: }\left[v_{i}\right. \\
&\left.=-1 \text { and } p_{i} \equiv 1 \quad(\bmod 4)\right] \text { or } \\
& {\left[v_{i}\right.}\left.=1 \text { and } p_{i} \equiv 3 \quad(\bmod 4)\right], \text { for } i \in[m], i \neq a .
\end{aligned}
$$

By CRT there is a unique solution $s \in \mathbb{Z}_{8 \prod_{i \in[m], i \neq a} p_{i}}$.
However, since we do not have the prime factors p_{1}, \ldots, p_{m} of the integers a_{1}, \ldots, a_{n}, we cannot find s deterministically as in the proof of Lemma 1 . We therefore choose $k \geq m$ random integers s_{1}, \ldots, s_{k} as in Step 1, and expect that for a polynomial size k the matrix $P \in\{0,1\}^{k \times m}$ achieves its full rank m. Then B achieves its maximum rank $\operatorname{rank}_{\mathbb{F}_{2}}(A)$.

5. THEOREM

We state the theorem in terms of average-case SP with uniform characteristic matrix. The conclusion about best-case SP with high rank characteristic matrix, as stated in Abstract and Introduction, is implied.

THEOREM 1. Let $m, n, d \in \mathbb{N}$ with $m \geq n$, and $d \geq 2$ even. There exists a probabilistic polynomial time algorithm that solves $S P$ with uniform characteristic matrix $A \in \mathbb{Z}_{d}^{m \times n}$ with respect to random prime factors p_{1}, \ldots, p_{m} with probability $\gtrsim \prod_{i=m-n+1}^{m}\left(1-1 / 2^{i}\right)$.
Proof. Consider the algorithm given by Section 3. It is clear that the time complexity is polynomially in n assuming polynomial many solutions to $B x \equiv b(\bmod 2)$. Now we prove that this happens with probability $\gtrsim \prod_{i=m-n+1}^{m}\left(1-1 / 2^{i}\right)$.

By the randomness of p_{1}, \ldots, p_{m} we expect that by polynomially many random integers s_{1}, \ldots, s_{k}, the \mathbb{F}_{2}-rank of $P \in\{0,1\}^{k \times m}$ achieves m with overwhelming probability. I.e., $\operatorname{rank}_{\mathbb{F}_{2}}(B)=\operatorname{rank}_{\mathbb{F}_{2}}(A)$ with overwhelming probability.

Again, the probability [Lan93; Ber80; BS06] that a uniform matrix in $\mathbb{F}_{2}^{m \times n}$ with $m \geq n$ is of full \mathbb{F}_{2}-rank is

$$
p=\prod_{i=m-n+1}^{m}\left(1-\frac{1}{2^{i}}\right) .
$$

Now $A \in \mathbb{Z}_{d}^{m \times n}$ and d is even. I.e., the entries of A are from $\{0, \ldots, d-1\}$, where half numbers are odd and half numbers are even. Hence $A(\bmod 2)$ is uniform over \mathbb{F}_{2} and that it is of full \mathbb{F}_{2}-rank with probability p.

If A is really full rank, we solve for the unique x and check if it gives a solution to the SP. Else if A is not full rank but close to full rank, namely $2^{n-\operatorname{rank}_{F_{2}}(A)} \leq n^{c}$ for some constant c, we can still check all solutions of $B x \equiv b(\bmod 2)$ and see if there is one that satisfies the SP. Hence the probability of solving SP is $\geq p$ assuming $\operatorname{rank}_{\mathbb{F}_{2}}(B)=\operatorname{rank}_{\mathbb{F}_{2}}(A)$.

Combining the overwhelming probability of $\operatorname{rank}_{\mathbb{F}_{2}}(B)=\operatorname{rank}_{\mathbb{F}_{2}}(A)$, we have the claimed probability of $\gtrsim p$.

The following Corollary gives a better idea of what Theorem 1 means.
Corollary 1. Let $m, n, d \in \mathbb{N}$ with $m \geq 2 n$, and $d \geq 2$ even. There exists a probabilistic polynomial time algorithm that solves average-case SP with uniform characteristic matrix $A \in{ }_{d}^{m \times n}$ with respect to random prime factors p_{1}, \ldots, p_{m} with overwhelming probability.

Proof. Simply plug $m \geq 2 n$ in p we have that $\operatorname{rank}_{\mathbb{F}_{2}}(A)=n$ with probability

$$
p=\prod_{i=m-n+1}^{m}\left(1-\frac{1}{2^{i}}\right) \geq \prod_{i=n+1}^{2 n}\left(1-\frac{1}{2^{i}}\right)>\left(1-\frac{1}{2^{n}}\right)^{n},
$$

which is overwhelming in n.

REFERENCES

[Ber80] E.R. Berlekamp. "The technology of error-correcting codes". In: Proceedings of the IEEE 68.5 (1980), pp. 564-593. DOI: 10.1109/PROC. 1980.11696.
[BS06] Ian F Blake and Chris Studholme. "Properties of random matrices and applications". In: Unpublished report available at http:/ /www. cs. toronto. edu /~ cvs / coding (2006).
[GJ79] Michael R Garey and David S Johnson. Computers and intractability. Vol. 174. freeman San Francisco, 1979.
[Lan93] Georg Landsberg. "Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe." In: Journal für die reine und angewandte Mathematik 111 (1893), pp. 87-88. URL: http://eudml.org/doc/148874.
[Li22] Trey Li. "Subset Product with Errors over Unique Factorization Domains and Ideal Class Groups of Dedekind Domains". 1st paper of the series. 2022, October 1.

[^0]: ${ }^{1}$ If necessary, it is easy to find r_{i} by sampling random elements from $\mathbb{Z}_{p_{i}}^{\times}$because half of the elements in $\mathbb{Z}_{p_{i}}^{\times}$are quadratic non-residues.

