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TREY LI

ABSTRACT. We give a probabilistic polynomial time algorithm for high F,-rank subset prod-
uct problem over the order Ok of any algebraic field K with Ok a principal ideal domain and
the ¢/-th power residue symbol in Ok polynomial time computable, for some rational prime ¢.

1. INTRODUCTION

In [Li22a] we proposed the unique factorization domain subset product problem (USP),
and showed that it is generally NP-hard for all unique factorization domains (UFD) with
efficient multiplication. A special case of the problem is the classical subset product prob-
lem (SP) over Z [GJ79]. Later in [Li22b] we proposed the Jacobi symbol parity checking
algorithm to solve high Fo-rank SP in probabilistic polynomial time. Now we extend the al-
gorithm to deal with USP. We show that high F,-rank USP over any UFD number order Og
with efficient power residue symbol computation can be solved in probabilistic polynomial
time, where ¢ is some rational prime such as 2.

2. USP OVER Oy

Let K = Q[X1/(f (X)) be a number field with its order Ok a principal ideal domain (PID).
Note that every number ring is a Dedekind domain; and a Dedekind domain is a UFD if
and only if it is a PID. Hence an order is a UFD if and only if it is a PID. Therefore Ok is a
UFD. Typical examples include rational integers Z, Gaussian integers Z[i], and the integers
Zle* 1 with 1< n <22, etc.

Since Ok is a UFD, we can talk about USP over Og. USP over Ok, denoted USP/Ok, is
given n + 1 elements a1,...,a,,X € Ok, find a binary vector (x1,...,x,) € {0,1}" such that

n
Hlafi =X.
i=

Note that SP is the special USP/Og with K =Q and Og = Z.
Let p1,...,pm be the distinct prime factors of a1,...,a,. A matrix A € Z™*" is called a
characteristic matrix of the USP/Ok instance (a1,...,a,,X) if

m
Aji
a; = l_[ p j ’
J=1
for all i € n. We call the row rank of A (over any field) the rank of the USP/Og instance
(over the same field).
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Note that a USP/Ok instance can have different characteristic matrices for different or-

derings of the primes p1,...,p,. But the rank (over a specified field) is an invariant of a
USP/Ok instance.

3. ALGORITHM

Step 1. Choose k = m random ideals s1,...,5; of Ok and a rational prime ¢ = 2 such that
the /-th power residue symbols ((pj)[ are well-defined! for all prime factors p1,...,pm of

2
Al,...,0n.
Step 2. Take the ¢/-th power residue symbols for the equation

n
l_llafi =X
i=

above s51,...,5, respectively to get a system of & equations of the form
1z, -(5)
im1\si), \sjl,’

for j e [k].

Step 3. Extract from the above system a matrix equation
Bx=b (mod ¢)
over Z;, where B€{0,...,¢ —1}**" and b €{0,...,¢ — 1}* with

(2] ) o (2]

the orders of the /-th power residue symbols, which are elements of the group of ¢/-th roots
of unity u, =1{1,¢,...,¢ -1} generated by the ¢-th primitive root of unity (.
We call B the characteristic matrix of the /-th residue symbol matrix

(B
5j)e) jelrlieln]

and b the characteristic vector of the /-th power residue symbol vector

(&
5j) 0] jetr),ieln]

Step 4. Search from the solutions of Bx =b (mod /) for one that satisfies []}_, af" =X.

1By well-define we mean that N((p;)) =1 (mod ¢) so that by the analogue of Fermat’s theorem aNi)-1 =1

N(p;)-1 N(p;)-1

(mod (p;)) for any a € Og —(p;), the number a — 7 — is “well-defined”, namely a — ¢ — = ¢* (mod (p;)) for a
unique ¢-th root of unity ¢*, where ( is a primitive ¢-th root of unity and & € {0,...,¢ — 1}, also N((p;)) is the
norm of the principal ideal (p;) generated by the prime element p;,

2Here we do not assume that the prime factors pi,...,pm of ai,...,a, are given. But it is fair to assume
that such an ¢ is given or known because ¢ = 2 is always a valid choice.
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4. MAXIMIZING RANK(B)
We want to maximize the rank of B in order to minimize the solution set of
Bx=b (mod ¥)

and reduce the searching complexity of Step 4.
Note that B decomposes as
B =PA,

where P €{0,...,¢ — 1}**™ is the characteristic matrix of the ¢-th residue symbol matrix

2.}
Sjle) jerrlietm

with respect to the prime factors p1,...,pm of a1,...,a,, and A ={A; ;},,«, is the character-
istic matrix of the USP/Og with respect to the prime sequence (p1,...,pm). Hence

rankg,(B) = rankg,(PA) < rankg,(A) < min{m,n}.
In order to maximize rankg,(B), we want to maximize rankg,(P) to m. We show by the
following lemma that for any ¢ = 2 such that the /-th power residue symbols ((pﬁ)[ are
well-defined, i.e., N((p;)) = 1 (mod ¢) for all i € [m], there exist m ideals s1,...,5, such
that the characteristic matrix P € {0,...,¢ — 1}'**™ of the ¢-th power residue symbol matrix

{(pi/s;)e}jetml,ictm) is of full Fy-rank. In particular, the following lemma is about finding one
s; to achieve one row P; . which can be any vector in {0,...,¢ - 1}".

LEMMA 1. Let p1,...,pm € Ok be distinct primes and let £ > 2 be a positive integer such
that the norms N((p;)) =1 (mod ¢) for all i € [m]. Then for any vector v € u}*, there exists an
ideal s € Ok such that the vector of the /-th power residue symbols ((p1/5)s,...,(pm/5)¢) = v.

Proof. We want to find s such that
)~
s/

for all i € [m]. By assumption, Ok is a principal ideal domain. Let s = (s). Our goal is to find
S € OK.

At the very least, for the /-th power residue symbol above (s) to be well-defined, we require
that the norm

N({(s)=1 (mod ¢),

for which it is sufficient to require that

(1) s=1 (mod (¥)).
Now we show how to satisfy v. Let (p;) be the principal ideal generated by p;, for i =
1,...,m. They are prime ideals since in any integral domain, an element is prime if and only

if the principal ideal generated by it is a prime ideal.

Let
n=[] (M)

plmoo p
be the Hilbert symbol. By the power reciprocity law,

(%), (),
) i, T
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Hence our goal is to find s such that

g
(p;) [—77 .

ie.,

N((p;)-1

2) s~ ¢ =n-v; (mod (p;)),

for all i € [m].
By the generalized Chinese remainder theorem (CRT), there is a unique solution s €
Ok/((£) ]_[’iil(pm)) to the m + 1 equations given by (1) and (2). O

5. THEOREM

We state the theorem in terms of average-case USP with uniform characteristic matrix.
The conclusion about best-case USP with high rank characteristic matrix, as stated in Ab-
stract and Introduction, is implied.

THEOREM 1. Let m,n € Nwith m = n. Let Ok be the order of a number field K such that Ok
is a PID. Let p1,...,p» be m random prime elements of Ok. Let ¢ be a rational prime such

that the /-th power residue symbols (@)é are well-defined for all the ideals (p1),...,(pm).
Let d be a multiple of /. Assume polynomial time algorithms to compute ¢/-th power residue
symbols in Og. There exists a probabilistic polynomial time algorithm that solves USP/Ox

with uniform characteristic matrix A € Z7?*" (with respect to the prime elements p;,...,pm)
with probability 2 [T (1-1/0%).

i=m-n+1

Proof. Consider the algorithm given in Section 3 (with potential improvement of using dif-
ferent ¢’s parallelly). By the randomness of p1,...,p, (and possibly different ¢’s), we expect
that by polynomially many random elements si,...,ss, the Fy-rank of P € {0,...,¢ — 1}k*™
achieves m with overwhelming probability. I.e., rankf,(B) = rankg,(A) with overwhelming
probability.

Again, the probability [BKW97; Coo00] that a uniform matrix in F;"*" with m > n is of

full Fy-rank is
m

p= [] a- %).
i=m-n+1

Now A € 77" and d is a multiple of . Hence A (mod ¢) is uniform over F, and that it is of

full Fy-rank with probability p.

If A is really full rank, we solve for the unique x and check if it gives a solution to the
SP. Else if A is not full rank but close to full rank, we can still check all solutions of Bx =b
(mod ¢) and see if there is one that satisfies the SP. Hence the probability of solving SP is
> p assuming rankg,(B) = rankg,(A).

Combining the overwhelming probability of rankg,(B) = rankg,(A), we have the claimed
probability of Z p. d

The following corollary is more intuitive.
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Corollary 1. Let m,n,d € N with m = 2n, and d = 2 even. Assume polynomial time al-
gorithms to compute power residue symbols in Og. There exists a probabilistic polyno-
mial time algorithm that solves average-case USP/Og with uniform characteristic matrix
A €7*" with overwhelming probability.

Proof. Note that ¢ = 2 is always a “good” rational prime such that the ¢/-th power residue
symbols (Q_))g are well-defined (i.e. N((q9)) =1 (mod 2)) for all prime elements g € Ok. Hence
we can always take ¢ = 2.

Also note that d is even, which is a multiple of ¢ = 2. Hence the argument about the full
F¢-rank probability p in the proof of Theorem 1 is completely inherited.

Now simply plug £ =2 and m =2n in p and we have that rankg,(A) = n with probability

m 1 m 1 2n 1 1\"
= —_ | = —_ | > —_— —_—
i i=rnlj[n+1(1 [i) izmlj[n+1(1 2i) B izl;[+1 (1 2i) g (1 2n) ’

which is overwhelming in n. [
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