POWER RESIDUE SYMBOL ORDER DETECTING ALGORITHM FOR SUBSET PRODUCT OVER ALGEBRAIC INTEGERS

TREY LI

Abstract

We give a probabilistic polynomial time algorithm for high \mathbb{F}_{ℓ}-rank subset product problem over the order \mathcal{O}_{K} of any algebraic field K with \mathcal{O}_{K} a principal ideal domain and the ℓ-th power residue symbol in \mathcal{O}_{K} polynomial time computable, for some rational prime ℓ.

1. Introduction

In [Li22a] we proposed the unique factorization domain subset product problem (USP), and showed that it is generally NP-hard for all unique factorization domains (UFD) with efficient multiplication. A special case of the problem is the classical subset product problem (SP) over \mathbb{Z} [GJ79]. Later in [Li22b] we proposed the Jacobi symbol parity checking algorithm to solve high \mathbb{F}_{2}-rank SP in probabilistic polynomial time. Now we extend the algorithm to deal with USP. We show that high \mathbb{F}_{ℓ}-rank USP over any UFD number order \mathcal{O}_{K} with efficient power residue symbol computation can be solved in probabilistic polynomial time, where ℓ is some rational prime such as 2 .

2. USP OVER \mathcal{O}_{K}

Let $K=\mathbb{Q}[X] /(f(X))$ be a number field with its order \mathcal{O}_{K} a principal ideal domain (PID). Note that every number ring is a Dedekind domain; and a Dedekind domain is a UFD if and only if it is a PID. Hence an order is a UFD if and only if it is a PID. Therefore \mathcal{O}_{K} is a UFD. Typical examples include rational integers \mathbb{Z}, Gaussian integers $\mathbb{Z}[i]$, and the integers $\mathbb{Z}\left[e^{\frac{2 \pi i}{n}}\right]$ with $1 \leq n \leq 22$, etc.

Since \mathcal{O}_{K} is a UFD, we can talk about USP over \mathcal{O}_{K}. USP over \mathcal{O}_{K}, denoted USP/ \mathcal{O}_{K}, is given $n+1$ elements $a_{1}, \ldots, a_{n}, X \in \mathcal{O}_{K}$, find a binary vector $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ such that

$$
\prod_{i=1}^{n} a_{i}^{x_{i}}=X
$$

Note that SP is the special $\mathrm{USP} / \mathcal{O}_{K}$ with $K=\mathbb{Q}$ and $\mathcal{O}_{K}=\mathbb{Z}$.
Let p_{1}, \ldots, p_{m} be the distinct prime factors of a_{1}, \ldots, a_{n}. A matrix $A \in \mathbb{Z}^{m \times n}$ is called a characteristic matrix of the $\mathrm{USP} / \mathcal{O}_{K}$ instance $\left(a_{1}, \ldots, a_{n}, X\right)$ if

$$
a_{i}=\prod_{j=1}^{m} p_{j}^{A_{j, i}}
$$

for all $i \in n$. We call the row rank of A (over any field) the $r a n k$ of the USP/ \mathcal{O}_{K} instance (over the same field).

[^0]Note that a USP/ \mathcal{O}_{K} instance can have different characteristic matrices for different orderings of the primes p_{1}, \ldots, p_{m}. But the rank (over a specified field) is an invariant of a $\mathrm{USP} / \mathcal{O}_{K}$ instance.

3. Algorithm

Step 1. Choose $k \geq m$ random ideals $\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{k}$ of \mathcal{O}_{K} and a rational prime $\ell \geq 2$ such that the ℓ-th power residue symbols $\left(\frac{\cdot}{\left(p_{i}\right)}\right)_{\ell}$ are well-defined ${ }^{1}$ for all prime factors p_{1}, \ldots, p_{m} of $a_{1}, \ldots, a_{n} .{ }^{2}$

Step 2. Take the ℓ-th power residue symbols for the equation

$$
\prod_{i=1}^{n} a_{i}^{x_{i}}=X
$$

above $\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{k}$ respectively to get a system of k equations of the form

$$
\prod_{i=1}^{n}\left(\frac{a_{i}}{\mathfrak{s}_{j}}\right)_{\ell}^{x_{i}}=\left(\frac{X}{\mathfrak{s}_{j}}\right)_{\ell}
$$

for $j \in[k]$.
Step 3. Extract from the above system a matrix equation

$$
B x \equiv b \quad(\bmod \ell)
$$

over \mathbb{Z}_{ℓ}, where $B \in\{0, \ldots, \ell-1\}^{k \times n}$ and $b \in\{0, \ldots, \ell-1\}^{k}$ with

$$
B_{j, i}=\operatorname{ord}\left(\left(\frac{a_{i}}{\mathfrak{s}_{j}}\right)_{\ell}\right), b_{j}=\operatorname{ord}\left(\left(\frac{X}{\mathfrak{s}_{j}}\right)_{\ell}\right)
$$

the orders of the ℓ-th power residue symbols, which are elements of the group of ℓ-th roots of unity $\mu_{\ell}=\left\{1, \zeta, \ldots, \zeta^{\ell-1}\right\}$ generated by the ℓ-th primitive root of unity ζ.

We call B the characteristic matrix of the ℓ-th residue symbol matrix

$$
\left\{\left(\frac{a_{i}}{\mathfrak{s}_{j}}\right)_{\ell}\right\}_{j \in[k], i \in[n]}
$$

and b the characteristic vector of the ℓ-th power residue symbol vector

$$
\left(\left(\frac{X}{\mathfrak{s}_{j}}\right)_{\ell}\right)_{j \in[k], i \in[n]}
$$

Step 4. Search from the solutions of $B x \equiv b(\bmod \ell)$ for one that satisfies $\prod_{i=1}^{n} a_{i}^{x_{i}}=X$.

[^1]
4. MAXIMIZING RANK(B)

We want to maximize the rank of B in order to minimize the solution set of

$$
B x \equiv b \quad(\bmod \ell)
$$

and reduce the searching complexity of Step 4.
Note that B decomposes as

$$
B=P A,
$$

where $P \in\{0, \ldots, \ell-1\}^{k \times m}$ is the characteristic matrix of the ℓ-th residue symbol matrix

$$
\left\{\left(\frac{p_{i}}{\mathfrak{s}_{j}}\right)_{\ell}\right\}_{j \in[k], i \in[m]}
$$

with respect to the prime factors p_{1}, \ldots, p_{m} of a_{1}, \ldots, a_{n}, and $A=\left\{A_{j, i}\right\}_{m \times n}$ is the characteristic matrix of the $\mathrm{USP} / \mathcal{O}_{K}$ with respect to the prime sequence (p_{1}, \ldots, p_{m}). Hence

$$
\operatorname{rank}_{\mathbb{F}_{\ell}}(B)=\operatorname{rank}_{\mathbb{F}_{\ell}}(P A) \leq \operatorname{rank}_{\mathbb{F}_{\ell}}(A) \leq \min \{m, n\} .
$$

In order to maximize $\operatorname{rank}_{\mathbb{F}_{\ell}}(B)$, we want to maximize $\operatorname{rank}_{\mathbb{F}_{\ell}}(P)$ to m. We show by the following lemma that for any $\ell \geq 2$ such that the ℓ-th power residue symbols $\left(\frac{\cdot}{\left(p_{i}\right)}\right)_{\ell}$ are well-defined, i.e., $N\left(\left(p_{i}\right)\right) \equiv 1(\bmod \ell)$ for all $i \in[m]$, there exist m ideals $\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}$ such that the characteristic matrix $P \in\{0, \ldots, \ell-1\}^{m \times m}$ of the ℓ-th power residue symbol matrix $\left\{\left(p_{i} / s_{j}\right)_{\ell}\right\}_{j \in[m], i \in[m]}$ is of full \mathbb{F}_{ℓ}-rank. In particular, the following lemma is about finding one \mathfrak{s}_{i} to achieve one row $P_{i, *}$ which can be any vector in $\{0, \ldots, \ell-1\}^{m}$.

Lemma 1. Let $p_{1}, \ldots, p_{m} \in \mathcal{O}_{K}$ be distinct primes and let $\ell \geq 2$ be a positive integer such that the norms $N\left(\left(p_{i}\right)\right) \equiv 1(\bmod \ell)$ for all $i \in[m]$. Then for any vector $v \in \mu_{\ell}^{m}$, there exists an ideal $\mathfrak{s c} \subset \mathcal{O}_{K}$ such that the vector of the ℓ-th power residue symbols $\left(\left(p_{1} / \mathfrak{s}\right)_{\ell}, \ldots,\left(p_{m} / \mathfrak{s}\right)_{\ell}\right)=v$.

Proof. We want to find \mathfrak{s} such that

$$
\left(\frac{p_{i}}{\mathfrak{s}}\right)_{\ell}=v_{i}
$$

for all $i \in[m]$. By assumption, \mathcal{O}_{K} is a principal ideal domain. Let $\mathfrak{s}=(s)$. Our goal is to find $s \in \mathcal{O}_{K}$.

At the very least, for the ℓ-th power residue symbol above (s) to be well-defined, we require that the norm

$$
N((s)) \equiv 1 \quad(\bmod \ell)
$$

for which it is sufficient to require that

$$
\begin{equation*}
s \equiv 1 \quad(\bmod (\ell)) . \tag{1}
\end{equation*}
$$

Now we show how to satisfy v. Let (p_{i}) be the principal ideal generated by p_{i}, for $i=$ $1, \ldots, m$. They are prime ideals since in any integral domain, an element is prime if and only if the principal ideal generated by it is a prime ideal.

Let

$$
\eta:=\prod_{\mathfrak{p} \mid m \infty}\left(\frac{p_{i}, s}{\mathfrak{p}}\right)
$$

be the Hilbert symbol. By the power reciprocity law,

$$
\left(\frac{p_{i}}{(s)}\right)_{\ell}=\left(\frac{s}{\left(p_{i}\right)}\right)_{\ell} \cdot \eta
$$

Hence our goal is to find s such that

$$
\left(\frac{s}{\left(p_{i}\right)}\right)_{\ell}=\eta \cdot v_{i}
$$

i.e.,

$$
\begin{equation*}
s^{\frac{N\left(\left(p_{i}\right)\right)-1}{\ell}} \equiv \eta \cdot v_{i} \quad\left(\bmod \left(p_{i}\right)\right), \tag{2}
\end{equation*}
$$

for all $i \in[m]$.
By the generalized Chinese remainder theorem (CRT), there is a unique solution $s \in$ $\mathcal{O}_{K} /\left((\ell) \prod_{i=1}^{m}\left(p_{m}\right)\right)$ to the $m+1$ equations given by (1) and (2).

5. Theorem

We state the theorem in terms of average-case USP with uniform characteristic matrix. The conclusion about best-case USP with high rank characteristic matrix, as stated in Abstract and Introduction, is implied.

THEOREM 1. Let $m, n \in \mathbb{N}$ with $m \geq n$. Let \mathcal{O}_{K} be the order of a number field K such that \mathcal{O}_{K} is a PID. Let p_{1}, \ldots, p_{m} be m random prime elements of \mathcal{O}_{K}. Let ℓ be a rational prime such that the ℓ-th power residue symbols $\left(\frac{\cdot}{\left(p_{i}\right)}\right)_{\ell}$ are well-defined for all the ideals $\left(p_{1}\right), \ldots,\left(p_{m}\right)$. Let d be a multiple of ℓ. Assume polynomial time algorithms to compute ℓ-th power residue symbols in \mathcal{O}_{K}. There exists a probabilistic polynomial time algorithm that solves USP/ \mathcal{O}_{K} with uniform characteristic matrix $A \in \mathbb{Z}_{d}^{m \times n}$ (with respect to the prime elements p_{1}, \ldots, p_{m}) with probability $\gtrsim \prod_{i=m-n+1}^{m}\left(1-1 / \ell^{i}\right)$.

Proof. Consider the algorithm given in Section 3 (with potential improvement of using different ℓ 's parallelly). By the randomness of p_{1}, \ldots, p_{m} (and possibly different ℓ 's), we expect that by polynomially many random elements s_{1}, \ldots, s_{k}, the \mathbb{F}_{ℓ}-rank of $P \in\{0, \ldots, \ell-1\}^{k \times m}$ achieves m with overwhelming probability. I.e., $\operatorname{rank}_{\mathbb{F}_{\ell}}(B)=\operatorname{rank}_{\mathbb{F}_{\ell}}(A)$ with overwhelming probability.

Again, the probability [BKW97; Coo00] that a uniform matrix in $\mathbb{F}_{\ell}^{m \times n}$ with $m \geq n$ is of full \mathbb{F}_{ℓ}-rank is

$$
p=\prod_{i=m-n+1}^{m}\left(1-\frac{1}{\ell^{i}}\right) .
$$

Now $A \in \mathbb{Z}_{d}^{m \times n}$ and d is a multiple of ℓ. Hence $A(\bmod \ell)$ is uniform over \mathbb{F}_{ℓ} and that it is of full \mathbb{F}_{ℓ}-rank with probability p.

If A is really full rank, we solve for the unique x and check if it gives a solution to the SP. Else if A is not full rank but close to full rank, we can still check all solutions of $B x \equiv b$ $(\bmod \ell)$ and see if there is one that satisfies the SP. Hence the probability of solving SP is $\geq p$ assuming $\operatorname{rank}_{\mathbb{F}_{\ell}}(B)=\operatorname{rank}_{\mathbb{F}_{\ell}}(A)$.

Combining the overwhelming probability of $\operatorname{rank}_{\mathbb{F}_{\ell}}(B)=\operatorname{rank}_{\mathbb{F}_{\ell}}(A)$, we have the claimed probability of $\gtrsim p$.

The following corollary is more intuitive.

Corollary 1. Let $m, n, d \in \mathbb{N}$ with $m \geq 2 n$, and $d \geq 2$ even. Assume polynomial time algorithms to compute power residue symbols in \mathcal{O}_{K}. There exists a probabilistic polynomial time algorithm that solves average-case $\mathrm{USP} / \mathcal{O}_{K}$ with uniform characteristic matrix $A \in{ }_{d}^{m \times n}$ with overwhelming probability.

Proof. Note that $\ell=2$ is always a "good" rational prime such that the ℓ-th power residue symbols $\left(\frac{\cdot}{(q)}\right)_{\ell}$ are well-defined (i.e. $N((q))=1(\bmod 2)$) for all prime elements $q \in \mathcal{O}_{K}$. Hence we can always take $\ell=2$.

Also note that d is even, which is a multiple of $\ell=2$. Hence the argument about the full \mathbb{F}_{ℓ}-rank probability p in the proof of Theorem 1 is completely inherited.

Now simply plug $\ell=2$ and $m \geq 2 n$ in p and we have that $\operatorname{rank}_{\mathbb{F}_{\ell}}(A)=n$ with probability

$$
p=\prod_{i=m-n+1}^{m}\left(1-\frac{1}{\ell^{i}}\right)=\prod_{i=m-n+1}^{m}\left(1-\frac{1}{2^{i}}\right) \geq \prod_{i=n+1}^{2 n}\left(1-\frac{1}{2^{i}}\right)>\left(1-\frac{1}{2^{n}}\right)^{n},
$$

which is overwhelming in n.

REFERENCES

[BKW97] Johannes Blömer, Richard Karp, and Emo Welzl. "The rank of sparse random matrices over finite fields". In: Random Structures \& Algorithms 10.4 (1997), pp. 407-419.
[Coo00] Colin Cooper. "On the distribution of rank of a random matrix over a finite field". In: Random Structures \& Algorithms 17.3-4 (2000), pp. 197-212.
[GJ79] Michael R Garey and David S Johnson. Computers and intractability. Vol. 174. freeman San Francisco, 1979.
[Li22a] Trey Li. "Subset Product with Errors over Unique Factorization Domains and Ideal Class Groups of Dedekind Domains". 1st paper of the series. 2022, October 1.
[Li22b] Trey Li. "Jacobi Symbol Parity Checking Algorithm for Subset Product". 2nd paper of the series. 2022, October 2.

[^0]: This is the $3^{\text {rd }}$ paper of the series. Previously: [Li22a; Li22b].
 Date: October 3, 2022.
 Email: treyquantum@gmail.com

[^1]: ${ }^{1}$ By well-define we mean that $N\left(\left(p_{i}\right)\right) \equiv 1(\bmod \ell)$ so that by the analogue of Fermat's theorem $a^{N\left(\left(p_{i}\right)\right)-1} \equiv 1$ $\left(\bmod \left(p_{i}\right)\right)$ for any $a \in \mathcal{O}_{K}-\left(p_{i}\right)$, the number $a^{\frac{\left.N\left(p_{i}\right)\right)-1}{\ell}}$ is "well-defined", namely $a^{\frac{N\left(\left(p_{i}\right)\right)-1}{\ell}} \equiv \zeta^{k}\left(\bmod \left(p_{i}\right)\right)$ for a unique ℓ-th root of unity ζ^{k}, where ζ is a primitive ℓ-th root of unity and $k \in\{0, \ldots, \ell-1\}$, also $N\left(\left(p_{i}\right)\right)$ is the norm of the principal ideal (p_{i}) generated by the prime element p_{i},
 ${ }^{2}$ Here we do not assume that the prime factors p_{1}, \ldots, p_{m} of a_{1}, \ldots, a_{n} are given. But it is fair to assume that such an ℓ is given or known because $\ell=2$ is always a valid choice.

