JACOBI SYMBOL PARITY CHECKING ALGORITHM FOR SUBSET PRODUCT

TREY LI

ABSTRACT. It is well-known that the subset product problem is NP-hard. We give a probabilistic polynomial time algorithm for the special case of high \mathbb{F}_2 -rank.

1. INTRODUCTION

The subset product problem (SP) [GJ79] is about solving a multivariable exponential equation

$$\prod_{i=1}^{n} a_i^{x_i} = X$$

for a binary solution $(x_1, ..., x_n) \in \{0, 1\}^n$, where $a_1, ..., a_n, X \in \mathbb{Z}$. Andrew Yao shown its NPcompleteness in a private communication in 1978 [GJ79, p. 224, p. 325]. This means that worst-case SP cannot be solved in polynomial time unless P = NP. We show that the special case of SP with *characteristic matrix* of \mathbb{F}_2 -rank $\ge n - \log_2(n^c)$ for some constant c can be solved in probabilistic polynomial time.

2. CHARACTERISTIC MATRIX

Let p_1, \ldots, p_m be the prime factors of a_1, \ldots, a_n in ascending order. We call a matrix $A \in \mathbb{Z}^{m \times n}$ the *characteristic matrix* of the SP if

$$a_i = \prod_{j=1}^m p_j^{A_{j,i}}$$

for all $i \in [n]$. In other words, a_1, \ldots, a_n are products of primes selected by the columns of A from p_1, \ldots, p_m . Also notice that m is possibly greater than, equal to, or smaller than n.

We call the row rank (over any possible field) of the characteristic matrix the *rank* (over the same field) of the SP. The rank (over a specified field) is an invariant of an SP instance.

3. Algorithm

Step 1. Choose $k \ge m$ random integers s_1, \ldots, s_k . Reduce the equation

$$\prod_{i=1}^n a_i^{x_i} = X$$

to *k* modular equations of the form

$$\prod_{i=1}^n a_i^{x_i} \equiv X \pmod{s_j},$$

for $j \in [k]$.

This is the 2^{nd} paper of the series. Previously: [Li22].

Date: October 2, 2022.

Email: treyquantum@gmail.com

Step 2. Take the Jacobi symbols of a_1, \ldots, a_n, X for each equation to get k equations

$$\prod_{i=1}^n \left(\frac{a_i}{s_j}\right)^{x_i} = \left(\frac{X}{s_j}\right),$$

for $j \in [k]$.

Step 3. Extract from the above system a matrix equation

$$Bx \equiv b \pmod{2}$$
,

where $B \in \{0, 1\}^{k \times n}$, $B_{j,i} = [1 - (a_i/s_j)]/2$; and $b \in \{0, 1\}^k$, $b_j = [1 - (X/s_j)]/2$. In other words, the entries of *B* and *b* are obtained by mapping the Jacobi symbols from -1 to 1 and 1 to 0.

We call *B* the characteristic matrix of the Jacobi symbol matrix $\{(a_i/s_j)\}_{j \in [k], i \in [n]}$; and *b* the characteristic vector of the Jacobi symbol vector $((X/s_j))_{j \in [k]}$.

Step 4. Search in the solution set of $Bx \equiv b \pmod{2}$ for one that satisfies $\prod_{i=1}^{n} a_i^{x_i} = X$.

4. MAXIMIZING RANK(B)

Note that all solutions to the SP are solutions to the equation

$$Bx \equiv b \pmod{2}$$
.

We want the rank of *B* over \mathbb{F}_2 to be as high as possible to reduce the searching complexity of Step 4.

Let $P \in \{0, 1\}^{k \times m}$ be the characteristic matrix of the Jacobi symbol matrix $\{(p_i/s_j)\}_{j \in [k], i \in [m]}$ with respect to the primes p_i . We have

$$B = PA$$
,

where $A = \{A_{j,i}\}_{m \times n}$ is the characteristic matrix of the SP. The rank of *B* over \mathbb{F}_2 is

$$\operatorname{rank}_{\mathbb{F}_2}(B) = \operatorname{rank}_{\mathbb{F}_2}(PA) \le \operatorname{rank}_{\mathbb{F}_2}(A) \le \min\{m, n\},$$

where rank_{\mathbb{F}_2}(*B*) achieves its maximum value rank_{\mathbb{F}_2}(*A*) when *P* achieves its maximum rank *m*.

We show the existence of *m* integers s_1, \ldots, s_m such that the characteristic matrix $P \in \{0,1\}^{m \times m}$ of the Jacobi symbol matrix $\{(p_i/s_j)\}_{j \in [m], i \in [m]}$ is of full \mathbb{F}_2 -rank. It is sufficient to prove the following lemma, which is about achieving an arbitrary row of an arbitrary $P \in \{0,1\}^{m \times m}$.

LEMMA 1. Let p_1, \ldots, p_m be distinct primes. For any vector $v \in \{-1, 1\}^m$, there exists an integer *s* such that the vector of Jacobi symbols $((p_1/s), \ldots, (p_m/s)) = v$.

Proof. Case (1). All p_i are odd. By the law of quadratic reciprocity, the Jacobi symbols satisfy

$$\left(\frac{p_i}{s}\right) = \left(\frac{s}{p_i}\right)$$

if and only if $p_i \equiv 1 \pmod{4}$ or $s \equiv 1 \pmod{4}$. Take $s \equiv 1 \pmod{4}$. Then

$$\left(\left(\frac{p_1}{s}\right),\ldots,\left(\frac{p_m}{s}\right)\right)=v$$

if *s* satisfies the following m + 1 equations:

$$s \equiv 1 \pmod{4}$$
; and $\left(\frac{s}{p_i}\right) = v_i$, for $i \in [m]$.

Since p_i are odd primes, the Jacobi symbols (s/p_i) are Legendre symbols. So if $v_i = 1$ then we can define the corresponding equation to be

$$s \equiv 1 \pmod{p_i},$$

because 1 is always a quadratic residue. Otherwise if $v_i = -1$ then we define the corresponding equation to be

$$s \equiv r_i \pmod{p_i},$$

where r_i is any quadratic non-residue modulo p_i^{1} . So the m + 1 equations boil down to

$$s \equiv 1 \pmod{4}$$
; and

$$s \equiv 1 \pmod{p_i}$$
 if $v_i = 1$, or $s \equiv r_i \pmod{p_i}$ if $v_i = -1$, for $i \in [m]$.

By the Chinese remainder theorem (CRT), there is a unique solution $s \in \mathbb{Z}_{4\prod_{i=1}^{m} p_i}$.

Case (2). There is an even prime $p_a = 2$ and $v_a = 1$, for some $a \in [m]$. Note that the Jacobi symbol

$$\left(\frac{2}{s}\right) = 1$$

if $s \equiv 1, 7 \pmod{8}$. We take $s \equiv 1 \pmod{8}$. This also implies that $s \equiv 1 \pmod{4}$ and thus

$$\left(\frac{p_i}{s}\right) = \left(\frac{s}{p_i}\right)$$

for the odd primes p_i . Then the *m* equations that *s* needs to satisfy is

$$s \equiv 1 \pmod{8}$$
; and $\left(\frac{s}{p_i}\right) = v_i$, for $i \in [m], i \neq a$.

They boil down to

$$s \equiv 1 \pmod{8}$$
; and
 $s \equiv 1 \pmod{p_i}$ if $v_i = 1$, or
 $s \equiv r_i \pmod{p_i}$ if $v_i = -1$, for $i \in [m], i \neq a$.

By CRT there is a unique solution $s \in \mathbb{Z}_{8\prod_{i \in [m], i \neq a} p_i}$. Case (3). There is an even prime $p_a = 2$ and $v_a = -1$, for some $a \in [m]$. Note that the Jacobi symbol

$$\left(\frac{2}{s}\right) = -1$$

if $s \equiv 3,5 \pmod{8}$. We take $s \equiv 3 \pmod{8}$. This also implies $s \equiv 3 \pmod{4}$.

Again, notice that for the odd primes p_i , if $p_i \equiv 1 \pmod{4}$, then

$$\left(\frac{p_i}{s}\right) = \left(\frac{s}{p_i}\right);$$

hence for $\left(\frac{p_i}{s}\right) = v_i$ it suffices to require

$$\left(\frac{s}{p_i}\right) = v_i.$$

¹If necessary, it is easy to find r_i by sampling random elements from $\mathbb{Z}_{p_i}^{\times}$ because half of the elements in $\mathbb{Z}_{p_i}^{\times}$ are quadratic non-residues.

Otherwise if $p_i \equiv s \equiv 3 \pmod{4}$, then

$$\left(\frac{p_i}{s}\right) = -\left(\frac{s}{p_i}\right);$$

hence for $\left(\frac{p_i}{s}\right) = v_i$ it suffices to require

$$\left(\frac{s}{p_i}\right) = -v_i$$

Hence the *m* equations *s* needs to satisfy is

$$s \equiv 3 \pmod{8}$$
; and
 $\left(\frac{s}{p_i}\right) = v_i \text{ if } p_i \equiv 1 \pmod{4}$, or
 $\left(\frac{s}{p_i}\right) = -v_i \text{ if } p_i \equiv 3 \pmod{4}$, for $i \in [m], i \neq a$.

They boil down to

$$s \equiv 3 \pmod{8}$$
; and
 $s \equiv 1 \pmod{p_i}$ if: $[v_i = 1 \text{ and } p_i \equiv 1 \pmod{4}]$ or
 $[v_i = -1 \text{ and } p_i \equiv 3 \pmod{4}]$, or
 $s \equiv r_i \pmod{p_i}$ if: $[v_i = -1 \text{ and } p_i \equiv 1 \pmod{4}]$ or
 $[v_i = 1 \text{ and } p_i \equiv 3 \pmod{4}]$, for $i \in [m], i \neq a$.

By CRT there is a unique solution $s \in \mathbb{Z}_{8\prod_{i \in [m], i \neq a} p_i}$.

However, since we do not have the prime factors p_1, \ldots, p_m of the integers a_1, \ldots, a_n , we cannot find *s* deterministically as in the proof of Lemma 1. We therefore choose $k \ge m$ random integers s_1, \ldots, s_k as in Step 1, and expect that for a polynomial size *k* the matrix $P \in \{0, 1\}^{k \times m}$ achieves its full rank *m*. Then *B* achieves its maximum rank rank_{F2}(*A*).

5. **Theorem**

We state the theorem in terms of average-case SP with uniform characteristic matrix. The conclusion about best-case SP with high rank characteristic matrix, as stated in Abstract and Introduction, is implied.

THEOREM 1. Let $m, n, d \in \mathbb{N}$ with $m \ge n$, and $d \ge 2$ even. There exists a probabilistic polynomial time algorithm that solves SP with uniform characteristic matrix $A \in \mathbb{Z}_d^{m \times n}$ with respect to random prime factors p_1, \ldots, p_m with probability $\gtrsim \prod_{i=m-n+1}^m (1-1/2^i)$.

Proof. Consider the algorithm given by Section 3. It is clear that the time complexity is polynomially in *n* assuming polynomial many solutions to $Bx \equiv b \pmod{2}$. Now we prove that this happens with probability $\gtrsim \prod_{i=m-n+1}^{m} (1-1/2^i)$.

By the randomness of p_1, \ldots, p_m we expect that by polynomially many random integers s_1, \ldots, s_k , the \mathbb{F}_2 -rank of $P \in \{0, 1\}^{k \times m}$ achieves m with overwhelming probability. I.e., rank $_{\mathbb{F}_2}(B) = \operatorname{rank}_{\mathbb{F}_2}(A)$ with overwhelming probability.

Again, the probability [Lan93; Ber80; BS06] that a uniform matrix in $\mathbb{F}_2^{m \times n}$ with $m \ge n$ is of full \mathbb{F}_2 -rank is

$$p = \prod_{i=m-n+1}^m \left(1 - \frac{1}{2^i}\right).$$

Now $A \in \mathbb{Z}_d^{m \times n}$ and d is even. I.e., the entries of A are from $\{0, \ldots, d-1\}$, where half numbers are odd and half numbers are even. Hence $A \pmod{2}$ is uniform over \mathbb{F}_2 and that it is of full \mathbb{F}_2 -rank with probability p.

If *A* is really full rank, we solve for the unique *x* and check if it gives a solution to the SP. Else if *A* is not full rank but close to full rank, namely $2^{n-\operatorname{rank}_{\mathbb{F}_2}(A)} \leq n^c$ for some constant *c*, we can still check all solutions of $Bx \equiv b \pmod{2}$ and see if there is one that satisfies the SP. Hence the probability of solving SP is $\geq p$ assuming $\operatorname{rank}_{\mathbb{F}_2}(B) = \operatorname{rank}_{\mathbb{F}_2}(A)$.

Combining the overwhelming probability of $\operatorname{rank}_{\mathbb{F}_2}(B) = \operatorname{rank}_{\mathbb{F}_2}(A)$, we have the claimed probability of $\geq p$.

The following Corollary gives a better idea of what Theorem 1 means.

Corollary 1. Let $m, n, d \in \mathbb{N}$ with $m \ge 2n$, and $d \ge 2$ even. There exists a probabilistic polynomial time algorithm that solves average-case SP with uniform characteristic matrix $A \in \frac{m \times n}{d}$ with respect to random prime factors p_1, \ldots, p_m with overwhelming probability.

Proof. Simply plug $m \ge 2n$ in p we have that rank_{\mathbb{F}_2}(A) = n with probability

$$p = \prod_{i=m-n+1}^{m} \left(1 - \frac{1}{2^{i}}\right) \ge \prod_{i=n+1}^{2n} \left(1 - \frac{1}{2^{i}}\right) > \left(1 - \frac{1}{2^{n}}\right)^{n},$$

which is overwhelming in n.

REFERENCES

- [Ber80] E.R. Berlekamp. "The technology of error-correcting codes". In: *Proceedings of the IEEE* 68.5 (1980), pp. 564–593. DOI: 10.1109/PROC.1980.11696.
- [BS06] Ian F Blake and Chris Studholme. "Properties of random matrices and applications". In: Unpublished report available at http://www.cs.toronto.edu/~cvs/coding (2006).
- [GJ79] Michael R Garey and David S Johnson. *Computers and intractability*. Vol. 174. freeman San Francisco, 1979.
- [Lan93] Georg Landsberg. "Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe." In: Journal für die reine und angewandte Mathematik 111 (1893), pp. 87-88. URL: http://eudml.org/doc/148874.
- [Li22] Trey Li. "Subset Product with Errors over Unique Factorization Domains and Ideal Class Groups of Dedekind Domains". 1st paper of the series. 2022, October 1.