
Fully Adaptive
Decentralized Multi-Authority ABE

Pratish Datta∗ Ilan Komargodski† Brent Waters‡

February 15, 2023

Abstract

Decentralized multi-authority attribute-based encryption (𝖬𝖠-𝖠𝖡𝖤) is a distributed general-
ization of standard (ciphertext-policy) attribute-based encryption where there is no trusted central
authority: any party can become an authority and issue private keys, and there is no requirement
for any global coordination other than the creation of an initial set of common reference parame-
ters.

We present the first multi-authority attribute-based encryption schemes that are provably fully-
adaptively secure. Namely, our construction is secure against an attacker that may corrupt some
of the authorities as well as perform key queries adaptively throughout the life-time of the system.
Our main construction relies on a prime order bilinear group where the 𝑘-linear assumption holds
as well as on a random oracle. Along the way, we present a conceptually simpler construction
relying on a composite order bilinear group with standard subgroup decision assumptions as well
as on a random oracle.

Prior to this work, there was no construction that could resist adaptive corruptions of au-
thorities, no matter the assumptions used. In fact, we point out that even standard complexity
leveraging style arguments do not work in the multi-authority setting.

*This is the full version of an extended abstract that appears in the proceedings of EUROCRYPT 2023.
∗NTT Research. Email: pratish.datta@ntt-research.com
†Hebrew University and NTT Research. Email: ilank@cs.huji.ac.il
‡UT Austin and NTT Research. Email: bwaters@cs.utexas.edu

1

Contents

1 Introduction 1
1.1 Our Results . 2

2 Technical Overview 3
2.1 Background on 𝖬𝖠-𝖠𝖡𝖤 . 4
2.2 Fully Adaptive Security . 4
2.3 Limitations of Previous Works . 5
2.4 Overview of Our Approach and Our (Composite Order) Scheme 7

2.4.1 Our Construction . 9
2.4.2 Our Security Proof . 10

2.5 Porting to Prime Order Groups . 13

3 Preliminaries 13
3.1 Access Structures and Linear Secret Sharing Schemes 14
3.2 Strong Randomness Extractors . 14
3.3 The Notion of Fully-Adaptive Decentralized 𝖬𝖠-𝖠𝖡𝖤 for LSSS 15

4 Our Composite Order Group 𝗠𝗔-𝗔𝗕𝗘 Scheme 17
4.1 Composite Order Bilinear Groups and Assumptions 17
4.2 The Construction . 19
4.3 Correctness . 20
4.4 Security Analysis . 21

5 Our Prime Order Group 𝗠𝗔-𝗔𝗕𝗘 Scheme 47
5.1 Prime Order Bilinear Groups and Associated Notations 47
5.2 Basis Structure for the Composite to Prime Order Translation Framework 47
5.3 Prime-Order Complexity Assumptions . 48
5.4 The Construction . 49
5.5 Correctness . 51
5.6 Security Analysis . 52

1 Introduction

Attribute-based encryption schemes [SW05,GPSW06] allow fine-grained access control when ac-
cessing encrypted data: Such encryption schemes support decryption keys that allow users that
have certain credentials (or attributes) to decrypt certain messages without leaking any additional
information. Over the years, the challenge of designing ABE schemes has received tremendous
attention resulting in a long sequence of works achieving various trade-offs between expressive-
ness, efficiency, security, and underlying assumptions [BSW07, OSW07, Wat09, LOS+10, LW10,
OT10, AFV11, LW11b, Wat11, LW12, OT12, Wat12, Boy13, GGH+13, GVW13, Att14, BGG+14,
Wee14, CGW15, Att16, BV16, ABGW17, GKW17, CGKW18a, Att19, AMY19, GWW19, KW20,
Tsa19,AY20,BV20,GW20,LL20].

Multi-Authority Attribute-Based Encryption: In ABE schemes, restricted decryption
keys can only be generated and issued by a central authority who possesses the master se-
cret key. Chase [Cha07] introduced the notion of multi-authority ABE (𝖬𝖠-𝖠𝖡𝖤) which allows
multiple parties to play the role of an authority. More precisely, in an 𝖬𝖠-𝖠𝖡𝖤, there are multi-
ple authorities which control different attributes and each of them can issue secret keys to users
possessing attributes under their control without any interaction with the other authorities in
the system. Given a ciphertext generated with respect to some access policy, a user possessing a
set of attributes satisfying the access policy can decrypt the ciphertext by pulling the individual
secret keys it obtained from the various authorities controlling those attributes.

After few initial attempts [Cha07, LCLS08, MKE08, CC09, MKE09] that had various limi-
tations, Lewko and Waters [LW11a] were able to design the first truly decentralized 𝖬𝖠-𝖠𝖡𝖤
scheme in which any party can become an authority and there is no requirement for any global
coordination other than the creation of an initial trusted setup. In their scheme, a party can sim-
ply act as an authority by publishing a public key of its own and issuing private keys to different
users that reflect their attributes. Different authorities need not even be aware of each other and
they can join the system at any point of time. There is also no bound on the number of attribute
authorities that can ever come into play during the lifetime of the system. Their scheme supports
all access policies computable by 𝖭𝖢1 circuits. Furthermore, utilizing the powerful dual system
technique [Wat09], security is proven assuming a composite order bilinear group with “subgroup
decision”-style assumptions and in the random oracle model.

Following Lewko and Waters [LW11a] there were several extensions and improvements.
Okamoto and Takashima [OT20] gave a construction over prime order bilinear groups relying on
the decision-linear (DLIN) [BBS04] assumption. Rouselakis and Waters [RW15] and Ambrona and
Gay [AG21] provided efficiency improvements but provide weaker security guarantees and/or used
the less standard 𝑞-type assumptions and the generic group model (𝖦𝖦𝖬) respectively. Datta
et al. [DKW21a] gave the first Learning With Errors (LWE)-based construction supporting a
non-trivial class of access policies. All of the above are in the random oracle model. Very
recently, Waters, Wee, and Wu [WWW22] gave a construction (for the same class of policies
as [DKW21a]) whose security can be based in the plain model without random oracles, relying on
the recently-introduced evasive LWE assumption [Wee22,Tsa22] which is a very strong knowledge
type assumption.

Security: The natural 𝖬𝖠-𝖠𝖡𝖤 security definition requires the usual collusion resistance against
unauthorized users with the important difference that now some of the attribute authorities may
be corrupted and therefore may collude with the adversarial users. While some constructions
support adaptive key queries, there is no known construction, under any assumption, which sup-
ports fully adaptive corruption of authorities. Given the distributed nature of 𝖬𝖠-𝖠𝖡𝖤
it seems unsatisfying to assume that an attacker commits on a corrupted set of authorities at
the beginning of the security game, even before seeing any secret key. Indeed, in reality we do

1

not even expect all attribute authorities to join the system at the same time. Therefore, we
argue that the “static corruptions” model that previous works have considered does not capture
realistic attack scenarios, and we therefore ask whether it is possible to improve it by supporting
adaptive corruption of authorities.

We emphasize that getting fully adaptive security is a well-known gap in existing construc-
tions. Even though the authors of [LW11a] were well versed in sophisticated dual system tech-
nique, they (and all followup attempts) got fundamentally stuck in solving this obstacle. More
broadly, getting adaptive security is a fundamental area of research in the cryptographic com-
munity with many successes over the years (e.g., [Wat15,ABSV15,GW20,LL20,KW20]). Still,
this natural question in the 𝖬𝖠-𝖠𝖡𝖤 domain remained untouched.

Interestingly, this is one of the rare cases where generic complexity leveraging/guessing style
arguments fail (even if we are fine with a sub-exponential security loss). Indeed, applying these
arguments in our setting results in an exponential loss proportional to the maximum number
of authorities per ciphertext. Thus, there needs to be a pre-determined maximum number of
authorities per ciphertext limit and then the security parameter needs to be chosen appropriately.
Our goal, of course, is to devise a truly decentralized scheme where any party could join as an
authority at any point in time and there is no limit to the number of authorities.

1.1 Our Results

We construct the first truly decentralized 𝖬𝖠-𝖠𝖡𝖤 schemes which is provably secure even when
fully adaptive corruption of authorities are allowed, in addition to fully adaptive key queries.
Our schemes are based on bilinear groups with standard polynomial hardness assumptions and
in the random oracle model. We emphasize that our constructions are the first provably secure
schemes against fully adaptive corruptions of authorities under any assumption.

We first give a construction based on bilinear groups of composite order with (by now)
standard subgroup-decision assumptions, and then give a construction in prime order bilinear
groups where the 𝑘-Linear (𝑘-𝖫𝗂𝗇) [HK07, Sha07] or more generally the matrix Diffie-Hellman
(MDDH) [EHK+13] holds.

Theorem 1.1 (Informal; see Section 4): Assume a composite order bilinear group where “stan-
dard” subgroup-decision assumptions hold. Then, there is a fully-adaptive 𝖬𝖠-𝖠𝖡𝖤 scheme in
the random oracle model.

The assumptions that we use in the above theorem have been used multiple times in the
past and they were shown to hold in the generic bilinear group model [LW10, LW11b, LW11a].
However, we still point out that composite order-based constructions have few drawbacks com-
pared to the more standard prime order setting. First, in prime order groups, we can obtain
security under more standard assumptions such as 𝑘-LIN or bilinear Diffie-Hellman (BDH) [BF01]
assumption. Second, in prime order groups, we can achieve much more efficient systems for the
same security levels [Fre10,Gui13,dlPVA22]. This is because in composite order groups, security
typically relies on the hardness of factoring the group order. In turn, this requires the use of
large group orders, which results in considerably slower group and pairing operations.

To this end, starting with Freeman [Fre10] and Lewko [Lew12], multiple frameworks and tools
have been developed to translate existing composite order group constructions into prime order
analogues (see, for example, [OT10,OT12,KL15,Att16,CGW15,GDCC16,AC16,CGKW18b]).
We use a recent set of tools due to Chen, Gong, Kowalczyk, and Wee [CGKW18b] (building
on [CGW15,GDCC16]) and manage to obtain a construction in (asymmetric) bilinear groups of
prime order whose security is based on the more standard 𝑘-Lin or MDDH assumption.1

1Our construction is secure based on any choice of 𝑘. For instance, setting 𝑘 = 1 we get security under the
Symmetric External Diffie-Hellman Assumption (SXDH), and setting 𝑘 = 2 corresponds to security under the
DLIN assumption.

2

Table 1. State of the Art in Decentralized 𝖬𝖠-𝖠𝖡𝖤

Scheme Access policy Assumption Security Bounded policy size
[AG21] 𝖭𝖢1 𝖦𝖦𝖬 adaptive no
[AG21] 𝖭𝖢1 𝖲𝖷𝖣𝖧 selective no
[LW11a] 𝖭𝖢1 subgroup decision adaptive no
[OT20] 𝖭𝖢1 𝖣𝖫𝗂𝗇 adaptive no
[RW15] 𝖭𝖢1 𝑞-type static no

[DKW21a] 𝖣𝖭𝖥 𝖫𝖶𝖤 static yes
[DKW21b] 𝖭𝖢1 𝖢/𝖣-𝖡𝖣𝖧 static yes
[WWW22] 𝖣𝖭𝖥 evasive 𝖫𝖶𝖤 static yes
This Work 𝖭𝖢1 subgroup decision full no
This Work 𝖭𝖢1 𝑘-𝖫𝗂𝗇 or 𝖬𝖣𝖣𝖧 full no

In this table, static security requires all of the ciphertexts, secret keys, and corruption
queries to be issued by the adversary before the public key of any attribute author-
ity is published, selective security requires the ciphertext and corruption queries to
be made upfront while the key queries can be made adaptively, adaptive security
requires corruption queries to be issued ahead of time, but all other queries (secret
keys and ciphertexts) can be made adaptively, and full security enables all queries,
including corruption queries, to be made adaptively. Schemes having a restriction
that the maximal size of policies has to be declared during system setup are said
to have bounded policy size. All of the works are in the random oracle model ex-
cept [WWW22]. Lastly, we mention that this table only lists truly decentralized
schemes with no trusted centralized authority.

Theorem 1.2 (Informal; see Section 5): Assume a prime order bilinear group where the 𝑘-
𝖫𝗂𝗇 or 𝖬𝖣𝖣𝖧 assumption holds. Then, there is a fully-adaptive 𝖬𝖠-𝖠𝖡𝖤 scheme in the random
oracle model.

The state of the art 𝖬𝖠-𝖠𝖡𝖤 constructions are compared in Table 1.

Technical highlight: As all previous group-based decentralized 𝖬𝖠-𝖠𝖡𝖤 systems secure against
adaptive key queries in the standard model [LW11a,OT20], we also use the dual-systems method-
ology. However, as we explain below, the existing techniques in this space cannot be used to
prove fully adaptive security, that is, security against both adaptive key queries and adaptive
corruption of attribute authorities. As our main conceptual contribution, we introduce a new
technique within this space that allows us to bleed information from one sub-group to another
in an unnoticeable way. We call this technique dual systems with dual sub-systems and it allows
us to undetectably move information between different sub-groups across ciphertexts and key
components via a secondary dual sub-system. We believe that this conceptual contribution is of
independent interest. See Section 2 for details.

2 Technical Overview

This section starts by providing an overview of the notion of 𝖬𝖠-𝖠𝖡𝖤 schemes and our fully
adaptive security definition, followed by an exposition of previous works and why they failed
to achieve the fully adaptive security. We then continue with explaining our main new ideas,
followed by an overview of the final scheme and its security proof. We decided to provide
an extensive and detailed technical overview in order to help in understanding the challenges

3

stemming from the fully adaptive security model and our approach for dealing with them. A
reader interested in our constructions can directly refer to Section 2.4.1.

2.1 Background on 𝗠𝗔-𝗔𝗕𝗘

Our 𝖬𝖠-𝖠𝖡𝖤 (like all other known 𝖬𝖠-𝖠𝖡𝖤 schemes) is designed under the assumption that
each user in the system has a unique global identifier 𝖦𝖨𝖣 coming from some universe of global
identifiers 𝒢ℐ𝒟 ⊂ {0, 1}*. We shall further assume (without loss of generality) that each au-
thority controls just one attribute, and hence we can use the words “authority” and “attribute”
interchangeably. (We note that this restriction can be relaxed to support an a priori bounded
number of attributes per authority [LW11a].) We denote the authority universe by 𝒜𝒰 .

Let us recall the syntax of decentralized 𝖬𝖠-𝖠𝖡𝖤 for 𝖭𝖢1 access policies, which is well known
to be realizable by (monotone) linear secret sharing schemes (LSSS) [BL88,LW11a]. A decentral-
ized 𝖬𝖠-𝖠𝖡𝖤 scheme consists of 5 procedures
𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉,𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉,𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼, and 𝖣𝖾𝖼. The 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉 procedure gets as input the
security parameter (in unary encoding) and outputs global public parameters. All of the other
procedures depend on these global parameters (we may sometimes not mention them explicitly
when they are clear from context). The 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 procedure can be executed by any authority
𝑢 ∈ 𝒜𝒰 to generate a corresponding public and master secret key pair, (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). An au-
thority holding the master secret key 𝖬𝖲𝖪𝑢 can then generate a secret key 𝖲𝖪GID,𝑢 for a user
with global identifier 𝖦𝖨𝖣. At any point in time, using the public keys {𝖯𝖪𝑢} of some authorities,
one can encrypt a message 𝗆𝗌𝗀 relative to some linear secret sharing policy (𝑴 , 𝜌), where 𝑴
is the policy matrix and 𝜌 is the function that assigns row indices in the matrix to attributes
controlled by those authorities, to get a ciphertext 𝖢𝖳. Finally, a user holding a set of secret
keys {𝖲𝖪GID,𝑢} (relative to the same 𝖦𝖨𝖣) can decrypt a given ciphertext 𝖢𝖳 if and only if the
attributes corresponding to the secret it possesses “satisfy” the access structure with which the
ciphertext was generated. If the 𝖬𝖠-𝖠𝖡𝖤 scheme is built in the random oracle model as is the
case in this paper and in all previous collusion resistant 𝖬𝖠-𝖠𝖡𝖤 schemes,2 the existence of
a public hash function 𝖧 mapping the global identifiers in 𝒢ℐ𝒟 to some appropriate space is
considered. This hash function 𝖧 is generated by 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉 and is modeled as a random oracle
in the security proof.

2.2 Fully Adaptive Security

Just like standard ABE, the security of an 𝖬𝖠-𝖠𝖡𝖤 scheme demands collusion resistance, that
is, no group of colluding users, none of whom is individually authorized to decrypt a cipher-
text, should be able to decrypt the same when they pull their secret key components together.
However, in case of 𝖬𝖠-𝖠𝖡𝖤, it is further required that collusion resistance should hold even if
some of the attribute authorities collude with the adversarial users and thereby those users can
freely obtain secret keys corresponding to the attributes controlled by those corrupt authorities.
Decentralized 𝖬𝖠-𝖠𝖡𝖤 further allows the public and secret keys of the corrupt authorities to
be generated in a malicious way and still needs collusion resistance. This is crucial since, in a
decentralized 𝖬𝖠-𝖠𝖡𝖤 scheme, anyone is allowed to act as an attribute authority by generating
its public and secret keys locally and independently of everyone else in the system. We are aiming
for fully adaptive security which is roughly defined by the following game:

• Global Setup: The challenger runs 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉 to generate global public parameters.

• Query Phase I: The attacker is allowed to adaptively make a polynomial number of queries
of the following form:

2The very recent construction of Waters, Wee, and Wu [WWW22] is in the plain model, however, as mentioned,
it is based on a newly introduced and less standard assumption and achieves the rather weak “static” security
definition.

4

1. Authority Setup Query : the challenger runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to create a public/master key pair
for an authority specified by the adversary.

2. Secret Key Query : the challenger runs 𝖪𝖾𝗒𝖦𝖾𝗇 to create a secret key for a given attribute.

3. Authority Master Key Query : the challenger provides the attacker the master secret key
corresponding to some authority of the adversary’s choice.

• Challenge Phase: The adversary submits two messages 𝗆𝗌𝗀0,𝗆𝗌𝗀1, and an access structure
along with a set of public keys of authorities involved in the access structure. The authority
public keys supplied by the attacker can potentially be malformed, i.e., can fall outside the
range of 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉. It gets back from the challenger an encryption of one of the messages
(chosen at random) with respect to the access structure. It is crucial that the adversary does
not hold enough secret keys/authority master keys to decrypt a message that is encrypted
with respect to the access structure.

• Query Phase 2: Same as in Query Phase 1 (while making sure that the constraint from the
challenge phase is not violated).

• Guess: The attacker submits a guess for which message underlies the challenge ciphertext.

All previous 𝖬𝖠-𝖠𝖡𝖤 schemes consider a much weaker definition where the adversary must
commit during the Global Setup phase on the set of authorities in the system as well as on the
subset of corrupted authorities. Already at that point, the private/public key pairs of all non-
corrupt authorities are created by the challenger and the public keys are given to the attacker.
(That is, during Query Phase I and II, only queries of form 2 (secret key query) are allowed.)
Our fully adaptive definition is much more realistic given the distributed nature of 𝖬𝖠-𝖠𝖡𝖤.

2.3 Limitations of Previous Works

As in any 𝖠𝖡𝖤 scheme, the challenge in 𝖬𝖠-𝖠𝖡𝖤 is to make it collusion resistant. Usually, 𝖠𝖡𝖤
schemes achieve collusion resistance by using the system’s authority who knows a master secret
key to “tie” together different key components representing the different attributes of a user with
the help of fresh randomness specific to that user. Such randomization would make the different
key components of a user compatible with each other, but not with the parts of a key issued to
another user.

In a multi-authority setting, however, we want to satisfy the simultaneous goals of au-
tonomous key generation and collusion resistance. The requirement of autonomous key gen-
eration means that standard techniques for key randomization cannot be applied since there is
no one party to compile all the pieces together. Furthermore, in a decentralized 𝖬𝖠-𝖠𝖡𝖤 system
each component may come from a different authority, where such authorities have no coordina-
tion and are possibly not even aware of each other. To overcome this, all previous decentralized
𝖬𝖠-𝖠𝖡𝖤 schemes use the output of a public hash function applied on the user’s global identity,
𝖦𝖨𝖣, as the randomness tying together multiple key components issued to a specific user by
different authorities.3

To see the challenge let us focus on one particular construction due to Lewko and Wa-
ters [LW11a]. Although this is the very first truly decentralized 𝖬𝖠-𝖠𝖡𝖤 scheme, all relevant
follow-up works heavily rely on it and therefore suffer from similar problems. The security proof of
the [LW11a] construction uses the dual system technique originally developed by Waters [Wat09].
In a dual system, ciphertexts and keys can take on two forms: normal or semi-functional. Semi-
functional ciphertexts and keys are not used in the real system, they are only used in the security
proof. A normal key can decrypt normal or semi-functional ciphertexts, and a normal ciphertext
can be decrypted by normal or semi-functional keys. However, when a semi-functional key is

3 [WWW22] is an exception; see Footnote 2.

5

used to decrypt a semi-functional ciphertext, decryption will fail. Security for dual systems is
proved using a sequence of “indistinguishable” games. The first game is the real security game
(with normal ciphertext and keys). In the next game, the ciphertext is semi-functional, while
all the keys are normal. For an attacker that makes 𝑞 secret key requests, we define 𝑞 games,
where in the 𝑘-th one, the first 𝑘 keys are semi-functional while the remaining keys are normal.
In game 𝑞, all the keys and the challenge ciphertext given to the attacker are semi-functional.
Hence, none of the given keys are useful for decrypting the challenge ciphertext.

The proof of [LW11a] follows this high level approach, but inherently relies on the fact that
the corrupted authorities are specified in advance. There, towards the end of the proof, all
keys are semi-functional and the challenge ciphertext is also semi-functional. The goal in the
last hybrid is to move to a game where the semi-functional challenge ciphertext is of a random
message (rather than the original message). For this to be indistinguishable, they need to “shut
off” the rows in the matrix of the access policy corresponding to the corrupted authorities.
This is done by using an information theoretic tool of choosing a vector which is orthogonal to
those rows in the challenge ciphertext (such a vector must exist since the corrupted set must
be unauthorized). Effectively, this allows them to completely ignore the existence of authority
master keys corresponding to those rows, while for the other rows the inexistence of a secret key
was already taken care of when they moved to a game where all keys are semi-functional.

This approach clearly fails when authorities can be corrupted adaptively. Technically, it
is impossible to “shut off” the rows corresponding to the corrupted authorities since the latter
may not be even known at the time the challenge ciphertext is created since authorities may
be corrupted after the challenge ciphertext is created where the challenger should be able to
give the adversary the corresponding master key. However, with the (proof) approach of Lewko
and Waters [LW11a] this is impossible since the challenger (at that point) does not even have a
properly formed master key for the authority.

A Fundamental Limitation?: At this point it is useful to step back and try to discern
whether and why handling corrupted authorities was a foundational problem of [LW11a] and
has remained open for more than a decade. Lewko and Waters create an intricate dual system
encryption proof that uses two semi-functional subspaces. Their techniques go beyond the prior
methods of [LOS+10, LW10] to adapt to the demands of the multi-authority setting. Now the
question is the following.

Question: Is the lack of handling authority corruption mostly an oversight that can be addressed
by pushing their techniques a tiny bit further or is there a more fundamental barrier?

The answer to this question can be distilled by making a quick observation about the Lewko-
Waters construction. In their construction all user keys are composed of bilinear group elements.
Thus, one can execute a dual system encryption proof by applying subgroup decision or 𝑘-linear
assumptions (depending on the setting) to change the distribution of such groups over the course
of a sequence of games as is typically done.

The authority master secret keys however consist solely of exponents over the order of the
group. The reason for authority keys being exponents is a consequence of the demands of the
multi-authority setting. To bring authority keys into the fold of a dual system encryption proof
one would need a plan for changing such keys to some kind of semi-functional form. However,
there is no trodden path in the dual system encryption literature for doing this for keys formed
solely from exponents. Indeed, none of the hardness assumptions seem to align with this goal at
all!

Due to these fundamental barriers, the construction and proof of Lewko and Waters dealt
with key queries and corrupted authorities separately. For uncorrupted authorities, the proof
handles key generation queries via a dual system encryption. In contrast, corrupted authorities

6

were statically “routed around” in the proof so as to not have important information when needed
and thus taken “outside” the dual system encryption proof.

In our work, we will show how to overcome this barrier and bring adaptive corruption of
authorities into the fold of a dual system encryption proof. Doing so will require both a novel
construction and proof ideas. We shall focus on the composite order construction next as this is
where most of the new ideas already come up and it is also much easier to describe. We give an
overview of how we port the construction to the prime order setting in Section 2.5.

2.4 Overview of Our Approach and Our (Composite Order) Scheme
Looking into the Lewko-Waters [LW11a] 𝖬𝖠-𝖠𝖡𝖤 scheme and the security proof more closely,
we observe that their authority master keys consist of two exponents, namely 𝛼, 𝑦 ← ℤ𝑁 where
𝑁 = 𝑝1𝑝2𝑝3 is the order of the underlying composite order group. At the final step of their
security proof where they transition from a correctly formed semi-functional ciphertext for the
challenge message to one for a completely random message, they simulated the exponents 𝛼 and
𝑦 based on the instance of the underlying hard problem. As such, they could not hope to give
out those keys to the adversary during the security game. In other words, they could not support
adaptive corruption of authorities.

In order to resolve this problem, ultimately, we want to come up with a construction and a
corresponding proof strategy that never needs to simulate the authority master keys based on
instances of underlying hard problems. Towards this end, we first observe that it is due to their
scheme design that Lewko-Waters [LW11a] needed to simulate the authority master keys. More
specifically, in each ciphertext, the payload is masked with the group element 𝑒(𝑔1, 𝑔1)

𝑠 in the
target group for random 𝑠 ← ℤ𝑁 . Next, the ciphertext provides secret shares of the masking
factor 𝑠 according to the underlying access policy in the exponent of 𝑒(𝑔1, 𝑔1) and they mask
them with 𝛼 for the corresponding authorities also in the exponent of 𝑒(𝑔1, 𝑔1). This is done to
ensure that during decryption, only the shares corresponding to the attributes possessed by the
decryptor can be recovered by canceling out the 𝛼 part with a collection of appropriate secret
keys for user 𝖦𝖨𝖣.

Now, at the final hybrid transition of their security proof, they utilized an assumption similar
to decisional bilinear Diffie-Hellman (𝖣𝖡𝖣𝖧) where they simulate 𝑠 as 𝑎𝑏𝑐, where 𝑎, 𝑏, 𝑐 ← ℤ𝑁

are random exponents and unknown to the simulator. Therefore, the simulator has to embed
the term 𝑎𝑏 within 𝛼 so that it can simulate the ciphertext components containing the shares of
𝑠 by canceling out 𝑎𝑏 in the exponent.

In order to do away with 𝛼 and transition to a construction and proof technique that do not
require simulating the authority master keys, we consider a new element 𝑕 from the 𝑝1 subgroup
in the global public parameters. Instead of relying on the entropy derived from the exponents 𝛼
corresponding to the authorities/attributes a user does not possess, we would like to rely on the
entropy obtained from this new component 𝑕 to hide the payload (recall that 𝑕 is a part of the
global public parameters and is not associated with any attribute authority). Simulating 𝑕 based
on the underlying hard problem would not affect the simulator’s ability to give out authority
master keys. So, our initial idea is to simply mask the payloads with 𝑒(𝑔1, 𝑕)

𝑠 for 𝑠 ← ℤ𝑁 .
We then provide ElGamal encryptions of the secret shares of the masking factor 𝑠 under the
corresponding authority master keys, which now consist only of the exponents 𝑦. More precisely,
we include 𝐶1,𝑥 = 𝑔𝑟𝑥1 , 𝐶2,𝑥 = 𝑔

𝑦𝜌(𝑥)𝑟𝑥
1 𝑔𝜎𝑥

1 for all rows 𝑥 of the associated LSSS access structure
(𝑴 , 𝜌).4 For the user’s secret keys, instead of generating it as 𝑔𝛼 ·𝖧(𝖦𝖨𝖣)𝑦, as in Lewko-Waters
construction, we form the secret keys as (𝑕 · 𝖧(𝖦𝖨𝖣))𝑦.

The high level idea of the security proof is then to change 𝑕 from being an element of the
𝑝1 subgroup to being an element of the 𝑝1𝑝2 subgroup. Then, the factor masking the message
would become 𝑒(𝑔1, 𝑕)

𝑠 · 𝑒(𝑔2, 𝑕)𝑠. At this point, we can leverage the entropy of 𝑠 mod 𝑝2 to hide
the payload in the final game.

4The 𝜌 function maps between rows of the policy matrix 𝑴 and the index of the associated authori-
ties/attributes.

7

Dual systems with dual sub-systems: Unfortunately, the above scheme does not satisfy
correctness. This is because, at the time of decryption, while pairing the ciphertext and key
components, some additional terms involving the shares of the masking factor 𝑠 in the exponent
of 𝑒(𝑔1,𝖧(𝖦𝖨𝖣)) would remain. In order to cancel out these terms and ensure correctness, we
introduce another parallel sub-system where we provide ElGamal encryptions of shares of −𝑠
under corresponding authority master keys and provide elements of the form 𝖧(𝖦𝖨𝖣)𝑦 as part
of the user’s secret keys. At the time of decryption, this part will produce 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

−𝑠 that
will cancel 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))𝑠 from the first sub-system.

Now, observe that if the same authority master keys 𝑦 are used across both the sub-systems,
then a user obtaining (𝑕 · 𝖧(𝖦𝖨𝖣))𝑦 and 𝖧(𝖦𝖨𝖣)𝑦 as parts of its secret key can easily recover 𝑕𝑦

which may hamper security. We therefore use two different exponents for the two sub-systems.
Overall, our scheme consists of two sub-systems which we refer to as the “𝐴” sub-system and

the “B” sub-system. Accordingly, the master key of an attribute authority consists of two random
exponents 𝑦𝐴, 𝑦𝐵 ← ℤ𝑁 . The first sub-system deals with encoding the payload and the shares
of the masking factor 𝑠, whereas the second sub-system works as a shadow system to cancel out
some extra terms during decryption to ensure correctness.

Our security proof proceeds as follows. The first step of our proof is to make a ciphertext
semi-functional over the 𝑝3 subgroup. The argument relies on two key facts. (1) Any subset of
authorities the attacker compromises will not satisfy the access structure. Thus, the corrupted
authorities alone are not enough to (information theoretically) determine if the challenge cipher-
text is semi-functional. (2) The keys given out by uncorrupted authorities will not have any
component in the order 𝑝3 subgroup, thus they will not help out such an attacker (at this step).
Put together, this gives a method to leverage the information theoretic steps in order to handle
adaptive corruption of authorities. Our approach uses both computational and information the-
oretic arguments to step between different hybrid experiments. A critical feature of our security
proof is that any step that relies on the attacker’s keys not satisfying the access structure will
be an information theoretic argument, thereby sidestepping issues related to guessing which au-
thorities are corrupted. (There will of course be multiple computational arguments between and
setting up the information theoretic ones.) A similar high-level approach of using information
regarding what the adversary corrupts only in information theoretic arguments was used in few
previous dual system proofs (e.g., [Wat09,LW10,LOS+10]), but here we are able to implement
the technique in the (more challenging) distributed setting and enfolding corrupted authorities.

Our approach allows us to establish both semi-functional keys and ciphertexts in a given
subspace of the cryptosystem. However, it comes with a big caveat. While the semi-functional
argument is established in the 𝑝3 subgroup we had to keep it separate from the ciphertext
component blinding the message which lives solely in the 𝑝1 subgroup. At this stage it is therefore
unclear that all the work we did will even hide the message at all. Therefore, the next portion
of our proof needs to “bleed” the semi-functional portions of the ciphertext into the portions
blinding the message. Here again our two sub-system construction crucially comes into play. We
will take turns by first bleeding over into one and then into the other.

We call this novel technique as a dual system with dual sub-systems. This technique utilizes
the semi-functionality within one sub-system to introduce semi-functionality within the other.
Then, this will allow us to transform the challenge ciphertext and keys in such a way that
the 𝑝2 segment of the special group element 𝑕 remains information-theoretically hidden to the
adversary and so its entropy can then be amplified using a suitable randomness extractor to hide
the encrypted message completely.

As we mentioned above, we set the user secret key components for the two sub-system
asymmetrically, namely, we multiply the special group element 𝑕 within the user secret key
components that correspond to the first sub-system. But, we do not multiply it within those
corresponding to the second sub-system. We crucially leverage this asymmetry in the security
proof as follows. We first bleed the semi-functional portions within the 𝑝3 subgroup of the second

8

sub-system into the 𝑝2 subgroup of the same to make the 𝑝2 components semi-functional. After
that, we utilize this semi-functionality of the second sub-system to switch the special group
element 𝑕 from being embedded within the user secret key components of the first sub-system to
those corresponding to the second sub-system. Once we are done with this step, we then bleed
the semi-functional portions within the 𝑝3 subgroup of the first sub-system into the 𝑝2 portions
of the same and make the 𝑝2 portions of this sub-system semi-functional. This strategy is crucial
since it is not clear how to leverage the dual-system methodology to inject semi-functionality into
the 𝑝2 portions of the first sub-system if the group element 𝑕 is not moved away from this sub-
system. At this point, the 𝑝2 segment of the ciphertext component blinding the message becomes
completely independent of the 𝑝2 segments of all the other ciphertext and key components.
Therefore, we can utilize its entropy to blind the message information-theoretically. For a more
detailed overview of our hybrid proof strategy, please refer to Section 2.4.2 below.

We once again emphasize that all applications of the dual system methodology so far only
dealt with a single system. The two sub-system design is completely new to this work. Also, as
we argued above, full security of 𝖬𝖠-𝖠𝖡𝖤 seems out of reach using standard previously used dual
system techniques (since it is not clear how to bleed the semi-functional portions of the ciphertext
components into those blinding the message and make the user keys independent of the special
group element 𝑕 within a single system). As is evident from our work, our new technique is useful
and we believe that it will find further uses in other contexts related to adaptive security (for
example, constructing adaptively secure functional encryption schemes beyond linear functions
under standard group-based assumption).

2.4.1 Our Construction
Recall that our scheme relies on bilinear group 𝔾 of composite order 𝑁 which is a product of
three primes, that is, 𝑁 = 𝑝1𝑝2𝑝3 with subgroups 𝔾𝑝1 ,𝔾𝑝2 , and 𝔾𝑝3 . We also make use of
a seeded randomness extractor 𝙴𝚡𝚝 and let 𝗌𝖾𝖾𝖽 be a seed for it. The elements 𝑔1 and 𝑕 are
uniformly random generators of the subgroup 𝔾𝑝1 that along with 𝗌𝖾𝖾𝖽 are part of the global
parameters 𝖦𝖯. 𝖧 is a global hash function that we model as a random oracle in the security
proof.

At a very high level, as is evident from the construction, the encryption algorithm blinds the
message 𝗆𝗌𝗀 with the term 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), where 𝑠 is a random element in ℤ𝑁 . The goal in
the security proof is to show that given the view of the adversary there is enough entropy left in
𝑒(𝑔1, 𝑕)

𝑠 so that the message is indeed hidden. There are two secret sharing schemes involved,
one of 𝑠 and the other of −𝑠. Let us denote the shares of 𝑠 with 𝜎𝐴,𝑥 and the shares of −𝑠
with 𝜎𝐵,𝑥. The decryptor recovers 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥 and 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

𝜎𝐵,𝑥 by appropriately
pairing their keys for attributes and ciphertext components. If the user holds sufficient secret
keys to decrypt a ciphertext, the two terms 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥 and 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

𝜎𝐵,𝑥 can be
used to recover 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑠 and 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

−𝑠 which, if multiplied, give the blinding
factor 𝑒(𝑔1, 𝑕)

𝑠, as necessary.

𝗔𝘂𝘁𝗵𝗦𝗲𝘁𝘂𝗽(𝗚𝗣, 𝒖): The algorithm chooses random values 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ∈ ℤ𝑁 and outputs

𝖯𝖪𝑢 = (𝑔
𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) 𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢).

𝗘𝗻𝗰(𝗚𝗣,𝗺𝘀𝗴, (𝑴,𝝆), {𝗣𝗞𝒖}): It first chooses a random value 𝑠 ← ℤ𝑁 . It then uses the
LSSS access policy5 (𝑴 , 𝜌) to generate a secret sharing of 𝑠 where 𝜎𝐴,𝑥 will be the share for all
𝑥 ∈ [ℓ], i.e, for all 𝑥 ∈ [ℓ], let 𝜎𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴, where 𝒗𝐴 ← ℤ𝑑

𝑁 is a random vector with 𝑠 as
its first entry and 𝑴𝑥 is the 𝑥th row of 𝑴 . It additionally creates another secret sharing of −𝑠

5The access policy (𝑴 , 𝜌) is of the form 𝑴 = (𝑀𝑥,𝑗)ℓ×𝑑 = (𝑴1, . . . ,𝑴ℓ)
⊤ ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 .
The function 𝜌 associates rows of 𝑴 to authorities. We assume that 𝜌 is an injective function, that is, an
authority/attribute is associated with at most one row of 𝑴 . This can be extended to a setting where an
attribute appears within an access policy for at most a bounded number of times [Wat11,LW11a].

9

with respect to the LSSS access policy (𝑴 , 𝜌) where 𝜎𝐵,𝑥 is the corresponding share for 𝜌(𝑥) for
all 𝑥 ∈ [ℓ], i.e., for all 𝑥 ∈ [ℓ], 𝜎𝐵,𝑥 = 𝑴𝑥 ·𝒗𝐵, where 𝒗𝐵 ← ℤ𝑑

𝑁 is a random vector with −𝑠 as its
first entry. The procedure generates the ciphertext as follows: For each row 𝑥 ∈ [ℓ], it chooses
random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 and outputs the ciphertext

𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]),

where

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽), 𝐶1,𝐴,𝑥 = 𝑔

𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

𝗞𝗲𝘆𝗚𝗲𝗻(𝗚𝗣,𝗚𝗜𝗗,𝗠𝗦𝗞𝒖): The authority attribute 𝑢 generates a secret key 𝖲𝖪GID,𝑢 for 𝖦𝖨𝖣
as 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢,𝐾GID,𝐵,𝑢), where

𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 𝐾GID,𝐵,𝑢 = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢 .

𝗗𝗲𝗰(𝗚𝗣,𝗖𝗧,𝗚𝗜𝗗, {𝗦𝗞𝗚𝗜𝗗,𝒖}): Decryption takes as input the global parameters 𝖦𝖯, the hash
function 𝖧, a ciphertext 𝖢𝖳 for an LSSS access structure (𝑴 , 𝜌) with 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ]→ 𝒜𝒰 ,
the user’s global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and the secret keys

{︀
𝖲𝖪GID,𝜌(𝑥)

}︀
𝑥∈𝐼 corresponding to a

subset of rows of 𝑴 with indices 𝐼 ⊆ [ℓ]. If (1, 0, . . . , 0) is not in the span of these rows,
𝑴𝐼 , then decryption fails. Otherwise, the decryptor finds coefficients {𝑤𝑥 ∈ ℤ𝑁}𝑥∈𝐼 such that
(1, 0, . . . , 0) =

∑︀
𝑥∈𝐼 𝑤𝑥 ·𝑴𝑥.

For all 𝑥 ∈ 𝐼, the decryption algorithm computes:

𝐷𝐴,𝑥 = 𝑒(𝐶2,𝐴,𝑥,𝖧(𝖦𝖨𝖣) · 𝑕) · 𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝜌(𝑥))
−1 = 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥

𝐷𝐵,𝑥 = 𝑒(𝐶2,𝐵,𝑥,𝖧(𝖦𝖨𝖣)) · 𝑒(𝐶1,𝐵,𝑥,𝐾GID,𝐵,𝜌(𝑥))
−1 = 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

𝜎𝐵,𝑥 .

It computes 𝐷 =
∏︀

𝑥∈𝐼(𝐷𝐴,𝑥 ·𝐷𝐵,𝑥)
𝑤𝑥 = 𝑒(𝑔1, 𝑕)

𝑠 and outputs 𝐶 ⊕ 𝙴𝚡𝚝(𝐷, 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀.
The proposed scheme is correct by inspection; see Section 4.3 for details.

2.4.2 Our Security Proof
We now dive into a more detailed look at our security proof. We choose to present an overview
of the main steps of our proof interleaved with a running commentary on the intuition behind
them. Our goal here is to give a reader both a semi-detailed sense of the proof along side the
conceptual ideas driving our approach.

𝖧𝗒𝖻0 : We start with the real game.

𝖧𝗒𝖻1 : Modify the random oracle to return random elements from 𝔾𝑝1 . This modification is
clearly indistinguishable under the subgroup decision assumption between 𝔾𝑝1 and 𝔾 (As-
sumption 4.1).

After this step all user key material is relegated to the 𝔾𝑝1 subgroup. (Recall 𝑕 was already
in 𝔾𝑝1). One important consequence of this is that for any uncorrupted authority 𝑢, both
the 𝑦𝐴,𝑢 and 𝑦𝐵,𝑢 values modulo 𝑝2 and 𝑝3 are information theoretically hidden no matter
how many keys the attacker requests from the authority 𝑢.

𝖧𝗒𝖻𝟐 : Add a 𝔾𝑝3 component to each part of the challenge ciphertext. This transition follows
from the subgroup decision assumption between 𝔾𝑝1 and 𝔾𝑝1𝑝3 (Assumption 4.2).

𝖧𝗒𝖻3 : We modify the 𝔾𝑝3 components of 𝐶2,𝐴,𝑥, 𝐶2,𝐵,𝑥 to involve shares of independent secrets
instead of correlated ones.

10

This is an information theoretic step relying on two important facts. (1) That the attacker
has no information on 𝑦𝐴,𝑢, 𝑦𝐵,𝑢(mod 𝑝3) of any uncorrupted authority 𝑢 per our step in
𝖧𝗒𝖻1. The fact that 𝑦𝐴,𝑢 mod 𝑝3 is hidden (and each authority appears at most once in a
ciphertext) means that 𝐶2,𝐴,𝑥 cannot be distinguished from random in the 𝔾𝑝3 subgroup.
Thus, the share is hidden when row 𝑥 corresponds to an uncorrupted authority 𝑢. (2)
That the rows of the challenge matrix (𝑴 , 𝜌) associated with the corrupted authorities
are unauthorized for decryption. Hence, they are insufficient for learning the value of 𝑠
mod 𝑝3.

Critically, this step employs an information theoretic argument and therefore there is no is-
sue to how to properly embed a reduction to a computational assumption in the presence of
adaptive corruptions. In general, this is a theme in our whole reduction process. Through-
out the proof, we separate the computational and information theoretic arguments. The
parts of the argument that relate to what the attacker corrupted is only in the information
theoretic pieces where adaptivity is not a problem.

After this step the ciphertext begins to have a somewhat semi-functional form in that the
𝔾𝑝3 subgroups are not correlated in the system 𝐴 and 𝐵 halves. However, the effect is
currently vacuous as none of the keys “look at” the 𝔾𝑝3 subgroup which vanishes upon
pairing the keys and ciphertext.

𝖧𝗒𝖻𝟒 : Add a 𝔾𝑝2 component to each part of the challenge ciphertext. This transition follows
from the subgroup decision assumption between 𝔾𝑝1 and 𝔾𝑝1𝑝2 (Assumption 4.3).

𝖧𝗒𝖻5 : Modify the random oracle to return random elements from 𝔾𝑝1𝑝3 . The proof that this
change is indistinguishable actually goes through a sequence of sub-hybrids where we
change the oracle queries one by one. Intuitively, changing the random oracle output for
a certain 𝖦𝖨𝖣 is akin to making the secret key components for 𝖦𝖨𝖣 to be semi-functional.
Thus, the proof will need to leverage the fact that the key components acquired by 𝖦𝖨𝖣
do not satisfy the challenge ciphertext access structure. For each 𝖦𝖨𝖣 the proof will first
establish this in the 𝔾𝑝2 subgroup to be “temporarily semi-functional”, then use this to
move it to the “permanent semi-functional” space in 𝔾𝑝3 . Finally, undo the work in the
𝔾𝑝2 space to make it available for moving the next 𝖦𝖨𝖣 over.

We consider the following sequence of sub-hybrids for each random oracle query 𝖦𝖨𝖣𝑗 .

– First modify the random oracle output 𝖧(𝖦𝖨𝖣𝑗) to be a random element in 𝔾𝑝1𝑝2 instead
of 𝔾𝑝1 . This change is clearly indistinguishable under the subgroup decision assumption
between 𝔾𝑝1 and 𝔾𝑝1𝑝2 (Assumption 4.3).

– Modify the 𝔾𝑝2 components of 𝐶2,𝐴,𝑥, 𝐶2,𝐵,𝑥 to involve shares of independent secrets
instead of correlated ones. This is again an information theoretic step which uses the fact
that the rows of the challenge matrix (𝑴 , 𝜌) associated with the corrupted authorities
in conjunction with all those rows for which the adversary requests a secret key for 𝖦𝖨𝖣𝑗

are unauthorized for decryption. The adaptive corruption of the authority as well as the
adaptive key requests for 𝖦𝖨𝖣𝑗 do not cause any problem.
We emphasize that since this information theoretic argument is done over the 𝔾𝑝2 sub-
group, it does not matter whether the adversary has information about the 𝔾𝑝3 from
keys for other global identities. This is the benefit for modifying keys one by one in an
isolated subspace.

– Next, modify 𝖧(𝖦𝖨𝖣𝑗) to be a random element from the whole group 𝔾. This transi-
tion is indistinguishable under the subgroup decision assumption between 𝔾𝑝1𝑝2 and 𝔾
(Assumption 4.4). The work done so far allows us to simulate this transition using the
group elements available in the problem instance.

11

– Modify the 𝔾𝑝2 components of 𝐶2,𝐴,𝑥, 𝐶2,𝐵,𝑥 to again involve shares of correlated secrets
instead of independent ones. This is again an information theoretic step similar to the
previous one.

– Change the random oracle output 𝖧(𝖦𝖨𝖣𝑗) to be a random element in 𝔾𝑝1𝑝3 instead of
𝔾. This transition is indistinguishable under the subgroup decision assumption between
𝔾𝑝1 and 𝔾𝑝1𝑝2 (Assumption 4.3).

Note that in the above sequence of sub-hybrids, the 𝔾𝑝2 subgroup is used over and over
again to “escort” a value into the 𝔾𝑝3 subgroup. Until this step, this portion of the proof
follows closely [LW11a] at a high level although there are differences in the low level details.
In particular, unlike [LW11a] which involves a single semi-functional form of the ciphertext,
we consider several different semi-functional forms in order to handle a more sophisticated
scenario of adaptive authority corruption in addition to the adaptive secret key queries.
However, the following steps significantly depart from [LW11a].

𝖧𝗒𝖻6 : Sample 𝑕 from 𝔾𝑝1𝑝2 instead of 𝔾𝑝1 . The indistinguishability follows from the subgroup
decision assumption between 𝔾𝑝1 and 𝔾𝑝1𝑝2 (Assumption 4.3). In addition, the challenge
ciphertext message is now blinded as

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠 · 𝑒(𝑔2, 𝑕)𝑠

′′
, 𝗌𝖾𝖾𝖽)

for random 𝑠′′ and a generator 𝑔2 ∈ 𝔾𝑝2 . At this point the message is blinded in 𝔾𝑝2 while
the semi-functional components are established in the 𝔾𝑝3 subgroups for both keys and
ciphertexts. We now need to bleed these over into 𝔾𝑝2 to argue the message is hidden.

𝖧𝗒𝖻7 : Make the 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥 parts have shares of an independent random secret in 𝔾𝑝2 rather
than one correlated to 𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥. This is again an information theoretic step which
relies on the fact that the rows of the challenge matrix 𝑴 labeled by the corrupted au-
thorities are unauthorized for decryption.

We now have that the ‘𝐵’ side of our cryptosystem is complete for our proof with the
secret shared on the ‘𝐵’ side being uncorrelated in the 𝔾𝑝2 component with both the ‘𝐴’
share and 𝑠′′ from 𝐶. This step is feasible since the keys in our system are created as
𝖧(𝖦𝖨𝖣)𝑦𝐵,𝑢 . In contrast the ‘𝐴’ side has keys created as (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 . To decouple the
𝔾𝑝2 component of the ‘𝐴’ side with 𝑠′′ we must next effectively move the 𝑕 value from the
‘𝐴’ side to ‘𝐵’ side.

𝖧𝗒𝖻10 :6 Modify the random oracle output for all the global identifiers 𝖦𝖨𝖣 queried by the
adversary as 𝖧(𝖦𝖨𝖣𝑗) = 𝑃𝑗 · 𝑕−1 for the 𝑗th random oracle query where 𝑃𝑗 is randomly
sampled from 𝔾𝑝1𝑝3 . Once this transition is achieved, we will clearly have 𝖧(𝖦𝖨𝖣𝑗) ·𝑕 = 𝑃𝑗

for all random oracle queries, i.e., 𝖧(𝖦𝖨𝖣𝑗) · 𝑕 involves no 𝔾𝑝2 component. This step is
crucial for changing the 𝔾𝑝2 components of 𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥 in the subsequent hybrids. This
transition is achieved via a sequence of sub-hybrids.

– Modify the 𝑗th random oracle query to output random elements from 𝔾. The indis-
tinguishability follows from the subgroup decision assumption between 𝔾𝑝1𝑝2 and 𝔾
(Assumption 4.5).

– Modify the 𝑗th random oracle query to output 𝑅𝑗 · 𝑕−1 where 𝑅𝑗 is randomly sampled
from 𝔾. Observe that since 𝑅𝑗 is uniformly sampled from 𝔾, this new form of 𝖧(𝖦𝖨𝖣𝑗)
is actually identical to the one in the previous game.

6In our formal proof of Section 4.4 this is spread out over Hybrids 8-10. We will condense these for this
overview and thus skip two numbers of hybrids. We are however not changing the numbers from those in the
formal proof in Section 4.4 for ease of correlation.

12

– Modify the 𝑗th random oracle query to output 𝑃𝑗 · 𝑕−1 where 𝑃𝑗 is randomly sampled
from 𝔾𝑝1𝑝3 . The indistinguishability follows from the subgroup decision assumption
between 𝔾𝑝1𝑝2 and 𝔾 (Assumption 4.5).

𝖧𝗒𝖻11 : Make the 𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥 parts have shares of an independent random secret in 𝔾𝑝2 . This
is again an information theoretic step similar to the previous one of 𝖧𝗒𝖻6.

𝖧𝗒𝖻12 : Replace 𝐶 with a random value unrelated to the message. Due to the work done so far,
𝑠′′ mod 𝑝2 is information theoretically hidden and so 𝑠′′ has at least log(𝑝2) bits of entropy.
The extractor hides the message.

2.5 Porting to Prime Order Groups

As mentioned there have been many works trying to come up with a method to translate existing
composite order group constructions into prime order analogues [Fre10, Lew12, OT10, OT12,
KL15,Att16,CGW15,GDCC16,AC16,CGKW18b]. All of these frameworks are different and have
varying levels of simplicity or generality. We use the recent framework of Chen et al. [CGKW18b]
which seems to be the most efficient and (arguably) the simplest to use, and succeed in adapting
the construction as well as the proof from the composite order setting to the prime order setting.

This framework, in a high level, shows how to simulate a composite order group and its sub-
groups using a prime order group while guaranteeing a prime order analogue of various subgroup
decision style assumptions. These analogues follow from the standard 𝑘-Linear assumption (and
more generally, the MDDH assumption [EHK+17]). Here, since the translation process is not
completely black box and needs to be adapted for the scheme at hand, we need to introduce
a few extra technical ideas to handle our specific setting. Specifically, the proof of security of
our prime order construction relies not only on subgroup decision style assumptions but also on
few information theoretic arguments as well as on the security of a random oracle. Using the
framework and making it work on our scheme is fairly technical and systematic; we refer to the
technical section for details. Nevertheless, we point out that the high level idea as well as the
sequence of hybrids is the same as in the composite order case.

3 Preliminaries

A function 𝗇𝖾𝗀𝗅 : ℕ → ℝ is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant 𝑐 > 0 there exists an integer 𝑁𝑐 such that 𝗇𝖾𝗀𝗅(𝜆) ≤ 𝜆−𝑐 for
all 𝜆 > 𝑁𝑐. We let [𝑛] = {1, . . . , 𝑛}.

We use bold lower case letters, such as 𝒗, to denote vectors and upper-case, such as 𝑴 , for
matrices. We assume all vectors, by default, are column vectors. The 𝑖th row of a matrix is
denoted 𝑴𝑖 and analogously for a set of row indices 𝐼, we denote 𝑴𝐼 for the sub-matrix of 𝑴
that consists of the rows 𝑴𝑖 for all 𝑖 ∈ 𝐼. For an integer 𝑞 ≥ 2, we let ℤ𝑞 denote the ring of
integers modulo 𝑞. We represent ℤ𝑞 as integers in the range (−𝑞/2, 𝑞/2].

Indistinguishability: Two sequences of random variables 𝒳 = {𝒳𝜆}𝜆∈ℕ and 𝒴 = {𝒴𝜆}𝜆∈ℕ
are computationally indistinguishable if for any non-uniform PPT algorithm 𝒜 there exists a
negligible function 𝗇𝖾𝗀𝗅(·) such that |Pr[𝒜(1𝜆,𝒳𝜆) = 1] − Pr[𝒜(1𝜆,𝒴𝜆) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆) for
all 𝜆 ∈ ℕ.

For two distributions 𝒟 and 𝒟′ over a discrete domain Ω, the statistical distance between 𝒟
and 𝒟′ is defined as 𝖲𝖣(𝒟,𝒟′) = (1/2) ·

∑︀
𝜔∈Ω |𝒟(𝜔) − 𝒟′(𝜔)|. A family of distributions 𝒟 =

{𝒟𝜆}𝜆∈ℕ and 𝒟′ = {𝒟′
𝜆}𝜆∈ℕ, parameterized by security parameter 𝜆, are said to be statistically

indistinguishable if there is a negligible function 𝗇𝖾𝗀𝗅(·) such that 𝖲𝖣(𝒟𝜆,𝒟′
𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆) for

all 𝜆 ∈ ℕ.

13

3.1 Access Structures and Linear Secret Sharing Schemes

In this subsection, we present the definitions of access structures and linear secret sharing
schemes.

Definition 3.1 (Access Structures, [BL88, Bei12]): Let 𝕌 be the attribute universe. An
access structure on 𝕌 is a collection 𝔸 ⊆ 2𝕌 ∖ ∅ of non-empty sets of attributes. The sets in 𝔸
are called the authorized sets and the sets not in 𝔸 are called the unauthorized sets. An access
structure is called monotone if ∀𝐵,𝐶 ∈ 2𝕌 if 𝐵 ∈ 𝔸 and 𝐵 ⊆ 𝐶, then 𝐶 ∈ 𝔸.

Definition 3.2 (Linear Secret Sharing Schemes (LSSS), [BL88, Bei12, LW11a]): Let
𝑞 = 𝑞(𝜆) be a prime and 𝕌 the attribute universe. A secret sharing scheme Π with domain of
secrets ℤ𝑞 for a monotone access structure 𝔸 over 𝕌, a.k.a. a monotone secret sharing scheme,
is a randomized algorithm that on input a secret 𝑧 ∈ ℤ𝑞 outputs |𝕌| shares 𝗌𝗁1, . . . , 𝗌𝗁|𝕌| such
that for any set 𝑆 ∈ 𝔸 the shares {𝗌𝗁𝑖}𝑖∈𝑆 determine 𝑧 and other sets of shares are independent
of 𝑧 (as random variables). A secret sharing scheme Π realizing monotone access structures on
𝕌 is linear over ℤ𝑞 if

1. The shares of a secret 𝑧 ∈ ℤ𝑞 for each attribute in 𝕌 form a vector over ℤ𝑞.

2. For each monotone access structure 𝔸 on 𝕌, there exists a matrix 𝑴 ∈ ℤℓ×𝑠
𝑞 , called the share-

generating matrix, and a function 𝜌 : [ℓ]→ 𝕌, that labels the rows of 𝑴 with attributes from
𝕌 which satisfy the following: During the generation of the shares, we consider the vector
𝒗 = (𝑧, 𝑟2, ..., 𝑟𝑠), where 𝑟2, . . . , 𝑟𝑠 ← ℤ𝑞. Then the vector of ℓ shares of the secret 𝑧 according
to Π is given by 𝝁 = 𝑴𝒗⊤ ∈ ℤℓ×1

𝑞 , where for all 𝑗 ∈ [ℓ] the share 𝜇𝑗 “belongs” to the attribute
𝜌(𝑗). We will be referring to the pair (𝑴 , 𝜌) as the LSSS policy of the access structure 𝔸.

The correctness and security of a monotone LSSS are formalized in the following: Let 𝑆 (resp.
𝑆′) denote an authorized (resp. unauthorized) set of attributes according to some monotone access
structure 𝔸 and let 𝐼 (resp. 𝐼 ′) be the set of rows of the share generating matrix 𝑴 of the LSSS
policy pair (𝑴 , 𝜌) associated with 𝔸 whose labels are in 𝑆 (resp. 𝑆′). For correctness, there
exist constants {𝑤𝑖}𝑖∈𝐼 in ℤ𝑞 such that for any valid shares

{︀
𝝁𝑖 = (𝑴𝒗⊤)𝑖

}︀
𝑖∈𝐼 of a secret 𝑧 ∈ ℤ𝑞

according to Π, it is true that
∑︀

𝑖∈𝐼 𝑤𝑖𝝁𝑖 = 𝑧 (equivalently,
∑︀

𝑖∈𝐼 𝑤𝑖𝑴𝑖 = (1,

𝑠−1⏞ ⏟
0, . . . , 0), where

𝑴𝑖 is the 𝑖th row of 𝑴). For soundness, there does not exists any subset 𝐼 ′ of the rows of the
matrix 𝑴 and any coefficients {𝑤𝑖}𝑖∈𝐼′ for which the above hold.

Remark 3.1 (𝗡𝗖𝟏 and Monotone LSSS): Consider an access structure 𝔸 described by an
𝖭𝖢1 circuit. There is a folklore transformation that converts this circuit to a Boolean formula of
logarithmic depth that consists of (fan-in 2) AND, OR, and (fan-in 1) NOT gates. We can further
push the NOT gates to the leaves using De Morgan laws, and assume that internal nodes only
constitute of OR and AND gates and leaves are labeled either by attributes or by their negations.
In other words, we can represent any 𝖭𝖢1 policy over a set of attributes into one described by
a monotone Boolean formula of logarithmic depth over the same attributes together with their
negations. Lewko and Waters [LW11a] presented a monotone LSSS for access structures described
by monotone Boolean formulas. This implies that any 𝖭𝖢1 access policy can be captured by a
monotone LSSS.

3.2 Strong Randomness Extractors

The min-entropy of a random variable 𝑋 is H∞(𝑋) = − log(max𝑥 𝖯𝗋[𝑋 = 𝑥]). A 𝑡-source is a
random variable 𝑋 with H∞(𝑋) ≥ 𝑡. The statistical distance between two random variables 𝑋
and 𝑌 over a finite domain Ω is SD(𝑋,𝑌) = 1

2

∑︀
𝜔∈Ω|𝖯𝗋[𝑋 = 𝜔]− 𝖯𝗋[𝑌 = 𝜔]|.

14

Definition 3.3 (Seeded Randomness Extractor, Definition 6.16 [Vad12]): A function
𝙴𝚡𝚝 : Ω × 𝑆 → Γ is a strong (𝑡, 𝜖)-extractor if for every 𝑡-source 𝑋 on Ω, SD((𝒰𝑆 , 𝙴𝚡𝚝(𝑋,𝒰𝑆)),
(𝒰𝑆 ,𝒰Γ)) < 𝜖.

Theorem 3.1 (Theorem 6.17 [Vad12]): For every 𝑛, 𝑡 ∈ ℕ and 𝜖 > 0, there exists a strong
(𝑡, 𝜖)-extractor 𝙴𝚡𝚝 : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with 𝑚 = 𝑡 − 2 log(1/𝜖) − 𝑂(1) and 𝑑 =
log(𝑛− 𝑡) + 2 log(1/𝜖) +𝑂(1).

3.3 The Notion of Fully-Adaptive Decentralized 𝗠𝗔-𝗔𝗕𝗘 for LSSS

A decentralized multi-authority attribute-based encryption (MA-ABE) system 𝖬𝖠-𝖠𝖡𝖤 =
(𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉,𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉,𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼) consists of five procedures whose syntax is given be-
low. The supported access structures that we deal with are ones captured by linear secret sharing
schemes (LSSS). We denote by 𝒜𝒰 the authority universe and by 𝒢ℐ𝒟 the universe of global
identifiers of the users. We denote by 𝕄 the supported message space. Additionally, we assume
that each authority controls just one attribute, and hence we would use the terms “authority"
and “attribute" interchangeably. This definition naturally generalizes to the situation in which
each authority can potentially control an arbitrary (bounded or unbounded) number of attributes
(see [LW11a,RW15]).

• 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉(1𝜆) ↦→ 𝖦𝖯 : The global setup algorithm takes in the security parameter 𝜆 in unary
representation and outputs the global public parameters 𝖦𝖯 for the system. We assume that
𝖦𝖯 includes the descriptions of the universe of attribute authorities 𝒜𝒰 and universe of the
global identifiers of the users 𝒢ℐ𝒟. Note that both 𝒜𝒰 and 𝒢ℐ𝒟 are given by {0, 1}𝜆 in case
there is no bound on the number of authorities and users in the system.

• 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉(𝖦𝖯, 𝑢) ↦→ (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) : The authority 𝑢 ∈ 𝒜𝒰 calls the authority setup algorithm
during its initialization with the global parameters 𝖦𝖯 as input and receives back its public
and master secret key pair 𝖯𝖪𝑢,𝖬𝖲𝖪𝑢.

• 𝖪𝖾𝗒𝖦𝖾𝗇(𝖦𝖯,𝖦𝖨𝖣,𝖬𝖲𝖪𝑢) ↦→ 𝖲𝖪GID,𝑢 : The key generation algorithm takes as input the global
parameters 𝖦𝖯, a user’s global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and a master secret key 𝖬𝖲𝖪𝑢 of an
authority 𝑢 ∈ 𝒜𝒰 . It outputs a secret key 𝖲𝖪GID,𝑢 for the user.

• 𝖤𝗇𝖼(𝖦𝖯,𝗆𝗌𝗀, (𝑴 , 𝜌), {𝖯𝖪𝑢}) ↦→ 𝖢𝖳 : The encryption algorithm takes in the global parame-
ters 𝖦𝖯, a message 𝗆𝗌𝗀 ∈𝕄, an LSSS access policy (𝑴 , 𝜌) such that 𝑴 is a matrix over ℤ𝑁

and 𝜌 is a row-labeling function that assigns to each row of 𝑴 an attribute/authority in
𝒜𝒰 , and the set {𝖯𝖪𝑢} of public keys for all the authorities in the range of 𝜌. It outputs a
ciphertext 𝖢𝖳. We assume that the ciphertext implicitly contains (𝑴 , 𝜌).

• 𝖣𝖾𝖼(𝖦𝖯,𝖢𝖳, {𝖲𝖪GID,𝑢}) ↦→ 𝗆𝗌𝗀′ : The decryption algorithm takes in the global parameters 𝖦𝖯,
a ciphertext 𝖢𝖳 generated with respect to some LSSS access policy (𝑴 , 𝜌), and a collection of
keys {𝖲𝖪GID,𝑢} corresponding to user ID-attribute pairs {(𝖦𝖨𝖣, 𝑢)} possessed by a user with
global identifier 𝖦𝖨𝖣. It outputs a message 𝗆𝗌𝗀′ when the collection of attributes associated
with the secret keys {𝖲𝖪GID,𝑢} satisfies the LSSS access policy (𝑴 , 𝜌), i.e., when the vector
(1, 0, . . . , 0) is contained in the linear span of those rows of 𝑴 which are mapped by 𝜌 to
some attribute/authority 𝑢 ∈ 𝒜𝒰 such that the secret key 𝖲𝖪GID,𝑢 is possessed by the user
with global identifier 𝖦𝖨𝖣. Otherwise, decryption fails.

Correctness: An MA-ABE scheme for LSSS-realizable access structures is said to be correct if
for every 𝜆 ∈ ℕ, every message 𝗆𝗌𝗀 ∈𝕄, and 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, every LSSS access policy (𝑴 , 𝜌), and
every subset of authorities 𝑈 ⊆ 𝒜𝒰 controlling attributes which satisfy the access structure, it

15

holds that

Pr

⎡⎢⎢⎢⎣𝗆𝗌𝗀′ = 𝗆𝗌𝗀 |

𝖦𝖯← 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉(1𝜆)
∀𝑢 ∈ 𝑈 : 𝖯𝖪𝑢,𝖬𝖲𝖪𝑢 ← 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉(𝖦𝖯, 𝑢)
∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝖦𝖯,𝖦𝖨𝖣,𝖬𝖲𝖪𝑢)

𝖢𝖳← 𝖤𝗇𝖼(𝖦𝖯,𝗆𝗌𝗀, (𝑴 , 𝜌), {𝖯𝖪𝑢})
𝗆𝗌𝗀′ = 𝖣𝖾𝖼(𝖦𝖯,𝖢𝖳, {𝖲𝖪GID,𝑢}𝑢∈𝑈)

⎤⎥⎥⎥⎦ = 1.

Fully Adaptive Security: We define the fully adaptive (chosen-plaintext) security for a de-
centralized 𝖬𝖠-𝖠𝖡𝖤 scheme, namely, we consider a security game where there could be adap-
tive secret key queries, adaptive authority corruption queries, and adaptive challenge ciphertext
query. This is formalized in the following game between a challenger and an attacker. Note that
we will consider two types of authority public keys, those which are honestly generated by the
challenger and those which are supplied by the attacker itself where the former type of authority
keys can be corrupted by the attacker at any point of time during the game and the latter type
of authority keys can potentially be malformed.

The game consists of the following phases:

Global Setup: The challenger runs 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉 to generate global public parameters 𝖦𝖯
and gives it to the attacker.

Query Phase 1: The attacker is allowed to adaptively make a polynomial number of queries
of the following types:

• Authority Setup Queries: The attacker request to set up an authority 𝑢 ∈ 𝒜𝒰 of its choice.
If an authority setup query for the same authority 𝑢 has already been queried before, the
challenger aborts. Otherwise, the challenger runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to create a public/master key
pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the authority 𝑢. The challenger provides 𝖯𝖪𝑢 to the attacker and
stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Note that the challenger does not return the generated public/master
key pair to the attacker.

• Secret Key Queries: The attacker makes a secret key query by submitting a pair (𝖦𝖨𝖣, 𝑢)
to the challenger, where 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 is a global identifier and 𝑢 ∈ 𝒜𝒰 is an attribute
authority. If an authority setup query for the authority 𝑢 has not been made already, the
challenger aborts. Otherwise, the challenger runs 𝖪𝖾𝗒𝖦𝖾𝗇 using the public/master key pair
it already created in response to authority setup query for 𝑢 and generates a secret key
𝖲𝖪GID,𝑢 for (𝖦𝖨𝖣, 𝑢). The challenger provides 𝖲𝖪GID,𝑢 to the attacker.

• Authority Master Key Queries: The attacker requests the master secret key of an authority
𝑢 ∈ 𝒜𝒰 to the challenger. If an authority setup query for the authority 𝑢 has not been
made previously, the challenger aborts. Otherwise, the challenger provides the attacker the
master secret key 𝖬𝖲𝖪𝑢 for authority 𝑢 it created in response to the authority setup query
for 𝑢.

Challenge Phase: The attacker submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈𝕄 and an LSSS access
structure (𝑴 , 𝜌). The attacker also submits the public keys {𝖯𝖪𝑢} for a subset of attribute
authorities appearing in the LSSS access structure (𝑴 , 𝜌). The authority public keys {𝖯𝖪𝑢}
supplied by the attacker can potentially be malformed, i.e., can fall outside the range of
𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉. The LSSS access structure (𝑴 , 𝜌) and the authority public keys {𝖯𝖪𝑢} must
satisfy the following constraints.

(a) Let 𝑈𝒜 denote the set of attribute authorities for which the attacker supplied the au-
thority public keys {𝖯𝖪𝑢}. Also let 𝑈ℬ denote the set of attribute authorities for which
the challenger created the master public key pairs in response to the authority setup
query of the attacker so far. Then, it is required that 𝑈𝒜 ∩ 𝑈ℬ = ∅.

16

(b) Let 𝑉 denote the subset of rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus the author-
ities for which the attacker made a master key query so far. For each global identifier
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, let 𝑉GID denote the subset of rows of 𝑴 labeled by authorities 𝑢 such
that the attacker queried a secret key for the pair (𝖦𝖨𝖣, 𝑢). For each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, it is
required that the rows of 𝑴 labeled by authorities in 𝑉 ∪𝑉GID do not span (1, 0, . . . , 0).

The challenger flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 by running the
𝖤𝗇𝖼 algorithm that encrypts 𝗆𝗌𝗀𝑏 under the access structure (𝑴 , 𝜌).

Query Phase 2: The attacker is allowed to make all types of queries as in Query Phase 1
as long as they do not violate the constraints Properties (a) and (b) above.

Guess: The attacker must submit a guess 𝑏′ for 𝑏. The attacker wins if 𝑏 = 𝑏′.

The advantage of an adversary 𝒜 in this game is defined as:

𝖠𝖽𝗏MA-ABE,fully-adaptive
𝒜 (𝜆) =

⃒⃒
Pr[𝑏′ = 𝑏]− 1/2

⃒⃒
.

Definition 3.4 (Fully adaptive security for MA-ABE for LSSS): An MA-ABE scheme for
LSSS-realizable access structures is fully adaptively secure if for any PPT adversary 𝒜 there exists
a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, we have 𝖠𝖽𝗏MA-ABE,fully-adaptive

𝒜 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆).

Remark 3.2 (Fully adaptive security of MA-ABE for LSSS in the Random Oracle
Model): Similar to [LW11a,RW15,OT20], we additionally consider the aforementioned notion
of fully adaptive security in the random oracle model. In this context, we assume a global hash
function 𝖧 published as part of the global public parameters and accessible by all the parties
in the system, including the attacker. In the security proof, we model 𝖧 as a random function
and allow it to be programmed by the challenger. Therefore, in the fully adaptive security
game described above, we further let the adversary adaptively submit 𝖧-oracle queries to the
challenger, along with the key queries it makes both before and after the challenge ciphertext
query.

4 Our Composite Order Group 𝗠𝗔-𝗔𝗕𝗘 Scheme

In Section 4.1 we recall composite order bilinear groups and the assumptions on which our
construction relies. In Section 4.2 we give the construction. In Section 4.3 we prove correctness
of the construction and in Section 4.4 we give the security proof.

4.1 Composite Order Bilinear Groups and Assumptions

Our system relies on composite order bilinear groups, which were first defined in [BGN05].
Particularly, we will rely on a bilinear group 𝔾 of composite order 𝑁 which is a product of three
primes, that is, 𝑁 = 𝑝1𝑝2𝑝3. Such a group has unique subgroups of order 𝑞 for all divisor 𝑞 of 𝑁
and we will denote such a subgroup as 𝔾𝑞. Also every element 𝑔 ∈ 𝔾, can be written (uniquely)
as the product of an element of 𝔾𝑝1 , an element of 𝔾𝑝2 , and an element of 𝔾𝑝3 . We refer to
these elements as the “𝔾𝑝1 part of 𝑔”, the “𝔾𝑝2 part of 𝑔”, and the “𝔾𝑝3 part of 𝑔”, respectively.
We shall assume that there is a procedure 𝒢(1𝜆) that gets as input a security parameter 𝜆 and
outputs 𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒), where 𝑒 : 𝔾 × 𝔾 → 𝔾𝑇 is a pairing. We assume that the
group operations in 𝔾 and 𝔾𝑇 as well as the bilinear map 𝑒 are computable in polynomial time
in 𝜆. Further, we assume that 𝑒 satisfies the following:

1. (Bilinear) ∀𝑔, 𝑕 ∈ 𝔾, 𝑎, 𝑏 ∈ ℤ𝑁 , 𝑒(𝑔𝑎, 𝑕𝑏) = 𝑒(𝑔, 𝑕)𝑎𝑏.

2. (Non-degenerate) ∃𝑔 ∈ 𝔾 such that 𝑒(𝑔, 𝑔) has order 𝑁 in 𝔾𝑇 .

17

Below, we formulate the precise assumptions under which our 𝖬𝖠-𝖠𝖡𝖤 construction will be
proven secure.

Assumption 4.1 (Subgroup Decision SD-I): The SD-I assumption states that for any PPT
adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for any security parameter 𝜆 ∈ ℕ

𝖠𝖽𝗏SD-I
𝒜 (𝜆) = |𝖯𝗋[𝒜(𝒟, 𝑇0) = 1]− 𝖯𝗋[𝒜(𝒟, 𝑇1) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆),

where

𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆),
𝑔1 ← 𝔾𝑝1 ,

𝒟 = (𝖦, 𝑔1),

𝑇0 ← 𝔾, 𝑇1 ← 𝔾𝑝1 .

Assumption 4.2 (Subgroup Decision SD-II): The SD-II assumption states that for any
PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for any security parameter
𝜆 ∈ ℕ

𝖠𝖽𝗏SD-II
𝒜 (𝜆) = |𝖯𝗋[𝒜(𝒟, 𝑇0) = 1]− 𝖯𝗋[𝒜(𝒟, 𝑇1) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆),

where

𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆),
𝑔1, 𝑋1 ← 𝔾𝑝1 , 𝑔2 ← 𝔾𝑝2 , 𝑋3 ← 𝔾𝑝3 ,

𝒟 = (𝖦, 𝑔1, 𝑔2, 𝑋1𝑋3),

𝑇0 ← 𝔾𝑝1 , 𝑇1 ← 𝔾𝑝1𝑝3 .

Assumption 4.3 (Subgroup Decision SD-III): The SD-III assumption states that for any
PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for any security parameter
𝜆 ∈ ℕ

𝖠𝖽𝗏SD-III
𝒜 (𝜆) = |𝖯𝗋[𝒜(𝒟, 𝑇0) = 1]− 𝖯𝗋[𝒜(𝒟, 𝑇1) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆),

where

𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆),
𝑔1, 𝑋1 ← 𝔾𝑝1 , 𝑋2 ← 𝔾𝑝2 , 𝑔3 ← 𝔾𝑝3 ,

𝒟 = (𝖦, 𝑔1, 𝑔3, 𝑋1𝑋2),

𝑇0 ← 𝔾𝑝1 , 𝑇1 ← 𝔾𝑝1𝑝2 .

Assumption 4.4 (Subgroup Decision SD-IV): The SD-IV assumption states that for any
PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for any security parameter
𝜆 ∈ ℕ

𝖠𝖽𝗏SD-IV
𝒜 (𝜆) = |𝖯𝗋[𝒜(𝒟, 𝑇0) = 1]− 𝖯𝗋[𝒜(𝒟, 𝑇1) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆),

where

𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆),
𝑔1, 𝑋1 ← 𝔾𝑝1 , 𝑔2, 𝑍2 ← 𝔾𝑝2 , 𝑋3, 𝑍3 ← 𝔾𝑝3 ,

𝒟 = (𝖦, 𝑔1, 𝑔2, 𝑋1𝑋3, 𝑍2𝑍3),

𝑇0 ← 𝔾𝑝1𝑝2 , 𝑇1 ← 𝔾.

18

Assumption 4.5 (Subgroup Decision SD-V): The SD-V assumption states that for any
PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for any security parameter
𝜆 ∈ ℕ

𝖠𝖽𝗏SD-V
𝒜 (𝜆) = |𝖯𝗋[𝒜(𝒟, 𝑇0) = 1]− 𝖯𝗋[𝒜(𝒟, 𝑇1) = 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆),

where

𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆),
𝑔1, 𝑋1 ← 𝔾𝑝1 , 𝑋2, 𝑍2 ← 𝔾𝑝2 , 𝑔3, 𝑍3 ← 𝔾𝑝3 ,

𝒟 = (𝖦, 𝑔1, 𝑔3, 𝑋1𝑋2, 𝑍2𝑍3),

𝑇0 ← 𝔾𝑝1𝑝3 , 𝑇1 ← 𝔾.

Previous Appearances and Generic Security of the Assumptions: First observe that
we really only use three assumptions since Assumptions 4.2 and 4.3 are the same other than
the roles of the subgroups 𝔾𝑝2 and 𝔾𝑝3 . And similarly for Assumptions 4.4 and 4.5. However
we enumerate them as separate assumptions for clarity. Next, note that all these assumptions
were previously stated and used (multiple times) in the literature. Assumption 4.1 is exactly
Assumption 1 in [LW11a]. Assumption 4.3 (and hence Assumption 4.2) are exactly Assumption 2
in [LW11a]. Assumption 4.5 (and hence Assumption 4.4) are exactly Assumption 4 in [LW11b] (or
Assumption 2 in [LW10]). In particular, in the above works, it was shown that these assumptions
hold in the generic group model, as long as it is hard to find a nontrivial factor of the group
order 𝑁 .

4.2 The Construction

Here, we present our 𝖬𝖠-𝖠𝖡𝖤 for 𝖭𝖢1 construction in composite order bilinear groups. As
mentioned, we assume that each authority controls just one attribute, and hence we would use
the terms “authority" and “attribute" interchangeably.

𝗚𝗹𝗼𝗯𝗮𝗹𝗦𝗲𝘁𝘂𝗽(1𝝀): The global setup algorithm takes in the security parameter 1𝜆 encoded in
unary. The procedure first chooses primes 𝑝1, 𝑝2, 𝑝3 and let 𝑁 = 𝑝1𝑝2𝑝3. Next, it generates a
bilinear group 𝖦 = (𝑁,𝔾,𝔾𝑇 , 𝑒) of order 𝑁 . Let 𝔾𝑝1 be the subgroup of 𝔾 of order 𝑝1 and
let 𝑔1 and 𝑕 be uniformly random generators of the subgroup 𝔾𝑝1 . We make use of a strong
seeded randomness extractor 𝙴𝚡𝚝 : 𝔾𝑇 × 𝑆 → 𝕄, where 𝕄 ⊂ {0, 1}* is the message space and
𝑆 ⊂ {0, 1}* is the seed space. The algorithm samples a seed 𝗌𝖾𝖾𝖽 ← 𝑆. It sets the global
parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽). Furthermore, we make use of a hash function 𝖧 : {0, 1}* → 𝔾
mapping global identities 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 to elements in 𝔾.

𝗔𝘂𝘁𝗵𝗦𝗲𝘁𝘂𝗽(𝗚𝗣,𝗛, 𝒖): Given the global parameters 𝖦𝖯, the hash function 𝖧, and an authority
index 𝑢 ∈ 𝒜𝒰 , the algorithm chooses random values 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ∈ ℤ𝑁 and outputs

𝖯𝖪𝑢 = (𝑃𝐴,𝑢 = 𝑔
𝑦𝐴,𝑢

1 , 𝑃𝐵,𝑢 = 𝑔
𝑦𝐵,𝑢

1) 𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢).

𝗘𝗻𝗰(𝗚𝗣,𝗛,𝗺𝘀𝗴, (𝑴,𝝆), {𝗣𝗞𝒖}): The encryption algorithm takes as input the global param-
eters 𝖦𝖯, the hash function 𝖧, a message 𝗆𝗌𝗀 ∈𝕄 to encrypt, an LSSS access structure (𝑴 , 𝜌),
where 𝑴 = (𝑀𝑥,𝑗)ℓ×𝑑 = (𝑴1, . . . ,𝑴ℓ)

⊤ ∈ ℤℓ×𝑑
𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 , and public keys of the

relevant authorities {𝖯𝖪𝑢}. The function 𝜌 associates rows of 𝑴 to authorities (recall that
we assume that each authority controls a single attribute). We assume that 𝜌 is an injective
function, that is, an authority/attribute is associated with at most one row of 𝑴 .

It first chooses a random value 𝑠 ← ℤ𝑁 . It then uses the LSSS access structure (𝑴 , 𝜌) to
generate a secret sharing of 𝑠 where 𝜎𝐴,𝑥 will be the share for all 𝑥 ∈ [ℓ], i.e, for all 𝑥 ∈ [ℓ], let

19

𝜎𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴, where 𝒗𝐴 ← ℤ𝑑
𝑁 is a random vector with 𝑠 as its first entry and 𝑴𝑥 is the 𝑥th

row of 𝑴 . It additionally creates another secret sharing of −𝑠 with respect to the LSSS access
policy (𝑴 , 𝜌) where 𝜎𝐵,𝑥 is the corresponding share for 𝜌(𝑥) for all 𝑥 ∈ [ℓ], i.e., for all 𝑥 ∈ [ℓ],
𝜎𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵, where 𝒗𝐵 ← ℤ𝑑

𝑁 is a random vector with −𝑠 as its first entry. The procedure
generates the ciphertext as follows: For each row 𝑥 ∈ [ℓ], it chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 and
outputs the ciphertext

𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]),

where

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

𝗞𝗲𝘆𝗚𝗲𝗻(𝗚𝗣,𝗛,𝗚𝗜𝗗,𝗠𝗦𝗞𝒖): The key generation algorithm takes as input the global param-
eters 𝖦𝖯, the hash function 𝖧, the user’s global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and the authority’s master
secret key 𝖬𝖲𝖪𝑢. It generates a secret key 𝖲𝖪GID,𝑢 for 𝖦𝖨𝖣 as

𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢,𝐾GID,𝐵,𝑢)

where

𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 𝐾GID,𝐵,𝑢 = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢 .

𝗗𝗲𝗰(𝗚𝗣,𝗛,𝗖𝗧,𝗚𝗜𝗗, {𝗦𝗞𝗚𝗜𝗗,𝒖}): Decryption takes as input the global parameters 𝖦𝖯, the
hash function 𝖧, a ciphertext 𝖢𝖳 for an LSSS access structure (𝑴 , 𝜌) with 𝑴 ∈ ℤℓ×𝑑

𝑁 and
𝜌 : [ℓ]→ 𝒜𝒰 injective, the user’s global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and the secret keys {𝖲𝖪GID,𝑢}𝑢∈𝜌(𝐼)
corresponding to a subset of rows of 𝑴 with indices 𝐼 ⊆ [ℓ]. If (1, 0, . . . , 0) is not in the span of
these rows, 𝑴𝐼 , then decryption fails. Otherwise, the decryptor finds {𝑤𝑥 ∈ ℤ𝑁}𝑥∈𝐼 such that
(1, 0, . . . , 0) =

∑︀
𝑥∈𝐼 𝑤𝑥 ·𝑴𝑥.

For all 𝑥 ∈ 𝐼, the decryption algorithm first compute:

𝐷𝐴,𝑥 = 𝑒(𝐶2,𝐴,𝑥,𝖧(𝖦𝖨𝖣) · 𝑕) · 𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝜌(𝑥))
−1 = 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥

𝐷𝐵,𝑥 = 𝑒(𝐶2,𝐵,𝑥,𝖧(𝖦𝖨𝖣)) · 𝑒(𝐶1,𝐵,𝑥,𝐾GID,𝐵,𝜌(𝑥))
−1 = 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

𝜎𝐵,𝑥

Then compute 𝐷 =
∏︀

𝑥∈𝐼(𝐷𝐴,𝑥 ·𝐷𝐵,𝑥)
𝑤𝑥 = 𝑒(𝑔1, 𝑕)

𝑠. Finally it outputs 𝐶⊕𝙴𝚡𝚝(𝐷, 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀.

Remark 4.1 (On 𝗚𝗹𝗼𝗯𝗮𝗹𝗦𝗲𝘁𝘂𝗽): Similar to all prior decentralized 𝖬𝖠-𝖠𝖡𝖤 schemes, our pro-
posed schemes utilize a 𝖦𝗅𝗈𝖻𝖺𝗅𝖲𝖾𝗍𝗎𝗉 algorithm that samples a random string (“setup”) with a
specific structure (i.e., private coin). This setup string needs to be generated only once, can be
reused in different sessions, and the randomness used to generate it is never used subsequently
so it can be discarded once the setup string is generated.

In the next section (Section 4.3) we prove correctness of the scheme. The proof of security,
i.e., that of Theorem 4.1, is deferred to Section 4.4.

4.3 Correctness

Assume that the authorities in {𝖲𝖪GID,𝑢} correspond to a qualified set according to the LSSS
access structure (𝑴 , 𝜌) associated with 𝖢𝖳, that is, the corresponding subset of row indices 𝐼
corresponds to rows in 𝑴 that have (1, 0, . . . , 0) in their span.

20

For each 𝑥 ∈ 𝐼, letting 𝜌(𝑥) be the corresponding authority,

𝑒(𝐶2,𝐴,𝑥,𝖧(𝖦𝖨𝖣) · 𝑕) = 𝑒(𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,𝖧(𝖦𝖨𝖣) · 𝑕)
= 𝑒(𝑔

𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 ,𝖧(𝖦𝖨𝖣) · 𝑕) · 𝑒(𝑔𝜎𝐴,𝑥

1 ,𝖧(𝖦𝖨𝖣) · 𝑕)
= 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥 · 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥 .

Also, for each 𝑥 ∈ 𝐼,

𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝜌(𝑥)) = 𝑒(𝑔
𝑟𝐴,𝑥

1 , (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥))

= 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥 .

Hence,

𝐷𝐴,𝑥 = 𝑒(𝐶2,𝐴,𝑥,𝖧(𝖦𝖨𝖣) · 𝑕) · 𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝜌(𝑥))
−1

=
𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥 · 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥

𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

= 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥 .

Similarly,

𝐷𝐵,𝑥 = 𝑒(𝐶2,𝐵,𝑥,𝖧(𝖦𝖨𝖣)) · 𝑒(𝐶1,𝐵,𝑥,𝐾GID,𝐵,𝜌(𝑥))
−1

=
𝑒(𝑔1,𝖧(𝖦𝖨𝖣))

𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥 · 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))𝜎𝐵,𝑥

𝑒(𝑔1,𝖧(𝖦𝖨𝖣))
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

= 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))
𝜎𝐵,𝑥 .

We then have

𝐷 =
∏︁
𝑥∈𝐼

(𝐷𝐴,𝑥 ·𝐷𝐵,𝑥)
𝑤𝑥

=
∏︁
𝑥∈𝐼

(𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝜎𝐴,𝑥)𝑤𝑥 · (𝑒(𝑔1,𝖧(𝖦𝖨𝖣))𝜎𝐵,𝑥)𝑤𝑥

=
∏︁
𝑥∈𝐼

𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑤𝑥𝜎𝐴,𝑥 · 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))𝑤𝑥𝜎𝐵,𝑥

= 𝑒(𝑔1,𝖧(𝖦𝖨𝖣) · 𝑕)𝑠 · 𝑒(𝑔1,𝖧(𝖦𝖨𝖣))−𝑠

= 𝑒(𝑔1, 𝑕)
𝑠,

where the fourth equality follows since
∑︀

𝑥∈𝐼 𝑤𝑥 ·𝑴𝑥 = (1, 0, . . . , 0) and 𝜎𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and
𝜎𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵. Thus we have

𝐶 ⊕ 𝙴𝚡𝚝(𝐷, 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽)⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀.

4.4 Security Analysis

Theorem 4.1 (Security of Composite-Order 𝗠𝗔-𝗔𝗕𝗘 Scheme): The above 𝖬𝖠-𝖠𝖡𝖤
scheme for 𝖭𝖢1 is fully adaptively secure in the random oracle model assuming the various types
of sub-group decision assumptions, Assumptions 4.1 to 4.5 described in Section 4.1 to be precise,
hold.

In order to prove Theorem 4.1, we consider a polynomial-length sequence of hybrid games
which differ from one another in the formation of the challenge ciphertext, the output of the
random oracle 𝖧, or the secret keys queried by the adversary 𝒜. The first hybrid in the sequence

21

corresponds to the fully adaptive security game of the proposed 𝖬𝖠-𝖠𝖡𝖤 scheme, while the final
hybrid is one where the advantage of 𝒜 is (unconditionally) zero. We argue that 𝒜’s advantage
changes only by a negligible amount between each successive hybrid game, thereby establishing
Theorem 4.1. The high level structure of our hybrid reduction is shown in Fig. 4.1.

Let the access structure submitted by the adversary 𝒜 while requesting the challenge cipher-
text be (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ]→ 𝒜𝒰 injective. In this proof, we will model 𝖧 as a
random oracle programmed by the challenger. Let the total number of global identifiers 𝖦𝖨𝖣 the
challenger generates the 𝖧 oracle outputs for be 𝑞. Also, we order the global identifiers {𝖦𝖨𝖣𝑡}
in the sequence the 𝖧 oracle outputs for them are generated by the challenger.

The Hybrids

𝖧𝗒𝖻0 𝖧𝗒𝖻1

𝑐
≈

𝖧𝗒𝖻2

𝑐
≈

𝖧𝗒𝖻3

𝑠
≈

𝖧𝗒𝖻4

𝑐
≈

𝖧𝗒𝖻5:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻5:(𝑗−1)

𝑐
≈

𝖧𝗒𝖻5:𝑗:1

𝑐
≈

𝖧𝗒𝖻5:𝑗:2

𝑠
≈

𝖧𝗒𝖻5:𝑗:3

𝑐
≈

𝖧𝗒𝖻5:𝑗:4

𝑠
≈

𝖧𝗒𝖻5:𝑗

𝑐
≈

𝖧𝗒𝖻5:𝑞:4

𝑠
≈

∙ ∙ ∙ 𝖧𝗒𝖻5:𝑞

≡

𝖧𝗒𝖻6

𝑐
≈

𝖧𝗒𝖻7

𝑠
≈

𝖧𝗒𝖻8

𝑐
≈

𝖧𝗒𝖻9

≡
𝖧𝗒𝖻10

𝑐
≈

𝖧𝗒𝖻11

𝑠
≈

𝖧𝗒𝖻12

𝑠
≈

Real Game
≡

Zero Advantage
Game
≡

𝖲𝖣-I
Asm. 4.1

𝖲𝖣-II
Asm. 4.2

𝖲𝖣-III
Asm. 4.3

𝖲𝖣-IV
Asm. 4.4

𝖲𝖣-V
Asm. 4.5

Fig. 4.1: Structure of the Hybrid Reduction for Our Composite-Order 𝖬𝖠-𝖠𝖡𝖤 Scheme

𝗛𝘆𝗯𝟎: This is the real fully adaptive security game for the proposed 𝖬𝖠-𝖠𝖡𝖤 scheme described
in Section 3.3.

𝗛𝘆𝗯𝟏: This game is identical to 𝖧𝗒𝖻0 except that for all global identifiers 𝖦𝖨𝖣, the challenger
programs the output 𝖧(𝖦𝖨𝖣) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣)← 𝔾𝑝1 .

𝗛𝘆𝗯𝟐: This game is the same as 𝖧𝗒𝖻1 except the challenger generates the challenge cipher-
text as follows: Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled
by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public keys
{𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂

22

where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′ ← ℤ𝑁 and computes 𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′

𝐴, 𝜎′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′

𝐵 for all
𝑥 ∈ [ℓ], where 𝒗′

𝐴,𝒗
′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′,−𝑠′ as their first entry, respectively.
The challenger samples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥 ← ℤ𝑁 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext

𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′
𝐵,𝑥

3 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟑: This game is the same as 𝖧𝗒𝖻2 except the challenger generates the challenge cipher-
text as follows: Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled
by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public keys
{𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . It first flips a random coin 𝛽 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

23

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵 ← ℤ𝑁 and computes 𝜎′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′
𝐴, 𝜎′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′
𝐵,

where 𝒗′
𝐴,𝒗

′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴 and 𝑠′𝐵 as their first entry, respectively. The
challenger samples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥 ← ℤ𝑁 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =

((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′
𝐵,𝑥

3 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟒: This game is analogous to 𝖧𝗒𝖻3, except that the challenge ciphertext is generated as fol-
lows: Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}.
Let 𝑌 = [ℓ] ∖ 𝑌 . It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a
normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′ ← ℤ𝑁 and computes 𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′

𝐴,
𝜎′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′

𝐵, 𝜎
′′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′′

𝐴, 𝜎′′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′′

𝐵, for all 𝑥 ∈ [ℓ],
where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′,−𝑠′′ as their first
entry, respectively. The challenger samples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all

𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥,
𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

24

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟓:(𝒋−𝟏) (𝒋 ∈ [𝒒 + 1]): This game is the same as 𝖧𝗒𝖻4 except that for the 𝑡th global
identifier 𝖦𝖨𝖣𝑡 for 𝑡 ≤ 𝑗− 1, the challenger programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧

as 𝖧(𝖦𝖨𝖣𝑡)← 𝔾𝑝1𝑝3 , while for 𝑡 > 𝑗−1, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧

as 𝖧(𝖦𝖨𝖣𝑡)← 𝔾𝑝1 as earlier. Observe that 𝖧𝗒𝖻5:0 coincides with 𝖧𝗒𝖻4.
We introduce a sequence of sub-games namely, (𝖧𝗒𝖻5:𝑗:1, . . . ,𝖧𝗒𝖻5:𝑗:4) between 𝖧𝗒𝖻5:(𝑗−1) and

𝖧𝗒𝖻5:𝑗 for all 𝑗 ∈ [𝑞] as defined below.

𝗛𝘆𝗯𝟓:𝒋:𝟏 (𝒋 ∈ [𝒒]): This experiment is the same as 𝖧𝗒𝖻5:(𝑗−1) except that for the 𝑗th

global identifier 𝖦𝖨𝖣𝑗 , the challenger programs the output 𝖧(𝖦𝖨𝖣𝑗) of the random oracle 𝖧 as
𝖧(𝖦𝖨𝖣𝑗)← 𝔾𝑝1𝑝2 while for all 𝑡 < 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧

as 𝖧(𝖦𝖨𝖣𝑡) ← 𝔾𝑝1𝑝3 , and for 𝑡 > 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as
𝖧(𝖦𝖨𝖣𝑡)← 𝔾𝑝1 as earlier.

𝗛𝘆𝗯𝟓:𝒋:𝟐 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻5:𝑗:1 except the challenger generates the
challenge ciphertext as follows: Let 𝑌 denote the subset of rows of the challenge access matrix
𝑴 labeled by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public
keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . The challenger first flips a random bit 𝑏 ← {0, 1}
and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

25

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′
𝐴, 𝑠

′′
𝐵 ← ℤ𝑁 and computes 𝜎′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′
𝐴, 𝜎′

𝐵,𝑥 =

𝑴𝑥 · 𝒗′
𝐵, 𝜎′′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′′
𝐴, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′′
𝐵 for all 𝑥 ∈ [ℓ], where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁

are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′
𝐴, 𝑠

′′
𝐵 as their first entry respectively. The challenger sam-

ples 𝑟′𝐴,𝑥, 𝑟
′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =

((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟓:𝒋:𝟑 (𝒋 ∈ [𝒒]): This game is analogous to 𝖧𝗒𝖻5:𝑗:2 except for the 𝑗th global identifier
𝖦𝖨𝖣𝑗 , the challenger programs the output 𝖧(𝖦𝖨𝖣𝑗) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑗)← 𝔾 .

𝗛𝘆𝗯𝟓:𝒋:𝟒 (𝒋 ∈ [𝒒]): This game is analogous to 𝖧𝗒𝖻5:𝑗:3 except that in this game, the challenge
ciphertext is generated as follows: Let 𝑌 denote the subset of rows of the challenge access matrix
𝑴 labeled by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public
keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . The challenger first flips a random bit 𝑏 ← {0, 1}
and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

26

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′ ← ℤ𝑁 and computes 𝜎′
𝐴,𝑥 = 𝑴𝑥 ·

𝒗′
𝐴, 𝜎′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′
𝐵, 𝜎

′′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′′

𝐴, 𝜎′′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′′

𝐵, for all 𝑥 ∈
[ℓ], where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′,−𝑠′′ as their
first entry respectively. The challenger samples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all

𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥,
𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 .

For all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟔: This game is identical to 𝖧𝗒𝖻5:𝑞 except the following: While generating the global public
parameters 𝖦𝖯 the challenger generates 𝑕← 𝔾𝑝1𝑝2 instead of 𝑕← 𝔾𝑝1 . Also in this game, the
challenge ciphertext is generated as follows: Let 𝑌 denote the subset of rows of the challenge
access matrix 𝑴 labeled by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the
authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖𝑌 . The challenger first flips a random
bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

27

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′ ← ℤ𝑁 and computes 𝜎′
𝐴,𝑥 = 𝑴𝑥 ·

𝒗′
𝐴, 𝜎′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′
𝐵, 𝜎

′′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′′

𝐴, 𝜎′′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′′

𝐵, for all 𝑥 ∈
[ℓ], where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′,−𝑠′′ as their
first entry respectively. The challenger samples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all

𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥,
𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠 · 𝑒(𝑔2, 𝑕)𝑠

′′
, 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 .

For all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟕: This game is the same as 𝖧𝗒𝖻6 except the challenger generates the challenge cipher-
text as follows: Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled
by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public keys
{𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . The challenger first flips a random bit 𝑏 ← {0, 1} and
runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂
where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

28

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′, 𝑠′′𝐵 ← ℤ𝑁 and computes 𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′

𝐴, 𝜎′
𝐵,𝑥 =

𝑴𝑥 · 𝒗′
𝐵, 𝜎′′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′′
𝐴, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′′
𝐵 for all 𝑥 ∈ [ℓ], where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁

are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′, 𝑠′′𝐵 as their first entry, respectively. The challenger sam-
ples 𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =

((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠 · 𝑒(𝑔2, 𝑕)𝑠

′′
, 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 .

For all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟖: This game is identical to 𝖧𝗒𝖻7 except that for all global identifiers 𝖦𝖨𝖣, the challenger
programs the output 𝖧(𝖦𝖨𝖣) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣)← 𝔾 .

𝗛𝘆𝗯𝟗: This game is the same as 𝖧𝗒𝖻8 except that the challenger generates the outputs of the
𝖧 oracle as follows: For any global identifiers 𝖦𝖨𝖣, the challenger first samples a random group
element 𝑅← 𝔾 and sets 𝖧(𝖦𝖨𝖣) = 𝑅 · 𝑕−1 .

𝗛𝘆𝗯𝟏𝟎: This game is the same as 𝖧𝗒𝖻9 except that the challenger generates the outputs of the
𝖧 oracle as follows: For any global identifiers 𝖦𝖨𝖣, the challenger first samples a random group
element 𝑃 ← 𝔾𝑝1𝑝3 and sets 𝖧(𝖦𝖨𝖣) = 𝑃 · 𝑕−1.

𝗛𝘆𝗯𝟏𝟏: This game is the same as 𝖧𝗒𝖻10 except the challenger generates the challenge cipher-
text as follows: Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled
by the authorities in 𝑈𝒜, i.e., the authorities for which 𝒜 supplies the authority public keys
{𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . The challenger first flips a random bit 𝑏 ← {0, 1} and
runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext

𝖢𝖳 =

(︂
(𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌 ,
{𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈𝑌

)︂

29

where 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽), for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 ,

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 , 𝐶2,𝐴,𝑥 = 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 , 𝐶2,𝐵,𝑥 = 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 .

Next, it samples random 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′, 𝑠′′𝐴, 𝑠
′′
𝐵 ← ℤ𝑁 and computes 𝜎′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′
𝐴, 𝜎′

𝐵,𝑥 =

𝑴𝑥 · 𝒗′
𝐵, 𝜎′′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′′
𝐴, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 · 𝒗′′
𝐵 for all 𝑥 ∈ [ℓ] where 𝒗′

𝐴,𝒗
′
𝐵,𝒗

′′
𝐴,𝒗

′′
𝐵 ← ℤ𝑑

𝑁

are random vectors with 𝑠′𝐴, 𝑠
′
𝐵, 𝑠

′′
𝐴, 𝑠

′′
𝐵 as their first entry respectively. The challenger sam-

ples 𝑟′𝐴,𝑥, 𝑟
′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥 ← ℤ𝑁 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =

((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠 · 𝑒(𝑔2, 𝑕)𝑠

′′
, 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝜎′
𝐵,𝑥

3 .

For all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 = 𝑔
𝑟𝐴,𝑥

1 𝑔
𝑟′′𝐴,𝑥

2 𝑔
𝑟′𝐴,𝑥

3 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3

= 𝑔
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥

2 𝑔
𝜎′′
𝐴,𝑥

2 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 = 𝑔
𝑟𝐵,𝑥

1 𝑔
𝑟′′𝐵,𝑥

2 𝑔
𝑟′𝐵,𝑥

3 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3

= 𝑔
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥

2 𝑔
𝜎′′
𝐵,𝑥

2 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 .

𝗛𝘆𝗯𝟏𝟐: This game is the same as 𝖧𝗒𝖻11 except that while generating the challenge ciphertext,
the challenger sets the component 𝐶 as 𝐶 ←𝕄 (independent of 𝗆𝗌𝗀0,𝗆𝗌𝗀1).

Analysis

For any adversary 𝒜 and any 𝑖 ∈ {0, . . . , 4} ∪ {5 : (𝑗 − 1), 5 : 𝑗 : 1, . . . , 5 : 𝑗 : 4}𝑗∈[𝑞] ∪ {5 : 𝑞} ∪
{6, . . . , 12}, let 𝑝𝒜,𝑖 : ℕ → [0, 1] denote the function such that for all 𝜆 ∈ ℕ, 𝑝𝒜,𝑖(𝜆) is the
probability that𝒜, on input 1𝜆, guesses the challenge bit correctly in the hybrid game 𝖧𝗒𝖻𝑖. From
the definition of 𝖧𝗒𝖻0, it follows that for all 𝜆 ∈ ℕ, |𝑝𝒜,0(𝜆)− 1/2| = 𝖠𝖽𝗏MA-ABE,fully:adaptive

𝒜 (𝜆)
and 𝑝𝒜,3(𝜆) ≡ 𝑝𝒜,5:0(𝜆). Also, for all 𝜆 ∈ ℕ, 𝑝𝒜,12 = 1/2 since there is no information of the

30

challenge bit 𝑏 ← {0, 1} selected by the challenger within the challenge ciphertext in 𝖧𝗒𝖻12.
Hence, for all 𝜆 ∈ ℕ, we have

𝖠𝖽𝗏MA-ABE,fully:adaptive
𝒜 (𝜆)

≤
∑︁
𝑖∈[4]

|𝑝𝒜,𝑖−1(𝜆)− 𝑝𝒜,𝑖(𝜆)|+
∑︁
𝑗∈[𝑞]

[︁⃒⃒
𝑝𝒜,5:(𝑗−1)(𝜆)− 𝑝𝒜,5:𝑗:1(𝜆)

⃒⃒
+

∑︁
𝑘∈[3]

⃒⃒
𝑝𝒜,5:𝑗:𝑘(𝜆)− 𝑝𝒜,5:𝑗:(𝑘+1)(𝜆)

⃒⃒]︁
+

∑︁
𝑗∈[𝑞−1]

|𝑝𝒜,5:𝑗:4 − 𝑝𝒜,5:𝑗 |

+ |𝑝𝒜,5:𝑞(𝜆)− 𝑝𝒜,6(𝜆)|+
∑︁

𝑖∈{7,...,12}

|𝑝𝒜,𝑖−1(𝜆)− 𝑝𝒜,𝑖(𝜆)|

(4.1)

Lemmas 4.1–4.16 will show that each term on the RHS of Eq. (4.1) is nothing but negligible.
Hence, Theorem 4.1 follows.

Lemma 4.1: If the 𝖲𝖣-I assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅1(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,0(𝜆)− 𝑝𝒜,1(𝜆)| ≤ 𝗇𝖾𝗀𝗅1(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻0 and 𝖧𝗒𝖻1 with
non-negligible advantage 𝜖(𝜆). Using 𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣-I problem. The algorithm ℬ gets an
instance of the 𝖲𝖣-I problem form its challenger that consists of the group description 𝖦 = (𝑁 =
𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group element 𝑔1 ← 𝔾𝑝1 , and another group element 𝑇𝛽 where
𝑇𝛽 ← 𝔾 if 𝛽 = 0 or 𝑇𝛽 ← 𝔾𝑝1 if 𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑔𝜃1, and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: Whenever 𝒜 queries the random oracle 𝖧 for some
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, ℬ chooses a random exponent 𝜃GID ∈ ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑇 𝜃GID

𝛽 . It stores this
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again. If 𝑇𝛽 is a generator of 𝔾𝑝1 ,
these will be random elements of 𝔾𝑝1 . If 𝑇𝛽 is a generator of 𝔾, these will be random elements
of 𝔾.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm

31

using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟,
the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜
plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for
(𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 by running the
𝖤𝗇𝖼 algorithm that encrypts 𝗆𝗌𝗀𝑏 under the access structure (𝑴 , 𝜌).

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Clearly the game simulated by ℬ coincides with 𝖧𝗒𝖻0 or 𝖧𝗒𝖻1 according as 𝑇𝛽 ← 𝔾 or

𝑇𝛽 ← 𝔾𝑝1 since 𝜃GID ← ℤ𝑁 for all global identifiers 𝖦𝖨𝖣. Thus, ℬ can use 𝒜 to attain noticeable
advantage in solving 𝖲𝖣-I. ■

Lemma 4.2: If the 𝖲𝖣-II assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅2(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,1(𝜆)− 𝑝𝒜,2(𝜆)| ≤ 𝗇𝖾𝗀𝗅2(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻1 and 𝖧𝗒𝖻2 with
non-negligible advantage 𝜖(𝜆). Using 𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣-II problem. The algorithm ℬ gets
an instance of the 𝖲𝖣-II problem from its challenger that consists of the group description
𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group elements 𝑔1, 𝑔2, 𝑋1𝑋3, where 𝑔1, 𝑋1 ← 𝔾𝑝1 ,
𝑔2 ← 𝔾𝑝2 , 𝑋3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1 if 𝛽 = 0 or 𝑇𝛽 ← 𝔾𝑝1𝑝3 if
𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑔𝜃1, and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: Whenever 𝒜 queries the random oracle 𝖧 for some
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, ℬ chooses a random exponent 𝜃GID ∈ ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑔𝜃GID1 . It stores this
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for

32

each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝜔 ← ℤ𝑁 and implicitly sets 𝑠 = 𝑟 · 𝜔 where 𝑔𝑟1 is the 𝔾𝑝1

part of 𝑇𝛽 and sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑇𝛽, 𝑕)
𝜔, 𝗌𝖾𝖾𝖽). ℬ also chooses two vectors, 𝒗𝐴 =

(𝜔, 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑),𝒗𝐵 = (−𝜔, 𝑣𝐵,2, . . . , 𝑣𝐵,𝑑), where 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑, 𝑣𝐵,2 . . . , 𝑣𝐵,𝑑 are chosen ran-
domly from ℤ𝑁 . We let 𝜔𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and 𝜔𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ].

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 in 𝑌 , ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 in 𝑌 , ℬ chooses random values
𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 , and implicitly sets 𝑟𝐴,𝑥 = 𝑟𝑟𝐴,𝑥 and 𝑟𝐵,𝑥 = 𝑟𝑟𝐵,𝑥.

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑇
𝜔𝐴,𝑥

𝛽 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑇
𝜔𝐵,𝑥

𝛽 ,

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑇
𝑟𝐴,𝑥

𝛽 𝐶2,𝐴,𝑥 = 𝑇
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

𝛽 𝑇
𝜔𝐴,𝑥

𝛽 ,

𝐶1,𝐵,𝑥 = 𝑇
𝑟𝐵,𝑥

𝛽 𝐶2,𝐵,𝑥 = 𝑇
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

𝛽 𝑇
𝜔𝐵,𝑥

𝛽 ,

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Note that for all 𝑥 ∈ [ℓ], the 𝔾𝑝1 part of 𝑇𝜔𝐴,𝑥

𝛽 (respectively 𝑇
𝜔𝐵,𝑥

𝛽) is 𝑔𝑴𝑥·𝒗𝐴
1 (respectively

𝑔𝑴𝑥·𝒗𝐵
1), where 𝒗𝐴 = 𝑟𝒗𝐴 (respectively 𝒗𝐵 = 𝑟𝒗𝐵) is a random vector in ℤ𝑑

𝑁 whose first entry
is 𝑠 = 𝑟𝜔 (respectively −𝑠 = 𝑟(−𝜔)). Also for all 𝑥 ∈ 𝑌 , the 𝔾𝑝1 part of 𝑇 𝑟𝐴,𝑥

𝛽 (respectively

𝑇
𝑟𝐵,𝑥

𝛽) is 𝑔
𝑟𝐴,𝑥

1 (respectively 𝑔
𝑟𝐵,𝑥

1), where 𝑟𝐴,𝑥 = 𝑟𝑟𝐴,𝑥 (respectively 𝑟𝐵,𝑥 = 𝑟𝑟𝐵,𝑥). Thus, if
𝑇𝛽 = 𝑔𝑟1 ← 𝔾𝑝1 the ciphertext simulated by ℬ is distributed exactly as in 𝖧𝗒𝖻1. On the other
hand, if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑐
3 ← 𝔾𝑝1𝑝3 the ciphertext simulated by ℬ is distributed exactly as in 𝖧𝗒𝖻2 with

parameters 𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝑐𝒗𝐴 (modulo 𝑝3), 𝜎′

𝐵,𝑥 = 𝑴𝑥 · 𝑐𝒗𝐵 (modulo 𝑝3), 𝑟′𝐴,𝑥 = 𝑐𝑟𝐴,𝑥 (modulo
𝑝3), 𝑟′𝐵,𝑥 = 𝑐𝑟𝐵,𝑥 (modulo 𝑝3) for all 𝑥 ∈ [ℓ].

In order to see this, note that since {𝑟𝐴,𝑥, 𝑟𝐵,𝑥}𝑥∈𝑌 , 𝜔, {𝑣𝐴,𝑗 , 𝑣𝐵,𝑗}𝑗∈[2,𝑑] are chosen randomly
in ℤ𝑁 , their values modulo 𝑝1 and modulo 𝑝3 are uncorrelated by the Chinese Remainder The-
orem. Hence, our parameters 𝜎′

𝐴,𝑥, 𝜎
′
𝐵,𝑥, 𝑟

′
𝐴,𝑥, 𝑟

′
𝐵,𝑥 are random and independent of the other

variables. Thus it follows that the games simulated by ℬ coincides with 𝖧𝗒𝖻1 or 𝖧𝗒𝖻2 depending

33

on whether 𝑇𝛽 ← 𝔾𝑝1 or 𝑇𝛽 ← 𝔾𝑝1𝑝3 , respectively. Thus, ℬ can use 𝒜 to attain noticeable
advantage in solving 𝖲𝖣-II. ■

Lemma 4.3: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅3(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≤ 𝗇𝖾𝗀𝗅3(𝜆).

Proof: Observe that the only difference between 𝖧𝗒𝖻2 and 𝖧𝗒𝖻3 is that in 𝖧𝗒𝖻2 the components
{𝜎′

𝐴,𝑥}𝑥∈[ℓ] and {𝜎′
𝐵,𝑥}𝑥∈[ℓ] are shares of correlated secrets, i.e., 𝑠′ and −𝑠′ respectively for 𝑠′ ←

ℤ𝑁 , whereas in 𝖧𝗒𝖻3 they are shares of independent secrets 𝑠′𝐴, 𝑠
′
𝐵 ← ℤ𝑁 . Therefore, in order

to prove that these two games are statistically indistinguishable, we will argue that the secrets
being shared by {𝜎′

𝐴,𝑥}𝑥∈[ℓ] and {𝜎′
𝐵,𝑥}𝑥∈[ℓ] are information theoretically hidden to the adversary

𝒜 in 𝖧𝗒𝖻2.
First, note that the shares 𝜎′

𝐴,𝑥 and 𝜎′
𝐵,𝑥 for all the rows 𝑥 of the challenge access matrix 𝑴

labeled by corrupted authorities (i.e., the authorities for which 𝒜 either requests the master key
or creates it on its own) are information theoretically revealed to 𝒜. However, by the game
restriction the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). We may
assume that this holds modulo 𝑝3. This means that there must exist a vector 𝒖 ∈ ℤ𝑑

𝑁 such that
𝒖 is orthogonal to all these rows of 𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry
of 𝒖 is nonzero). We consider a basis 𝕌 of ℤ𝑑

𝑁 involving the vector 𝒖 and write 𝒗′
𝐴 = 𝒗𝐴 + 𝑎𝒖

for some 𝑎 mod 𝑝3 and some vector 𝒗𝐴 in the span of 𝕌 ∖ {𝒖}. We note that 𝒗𝐴 is uniformly
distributed in the subspace spanned by 𝕌 ∖ {𝒖} (modulo 𝑝3) and reveals no information about
𝑎 mod 𝑝3. Now, since the first coordinate of 𝒖 is nonzero modulo 𝑝3, it follows that the first
coordinate of 𝒗′

𝐴, i.e., 𝑠′𝐴, depends on the value of 𝑎 mod 𝑝3. But the shares 𝜎′
𝐴,𝑥 for all the

corrupted rows of 𝑴 contains no information about 𝑎 mod 𝑝3 since 𝒖 is orthogonal to all these
rows.

Therefore, the only possible way for 𝒜 to get information about 𝑎 mod 𝑝3 is through the
ciphertext components 𝐶2,𝐴,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each
such row 𝑥, 𝒜 can only recover 𝑟′𝐴,𝑥 (modulo 𝑝3) and 𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥 +𝜎′

𝐴,𝑥 (modulo 𝑝3) information
theoretically. Since the labeling function 𝜌 is injective, it follows that 𝑦𝐴,𝜌(𝑥) mod 𝑝3 is a fresh
random value that appears nowhere else. This means that given 𝑟′𝐴,𝑥, 𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥+𝜎′

𝐴,𝑥 (modulo
𝑝3), if 𝑟′𝐴,𝑥 mod 𝑝3 is nonzero (note that 𝑟′𝐴,𝑥 mod 𝑝3 = 0 with negligible probability), any value
of 𝜎′

𝐴,𝑥 mod 𝑝3 can be explained by a particular value of 𝑦𝐴,𝜌(𝑥) mod 𝑝3. Since 𝑦𝐴,𝜌(𝑥) mod 𝑝3
is uniformly random and information theoretically hidden to 𝒜 given the public keys 𝖯𝖪𝜌(𝑥) =(︁
𝑔
𝑦𝐴,𝜌(𝑥)

1 , 𝑔
𝑦𝐵,𝜌(𝑥)

1

)︁
of the corresponding uncorrupted authorities 𝜌(𝑥) (note that 𝑔

𝑦𝐴,𝜌(𝑥)

1 only leaks
𝑦𝐴,𝜌(𝑥) mod 𝑝1), it follows that 𝜎′

𝐴,𝑥 is information theoretically hidden to 𝒜. Therefore, no
information about 𝑎 mod 𝑝3 is leaked to 𝒜 which in turn means that the secret being shared by
{𝜎′

𝐴,𝑥}𝑥∈[ℓ] (and analogously by {𝜎′
𝐵,𝑥}𝑥∈[ℓ]) is information theoretically hidden to 𝒜. ■

Lemma 4.4: If the 𝖲𝖣-III assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅4(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≤ 𝗇𝖾𝗀𝗅4(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻3 and 𝖧𝗒𝖻4 with
non-negligible advantage 𝜖(𝜆). Using 𝒜 as a subroutine, we construct below a PPT adversary ℬ
that has noticeable advantage in solving the 𝖲𝖣-III problem. The algorithm ℬ gets an instance
of the 𝖲𝖣-III problem from its challenger that consists of the group description 𝖦 = (𝑁 =
𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group elements 𝑔1, 𝑔3, 𝑋1𝑋2, where 𝑔1, 𝑋1 ← 𝔾𝑝1 ,𝑋2 ← 𝔾𝑝2 ,
𝑔3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1 if 𝛽 = 0 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑔𝜃1, and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

34

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: Whenever 𝒜 queries the random oracle 𝖧 for some
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, ℬ chooses a random exponent 𝜃GID ∈ ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑔𝜃GID1 . It stores this
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝜔 ← ℤ𝑁 and implicitly sets 𝑠 = 𝑟 · 𝜔 where 𝑔𝑟1 is the 𝔾𝑝1

part of 𝑇𝛽 and sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑇𝛽, 𝑕)
𝜔, 𝗌𝖾𝖾𝖽). ℬ also chooses two vectors, 𝒗𝐴 =

(𝜔, 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑),𝒗𝐵 = (−𝜔, 𝑣𝐵,2, . . . , 𝑣𝐵,𝑑), where 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑, 𝑣𝐵,2 . . . , 𝑣𝐵,𝑑 are chosen ran-
domly from ℤ𝑁 . We let 𝜔𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and 𝜔𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ]. ℬ further samples
𝑠′𝐴, 𝑠

′
𝐵 ← ℤ𝑁 and defines 𝜎′

𝐴,𝑥 = 𝑴𝑥 · 𝒗′
𝐴, 𝜎

′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′

𝐵 for all 𝑥 ∈ [ℓ], where 𝒗′
𝐴,𝒗

′
𝐵 ← ℤ𝑑

𝑁

are random vectors with 𝑠′𝐴 and 𝑠′𝐵 as their first entry, respectively.
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities

for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 ∈ 𝑌 , ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 ∈ 𝑌 , ℬ chooses random values
𝑟′𝐴,𝑥, 𝑟

′
𝐵,𝑥, 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 , and implicitly sets 𝑟𝐴,𝑥 = 𝑟𝑟𝐴,𝑥 and 𝑟𝐵,𝑥 = 𝑟𝑟𝐵,𝑥.

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑇
𝜔𝐴,𝑥

𝛽 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑇
𝜔𝐵,𝑥

𝛽 𝑔
𝜎′
𝐵,𝑥

3 ,

35

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑇
𝑟𝐴,𝑥

𝛽 𝑔
𝑟′𝐴,𝑥

3 𝐶2,𝐴,𝑥 = 𝑇
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

𝛽 𝑇
𝜔𝐴,𝑥

𝛽 𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝑇
𝑟𝐵,𝑥

𝛽 𝑔
𝑟′𝐵,𝑥

3 𝐶2,𝐵,𝑥 = 𝑇
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

𝛽 𝑇
𝜔𝐵,𝑥

𝛽 𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 ,

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
We note that for all 𝑥 ∈ [ℓ], the 𝔾𝑝1 part of 𝑇𝜔𝐴,𝑥

𝛽 (respectively 𝑇
𝜔𝐵,𝑥

𝛽) is 𝑔𝑴𝑥·𝒗𝐴
1 (respec-

tively 𝑔𝑴𝑥·𝒗𝐵
1), where 𝒗𝐴 = 𝑟𝒗𝐴 (respectively 𝒗𝐵 = 𝑟𝒗𝐵) is a random vector in ℤ𝑑

𝑁 whose first
entry is 𝑠 = 𝑟𝜔 (respectively −𝑠 = 𝑟(−𝜔)). Also for all 𝑥 ∈ 𝑌 , the 𝔾𝑝1 part of 𝑇

𝑟𝐴,𝑥

𝛽 (re-

spectively 𝑇
𝑟𝐵,𝑥

𝛽) is 𝑔
𝑟𝐴,𝑥

1 (respectively 𝑔
𝑟𝐵,𝑥

1), where 𝑟𝐴,𝑥 = 𝑟𝑟𝐴,𝑥 (respectively 𝑟𝐵,𝑥 = 𝑟𝑟𝐵,𝑥).
Thus, if 𝑇𝛽 = 𝑔𝑟1 ← 𝔾𝑝1 , the ciphertext simulated by ℬ is distributed exactly as in 𝖧𝗒𝖻3.
On the other hand, if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑐
2 ← 𝔾𝑝1𝑝2 the ciphertext simulated by ℬ is distributed ex-

actly as in 𝖧𝗒𝖻4 with parameters 𝜎′′
𝐴,𝑥 = 𝑴𝑥 · 𝑐𝒗𝐴 mod 𝑝2, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 · 𝑐𝒗𝐵 mod 𝑝2, for all
𝑥 ∈ [ℓ], 𝑟′′𝐴,𝑥 = 𝑐𝑟𝐴,𝑥 mod 𝑝2, 𝑟′′𝐵,𝑥 = 𝑐𝑟𝐵,𝑥 mod 𝑝2 for all 𝑥 ∈ 𝑌 . In order to see this, note that
since {𝑟𝐴,𝑥, 𝑟𝐵,𝑥}𝑥∈𝑌 , 𝜔, {𝑣𝐴,𝑗 , 𝑣𝐵,𝑗}𝑗∈[2,𝑑] are chosen randomly in ℤ𝑁 , their values modulo 𝑝1
and modulo 𝑝2 are uncorrelated by the Chinese Remainder Theorem. Hence, our parameters
{𝜎′′

𝐴,𝑥, 𝜎
′′
𝐵,𝑥}𝑥∈[ℓ], {𝑟′′𝐴,𝑥, 𝑟

′′
𝐵,𝑥}𝑥∈𝑌 are random and independent of the other variables.

Thus, it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻3 or 𝖧𝗒𝖻4 according to
whether 𝑇𝛽 ← 𝔾𝑝1 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 . Thus, ℬ can use 𝒜 to attain noticeable advantage in solving
𝖲𝖣-III. ■

Lemma 4.5: If the 𝖲𝖣-III assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅5:𝑗:1(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,5:(𝑗−1)(𝜆)− 𝑝𝒜,5:𝑗:1(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅5:𝑗:1(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻5:(𝑗−1) and
𝖧𝗒𝖻5:𝑗:1 with non-negligible advantage 𝜖(𝜆). Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has noticeable advantage in solving the 𝖲𝖣-III problem. The algorithm ℬ gets an
instance of the 𝖲𝖣-III problem from its challenger that consists of the group description 𝖦 = (𝑁 =
𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group elements 𝑔1, 𝑔3, 𝑋1𝑋2, where 𝑔1, 𝑋1 ← 𝔾𝑝1 ,𝑋2 ← 𝔾𝑝2 ,
𝑔3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1 if 𝛽 = 0 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑔𝜃1, and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: When ℬ needs to generate 𝖧(𝖦𝖨𝖣) for some global
identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, either it responds to a direct 𝖧 oracle query of 𝒜 or answers to a secret
key query of 𝒜, ℬ proceeds as follows: For the first 𝑗 − 1 global identifiers 𝖦𝖨𝖣, ℬ samples
𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = (𝑔1𝑔3)

𝜃GID (this is a random element of 𝔾𝑝1𝑝3 since the values of

36

𝜃GID modulo 𝑝1 and modulo 𝑝3 are uncorrelated by the Chinese Remainder Theorem). For the

𝑗th global identifier 𝖦𝖨𝖣𝑗 , ℬ samples random 𝜃GID𝑗
← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣𝑗) = 𝑇

𝜃GID𝑗

𝛽 . For all
subsequent global identifiers 𝖦𝖨𝖣, ℬ samples 𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑔𝜃GID1 . It stores these
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝜔 ← ℤ𝑁 and implicitly sets 𝑠 = 𝛼 · 𝜔 (modulo 𝑝1) and 𝑠′′ =
𝛾 · 𝜔 (modulo 𝑝2) where 𝑔𝛼1 = 𝑋1 and 𝑔𝛾2 = 𝑋2 (letting 𝑔2 be a generator of 𝔾𝑝2) and sets
𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑋1𝑋2, 𝑕)

𝜔, 𝗌𝖾𝖾𝖽). ℬ also chooses two vectors, 𝒗𝐴 = (𝜔, 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑),𝒗𝐵 =
(−𝜔, 𝑣𝐵,2, . . . , 𝑣𝐵,𝑑), where 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑, 𝑣𝐵,2 . . . , 𝑣𝐵,𝑑 are chosen randomly from ℤ𝑁 . We let
𝜔𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and 𝜔𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ]. ℬ further samples 𝑠′𝐴, 𝑠

′
𝐵 ← ℤ𝑁 and defines

𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′

𝐴, 𝜎
′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′

𝐵 for all 𝑥 ∈ [ℓ], where 𝒗′
𝐴,𝒗

′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴
and 𝑠′𝐵 as their first entry respectively.

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 in 𝑌 , ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥, 𝑟

′
𝐴,𝑥, 𝑟

′
𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 ∈ 𝑌 , ℬ chooses random

values 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 , and implicitly sets 𝑟𝐴,𝑥 = 𝛼𝑟𝐴,𝑥 (modulo 𝑝1), 𝑟′′𝐴,𝑥 = 𝛾𝑟𝐴,𝑥 (modulo 𝑝2),
𝑟𝐵,𝑥 = 𝛼𝑟𝐵,𝑥 (modulo 𝑝1), and 𝑟′′𝐵,𝑥 = 𝛾𝑟𝐵,𝑥 (modulo 𝑝2) which are random and uncorrelated by
the Chinese Remainder Theorem.

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)(𝑋1𝑋2)
𝜔𝐴,𝑥𝑔

𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)(𝑋1𝑋2)
𝜔𝐵,𝑥𝑔

𝜎′
𝐵,𝑥

3 ,

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = (𝑋1𝑋2)
𝑟𝐴,𝑥𝑔

𝑟′𝐴,𝑥

3 𝐶2,𝐴,𝑥 = (𝑋1𝑋2)
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥(𝑋1𝑋2)

𝜔𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = (𝑋1𝑋2)
𝑟𝐵,𝑥𝑔

𝑟′𝐵,𝑥

3 𝐶2,𝐵,𝑥 = (𝑋1𝑋2)
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥(𝑋1𝑋2)

𝜔𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 ,

37

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.
We note that this implicitly sets 𝜎𝐴,𝑥 = 𝑴𝑥 · 𝛼𝒗𝐴 mod 𝑝1, 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝛼𝒗𝐵 mod 𝑝1 and

similarly, 𝜎′′
𝐴,𝑥 = 𝑴𝑥 · 𝛾𝒗𝐴 mod 𝑝2, 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝛾𝒗𝐵 mod 𝑝2 for all 𝑥 ∈ [ℓ]. Since 𝒗𝐴,𝒗𝐵 are

uniformly sampled from ℤ𝑑
𝑁 , their entries modulo 𝑝1 and modulo 𝑝2 are uncorrelated by the

Chinese Remainder Theorem.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝑇𝛽 = 𝑔𝑟1 ← 𝔾𝑝1 , the 𝖧 oracle output for the 𝑗th global identifier 𝖦𝖨𝖣𝑗

simulated by ℬ is distributed exactly as in 𝖧𝗒𝖻5:(𝑗−1) with 𝜃GID𝑗
= 𝑟𝜃GID𝑗

. On the other hand,
if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑐
2 ← 𝔾𝑝1𝑝2 , then the 𝖧 oracle output for 𝖦𝖨𝖣𝑗 simulated by ℬ is distributed exactly

as in 𝖧𝗒𝖻5:𝑗:1 with 𝜃′′GID𝑗
= 𝑐𝜃GID𝑗

(modulo 𝑝2) as its 𝔾𝑝2 exponent. Here, since 𝜃GID𝑗
is sampled

uniformly from ℤ𝑁 its value modulo 𝑝1 and modulo 𝑝2 are uncorrelated by the Chinese Remainder
Theorem implying that the 𝔾𝑝2 exponent of 𝖧(𝖦𝖨𝖣𝑗) is random and independent of the other
variables.

Thus, it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻5:(𝑗−1) or 𝖧𝗒𝖻5:𝑗:1 according
to whether 𝑇𝛽 ← 𝔾𝑝1 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 . Thus, ℬ can use 𝒜 to attain noticeable advantage in
solving 𝖲𝖣-III. ■

Lemma 4.6: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅5:𝑗:2(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5:𝑗:1(𝜆)− 𝑝𝒜,5:𝑗:2(𝜆)| ≤ 𝗇𝖾𝗀𝗅5:𝑗:2(𝜆).

Proof: Observe that the only difference between 𝖧𝗒𝖻5:𝑗:1 and 𝖧𝗒𝖻5:𝑗:2 is that in the former
the parameters {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] and {𝜎′′
𝐵,𝑥}𝑥∈[ℓ] are shares of correlated secrets, i.e., 𝑠′′ and −𝑠′′,

respectively, for 𝑠′′ ∈ ℤ𝑁 , whereas in the latter, they are shares of independent secrets 𝑠′′𝐴, 𝑠
′′
𝐵 ←

ℤ𝑁 . Therefore, in order to prove these two games are statistically indistinguishable, we will
argue that the secrets being shared by {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] and {𝜎′′
𝐵,𝑥}𝑥∈[ℓ] are information theoretically

hidden to the adversary 𝒜 in 𝖧𝗒𝖻5:𝑗:1.
We note that the shares 𝜎′′

𝐴,𝑥 and 𝜎′′
𝐵,𝑥 for all the rows 𝑥 of the challenge access matrix 𝑴

labeled by corrupted authorities (i.e., the authorities for which 𝒜 either requests the master key
or creates it on its own) and for all the rows 𝑥 of 𝑴 labeled by authorities 𝑢 such that 𝒜 makes
a secret key query for (𝖦𝖨𝖣𝑗 , 𝑢) are information theoretically revealed to 𝒜, where 𝖦𝖨𝖣𝑗 is the
𝑗th global identifier whose 𝖧 oracle output is simulated by the challenger. However, by the game
restriction the subspace spanned by those rows does not include the vector (1, 0, . . . , 0). We may
assume that this holds modulo 𝑝2. This means there must exists a vector 𝒖 ∈ ℤ𝑑

𝑁 such that 𝒖 is
orthogonal to all these rows of 𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry of 𝒖
is nonzero).

We consider a basis of 𝕌 of ℤ𝑑
𝑁 involving the vector 𝒖 and write 𝒗′′

𝐴 = 𝒗𝐴 + 𝑎𝒖 for some 𝑎
modulo 𝑝2 and some vector 𝒗𝐴 in the span of 𝕌 ∖ {𝒖}. We note that 𝒗𝐴 is uniformly distributed
in the subspace spanned by 𝕌 ∖ {𝒖} (modulo 𝑝2) and reveals no information about 𝑎 (modulo
𝑝2). Now, since the first coordinate of 𝒖 is nonzero modulo 𝑝2, it follows that the first coordinate
of 𝒗′′

𝐴, i.e., 𝑠′′𝐴, depends on the value of 𝑎 (modulo 𝑝2). But the shares 𝜎′′
𝐴,𝑥 for all the corrupted

rows of 𝑴 and all the rows of 𝑴 for which a secret key query is made by 𝒜 with respect to the
global identifier 𝖦𝖨𝖣𝑗 contains no information about 𝑎 (modulo 𝑝2) since 𝒖 is orthogonal to all
these rows.

Hence, the only possible way for 𝒜 to get information about 𝑎 mod 𝑝2 is through the ci-
phertext components 𝐶2,𝐴,𝑥 corresponding to the remaining rows of 𝑴 . However, for each
such row 𝑥, 𝒜 can only recover 𝑟′′𝐴,𝑥 mod 𝑝2 and 𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥 + 𝜎′′

𝐴,𝑥 mod 𝑝2 information the-
oretically. Since the labeling function 𝜌 is injective, it follows that 𝑦𝐴,𝜌(𝑥) mod 𝑝2 is a fresh
random value that appears nowhere else. This means given 𝑟′′𝐴,𝑥, 𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥 + 𝜎′′

𝐴,𝑥 mod 𝑝2, if
𝑟′′𝐴,𝑥 mod 𝑝2 is nonzero (note that 𝑟′′𝐴,𝑥 mod 𝑝2 = 0 with negligible probability), any value of
𝜎′′
𝐴,𝑥 mod 𝑝2 can be explained by a particular value of 𝑦𝐴,𝜌(𝑥) mod 𝑝2). Since 𝑦𝐴,𝜌(𝑥) mod 𝑝2 is

38

uniformly random and information theoretically hidden to 𝒜 given the public keys 𝖯𝖪𝜌(𝑥) =(︁
𝑔
𝑦𝐴,𝜌(𝑥)

1 , 𝑔
𝑦𝐵,𝜌(𝑥)

1

)︁
of the corresponding authorities 𝜌(𝑥) an possibly the secret keys 𝖲𝖪GID,𝜌(𝑥) =(︀

𝐾GID,𝐴,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥) ,𝐾GID,𝐵,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝜌(𝑥)
)︀

with respect to some 𝖦𝖨𝖣 ̸=
𝖦𝖨𝖣𝑗 (note that for 𝖦𝖨𝖣 ̸= 𝖦𝖨𝖣𝑗 , 𝖧(𝖦𝖨𝖣) ← 𝔾𝑝1 or 𝖧(𝖦𝖨𝖣) ← 𝔾𝑝1𝑝3 and 𝑔

𝑦𝐴,𝜌(𝑥)

1 , 𝑔
𝑦𝐴,𝜌(𝑥)

3 only
leak respectively 𝑦𝐴,𝜌(𝑥) modulo 𝑝1 and modulo 𝑝3), it follows that 𝜎′′

𝐴,𝑥 is completely hidden
to 𝒜. Therefore, no information about 𝑎 mod 𝑝2) is leaked to 𝒜 which in turn means that the
secret being shared by {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] (and analogously by {𝜎′′
𝐵,𝑥}𝑥∈[ℓ]) is completely hidden to 𝒜.

■

Lemma 4.7: If the 𝖲𝖣-IV assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅5:𝑗:3(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5:𝑗:2(𝜆)− 𝑝𝒜,5:𝑗:3(𝜆)| ≤ 𝗇𝖾𝗀𝗅5:𝑗:3(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻5:𝑗:2 and 𝖧𝗒𝖻5:𝑗:3
with non-negligible advantage 𝜖(𝜆). Using𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣-IV problem. The algorithm ℬ gets
an instance of the 𝖲𝖣-IV problem from its challenger that consists of the group description
𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒)← 𝒢(1𝜆), the group elements 𝑔1, 𝑔2, 𝑋1𝑋3, 𝑍2𝑍3 where 𝑔1, 𝑋1 ← 𝔾𝑝1 ,
𝑔2, 𝑍2 ← 𝔾𝑝2 , 𝑋3, 𝑍3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1𝑝2 if 𝛽 = 0 or
𝑇𝛽 ← 𝔾 if 𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑔𝜃1, and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: When ℬ needs to generate 𝖧(𝖦𝖨𝖣) for some global
identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, either it responds to a direct 𝖧 oracle query of 𝒜 or answers to a secret
key query of 𝒜, ℬ proceeds as follows: For the first 𝑗 − 1 global identifiers 𝖦𝖨𝖣, ℬ samples
𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = (𝑋1𝑋3)

𝜃GID (this is a random element of 𝔾𝑝1𝑝3 since the values
of 𝜃GID modulo 𝑝1 and modulo 𝑝3 are uncorrelated by the Chinese Remainder Theorem). For

the 𝑗th global identifier 𝖦𝖨𝖣𝑗 , ℬ samples random 𝜃GID𝑗
← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣𝑗) = 𝑇

𝜃GID𝑗

𝛽 . For all
subsequent global identifiers 𝖦𝖨𝖣, ℬ samples 𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑔𝜃GID1 . It stores all of
these value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query

39

for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝑠← ℤ𝑁 and sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠, 𝗌𝖾𝖾𝖽). ℬ also chooses

two vectors, 𝒗𝐴,𝒗𝐵 ← ℤ𝑑
𝑁 with 𝑠 and −𝑠 as their first entry respectively. We let 𝜎𝐴,𝑥 = 𝑴𝑥 ·𝒗𝐴

and 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ]. ℬ further samples 𝛾𝐴, 𝛾𝐵 ← ℤ𝑁 and defines 𝛾𝐴,𝑥 =
𝑴𝑥 · 𝒗𝐴, 𝛾𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ], where 𝒗𝐴,𝒗𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝛾𝐴 and 𝛾𝐵
as their first entry respectively.

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 ∈ [ℓ], ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 ∈ 𝑌 , ℬ chooses random values
𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 .

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 (𝑍2𝑍3)
𝛾𝐴,𝑥 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 (𝑍2𝑍3)
𝛾𝐵,𝑥 ,

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 (𝑍2𝑍3)
𝑟𝐴,𝑥 𝐶2,𝐴,𝑥 = 𝑔

𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 (𝑍2𝑍3)
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥(𝑍2𝑍3)

𝛾𝐴,𝑥 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 (𝑍2𝑍3)
𝑟𝐵,𝑥 𝐶2,𝐵,𝑥 = 𝑔

𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 (𝑍2𝑍3)
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥(𝑍2𝑍3)

𝛾𝐵,𝑥 ,

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.
We note that this implicitly sets 𝜎′′

𝐴,𝑥 = 𝑴𝑥 · 𝑧2𝒗𝐴 mod 𝑝2, 𝜎′′
𝐵,𝑥 = 𝑴𝑥 · 𝑧2𝒗𝐵 mod 𝑝2 and

similarly, 𝜎′
𝐴,𝑥 = 𝑴𝑥 ·𝑧3𝒗𝐴 mod 𝑝3, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 ·𝑧3𝒗𝐵 mod 𝑝3 for all 𝑥 ∈ [ℓ], where 𝑍2 = 𝑔𝑧22 , and
𝑍3 = 𝑔𝑧33 (letting 𝑔3 be a generator of 𝔾𝑝3) and since 𝒗𝐴,𝒗𝐵 are uniformly sampled from ℤ𝑑

𝑁 , their
entries modulo 𝑝2 and modulo 𝑝3 are uncorrelated by the Chinese Remainder Theorem. Similarly,
this implicitly sets 𝑟′𝐴,𝑥 = 𝑧3𝑟𝐴,𝑥 mod 𝑝3,𝑟′𝐵,𝑥 = 𝑧3𝑟𝐵,𝑥 mod 𝑝3, 𝑟′′𝐴,𝑥 = 𝑧2𝑟𝐴,𝑥 mod 𝑝2,𝑟′′𝐵,𝑥 =

𝑧2𝑟𝐵,𝑥 mod 𝑝2 for all 𝑥 ∈ 𝑌 where {𝑟′𝐴,𝑥, 𝑟
′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥}𝑥∈𝑌 are random and uncorrelated by the

Chinese Remainder Theorem.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑐
2 ← 𝔾𝑝1𝑝2 , then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ is distributed exactly as

in 𝖧𝗒𝖻5:𝑗:2. On the other hand, if 𝑇𝛽 = 𝑔𝑟1𝑔
𝑐
2𝑔

𝑣
3 ← 𝔾, then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ is distributed

exactly as in 𝖧𝗒𝖻5:𝑗:3. In other words, the game simulated by ℬ coincides with 𝖧𝗒𝖻5:𝑗:2 or 𝖧𝗒𝖻5:𝑗:3
according as 𝑇𝛽 ← 𝔾𝑝1𝑝2 or 𝑇𝛽 ← 𝔾. ■

Lemma 4.8: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅5:𝑗:4(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5:𝑗:3(𝜆)− 𝑝𝒜,5:𝑗:4(𝜆)| ≤ 𝗇𝖾𝗀𝗅5:𝑗:4(𝜆).

Proof: The proof of this lemma is analogous to the proof of Lemma 4.6. We omit the proof to
avoid repetition. ■

40

Lemma 4.9: If the 𝖲𝖣-III assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅5:𝑗(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5:𝑗:4(𝜆)− 𝑝𝒜,5:𝑗(𝜆)| ≤ 𝗇𝖾𝗀𝗅5:𝑗(𝜆).

Proof: The proof of this lemma is analogous to the proof of Lemma 4.5 (the proof requires only
minor notational modifications). We omit the proof to avoid repetition. ■

Lemma 4.10: If the 𝖲𝖣-III assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅6(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5:𝑞(𝜆)− 𝑝𝒜,6(𝜆)| ≤ 𝗇𝖾𝗀𝗅6(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻5:𝑞 and 𝖧𝗒𝖻6
with non-negligible advantage 𝜖(𝜆). Using𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣-III problem. The algorithm ℬ gets
an instance of the 𝖲𝖣-III problem from its challenger that consists of the group description
𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group elements 𝑔1, 𝑔3, 𝑋1𝑋2 where 𝑔1, 𝑋1 ← 𝔾𝑝1 ,
𝑋2 ← 𝔾𝑝2 , 𝑔3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1 if 𝛽 = 0 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 if
𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, sets
𝑕 = 𝑇 𝜃

𝛽 , and gives the global public parameters 𝖦𝖯 = (𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: When ℬ needs to generate 𝖧(𝖦𝖨𝖣) for some global
identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, either it responds to a direct 𝖧 oracle query of 𝒜 or answers to a secret
key query of 𝒜, ℬ proceeds as follows: ℬ samples 𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = (𝑔1𝑔3)

𝜃GID (this
is a random element of 𝔾𝑝1𝑝3 since the values of 𝜃GID modulo 𝑝1 and modulo 𝑝3 are uncorrelated
by the Chinese Remainder Theorem). It stores these value so that it can respond consistently if
𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

41

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝜔 ← ℤ𝑁 and implicitly sets 𝑠 = 𝛼 · 𝜔 (modulo 𝑝1) and 𝑠′′ =
𝛾 · 𝜔 (modulo 𝑝2) where 𝑔𝛼1 = 𝑋1 and 𝑔𝛾2 = 𝑋2 (letting 𝑔2 be a generator of 𝔾𝑝2) and sets
𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑋1𝑋2, 𝑕)

𝜔, 𝗌𝖾𝖾𝖽). ℬ also chooses two vectors, 𝒗𝐴 = (𝜔, 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑),𝒗𝐵 =
(−𝜔, 𝑣𝐵,2, . . . , 𝑣𝐵,𝑑), where 𝑣𝐴,2, . . . , 𝑣𝐴,𝑑, 𝑣𝐵,2 . . . , 𝑣𝐵,𝑑 are chosen randomly from ℤ𝑁 . We let
𝜔𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and 𝜔𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ]. ℬ further samples 𝑠′𝐴, 𝑠

′
𝐵 ← ℤ𝑁 and defines

𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝒗′

𝐴, 𝜎
′
𝐵,𝑥 = 𝑴𝑥 · 𝒗′

𝐵 for all 𝑥 ∈ [ℓ], where 𝒗′
𝐴,𝒗

′
𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠′𝐴
and 𝑠′𝐵 as their first entry respectively.

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 in 𝑌 , ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥, 𝑟

′
𝐴,𝑥, 𝑟

′
𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 ∈ 𝑌 , ℬ chooses random

values 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 , and implicitly sets 𝑟𝐴,𝑥 = 𝛼𝑟𝐴,𝑥 (modulo 𝑝1), 𝑟′′𝐴,𝑥 = 𝛾𝑟𝐴,𝑥 (modulo 𝑝2),
𝑟𝐵,𝑥 = 𝛼𝑟𝐵,𝑥 (modulo 𝑝1), and 𝑟′′𝐵,𝑥 = 𝛾𝑟𝐵,𝑥 (modulo 𝑝2).

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)(𝑋1𝑋2)
𝜔𝐴,𝑥𝑔

𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)(𝑋1𝑋2)
𝜔𝐵,𝑥𝑔

𝜎′
𝐵,𝑥

3 ,

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = (𝑋1𝑋2)
𝑟𝐴,𝑥𝑔

𝑟′𝐴,𝑥

3 𝐶2,𝐴,𝑥 = (𝑋1𝑋2)
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥(𝑋1𝑋2)

𝜔𝐴,𝑥𝑔
𝑦𝐴,𝜌(𝑥)𝑟

′
𝐴,𝑥

3 𝑔
𝜎′
𝐴,𝑥

3 ,

𝐶1,𝐵,𝑥 = (𝑋1𝑋2)
𝑟𝐵,𝑥𝑔

𝑟′𝐵,𝑥

3 𝐶2,𝐵,𝑥 = (𝑋1𝑋2)
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥(𝑋1𝑋2)

𝜔𝐵,𝑥𝑔
𝑦𝐵,𝜌(𝑥)𝑟

′
𝐵,𝑥

3 𝑔
𝜎′
𝐵,𝑥

3 ,

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.
We note that this implicitly sets 𝜎𝐴,𝑥 = 𝑴𝑥 · 𝛼𝒗𝐴 mod 𝑝1, 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝛼𝒗𝐵 mod 𝑝1 and

similarly, 𝜎′′
𝐴,𝑥 = 𝑴𝑥 · 𝛾𝒗𝐴 mod 𝑝2, 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝛾𝒗𝐵 mod 𝑝2 for all 𝑥 ∈ [ℓ]. Since 𝒗𝐴,𝒗𝐵 are

uniformly sampled from ℤ𝑑
𝑁 , their entries modulo 𝑝1 and modulo 𝑝2 are uncorrelated by the

Chinese Remainder Theorem.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Note that if 𝑇𝛽 = 𝑔𝑟1 ← 𝔾𝑝1 , then the group element 𝑕 simulated by ℬ is of the form 𝑕 = 𝑔𝜃1

where 𝜃 = 𝑟𝜃 (modulo 𝑝1) which is a random element of 𝔾𝑝1 since 𝜃 ← ℤ𝑁 . Also, in this
case, 𝐶 will clearly be of the form 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽) since, in this case, we have
𝑒(𝑋2, 𝑕) = 𝑒(𝑋2, 𝑔

𝜃
1) = 1𝔾𝑇

.
On the other hand, if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑐
2 ← 𝔾𝑝1𝑝2 then the group element 𝑕 simulated by ℬ is

the form 𝑕 = 𝑔𝜃1𝑔
𝜃′′
2 where 𝜃 = 𝑟𝜃 (modulo 𝑝1) and 𝜃′′ = 𝑐𝜃 (modulo 𝑝2) which is uniformly

distributed in 𝔾𝑝1𝑝2 since 𝜃 being uniformly sampled from ℤ𝑁 , 𝜃 modulo 𝑝1 and modulo 𝑝2 are
uncorrelated by the Chinese Remainder Theorem. Also, in this case, 𝐶 clearly takes the form
𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠 · 𝑒(𝑔2, 𝑕)𝑠
′′
, 𝗌𝖾𝖾𝖽).

Thus it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻5:𝑞 or 𝖧𝗒𝖻6 according as
𝑇𝛽 ← 𝔾𝑝1 or 𝑇𝛽 ← 𝔾𝑝1𝑝2 respectively. Thus, ℬ can use 𝒜 to attain advantage 𝜖 in solving
𝖲𝖣-III. This completes the proof of Lemma 4.10. ■

42

Lemma 4.11: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,6(𝜆)− 𝑝𝒜,7(𝜆)| ≤ 𝗇𝖾𝗀𝗅6(𝜆).

Proof: Observe that the only difference between 𝖧𝗒𝖻6 and 𝖧𝗒𝖻7 is that in the former the
parameters {𝜎′′

𝐵,𝑥}𝑥∈[ℓ] are shares of a secret correlated to {𝜎′′
𝐴,𝑥}, i.e., −𝑠′′ where 𝑠′′ is the secret

being shared by {𝜎′′
𝐴,𝑥}, whereas in the latter, they are shares of independent secrets 𝑠′′, 𝑠′′𝐵 ← ℤ𝑁 .

Therefore, in order to prove these two games are statistically indistinguishable, we will argue
that the secrets being shared by {𝜎′′

𝐵,𝑥}𝑥∈[ℓ] are information theoretically hidden to the adversary
𝒜 in 𝖧𝗒𝖻7.

We note that the shares 𝜎′′
𝐵,𝑥 for all the rows 𝑥 of the challenge access matrix 𝑴 labeled by

corrupted authorities (i.e., the authorities for which 𝒜 either requests the master key or creates
it on its own) are information theoretically revealed to 𝒜. However, by the game restriction the
subspace spanned by those rows does not include the vector (1, 0, . . . , 0). We may assume that
this holds modulo 𝑝2. This means there must exists a vector 𝒖 ∈ ℤ𝑑

𝑁 such that 𝒖 is orthogonal
to all these rows of 𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry of 𝒖 is nonzero).
We consider a basis of 𝕌 of ℤ𝑑

𝑁 involving the vector 𝒖 and write 𝒗′′
𝐵 = 𝒗𝐵 + 𝑎𝒖 for some 𝑎

modulo 𝑝2 and some vector 𝒗𝐵 in the span of 𝕌 ∖ {𝒖}. We note that 𝒗𝐵 is uniformly distributed
in the subspace spanned by 𝕌 ∖ {𝒖} (modulo 𝑝2) and reveals no information about 𝑎 (modulo
𝑝2). Now, since the first coordinate of 𝒖 is nonzero modulo 𝑝2, it follows that the first coordinate
of 𝒗′′

𝐵, i.e., 𝑠′′𝐵, depends on the value of 𝑎 (modulo 𝑝2). But the shares 𝜎′′
𝐵,𝑥 for all the corrupted

rows of 𝑴 contains no information about 𝑎 (modulo 𝑝2) since 𝒖 is orthogonal to all these rows.
Hence, the only possible way for 𝒜 to get information about 𝑎 (modulo 𝑝2) is through the ci-

phertext components 𝐶2,𝐵,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each such
row 𝑥, 𝒜 can only recover 𝑟′′𝐵,𝑥 mod 𝑝2 and 𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥 + 𝜎′′

𝐵,𝑥 mod 𝑝2 information theoretically.
Since the labeling function 𝜌 is injective, it follows that 𝑦𝐵,𝜌(𝑥) mod 𝑝2 is a fresh random value
that appears nowhere else. This means given 𝑟′′𝐵,𝑥, 𝑦𝐵,𝜌(𝑥)𝑟

′′
𝐵,𝑥 + 𝜎′′

𝐵,𝑥 mod 𝑝2, if 𝑟′′𝐵,𝑥 mod 𝑝2 is
nonzero (note that 𝑟′′𝐵,𝑥 mod 𝑝2 = 0 with negligible probability), any value of 𝜎′′

𝐵,𝑥 mod 𝑝2 can be
explained by a particular value of 𝑦𝐵,𝜌(𝑥) mod 𝑝2. Since 𝑦𝐵,𝜌(𝑥) mod 𝑝2 is uniformly random and

information theoretically hidden to 𝒜 given the public keys 𝖯𝖪𝜌(𝑥) =
(︁
𝑔
𝑦𝐴,𝜌(𝑥)

1 , 𝑔
𝑦𝐵,𝜌(𝑥)

1

)︁
and pos-

sibly the secret keys {𝖲𝖪GID𝑡,𝑢 = (𝐾GID𝑡,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣𝑡) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID𝑡,𝐵,𝑢 = (𝖧(𝖦𝖨𝖣𝑡))
𝑦𝐵,𝑢)}𝑡∈[𝑞]

with {𝖧(𝖦𝖨𝖣𝑡)}𝑡∈[𝑞] ← 𝔾𝑝1𝑝3 for the corresponding uncorrupted authorities 𝜌(𝑥) (note that
𝑔
𝑦𝐵,𝜌(𝑥)

1 and 𝑔
𝑦𝐵,𝜌(𝑥)

3 only leaks 𝑦𝐵,𝜌(𝑥) modulo 𝑝1 and modulo 𝑝3, respectively), it follows that 𝜎′′
𝐵,𝑥

is information theoretically hidden to 𝒜. Therefore, no information about 𝑎 mod 𝑝2 is leaked to
𝒜 which in turn means that the secret being shared by {𝜎′′

𝐵,𝑥}𝑥∈[ℓ] is information theoretically
hidden to 𝒜. ■

Lemma 4.12: If the 𝖲𝖣-V assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅8(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7(𝜆)− 𝑝𝒜,8(𝜆)| ≤ 𝗇𝖾𝗀𝗅8(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7 and 𝖧𝗒𝖻8 with
non-negligible advantage 𝜖(𝜆). Using 𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣-V problem. The algorithm ℬ gets
an instance of the 𝖲𝖣-V problem from its challenger that consists of the group description
𝖦 = (𝑁 = 𝑝1𝑝2𝑝3,𝔾,𝔾𝑇 , 𝑒) ← 𝒢(1𝜆), the group elements 𝑔1, 𝑔3, 𝑋1𝑋2, 𝑍2𝑍3 where 𝑔1, 𝑋1 ←
𝔾𝑝1 ,𝑋2, 𝑍2 ← 𝔾𝑝2 , 𝑔3, 𝑍3 ← 𝔾𝑝3 , and another group element 𝑇𝛽 where 𝑇𝛽 ← 𝔾𝑝1𝑝3 if 𝛽 = 0 or
𝑇𝛽 ← 𝔾 if 𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples random 𝜃 ← ℤ𝑁 , 𝗌𝖾𝖾𝖽 ← 𝑆, and
sets 𝑕 = (𝑋1𝑋2)

𝜃. This is a random element in 𝔾𝑝1𝑝2 since 𝜃 modulo 𝑝1 and modulo 𝑝2 are
uncorrelated by the Chinese Remainder Theorem. ℬ gives the global public parameters 𝖦𝖯 =
(𝖦, 𝑔1, 𝑕, 𝗌𝖾𝖾𝖽) to 𝒜.

43

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑦𝐴,𝑢, 𝑦𝐵,𝑢 ← ℤ𝑁 and sets 𝖯𝖪𝑢 = (𝑔

𝑦𝐴,𝑢

1 , 𝑔
𝑦𝐵,𝑢

1) and
𝖬𝖲𝖪𝑢 = (𝑦𝐴,𝑢, 𝑦𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜
requests the master secret key of the authority 𝑢 at a later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: When ℬ needs to generate 𝖧(𝖦𝖨𝖣) for some global
identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, either it responds to a direct 𝖧 oracle query of 𝒜 or answers to a secret
key query of 𝒜, ℬ proceeds as follows: ℬ samples 𝜃GID ← ℤ𝑁 and sets 𝖧(𝖦𝖨𝖣) = 𝑇 𝜃GID

𝛽 . It stores
these value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query
for authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 =
(𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above procedure
to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages, 𝗆𝗌𝗀0,𝗆𝗌𝗀1
∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 is an injective
map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of attribute authorities
appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority 𝑢 for which ℬ has
created a public-master key pair for so far are not contained in 𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the
vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the authorities in 𝑈𝒜 plus
the authorities for which 𝒜 has made a master key query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢),
then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 as follows.

First, ℬ chooses a random 𝑠, 𝑠 ← ℤ𝑁 and sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)
𝑠 · 𝑒(𝑍2𝑍3, 𝑕)

𝑠, 𝗌𝖾𝖾𝖽).
ℬ also chooses two vectors, 𝒗𝐴,𝒗𝐵 ← ℤ𝑑

𝑁 with 𝑠 and −𝑠 as their first entry respectively. We let
𝜎𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴 and 𝜎𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ]. ℬ further samples 𝑠𝐵 ← ℤ𝑁 and defines
𝛾𝐴,𝑥 = 𝑴𝑥 · 𝒗𝐴, 𝛾𝐵,𝑥 = 𝑴𝑥 · 𝒗𝐵 for all 𝑥 ∈ [ℓ], where 𝒗𝐴,𝒗𝐵 ← ℤ𝑑

𝑁 are random vectors with 𝑠
and 𝑠𝐵 as their first entry respectively.

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 ∈ [ℓ], ℬ chooses random 𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 . For each 𝑥 ∈ 𝑌 , ℬ chooses random values
𝑟𝐴,𝑥, 𝑟𝐵,𝑥 ← ℤ𝑁 .

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 𝐶2,𝐴,𝑥 = 𝑃
𝑟𝐴,𝑥

𝐴,𝜌(𝑥)𝑔
𝜎𝐴,𝑥

1 (𝑍2𝑍3)
𝛾𝐴,𝑥 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 𝐶2,𝐵,𝑥 = 𝑃
𝑟𝐵,𝑥

𝐵,𝜌(𝑥)𝑔
𝜎𝐵,𝑥

1 (𝑍2𝑍3)
𝛾𝐵,𝑥 ,

44

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = 𝑔
𝑟𝐴,𝑥

1 (𝑍2𝑍3)
𝑟𝐴,𝑥 𝐶2,𝐴,𝑥 = 𝑔

𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥

1 𝑔
𝜎𝐴,𝑥

1 (𝑍2𝑍3)
𝑦𝐴,𝜌(𝑥)𝑟𝐴,𝑥(𝑍2𝑍3)

𝛾𝐴,𝑥 ,

𝐶1,𝐵,𝑥 = 𝑔
𝑟𝐵,𝑥

1 (𝑍2𝑍3)
𝑟𝐵,𝑥 𝐶2,𝐵,𝑥 = 𝑔

𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥

1 𝑔
𝜎𝐵,𝑥

1 (𝑍2𝑍3)
𝑦𝐵,𝜌(𝑥)𝑟𝐵,𝑥(𝑍2𝑍3)

𝛾𝐵,𝑥 ,

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.
We note that this implicitly sets 𝜎′′

𝐴,𝑥 = 𝑴𝑥 · 𝑧2𝒗𝐴 mod 𝑝2, 𝜎′′
𝐵,𝑥 = 𝑴𝑥 · 𝑧2𝒗𝐵 mod 𝑝2 and

similarly, 𝜎′
𝐴,𝑥 = 𝑴𝑥 · 𝑧3𝒗𝐴 mod 𝑝3, 𝜎′′

𝐵,𝑥 = 𝑴𝑥 · 𝑧3𝒗𝐵 mod 𝑝3 for all 𝑥 ∈ [ℓ], where 𝑍2 = 𝑔𝑧22
(letting 𝑔2 be a generator of 𝔾𝑝2), and 𝑍3 = 𝑔𝑧33 , and since 𝒗𝐴,𝒗𝐵 are uniformly sampled
from ℤ𝑑

𝑁 , their entries modulo 𝑝2 and modulo 𝑝3 are uncorrelated by the Chinese Remainder
Theorem. Similarly, this implicitly sets 𝑟′𝐴,𝑥 = 𝑧3𝑟𝐴,𝑥 mod 𝑝3,𝑟′𝐵,𝑥 = 𝑧3𝑟𝐵,𝑥 mod 𝑝3, 𝑟′′𝐴,𝑥 =

𝑧2𝑟𝐴,𝑥 mod 𝑝2,𝑟′′𝐵,𝑥 = 𝑧2𝑟𝐵,𝑥 mod 𝑝2 for all 𝑥 ∈ 𝑌 where {𝑟′𝐴,𝑥, 𝑟
′
𝐵,𝑥, 𝑟

′′
𝐴,𝑥, 𝑟

′′
𝐵,𝑥}𝑥∈𝑌 are random

and uncorrelated by the Chinese Remainder Theorem.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝑇𝛽 = 𝑔𝑟1𝑔

𝑣
3 ← 𝔾𝑝1𝑝3 , then the 𝖧(𝖦𝖨𝖣) values simulated by ℬ are uniformly

distributed in 𝔾𝑝1𝑝3 . On the other hand, if 𝑇𝛽 = 𝑔𝑟1𝑔
𝑐
2𝑔

𝑣
3 ← 𝔾, then the 𝖧(𝖦𝖨𝖣) values simulated

by ℬ are uniformly distributed in 𝔾.
Therefore, the game simulated by ℬ coincides with 𝖧𝗒𝖻7 or 𝖧𝗒𝖻8, depending on whether

𝑇𝛽 ← 𝔾𝑝1𝑝3 or 𝑇𝛽 ← 𝔾, respectively. Thus, ℬ can use 𝒜 to attain non-negligible advantage in
solving 𝖲𝖣-V. ■

Lemma 4.13: For every (possibly unbounded) adversary 𝒜 and for all 𝜆 ∈ ℕ, |𝑝𝒜,8(𝜆)| =
|𝑝𝒜,9(𝜆)|.

Proof: Observe that the only difference between 𝖧𝗒𝖻8 and 𝖧𝗒𝖻9 is that in the former 𝖧(𝖦𝖨𝖣)
is generated as 𝖧(𝖦𝖨𝖣)← 𝔾 whereas in the latter, 𝖧(𝖦𝖨𝖣) = 𝑅 · 𝑕−1 where 𝑅← 𝔾 for all global
identifiers 𝖦𝖨𝖣 for which the challenger needs to generate the 𝖧 oracle output. Thus, in order
to prove these two games are indistinguishable, it is enough to show that the values 𝖧(𝖦𝖨𝖣) are
distributed identically in the two games.

To see this, note that for all global identifiers 𝖦𝖨𝖣, 𝖧(𝖦𝖨𝖣) generated in 𝖧𝗒𝖻9 can be expressed
as 𝖧(𝖦𝖨𝖣) = 𝑅 · 𝑕−1 = (𝑔𝑟11 𝑔𝑟22 𝑔𝑟33) · (𝑔𝜃11 𝑔𝜃22)−1, where 𝑔𝑟11 , 𝑔𝑟22 , 𝑔𝑟33 with 𝑟1, 𝑟2, 𝑟3 ← ℤ𝑁 denote
(respectively) the 𝔾𝑝1 ,𝔾𝑝2 ,𝔾𝑝3 parts of 𝑅 and similarly, 𝑔𝜃11 , 𝑔𝜃22 with 𝜃1, 𝜃2 respectively denote
the 𝔾𝑝1 and 𝔾𝑝2 parts of 𝑕. Thus, we have 𝖧(𝖦𝖨𝖣) = 𝑔𝑟1−𝜃1

1 𝑔𝑟2−𝜃2
2 𝑔𝑟33 . Since the values 𝑟1 (modulo

𝑝1), 𝑟2 (modulo 𝑝2) are uniformly random and uncorrelated, it follows that 𝑟1 − 𝜃1 (modulo 𝑝1)
and 𝑟2 − 𝜃2 (modulo 𝑝2) are also uniformly random and uncorrelated. By construction, these
values are independent of all the other values. Hence, it follows that 𝖧(𝖦𝖨𝖣) values generated in
𝖧𝗒𝖻9 are uniformly and independently distributed in 𝔾, or in other words, identically to those
in 𝖧𝗒𝖻8. ■

Lemma 4.14: If the 𝖲𝖣-V assumption holds, then for every PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅10(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≤ 𝗇𝖾𝗀𝗅10(𝜆).

Proof: The proof is analogous to the proof of Lemma 4.12 (with minor alterations in notation).
We omit the proof to avoid repetition.

Lemma 4.15: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅11(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≤ 𝗇𝖾𝗀𝗅11(𝜆).

Proof: The proof of this lemma is very similar to that of Lemma 4.11. We present it for
concreteness.

45

Observe that the only difference between 𝖧𝗒𝖻10 and 𝖧𝗒𝖻11 is that in the former game the
parameters {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] are shares of a secret 𝑠′′ ← ℤ𝑁 that is part of the input to the strong
extractor generating the mask for the message 𝗆𝗌𝗀𝑏, whereas in the latter game, they are shares
of independent secret 𝑠′′𝐴 ← ℤ𝑁 . Therefore, in order to prove these two games are statistically
indistinguishable, we will argue that the secrets being shared by {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] are information
theoretically hidden to the adversary 𝒜 in 𝖧𝗒𝖻10.

We note that the shares 𝜎′′
𝐴,𝑥 for all the rows 𝑥 of the challenge access matrix 𝑴 labeled by

corrupted authorities (i.e., the authorities for which 𝒜 either requests the master key or creates
it on its own) are information theoretically revealed to 𝒜. Further, observe that the shares
𝜎′′
𝐴,𝑥 for no other rows 𝑥 of 𝑴 is fully leaked to 𝒜. In order to see this, note that for all the

rows 𝑥 corresponding to corrupted authorities, 𝒜 knows the values 𝑦𝐴,𝜌(𝑥) mod 𝑝2 information
theoretically, but it does not get to know 𝑦𝐴,𝜌(𝑥) mod 𝑝2 for any uncorrupted rows 𝑥 of 𝑴 . This
is because the only way for 𝒜 to learn 𝑦𝐴,𝜌(𝑠) mod 𝑝2 for uncorrupted rows is by asking a secret
key query corresponding to (𝖦𝖨𝖣, 𝜌(𝑥)) for some global identifier 𝖦𝖨𝖣. As per the description of
𝖧𝗒𝖻10, such a secret key 𝖲𝖪GID,𝜌(𝑥) would look like

𝖲𝖪GID,𝜌(𝑥) = (𝐾GID,𝐴,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝜌(𝑥) ,𝐾GID,𝐵,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝜌(𝑥))

= (𝐾GID,𝐴,𝜌(𝑥) = ((𝑃 ·��𝑕−1) ·�𝑕)𝑦𝐴,𝜌(𝑥) ,𝐾GID,𝐵,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝜌(𝑥))

= (𝐾GID,𝐴,𝜌(𝑥) = 𝑃 𝑦𝐴,𝜌(𝑥) ,𝐾GID,𝐵,𝜌(𝑥) = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝜌(𝑥)),

where 𝑃 ← 𝔾𝑝1𝑝3 . The second equality follows from the fact that in 𝖧𝗒𝖻10 𝖧(𝖦𝖨𝖣) is generated as
𝖧(𝖦𝖨𝖣) = 𝑃 ·𝑕−1 with 𝑃 ← 𝔾𝑝1𝑝3 . Thus, it follows that a secret key 𝖲𝖪GID,𝜌(𝑥) only reveals 𝑦𝐴,𝜌(𝑥)

modulo 𝑝1 and modulo 𝑝3 but does not leak this modulo 𝑝2 to 𝒜 information theoretically. Hence,
it follows that 𝒜 can only learn 𝑦𝐴,𝜌(𝑥) (modulo 𝑝2) and hence 𝜎′′

𝐴,𝑥 (modulo 𝑝2) information
theoretically.

However, by the game restriction the subspace spanned by those rows does not include the
vector (1, 0, . . . , 0). We may assume that this holds modulo 𝑝2. This means there must exists
a vector 𝒖 ∈ ℤ𝑑

𝑁 such that 𝒖 is orthogonal to all these rows of 𝑴 but is not orthogonal to
(1, 0, . . . , 0), (i.e., the first entry of 𝒖 is nonzero). We consider a basis of 𝕌 of ℤ𝑑

𝑁 involving the
vector 𝒖 and write 𝒗′′

𝐴 = 𝒗𝐴 + 𝑎𝒖 for some 𝑎 modulo 𝑝2 and some vector 𝒗𝐴 in the span of
𝕌 ∖ {𝒖}. We note that 𝒗𝐴 is uniformly distributed in the subspace spanned by 𝕌 ∖ {𝒖} (modulo
𝑝2) and reveals no information about 𝑎 (modulo 𝑝2). Now, since the first coordinate of 𝒖 is
nonzero modulo 𝑝2, it follows that the first coordinate of 𝒗′′

𝐴, i.e., 𝑠′′𝐴, depends on the value of 𝑎
(modulo 𝑝2). But the shares 𝜎′′

𝐴,𝑥 for all the corrupted rows of 𝑴 contains no information about
𝑎 (modulo 𝑝2) since 𝒖 is orthogonal to all these rows.

Hence, the only possible way for 𝒜 to get information about 𝑎 (modulo 𝑝2) is through the
ciphertext components 𝐶2,𝐴,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each
such row 𝑥, 𝒜 can only recover 𝑟′′𝐴,𝑥 (modulo 𝑝2) and 𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥 +𝜎′′

𝐴,𝑥 (modulo 𝑝2) information
theoretically. Since the labeling function 𝜌 is injective, it follows that 𝑦𝐴,𝜌(𝑥) (modulo 𝑝2) is a fresh
random value that appears nowhere else. This means given 𝑟′′𝐴,𝑥, 𝑦𝐴,𝜌(𝑥)𝑟

′′
𝐴,𝑥 + 𝜎′′

𝐴,𝑥 (modulo 𝑝2),
if 𝑟′′𝐴,𝑥 (modulo 𝑝2) is nonzero (note that 𝑟′′𝐴,𝑥 mod 𝑝2 = 0 with negligible probability), any value
of 𝜎′′

𝐴,𝑥 modulo 𝑝2 can be explained by a particular value of 𝑦𝐴,𝜌(𝑥) (modulo 𝑝2). Since 𝑦𝐴,𝜌(𝑥)

(modulo 𝑝2) is uniformly random and information theoretically hidden to 𝒜 given the public
keys 𝖯𝖪𝜌(𝑥) =

(︁
𝑔
𝑦𝐴,𝜌(𝑥)

1 , 𝑔
𝑦𝐵,𝜌(𝑥)

1

)︁
and possibly the queried secret keys {𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢 =

(𝖧(𝖦𝖨𝖣) · 𝑕)𝑦𝐴,𝑢 ,𝐾GID,𝐵,𝑢 = (𝖧(𝖦𝖨𝖣))𝑦𝐵,𝑢)} for the corresponding uncorrupted authorities 𝜌(𝑥)
as discussed above, it follows that 𝜎′′

𝐴,𝑥 is information theoretically hidden to 𝒜. Therefore, no
information about 𝑎 (modulo 𝑝2) is leaked to 𝒜 information theoretically which in turn means
that the secret being shared by {𝜎′′

𝐴,𝑥}𝑥∈[ℓ] is information theoretically hidden to 𝒜. ■

Lemma 4.16: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅12(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,11(𝜆)− 𝑝𝒜,12(𝜆)| ≤ 𝗇𝖾𝗀𝗅12(𝜆).

46

Proof: Observe that in 𝖧𝗒𝖻11 the value 𝑠′′ mod 𝑝2 is perfectly hidden to 𝒜. This means
that 𝑒(𝑔2, 𝑕)

𝑠′′ is uniformly random and therefore has log(𝑝2) bits of min-entropy, i.e.,
H∞(𝑒(𝑔2, 𝑕)

𝑠′′) = log(𝑝2) (recall that 𝑕 ← 𝔾𝑝1𝑝2 in 𝖧𝗒𝖻11). Thus, if 𝙴𝚡𝚝 is parameterized
correctly, then 𝙴𝚡𝚝(𝑒(𝑔1, 𝑕)

𝑠 ·𝑒(𝑔2, 𝑕)𝑠
′′
, 𝗌𝖾𝖾𝖽) (which masks 𝗆𝗌𝗀𝑏) is statistically close to uniform

in 𝒜’s view. ■

5 Our Prime Order Group 𝗠𝗔-𝗔𝗕𝗘 Scheme

In Section 5.1 we recall prime order bilinear groups and give the associated notations. In Sec-
tion 5.2 we give the basis structure of the translation framework. In Section 5.3 we give the
assumptions on which our construction relies. In Section 5.4 we give the construction. In Sec-
tions 5.5 and 5.6 we prove correctness and security respectively.

5.1 Prime Order Bilinear Groups and Associated Notations

Notations: Let 𝑨 be a matrix over the ring ℤ𝑞. We use 𝗌𝗉𝖺𝗇(𝑨) to denote the column span of
𝑨, and we use 𝗌𝗉𝖺𝗇𝑚(𝑨) to denote matrices of width 𝑚 where each column lies in 𝗌𝗉𝖺𝗇(𝑨); this
means 𝑴 ← 𝗌𝗉𝖺𝗇𝑚(𝑨) is a random matrix of width 𝑚 where each column is chose uniformly
from 𝗌𝗉𝖺𝗇(𝑨). We use 𝖻𝖺𝗌𝗂𝗌(𝑨) to denote a basis of 𝗌𝗉𝖺𝗇(𝑨), and we use (𝑨1 ‖𝑨2) to denote
the column-wise concatenation of matrices 𝑨1,𝑨2. We let 𝑰 be the identity matrix and 0 be a
zero matrix whose size will be clear from the context.

Fix a security parameter, for any bilinear group parameter 𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) and
any 𝑖 = 1, 2, 𝑇 with 𝑔𝑇 = 𝑒(𝑔1, 𝑔2), we write J𝑴K𝑖 for 𝑔𝑴𝑖 where the exponentiation is element-
wise. When bracket notation is used, we denote group operations with ⊞, i.e., J𝑴K𝑖 ⊞ J𝑵K𝑖 =
J𝑴 +𝑵K𝑖 for matrices 𝑴 ,𝑵 , and ⊟ as their negatives, i.e., J𝑴K𝑖 ⊟ J𝑵K𝑖 = J𝑴 −𝑵K𝑖. Also,
we define 𝑵 ⊙ J𝑴K𝑖 = J𝑵𝑴K𝑖 and J𝑴K𝑖⊙𝑵 = J𝑴𝑵K𝑖. We also slightly abuse notations and
use the original pairing notation 𝑒 to denote the pairing between matrices of group elements as
well, i.e., we write 𝑒(J𝑴K1, J𝑵K2) = J𝑴𝑵K𝑇 .

Prime Order Bilinear Groups: Let 𝔾1,𝔾2 and 𝔾𝑇 be three multiplicative cyclic groups
of prime order 𝑝 = 𝑝(𝜆) where the group operations are efficiently computable in the security
parameter 𝜆 and there is no isomorphism between 𝔾1 and 𝔾2 that can be computed efficiently
in 𝜆. Let 𝑔1, 𝑔2 be generators of 𝔾1,𝔾2 respectively and 𝑒 : 𝔾1 × 𝔾2 → 𝔾𝑇 be an efficiently
computable pairing function that satisfies the following properties:

• Bilinearity : for all 𝑢 ∈ 𝔾1, 𝑣 ∈ 𝔾2 and 𝑎, 𝑏 ∈ ℤ𝑝 it is true that 𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏.

• Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇
, where 1𝔾𝑇

is the identity element of the group 𝔾𝑇 .

Let 𝒢 be an algorithm that takes as input 1𝜆, the unary encoding of the security parameter 𝜆,
and outputs the description of an asymmetric bilinear group 𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒).

5.2 Basis Structure for the Composite to Prime Order Translation Frame-
work

We want to simulate composite order groups whose order is the product of three primes. Fix
parameters ℓ1, ℓ2, ℓ3, ℓ𝑊 ≥ 1. Pick random

𝑨1 ← ℤℓ×ℓ1
𝑝 ,𝑨2 ← ℤℓ×ℓ2

𝑝 ,𝑨3 ← ℤℓ×ℓ3
𝑝

where ℓ := ℓ1 + ℓ2 + ℓ3. Let (𝑨*
1 ‖𝑨*

2 ‖𝑨*
3)

⊤ denote the inverse of (𝑨1 ‖𝑨2 ‖𝑨3), so that
𝑨⊤

𝑖 𝑨
*
𝑖 = 𝑰 (known as non-degeneracy) and 𝑨⊤

𝑖 𝑨
*
𝑗 = 0 if 𝑖 ̸= 𝑗 (known as orthogonality).

47

Correspondence: We have the following correspondence with composite order groups:

𝑔𝑖 ↦→ J𝑨𝑖K1, 𝑔𝑠𝑖 ↦→ J𝑨𝑖𝒔K1
𝑤 ∈ ℤ𝑁 ↦→𝑾 ∈ ℤℓ×ℓ𝑊

𝑝 , 𝑔𝑤𝑖 ↦→ J𝑨⊤
𝑖 𝑾 K1

The following statistical lemma is analogous to the Chinese Remainder Theorem, which tells us
that 𝑤 mod 𝑝2 is uniformly random given 𝑔𝑤1 , 𝑔

𝑤
3 , where 𝑤 ← ℤ𝑁 :

Lemma 5.1 (statistical lemma): With probability 1 − 1/𝑝 over 𝑨1,𝑨2,𝑨3,𝑨
*
1,𝑨

*
2,𝑨

*
3, the

following two distributions are statistically identical.

{𝑨⊤
1 𝑾 ,𝑨⊤

3 𝑾 , 𝑾 } and {𝑨⊤
1 𝑾 ,𝑨⊤

3 𝑾 , 𝑾 + 𝑽 (2) }

where 𝑾 ← ℤℓ×ℓ𝑊
𝑝 and 𝑽 (2) ← 𝗌𝗉𝖺𝗇ℓ𝑊 (𝑨*

2).

5.3 Prime-Order Complexity Assumptions

Assumption 5.1 (Matrix Diffie-Hellman: 𝗠𝗗𝗗𝗛𝔾𝒕
𝒌,ℓ, [EHK+13]): Let ℓ > 𝑘 ≥ 1. We

say that the 𝖬𝖣𝖣𝖧𝔾𝑡
𝑘,ℓ assumption holds with respect to 𝒢 if for all PPT adversary 𝒜 and for all

𝑡 ∈ [2], the following advantage function is negligible in 𝜆.

𝖠𝖽𝗏
MDDH

𝔾𝑡
𝑘,ℓ

𝒜 (𝜆) := |𝖯𝗋[𝒜(𝒟, J𝒕0K𝑡) = 1]− 𝖯𝗋[𝒜(𝒟, J𝒕1K𝑡) = 1]|

where

𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

𝐷 = (𝖦, J𝑿K𝑡)

𝒕0 = 𝑿𝒖, 𝒕1 ← ℤℓ
𝑝

such that 𝑿 ← ℤℓ×𝑘
𝑝 ,𝒖← ℤ𝑘

𝑝.

Assumption 5.2 (Subgroup Decision Assumption 𝗦𝗗𝔾𝟏
𝑨𝒊 7→𝑨𝒊,𝑨𝒋

for (𝒊, 𝒋 ∈ {1, 2, 3},
[CGKW18a, GHKW16, GDCC16]): For all 𝑖, 𝑗 ∈ [3] such that 𝑖 ̸= 𝑗, the 𝖲𝖣𝔾1

𝑨𝑖 ↦→𝑨𝑖,𝑨𝑗

assumption states that for any PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such
that for any security parameter 𝜆 ∈ ℕ and for all 𝑘 ∈ [3] ∖ {𝑖, 𝑗},

𝖠𝖽𝗏
SD

𝔾1
𝑨𝑖 ↦→𝑨𝑖,𝑨𝑗

𝒜 (𝜆) := |𝖯𝗋[𝒜(𝒟, J𝒕0K1) = 1]− 𝖯𝗋[𝒜(𝒟, J𝒕1K1) = 1]|

where

𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

𝒟 = (𝖦, J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*
𝑖), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
𝑘), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
𝑖 ,𝑨

*
𝑗)),

𝒕0 ← 𝗌𝗉𝖺𝗇(𝑨𝑖), 𝒕1 ← 𝗌𝗉𝖺𝗇(𝑨𝑖,𝑨𝑗).

Assumption 5.3 (Subgroup Decision Assumption 𝗦𝗗𝔾𝟐
𝑩𝒊 7→𝑩𝒊,𝑩𝒋

for (𝒊, 𝒋 ∈ {1, 2, 3},
[CGKW18a, GHKW16, GDCC16]): For all 𝑖, 𝑗 ∈ [3] such that 𝑖 ̸= 𝑗, the 𝖲𝖣𝔾2

𝑩𝑖 ↦→𝑩𝑖,𝑩𝑗

assumption states that for any PPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such
that for any security parameter 𝜆 ∈ ℕ and for all 𝑘 ∈ [3] ∖ {𝑖, 𝑗},

𝖠𝖽𝗏
SD

𝔾2
𝑩𝑖 ↦→𝑩𝑖,𝑩𝑗

𝒜 (𝜆) := |𝖯𝗋[𝒜(𝒟, J𝒕0K2) = 1]− 𝖯𝗋[𝒜(𝒟, J𝒕1K2) = 1]|

48

where

𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

𝒟 = (𝖦, J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*
𝑖), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
𝑘), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
𝑖 ,𝑩

*
𝑗)),

𝒕0 ← 𝗌𝗉𝖺𝗇(𝑩𝑖), 𝒕1 ← 𝗌𝗉𝖺𝗇(𝑩𝑖,𝑩𝑗).

Assumption 5.4 (Subgroup Decision Assumption 𝗦𝗗𝔾𝟐
𝑩𝟏,𝑩𝟐 7→𝑩𝟏,𝑩𝟐,𝑩𝟑

, [CGW18]): The
𝖲𝖣𝔾2

𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3
assumption states that for any PPT adversary 𝒜, there exists a negligible

function 𝗇𝖾𝗀𝗅(·) such that for any security parameter 𝜆 ∈ ℕ,

𝖠𝖽𝗏
SD

𝔾2
𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3

𝒜 (𝜆) := |𝖯𝗋[𝒜(𝒟, J𝒕0K2) = 1]− 𝖯𝗋[𝒜(𝒟, J𝒕1K2) = 1]|

where

𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

𝒟 = (𝖦, J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*
1), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
2 ,𝑩

*
3)),

𝒕0 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2), 𝒕1 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2,𝑩3).

5.4 The Construction

Here, we present our 𝖬𝖠-𝖠𝖡𝖤 for 𝖭𝖢1 construction in prime order bilinear groups. As mentioned,
we assume that each authority controls just one attribute, and hence we would use the terms
“authority" and “attribute" interchangeably.

𝗚𝗹𝗼𝗯𝗮𝗹𝗦𝗲𝘁𝘂𝗽(1𝝀): The global setup algorithm takes in the security parameter 1𝜆 encoded
in unary. The procedure first chooses a prime 𝑝. Next it generates a bilinear group 𝖦 =
(𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of order 𝑝. Let 𝑔1, 𝑔2 be the generators of 𝔾1,𝔾2 respectively. We make
use of a strong seeded randomness extractor 𝙴𝚡𝚝 : 𝔾𝑇 × 𝑆 → 𝕄, where 𝕄 ⊂ {0, 1}* is the
message space and 𝑆 ⊂ {0, 1}* is the seed space. The algorithm samples a seed 𝗌𝖾𝖾𝖽← 𝑆. Next,
the algorithm samples

𝑨1,𝑨2,𝑨3 ← ℤ3𝑘×𝑘
𝑝 ,𝒉← ℤ𝑘

𝑝.

Let (𝑨*
1 ‖𝑨*

2 ‖𝑨*
3) =

(︀
(𝑨1 ‖𝑨2 ‖𝑨3)

−1
)︀⊤ where 𝑨*

1,𝑨
*
2,𝑨

*
3 ← ℤ3𝑘×𝑘

𝑝 such that 𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if

𝑖 = 𝑗, and 0 if 𝑖 ̸= 𝑗 for all 𝑖, 𝑗 ∈ [3]. It outputs the global parameters as 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻 =
J𝑨*

1𝒉K2, 𝗌𝖾𝖾𝖽).
Furthermore, we assume that all parties has access to the hash function 𝖧 : {0, 1}* → 𝔾3𝑘

2

mapping global identifiers 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 to random vectors in 𝔾3𝑘
2 , i.e., for all 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 we have

𝖧(𝖦𝖨𝖣) = J𝒉GIDK2 for some 𝒉GID ← ℤ3𝑘
𝑝 .

𝗔𝘂𝘁𝗵𝗦𝗲𝘁𝘂𝗽(𝗚𝗣, 𝒖): Given the global parameters 𝖦𝖯 and an authority index 𝑢 ∈ 𝒜𝒰 , the
algorithm chooses random matrices 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ∈ ℤ3𝑘×3𝑘

𝑝 and outputs

𝖯𝖪𝑢 = (𝑃𝐴,𝑢 = 𝑾⊤
𝐴,𝑢 ⊙ J𝑨1K1, 𝑃𝐵,𝑢 = 𝑾⊤

𝐵,𝑢 ⊙ J𝑨1K1)

= (J𝑾⊤
𝐴,𝑢𝑨1K1, J𝑾⊤

𝐵,𝑢𝑨1K1)

𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢).

49

𝗘𝗻𝗰(𝗚𝗣,𝗺𝘀𝗴, (𝑴,𝝆), {𝗣𝗞𝒖}): The encryption algorithm takes as input the global param-
eters 𝖦𝖯, a message 𝗆𝗌𝗀 ∈ 𝕄 to encrypt, an LSSS access structure (𝑴 , 𝜌), where 𝑴 =
(𝑀𝑥,𝑗)ℓ×𝑑 = (𝑴1, . . . ,𝑴ℓ)

⊤ ∈ ℤℓ×𝑑
𝑁 and 𝜌 : [ℓ] → 𝒜𝒰 , and public keys of the relevant au-

thorities {𝖯𝖪𝑢}. The function 𝜌 associates rows of 𝑴 (viewed as column vectors) to authorities
(recall that we assume that each authority controls a single attribute). We assume that 𝜌 is an
injective function, that is, an authority/attribute is associated with at most one row of 𝑴 .

It first samples a random vector 𝒅 ← ℤ𝑘
𝑝 and random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 . The
procedure generates the ciphertext as follows: For each row 𝑥 ∈ [ℓ], it chooses random vectors
𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝 and outputs the ciphertext

𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]),

where 𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽), and

𝐶1,𝐴,𝑥 = J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1
𝐶2,𝐴,𝑥 = (J𝑨1K1 ⊙ 𝒅 ‖ J𝑼𝐴K1)⊙𝑴𝑥 + J𝑾⊤

𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥

=
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1

𝐶1,𝐵,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 = (J𝑨1K1 ⊙ (−𝒅) ‖ J𝑼𝐵K1)⊙𝑴𝑥 + J𝑾⊤

𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥

=
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

𝗞𝗲𝘆𝗚𝗲𝗻(𝗚𝗣,𝗚𝗜𝗗,𝗠𝗦𝗞𝒖): The key generation algorithm takes as input the global parameters
𝖦𝖯, the user’s global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and the authority’s master secret key 𝖬𝖲𝖪𝑢. It
generates a secret key 𝖲𝖪GID,𝑢 for 𝖦𝖨𝖣 as

𝖲𝖪GID,𝑢 = (𝐾GID,𝐴,𝑢,𝐾GID,𝐵,𝑢)

where

𝐾GID,𝐴,𝑢 = 𝑾𝐴,𝑢 ⊙ (𝖧(𝖦𝖨𝖣) ·𝐻) = J𝑾𝐴,𝑢 · (𝒉GID +𝑨*
1𝒉)K2

𝐾GID,𝐵,𝑢 = 𝑾𝐵,𝑢 ⊙ 𝖧(𝖦𝖨𝖣) = J𝑾𝐵,𝑢 · 𝒉GIDK2

𝗗𝗲𝗰(𝗚𝗣,𝗖𝗧,𝗚𝗜𝗗, {𝗦𝗞𝗚𝗜𝗗,𝒖}): Decryption takes as input the global parameters 𝖦𝖯, a cipher-
text 𝖢𝖳 for an LSSS access structure (𝑴 , 𝜌) with 𝑴 ∈ ℤℓ×𝑑

𝑁 and 𝜌 : [ℓ]→ 𝒜𝒰 injective, the user’s
global identifier 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, and the secret keys {𝖲𝖪GID,𝑢}𝑢∈𝜌(𝐼) corresponding to a subset of
rows of 𝑴 with indices 𝐼 ⊆ [ℓ]. If (1, 0, . . . , 0) is not in the span of these rows, 𝑴𝐼 , then decryp-
tion fails. Otherwise, the decryptor finds {𝑤𝑥 ∈ ℤ𝑁}𝑥∈𝐼 such that (1, 0, . . . , 0) =

∑︀
𝑥∈𝐼 𝑤𝑥 ·𝑴⊤

𝑥 .
For all 𝑥 ∈ 𝐼, the decryption algorithm first compute:

𝐷𝐴,𝑥 = 𝑒(𝐶2,𝐴,𝑥, J𝒉GID +𝑨*
1𝒉K2)𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝜌(𝑥))

−1

=
r
((𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥)

⊤ · (𝒉GID +𝑨*
1𝒉)

z

𝑇

𝐷𝐵,𝑥 = 𝑒(𝐶2,𝐵,𝑥, J𝒉GIDK2)𝑒(𝐶1,𝐵,𝑥,𝐾GID,𝐵,𝜌(𝑥))
−1

=
r
((−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥)

⊤ · 𝒉GID

z

𝑇

Then compute 𝐷 =
∏︀

𝑥∈𝐼(𝐷𝐴,𝑥 ·𝐷𝐵,𝑥)
𝑤𝑥 = 𝑒(J𝑨1𝒅K1, 𝐻). Finally it outputs 𝐶⊕𝙴𝚡𝚝(𝐷, 𝗌𝖾𝖾𝖽) =

𝗆𝗌𝗀.
In the next section (Section 5.5), we prove the correctness of the scheme. The proof of security

is deferred to Section 5.6.

50

5.5 Correctness

Assume that the authorities in {𝖲𝖪GID,𝑢} correspond to a qualified set according to the LSSS
access structure (𝑴 , 𝜌) associated with 𝖢𝖳, that is, the corresponding subset of row indices 𝐼
corresponds to rows in 𝑴 that have (1, 0, . . . , 0) in their span.

For each 𝑥 ∈ 𝐼, letting 𝜌(𝑥) be the corresponding authority,

𝑒(𝐶2,𝐴,𝑥, J𝒉GID +𝑨*
1𝒉K2)

= 𝑒
(︁r

(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥) ·𝑨1𝒔𝐴,𝑥

z

1
, J𝒉GID +𝑨*

1𝒉K2
)︁

=
r
((𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥)

⊤ · (𝒉GID +𝑨*
1𝒉)

z

𝑇
· J(𝑨1𝒔𝐴,𝑥)

⊤𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝑨*
1𝒉)K𝑇 .

Also for each 𝑥 ∈ 𝐼,

𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝑢) = 𝑒(J𝑨1𝒔𝐴,𝑥K1, J𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝑨*
1𝒉)K2)

= J(𝑨1𝒔𝐴,𝑥)
⊤𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝑨*

1𝒉)K𝑇 .

Hence,

𝐷𝐴,𝑥 = 𝑒(𝐶2,𝐴,𝑥, J𝒉GID +𝑨*
1𝒉K2)𝑒(𝐶1,𝐴,𝑥,𝐾GID,𝐴,𝑢)

−1

=
r
((𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥)

⊤ · (𝒉GID +𝑨*
1𝒉)

z

𝑇
·
((((((((((((((((((

J(𝑨1𝒔𝐴,𝑥)
⊤𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝑨*

1𝒉)K𝑇 ·

(((((((((((((((((((

J(𝑨1𝒔𝐴,𝑥)
⊤𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝑨*

1𝒉)K
−1
𝑇

=
r
((𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥)

⊤ · (𝒉GID +𝑨*
1𝒉)

z

𝑇

and similarly,

𝐷𝐵,𝑥 =
r
((−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥)

⊤ · 𝒉GID

z

𝑇
.

We then have

𝐷 =
∏︁
𝑥∈𝐼

(𝐷𝐴,𝑥 ·𝐷𝐵,𝑥)
𝑤𝑥

=
∏︁
𝑥∈𝐼

⎛⎝ r
((𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥)

⊤ · (𝒉GID +𝑨*
1𝒉)

z

𝑇
·

r
((−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥)

⊤ · 𝒉GID

z

𝑇

⎞⎠𝑤𝑥

=

t ∑︀
𝑥∈𝐼 𝑤𝑥𝑴

⊤
𝑥 (𝑨1𝒅 ‖𝑼𝐴)

⊤ · (𝒉GID +𝑨*
1𝒉)

+
∑︀

𝑥∈𝐼 𝑤𝑥𝑴
⊤
𝑥 (−𝑨1𝒅 ‖𝑼𝐵)

⊤ · 𝒉GID

|

𝑇

=

t
(1, 0, . . . , 0) (𝑨1𝒅 ‖𝑼𝐴)

⊤ · (𝒉GID +𝑨*
1𝒉)

+(1, 0, . . . , 0) (−𝑨1𝒅 ‖𝑼𝐵)
⊤ · 𝒉GID

|

𝑇

=
r
(𝑨1𝒅)

⊤ · (𝒉GID +𝑨*
1𝒉) + (−𝑨1𝒅)

⊤ · 𝒉GID

z

𝑇

=
r
�������
(𝑨1𝒅)

⊤ · 𝒉GID + (𝑨1𝒅)
⊤ ·𝑨*

1𝒉−�������
(𝑨1𝒅)

⊤ · 𝒉GID

z

𝑇

=
r
(𝑨1𝒅)

⊤ ·𝑨*
1𝒉

z
= 𝑒(J𝑨1𝒅K1, 𝐻).

Thus, we have

𝐶 ⊕ 𝙴𝚡𝚝(𝐷, 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕
((((((((((((
𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽)⊕

((((((((((((
𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀.

51

5.6 Security Analysis

Theorem 5.1 (Security of Prime-Order 𝗠𝗔-𝗔𝗕𝗘 Scheme): Assuming the 𝖬𝖣𝖣𝖧 as-
sumption, described in Section 5.3 holds, then all PPT adversary has a negligible advantage
in breaking the fully adaptive security of the above 𝖬𝖠-𝖠𝖡𝖤 scheme in the random oracle model.

We consider a sequence of hybrid games that differ from one another in the formation of the
challenge ciphertext, the output of the random oracle 𝖧, or the secret keys queried by the
adversary 𝒜. The first hybrid in the sequence corresponds to the real fully adaptive security
game for the proposed 𝖬𝖠-𝖠𝖡𝖤 scheme, while the final hybrid is one where the advantage of 𝒜 is
zero. We argue that 𝒜’s advantage changes only by a negligible amount between each successive
hybrid game, thereby establishing Theorem 5.1. The high level structure of our hybrid reduction
is shown in Fig. 5.1.

In this proof, we will model 𝖧 as a random oracle programmed by the challenger. Let the
total number of global identifiers 𝖦𝖨𝖣 the challenger generates the 𝖧 oracle outputs for be 𝑞.
Also, we order the global identifiers {𝖦𝖨𝖣𝑡}𝑡∈[𝑞] in the sequence the 𝖧 oracle outputs for them
are generated by the challenger. Let 𝑌 denote the subset of rows of the challenge access matrix
𝑴 = {𝑴𝑖,𝑗}𝑖∈[ℓ],𝑗∈[𝑑] ∈ ℤℓ×𝑑

𝑝 submitted by 𝒜 labeled by the authorities for which 𝒜 supplies the
authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . Without loss of generality, we will
assume that the first

⃒⃒
𝑌
⃒⃒
many rows of 𝑴 should correspond to honestly generated authorities,

i.e., lies in 𝑌 .

The Hybrids

𝗛𝘆𝗯𝟎: This is the real fully adaptive CPA security game described in Section 3.3 for the proposed
𝖬𝖠-𝖠𝖡𝖤 scheme.

𝗛𝘆𝗯𝟏:𝒋 (𝒋 ∈ {0, . . . , 𝒒}): This game is analogous to 𝖧𝗒𝖻0 except that for the 𝑡th global
identifiers 𝖦𝖨𝖣𝑡, for 𝑡 ≤ 𝑗, the challenger programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as
𝖧(𝖦𝖨𝖣𝑡) = J𝑨*

1𝒉GID𝑡K2 , while for 𝑡 > 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle
𝖧 as 𝖧(𝖦𝖨𝖣𝑡)← 𝔾3𝑘

2 as earlier. Observe that 𝖧𝗒𝖻1:0 coincides with 𝖧𝗒𝖻0.

𝗛𝘆𝗯𝟐: This game is the same as 𝖧𝗒𝖻1:𝑞 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′ ← ℤ𝑘
𝑝. The challenger generates the challenge ciphertext

𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

52

𝖧𝗒𝖻0

Real Game
≡

𝖧𝗒𝖻1:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻1:(𝑗−1)

𝑐
≈

𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘

Asm. 5.1

𝖧𝗒𝖻1:𝑗

𝑐
≈

𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘

Asm. 5.1

∙ ∙ ∙ 𝖧𝗒𝖻1:𝑞

𝑐
≈

𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘

Asm. 5.1

𝖧𝗒𝖻2

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

𝖧𝗒𝖻3:𝐴:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻3:𝐴:(𝑖−1)

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

𝖧𝗒𝖻3:𝐴:𝑖

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

∙ ∙ ∙ 𝖧𝗒𝖻3:𝐴:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

𝖧𝗒𝖻3:𝐵:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻3:𝐵:(𝑖−1)

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

𝖧𝗒𝖻3:𝐵:𝑖

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

∙ ∙ ∙ 𝖧𝗒𝖻3:𝐵:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3

Asm. 5.2

𝖧𝗒𝖻4

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻5

𝑠
≈

𝖧𝗒𝖻6

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻7:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻7:(𝑗−1)

≡

𝖧𝗒𝖻7:𝑗:1

𝑐
≈

𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2

Asm. 5.3

𝖧𝗒𝖻7:𝑗:2

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗:3:𝐴:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻7:𝑗:3:𝐴:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗:3:𝐵:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻7:𝑗:3:𝐵:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗:4

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻7:𝑗:5

𝑠
≈

𝖧𝗒𝖻7:𝑗:6

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻7:𝑗:7

𝑐
≈

𝖲𝖣𝔾2

𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3

Asm. 5.4

𝖧𝗒𝖻7:𝑗:8

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻7:𝑗:9

𝑠
≈

𝖧𝗒𝖻7:𝑗:10

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻7:𝑗:11:𝐴:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻7:𝑗:11:𝐴:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗:11:𝐵:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻7:𝑗:11:𝐵:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗:12

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻7:𝑗

𝑐
≈

𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3

Asm. 5.3

∙ ∙ ∙ 𝖧𝗒𝖻7:𝑞

≡

𝖧𝗒𝖻8

𝑐
≈

𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2

Asm. 5.3

𝖧𝗒𝖻9

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻10:𝐴:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻10:𝐴:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻10:𝐵:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻10:𝐵:|𝑌 |

𝑐
≈

𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2

Asm. 5.2

𝖧𝗒𝖻11

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻12

𝑠
≈

𝖧𝗒𝖻13

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻14:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻14:𝑞

𝑐
≈

𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3

Asm. 5.3

𝖧𝗒𝖻15

≡

𝖧𝗒𝖻16:0

≡

∙ ∙ ∙ 𝖧𝗒𝖻16:𝑞

𝑐
≈

𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3

Asm. 5.3

𝖧𝗒𝖻17

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻18

𝑠
≈

𝖧𝗒𝖻19

𝑠
≈

Lemma 5.1

𝖧𝗒𝖻20

𝑠
≈
Zero Advantage

Game

≡

Fig. 5.1: Structure of the Hybrid Reduction for Our Prime-Order 𝖬𝖠-𝖠𝖡𝖤 Scheme

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+ 𝑨3𝒅
′ ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊟
q(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅− 𝑨3𝒅

′ ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

53

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1 ,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+ 𝑨3𝒅
′ ‖𝑼𝐴

)︁
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊟
q(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅− 𝑨3𝒅

′ ‖𝑼𝐵

)︁
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

𝗛𝘆𝗯𝟑:𝑨:𝒊 (𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻2 except the challenger generates

the challenge ciphertext as follows: It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ])
where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′ ← ℤ𝑘
𝑝. The challenger samples random vectors 𝒔′𝐴,𝑥 ← ℤ𝑘

𝑝

for all 𝑥 ≤ 𝑖 where 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥,
𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞ J(𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞ J(−𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

54

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =

{︃
𝐶1,𝐴,𝑥 ⊞ J𝑨3𝒔

′
𝐴,𝑥K1 =

r
𝑨1𝒔𝐴,𝑥 + 𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1 for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

{︃
𝐶2,𝐴,𝑥 ⊞

r
(𝑨3𝒅

′ ‖0)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶2,𝐴,𝑥 ⊞ J(𝑨3𝒅
′ ‖0)𝑴𝑥K1 for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

(𝑨1𝒅+𝑨3𝒅
′ ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 + 𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

s
(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

{

1

for all 𝑥 > 𝑖

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1 ,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞ (−𝑨3𝒅
′ ‖0)𝑴𝑥1

=
r(︀
−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Observe that 𝖧𝗒𝖻3:𝐴:0 coincides with 𝖧𝗒𝖻2.

𝗛𝘆𝗯𝟑:𝑩:𝒊 (𝒊 ∈ 0, . . . ,
⃒⃒
𝒀
⃒⃒
): This game is the same as 𝖧𝗒𝖻3:𝐴:|𝑌 | except the challenger gener-

ates the challenge ciphertext as follows: It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ])
where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′ ← ℤ𝑘
𝑝. The challenger samples random vectors 𝒔′𝐴,𝑥 ← ℤ𝑘

𝑝

for all 𝑥 ∈ 𝑌 and 𝒔′𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ≤ 𝑖 where 𝑥 ∈ 𝑌 . The challenger then generates the

challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞ J(𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞ J(−𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

55

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞ J𝑨3𝒔
′
𝐴,𝑥K1 =

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨3𝒅

′ ‖0)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

z

1

=
r(︀

𝑨1𝒅+𝑨3𝒅
′ ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1
,

𝐶1,𝐵,𝑥 =

{︃
𝐶1,𝐵,𝑥 ⊞ J𝑨3𝒔

′
𝐵,𝑥K1 =

r
𝑨1𝒔𝐵,𝑥 + 𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1 for all 𝑥 > 𝑖,

𝐶2,𝐵,𝑥 =

{︃
𝐶2,𝐵,𝑥 ⊞

r
(−𝑨3𝒅

′ ‖0)𝑴𝑥 +𝑾⊤
𝐵,𝜌(𝑥)𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶2,𝐵,𝑥 ⊞ J(−𝑨3𝒅
′ ‖0)𝑴𝑥K1 for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

(−𝑨1𝒅−𝑨3𝒅
′ ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 + 𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

s
(−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

{

1

for all 𝑥 > 𝑖.

Observe that 𝖧𝗒𝖻3:𝐵:0 coincides with 𝖧𝗒𝖻3:𝐴:|𝑌 |.

𝗛𝘆𝗯𝟒: This game is the same as 𝖧𝗒𝖻3:𝐵:|𝑌 | except the challenger generates the challenge ci-
phertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate
a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′ ← ℤ𝑘
𝑝. The challenger samples random vectors 𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥 ←

ℤ𝑘
𝑝 and random matrices 𝑽 (3)

𝐴,𝜌(𝑥),𝑽
(3)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) for all 𝑥 ∈ 𝑌 and generates the challenge
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞ J(𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞ J(−𝑨3𝒅
′ ‖0)𝑴𝑥K1

=
q(︀
−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

56

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

s
(𝑨3𝒅

′ ‖0)𝑴𝑥 +
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥)

)︁⊤
𝑨3𝒔

′
𝐴,𝑥

{

1

=

u

v
(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

s
(−𝑨3𝒅

′ ‖0)𝑴𝑥 +
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(3)
𝐵,𝜌(𝑥)

)︁⊤
𝑨3𝒔

′
𝐵,𝑥

{

1

=

u

v
(−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + 𝑽

(3)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟓: This game is the same as 𝖧𝗒𝖻4 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝 and random matrices 𝑽
(3)
𝐴,𝜌(𝑥),𝑽

(3)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) for all 𝑥 ∈ 𝑌 and gen-
erates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+𝑨3 𝒅′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶2,𝐴,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅+𝑨3 𝒅′

𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

57

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞

s
𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥 +

(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥)

)︁⊤
𝑨3𝒔

′
𝐴,𝑥

{

1

=

u

v

(︁
𝑨1𝒅+𝑨3 𝒅′

𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁
}

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

s
(𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +

(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥)

)︁⊤
𝑨3𝒔

′
𝐵,𝑥

{

1

=

u

v

(︁
−𝑨1𝒅+𝑨3 𝒅′

𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(3)
𝐵,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁
}

~

1

.

𝗛𝘆𝗯𝟔: This game is the same as 𝖧𝗒𝖻5 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥,
𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y

=
q(︀
−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

58

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨3𝒔
′
𝐴,𝑥

z

1

=

u

v
(𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + �

���𝑽
(3)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=

u

v
(−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + ��

��𝑽
(3)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:(𝒋−𝟏) (𝒋 ∈ [𝒒 + 1]): This game is the same as 𝖧𝗒𝖻6 except that for the 𝑡th global
identifier 𝖦𝖨𝖣𝑡 for 𝑡 ≤ 𝑗− 1, the challenger programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧

as 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2 where 𝒉GID𝑗
,𝒉′

GID𝑗
← ℤ𝑘

𝑝, while for 𝑡 > 𝑗 − 1, it programs
the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*

1𝒉GID𝑡K2 as earlier. Observe that
𝖧𝗒𝖻7:0 coincides with 𝖧𝗒𝖻6.

We introduce a sequence of sub-games, namely, (𝖧𝗒𝖻7:𝑗:1, . . . ,𝖧𝗒𝖻7:𝑗:12) between 𝖧𝗒𝖻7:(𝑗−1)

and 𝖧𝗒𝖻7:𝑗 for all 𝑗 ∈ [𝑞] as defined below.

𝗛𝘆𝗯𝟕:𝒋:𝟏 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:(𝑗−1) except that for the 𝑗th global
identifier 𝖦𝖨𝖣𝑗 , the challenger programs the output 𝖧(𝖦𝖨𝖣𝑗) of the random oracle 𝖧 as
𝖧(𝖦𝖨𝖣𝑗) = J𝑨*

1𝒉GID𝑗
+𝑨*

2𝒉
′′
GID𝑗

K2 where 𝒉GID𝑗
,𝒉′′

GID𝑗
← ℤ𝑘

𝑝..

𝗛𝘆𝗯𝟕:𝒋:𝟐 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:1 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vec-

tors 𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =
((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

59

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+ 𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶2,𝐴,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅− 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨3𝒔
′
𝐴,𝑥

z

1

=

u

v

(︁
𝑨1𝒅+ 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=

u

v

(︁
−𝑨1𝒅− 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟑:𝑨:𝒊 (𝒋 ∈ [𝒒], 𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻7:𝑗:2 ex-

cept the challenger generates the challenge ciphertext as follows: It first flips a ran-
dom bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext 𝖢𝖳 =
((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐴,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ≤ 𝑖 where 𝑥 ∈ 𝑌 . The challenger then

generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

60

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =

⎧⎨⎩ 𝐶1,𝐴,𝑥 ⊞
r
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐴,𝑥 ⊞
r
𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=
r(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)

(︀
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︀z
1
.

Observe that 𝖧𝗒𝖻7:𝑗:3:𝐴:0 coincides with 𝖧𝗒𝖻7:𝑗:2.

𝗛𝘆𝗯𝟕:𝒋:𝟑:𝑩:𝒊 (𝒋 ∈ [𝒒], 𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻7:𝑗:3:𝐴:|𝑌 |

except the challenger generates the challenge ciphertext as follows: It first flips a ran-
dom bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext 𝖢𝖳 =
((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

61

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ≤ 𝑖 where 𝑥 ∈ 𝑌 . The challenger

then generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]),
where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1

=

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 =

⎧⎨⎩ 𝐶1,𝐵,𝑥 ⊞
r
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐵,𝑥 ⊞
r
𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐵,𝑥 + 𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶2,𝐵,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐵,𝑥 ⊞

t
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐵,𝑥 ⊞

s
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐵,𝑥

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 + 𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 > 𝑖,

Observe that 𝖧𝗒𝖻7:𝑗:3:𝐵:0 coincides with 𝖧𝗒𝖻7:𝑗:3:𝐴:|𝑌 |.

𝗛𝘆𝗯𝟕:𝒋:𝟒 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:3:𝐵:|𝑌 | except the challenger generates
the challenge ciphertext as follows: It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ])
where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

62

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and random matrices 𝑽 (2)
𝐴,𝜌(𝑥),𝑽

(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

|

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟓 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:4 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

63

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′
𝐴,𝒅

′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and random matrices 𝑽 (2)
𝐴,𝜌(𝑥),𝑽

(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥𝑨3𝒅

′
𝐴

y
1

=
r(︁

𝑨1𝒅+𝑨2 𝒅′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅+𝑨2 𝒅′′

𝐵 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

|

1

=

u

v

(︁
𝑨1𝒅+𝑨2 𝒅′′

𝐴 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁
}

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v

(︁
−𝑨1𝒅+𝑨2 𝒅′′

𝐵 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁
}

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟔 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:5 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

64

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′
𝐴,𝒅

′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random
vectors 𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext
𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

z

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + ����𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

u

v
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + ����𝑽

(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟕 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:6 except that for the 𝑗th global identifier

𝖦𝖨𝖣𝑗 , the challenger programs the output 𝖧(𝖦𝖨𝖣𝑗) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑗)← 𝔾3𝑘
2

while for all 𝑡 < 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑡) =
J𝑨*

1𝒉GID𝑡 +𝑨*
3𝒉

′
GID𝑡

K2, and for 𝑡 > 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as
𝖧(𝖦𝖨𝖣𝑡) = J𝑨*

1𝒉GID𝑡K2 as earlier.

𝗛𝘆𝗯𝟕:𝒋:𝟖 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:7 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

65

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′
𝐴,𝒅

′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and random matrices 𝑽 (2)
𝐴,𝜌(𝑥),𝑽

(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

|

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟗 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:8 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

66

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and random matrices 𝑽 (2)
𝐴,𝜌(𝑥),𝑽

(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+𝑨2 𝒅′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅−𝑨2 𝒅′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

|

1

=

u

v

(︁
𝑨1𝒅+𝑨2 𝒅′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁
}

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v

(︁
−𝑨1𝒅−𝑨2 𝒅′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁
}

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟏𝟎 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:9 except the challenger generates the
challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm
to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

67

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′ ← ℤ𝑘
𝑝. The challenger samples random

vectors 𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext
𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

z

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + ����𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

u

v
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + ��

��𝑽
(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟕:𝒋:𝟏𝟏:𝑨:𝒊 (𝒋 ∈ [𝒒], 𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀

: This game is the same as 𝖧𝗒𝖻7:𝑗:10 except the
challenger generates the challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and
runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥,
𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

68

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′′,𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐴,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 > 𝑖 for 𝑥 ∈ 𝑌 . It generates the

challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =

⎧⎨⎩ 𝐶1,𝐴,𝑥 ⊞
r
𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐴,𝑥 ⊞
r
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐴,𝑥 + ����𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

{

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 + ����𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 > 𝑖,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

Observe that 𝖧𝗒𝖻7:𝑗:11:𝐴:0 coincides with 𝖧𝗒𝖻7:𝑗:10.

𝗛𝘆𝗯𝟕:𝒋:𝟏𝟏:𝑩:𝒊 (𝒋 ∈ [𝒒], 𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻7:𝑗:11:𝐴:|𝑌 | except the

challenger generates the challenge ciphertext as follows: It first flips a random bit 𝑏← {0, 1} and

69

runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥,
𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′′,𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 > 𝑖 for 𝑥 ∈ 𝑌 . It generates the challenge

ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨3𝒔
′
𝐴,𝑥

z

1

=
r(︀

𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1
,

𝐶1,𝐵,𝑥 =

⎧⎨⎩ 𝐶1,𝐵,𝑥 ⊞
r
𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐵,𝑥 ⊞
r
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐵,𝑥 + ����𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

,

𝐶2,𝐵,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐵,𝑥 ⊞

s
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)𝑨3𝒔

′
𝐵,𝑥

{

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐵,𝑥 ⊞

s
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 + ����𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 > 𝑖,

Observe that 𝖧𝗒𝖻7:𝑗:11:𝐵:0 coincides with 𝖧𝗒𝖻7:𝑗:11:𝐴:|𝑌 |.

70

𝗛𝘆𝗯𝟕:𝒋:𝟏𝟐 (𝒋 ∈ [𝒒]): This game is the same as 𝖧𝗒𝖻7:𝑗:11:𝐵:|𝑌 | except the challenger generates
the challenge ciphertext as follows: It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ])
where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥,
𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=

s(︂
𝑨1𝒅+ ���

𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︂
𝑴𝑥

{

1

⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=

s(︂
−𝑨1𝒅− ���

𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︂
𝑴𝑥

{

1

⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨3𝒔
′
𝐴,𝑥

z

1

=

u

w
v

(︂
𝑨1𝒅+ �

��
𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︂
𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁
}

�
~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=

u

w
v

(︂
−𝑨1𝒅− ���

𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︂
𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁
}

�
~

1

.

𝗛𝘆𝗯𝟖: This game is the same as 𝖧𝗒𝖻7:𝑞 except the following: While generating the global public

parameters 𝖦𝖯 the challenger generates 𝐻 = J𝑨*
1𝒉+𝑨*

2𝒉
′′K2 where 𝒉,𝒉′′ ← ℤ𝑘

𝑝.

71

𝗛𝘆𝗯𝟗: This game is the same as 𝖧𝗒𝖻8 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥K1,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤
𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥K1.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥,
𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻) , 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+ 𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅− 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨3𝒔
′
𝐴,𝑥

z

1

=

u

v

(︁
𝑨1𝒅+ 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=

u

v

(︁
−𝑨1𝒅− 𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

72

𝗛𝘆𝗯𝟏𝟎:𝑨:𝒊 (𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻9 except the challenger generates

the challenge ciphertext as follows: It first flips a random bit 𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼
algorithm to generate a normal ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ])
where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐴,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ≤ 𝑖 for 𝑥 ∈ 𝑌 . The challenger then

generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

73

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =

⎧⎨⎩ 𝐶1,𝐴,𝑥 ⊞
r
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐴,𝑥 ⊞
r
𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐴,𝑥 ⊞

s
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

for all 𝑥 > 𝑖,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨3𝒔
′
𝐵,𝑥

z

1

=

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

Observe that 𝖧𝗒𝖻10:𝐴:0 coincides with 𝖧𝗒𝖻9.

𝗛𝘆𝗯𝟏𝟎:𝑩:𝒊 (𝒊 ∈
{︀
0, . . . ,

⃒⃒
𝒀
⃒⃒}︀
): This game is the same as 𝖧𝗒𝖻10:𝐴:|𝑌 | except the

challenger generates the challenge ciphertext as follows: It first flips a random bit
𝑏 ← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal ciphertext 𝖢𝖳 =
((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and 𝒔′′𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ≤ 𝑖 for 𝑥 ∈ 𝑌 . The challenger then

generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

74

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 =

⎧⎨⎩ 𝐶1,𝐵,𝑥 ⊞
r
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

𝐶1,𝐵,𝑥 ⊞
r
𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

=

⎧⎨⎩
r
𝑨1𝒔𝐵,𝑥 + 𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 ≤ 𝑖,

r
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶2,𝐵,𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶2,𝐵,𝑥 ⊞

s
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

{

1

for all 𝑥 ≤ 𝑖,

𝐶2,𝐵,𝑥 ⊞

s
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)𝑨3𝒔

′
𝐵,𝑥

{

1

for all 𝑥 > 𝑖,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 + 𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 ≤ 𝑖,

t
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

for all 𝑥 > 𝑖,

Observe that 𝖧𝗒𝖻10:𝐵:0 coincides with 𝖧𝗒𝖻10:𝐴:|𝑌 |.

𝗛𝘆𝗯𝟏𝟏: This game is the same as 𝖧𝗒𝖻10 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

75

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. The challenger samples random vectors

𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and a random matrix 𝑽
(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v
(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟏𝟐: This game is the same as 𝖧𝗒𝖻11 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

76

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and a random matrix 𝑽
(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) for all 𝑥 ∈ 𝑌 and
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
r(︁
−𝑨1𝒅+𝑨2 𝒅′′

𝐵 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤
(𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

|

1

=

u

v

(︁
−𝑨1𝒅+𝑨2 𝒅′′

𝐵 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵

)︁
𝑴𝑥

+
(︁
𝑾𝐵,𝜌(𝑥) + 𝑽

(2)
𝐵,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁
}

~

1

.

𝗛𝘆𝗯𝟏𝟑: This game is the same as 𝖧𝗒𝖻12 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

77

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random
vectors 𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext
𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

u

v
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+

(︂
𝑾𝐵,𝜌(𝑥) + ��

��𝑽
(2)
𝐵,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ }

~

1

.

𝗛𝘆𝗯𝟏𝟒:𝒋 (𝒋 ∈ {0, . . . , 𝒒}): This game is identical to 𝖧𝗒𝖻13 except that for the 𝑡th global
identifiers 𝖦𝖨𝖣𝑡, for 𝑡 ≤ 𝑗, the challenger programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧

as 𝖧(𝖦𝖨𝖣𝑡)← 𝔾3𝑘
2 , while for all 𝑡 > 𝑗, it programs the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle

𝖧 as 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2 with 𝒉GID𝑡 ,𝒉
′
GID𝑡
← ℤ𝑘

𝑝 as earlier. Observe that 𝖧𝗒𝖻14:0
coincides with 𝖧𝗒𝖻13.

𝗛𝘆𝗯𝟏𝟓: This game is the same as 𝖧𝗒𝖻14:𝑞 except that the challenger generates the outputs of
the 𝖧 oracle as follows: For any global identifiers 𝖦𝖨𝖣, the challenger first samples a random
vector 𝒓GID ← ℤ3𝑘

𝑝 and sets 𝖧(𝖦𝖨𝖣) = J𝒓GIDK2 ⊟𝐻 .

𝗛𝘆𝗯𝟏𝟔:𝒋 (𝒋 ∈ {0, . . . , 𝒒}): This game is the same as 𝖧𝗒𝖻15 except that for the 𝑡th global
identifiers 𝖦𝖨𝖣𝑡, for 𝑡 ≤ 𝑗, the challenger first samples a random vector 𝒑GID𝑡 ← 𝗌𝗉𝖺𝗇(𝑨*

1,𝑨
*
3) and

then generates the outputs 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑡) =
r
𝒑GID𝑡

z

2
⊟𝐻, while for

𝑡 > 𝑗, the challenger first samples a random vector 𝒓GID𝑡 ← ℤ3𝑘
𝑝 and sets 𝖧(𝖦𝖨𝖣𝑡) = J𝒓GID𝑡K2⊟𝐻

as earlier. Observe that 𝖧𝗒𝖻16:0 coincides with 𝖧𝗒𝖻15.

78

𝗛𝘆𝗯𝟏𝟕: This game is the same as 𝖧𝗒𝖻16 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random vectors
𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and a random matrix 𝑽
(2)
𝐴,𝜌(𝑥) for all 𝑥 ∈ 𝑌 and generates the challenge

ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖0)𝑴𝑥

+
(︀
𝑾𝐴,𝜌(𝑥) + 𝑽𝐴,𝜌(𝑥)

)︀⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

|

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

79

𝗛𝘆𝗯𝟏𝟖: This game is the same as 𝖧𝗒𝖻17 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′
𝐴,𝒅

′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random
vectors 𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 and a random matrix 𝑽
(2)
𝐴,𝜌(𝑥) for all 𝑥 ∈ 𝑌 and generates the

challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
r(︁

𝑨1𝒅+𝑨2 𝒅′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞

t
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

+
(︀
𝑾𝐴,𝜌(𝑥) + 𝑽𝐴,𝜌(𝑥)

)︀⊤
(𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

|

1

=

u

v

(︁
𝑨1𝒅+𝑨2 𝒅′′

𝐴 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︁
𝑴𝑥

+
(︁
𝑾𝐴,𝜌(𝑥) + 𝑽

(2)
𝐴,𝜌(𝑥)

)︁⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁
}

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

80

𝗛𝘆𝗯𝟏𝟗: This game is the same as 𝖧𝗒𝖻18 except the challenger generates the challenge ciphertext
as follows: It first flips a random bit 𝑏← {0, 1} and runs the 𝖤𝗇𝖼 algorithm to generate a normal
ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 = J(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 = J(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1, 𝐶2,𝐴,𝑥 =
r
(𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
,

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1, 𝐶2,𝐵,𝑥 =
r
(−𝑨1𝒅 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥

z

1
.

Next, it samples a random vector 𝒅′
𝐴,𝒅

′
𝐵,𝒅

′′,𝒅′′
𝐴,𝒅

′′
𝐵 ← ℤ𝑘

𝑝. The challenger samples random
vectors 𝒔′𝐴,𝑥, 𝒔

′
𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 and generates the challenge ciphertext 𝖢𝖳 =
((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1 ⊞ J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥

y
1

=
q(︀
𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
q
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥

y
1

=
q(︀
−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = 𝐶1,𝐴,𝑥 ⊞
q
𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥

y
1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 = 𝐶2,𝐴,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖0)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔𝐴,𝑥)

z

1

=

u

v
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+

(︂
𝑾𝐴,𝜌(𝑥) + ����𝑽

(2)
𝐴,𝜌(𝑥)

)︂⊤ (︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ }

~

1

,

𝐶1,𝐵,𝑥 = 𝐶1,𝐵,𝑥 ⊞
q
𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 = 𝐶2,𝐵,𝑥 ⊞
r
(𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖0)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

𝗛𝘆𝗯𝟐𝟎: This game is the same as 𝖧𝗒𝖻19 except that while generating the challenge ciphertext,
the challenger sets the component 𝐶 as 𝐶 ←𝕄 (independent of 𝗆𝗌𝗀0,𝗆𝗌𝗀1).

81

Analysis

For any adversary 𝒜 and any 𝜄 ∈ {0, . . . , 2} ∪ {3 : 𝐴 : 𝑖}𝑖∈[|𝑌 |] ∪ {3, 𝐵, 𝑖}𝑖∈[|𝑌 |] ∪
{4, 5, 6}∪{7 : (𝑗 − 1), 7 : 𝑗 : 1, . . . , 7 : 𝑗 : 2}𝑗∈[𝑞]∪{7 : 𝑗 : 3 : 𝐴 : 𝑖}𝑖∈[|𝑌 |]∪{7 : 𝑗 : 3 : 𝐵 : 𝑖}𝑖∈[|𝑌 |]∪
{7 : 𝑗 : 4, . . . , 7 : 𝑗 : 10}𝑗∈[𝑞] ∪{7 : 𝑗 : 11 : 𝐴 : 𝑖}𝑖∈[|𝑌 |] ∪{7 : 𝑗 : 11 : 𝐵 : 𝑖}𝑖∈[|𝑌 |] ∪{7 : 𝑗 : 12}𝑗∈[𝑞] ∪
{7 : 𝑞} ∪ {8, 9} ∪ {10 : 𝐴 : 𝑖}𝑖∈[|𝑌 |] ∪ {10 : 𝐵 : 𝑖}𝑖∈[|𝑌 |] ∪ {11, 12, 13} ∪ {14 : 𝑗}𝑗∈[𝑞] ∪ {15} ∪
{16 : 𝑗}𝑗∈[𝑞] ∪ {17, . . . , 20}, let 𝑝𝒜,𝑖 : ℕ → [0, 1] denote the function such that for all 𝜆 ∈ ℕ,
𝑝𝒜,𝑖(𝜆) is the probability that 𝒜, on input 1𝜆, guesses the challenge bit correctly in the hy-
brid game 𝖧𝗒𝖻𝑖. From the definition of 𝖧𝗒𝖻0, it follows that for all 𝜆 ∈ ℕ, |𝑝𝒜,0(𝜆)− 1/2| =
𝖠𝖽𝗏MA-ABE,fully:adaptive

𝒜 (𝜆), 𝑝𝒜,2(𝜆) ≡ 𝑝𝒜,3:𝐴:0(𝜆), 𝑝𝒜,3:𝐴:|𝑌 |(𝜆) ≡ 𝑝𝒜,3:𝐵:0(𝜆), 𝑝𝒜,6(𝜆) ≡
𝑝𝒜,7:0(𝜆), 𝑝𝒜,7:𝑗:2(𝜆) ≡ 𝑝𝒜,7:𝑗:3:𝐴:0(𝜆), 𝑝𝒜,7:𝑗:3:𝐴:|𝑌 |(𝜆) ≡ 𝑝𝒜,7:𝑗:3:𝐵:0(𝜆), 𝑝𝒜,7:𝑗:10(𝜆) ≡
𝑝𝒜,7:𝑗:11:𝐴:0(𝜆), 𝑝𝒜,7:𝑗:11:𝐴:|𝑌 |(𝜆) ≡ 𝑝𝒜,7:𝑗:11:𝐵:0(𝜆), 𝑝𝒜,9(𝜆) ≡ 𝑝𝒜,10:𝐴:0(𝜆), 𝑝𝒜,10:𝐴:|𝑌 |(𝜆) ≡
𝑝𝒜,10:𝐵:0(𝜆), 𝑝𝒜,13(𝜆) ≡ 𝑝𝒜,14:0(𝜆), 𝑝𝒜,15(𝜆) ≡ 𝑝𝒜,16:0(𝜆). Also, for all 𝜆 ∈ ℕ, 𝑝𝒜,20 = 1/2 since
there is no information of the challenge bit 𝑏 ← {0, 1} selected by the challenger within the
challenge ciphertext in 𝖧𝗒𝖻20. Hence, for all 𝜆 ∈ ℕ, we have

𝖠𝖽𝗏MA-ABE,fully:adaptive
𝒜 (𝜆)

≤
∑︁
𝑖∈[2]

|𝑝𝒜,𝜄−1(𝜆)− 𝑝𝒜,𝜄(𝜆)|+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,3:𝐴:𝑖−1(𝜆)− 𝑝𝒜,3:𝐴:𝑖(𝜆)|

+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,3:𝐵:𝑖−1(𝜆)− 𝑝𝒜,3:𝐵:𝑖(𝜆)|+

⃒⃒⃒
𝑝𝒜,3:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,4(𝜆)

⃒⃒⃒

+
∑︁

𝜄∈{5,6}

|𝑝𝒜,𝜄−1(𝜆)− 𝑝𝒜,𝜄(𝜆)|+
∑︁
𝑗∈[𝑞]

[︃⃒⃒
𝑝𝒜,7:(𝑗−1)(𝜆)− 𝑝𝒜,7:𝑗:2(𝜆)

⃒⃒
+

∑︁
𝑖∈[|𝑌 |]

|𝑝𝒜,7:𝑗:3:𝐴:𝑖−1(𝜆)− 𝑝𝒜,7:𝑗:3:𝐴:𝑖(𝜆)|

+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,7:𝑗:3:𝐵:𝑖−1(𝜆)− 𝑝𝒜,7:𝑗:3:𝐵:𝑖(𝜆)|+

⃒⃒⃒
𝑝𝒜,7:𝑗:3:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,7:𝑗:4(𝜆)

⃒⃒⃒
+

∑︁
𝑘∈{5,...,10}

|𝑝𝒜,7:𝑗:𝑘−1(𝜆)− 𝑝𝒜,7:𝑗:𝑘(𝜆)|

+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,7:𝑗:11:𝐴:𝑖−1(𝜆)− 𝑝𝒜,7:𝑗:11:𝐴:𝑖(𝜆)|

+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,7:𝑗:11:𝐵:𝑖−1(𝜆)− 𝑝𝒜,7:𝑗:11:𝐵:𝑖(𝜆)|

+
⃒⃒⃒
𝑝𝒜,7:𝑗:11:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,7:𝑗:12(𝜆)

⃒⃒⃒]︃
+

∑︁
𝑗∈[𝑞−1]

⃒⃒
𝑝𝒜,7:(𝑗−1):12 − 𝑝𝒜,7:𝑗

⃒⃒
+ |𝑝𝒜,7:𝑞(𝜆)− 𝑝𝒜,8(𝜆)|+ |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)|

+
∑︁

𝑖∈[|𝑌 |]
|𝑝𝒜,10:𝐴:𝑖−1(𝜆)− 𝑝𝒜,10:𝐴:𝑖(𝜆)|+

∑︁
𝑖∈[|𝑌 |]

|𝑝𝒜,10:𝐵:𝑖−1(𝜆)− 𝑝𝒜,10:𝐵:𝑖(𝜆)|

+
⃒⃒⃒
𝑝𝒜,10:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,11(𝜆)

⃒⃒⃒
+

∑︁
𝜄∈{12,13}

|𝑝𝒜,𝜄−1(𝜆)− 𝑝𝒜,𝜄(𝜆)|

+
∑︁
𝑗∈[𝑞]

|𝑝𝒜,14:𝑗−1(𝜆)− 𝑝𝒜,14:𝑗(𝜆)|+ |𝑝𝒜,14:𝑞(𝜆)− 𝑝𝒜,15(𝜆)|

82

+
∑︁
𝑗∈[𝑞]

|𝑝𝒜,16:𝑗−1(𝜆)− 𝑝𝒜,16:𝑗(𝜆)|+ |𝑝𝒜,16:𝑞(𝜆)− 𝑝𝒜,17(𝜆)|

+
∑︁

𝑖∈{18,...,20}

|𝑝𝒜,𝜄−1(𝜆)− 𝑝𝒜,𝜄(𝜆)| (5.1)

Lemmas 5.2–5.36 will show that each term on the RHS of Eq. (5.1) is nothing but negligible.
Hence, Theorem 5.1 follows.

Lemma 5.2: If the 𝖬𝖣𝖣𝖧𝔾2
𝑘,3𝑘 assumption holds, then for all PPT adversary 𝒜, there exists a

negligible function 𝗇𝖾𝗀𝗅1:𝑗(·) such that for all 𝜆 ∈ ℕ,
⃒⃒
𝑝𝒜,1:(𝑗−1)(𝜆)− 𝑝𝒜,1:𝑗(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅1:𝑗(𝜆) for

all 𝑗 ∈ [𝑞].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻1:(𝑗−1) and
𝖧𝗒𝖻1:𝑗 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘 problem. The al-
gorithm ℬ gets an instance of the 𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘 problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑿K2, and J𝒕𝛽K2 for random 𝛽 ← {0, 1} where 𝑿 ← ℤ3𝑘×𝑘

𝑝 and
𝒕𝛽 = 𝑿𝒖 for 𝒖 ← ℤ𝑘

𝑝 when 𝛽 = 0 or 𝒕𝛽 ← ℤ3𝑘
𝑝 when 𝛽 = 1. The algorithm ℬ proceeds as

follows:

Generating the Global Public Parameters: ℬ samples random matrix 𝑨1 ← ℤ3𝑘×𝑘
𝑝 and

implicitly sets 𝑨*
1 = 𝑿𝑹−1 where 𝑹 = 𝑨⊤

1 𝑿 ∈ ℤ𝑘×𝑘
𝑝 . Observe that since 𝑨1,𝑿 ← ℤ3𝑘×𝑘

𝑝 , 𝑹
is invertible with all but negligible probability. ℬ then samples random �̃�← ℤ𝑘

𝑝, implicitly sets
𝒉 = 𝑹�̃� and sets 𝐻 = J𝑿K2 ⊙ �̃� = J𝑿�̃�K2 = J𝑨*

1𝒉K2. ℬ further samples a seed for the strong
randomness extractor 𝗌𝖾𝖾𝖽← 𝑆 and sets the global public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ samples a random vector �̃�GID𝑡 ← ℤ𝑘
𝑝, implicitly sets 𝒉GID𝑡 = 𝑹�̃�GID𝑡 (which

is uniformly distributed since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible), and sets the output
𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑡) = J𝑿K2 ⊙ �̃�GID𝑡 = J𝑿�̃�GID𝑡K2 = J𝑨*

1𝒉GID𝑡K2 .

• For 𝑡 = 𝑗, ℬ sets the output 𝖧(𝖦𝖨𝖣𝑗) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑗) = J𝒕𝛽K2. Observe
that if 𝒕𝛽 = 𝑿𝒖 then 𝖧(𝖦𝖨𝖣𝑗) takes the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑨*

1𝒉GID𝑗
K2 where 𝒉GID𝑗

= 𝑹𝒖.
Note that in this case, 𝒉GID𝑗

is clearly uniformly distributed over ℤ𝑘
𝑝 since 𝒖← ℤ𝑘

𝑝, 𝑹 ∈ ℤ𝑘×𝑘
𝑝

is invertible. On the other hand, if 𝒕𝛽 ← ℤ3𝑘
𝑝 , then 𝖧(𝖦𝖨𝖣𝑗)← 𝔾3𝑘

2 . Then clearly 𝖧(𝖦𝖨𝖣𝑗) is
clearly uniformly distributed over 𝔾3𝑘

2 .

• For 𝑡 > 𝑗, ℬ sets the output 𝖧(𝖦𝖨𝖣𝑡) of the random oracle 𝖧 as 𝖧(𝖦𝖨𝖣𝑡)← 𝔾3𝑘
2 .

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣𝑡) is queried again.

83

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏← {0, 1} and generates a ciphertext 𝖢𝖳 by
running the 𝖤𝗇𝖼 algorithm that encrypts 𝗆𝗌𝗀𝑏 under the access structure (𝑴 , 𝜌)

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← ℤ3𝑘

𝑝 then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in 𝖧𝗒𝖻1:(𝑗−1)

whereas if 𝒕𝛽 = 𝑿𝒖, then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in 𝖧𝗒𝖻1:𝑗 . All the other
components of the game are also properly simulated by ℬ. Thus, it follows that the game
simulated by ℬ coincides with 𝖧𝗒𝖻1:(𝑗−1) or 𝖧𝗒𝖻1:𝑗 according as 𝛽 = 1 or 0. Thus, ℬ can use 𝒜 to
attain non-negligible advantage in solving 𝖬𝖣𝖣𝖧𝔾2

𝑘,3𝑘. This completes the proof of Lemma 5.2.
■

Lemma 5.3: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨3

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅2(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,1:𝑞(𝜆)− 𝑝𝒜,2(𝜆)| ≤ 𝗇𝖾𝗀𝗅2(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻1:𝑞 and 𝖧𝗒𝖻2
with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT adver-
sary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3
problem. The algo-

rithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨3

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
2), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
3), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨3) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ generates 𝐻 = J𝑨*
1𝒉K2 by taking random

linear combinations of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*
1). ℬ also samples a random seed 𝗌𝖾𝖾𝖽← 𝑆 for the

strong randomness extractor, and provides the global public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽)
to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ

84

aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: Whenever 𝒜 queries the random oracle 𝖧 for some
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, ℬ generates 𝖧(𝖦𝖨𝖣) = J𝑨*

1𝒉GIDK2 by taking a random linear combination of the
members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1). It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried
again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳
as follows. First, ℬ sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝒕𝛽K1, 𝐻), 𝗌𝖾𝖾𝖽). Next, ℬ samples random matrices
𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities

for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For all
𝑥 ∈ [ℓ], ℬ chooses random 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝.
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,
𝐶2,𝐴,𝑥 = (J𝒕𝛽K1 ⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

= J(𝒕𝛽 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 = (J−𝒕𝛽K1 ⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

= J(−𝒕𝛽 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

85

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 = J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1
𝐶2,𝐴,𝑥 = (J𝒕𝛽K1 ⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤

𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

= J(𝒕𝛽 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥K1,

𝐶1,𝐵,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 = (J−𝒕𝛽K1 ⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤

𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)

= J(−𝒕𝛽 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤
𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) then the challenge ciphertext is distributed identically as in

𝖧𝗒𝖻1:𝑞. On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨3), then the challenge ciphertext simulated by ℬ is
distributed identically as in 𝖧𝗒𝖻2. All the other components of the game are properly simulated
by ℬ. Hence it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻1:𝑞 or 𝖧𝗒𝖻2 according as
𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3
. This

completes the proof of Lemma 5.3. ■

Lemma 5.4: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨3

assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅3:𝐴:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,3:𝐴:(𝑖−1)(𝜆)− 𝑝𝒜,3:𝐴:𝑖(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅3:𝐴:𝑖(𝜆)

for all 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻3:𝐴:(𝑖−1) and
𝖧𝗒𝖻3:𝐴:𝑖 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3
problem. The

algorithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨3

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
2), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
3), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨3) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ generates 𝐻 = J𝑨*
1𝒉K2 by taking random

linear combinations of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*
1). ℬ also samples a random seed 𝗌𝖾𝖾𝖽← 𝑆 for the

strong randomness extractor, and provides the global public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽)
to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: Whenever 𝒜 queries the random oracle 𝖧 for some
𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, ℬ generates 𝖧(𝖦𝖨𝖣) = J𝑨*

1𝒉GIDK2 by taking a random linear combination of the
members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1). It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried
again.

86

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute author-
ity 𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and
for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled
by the authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for
𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ci-
phertext 𝖢𝖳 as follows. First, ℬ samples random vectors 𝒅,𝒅′ ← ℤ𝑘

𝑝 for all 𝑥 ∈ [ℓ] and sets
𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1K1 ⊙ 𝒅, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽). Next, ℬ samples
random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities

for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ]∖𝑌 . ℬ samples
random vectors 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 . ℬ also samples 𝒔𝐴,𝑥, 𝒔
′
𝐴,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 < 𝑖 where
𝑥 ∈ 𝑌 and 𝒔𝐴,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 > 𝑖 where 𝑥 ∈ 𝑌 . ℬ also samples random vectors 𝒔𝐵,𝑥 ← ℤ𝑘
𝑝 for

all 𝑥 ∈ 𝑌 .
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,
𝐶2,𝐴,𝑥 =(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨3K1 ⊙ 𝒅′))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=J(𝑨1𝒅+𝑨3𝒅
′ ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 =J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 =(((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨3K1 ⊙−𝒅′))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1

⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=J(−𝑨1𝒅−𝑨3𝒅
′ ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =

⎧⎨⎩
(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨3K⊙ 𝒔′𝐴,𝑥) for all 𝑥 < 𝑖,

J𝒕𝛽K1 for 𝑥 = 𝑖,
J𝑨1K1 ⊙ 𝒔𝐴,𝑥 for all 𝑥 > 𝑖,

=

⎧⎨⎩
(J𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥K1 for all 𝑥 < 𝑖,

J𝒕𝛽K1 for 𝑥 = 𝑖,
J𝑨1𝒔𝐴,𝑥K1 for all 𝑥 > 𝑖,

87

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨3K1 ⊙ 𝒅′))⊙𝑀𝑥,1)
for all 𝑥 < 𝑖,⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤

𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ J𝑨3K1 ⊙ 𝒔′𝐴,𝑥)

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨3K1 ⊙ 𝒅′))⊙𝑀𝑥,1) for 𝑥 = 𝑖,
⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑾⊤

𝐴,𝜌(𝑥) ⊙ J𝒕𝛽K1)
(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨3K1 ⊙ 𝒅′))⊙𝑀𝑥,1) for all 𝑥 > 𝑖,

⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 < 𝑖,
r
(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝒕𝛽

z

1
for 𝑥 = 𝑖,

r
(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)𝑨1𝒔𝐴,𝑥

z

1
for all 𝑥 > 𝑖,

𝐶1,𝐵,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,
𝐶2,𝐵,𝑥 = (((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨3K1 ⊙−𝒅′))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1

⊞ (J𝑾⊤
𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)

= J(−𝑨1𝒅−𝑨3𝒅
′ ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)𝑨1𝒔𝐵,𝑥K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) then the challenge ciphertext is distributed identically as in

𝖧𝗒𝖻3:𝐴:(𝑖−1). On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨3), then the challenge ciphertext simulated by
ℬ is distributed identically as in 𝖧𝗒𝖻3:𝐴:𝑖. All the other components of the game are also properly
distributed by ℬ. Hence it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻3:𝐴:(𝑖−1) or
𝖧𝗒𝖻3:𝐴:𝑖 according as 𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving
𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨3
. This completes the proof of Lemma 5.4. ■

Lemma 5.5: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨3

assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅3:𝐵:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,3:𝐵:(𝑖−1)(𝜆)− 𝑝𝒜,3:𝐵:𝑖(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅3:𝐵:𝑖(𝜆)

for 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: This proof is similar to that of Lemma 5.4 but with some minor changes that can readily
be figured out. ■

Lemma 5.6: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅4(·) such that for all 𝜆 ∈ ℕ,

⃒⃒⃒
𝑝𝒜,3:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,4(𝜆)

⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅4(𝜆).

Proof: Observe that in order to prove this, it is sufficient to prove that, for
𝑨1,𝑨2,𝑨3,𝑨

*
1,𝑨

*
2,𝑨

*
3 ← ℤ3𝑘×𝑘

𝑝 such that 𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗, we have

(

{𝑃𝐴,𝜌(𝑥)}𝑥∈𝑌⏞ ⏟
{𝑾⊤

𝐴,𝜌(𝑥)𝑨1}𝑥∈𝑌 ,

{𝐶2,𝐴,𝑥}𝑥∈𝑌⏞ ⏟ {︀
𝑾𝐴,𝜌(𝑥)

}︀
𝑥∈𝑌)

≡ ({𝑾⊤
𝐴,𝜌(𝑥)𝑨1}𝑥∈𝑌 , {𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥) }𝑥∈𝑌)

where 𝑾𝐴,𝜌(𝑥) ← ℤ3𝑘×3𝑘
𝑝 ,𝑽

(3)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) for all 𝑥 ∈ 𝑌 . This clearly follows from the

88

statistical lemma, Lemma 5.1. The same holds for

(

{𝑃𝐵,𝜌(𝑥)}𝑥∈𝑌⏞ ⏟
{𝑾⊤

𝐵,𝜌(𝑥)𝑨1}𝑥∈𝑌 ,

{𝐶2,𝐵,𝑥}𝑥∈𝑌⏞ ⏟ {︀
𝑾𝐵,𝜌(𝑥)

}︀
𝑥∈𝑌)

≡ ({𝑾⊤
𝐵,𝜌(𝑥)𝑨1}𝑥∈𝑌 , {𝑾𝐵,𝜌(𝑥) + 𝑽

(3)
𝐵,𝜌(𝑥) }𝑥∈𝑌)

where 𝑾𝐵,𝜌(𝑥) ← ℤ3𝑘×3𝑘
𝑝 ,𝑽

(3)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) for all 𝑥 ∈ 𝑌 . This completes the proof of
Lemma 5.6. ■

Lemma 5.7: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅5(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ 𝗇𝖾𝗀𝗅5(𝜆).

Proof: Observe that the only difference between 𝖧𝗒𝖻4 and 𝖧𝗒𝖻5 is that in 𝖧𝗒𝖻4 the components
{(𝑨1𝒅+𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥}𝑥∈[ℓ] and {(−𝑨1𝒅−𝑨3𝒅
′ ‖𝑼𝐵)𝑴𝑥}𝑥∈[ℓ] are shares of secrets that involve

correlated randomness 𝒅′,−𝒅′, where 𝒅′ ← ℤ𝑘
𝑝, whereas in 𝖧𝗒𝖻5 those components are changed

to {(𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥}𝑥∈[ℓ] and {(−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥}𝑥∈[ℓ] which are shares of secrets

that involve independent randomness 𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. Therefore, in order to prove that these two
games are statistically indistinguishable, we will argue that the portions of the secrets being
shared that lie in 𝗌𝗉𝖺𝗇(𝑨3) matrix are information theoretically hidden to the adversary 𝒜 in
𝖧𝗒𝖻4.

Note that the vectors (𝑨1𝒅+𝑨3𝒅
′ ‖𝑼𝐴)𝑴𝑥 and (−𝑨1𝒅−𝑨3𝒅

′ ‖𝑼𝐵)𝑴𝑥 for all the rows 𝑥
of the challenge access matrix 𝑴 labeled by corrupted authorities (i.e., the authorities for which
𝒜 either requests the master key or creates it on its own) are information theoretically revealed
to 𝒜. However, by the game restriction the subspace spanned by those rows does not include the
vector (1, 0, . . . , 0). This means that there must exist a vector 𝒖 ∈ ℤ𝑑

𝑝 such that 𝒖 is orthogonal
to all these rows of the challenge access matrix 𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e.,
the first entry of 𝒖 is nonzero). We consider a basis 𝕌 of ℤ𝑑

𝑝 involving the vector 𝒖 and write
(𝑨1𝒅 +𝑨3𝒅

′ ‖𝑼𝐴) = (𝑨1𝒅 ‖0) + (𝑨3𝒅
′ ‖𝑼𝐴) = (𝑨1𝒅 ‖0) + 𝑽𝐴 + 𝒂𝒖⊤ for some 𝒂 ∈ ℤ3𝑘

𝑝 and
some 𝑽𝐴 ∈ 𝗌𝗉𝖺𝗇3𝑘(𝕌∖{𝒖}). We note that each row of 𝑽𝐴 lies in the subspace spanned by 𝕌∖{𝒖}
and reveals no information about 𝒂. Now, since the first coordinate of 𝒖 is nonzero, it follows
that the first column of (𝑨3𝒅

′ ‖𝑼𝐴), i.e., 𝑨3𝒅
′, depends on 𝒂. But (𝑨3𝒅

′ ‖𝑼𝐴)𝑴𝑥 for all the
corrupted rows of 𝑴 contains no information about 𝒂 since 𝒖 is orthogonal to all these rows.
Thus, it follows that these rows do not leak information of 𝑨3𝒅

′.
Therefore, the only possible way for𝒜 to get information about 𝑨3𝒅

′ is through the ciphertext
components 𝐶2,𝐴,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each such row 𝑥,
𝒜 can only recover 𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥 and(︀

𝑨1𝒅+𝑨3𝒅
′ ‖𝑼𝐴

)︀
𝑴𝑥 + (𝑾𝐴,𝜌(𝑥) + 𝑽

(3)
𝐴,𝜌(𝑥))

⊤(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥)

= (𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥) +

(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥

+ 𝑽
(3)⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

information theoretically. Now recall that 𝑽
(3)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) hence we can write 𝑽
(3)
𝐴,𝜌(𝑥) as

𝑽
(3)
𝐴,𝜌(𝑥) = 𝑽

(3)
𝐴,𝜌(𝑥) +𝑨*

3𝑹
′
𝐴,𝜌(𝑥)𝑨

⊤
3 where 𝑽

(3)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

3) and 𝑹′
𝐴,𝜌(𝑥) ∈ ℤ𝑘×𝑘

𝑝 . Therefore,
we have (︀

𝑨3𝒅
′ ‖0

)︀
𝑴𝑥 + 𝑽

(3)⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥

=
(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥 + (𝑽

(3)
𝐴,𝜌(𝑥) +𝑨*

3𝑹
′
𝐴,𝜌(𝑥)𝑨

⊤
3)

⊤𝑨3𝒔
′
𝐴,𝑥

=
(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥 + 𝑽

(3)⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥 +𝑨3𝑹

′⊤
𝐴,𝜌(𝑥)𝑨

*⊤
3 𝑨3𝒔

′
𝐴,𝑥

=
(︀
𝑨3𝒅

′ ‖0
)︀
𝑴𝑥 + 𝑽

(3)⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥 +𝑨3𝑹

′⊤
𝐴,𝜌(𝑥)𝒔

′
𝐴,𝑥.

89

Since the labeling function 𝜌 is injective, it follows that 𝑽
(3)
𝐴,𝜌(𝑥),𝑹

′
𝐴,𝜌(𝑥) are freshly random

matrices that appear nowhere else. This means that given 𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥, (𝑨1𝒅 ‖𝑼𝐴)𝑴𝑥 +

𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 + 𝑨3𝒔

′
𝐴,𝑥) + (𝑨3𝒅

′ ‖0)𝑴𝑥 + 𝑽
(3)⊤
𝐴,𝜌(𝑥)𝑨3𝒔

′
𝐴,𝑥, if 𝑨3𝒔

′
𝐴,𝑥 is nonzero (note that

𝑨3𝒔
′
𝐴,𝑥 = 0 with negligible probability), any value of 𝑨3𝒅

′ can be explained by a particular

value of 𝑹′
𝐴,𝜌(𝑥),𝑽

(3)
𝐴,𝜌(𝑥) matrices. It follows that 𝑨3𝒅

′, is information theoretically hidden to 𝒜.
The same argument can be applied to show that −𝑨3𝒅

′ is information theoretically hidden
to 𝒜 as well. This completes the proof of Lemma 5.7. ■

Lemma 5.8: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅6(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≤ 𝗇𝖾𝗀𝗅6(𝜆).

Proof: The proof is similar to that of Lemma 5.6. ■

Lemma 5.9: If the 𝖲𝖣𝔾2
𝑩1 ↦→𝑩1,𝑩2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅7:𝑗:1(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,7:(𝑗−1)(𝜆)− 𝑝𝒜,7:𝑗:1(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅7:𝑗:1(𝜆)

for all 𝑗 ∈ [𝑞].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:(𝑗−1) and
𝖧𝗒𝖻7:𝑗:1 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2
problem. The

algorithm ℬ gets an instance of the 𝖲𝖣𝔾2
𝑩1 ↦→𝑩1,𝑩2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*

1), 𝖻𝖺𝗌𝗂𝗌(𝑩
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
1 ,𝑩

*
2), and J𝒕𝛽K2

for random 𝛽 ← {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1) when 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2) when 𝛽 = 1.
The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples matrix 𝑨1 ← 𝗌𝗉𝖺𝗇𝑘(𝑩*
1) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1). Then 𝑨1 can be expressed as 𝑨1 = 𝑩*

1𝑹 for 𝑹 ← ℤ𝑘×𝑘
𝑝 . ℬ then implicitly sets

𝑨*
1 = 𝑩1𝑽 where 𝑽 = (𝑹−1)⊤. Observe that, since 𝑹← ℤ𝑘×𝑘

𝑝 , 𝑽 exists with all but negligible
probability. ℬ also implicitly sets 𝑨2 = 𝑩*

2 ,𝑨3 = 𝑩*
3 and 𝑨*

2 = 𝑩2,𝑨
*
3 = 𝑩3. Also note that

𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ [3]. ℬ then samples random �̃� ← ℤ𝑘

𝑝, implicitly
sets 𝒉 = 𝑽 −1�̃� = 𝑹⊤�̃�, and sets 𝐻 = J𝑩1K2 ⊙ �̃� = J𝑩1�̃�K2 = J𝑨*

1𝒉K2. Observe that 𝒉
is uniformly distributed over ℤ𝑘

𝑝 since �̃� ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible. ℬ also samples a
random seed 𝗌𝖾𝖾𝖽← 𝑆 for the strong randomness extractor and sets the global public parameters
𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 ≤ 𝑗 − 1, ℬ samples random �̃�GID𝑡 ,𝒉
′
GID𝑡

← ℤ𝑘
𝑝, implicitly sets 𝒉GID𝑡 = 𝑽 −1�̃�GID𝑡 =

𝑹⊤�̃�GID𝑡 and sets 𝖧(𝖦𝖨𝖣𝑡) = (J𝑩1K2 ⊙ �̃�GID𝑡) ⊞ (J𝑩3K2 ⊙ 𝒉′
GID𝑡

) = J𝑩1�̃�GID𝑡 +𝑩3𝒉
′
GID𝑡

K2 =

90

J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2. Observe that 𝒉GID𝑡 is uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑡 ← ℤ𝑘

𝑝

and 𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible.

• For the 𝑡 = 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑗) as 𝖧(𝖦𝖨𝖣𝑗) = J𝒕𝛽K2. Observe that, if 𝒕𝛽 = 𝑩1�̃�GID𝑗
←

𝗌𝗉𝖺𝗇(𝑩1), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ takes the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗
K2 = J𝑨*

1𝒉GID𝑗
K2

where 𝒉GID𝑗
= 𝑽 −1�̃�GID𝑗

= 𝑹⊤�̃�GID𝑗
implicitly. On the other hand, if 𝒕𝛽 = 𝑩1�̃�GID𝑗

+

𝑩2𝒉
′′
GID𝑗
← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ takes the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗

+

𝑩2𝒉
′′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+𝑨*
2𝒉

′′
GID𝑗

K2 where 𝒉GID𝑗
= 𝑽 −1�̃�GID𝑗

= 𝑹⊤�̃�GID𝑗
implicitly. Observe

that in both cases, 𝒉GID𝑗
is uniformly distributed over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is
invertible.

• For 𝑡 > 𝑗, ℬ samples random �̃�GID𝑡 ← ℤ𝑘
𝑝, implicitly defines 𝒉GID𝑡 = 𝑽 −1

1 �̃�GID𝑡 = 𝑹⊤
1 �̃�GID𝑡 ,

and sets 𝖧(𝖦𝖨𝖣𝑡) = J𝑩1K2 ⊙ �̃�GID𝑡 = J𝑩1�̃�GID𝑡K2 = J𝑨*
1𝒉GID𝑡K2. Observe that 𝒉GID𝑗

is
uniformly distributed over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible.

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣𝑡) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows.

First, ℬ samples random vectors 𝒄(1) ← 𝗌𝗉𝖺𝗇(𝑩*
1) and 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using
𝖻𝖺𝗌𝗂𝗌(𝑩*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*
3) respectively for all 𝑥 ∈ [ℓ]. Observe that the vectors 𝒄(1), 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵

can be viewed as 𝑨1𝒅,𝑨3𝒅
′
𝐴,𝑨3𝒅

′
𝐵 respectively where 𝒅,𝒅′

𝐴,𝒅
′
𝐵 ← ℤ𝑘

𝑝. ℬ also samples random
matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the au-

thorities for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (J𝑾⊤
𝐴,𝑢𝑨1K1, J𝑾⊤

𝐵,𝑢𝑨1K1)}.
Let 𝑌 = [ℓ] ∖ 𝑌 . ℬ samples 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝 for all 𝑥 ∈ 𝑌 . Then ℬ samples
𝒄
(1)
𝐴,𝑥, 𝒄

(1)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

1) and 𝒄
(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using 𝖻𝖺𝗌𝗂𝗌(𝑩*
1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*

3) respec-

tively for all 𝑥 ∈ 𝑌 . Observe that the vectors {𝒄(1)𝐴,𝑥, 𝒄
(1)
𝐵,𝑥, 𝒄

(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥}𝑥∈𝑌 also can be viewed as

{𝑨1𝒔𝐴,𝑥,𝑨1𝒔𝐵,𝑥,𝑨3𝒔
′
𝐴,𝑥,𝑨3𝒔

′
𝐵,𝑥}𝑥∈𝑌 where 𝒔𝐴,𝑥, 𝒔𝐵,𝑥, 𝒔

′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝. Then ℬ generates the
challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

91

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝒄(1)K1, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

=
q(︀
𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

=
q(︀
−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =
r
𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥

z

1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥)

z

1

=
r(︀

𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1
,

𝐶1,𝐵,𝑥 =
r
𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥

z

1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥)

z

1

=
r(︀
−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)

(︀
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︀z
1
.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in 𝖧𝗒𝖻7:(𝑗−1)

whereas if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2), then it coincides the one in 𝖧𝗒𝖻7:𝑗:1. All the other components
simulated by ℬ are also properly distributed. Hence it follows that the games simulated by
ℬ coincides with coincides with 𝖧𝗒𝖻7:(𝑗−1) or 𝖧𝗒𝖻7:𝑗:1 according as 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1) or 𝒕𝛽 ←
𝗌𝗉𝖺𝗇(𝑩1,𝑩2). Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2
.

This completes the proof of Lemma 5.9. ■

Lemma 5.10: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅7:𝑗:2(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:1(𝜆)− 𝑝𝒜,7:𝑗:2(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:2(𝜆)
for all 𝑗 ∈ [𝑞].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:𝑗:1 and 𝖧𝗒𝖻7:𝑗:2
with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT adver-
sary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
problem. The algo-

rithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
2), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ generates 𝐻 = J𝑨*
1𝒉K2 with 𝒉 ← ℤ𝑘

𝑝 by
taking random linear combinations of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1). ℬ also samples a random
seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor, and provides the global public parameters
𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽) to 𝒜.

92

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2 with 𝒉GID𝑡 ,𝒉
′
GID𝑡
← ℤ𝑘

𝑝 by taking a
random linear combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑨*
3).

• For 𝑡 = 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑗) = J𝑨*
1𝒉GID𝑗

+𝑨*
2𝒉

′′
GID𝑗

K2 with 𝒉GID𝑗
,𝒉′′

GID𝑗
← ℤ𝑘

𝑝 by taking a
random linear combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1,𝑨
*
2).

• For 𝑡 > 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡K2 with 𝒉GID𝑡 ← ℤ𝑘

𝑝 by taking a random linear
combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1).

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳
as follows. First, ℬ sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝒕𝛽K1, 𝐻), 𝗌𝖾𝖾𝖽). Next, ℬ samples random vectors
𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. ℬ also samples random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)
𝑝 .

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities for
which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ]∖𝑌 . For all 𝑥 ∈ [ℓ],
ℬ chooses random 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝. For each 𝑥 ∈ 𝑌 , ℬ also chooses random 𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥 ← ℤ𝑘

𝑝.
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1

93

𝐶2,𝐴,𝑥 =((J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

=J(𝒕𝛽 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 =J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 =((−J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′

𝐵))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

=J(−𝒕𝛽 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥).

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) = J𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥K1

𝐶2,𝐴,𝑥 =((J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (𝑾⊤

𝐴,𝜌(𝑥) ⊙ J𝑨3K1 ⊙ 𝒔′𝐴,𝑥)

=J(𝒕𝛽 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥)K1,

𝐶1,𝐵,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥) = J𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥K1

𝐶2,𝐵,𝑥 =((−J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′
𝐵))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (J𝑾⊤
𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (𝑾⊤

𝐵,𝜌(𝑥) ⊙ J𝑨3K1 ⊙ 𝒔′𝐵,𝑥)

=J(−𝒕𝛽 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥)K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 = 𝑨1𝒅 ← 𝗌𝗉𝖺𝗇(𝑨1) with 𝒅 ← ℤ𝑘

𝑝 then the challenge ciphertext is dis-
tributed identically as in 𝖧𝗒𝖻7:𝑗:1. On the other hand, if 𝒕𝛽 = 𝑨1𝒅+𝑨2𝒅

′′ ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) with
𝒅,𝒅′′ ← ℤ𝑘

𝑝, then the challenge ciphertext simulated by ℬ is distributed identically as in 𝖧𝗒𝖻7:𝑗:2.
All the other components of the game are properly distributed by ℬ. Hence it follows that the
game simulated by ℬ coincides with 𝖧𝗒𝖻7:𝑗:1 or 𝖧𝗒𝖻7:𝑗:2 according as 𝛽 = 0 or 1. Thus, ℬ can
use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
. This completes the proof of

Lemma 5.10. ■

Lemma 5.11: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅7:𝑗:3:𝐴:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,7:𝑗:3:𝐴:(𝑖−1)(𝜆)− 𝑝𝒜,7:𝑗:3:𝐴:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅7:𝑗:3:𝐴:𝑖(𝜆) for all 𝑗 ∈ [𝑞] and 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:𝑗:3:𝐴:(𝑖−1) and
𝖧𝗒𝖻7:𝑗:3:𝐴:𝑖 with non-negligible advantage . Using 𝒜 as a subroutine, we construct below a
PPT adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
problem. The

algorithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
2), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ generates 𝐻 = J𝑨*
1𝒉K2 with 𝒉 ← ℤ𝑘

𝑝 by
taking random linear combinations of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1). ℬ also samples a random
seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor, and provides the global public parameters
𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽) to 𝒜.

94

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2 with 𝒉GID𝑡 ,𝒉
′
GID𝑡
← ℤ𝑘

𝑝 by taking a
random linear combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑨*
3).

• For 𝑡 = 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑗) = J𝑨*
1𝒉GID𝑗

+𝑨*
2𝒉

′′
GID𝑗

K2 with 𝒉GID𝑗
,𝒉′′

GID𝑗
← ℤ𝑘

𝑝 by taking a
random linear combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1,𝑨
*
2).

• For 𝑡 > 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) = J𝑨*
1𝒉GID𝑡K2 with 𝒉GID𝑡 ← ℤ𝑘

𝑝 by taking a random linear
combination of the members of 𝖻𝖺𝗌𝗂𝗌(𝑨*

1).

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute au-
thority 𝑢 for which ℬ has created a public-master key pair for so far are not contained in
𝑈𝒜, and for each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of
𝑴 labeled by the authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key
query for 𝑢 or secret key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and gener-
ates a ciphertext 𝖢𝖳 as follows. First, ℬ samples random vectors 𝒅,𝒅′′,𝒅′

𝐴,𝒅
′
𝐵 ← ℤ𝑘

𝑝 and sets
𝐶 = 𝗆𝗌𝗀𝑏⊕𝙴𝚡𝚝(𝑒(J𝑨1K1⊙𝒅, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀𝑏⊕𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽). ℬ also samples random
matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities for

which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ]∖𝑌 . For all 𝑥 ∈ 𝑌 ,
ℬ chooses random 𝒔𝐴,𝑥, 𝒔𝐵,𝑥,← ℤ𝑘

𝑝. For each 𝑥 ∈ 𝑌 , ℬ also chooses random 𝒔′𝐴,𝑥, 𝒔
′
𝐵,𝑥 ← ℤ𝑘

𝑝.

95

Further, ℬ also samples random vectors 𝒔𝐴,𝑥, 𝒔
′′
𝐴,𝑥 ← ℤ𝑘

𝑝 for 𝑥 < 𝑖 where 𝑥 ∈ 𝑌 and 𝒔𝐴,𝑥 ← ℤ𝑘
𝑝

for 𝑥 > 𝑖 where 𝑥 ∈ 𝑌 .
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1
𝐶2,𝐴,𝑥 =(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′

𝐴))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=J(𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 =(((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨2K1 ⊙−𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′

𝐵))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=J(−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥).

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =

⎧⎨⎩
(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨2K1 ⊙ 𝒔′′𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for all 𝑥 ≤ 𝑖,

J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for 𝑥 = 𝑖,

(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for all 𝑥 > 𝑖,

=

⎧⎨⎩
J𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥K1 for all 𝑥 < 𝑖,

J𝒕𝛽 +𝑨3𝒔
′
𝐴,𝑥K1 for 𝑥 = 𝑖,

J𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥K1 for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖)

for all 𝑥 ≤ 𝑖,⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ ((J𝑨2K1 ⊙ 𝒔′′𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥)))

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖)

for 𝑥 = 𝑖,⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑾⊤
𝐴,𝜌(𝑥) ⊙ J𝒕𝛽K1)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥))

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖)

for all 𝑥 > 𝑖,⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 < 𝑖,

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝒕𝛽 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for 𝑥 = 𝑖,

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 > 𝑖,

𝐶1,𝐵,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥) = J𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥K1

𝐶2,𝐵,𝑥 =(((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨2K1 ⊙−𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐵))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)

⊞
(︁
𝑾⊤

𝐵,𝜌(𝑥) ⊙ ((J𝑨2K1 ⊙ 𝒔′′𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥))
)︁

=J(−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥)K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.

96

Observe that if 𝒕𝛽 = 𝑨1𝒔𝐴,𝑥 ← 𝗌𝗉𝖺𝗇(𝑨1) then the challenge ciphertext is distributed iden-
tically as in 𝖧𝗒𝖻7:𝑗:3:𝐴:(𝑖−1). On the other hand, if 𝒕𝛽 = 𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔

′′
𝐴,𝑥 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2),

then the challenge ciphertext simulated by ℬ is distributed identically as in 𝖧𝗒𝖻7:𝑗:3:𝐴:𝑖. All the
other components of the game are properly distributed by ℬ. Hence it follows that the game
simulated by ℬ coincides with 𝖧𝗒𝖻7:𝑗:3:𝐴:(𝑖−1) or 𝖧𝗒𝖻7:𝑗:3:𝐴:𝑖 according as 𝛽 = 0 or 1. Thus, ℬ
can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
. This completes the proof

of Lemma 5.11. ■

Lemma 5.12: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅7:𝑗:3:𝐵:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,7:𝑗:3:𝐵:(𝑖−1)(𝜆)− 𝑝𝒜,7:𝑗:3:𝐵:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅7:𝑗:3:𝐵:𝑖(𝜆) for all 𝑗 ∈ [𝑞] and 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: The proof is similar to that of Lemma 5.11 with some minor changes that can be easily
figured out. ■

Lemma 5.13: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:4(·) such that for all 𝜆 ∈ ℕ,

⃒⃒⃒
𝑝𝒜,7:𝑗:3:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,7:𝑗:4(𝜆)

⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅7:𝑗:4(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.14: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:5(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:4(𝜆)− 𝑝𝒜,7:𝑗:5(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:5(𝜆) for all 𝑗 ∈ [𝑞].

Proof: Observe that the only difference between 𝖧𝗒𝖻7:𝑗:4 and 𝖧𝗒𝖻7:𝑗:5 is
that in the former the components {(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥}𝑥∈[ℓ] and

{(−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥}𝑥∈[ℓ] are shares of secrets that involve 𝒅′′,−𝒅′′ for some

𝒅′′ ← ℤ𝑘
𝑝 which are correlated, whereas in the latter, they are shares of secrets that involve

𝒅′′
𝐴,𝒅

′′
𝐵 respectively for independent 𝒅′′

𝐴,𝒅
′′
𝐵 ← ℤ𝑘

𝑝. Therefore, in order to prove these two games
are statistically indistinguishable, we will argue that the portion of the secrets that belong to
𝗌𝗉𝖺𝗇(𝑨2) are information theoretically hidden to the adversary 𝒜 in 𝖧𝗒𝖻7:𝑗:4.

Note that the shares (𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥 and (−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥

for all the rows 𝑥 of the challenge access matrix 𝑴 labeled by corrupted authorities (i.e., the
authorities for which 𝒜 either requests the master key or creates it on its own) and for all the
rows 𝑥 of 𝑴 labeled by authorities 𝑢 such that 𝒜 makes a secret key query for (𝖦𝖨𝖣𝑗 , 𝑢) are
information theoretically revealed to 𝒜, where 𝖦𝖨𝖣𝑗 is the 𝑗th global identifier for which the 𝖧
oracle output is generated by the challenger. However, by the game restriction the subspace
spanned by those rows does not include the vector (1, 0, . . . , 0). This means there must exists
a vector 𝒖 ∈ ℤ𝑑

𝑝 such that 𝒖 is orthogonal to all these rows of 𝑴 but is not orthogonal to
(1, 0, . . . , 0), (i.e., the first entry of 𝒖 is nonzero).

We consider a basis of 𝕌 of ℤ𝑑
𝑝 involving the vector 𝒖 and write (𝑨1𝒅+𝑨2𝒅

′′+𝑨3𝒅
′
𝐴 ‖𝑼𝐴) =

(𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖0) + (𝑨2𝒅

′′ ‖𝑼𝐴) = (𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖0) + 𝑽𝐴 + 𝒂𝒖⊤ for some 𝒂 ∈ ℤ3𝑘

𝑝 and some
𝑽𝐴 ∈ 𝗌𝗉𝖺𝗇3𝑘(𝕌∖{𝒖}). We note that each row of 𝑽𝐴 lies in the subspace spanned by 𝕌∖{𝒖} and
reveals no information about 𝒂. Now, since the first coordinate of 𝒖 is nonzero, it follows that
the first column of (𝑨2𝒅

′′ ‖𝑼𝐴), i.e., 𝑨2𝒅
′′, depends on the vector 𝒂. But (𝑨2𝒅

′′ ‖𝑼𝐴)𝑴𝑥 for
all the corrupted rows of 𝑴 and all the rows of 𝑴 for which a secret key query is made by 𝒜
with respect to the global identifier 𝖦𝖨𝖣𝑗 contains no information about 𝒂 since 𝒖 is orthogonal
to all these rows. Thus, it follows that these rows do not leak information of 𝑨2𝒅

′′.
Therefore, the only possible way for 𝒜 to get information about 𝑨2𝒅

′′ is through the cipher-
text components 𝐶2,𝐴,𝑥 corresponding to the remaining rows of 𝑴 . However, for each such row

97

𝑥, 𝒜 can only recover 𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥 and(︀

𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥

+ (𝑾𝐴,𝜌(𝑥) + 𝑽
(2)
𝐴,𝜌(𝑥))

⊤(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

=
(︀
𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

+
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥.

information theoretically. Now recall that 𝑽
(2)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2), hence we can write 𝑽
(2)
𝐴,𝜌(𝑥) as

𝑽
(2)
𝐴,𝜌(𝑥) = 𝑽

(2)
𝐴,𝜌(𝑥) +𝑨*

2𝑹
′′
𝐴,𝜌(𝑥)𝑨

⊤
2 where 𝑽

(2)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) and 𝑹′′
𝐴,𝜌(𝑥) ∈ ℤ𝑘×𝑘

𝑝 . Therefore,
we have (︀

𝑨2𝒅
′′ ‖0

)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + (𝑽

(2)
𝐴,𝜌(𝑥) +𝑨*

2𝑹
′′
𝐴,𝜌(𝑥)𝑨

⊤
2)

⊤𝑨2𝒔
′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥 +𝑨2𝑹

′′⊤
𝐴,𝜌(𝑥)𝑨

*⊤
2 𝑨2𝒔

′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥 +𝑨2𝑹

′′⊤
𝐴,𝜌(𝑥)𝒔

′′
𝐴,𝑥.

Since the labeling function 𝜌 is injective, it follows that 𝑽
(2)
𝐴,𝜌(𝑥),𝑹

′′
𝐴,𝜌(𝑥) are freshly

random matrices that appear nowhere else. This means given 𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔
′′
𝐴,𝑥 +

𝑨3𝒔
′
𝐴,𝑥, (𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥 + 𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔
′′
𝐴,𝑥 + 𝑨3𝒔

′
𝐴,𝑥) + (𝑨2𝒅

′′ ‖0)𝑴𝑥 +

𝑽
(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥, if 𝑨2𝒔

′′
𝐴,𝑥 is nonzero (note that 𝑨2𝒔

′′
𝐴,𝑥 = 0 with negligible probability), any

value of 𝑨2𝒅
′′ can be explained by a particular value of 𝑽 (2)

𝐴,𝜌(𝑥),𝑹
′′
𝐴,𝜌(𝑥). It follows that 𝑨2𝒅

′′ is
information theoretically hidden to 𝒜.

The same argument can be applied to show that −𝑨2𝒅
′′ is information theoretically hidden

to 𝒜 as well. This completes the proof of Lemma 5.14. ■

Lemma 5.15: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:6(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:5(𝜆)− 𝑝𝒜,7:𝑗:6(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:6(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.16: If the 𝖲𝖣𝔾2
𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3

assumption holds, then for all PPT adversary 𝒜, there
exists a negligible function 𝗇𝖾𝗀𝗅7:𝑗:7(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:6(𝜆)− 𝑝𝒜,7:𝑗:7(𝜆)| ≤
𝗇𝖾𝗀𝗅7:𝑗:7(𝜆) for all 𝑗 ∈ [𝑞].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:𝑗:6 and 𝖧𝗒𝖻7:𝑗:7
with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT adversary
ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾2

𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3
problem. The algorithm

ℬ gets an instance of the 𝖲𝖣𝔾2
𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3

problem from its challenger that consists of 𝖦 =
(𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*

1), 𝖻𝖺𝗌𝗂𝗌(𝑩
*
2 ,𝑩

*
3), and J𝒕𝛽K2 for random 𝛽 ←

{0, 1} where and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2) when 𝛽 = 0 and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2,𝑩3) when 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples matrix 𝑨1 ← 𝗌𝗉𝖺𝗇𝑘(𝑩*
1) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1). Thus, 𝑨1 can be expressed as 𝑨1 = 𝑩*

1𝑹 for some 𝑹1 ← ℤ𝑘×𝑘
𝑝 . ℬ implicitly sets

𝑨*
1 = 𝑩1𝑽 where 𝑽 = (𝑹−1)⊤. Observe that, since 𝑹← ℤ𝑘×𝑘

𝑝 , 𝑽 exists with all but negligible
probability. ℬ also implicitly sets 𝑨2 = 𝑩*

2 ,𝑨3 = 𝑩*
3 . ℬ then explicitly sets 𝑨*

2 = 𝑩2 and

98

𝑨*
3 = 𝑩3 . Note that 𝑨⊤

𝑖 𝑨
*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ [3]. ℬ then samples random

�̃� ← ℤ𝑘
𝑝 and implicitly sets 𝒉 = 𝑽 −1�̃� = 𝑹⊤�̃� and sets 𝐻 = J𝑩1K2 ⊙ �̃� = J𝑩1�̃�K2 = J𝑨*

1𝒉K2.
Observe that 𝒉 is uniformly distributed over ℤ𝑘

𝑝 since �̃� ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible. ℬ
also samples a random seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor and sets the global
public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ samples random �̃�GID𝑡 ,𝒉
′
GID𝑡
← ℤ𝑘

𝑝, implicitly sets 𝒉GID𝑡 = 𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡

and sets 𝖧(𝖦𝖨𝖣𝑡) = (J𝑩1K2⊙ �̃�GID𝑡)⊞ (J𝑩3K2⊙𝒉′
GID𝑡

) = J𝑩1�̃�GID𝑡 +𝑩3𝒉
′
GID𝑡

K2 = J𝑨*
1𝒉GID𝑡 +

𝑨*
3𝒉

′
GID𝑡

K2. Observe that 𝒉GID𝑡 is uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑡 ← ℤ𝑘

𝑝 and 𝑹 ∈
ℤ𝑘×𝑘
𝑝 is invertible.

• For 𝑡 = 𝑗, ℬ generates 𝖧(𝖦𝖨𝖣𝑗) as 𝖧(𝖦𝖨𝖣𝑗) = J𝒕𝛽K2. Observe that, if 𝒕𝛽 = 𝑩1�̃�GID𝑗
+

𝑩2𝒉
′′
GID𝑗

← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2) with �̃�GID𝑗
,𝒉′′

GID𝑗
← ℤ𝑘

𝑝, then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ takes
the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗

+ 𝑩2𝒉
′′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+ 𝑨*
2𝒉

′′
GID𝑗

K2 where 𝒉GID𝑗
=

𝑽 −1�̃�GID𝑗
= 𝑹⊤�̃�GID𝑗

implicitly. On the other hand, if 𝒕𝛽 = 𝑩1�̃�GID𝑗
+𝑩2𝒉

′′
GID𝑗

+𝑩3𝒉
′
GID𝑗
←

𝗌𝗉𝖺𝗇(𝑩1,𝑩2,𝑩3) with �̃�GID𝑗
,𝒉′′

GID𝑗
,𝒉′

GID𝑗
← ℤ𝑘

𝑝, then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ takes the form
𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗

+ 𝑩2𝒉
′′
GID𝑗

+ 𝑩3𝒉
′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+ 𝑨*
2𝒉

′′
GID𝑗

+ 𝑨*
3𝒉

′
GID𝑗

K2 where
𝒉GID𝑗

= 𝑽 −1�̃�GID𝑗
= 𝑹⊤�̃�GID𝑗

implicitly. Observe that in both cases, 𝒉GID𝑡 is uniformly
distributed over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible.

• For 𝑡 > 𝑗, ℬ samples random �̃�GID𝑡 ← ℤ𝑘
𝑝, implicitly defines 𝒉GID𝑡 = 𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡

and sets 𝖧(𝖦𝖨𝖣𝑡) = J𝑩1K2 ⊙ �̃�GID𝑡 = J𝑩1�̃�GID𝑡K2 = J𝑨*
1𝒉GID𝑡K2. Observe that 𝒉GID𝑡 is

uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑡 ← ℤ𝑘

𝑝 and 𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible.

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣𝑡) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =

99

J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows.

First, ℬ samples random vectors 𝒄(1) ← 𝗌𝗉𝖺𝗇(𝑩*
1) and 𝒄

(2,3)
𝐴 , 𝒄

(2,3)
𝐵 ← 𝗌𝗉𝖺𝗇(𝑩*

2 ,𝑩
*
3) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*

2 ,𝑩
*
3) respectively. Observe that the vectors 𝒄(1), 𝒄(2,3)𝐴 , 𝒄

(2,3)
𝐵 can be viewed

as 𝑨1𝒅,𝑨2𝒅
′′
𝐴 +𝑨3𝒅

′
𝐴,𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 respectively with 𝒅,𝒅′′

𝐴,𝒅
′′
𝐵,𝒅

′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝. ℬ also samples
random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities for

which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (J𝑾⊤
𝐴,𝑢𝑨1K1, J𝑾⊤

𝐵,𝑢𝑨1K1)}. Let 𝑌 = [ℓ] ∖𝑌 .

ℬ samples random vectors 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ∈ 𝑌 . ℬ samples 𝒄

(1)
𝐴,𝑥, 𝒄

(1)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

1)

and 𝒄
(2,3)
𝐴,𝑥 , 𝒄

(2,3)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

2 ,𝑩
*
3) by using 𝖻𝖺𝗌𝗂𝗌(𝑩*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*
2 ,𝑩

*
3) respectively for all 𝑥 ∈

𝑌 . Observe that {𝒄(1)𝐴,𝑥, 𝒄
(1)
𝐵,𝑥, 𝒄

(2,3)
𝐴,𝑥 , 𝒄

(2,3)
𝐵,𝑥 }𝑥∈𝑌 also can be viewed as {𝑨1𝒔𝐴,𝑥,𝑨1𝒔𝐵,𝑥,𝑨2𝒔

′′
𝐴,𝑥 +

𝑨3𝒔
′
𝐴,𝑥,𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥}𝑥∈𝑌 respectively with 𝒔𝐴,𝑥, 𝒔𝐵,𝑥, 𝒔

′′
𝐴,𝑥, 𝒔

′′
𝐵,𝑥, 𝒔

′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝. Then ℬ
generates the challenge ciphertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝒄(1)K1, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(2,3)
𝐴 ‖𝑼𝐴)𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=
q
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(2,3)
𝐵 ‖𝑼𝐵)𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=
q
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =
r
𝒄
(1)
𝐴,𝑥 + 𝒄

(2,3)
𝐴,𝑥

z

1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(2,3)
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝒄
(1)
𝐴,𝑥 + 𝒄

(2,3)
𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 =
r
𝒄
(1)
𝐵,𝑥 + 𝒄

(2,3)
𝐵,𝑥

z

1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(2,3)
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝒄
(1)
𝐵,𝑥 + 𝒄

(2,3)
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

100

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in

𝖧𝗒𝖻7:𝑗:6 whereas if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2,𝑩3), then it coincides the one in 𝖧𝗒𝖻7:𝑗:7. All the other
components simulated by ℬ are also properly distributed. Hence it follows that the games
simulated by ℬ coincides with coincides with 𝖧𝗒𝖻7:𝑗:6 or 𝖧𝗒𝖻7:𝑗:7 according as 𝛽 = 0 or 1. Thus,
ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾2

𝑩1,𝑩2 ↦→𝑩1,𝑩2,𝑩3
. This completes

the proof of Lemma 5.16. ■

Lemma 5.17: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:8(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:7(𝜆)− 𝑝𝒜,7:𝑗:8(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:8(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.18: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:9(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:8(𝜆)− 𝑝𝒜,7:𝑗:9(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:9(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.14 with some minor changes that can be easily
figured out. ■

Lemma 5.19: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅7:𝑗:10(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:9(𝜆)− 𝑝𝒜,7:𝑗:10(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗:10(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.20: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅7:𝑗:11:𝐴:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,7:𝑗:11:𝐴:(𝑖−1)(𝜆)− 𝑝𝒜,7:𝑗:11:𝐴:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅7:𝑗:11:𝐴:𝑖(𝜆) for all 𝑗 ∈ [𝑞] and 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: The proof is similar to that of Lemma 5.11 with some minor changes that can be easily
figured out. ■

Lemma 5.21: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅7:𝑗:11:𝐵:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,7:𝑗:11:𝐵:(𝑖−1)(𝜆)− 𝑝𝒜,7:𝑗:11:𝐵:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅7:𝑗:11:𝐵:𝑖(𝜆) for all 𝑗 ∈ [𝑞] and 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: The proof is similar to that of Lemma 5.12 with some minor changes that can be easily
figured out. ■

Lemma 5.22: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there ex-

ists a negligible function 𝗇𝖾𝗀𝗅7:𝑗:12(·) such that for all 𝜆 ∈ ℕ,
⃒⃒⃒
𝑝𝒜,7:𝑗:11:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,7:𝑗:12(𝜆)

⃒⃒⃒
≤

𝗇𝖾𝗀𝗅7:𝑗:12(𝜆) for all 𝑗 ∈ [𝑞].

Proof: The proof is similar to that of Lemma 5.10 with some minor changes that can be easily
figured out. ■

Lemma 5.23: If the 𝖲𝖣𝔾2
𝑩3 ↦→𝑩2,𝑩3

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅7:𝑗(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑗:12(𝜆)− 𝑝𝒜,7:𝑗(𝜆)| ≤ 𝗇𝖾𝗀𝗅7:𝑗(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:𝑗:12 and
𝖧𝗒𝖻7:𝑗 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3
problem. The al-

gorithm ℬ gets an instance of the 𝖲𝖣𝔾2
𝑩3 ↦→𝑩2,𝑩3

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*

1), 𝖻𝖺𝗌𝗂𝗌(𝑩
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
2 ,𝑩

*
3), and J𝒕𝛽K2

for random 𝛽 ← {0, 1} where and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3) when 𝛽 = 0 and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3) when
𝛽 = 1. The algorithm ℬ proceeds as follows:

101

Generating the Global Public Parameters: ℬ samples matrix 𝑨1 ← 𝗌𝗉𝖺𝗇𝑘(𝑩*
1) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1). Thus, 𝑨1 can be expressed as 𝑨1 = 𝑩*

1𝑹 for some 𝑹 ← ℤ𝑘×𝑘
𝑝 . ℬ implicitly sets

𝑨*
1 = 𝑩1𝑽 where 𝑽 = (𝑹−1)⊤. Observe that, since 𝑹← ℤ𝑘×𝑘

𝑝 , 𝑽 exists with all but negligible
probability. ℬ also implicitly sets 𝑨2 = 𝑩*

2 ,𝑨3 = 𝑩*
3 . ℬ then explicitly sets 𝑨*

2 = 𝑩2 and
𝑨*

3 = 𝑩3. Note that 𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ [3]. ℬ then samples random

�̃� ← ℤ𝑘
𝑝 and implicitly sets 𝒉 = 𝑽 −1�̃� = 𝑹⊤�̃� and sets 𝐻 = J𝑩1K2 ⊙ �̃� = J𝑩1�̃�K2 = J𝑨*

1𝒉K2.
Observe that 𝒉 is uniformly distributed over ℤ𝑘

𝑝 since �̃� ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible. ℬ
also samples a random seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor and sets the global
public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ samples random vectors �̃�GID𝑡 ,𝒉
′
GID𝑡

← ℤ𝑘
𝑝 and implicitly sets 𝒉GID𝑡 =

𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡 . ℬ then sets 𝖧(𝖦𝖨𝖣𝑡) as 𝖧(𝖦𝖨𝖣𝑡) = (J𝑩1K2 ⊙ �̃�GID𝑡)⊞ (J𝑩3K2 ⊙ 𝒉′
GID𝑡

)

= J𝑩1�̃�GID𝑡𝑩3𝒉
′
GID𝑡

K2 = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2. Observe that 𝒉GID𝑡 is uniformly distributed
over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible.

• For 𝑡 = 𝑗, ℬ first samples a random vector �̃�GID𝑗
← ℤ𝑘

𝑝 and implicitly sets 𝒉GID𝑗
=

𝑽 −1�̃�GID𝑗
= 𝑹⊤�̃�GID𝑗

. ℬ then sets 𝖧(𝖦𝖨𝖣𝑗) as 𝖧(𝖦𝖨𝖣𝑗) = (J𝑩1K2 ⊙ �̃�GID𝑗
) ⊞ J𝒕𝛽K2 =

J𝑩1�̃�GID𝑗
+ 𝒕𝛽K2 = J𝑨*

1𝒉GID𝑗
+ 𝒕𝛽K2. Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) takes

the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗
+ 𝑩3𝒉

′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+ 𝑨*
3𝒉

′
GID𝑗

K2 where 𝒉′
GID𝑗

← ℤ𝑘
𝑝.

On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) takes the form 𝖧(𝖦𝖨𝖣𝑗) =
J𝑩1�̃�GID𝑗

+𝑩2𝒉
′′
GID𝑗

+𝑩3𝒉
′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+𝑨*
2𝒉

′′
GID𝑗

+𝑨*
3𝒉

′
GID𝑗

K2 where 𝒉′′
GID𝑗

,𝒉′
GID𝑗
← ℤ𝑘

𝑝.
Observe that in both cases, 𝒉GID𝑗

is uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑗

← ℤ𝑘
𝑝 and

𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible.

• For 𝑡 > 𝑗, ℬ samples random �̃�GID𝑡 ← ℤ𝑘
𝑝, implicitly defines 𝒉GID𝑡 = 𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡

and sets 𝖧(𝖦𝖨𝖣𝑡) = J𝑩1K2 ⊙ �̃�GID𝑡 = J𝑩1�̃�GID𝑡K2 = J𝑨*
1𝒉GID𝑡K2. Observe that 𝒉GID𝑡 is

uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑡 ← ℤ𝑘

𝑝 and 𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible.

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣𝑡) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or

102

secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows.

First, ℬ samples random vectors 𝒄(1) ← 𝗌𝗉𝖺𝗇(𝑩*
1) and 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using
𝖻𝖺𝗌𝗂𝗌(𝑩*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*
3) respectively. Observe that the vectors 𝒄(1), 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵 can be viewed

as 𝑨1𝒅,𝑨3𝒅
′
𝐴,𝑨3𝒅

′
𝐵 respectively with 𝒅,𝒅′

𝐴,𝒅
′
𝐵 ← ℤ𝑘

𝑝. ℬ also samples random matrices
𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the author-

ities for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (J𝑾⊤
𝐴,𝑢𝑨1K1, J𝑾⊤

𝐵,𝑢𝑨1K1)}. Let

𝑌 = [ℓ] ∖ 𝑌 . ℬ samples 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ∈ 𝑌 . ℬ samples 𝒄

(1)
𝐴,𝑥, 𝒄

(1)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

1)

and 𝒄
(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using 𝖻𝖺𝗌𝗂𝗌(𝑩*
1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*

3) respectively for all 𝑥 ∈ 𝑌 . Ob-

serve that {𝒄(1)𝐴,𝑥, 𝒄
(1)
𝐵,𝑥, 𝒄

(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥}𝑥∈𝑌 also can be viewed as {𝑨1𝒔𝐴,𝑥,𝑨1𝒔𝐵,𝑥,𝑨3𝒔

′
𝐴,𝑥,𝑨3𝒔

′
𝐵,𝑥}𝑥∈𝑌

respectively with 𝒔𝐴,𝑥, 𝒔𝐵,𝑥, 𝒔
′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝.. Then ℬ generates the challenge ciphertext
𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝒄(1)K1, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=
q
(𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=
q
(−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

103

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =
r
𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥

z

1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥)

z

1

=
r(︀

𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1
,

𝐶1,𝐵,𝑥 =
r
𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥

z

1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥)

z

1

=
r(︀
−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)

(︀
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︀z
1
.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in 𝖧𝗒𝖻7:𝑗 .

On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that
in 𝖧𝗒𝖻7:𝑗:12. All the other components simulated by ℬ are also properly distributed. Hence it
follows that the games simulated by ℬ coincides with 𝖧𝗒𝖻7:𝑗 or 𝖧𝗒𝖻7:𝑗:12 according as 𝛽 = 0 or
1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3
. This completes

the proof of Lemma 5.23. ■

Lemma 5.24: If the 𝖲𝖣𝔾2
𝑩1 ↦→𝑩1,𝑩2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅8(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,7:𝑞(𝜆)− 𝑝𝒜,8(𝜆)| ≤ 𝗇𝖾𝗀𝗅8(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻7:𝑞 and 𝖧𝗒𝖻8
with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT adver-
sary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2
problem. The al-

gorithm ℬ gets an instance of the 𝖲𝖣𝔾2
𝑩1 ↦→𝑩1,𝑩2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*

1), 𝖻𝖺𝗌𝗂𝗌(𝑩
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
1 ,𝑩

*
2), and J𝒕𝛽K2

for random 𝛽 ← {0, 1} where and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1) when 𝛽 = 0 and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2) when
𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples matrix 𝑨1 ← 𝗌𝗉𝖺𝗇𝑘(𝑩*
1) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1). Thus, 𝑨1 can be expressed as 𝑨1 = 𝑩*

1𝑹 for some 𝑹 ← ℤ𝑘×𝑘
𝑝 . ℬ implicitly sets

𝑨*
1 = 𝑩1𝑽 where 𝑽 = (𝑹−1)⊤. Observe that, since 𝑹← ℤ𝑘×𝑘

𝑝 , 𝑽 exists with all but negligible
probability. ℬ also implicitly sets 𝑨2 = 𝑩*

2 ,𝑨3 = 𝑩*
3 . ℬ then explicitly sets 𝑨*

2 = 𝑩2 and
𝑨*

3 = 𝑩3 . Note that 𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ [3]. ℬ sets 𝐻 = J𝒕𝛽K2.

Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1) then 𝐻 as simulated by ℬ takes the form 𝐻 = J𝑩1�̃�K2 (where
�̃� ← ℤ𝑘

𝑝) which is equal to J𝑨*
1𝒉K2 where 𝒉 = 𝑹⊤�̃�. Observe that 𝒉 is uniformly distributed

over ℤ𝑘
𝑝 since �̃� ← ℤ𝑘

𝑝 and 𝑹 is invertible. On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2) then 𝐻

takes the form 𝐻 = J𝑩1�̃�+𝑩2𝒉
′′K2 (where �̃�,𝒉′′ ← ℤ𝑘

𝑝) which is equal to J𝑨*
1𝒉+𝑨*

2𝒉
′′K2 where

𝒉 = 𝑹⊤�̃�. Observe that 𝒉 is uniformly distributed over ℤ𝑘
𝑝 since �̃� ← ℤ𝑘

𝑝 and 𝑹 is invertible.
ℬ also samples a random seed 𝗌𝖾𝖾𝖽← 𝑆 for the strong randomness extractor and sets the global
public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the

104

authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘
𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], ℬ generates 𝖧(𝖦𝖨𝖣) as follows: ℬ
samples random �̃�GID,𝒉

′
GID ← ℤ𝑘

𝑝, implicitly sets 𝒉GID = 𝑽 −1�̃�GID = 𝑹⊤�̃�GID and sets 𝖧(𝖦𝖨𝖣) =
(J𝑩1K2 ⊙ �̃�GID)⊞ (J𝑩3K2 ⊙ 𝒉′

GID) = J𝑩1�̃�GID +𝑩3𝒉
′
GIDK2 = J𝑨*

1𝒉GID +𝑨*
3𝒉

′
GIDK2. Observe that

𝒉GID is uniformly distributed over ℤ𝑘
𝑝 since �̃�GID ← ℤ𝑘

𝑝 and 𝑹 is invertible. It stores this value
so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows.

First, ℬ samples random vectors 𝒄(1) ← 𝗌𝗉𝖺𝗇(𝑩*
1) and 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using
𝖻𝖺𝗌𝗂𝗌(𝑩*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*
3) respectively. Observe that the vectors 𝒄(1), 𝒄

(3)
𝐴 , 𝒄

(3)
𝐵 can be viewed

as 𝑨1𝒅,𝑨3𝒅
′
𝐴,𝑨3𝒅

′
𝐵 respectively with 𝒅,𝒅′

𝐴,𝒅
′
𝐵 ← ℤ𝑘

𝑝. ℬ also samples random matrices
𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the author-

ities for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (J𝑾⊤
𝐴,𝑢𝑨1K1, J𝑾⊤

𝐵,𝑢𝑨1K1)}. Let

𝑌 = [ℓ] ∖ 𝑌 . ℬ samples 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ∈ 𝑌 . ℬ samples 𝒄

(1)
𝐴,𝑥, 𝒄

(1)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

1)

and 𝒄
(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

3) by using 𝖻𝖺𝗌𝗂𝗌(𝑩*
1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*

3) respectively for all 𝑥 ∈ 𝑌 . Ob-

serve that {𝒄(1)𝐴,𝑥, 𝒄
(1)
𝐵,𝑥, 𝒄

(3)
𝐴,𝑥, 𝒄

(3)
𝐵,𝑥}𝑥∈𝑌 also can be viewed as {𝑨1𝒔𝐴,𝑥,𝑨1𝒔𝐵,𝑥,𝑨3𝒔

′
𝐴,𝑥,𝑨3𝒔

′
𝐵,𝑥}𝑥∈𝑌

respectively with 𝒔𝐴,𝑥, 𝒔𝐵,𝑥, 𝒔
′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝.. Then ℬ generates the challenge ciphertext
𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝒄(1)K1, 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻), 𝗌𝖾𝖾𝖽),

105

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=
q
(𝑨1𝒅+𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=
q
(−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =
r
𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥

z

1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(3)
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝒄
(1)
𝐴,𝑥 + 𝒄

(3)
𝐴,𝑥)

z

1

=
r(︀

𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖𝑼𝐴

)︀
𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)

(︀
𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︀z
1
,

𝐶1,𝐵,𝑥 =
r
𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥

z

1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(3)
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝒄
(1)
𝐵,𝑥 + 𝒄

(3)
𝐵,𝑥)

z

1

=
r(︀
−𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)

(︀
𝑨1𝒔𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︀z
1
.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1), then 𝐻 as simulated by ℬ coincides with that in 𝖧𝗒𝖻7:𝑞.

On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩1,𝑩2), then the form of 𝐻 simulated by ℬ coincides with
that in 𝖧𝗒𝖻8. All the other components simulated by ℬ are also properly distributed. Hence it
follows that the games simulated by ℬ coincides with coincides with 𝖧𝗒𝖻7:𝑞 or 𝖧𝗒𝖻8 according as
𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾2

𝑩1 ↦→𝑩1,𝑩2
. This

completes the proof of Lemma 5.24. ■

Lemma 5.25: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅9(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≤ 𝗇𝖾𝗀𝗅9(𝜆).

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻8 and 𝖧𝗒𝖻9
with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT adver-
sary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
problem. The algo-

rithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
2), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples a random vector 𝒓 ← 𝗌𝗉𝖺𝗇(𝑨*
1,𝑨

*
2)

by using 𝖻𝖺𝗌𝗂𝗌(𝑨*
1,𝑨

*
2) and sets 𝐻 = J𝒓K2 = J𝑨*

1𝒉 +𝑨*
2𝒉

′′K2 with 𝒉,𝒉′′ ← ℤ𝑘
𝑝. ℬ also samples

a random seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor, and provides the global public
parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an

106

authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], ℬ generates 𝖧(𝖦𝖨𝖣) as follows: ℬ samples
random 𝒓GID ← 𝗌𝗉𝖺𝗇(𝑨*

1) and 𝒓′GID ← 𝗌𝗉𝖺𝗇(𝑨*
3) by using 𝖻𝖺𝗌𝗂𝗌(𝑨*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑨*
3) respectively.

ℬ sets 𝖧(𝖦𝖨𝖣) = J𝒓GID + 𝒓′GIDK2 = J𝑨*
1𝒉GID + 𝑨*

3𝒉
′
GIDK2 with 𝒉GID,𝒉

′′
GID ← ℤ𝑘

𝑝. It stores this
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳
as follows. First, ℬ sets 𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝒕𝛽K1, 𝐻), 𝗌𝖾𝖾𝖽). Next, ℬ samples random vectors
𝒅′
𝐴,𝒅

′
𝐵 ← ℤ𝑘

𝑝 for all 𝑥 ∈ [ℓ]. ℬ also samples random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)
𝑝 .

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities
for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For
each 𝑥 ∈ 𝑌 , ℬ chooses random 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝. For each 𝑥 ∈ 𝑌 , ℬ also chooses random
𝒔𝐴,𝑥, 𝒔𝐵,𝑥, 𝒔

′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ← ℤ𝑘

𝑝.
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1
𝐶2,𝐴,𝑥 =((J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′

𝐴))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

=J(𝒕𝛽 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 =J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 =((−J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′

𝐵))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

=J(−𝒕𝛽 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥).

107

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) = J𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥K1

𝐶2,𝐴,𝑥 =((J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (𝑾⊤

𝐴,𝜌(𝑥) ⊙ J𝑨3K1 ⊙ 𝒔′𝐴,𝑥)

=J(𝒕𝛽 +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥)K1,

𝐶1,𝐵,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥) = J𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥K1

𝐶2,𝐵,𝑥 =((−J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒅′
𝐵))⊙𝑀𝑥,1)⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1

⊞ (J𝑾⊤
𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (𝑾⊤

𝐵,𝜌(𝑥) ⊙ J𝑨3K1 ⊙ 𝒔′𝐵,𝑥)

=J(−𝒕𝛽 +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥)K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 = 𝑨1𝒅← 𝗌𝗉𝖺𝗇(𝑨1) with 𝒅← ℤ𝑘

𝑝 then the challenge ciphertext simulated
by ℬ coincides with that in 𝖧𝗒𝖻8. On the other hand, if 𝒕𝛽 = 𝑨1𝒅+𝑨2𝒅

′′ ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) with
𝒅,𝒅′′ ← ℤ𝑘

𝑝, then the challenge ciphertext simulated by ℬ coincides with that in 𝖧𝗒𝖻9. All the
other components of the game are also properly distributed by ℬ. Hence it follows that the game
simulated by ℬ coincides with 𝖧𝗒𝖻8 or 𝖧𝗒𝖻9 according as 𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain
non-negligible advantage in solving 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
. This completes the proof of Lemma 5.25. ■

Lemma 5.26: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there ex-
ists a negligible function 𝗇𝖾𝗀𝗅10:𝐴:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,10:𝐴:(𝑖−1)(𝜆)− 𝑝𝒜,10:𝐴:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅10:𝐴:𝑖(𝜆) for all 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻10:𝐴:(𝑖−1) and
𝖧𝗒𝖻10:𝐴:𝑖 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
problem. The

algorithm ℬ gets an instance of the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑨1K1, J𝑨2K1, J𝑨3K1, 𝖻𝖺𝗌𝗂𝗌(𝑨*

1), 𝖻𝖺𝗌𝗂𝗌(𝑨
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑨

*
1,𝑨

*
2), and J𝒕𝛽K1

for random 𝛽 ∈ {0, 1} where 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1) if 𝛽 = 0 or 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑨1,𝑨2) if 𝛽 = 1. The
algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples a random vector 𝒓 ← 𝗌𝗉𝖺𝗇(𝑨*
1,𝑨

*
2)

by using 𝖻𝖺𝗌𝗂𝗌(𝑨*
1,𝑨

*
2) and sets 𝐻 = J𝒓K2 = J𝑨*

1𝒉 +𝑨*
2𝒉

′′K2 with 𝒉,𝒉′′ ← ℤ𝑘
𝑝. ℬ also samples

a random seed 𝗌𝖾𝖾𝖽 ← 𝑆 for the strong randomness extractor, and provides the global public
parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽) to 𝒜.

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

108

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], ℬ generates 𝖧(𝖦𝖨𝖣) as follows: ℬ samples
random 𝒓GID ← 𝗌𝗉𝖺𝗇(𝑨*

1) and 𝒓′GID ← 𝗌𝗉𝖺𝗇(𝑨*
3) by using 𝖻𝖺𝗌𝗂𝗌(𝑨*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑨*
3) respectively.

ℬ sets 𝖧(𝖦𝖨𝖣) = J𝒓GID + 𝒓′GIDK2 = J𝑨*
1𝒉GID + 𝑨*

3𝒉
′
GIDK2 with 𝒉GID,𝒉

′′
GID ← ℤ𝑘

𝑝. It stores this
value so that it can respond consistently if 𝖧(𝖦𝖨𝖣) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows. First, ℬ samples random vectors 𝒅,𝒅′′,𝒅′

𝐴,𝒅
′
𝐵 ← ℤ𝑘

𝑝 and sets 𝐶 = 𝗆𝗌𝗀𝑏⊕𝙴𝚡𝚝(𝑒((J𝑨1K1⊙
𝒅) ⊞ (J𝑨2K1 ⊙ 𝒅′′), 𝐻), 𝗌𝖾𝖾𝖽) = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅

′′K1, 𝐻), 𝗌𝖾𝖾𝖽). ℬ also samples
random matrices 𝑼𝐴,𝑼𝐵 ← ℤ3𝑘×(𝑑−1)

𝑝 .
Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the authorities

for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)}. Let 𝑌 = [ℓ] ∖ 𝑌 . For each
𝑥 ∈ 𝑌 , ℬ chooses random 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘

𝑝. For each 𝑥 ∈ 𝑌 , ℬ chooses random 𝒔𝐵,𝑥, 𝒔
′
𝐴,𝑥, 𝒔

′
𝐵,𝑥 ←

ℤ𝑘
𝑝. ℬ also samples random vectors 𝒔𝐴,𝑥, 𝒔

′′
𝐴,𝑥 ← ℤ𝑘

𝑝 for 𝑥 < 𝑖 where 𝑥 ∈ 𝑌 and 𝒔𝐴,𝑥 ← ℤ𝑘
𝑝 for

𝑥 > 𝑖 where 𝑥 ∈ 𝑌 .
For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1
𝐶2,𝐴,𝑥 =(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′

𝐴))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=J(𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 =J𝑨1K1 ⊙ 𝒔𝐴,𝑥 = J𝑨1K1 ⊙ 𝒔𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1
𝐶2,𝐵,𝑥 =(((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨2K1 ⊙−𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′

𝐵))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=J(−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥).

For each 𝑥 ∈ 𝑌 , ℬ forms the ciphertext components as:

𝐶1,𝐴,𝑥 =

⎧⎨⎩
(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨2K1 ⊙ 𝒔′′𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for all 𝑥 ≤ 𝑖,

J𝒕𝛽K1 ⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for 𝑥 = 𝑖,

(J𝑨1K1 ⊙ 𝒔𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥) for all 𝑥 > 𝑖,

109

=

⎧⎨⎩
J𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥K1 for all 𝑥 < 𝑖,

J𝒕𝛽 +𝑨3𝒔
′
𝐴,𝑥K1 for 𝑥 = 𝑖,

J𝑨1𝒔𝐴,𝑥 +𝑨3𝒔
′
𝐴,𝑥K1 for all 𝑥 > 𝑖,

𝐶2,𝐴,𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖) for all 𝑥 ≤ 𝑖,

⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ ((J𝑨2K1 ⊙ 𝒔′′𝐴,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥)))

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖) for 𝑥 = 𝑖,

⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (𝑾⊤
𝐴,𝜌(𝑥) ⊙ J𝒕𝛽K1)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥))

(((J𝑨1K1 ⊙ 𝒅)⊞ (J𝑨2K1 ⊙ 𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐴))⊙𝑀𝑥,𝑖) for all 𝑥 > 𝑖,

⊞J(0 ‖𝑼𝐴)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐴,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐴,𝑥)

⊞(𝑾⊤
𝐴,𝜌(𝑥) ⊙ (J𝑨3K1 ⊙ 𝒔′𝐴,𝑥))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 < 𝑖,

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝒕𝛽 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for 𝑥 = 𝑖,

s
(𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

{

1

for all 𝑥 > 𝑖,

𝐶1,𝐵,𝑥 =(J𝑨1K1 ⊙ 𝒔𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥) = J𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥K1

𝐶2,𝐵,𝑥 =(((J𝑨1K1 ⊙−𝒅)⊞ (J𝑨2K1 ⊙−𝒅′′)⊞ (J𝑨3K1 ⊙ 𝒅′
𝐵))⊙𝑀𝑥,𝑖)

⊞ J(0 ‖𝑼𝐵)𝑴𝑥K1 ⊞ (J𝑾⊤
𝐵,𝜌(𝑥)𝑨1K1 ⊙ 𝒔𝐵,𝑥)

⊞ (𝑾⊤
𝐵,𝜌(𝑥) ⊙ ((J𝑨2K1 ⊙ 𝒔′′𝐵,𝑥)⊞ (J𝑨3K1 ⊙ 𝒔′𝐵,𝑥)))

=J(−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥 +𝑨3𝒔
′
𝐵,𝑥)K1.

ℬ gives the challenge ciphertext 𝖢𝖳 = (𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]) to 𝒜.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 = 𝑨1𝒔𝐴,𝑥 ← 𝗌𝗉𝖺𝗇(𝑨1) with 𝒔𝐴,𝑥 ← ℤ𝑘

𝑝 then the challenge ciphertext sim-
ulated by ℬ coincides with that in 𝖧𝗒𝖻10:𝐴:(𝑖−1). On the other hand, if 𝒕𝛽 = 𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 ←

𝗌𝗉𝖺𝗇(𝑨1,𝑨2) with 𝒔𝐴,𝑥, 𝒔
′′
𝐴,𝑥 ← ℤ𝑘

𝑝, then the challenge ciphertext simulated by ℬ coincides with
that in 𝖧𝗒𝖻10:𝐴:𝑖. All the other components of the game are also properly distributed by ℬ.
Hence it follows that the game simulated by ℬ coincides with 𝖧𝗒𝖻10:𝐴:(𝑖−1) or 𝖧𝗒𝖻10:𝐴:𝑖 according
as 𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾1

𝑨1 ↦→𝑨1,𝑨2
.

This completes the proof of Lemma 5.26. ■

Lemma 5.27: If the 𝖲𝖣𝔾1
𝑨1 ↦→𝑨1,𝑨2

assumption holds, then for all PPT adversary 𝒜, there ex-
ists a negligible function 𝗇𝖾𝗀𝗅10:𝐵:𝑖(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,10:𝐵:(𝑖−1)(𝜆)− 𝑝𝒜,10:𝐵:𝑖(𝜆)

⃒⃒
≤

𝗇𝖾𝗀𝗅10:𝐵:𝑖(𝜆) for all 𝑖 ∈ [
⃒⃒
𝑌
⃒⃒
].

Proof: The proof is similar to that of Lemma 5.25 with some minor changes that can be easily
figured out. ■

Lemma 5.28: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅11(·) such that for all 𝜆 ∈ ℕ,

⃒⃒⃒
𝑝𝒜,10:𝐵:|𝑌 |(𝜆)− 𝑝𝒜,11(𝜆)

⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅11(𝜆).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out.

110

Lemma 5.29: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅12(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,11(𝜆)− 𝑝𝒜,12(𝜆)| ≤ 𝗇𝖾𝗀𝗅12(𝜆).

Proof: Observe that the only difference between 𝖧𝗒𝖻11 and 𝖧𝗒𝖻12 is that in the former the
components {(−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥}𝑥∈[ℓ] are shares of a secret that involves −𝑨2𝒅

′′

that is correlated to the 𝗌𝗉𝖺𝗇(𝑨2) portion of the secret shared by the components {(𝑨1𝒅 +
𝑨2𝒅

′′+𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥}𝑥∈[ℓ], whereas in the latter, they are shares of secrets whose corresponding

𝗌𝗉𝖺𝗇(𝑨2) portions are 𝑨2𝒅
′′
𝐵,𝑨2𝒅

′′ for independent 𝒅′′
𝐵,𝒅

′′ ← ℤ𝑘
𝑝. Therefore, in order to prove

these two games are statistically indistinguishable, we will argue that the portion of the secrets
−𝑨1𝒅−𝑨2𝒅

′′ +𝑨3𝒅
′
𝐵 that lie in 𝗌𝗉𝖺𝗇(𝑨2) is information theoretically hidden to the adversary

𝒜 in 𝖧𝗒𝖻11.
Note that the shares (−𝑨1𝒅−𝑨2𝒅

′′+𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥 for all the rows 𝑥 of the challenge access

matrix 𝑴 labeled by corrupted authorities (i.e., the authorities for which 𝒜 either requests the
master key or creates it on its own) are information theoretically revealed to 𝒜. However, by the
game restriction ,the subspace spanned by those rows does not include the vector (1, 0, . . . , 0).
This means there must exists a vector 𝒖 ∈ ℤ𝑑

𝑝 such that 𝒖 is orthogonal to all these rows of
𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry of 𝒖 is nonzero). We consider a
basis of 𝕌 of ℤ𝑑

𝑝 involving the vector 𝒖 and write (−𝑨1𝒅 − 𝑨2𝒅
′′ + 𝑨3𝒅

′
𝐵 ‖𝑼𝐵) = (−𝑨1𝒅 +

𝑨3𝒅
′
𝐵 ‖0) + (−𝑨2𝒅

′′ ‖𝑼𝐵) = (−𝑨1𝒅 + 𝑨3𝒅
′
𝐵 ‖0) + 𝑽𝐵 + 𝒂𝒖⊤ for some 𝒂 ∈ ℤ3𝑘

𝑝 and some
𝑽𝐵 ∈ 𝗌𝗉𝖺𝗇3𝑘(𝕌∖{𝒖}). We note that each row of 𝑽𝐵 lies in the subspace spanned by 𝕌∖{𝒖} and
reveals no information about 𝒂. Now, since the first coordinate of 𝒖 is nonzero, it follows that
the first column of (−𝑨2𝒅

′′ ‖𝑼𝐵), i.e., −𝑨2𝒅
′′, depends on the vector 𝒂. But (−𝑨2𝒅

′′ ‖𝑼𝐵)𝑴𝑥

for all the corrupted rows of 𝑴 contains no information about 𝒂 since 𝒖 is orthogonal to all
these rows. Thus, it follows that these rows do not leak information of −𝑨2𝒅

′′.
Hence, the only possible way for 𝒜 to get information about −𝑨2𝒅

′′ is through the ciphertext
components 𝐶2,𝐵,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each such row 𝑥,
𝒜 can only recover 𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥 and(︀

−𝑨1𝒅−𝑨2𝒅
′′ +𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥

+ (𝑾𝐵,𝜌(𝑥) + 𝑽
(2)
𝐵,𝜌(𝑥))

⊤(𝑨1𝒔𝐵,𝑥 +𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

=
(︀
𝑨1𝒅+𝑨3𝒅

′
𝐵 ‖𝑼𝐵

)︀
𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥 +𝑨2𝒔
′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥)

+
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐵,𝜌(𝑥)𝑨2𝒔

′′
𝐵,𝑥

information theoretically. Now recall that 𝑽
(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) hence we can write 𝑽
(2)
𝐵,𝜌(𝑥) as

𝑽
(2)
𝐵,𝜌(𝑥) = 𝑽

(2)
𝐵,𝜌(𝑥) +𝑨*

2𝑹
′′
𝐵,𝜌(𝑥)𝑨

⊤
2 where 𝑽

(2)
𝐵,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) and 𝑹′′
𝐵,𝜌(𝑥) ∈ ℤ𝑘×𝑘

𝑝 . Therefore,
we have (︀

𝑨2𝒅
′′ ‖0

)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐵,𝜌(𝑥)𝑨2𝒔

′′
𝐵,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + (𝑽

(2)
𝐵,𝜌(𝑥) +𝑨*

2𝑹
′′
𝐵,𝜌(𝑥)𝑨

⊤
2)

⊤𝑨2𝒔
′′
𝐵,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐵,𝜌(𝑥)𝑨2𝒔

′′
𝐵,𝑥 +𝑨2𝑹

′′⊤
𝐵,𝜌(𝑥)𝑨

*⊤
2 𝑨2𝒔

′′
𝐵,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐵,𝜌(𝑥)𝑨2𝒔

′′
𝐵,𝑥 +𝑨2𝑹

′′⊤
𝐵,𝜌(𝑥)𝒔

′′
𝐵,𝑥.

Since the labeling function 𝜌 is injective, it follows that 𝑽
(2)
𝐵,𝜌(𝑥),𝑹

′′
𝐵,𝜌(𝑥) are freshly ran-

dom matrices that appear nowhere else. This means given 𝑨1𝒔𝐵,𝑥 + 𝑨2𝒔
′′
𝐵,𝑥 + 𝑨3𝒔

′
𝐵,𝑥 and

(𝑨1𝒅+𝑨3𝒅
′
𝐵 ‖𝑼𝐵)𝑴𝑥+𝑾⊤

𝐵,𝜌(𝑥)(𝑨1𝒔𝐵,𝑥+𝑨2𝒔
′′
𝐵,𝑥+𝑨3𝒔

′
𝐵,𝑥)+(𝑨2𝒅

′′ ‖0)𝑴𝑥+𝑽
(2)⊤
𝐵,𝜌(𝑥)𝑨2𝒔

′′
𝐵,𝑥,

if 𝑨2𝒔
′′
𝐵,𝑥 is nonzero (note that 𝑨2𝒔

′′
𝐵,𝑥 = 0 with negligible probability), any value of −𝑨2𝒅

′′

can be explained by a particular value of 𝑽 (2)
𝐵,𝜌(𝑥),𝑹

′′
𝐵,𝜌(𝑥). It follows that −𝑨2𝒅

′′ is information
theoretically hidden to 𝒜. This completes the proof of Lemma 5.29. ■

111

Lemma 5.30: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅13(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,12(𝜆)− 𝑝𝒜,13(𝜆)| ≤ 𝗇𝖾𝗀𝗅13(𝜆).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.31: If the 𝖲𝖣𝔾2
𝑩3 ↦→𝑩2,𝑩3

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅14:𝑗(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,14:(𝑗−1)(𝜆)− 𝑝𝒜,14:𝑗(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅14:𝑗(𝜆)

for all 𝑗 ∈ [𝑞].

Proof: Suppose there exists a PPT adversary 𝒜 that distinguishes between 𝖧𝗒𝖻14:(𝑗−1) and
𝖧𝗒𝖻14:𝑗 with non-negligible advantage. Using 𝒜 as a subroutine, we construct below a PPT
adversary ℬ that has a non-negligible advantage in solving the 𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3
problem. The

algorithm ℬ gets an instance of the 𝖲𝖣𝔾2
𝑩3 ↦→𝑩2,𝑩3

problem from its challenger that consists of
𝖦 = (𝑝,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒), J𝑩1K2, J𝑩2K2, J𝑩3K2, 𝖻𝖺𝗌𝗂𝗌(𝑩*

1), 𝖻𝖺𝗌𝗂𝗌(𝑩
*
3), 𝖻𝖺𝗌𝗂𝗌(𝑩

*
2 ,𝑩

*
3), and J𝒕𝛽K2

for random 𝛽 ← {0, 1} where and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3) when 𝛽 = 0 and 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3) when
𝛽 = 1. The algorithm ℬ proceeds as follows:

Generating the Global Public Parameters: ℬ samples matrix 𝑨1 ← 𝗌𝗉𝖺𝗇𝑘(𝑩*
1) by using

𝖻𝖺𝗌𝗂𝗌(𝑩*
1). Thus, 𝑨1 can be expressed as 𝑨1 = 𝑩*

1𝑹 for some 𝑹 ← ℤ𝑘×𝑘
𝑝 . ℬ implicitly sets

𝑨*
1 = 𝑩1𝑽 where 𝑽 = (𝑹−1)⊤. Observe that, since 𝑹← ℤ𝑘×𝑘

𝑝 , 𝑽 exists with all but negligible
probability. ℬ also implicitly sets 𝑨2 = 𝑩*

2 ,𝑨3 = 𝑩*
3 . ℬ then explicitly sets 𝑨*

2 = 𝑩2 and
𝑨*

3 = 𝑩3. Note that 𝑨⊤
𝑖 𝑨

*
𝑗 = 𝑰 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ [3]. ℬ then samples

random �̃�,𝒉′′ ← ℤ𝑘
𝑝, implicitly sets 𝒉 = 𝑽 −1�̃� = 𝑹⊤�̃�, and sets 𝐻 = J𝑩1K2⊙ �̃�+ J𝑩2K2⊙𝒉′′ =

J𝑩1�̃�+𝑩2𝒉
′′K2 = J𝑨*

1𝒉+𝑨*
2𝒉

′′K2. Observe that 𝒉 is uniformly distributed over ℤ𝑘
𝑝 since �̃�← ℤ𝑘

𝑝

and 𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible. ℬ also samples a random seed 𝗌𝖾𝖾𝖽← 𝑆 for the strong randomness

extractor and sets the global public parameters 𝖦𝖯 = (𝖦, J𝑨1K1, 𝐻, 𝗌𝖾𝖾𝖽).

Generating Authority Public-Master Keys: Whenever 𝒜 requests to set up an authority
𝑢 ∈ 𝒜𝒰 of its choice, if an authority setup query for the same authority 𝑢 has already been
queried before, ℬ aborts. In the post-challenge query phase, if additionally 𝒜 submitted an
authority public key 𝖯𝖪𝑢 for the same authority 𝑢 while querying the challenge ciphertext, ℬ
aborts. Otherwise ℬ runs 𝖠𝗎𝗍𝗁𝖲𝖾𝗍𝗎𝗉 to generate a public-master key pair (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢) for the
authority 𝑢 as follows. ℬ samples random 𝑾𝐴,𝑢,𝑾𝐵,𝑢 ← ℤ3𝑘×3𝑘

𝑝 and sets 𝖯𝖪𝑢 = (𝑃𝐴,𝑢 =

J𝑾⊤
𝐴,𝑢𝑨1K1, 𝑃𝐵,𝑢 = J𝑾⊤

𝐵,𝑢𝑨1K1) and 𝖬𝖲𝖪𝑢 = (𝑾𝐴,𝑢,𝑾𝐵,𝑢). ℬ provides 𝖯𝖪𝑢 to the attacker
and stores (𝖯𝖪𝑢,𝖬𝖲𝖪𝑢). Whenever 𝒜 requests the master secret key of the authority 𝑢 at a
later time, ℬ provides it to 𝒜.

Generating the 𝗛 Oracle Outputs: For all 𝑡 ∈ [𝑞], in response to the 𝑡th fresh 𝖧 oracle
query of 𝒜 for some global identifier 𝖦𝖨𝖣𝑡, ℬ generates 𝖧(𝖦𝖨𝖣𝑡) as follows:

• For 𝑡 < 𝑗, ℬ samples random vectors �̃�GID𝑡 ,𝒉
′
GID𝑡

,𝒉′′
GID𝑡

← ℤ𝑘
𝑝 and implicitly sets 𝒉GID𝑡 =

𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡 . ℬ then sets 𝖧(𝖦𝖨𝖣𝑡) as 𝖧(𝖦𝖨𝖣𝑡) = (J𝑩1K2⊙ �̃�GID𝑡)⊞ (J𝑩2K2⊙𝒉′′
GID𝑡

)⊞

(J𝑩3K2 ⊙ 𝒉′
GID𝑡

) = J𝑩1�̃�GID𝑡 + 𝑩2𝒉
′′
GID𝑡

+ 𝑩3𝒉
′
GID𝑡

K2 = J𝑨*
1𝒉GID𝑡 + 𝑨*

2𝒉
′′
GID𝑡

+ 𝑨*
3𝒉

′
GID𝑡

K2.
Observe that 𝒉GID𝑡 is uniformly distributed over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is
invertible.

• For 𝑡 = 𝑗, ℬ first samples a random vector �̃�GID𝑗
← ℤ𝑘

𝑝 and implicitly sets 𝒉GID𝑗
=

𝑽 −1�̃�GID𝑗
= 𝑹⊤�̃�GID𝑗

. ℬ then sets 𝖧(𝖦𝖨𝖣𝑗) as 𝖧(𝖦𝖨𝖣𝑗) = (J𝑩1K2 ⊙ �̃�GID𝑗
) ⊞ J𝒕𝛽K2 =

J𝑩1�̃�GID𝑗
+ 𝒕𝛽K2 = J𝑨*

1𝒉GID𝑗
+ 𝒕𝛽K2. Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) takes

112

the form 𝖧(𝖦𝖨𝖣𝑗) = J𝑩1�̃�GID𝑗
+ 𝑩3𝒉

′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+ 𝑨*
3𝒉

′
GID𝑗

K2 where 𝒉′
GID𝑗

← ℤ𝑘
𝑝.

On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) takes the form 𝖧(𝖦𝖨𝖣𝑗) =
J𝑩1�̃�GID𝑗

+𝑩2𝒉
′′
GID𝑗

+𝑩3𝒉
′
GID𝑗

K2 = J𝑨*
1𝒉GID𝑗

+𝑨*
2𝒉

′′
GID𝑗

+𝑨*
3𝒉

′
GID𝑗

K2 where 𝒉′′
GID𝑗

,𝒉′
GID𝑗
← ℤ𝑘

𝑝.
Observe that in both cases, 𝒉GID𝑗

is uniformly distributed over ℤ𝑘
𝑝 since �̃�GID𝑗

← ℤ𝑘
𝑝 and

𝑹 ∈ ℤ𝑘×𝑘
𝑝 is invertible.

• For 𝑡 > 𝑗, ℬ samples random vectors �̃�GID𝑡 ,𝒉
′
GID𝑡

← ℤ𝑘
𝑝 and implicitly sets 𝒉GID𝑡 =

𝑽 −1�̃�GID𝑡 = 𝑹⊤�̃�GID𝑡 . ℬ then sets 𝖧(𝖦𝖨𝖣𝑡) as 𝖧(𝖦𝖨𝖣𝑡) = (J𝑩1K2⊙ �̃�GID𝑡)⊞(J𝑩3K2⊙𝒉′
GID𝑡

) =

J𝑩1�̃�GID𝑡 +𝑩3𝒉
′
GID𝑡

K2 = J𝑨*
1𝒉GID𝑡 +𝑨*

3𝒉
′
GID𝑡

K2. Observe that 𝒉GID𝑡 is uniformly distributed
over ℤ𝑘

𝑝 since �̃�GID𝑡 ← ℤ𝑘
𝑝 and 𝑹 ∈ ℤ𝑘×𝑘

𝑝 is invertible.

It stores this value so that it can respond consistently if 𝖧(𝖦𝖨𝖣𝑡) is queried again.

Generating Secret Keys: Whenever 𝒜 makes a secret key query for some (𝖦𝖨𝖣, 𝑢) ∈ 𝒢ℐ𝒟×
𝒜𝒰 , if an authority setup query for the authority 𝑢 has not been made already, ℬ aborts. In the
post-challenge phase, if an authority setup query for the authority 𝑢 has not already been made,
𝒜 submitted the authority public key 𝖯𝖪𝑢 for 𝑢 while querying the challenge ciphertext, or for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟 the vector (1, 0, . . . , 0) is in the span of all the rows of the challenge access policy
matrix 𝑴 labeled by the authorities for which 𝒜 submits the public keys {𝖯𝖪𝑢} while querying
the challenge ciphertext plus the authorities for which 𝒜 has made a master key query for 𝑢 or
secret key query for (𝖦𝖨𝖣, 𝑢) so far, ℬ aborts. Otherwise, ℬ simply runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm
using the public-master key pair it already created in response to the authority setup query for
authority 𝑢 and generates a secret key 𝖲𝖪GID,𝑢 = (𝒌GID,𝐴,𝑢 = J𝑾𝐴,𝑢 · (𝒉GID+𝑨*

1𝒉)K2,𝒌GID,𝐵,𝑢 =
J𝑾𝐵,𝑢 · 𝒉GIDK2) for (𝖦𝖨𝖣, 𝑢). If 𝖧(𝖦𝖨𝖣) has not been generated so far, it follows the above
procedure to generate it during this time.

Generating the Challenge Ciphertext: At some point, 𝒜 submits two messages,
𝗆𝗌𝗀0,𝗆𝗌𝗀1 ∈ 𝕄 and an LSSS access structure (𝑴 , 𝜌) where 𝑴 ∈ ℤℓ×𝑑

𝑝 and 𝜌 : [ℓ] → 𝒜𝒰
is an injective map. 𝒜 also submits the public keys {𝖯𝖪𝑢 = (𝑃𝐴,𝑢, 𝑃𝐵,𝑢)} for a subset 𝑈𝒜 of
attribute authorities appearing in the LSSS access structure (𝑴 , 𝜌). If for all attribute authority
𝑢 for which ℬ has created a public-master key pair for so far are not contained in 𝑈𝒜, and for
each 𝖦𝖨𝖣 ∈ 𝒢ℐ𝒟, the vector (1, 0, . . . , 0) is not in the span of all the rows of 𝑴 labeled by the
authorities in 𝑈𝒜 plus the authorities for which 𝒜 has made a master key query for 𝑢 or secret
key query for (𝖦𝖨𝖣, 𝑢), then ℬ flips a random coin 𝑏 ← {0, 1} and generates a ciphertext 𝖢𝖳 as
follows.

First, ℬ samples random vectors 𝒄(1) ← 𝗌𝗉𝖺𝗇(𝑩*
1) and 𝒄(2,3), 𝒄

(2,3)
𝐴 , 𝒄

(2,3)
𝐵 by using 𝖻𝖺𝗌𝗂𝗌(𝑩*

1)

and 𝖻𝖺𝗌𝗂𝗌(𝑩*
2 ,𝑩

*
3) respectively. Observe that the vectors 𝒄(1), 𝒄

(2,3)
𝐴 , 𝒄

(2,3)
𝐵 can be viewed as

𝑨1𝒅,𝑨2𝒅
′′
𝐴 + 𝑨3𝒅

′
𝐴,𝑨2𝒅

′′
𝐵 + 𝑨3𝒅

′
𝐵 respectively. ℬ also samples random matrices 𝑼𝐴,𝑼𝐵 ←

ℤ3𝑘×(𝑑−1)
𝑝 .

Let 𝑌 denote the subset of rows of the challenge access matrix 𝑴 labeled by the author-
ities for which 𝒜 supplies the authority public keys {𝖯𝖪𝑢 = (J𝑾⊤

𝐴,𝑢𝑨1K1, J𝑾⊤
𝐵,𝑢𝑨1K1)}. Let

𝑌 = [ℓ] ∖ 𝑌 . ℬ samples 𝒔𝐴,𝑥, 𝒔𝐵,𝑥 ← ℤ𝑘
𝑝 for all 𝑥 ∈ 𝑌 . ℬ also samples random vectors

𝒄
(1)
𝐴,𝑥, 𝒄

(1)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

1) and 𝒄
(2,3)
𝐴,𝑥 , 𝒄

(2,3)
𝐵,𝑥 ← 𝗌𝗉𝖺𝗇(𝑩*

2 ,𝑩
*
3) by using 𝖻𝖺𝗌𝗂𝗌(𝑩*

1) and 𝖻𝖺𝗌𝗂𝗌(𝑩*
2 ,𝑩

*
3)

respectively for all 𝑥 ∈ 𝑌 . Observe that {𝒄(1)𝐴,𝑥, 𝒄
(1)
𝐵,𝑥, 𝒄

(2,3)
𝐴,𝑥 , 𝒄

(2,3)
𝐵,𝑥 }𝑥∈𝑌 also can be viewed as

{𝑨1𝒔𝐴,𝑥,𝑨1𝒔𝐵,𝑥,𝑨2𝒔
′′
𝐴,𝑥 + 𝑨3𝒔

′
𝐴,𝑥,𝑨2𝒔

′′
𝐵,𝑥 + 𝑨3𝒔

′
𝐵,𝑥}𝑥∈𝑌 . Then ℬ generates the challenge ci-

phertext 𝖢𝖳 = ((𝑴 , 𝜌), 𝐶, {𝐶1,𝐴,𝑥, 𝐶2,𝐴,𝑥, 𝐶1,𝐵,𝑥, 𝐶2,𝐵,𝑥}𝑥∈[ℓ]), where

𝐶 = 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝒄(1)K1, 𝐻) · 𝑒(J𝒄(2,3)K1, 𝐻), 𝗌𝖾𝖾𝖽)

= 𝗆𝗌𝗀𝑏 ⊕ 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅
′′K1, 𝐻), 𝗌𝖾𝖾𝖽),

113

for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 = J𝑨1𝒔𝐴,𝑥K1,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(2,3)
𝐴 ‖𝑼𝐴)𝑴𝑥

z

1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥)

=
q
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

y
1
⊞ (𝑃𝐴,𝜌(𝑥) ⊙ 𝒔𝐴,𝑥),

𝐶1,𝐵,𝑥 = J𝑨1𝒔𝐵,𝑥K1,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(2,3)
𝐵 ‖𝑼𝐵)𝑴𝑥

z

1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥)

=
q
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

y
1
⊞ (𝑃𝐵,𝜌(𝑥) ⊙ 𝒔𝐵,𝑥),

and for all 𝑥 ∈ 𝑌 ,

𝐶1,𝐴,𝑥 =
r
𝒄
(1)
𝐴,𝑥 + 𝒄

(2,3)
𝐴,𝑥

z

1
=

q
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

y
1
,

𝐶2,𝐴,𝑥 =
r
(𝒄(1) + 𝒄

(2,3)
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝒄
(1)
𝐴,𝑥 + 𝒄

(2,3)
𝐴,𝑥)

z

1

=

t
(𝑨1𝒅+𝑨2𝒅

′′
𝐴 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+𝑾⊤
𝐴,𝜌(𝑥)

(︁
𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥

)︁ |

1

,

𝐶1,𝐵,𝑥 =
r
𝒄
(1)
𝐵,𝑥 + 𝒄

(2,3)
𝐵,𝑥

z

1
=

q
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

y
1
,

𝐶2,𝐵,𝑥 =
r
(−𝒄(1) + 𝒄

(2,3)
𝐵 ‖𝑼𝐵)𝑴𝑥 +𝑾⊤

𝐵,𝜌(𝑥)(𝒄
(1)
𝐵,𝑥 + 𝒄

(2,3)
𝐵,𝑥)

z

1

=

t
(−𝑨1𝒅+𝑨2𝒅

′′
𝐵 +𝑨3𝒅

′
𝐵 ‖𝑼𝐵)𝑴𝑥

+𝑾⊤
𝐵,𝜌(𝑥)

(︁
𝑨1𝒔𝐵,𝑥 +𝑨2𝒔

′′
𝐵,𝑥 +𝑨3𝒔

′
𝐵,𝑥

)︁ |

1

.

Guess: 𝒜 eventually outputs a guess bit 𝑏′ ∈ {0, 1}. ℬ outputs 1 if 𝑏 = 𝑏′ and 0 otherwise.
Observe that if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides with that in

𝖧𝗒𝖻14:(𝑗−1). On the other hand, if 𝒕𝛽 ← 𝗌𝗉𝖺𝗇(𝑩2,𝑩3), then 𝖧(𝖦𝖨𝖣𝑗) simulated by ℬ coincides
with that in 𝖧𝗒𝖻14:𝑗 . All the other components simulated by ℬ are also properly distributed.
Hence it follows that the games simulated by ℬ coincides with 𝖧𝗒𝖻14:(𝑗−1) or 𝖧𝗒𝖻14:𝑗 according
as 𝛽 = 0 or 1. Thus, ℬ can use 𝒜 to attain non-negligible advantage in solving 𝖲𝖣𝔾2

𝑩3 ↦→𝑩2,𝑩3
.

This completes the proof of Lemma 5.31. ■

Lemma 5.32: For every (possibly unbounded) adversary 𝒜 and for all 𝜆 ∈ ℕ, |𝑝𝒜,14:𝑞(𝜆)| =
|𝑝𝒜,15(𝜆)|.

Proof: Observe that the only difference between 𝖧𝗒𝖻14:𝑞 and 𝖧𝗒𝖻15 is that in the former, 𝖧(𝖦𝖨𝖣)
is generated as 𝖧(𝖦𝖨𝖣)← 𝔾3𝑘

2 whereas in the latter, 𝖧(𝖦𝖨𝖣) = J𝒓GIDK2⊟𝐻 where 𝒓GID ← ℤ3𝑘
𝑝 for

all global identifiers 𝖦𝖨𝖣 for which the challenger needs to generate the 𝖧 oracle output. Thus,
in order to prove these two games are indistinguishable, it is enough to show that the values
𝖧(𝖦𝖨𝖣) are distributed identically in the two games.

To see this, note that for all global identifiers 𝖦𝖨𝖣, since 𝒓GID ← ℤ3𝑘
𝑝 , then 𝒓GID can

be expressed as 𝑨*
1�̃�GID + 𝑨*

2�̃�
′′
GID + 𝑨*

3�̃�
′
GID where �̃�GID, �̃�

′′
GID, �̃�

′
GID ← ℤ𝑘

𝑝. This is because
(𝑨*

1 ‖𝑨*
2 ‖𝑨*

3) spans ℤ3𝑘
𝑝 . Also, in these hybrids, we have 𝐻 = J𝑨*

1𝒉 + 𝑨*
2𝒉

′′K2 where
𝒉,𝒉′′ ← ℤ𝑘

𝑝. Thus 𝖧(𝖦𝖨𝖣) generated in 𝖧𝗒𝖻15 can be expressed as 𝖧(𝖦𝖨𝖣) = J𝒓GIDK2 ⊟ 𝐻 =

J(𝑨*
1�̃�GID +𝑨*

2�̃�
′′
GID +𝑨*

3�̃�
′
GID) − (𝑨*

1𝒉 +𝑨*
2𝒉

′′)K2. Thus, we have 𝖧(𝖦𝖨𝖣) = J𝑨*
1(�̃�GID − 𝒉) +

𝑨*
2(�̃�

′′
GID − 𝒉′′) + 𝑨3�̃�

′
GIDK2. Since the vectors �̃�GID, �̃�

′′
GID are uniformly random over ℤ𝑘

𝑝 and
uncorrelated, it follows that �̃�GID − 𝒉, �̃�′′

GID − 𝒉′′ are also uniformly random over ℤ𝑘
𝑝 and un-

correlated. Hence, it follows that 𝖧(𝖦𝖨𝖣) generated in 𝖧𝗒𝖻15 are uniformly and independently
distributed in 𝔾3𝑘

2 , or in other words, identically to those in 𝖧𝗒𝖻14:𝑞. This completes the proof
of Lemma 5.32. ■

114

Lemma 5.33: If the 𝖲𝖣𝔾2
𝑩3 ↦→𝑩2,𝑩3

assumption holds, then for all PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅16:𝑗(·) such that for all 𝜆 ∈ ℕ,

⃒⃒
𝑝𝒜,16:(𝑗−1)(𝜆)− 𝑝𝒜,16:𝑗(𝜆)

⃒⃒
≤ 𝗇𝖾𝗀𝗅16:𝑗(𝜆)

for all 𝑗 ∈ [𝑞].

Proof: The proof is analogous to that of Lemma 5.31 with some minor changes that can be
easily figured out.

Lemma 5.34: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅17(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,16:𝑞(𝜆)− 𝑝𝒜,17(𝜆)| ≤ 𝗇𝖾𝗀𝗅17(𝜆).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.35: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅18(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,17(𝜆)− 𝑝𝒜,18(𝜆)| ≤ 𝗇𝖾𝗀𝗅18(𝜆).

Proof: The proof of this lemma is very similar to that of Lemma 5.29. We present it for
concreteness.

Observe that the only difference between 𝖧𝗒𝖻17 and 𝖧𝗒𝖻18 is that in the former game the
parameters {(𝑨1𝒅+𝑨2𝒅

′′+𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥}𝑥∈[ℓ] are shares of a secret that involves 𝑨2𝒅

′′ with
𝒅′′ ← ℤ𝑘

𝑝 that is part of the input to the strong randomness extractor generating the mask
for the message 𝗆𝗌𝗀𝑏, whereas in the latter game, the secret involves 𝑨2𝒅

′′
𝐴 with 𝒅′′

𝐴 ← ℤ𝑘
𝑝

that is independent from 𝒅′′. Therefore, in order to prove these two games are statistically
indistinguishable, we will argue that the portion of the secrets being shared by 𝗌𝗉𝖺𝗇(𝑨2) are
information theoretically hidden to the adversary 𝒜 in 𝖧𝗒𝖻17.

First observe that the portion of the secrets being shared that lie in 𝗌𝗉𝖺𝗇(𝑨1), i.e., 𝑨1𝒅, is in-
formation theoretically revealed to𝒜 by the ciphertext component 𝐶 = 𝗆𝗌𝗀𝑏⊕𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻)·
𝑒(J𝑨2𝒅

′′K1, 𝐻), 𝗌𝖾𝖾𝖽).
We note that the shares (𝑨1𝒅 +𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 for all the rows 𝑥 of the challenge

access matrix 𝑴 labeled by corrupted authorities (i.e., the authorities for which 𝒜 either requests
the master key or creates it on its own) are information theoretically revealed to 𝒜. Further,
observe that the shares (𝑨1𝒅+𝑨2𝒅

′′ +𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 for no other rows 𝑥 of 𝑴 is fully leaked

to 𝒜. In order to see this, note that for all the rows 𝑥 corresponding to corrupted authorities, 𝒜
knows the values 𝑾⊤

𝐴,𝜌(𝑥)𝑨2 information theoretically, but it does not get to know 𝑾⊤
𝐴,𝜌(𝑥)𝑨2

for any uncorrupted rows 𝑥 of 𝑴 . This is because the only way for 𝒜 to learn 𝑾⊤
𝐴,𝜌(𝑥)𝑨2 for

uncorrupted rows is by asking a secret key query corresponding to (𝖦𝖨𝖣, 𝜌(𝑥)) for some global
identifier 𝖦𝖨𝖣. As per the description of 𝖧𝗒𝖻17, such a secret key 𝖲𝖪GID,𝜌(𝑥) would look like

𝖲𝖪GID,𝜌(𝑥)

= (𝐾GID,𝐴,𝜌(𝑥) = J𝑾𝐴,𝜌(𝑥) · (𝒉GID +𝐻)K2,𝐾GID,𝐵,𝜌(𝑥) = J𝑾𝐵,𝜌(𝑥) · 𝒉GIDK2)

= (𝐾GID,𝐴,𝜌(𝑥) = J𝑾𝐴,𝜌(𝑥)((𝒑GID −��𝐻) +��𝐻)K2,𝐾GID,𝐵,𝜌(𝑥) = J𝑾𝐵,𝜌(𝑥)𝒉GIDK2)

= (𝐾GID,𝐴,𝜌(𝑥) = J𝑾𝐴,𝜌(𝑥)𝒑GIDK2,𝐾GID,𝐵,𝜌(𝑥) = J𝑾𝐵,𝜌(𝑥)𝒉GIDK2),

where 𝒑GID ← 𝗌𝗉𝖺𝗇(𝑨*
1,𝑨

*
3). The second equality follows from the fact that in 𝖧𝗒𝖻17 𝖧(𝖦𝖨𝖣)

is generated as 𝖧(𝖦𝖨𝖣) = J𝒑GIDK2 ⊟ 𝐻 with 𝒑GID ← 𝗌𝗉𝖺𝗇(𝑨*
1,𝑨

*
3). Thus, it follows that a

secret key 𝖲𝖪GID,𝜌(𝑥) only reveals 𝑾⊤
𝐴,𝜌(𝑥)𝑨1 and 𝑾⊤

𝐴,𝜌(𝑥)𝑨3 but does not leak 𝑾⊤
𝐴,𝜌(𝑥)𝑨2 to

𝒜 information theoretically. Hence, it follows that 𝒜 can only learn 𝑾⊤
𝐴,𝜌(𝑥)𝑨2 and hence

(𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥 information theoretically.

However, by the game restriction the subspace spanned by those rows does not include the
vector (1, 0, . . . , 0). This means there must exists a vector 𝒖 ∈ ℤ𝑑

𝑝 such that 𝒖 is orthogonal to all
these rows of 𝑴 but is not orthogonal to (1, 0, . . . , 0), (i.e., the first entry of 𝒖 is nonzero). We

115

consider a basis of 𝕌 of ℤ𝑑
𝑝 involving the vector 𝒖 and write (𝑨1𝒅+𝑨2𝒅

′′+𝑨3𝒅
′
𝐴 ‖𝑼𝐴) = 𝑽𝐴+

𝒂𝒖⊤ for some 𝒂 and some matrix 𝑽𝐴 ∈ 𝗌𝗉𝖺𝗇3𝑘(𝕌∖{𝒖}). We note that each row of 𝑽𝐴 is uniformly
distributed in the subspace spanned by 𝕌 ∖ {𝒖} and reveals no information about 𝒂. Now, since
the first coordinate of 𝒖 is nonzero, it follows that the first column of (𝑨1𝒅+𝑨2𝒅

′′+𝑨3𝒅
′
𝐴 ‖𝑼𝐴),

i.e., 𝑨1𝒅 + 𝑨2𝒅
′′ + 𝑨3𝒅

′
𝐴, depends on 𝒂. But the shares (𝑨1𝒅 + 𝑨2𝒅

′′ + 𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 for

all the corrupted rows of 𝑴 contains no information about 𝒂 since 𝒖 is orthogonal to all these
rows. Thus, it follows that these rows do not leak information of 𝑨1𝒅 + 𝑨2𝒅

′′ + 𝑨3𝒅
′
𝐴. This

means the information of 𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 is not revealed to 𝒜 by these rows.

Hence, the only possible way for 𝒜 to get information about 𝑨2𝒅
′′ is through the ciphertext

components 𝐶2,𝐴,𝑥 corresponding to the uncorrupted rows of 𝑴 . However, for each such row 𝑥,
𝒜 can only recover 𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥 and

(𝑨1𝒅+𝑨2𝒅
′′ +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥

+ (𝑾𝐴,𝜌(𝑥) + 𝑽
(2)
𝐴,𝜌(𝑥))

⊤(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

= (𝑨1𝒅+𝑨3𝒅
′
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥)

+ (𝑨2𝒅
′′ ‖0)𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥

information theoretically. Now recall that 𝑽
(2)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) hence we can write 𝑽
(2)
𝐴,𝜌(𝑥) as

𝑽
(2)
𝐴,𝜌(𝑥) +𝑨*

2𝑹𝐴,𝜌(𝑥)𝑨
⊤
2 where 𝑽

(2)
𝐴,𝜌(𝑥) ← 𝗌𝗉𝖺𝗇3𝑘(𝑨*

2) and 𝑹𝐴,𝜌(𝑥) ∈ ℤ𝑘×𝑘
𝑝 . Therefore, we have

(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + (𝑽

(2)
𝐴,𝜌(𝑥) +𝑨*

2𝑹𝐴,𝜌(𝑥)𝑨
⊤
2)

⊤𝑨2𝒔
′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥 +𝑨2𝑹

⊤
𝐴,𝜌(𝑥)𝑨

*⊤
2 𝑨2𝒔

′′
𝐴,𝑥

=
(︀
𝑨2𝒅

′′ ‖0
)︀
𝑴𝑥 + 𝑽

(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥 +𝑨2𝑹

⊤
𝐴,𝜌(𝑥)𝒔

′′
𝐴,𝑥

information theoretically. Since the labeling function 𝜌 is injective, it follows that 𝑽 (2)
𝐴,𝜌(𝑥),𝑹𝐴,𝜌(𝑥)

are freshly random matrices that appears nowhere else. This means given 𝑨1𝒔𝐴,𝑥 + 𝑨2𝒔
′′
𝐴,𝑥 +

𝑨3𝒔
′
𝐴,𝑥 and (𝑨1𝒅 +𝑨3𝒅

′
𝐴 ‖𝑼𝐴)𝑴𝑥 +𝑾⊤

𝐴,𝜌(𝑥)(𝑨1𝒔𝐴,𝑥 +𝑨2𝒔
′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥) + (𝑨2𝒅

′′ ‖0)𝑴𝑥 +

𝑽
(2)⊤
𝐴,𝜌(𝑥)𝑨2𝒔

′′
𝐴,𝑥, if 𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥 is nonzero (note that 𝑨1𝒔𝐴,𝑥 +𝑨2𝒔

′′
𝐴,𝑥 +𝑨3𝒔

′
𝐴,𝑥 =

0 with negligible probability), any value of 𝑨2𝒅
′′ can be explained by a particular value of

𝑽
(2)
𝐴,𝜌(𝑥),𝑹𝐴,𝜌(𝑥). It follows that 𝑨2𝒅

′′ is information theoretically hidden to 𝒜. This completes
the proof of Lemma 5.35. ■

Lemma 5.36: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅19(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,18(𝜆)− 𝑝𝒜,19(𝜆)| ≤ 𝗇𝖾𝗀𝗅19(𝜆).

Proof: The proof is similar to that of Lemma 5.6 with some minor changes that can be easily
figured out. ■

Lemma 5.37: For every (possibly unbounded) adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅20(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,19(𝜆)− 𝑝𝒜,20(𝜆)| ≤ 𝗇𝖾𝗀𝗅20(𝜆).

Proof: Observe that in 𝖧𝗒𝖻19, the value 𝒅′′ ∈ ℤ𝑘
𝑝 is information theoretically hidden to 𝒜. This

means that 𝑒(J𝑨2𝒅
′′K1, 𝐻) is uniformly random and therefore has 𝑘 log(𝑝) bits of min-entropy,

i.e., H∞(𝑒(J𝑨2𝒅
′′K1, 𝐻)) = 𝑘 log(𝑝) (recall that 𝐻 = J𝑨*

1𝒉 + 𝑨*
2𝒉

′′K2 in 𝖧𝗒𝖻19). Thus, if 𝙴𝚡𝚝
is parameterized correctly, then 𝙴𝚡𝚝(𝑒(J𝑨1𝒅K1, 𝐻) · 𝑒(J𝑨2𝒅

′′K1, 𝐻), 𝗌𝖾𝖾𝖽) (which masks 𝗆𝗌𝗀𝑏) is
statistically close to uniform in 𝒜’s view. This completes the proof of Lemma 5.37. ■

116

References

[ABGW17] Miguel Ambrona, Gilles Barthe, Romain Gay, and Hoeteck Wee. Attribute-based
encryption in the generic group model: Automated proofs and new constructions.
In Conference on Computer and Communications Security - CCS, pages 647–664.
ACM, 2017.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Advances in Cryptology
- CRYPTO, pages 657–677, 2015.

[AC16] Shashank Agrawal and Melissa Chase. A study of pair encodings: Predicate en-
cryption in prime order groups. In Theory of Cryptography - 13th International
Conference, TCC, pages 259–288, 2016.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Advances in
Cryptology - ASIACRYPT, pages 21–40, 2011.

[AG21] Miguel Ambrona and Romain Gay. Multi-authority ABE, revisited. IACR Cryp-
tology ePrint Archive, Report 2021/1381, 2021.

[AMY19] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryp-
tion (and more) for nondeterministic finite automata from LWE. In Advances in
Cryptology - CRYPTO, pages 765–797, 2019.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Advances in Cryptology - EUROCRYPT, pages 557–577, 2014.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In Advances in Cryptology - ASIACRYPT, pages
591–623, 2016.

[Att19] Nuttapong Attrapadung. Unbounded dynamic predicate compositions in attribute-
based encryption. In Advances in Cryptology - EUROCRYPT, pages 34–67, 2019.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings
and LWE. In Advances in Cryptology - EUROCRYPT, pages 13–43, 2020.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Ad-
vances in Cryptology - CRYPTO, pages 41–55, 2004.

[Bei12] Amos Beimel. Secure schemes for secret sharing and key distribution. PhD Thesis,
Israel Institute of Technology, Technion, Haifa, Israel, 2012.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Advances in Cryptology - CRYPTO, pages 213–229, 2001.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Advances in Cryptology - EUROCRYPT, pages 533–556, 2014.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In Theory of Cryptography, TCC, pages 325–341, 2005.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Advances in Cryptology - CRYPTO, pages 27–35, 1988.

117

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Theory of
Cryptography Conference - TCC, pages 122–142, 2013.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In Symposium on Security and Privacy - S&P 2007, pages 321–
334. IEEE Computer Society, 2007.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: unbounded
attributes and semi-adaptive security. In Advances in Cryptology - CRYPTO, pages
363–384, 2016.

[BV20] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption
and succinct ciphertext-policy ABE. IACR Cryptology ePrint Archive, 2020:191,
2020.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In Conference on Computer and Communi-
cations Security - CCS, pages 121–130, 2009.

[CGKW18a] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via
bilinear entropy expansion, revisited. In Advances in Cryptology - EUROCRYPT,
pages 503–534, 2018.

[CGKW18b] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via
bilinear entropy expansion, revisited. In Advances in Cryptology - EUROCRYPT,
pages 503–534, 2018.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Advances in Cryptology - EUROCRYPT,
pages 595–624, 2015.

[CGW18] Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product encryption
with adaptive security and full attribute-hiding. In Advances in Cryptology - ASI-
ACRYPT, pages 673–702, 2018.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptog-
raphy Conference - TCC, pages 515–534, 2007.

[DKW21a] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority
ABE for DNFs from LWE. In EUROCRYPT, pages 177–209, 2021.

[DKW21b] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority
ABE for NĈ1 from Computational-BDH. IACR Cryptol. ePrint Arch., page 1325,
2021.

[dlPVA22] Antonio de la Piedra, Marloes Venema, and Greg Alpár. Abe squared: Accurately
benchmarking efficiency of attribute-based encryption. IACR Cryptology ePrint
Archive, Report 2022/038, 2022.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An
algebraic framework for diffie-hellman assumptions. In Advances in Cryptology -
CRYPTO, pages 129–147, 2013.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis Villar.
An algebraic framework for diffie-hellman assumptions. J. Cryptol., 30(1):242–288,
2017.

118

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Advances in Cryptology - EUROCRYPT,
pages 44–61, 2010.

[GDCC16] Junqing Gong, Xiaolei Dong, Jie Chen, and Zhenfu Cao. Efficient IBE with tight
reduction to standard assumption in the multi-challenge setting. In Advances in
Cryptology - ASIACRYPT, pages 624–654, 2016.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Advances in Cryptology -
CRYPTO, pages 479–499, 2013.

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly cca-secure
encryption without pairings. In Advances in Cryptology - EUROCRYPT, pages
1–27, 2016.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
Symposium on Foundations of Computer Science - FOCS 2017, pages 612–621.
IEEE Computer Society, 2017.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Conference on
Computer and Communications Security - CCS, pages 89–98. ACM, 2006.

[Gui13] Aurore Guillevic. Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In Applied Cryptography and Network Security - ACNS, pages
357–372, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Symposium on Theory of Computing - STOC, pages 545–
554. ACM, 2013.

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA from k-Lin and
more. In Advances in Cryptology - EUROCRYPT, pages 278–308, 2020.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-Lin. In
Advances in Cryptology - CRYPTO, pages 732–764, 2019.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key
encapsulation. In Advances in Cryptology - CRYPTO, pages 553–571, 2007.

[KL15] Lucas Kowalczyk and Allison Bishop Lewko. Bilinear entropy expansion from the
decisional linear assumption. In Advances in Cryptology - CRYPTO, pages 524–541,
2015.

[KW20] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for 𝖭𝖢1 from
k-lin. Journal of Cryptology, 33(3):954–1002, 2020.

[LCLS08] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold multi
authority attribute based encryption without a central authority. In Progress in
Cryptology - INDOCRYPT, pages 426–436, 2008.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In Advances in Cryptology - EUROCRYPT, pages 318–
335, 2012.

[LL20] Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond 𝖭𝖢1

and towards NL. In Advances in Cryptology - EUROCRYPT, pages 247–277, 2020.

119

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hi-
erarchical) inner product encryption. In Advances in Cryptology - EUROCRYPT,
pages 62–91, 2010.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Theory of Cryptography Conference -
TCC, pages 455–479, 2010.

[LW11a] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In
Advances in Cryptology - EUROCRYPT, pages 568–588, 2011.

[LW11b] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based en-
cryption. In Advances in Cryptology - EUROCRYPT, pages 547–567, 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based en-
cryption: Achieving full security through selective techniques. In Advances in
Cryptology - CRYPTO, pages 180–198, 2012.

[MKE08] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert. Distributed attribute-
based encryption. In International Conference on Information Security and Cryp-
tology - ICISC 2008, pages 20–36, 2008.

[MKE09] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert. On multi-authority
ciphertext-policy attribute-based encryption. Bulletin of the Korean Mathemat-
ical Society, 46:803–819, 07 2009.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In Conference on Computer and Communications
Security - CCS 2007, pages 195–203. ACM, 2007.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Advances in Cryp-
tology - CRYPTO, pages 191–208, 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-
product and attribute-based encryption. In Advances in Cryptology - ASIACRYPT,
pages 349–366, 2012.

[OT20] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based en-
cryption and signatures. IEICE Transactions on Fundamentals of Electronics,
Communications, and Computer Sciences, 103-A(1):41–73, 2020.

[RW15] Yannis Rouselakis and Brent Waters. Efficient statically-secure large-universe
multi-authority attribute-based encryption. In Financial Cryptography and Data
Security - FC, pages 315–332, 2015.

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. IACR Cryptol. ePrint Arch., 2007:74,
2007.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, pages 457–473. Springer, 2005.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for 𝑡-CNF from LWE. In
Advances in Cryptology - CRYPTO, pages 62–85, 2019.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. CRYPTO
2022, 2022.

120

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–
336, 2012.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Advances in Cryptology - CRYPTO, pages 619–636, 2009.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In Public Key Cryptography - PKC, pages
53–70, 2011.

[Wat12] Brent Waters. Functional encryption for regular languages. In Advances in Cryp-
tology - CRYPTO, pages 218–235, 2012.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In Advances in Cryptology - CRYPTO, pages 678–697, 2015.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Theory of Cryp-
tography Conference - TCC, pages 616–637, 2014.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice
assumptions. In EUROCRYPT, pages 217–241, 2022.

[WWW22] Brent Waters, Hoeteck Wee, and David Wu. Multi-authority ABE from lattices
without random oracles. IACR Cryptology ePrint Archive, Report 2022/1194,
2022. To appear in TCC 2022.

121

	Introduction
	Our Results

	Technical Overview
	Background on MA-ABE
	Fully Adaptive Security
	Limitations of Previous Works
	Overview of Our Approach and Our (Composite Order) Scheme
	Our Construction
	Our Security Proof

	Porting to Prime Order Groups

	Preliminaries
	Access Structures and Linear Secret Sharing Schemes
	Strong Randomness Extractors
	The Notion of Fully-Adaptive Decentralized MA-ABE for LSSS

	Our Composite Order Group MA-ABE Scheme
	Composite Order Bilinear Groups and Assumptions
	The Construction
	Correctness
	Security Analysis

	Our Prime Order Group MA-ABE Scheme
	Prime Order Bilinear Groups and Associated Notations
	Basis Structure for the Composite to Prime Order Translation Framework
	Prime-Order Complexity Assumptions
	The Construction
	Correctness
	Security Analysis

