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Abstract. Motivated by new applications such as secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK),
many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the
number of multiplications over Fp for a large prime p have been recently proposed in
the literature. These symmetric primitives are usually defined via invertible functions,
including (i) Feistel and Lai-Massey schemes and (ii) SPN constructions instantiated
with invertible non-linear S-Boxes. However, the “invertibility” property is actually
never required in any of the mentioned applications.
In this paper, we discuss the possibility to set up MPC-/FHE-/ZK-friendly symmetric
primitives instantiated with non-invertible bounded surjective functions. With respect
to one-to-one correspondence functions, any output of a l-bounded surjective function
admits at most l ≥ 1 pre-images. The simplest example is the square map x 7→ x2

over Fp for a prime p ≥ 3, which is (obviously) 2-bounded surjective. When working
over Fnp for n ≥ 2, we set up bounded surjective functions by re-considering the recent
results proposed by Grassi, Onofri, Pedicini and Sozzi at FSE/ToSC 2022 as starting
points. Given a quadratic local map F : Fmp → Fp for m ∈ {1, 2, 3}, they proved
that the shift-invariant non-linear function over Fnp defined as SF (x0, x1, . . . , xn−1) =
y0‖y1‖ . . . ‖yn−1 where yi := F (xi, xi+1) is never invertible for any n ≥ 2 · m − 1.
Here, we prove that

• the quadratic function F : Fmp → Fp for m ∈ {1, 2} that minimizes the probabil-
ity of having a collision for SF over Fnp is of the form F (x0, x1) = x2

0 + x1 (or
equivalent);

• the function SF over Fnp defined as before via F (x0, x1) = x2
0 +x1 (or equivalent)

is 2n-bounded surjective.
As concrete applications, we propose modified versions of the MPC-friendly schemes
MiMC, HadesMiMC, and (partially of) Hydra, and of the FHE-friendly schemes
Masta, Pasta, and Rubato. By instantiating them with the bounded surjective
quadratic functions proposed in this paper, we are able to improve the security and/or
the performances in the target applications/protocols.
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1 Introduction
Almost all the symmetric primitives published in the literature – including ciphers, Pseudo-
Random Functions/Permutations (PRFs/PRPs), hash functions – are typically designed
by iterating an efficiently implementable round function a sufficient number of times such
that the resulting composition satisfies the security requirements. Even if not strictly
necessary in many scenarios (e.g., stream ciphers, hash functions, and so on), the round
function is usually invertible, that is, it is instantiated either via invertible components, or
in such a way that, even if the components are not invertible by their own, the overall
round function is invertible (as in the case of Feistel and/or Lai-Massey schemes).

In many cases, this choice is crucial for guaranteeing the security (or/and for simpli-
fying the security analysis). As a concrete example, consider the case of a Substitution-
Permutation Network (SPN), in which the non-linear layer is instantiated via a concatena-
tion of independent S-Boxes, e.g., (x0, x1, . . . , xn−1) 7→ (S(x0), S(x1), . . . , S(xn−1)) for a
certain non-linear function S over a field Fq for a small q = ps (as q ≤ 28). If S is not
invertible, finding a collision at the output of any single function S could potentially allow
the attacker to break the entire scheme. E.g., the hash function SHA-3/Keccak [BDPA13]
instantiated with 5-bit non-invertible S-Boxes may be easily broken by looking for a
collision at the output of the first rounds, set up via input messages that activate a single
(or few) S-Box(es).
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Table 1: Invertible non-linear round functions that instantiate MPC-/FHE-/ZK-friendly
symmetric primitives over Fnp proposed in the literature. Some primitives are instantiated
via several non-linear functions (“Others” include the Horst scheme and look-up tables).

Symmetric Primitive Invertible Power Map(s) Non-Invertible Function(s)
in Feistel/Lai-Massey Scheme Others

MiMC [AGR+16] 3
GMiMC [AGP+19] 3

HadesMiMC [GLR+20] 3
Rescue [AAB+20] 3

Poseidon [GKR+21] 3
Ciminion [DGGK21] 3

Grendel [Sze21] 3
Pasta [DGH+21] 3 3

Reinforced Concrete [GKL+22] 3 3
Neptune [GOPS22] 3 3
Griffin [GHR+22] 3 3
Chaghri [AMT22] 3
Hydra [GØWS22] 3 3
Anemoi [BBC+22] 3 3

The scenario is potentially different in the case of symmetric primitives defined over
a field Fq for a huge q, as for the symmetric primitives designed for being efficient in
Secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and/or
Zero-Knowledge proofs (ZK), which usually operate over Fnp for a large prime p � 3
(usually, p is of order 264, 2128 or even bigger). Indeed:

1. the invertibility property is not required neither in MPC-/FHE-applications nor in
ZK protocols. Indeed, MPC and FHE applications require a PRF scheme (which is
not invertible in general), while ZK protocols requires a hash function (which is not
invertible by definition);

2. due to the huge size of the integer q, finding collisions could be much more expensive
than the maximum data and/or complexity cost allowed for setting up an attack (as
we will show in the following);

3. for almost all the block ciphers listed in Table 1 (that is, all except for the Feistel
scheme GMiMC), the inverse is never used in practice.

Regarding this second point, let’s consider the block ciphers MiMC and HadesMiMC,
instantiated with invertible power maps x 7→ xd defined over Fp for d ≥ 3 such that
gcd(d, p − 1) = 1. The inverse of such power maps are again power maps of the form
x 7→ xd

′ , where d′ ≥ 3 is the smallest integer for which d · d′ − 1 is a multiple of p− 1.1
For small values of d, the exponent d′ is of the same order of magnitude of p, i.e., much
bigger than d. It follows that decrypting is much more expensive than encrypting, a
property that is in general not desirable in practical use cases. For this reason, MiMC’s
and HadesMiMC’s designers suggest to use such schemes in a mode of operation in which
the inverse is not needed: “[...] decryption is much more expensive than encryption. Using
modes where the inverse is not needed is thus advisable” (see [AGR+16, Sect. 1]).

Having said that, almost all the MPC-/FHE-/ZK-friendly symmetric cryptographic
primitives that have been recently proposed in the literature for minimizing the number of
field non-linear operations in their natural algorithmic description – often referred to as the
multiplicative complexity – are instantiated via invertible round functions only.2 The current

1We recall that xp−1 = 1 for each x ∈ Fp \ {0} due to Fermat’s little theorem.
2In this paper, we use the term “Fp-multiplication” – or simply, “multiplication” – to refer to a

non-linear operation over Fp. Moreover, we do not make any distinction between a Fp-multiplication and
a Fp-square operation, since – to the best of our knowledge – they have the same cost in the considered
applications/protocols.
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scenario is indeed summarized in Table 1 (to the best of our knowledge, the only scheme
instantiated via non-invertible components is the FHE-friendly scheme Masta [HKC+20],
which is based on the Rasta design strategy discussed in Sect. 6). Hence, natural questions
arise: since the invertibility property is not required in MPC-/FHE-/ZK-applications, what
happens when considering a symmetric primitive instantiated with non-invertible round
functions? Can we decrease the multiplicative complexity without affecting its security?

In order to answer these questions, in this paper we start a research regarding quadratic
non-invertible functions over Fnp that can be used as building blocks in MPC-/FHE-/ZK-
friendly symmetric primitives.

1.1 Bounded Surjective Functions constructed via Local Maps
When considering non-invertible functions, an estimation of the probability of the collision
event is paramount. From this point of view, it is desirable that the used non-invertible
function admits a (fixed) maximum number of pre-images for each possible output.

“Bounded Surjective” Functions. For this reason, in Sect. 2, we introduce the concept
of “bounded surjective” functions. Given l ≥ 1, each output of a l-bounded surjective
function admits at most l distinct pre-images. E.g., a bijective function is a 1-bounded
surjective function, since each output admits exactly one pre-image, while the square
function x 7→ x2 is a 2-bounded surjective function.

Bounded Surjective Functions over Fn
p . When working over Fnp for n ≥ 2, one can

potentially set up bounded surjective functions by concatenating bounded surjective
functions over Fp. E.g., it is not hard to check that the function (x0, x1, . . . , xn−1) 7→
(x2

0, x
2
1, . . . , x

2
n−1) is 2n-bound surjective, since x 7→ x2 is 2-bounded surjective, and the

square map operates independently on each word.
In order to set up a l-bound surjective function with l smaller than 2n, we decided

to re-consider the recent results proposed by Grassi et al. [GOPS22] at FSE/ToSC 2022
regarding the case of SI-lifting functions.
Definition 1. Let p ≥ 3 be a prime integer. Let 1 ≤ m ≤ n, and let F : Fmp → Fp be a
non-linear function defined as

F (x0, x1, . . . , xm−1) :=
∑

0≤i0+i1+...+im−1≤d

αi0,i1,...,im−1 ·
m−1∏
j=0

x
ij
j ,

where d ≥ 1, i0, i1, . . . , im−1 ≥ 0 are integers, and αi0,i1,...,im−1 ∈ Fp. The Shift-Invariant
(m,n)-lifting function SF over Fnp induced by F is defined as SF (x0, x1, . . . , xn−1) :=
y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n− 1} : yi := F (xi, xi+1, . . . , xi+m−1) , (1)

where the sub-indexes are taken modulo n.
For simplicity, we usually make used of the abbreviation “SI-lifting” function SF .

In [GOPS22], authors proved that, given any quadratic function F : F2
p → Fp, the

corresponding function SF over Fnp for n ≥ 3 as defined in Def. 1 is never invertible. An
equivalent similar result holds when considering quadratic functions F : F3

p → Fp and the
corresponding function SF over Fnp for n ≥ 5.

Due to the possibility to compute several of these non-invertible functions SF over Fnp
via n multiplications only, these functions seem to be optimal candidates for our goals. By
re-analyzing them, in Sect. 4 we prove that, among all quadratic functions F : Fmp → Fp
for m ∈ {1, 2} such that SF can be computed via n multiplications only, the function
SF over Fnp for n ≥ 3 induced by F (x0, x1) = x2

0 + α1,0 · x0 + α0,1 · x1 with α0,1 6= 0 (or
equivalently by F (x0, x1) = x2

1 + α1,0 · x0 + α0,1 · x1 with α1,0 6= 0):
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• minimizes the probability that a collision occurs for SF over Fnp for n ≥ 3, which is
upper bounded by p−n;

• is a 2n-bounded subjective function.

Compared to (x0, x1, . . . , xn−1) 7→ (x2
0, x

2
1, . . . , x

2
n−1), we will show that (i) the probability

that a collision occurs for SF just defined is much smaller (approximately of a factor
2n− 1), and that (ii) a collision SF (x) = SF (y) can occur only in the case in which xi 6= yi
for each i ∈ {0, 1, . . . , n− 1}.

Open Problem. The problem to set up a l-bounded surjective function over Fnp with (i)
l < 2n and (ii) that can be computed via n multiplications, is left open for future work.

1.2 Impact on MPC- and FHE-Friendly Schemes
Even if the function SF over Fnp induced by F (x0, x1) = x2

0 + x1 (or equivalent) is not
invertible, it is suitable for instantiating a non-invertible symmetric primitive, due to its
several benefit properties just listed. For this reason, we re-consider some MPC-/FHE-
friendly symmetric primitives proposed in the literature, and we propose some variants of
them instantiated with the bounded surjective function just proposed. This modification
allows us to get better results in terms of performance and/or security.

In the following, we summarize the MPC-/FHE-friendly schemes considered in our
analysis, and the results that we are going to present. To better understand the performance
improvements, we recall the following:

• MPC protocols allow several parties to jointly compute a function over their inputs,
without exposing these inputs. In the most common case in which MPC protocols are
evaluated via linearly homomorphic secret sharing scheme, multiplications require
communication between the parties, while affine operations can be evaluated locally.
In such a case, the MPC cost metric is related to the number of multiplications
needed to evaluate the symmetric scheme;

• FHE protocols allow a user to operate on encrypted data without decrypting them.
With respect to MPC applications, the cost metric in FHE applications is related to
the multiplicative depth.

Before going on, we emphasize that, unlike in the case of traditional cipher design, the
size of the field over which these MPC-/FHE-/ZK-friendly like primitives are defined has
basically no impact on the performance of such applications/protocols.

MiMC++. MiMC is an iterative Even-Mansour scheme, whose round function is instantiated
via the invertible power map x 7→ xd. As a simple concrete example of a scheme instantiated
with a 2-bounded surjective function, in Sect. 3 we propose the PRF MiMC++, a version
of MiMC in which the invertible power map is replaced by the square one x 7→ x2. In
order to guarantee the same security level of MiMC, the size p′ of the field Fp′ over which
MiMC++ operates must be triple with respect to the one used in MiMC, that is, p′ ≈ p3

(where p is the prime number that defines the field of MiMC). At the same time, replacing
x 7→ xd with x 7→ x2 allows to decrease the multiplicative complexity, e.g., of a factor
27.5% for a security level of 128 bits (where p ≈ 2128 and p′ ≈ 2384).

Pluto and Hydra++. The security of the PRF MiMC++ strictly depends on the fact that
the prime p′ is much larger than the security level. This problem does not arise when
working with e.g. the cipher HadesMiMC defined over Fnp : in such a case, given a certain
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security level and a fixed prime p, the security can be achieved by choosing an appropriate
value of n.

The main characteristic of the Hades design strategy [GLR+20] is the uneven distri-
bution of the S-Boxes through the rounds. The external rounds are instantiated with a
full S-Box layer that provides security against the statistical attacks, while the internal
rounds are instantiated with a partial S-Box layer, which increase the overall degree of the
scheme by minimizing the cost. This strategy has been recently generalized in Reinforced
Concrete, Neptune, and Hydra’s body. Instead of having just an uneven distribution
of the S-Boxes as in HadesMiMC, these symmetric primitives are instantiated with two
different round functions, one for the internal rounds and one for the external ones. For
the particular case of the Hydra’s body:

• the external full rounds are instantiated via power maps as in HadesMiMC;

• the internal partial rounds are instantiated via a generalized Lai-Massey construction.

At the current state of the art, Hydra is the symmetric primitive that offers the best
performance in MPC applications/protocols (equivalently, the PRF with the smallest
multiplicative complexity), improving e.g. upon Ciminion especially in the case in which
the symmetric encryption key is shared among all participating parties – see [GØWS22]
for more details.

The new PRF Pluto proposed in Sect. 5 takes inspiration of the body of Hydra,
but the power maps in the external rounds are replaced by the SI-lifting function SF
over Fnp induced by F (x0, x1) = x2

0 + x1. As we are going to show, this modified version
achieves (much) better performances with respect to HadesMiMC in term of multiplicative
complexity, especially in the case of large n � 1. In a similar way, when replacing the
body of Hydra with the keyed PRF Pluto, the multiplicative complexity of the modified
PRF Hydra++ is (slightly) reduced.

Masta, Pasta, and Rubato. Finally, we re-consider the FHE-friendly PRFs Masta,
Pasta, and Rubato. In order to minimize the multiplicative depth, these symmetric
primitives are based on the design strategy initially proposed for the FHE-friendly PRF
Rasta, that is, (i) they are instantiated via new randomly generated affine layers for each
new block to encrypt (for preventing statistical attacks), and (ii) their states have huge
size (for preventing linearization attacks without increasing the number of rounds, and
so the depth). Their non-linear layers are instantiated via quadratic functions, including
(i) the SI-lifting function Sχ over Fnp defined via the local quadratic chi-map χ : F3

p → Fp
introduced in [Wol85, DGV91] and adapted to the prime case, and (ii) the Type-III
Feistel scheme [ZMI90, Nyb96] instantiated via a quadratic map. In Sect. 6, we show
that it is possible to increase the security and/or the performance of such schemes by
replacing such non-linear layers with the quadratic SI-lifting function SF over Fnp induced
by F (x0, x1) = x2

0 + x1 (or equivalent).

2 “Bounded Surjective” Functions
In this section, we introduce the concept of bounded surjective functions. First, we recall
the well-known definition of surjective/injective functions.

Definition 2 (Bijective). Let X,Y be two sets, and let F : X→ Y be a function. The
function F is bijective if it is both surjective and injective, where:

• surjective implies that for any element y ∈ Y, there exists x ∈ X such that F(x) = y;

• injective implies if F(x) = F(x′) implies x = x′ (for x, x′ ∈ X).
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By definition of surjective function, for each y ∈ Y, there exists at least one pre-image
x ∈ X such that F(x) = y. However, more pre-images can potentially exist. From a
practical point of view, we are interested in the case in which each output admits a fixed
maximum number of pre-images. For this reason, we introduce the concept of “l-bounded
surjective” functions.
Definition 3 (l-Bounded Surjective). Let X,Y be two sets, and let l ≥ 1 be an integer.
A function F : X → Y is “l-bounded surjective” if any element y ∈ Y admits at most l
pre-images in X, that is, if there exist at most l distinct elements x0, x1, . . . , xl−1 ∈ X such
that F(x0) = F(x1) = . . . = F(xl−1) = y (and F(z) 6= y for each z /∈ {x0, x1, . . . , xl−1}).

Given such definition, we list some useful properties of l-bounded surjective functions.
Lemma 1. (1st) Every function F : X→ Y is |X|-bounded surjective (where | · | denotes
the cardinality of the set). (2nd) Every bijective function is 1-bounded surjective. (3rd) If
|X| = |Y|, then every 1-bounded surjective function F : X→ Y is also bijective.

The proof follows immediately by the definition of l-bounded surjective function. We
point out that the last point is false without the assumption |X| = |Y| (e.g., F : Zq → Z2·q
defined as F(x) = x is 1-bounded surjective but not bijective).

Next, we propose the following result regarding the composition of two bounded
surjective functions.
Lemma 2. Let X,Y,Z be three sets, and let F : X→ Y and G : Y→ Z be two functions.
Assume that F is a f -bounded surjective function, and G is a g-bounded surjective function.
Then, H := G ◦ F : X→ Z is a (f · g)-bounded surjective function.

The proof follows immediately from the facts that (i) each output of G admits at most
g pre-images, and (ii) each output of F admits at most f pre-images.

Finally, we evaluate the probability that a collision occurs (i.e., the collision probability)
at the output of a l-bounded surjective function.
Lemma 3. Let X,Y be two sets, and let l ≥ 1 be an integer. Let F : X→ Y be a l-bounded
surjective function. The probability that a collision occurs at the output of F is at most

l − 1
|X| − 1 .

This follows from the fact that each output element admits at most l pre-images.

3 The PRF MiMC++: Reducing the Multiplicative Complex-
ity of MiMC via the Square Map

MiMC [AGR+16] is an iterated Even-Mansour cipher proposed at Asiacrypt 2016 for
MPC [GRR+16] applications. Here, we show how to reduce its multiplicative complexity
by instantiating it with the square map. We call this modified version of MiMC as MiMC++.

3.1 The PRF MiMC++

MiMC. MiMC [AGR+16] over Fp is an iterated Even-Mansour cipher, whose round
function is defined as F (x) = (x+ K + γ)d, where K ∈ Fp is the secret master key, γ ∈ Fp is
a random round constant and d ≥ 3 is the smallest integer that satisfies gcd(d, p− 1) = 1
(in order to guarantee invertibility). A final key is added. For a security level of κ ≈ log2(p)
bits with a data-limit of 2κ/2 ≈ p1/2 texts available for the attack, the number of rounds
is R = 1 + d(κ− 2 · log2(κ)) · logd(2)e.3

3For completeness, we point out that MiMC in [AGR+16] is proposed only for d = 3, assuming p = 2
mod 3. Here, we simply generalized it for a generic d ≥ 3 such that gcd(d, p− 1) = 1, by re-using the same
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MiMC++. As we already mentioned in the introduction, MiMC’s designers suggest to use it
in a mode of operation in which the inverse is not needed. Hence, a natural question arises:
if the inverse is not needed, why not implement it with a non-invertible function? In such
a case, the most natural choice is the quadratic map x 7→ x2 over Fp. Given x 7→ x2, a
collision x2 = y2 can occur if and only if x = ±y, which implies that the probability of
having a collision is approximately p−1.

Based on this simple observation, we propose the PRF MiMC++ defined as follows. Let
κ be the security level, and let p be any prime number such that p ≥ 23·κ. Given a secret
key K ∈ Fp, we define the PRF MiMC++ as the iterated Even-Mansour scheme whose round
function is define as by F ′(x) = (x+ K + γ)2, where γ ∈ Fp is a random round constant.
Again, a final key is added. Since the PRF MiMC++ is not invertible, it must be used in a
mode in which the inverse is not needed, e.g., the Counter (CTR) one

(x,N) 7→ (x+ MiMC++K(N), N) (2)

where N ∈ Fp is a nonce. For a security level of κ bits and assuming a data-limit of 2κ/2

texts available for the attack, the number of rounds to provide security is given by

RMiMC++ = 3 + dκ− 2 · log2(κ)e .

Remark 1. For more details regarding the data limit in MPC applications, we refer
to [GRR+16]. For a fair comparison among all the MPC-friendly schemes, in the entire
paper we assume a data limit of 2κ/2 texts available for the attack.

3.2 Security Analysis for MiMC++

Here we justify the number of rounds RMiMC++ just given for MiMC++. Since the security
analysis is equivalent to the one given for MiMC, we limit ourselves to adapt the secu-
rity analysis of MiMC to MiMC++. For this reason, we focus only on the main attacks,
including the differential one, the interpolation one, the GCD one, and the linearization
one (see [AGR+16] for more details). As in the case of MiMC, all other attacks do not
outperform the ones just listed. Besides that, as in the case of MiMC, we explicitly state
that we do not make any security claim in the related-key setting.

3.2.1 Statistical Attacks

Differential Attack. Given pairs of inputs with some fixed input differences, differential
cryptanalysis [BS90,BS93] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Let ∆I ,∆O ∈ Fnp be respectively the
input and the output differences through a function F over Fnp . The differential probability
(DP) of having a certain output difference ∆O given a particular input difference ∆I is
equal to

ProbF (∆I → ∆O) =
|{x ∈ Fnp | F(x+ ∆I)−F(x) = ∆O}|

pn
.

For any non-zero input and output differences ∆I ,∆O ∈ Fp \ {0}, the equality (x+ ∆I)2−
x2 = ∆O admits a single solution, that is, x = (∆O −∆2

I)/(2∆O). Hence, the maximum
differential probability for 1-round MiMC++ is 1/p. As for MiMC, few rounds are sufficient
for preventing differential attacks based on trails with non-zero differences.

However, since x 7→ x2 is not invertible, a collision can occur at every round. Based on
Lemma 2, the polynomial function corresponding to the PRF MiMC++ is a 2RMiMC++ -bounded

argument proposed in [AGR+16] and by noting that currently no attack [ACG+19,EGL+20] applies on
the full version of MiMC defined over a prime field.
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subject function, which implies – due to Lemma 3 – that the overall probability that a
collision occurs is upper bounded by

2RMiMC++ − 1
p− 1 = 23+dκ−2·log2(κ)e − 1

p− 1 ≈ 8 · 2κ
p · κ2 ≤

8
κ2 · 2

−2·κ < 2−2·κ ,

where the inequalities follow from the facts that (i) p ≥ 23·κ and (ii) κ2 > 8. Since at most
2κ/2 texts are available for the attack, the attacker can construct at most

(2κ/2

2
)
≈ 2κ−1

different pairs of texts, which implies that observing a collision is very unrealistic.

Other Statistical Attacks. As in the case of MiMC, few rounds of MiMC++ are sufficient
for preventing other statistical attacks as the linear one [Mat93], the truncated differential
one [Knu94], the impossible differential one [BBS99], the boomerang one [Wag99], the
invariant subspace attack [LAAZ11,LMR15], and so on.

We limit ourselves to recall that Fp does not admit any non-trivial subspace. Moreover,
we point out that the set R := {x2 ∈ Fp | ∀x ∈ Fp} is not closed with respect to the
addition. Indeed, let x ≥ 2 be the smallest integer that is a non-quadratic residue modulo
p (that is, x 6= y2 for each y ∈ Fp). Note that 0 = 02 and 1 = (±1)2 are always quadratic
residue. By definition of x, x− 1 is a quadratic residue, that is, there exists y such that
x− 1 = y2. Equivalently, x = (±1)2 + y2 and x · z2 = (±z)2 + (z · y)2 for each z ∈ Fp \ {0},
where obviously x · z2 is a non-quadratic residue modulo p. Hence, the sum of two elements
in R does not belong to such set in general.

3.2.2 Algebraic Attacks

Interpolation Attack. The interpolation attack [JK97] aims to construct an interpolation
polynomial that describes the scheme. Such polynomial can be exploited in order to set
up a distinguisher and/or a forgery/key-recovery attack on the symmetric scheme. The
interpolation polynomial cannot be constructed if the number of unknown monomials is
larger than the data available for the attack. The degree of MiMC++ after RMiMC++ rounds is
2RMiMC++ , and the number of monomials is upper bounded by 2RMiMC++ + 1. Since the data limit
is 2κ/2, then the scheme is secure against the interpolation polynomial if 2RMiMC++ ≥ 2κ/2,
that is, RMiMC++ ≥ κ/2 (noting that the polynomial representation of MiMC++ has the
same density of the one of MiMC over Fp).4 One more round is added for preventing
key-guessing.

We also add two more rounds for preventing interpolation attacks that make used of
the Meet-in-the-Middle (MitM) approach. In particular, since the overall construction is
not invertible, note that:

• the inverse function can only be set up locally;

• such local inverse function would have high (close to maximum) degree.

In more details, let R := {x2 ∈ Fp | ∀x ∈ Fp} be the set containing the quadratic
residues. Since x 7→ F (x) = x2 is not invertible, it is only possible to define “local” inverses
F−1

+ : R→ X+ and F−1
− : R→ X− such that the following points are satisfied:

1. the sets X−,X+ satisfy: X− ∩ X+ = {0} and X− ∪ X+ = {0, 1, 2, . . . , p− 1};

2. for each x ∈ X+ \ {0}: −x ∈ X− and −x /∈ X+;

3. F (F−1
+ (x)) = x and F (F−1

− (x)) = x for each x ∈ R.
4We point out that the results recently proposed by Bouvier et al. [BCP22] do not apply to MiMC over

prime fields, but only to the version of MiMC defined over binary fields F2n (see e.g. [BCP22, Footnote 1]).
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Given F−1
± and X±, other equivalent local inverses can be obtained, e.g., by carefully

swapping elements of X+ and X− and by adapting the details of F−1
+ and F−1

− . The
algebraic representations of the functions F−1

+ and F−1
− obviously depend on the sets X+

and X−. In general, we expect that the degrees of the functions F−1
+ and F−1

− are of the
same order of p, due to Fermat’s little theorem (i.e., xp−1 = 1 for each x ∈ Fp \ {0}). E.g.,
if p = 3 mod 4, then F 1/2

± can be defined as x 7→ ±x p+1
4 over certain sets X±, since ±x

p+1
4

are the square roots of the quadratic residue x. It follows that two rounds are sufficient
for reaching maximum degree in the backward direction, and so to prevent MitM attacks.

GCD Attack. A dedicate attack proposed for MiMC is the GCD attack. Let’s denote by
E(k, x) the encryption of x under the key k. Given two inputs/outputs pairs (p0, c0) and
(p1, c1), it is easy to check that the secret key is a zero of gcd(E(k, p0)− c0, E(k, p1)− c1),
which has in general low degree. The cost of computing the GCD of two polynomials
of degree (at most) d is O(d · log2(d)). The cost in our case is O(2RMiMC++ · log2(2RMiMC++)),
which implies that the number of rounds RMiMC++ necessary for preventing such attack must
satisfy

2RMiMC++ · log2(2RMiMC++) ≥ 2κ −→ RMiMC++ ≥ κ− 2 · log2(κ) + 1

(see also [AGR+16, Sect. 4.2] for more details). Due to the same argument given for the
interpolation attack, we conjecture that two more rounds are sufficient for preventing the
Meet-in-the-Middle version of the attack.

Linearization and Other Algebraic Attacks. Linearization [KS99] is a well-known tech-
nique to solve multivariate polynomial systems of equations. Given a system of polynomial
equations, the idea is to turn it into a system of linear equations by adding new variables
that replace all the monomials of the system whose degree is strictly greater than 1. This
linear system of equations can be solved using linear algebra if the number of equations is
at least equal to (or bigger than) the number of variables after linearization.

The most straightforward way to linearize algebraic expressions in t unknowns of degree
limited by d is just by introducing a new variable for every monomial. As it is well known,
the number of monomials in t variables of degree at most d is given by

#(d, t) :=
(
t+ d

d

)
.

Based on this, the computation cost of such attacks is of O(#(d, t)ω) operations (for
2 < ω ≤ 3), besides a memory cost of O(#(d, t)2) for storing the linear equations. In
the case of MiMC++, the cost of the attack is given by

((1+2RMiMC++

2RMiMC++

))ω
≥ 22·RMiMC++ , which is

similar to the one of the interpolation attack. Hence, security against the interpolation
attack implies security against the linearization attack as well.

As in the case of MiMC, the same conclusion holds for other algebraic attacks, including
the higher-order differential one [Lai94,Knu94,BCD+20] and the factorization attack (we
recall that the complexity of factorizing a polynomial over Fpt of degree d is O(d3 ·t2 +d ·t3)
– see [Gen07] for more details).

3.3 Multiplicative Complexity: MiMC vs. MiMC++

Regarding the performance, the number of Fp-multiplications required for evaluating the
PRF MiMC++ is smaller than the corresponding one required for MiMC, even if MiMC++
requires a larger prime – approximately, triple size – with respect to one used in MiMC
for the same security level. (We emphasize again that the size of the prime has basically
no impact on the MPC performances, as recalled in the introduction).
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For comparing the performances of MiMC and of MiMC++, we first recall that evaluating
x 7→ xd costs blog2(d)c+ hw(d)− 1 Fp-multiplications, as showed e.g. in [GOPS22]. Based
on this, the number of multiplications required for evaluating MiMC corresponds to

(1 + d(κ− 2 · log2(κ)) · logd(2)e) · (blog2(d)c+ hw(d)− 1) ,

which satisfies

(1 + d(κ− 2 · log2(κ)) · logd(2)e) · (blog2(d)c+ hw(d)− 1)
≥ (blog2(d)c+ hw(d)− 1) + d(κ− 2 · log2(κ)) · logd(2) · (blog2(d)c+ hw(d)− 1)︸ ︷︷ ︸

>1

e

≥ (blog2(d)c+ hw(d)− 1) + dκ− 2 · log2(κ)e ≥ 2 + dκ− 2 · log2(κ)e .

In particular, note that logd(2)·(blog2(d)c+hw(d)−1) > 1 if and only if blog2(d)c+hw(d) >
1 + log2(d). Since blog2(d)c> log2(d)− 1, this last inequality is satisfied if and only if
hw(d) ≥ 2, i.e., odd d ≥ 3.

As a result, the number of multiplications required to evaluate MiMC is always bigger
than or equal to 2+dκ−2 · log2(κ)e, which is almost the number of multiplications required
for evaluating MiMC++, corresponding to 3 + dκ − 2 · log2(κ)e. As a concrete example,
consider κ = 128: MiMC (with p ≈ 2128) requires 79 rounds and 158 Fp-multiplications,
while the PRF MiMC++ (with p′ ≈ 2384) requires 126 rounds and 126 Fp′-multiplications,
that is, approximately 27.5% less multiplications.

4 Bounded-Surjective Quadratic SI-Lifting Functions over
Fnp via F : Fmp → Fp for m ∈ {1, 2}

The main drawback of MiMC++ regards the fact that one is forced to work with a state
size p that is much larger than the security level κ in order to guarantee security. Even
if the performance in MPC applications does not depend on the size of the prime, it
would be desirable to have secure symmetric primitives for which the state size p does not
have to satisfy the previous requirement. As we already mentioned in the introduction,
this problem does not arise when working with a scheme that is defined over Fnp , as
HadesMiMC and Hydra. In such a case, it is possible to guarantee security for a proper
choice of n, keeping p fixed. For this reason, in this section we start an analysis of bounded
surjective quadratic functions over Fnp to use as building blocks for setting up variants of
HadesMiMC and Hydra.

Goals and Motivations. As it is well known, no quadratic function F over Fp is invertible,
which (obviously) implies that no SI-lifting function SF over Fnp induced by F (x) =
x2 + α1 · x + α0 can be invertible as well. Recently, at FSE/ToSC 2022, Grassi et
al. [GOPS22] proved that, given any quadratic function F : F2

p → Fp, the corresponding
SI-lifting function SF over Fnp for n ≥ 3 as defined in Def. 1 is never invertible. For all
such functions that can be computed via n multiplications only, here we analyze

• the probability that a collision occurs, namely, the probability that SF (x) = SF (y)
given x, y ∈ Fnp such that x 6= y;

• the details of the inputs x, y ∈ Fnp for which SF (x) = SF (y).

While the motivation regarding the analysis of the probability that a collision occurs is
clear, here we explain – via a concrete example – why we are also interested on the details of
the inputs x, y ∈ Fnp for which SF (x) = SF (y). Consider a sponge hash function [BDPA08]
instantiated via an iterative scheme, whose round function is of the form x 7→ γ+M×S(x),
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where S : Fnp → Fnp is a non-linear layer, M ∈ Fn×np is an invertible matrix and γ ∈ Fnp is
a round constant. Let r, c be respectively the rate and the capacity of the sponge hash
function, where c+ r = n. Given F : Fmp → Fp, let’s consider the case in which S := SF
over Fnp as defined in Def. 1. Assume that SF is not invertible and assume there exist
different x, y ∈ Fnp such that (1st) SF (x) = SF (y) and such that (2nd) xi = yi for each
i ∈ {r, r + 1, . . . , n− 1} (that is, x and y are equal in the part corresponding to the inner
part of the sponge hash function). In such a case, a collision can be obviously constructed,
independently of the probability that a collision occurs for SF . For this reason, in such
a scenario it is crucial to know the details of the inputs for which the collision occurs,
besides the probability of the collision event. (Depending on the details of M , a similar
result can be achieved even if the linear layer M is applied before the non-linear SF .)

Our Results and Organization of the Section. As main results, we prove that:

1. given F (x0, x1) = x2
0 + x1 (or equivalent), the probability that a collision occurs

at the output of SF is (p−1)n
pn·(pn−1) ≤ p

−n (note that this probability is much smaller
than the upper bound obtained via Lemma 3, which is only based on the fact that
such function is 2n-bounded subjective). In particular, we show that if a collision
SF (x) = SF (y) occurs, then xi 6= yi for each i ∈ {0, 1, . . . , n− 1};

2. given any other quadratic function F : Fmp → Fp for m ∈ {1, 2} such that SF can
be computed via n multiplications independently of the value of p, the probability
that a collision occurs in SF is never smaller than the one corresponding one for
F (x0, x1) = x2

0 + x1 (or equivalent);

3. the SI-lifting function SF over Fnp induced by F (x0, x1) = x2
0 + x1 (or equivalent) is

2n-bounded subjective.

In particular, we emphasize that both the SI-lifting function SF over Fnp induced by
F (x0, x1) = x2

0 + x1 (or equivalent) and by F (x) = x2 (or equivalent) are 2n-bounded
subjective. However, (1st) the probability that a collision occurs is much smaller in the
first case than in the second one (approximately of a factor 2n − 1), and (2nd) a collision
x2

0‖x2
1‖ . . . ‖x2

n−1 = y2
0‖y2

1‖ . . . ‖y2
n−1 can occur also in the case in which xi = yi for some

i ∈ {0, 1, . . . , n− 1} (while this is not possible for SF induced by F (x0, x1) = x2
0 + x1 or

equivalent).
In the following, we propose a complete analysis of the following cases:

F (x0, x1) = x2
1+α1,0·x0+α0,1·x1 , F (x) = x2+α1·x , F (x0, x1) = x0·x1+α1,0·x0+α0,1·x1 .

The analogous analysis of the other cases (including F (x0, x1) = x2
0 + α0,2 · x2

1 + α1,0 ·
x0 + α0,1 · x1, F (x0, x1) = x0 · x1 + α2,0 · x2

0 + α1,0 · x0 + α0,1 · x1, F (x0, x1) = α2,0 · x2
0 +

x0 · x1 + α0,2 · x2
1 + α1,0 · x0 + α0,1 · x1, and equivalent) is given in App. A.

4.1 F (x0, x1) = x2
1 + α1,0 · x0 + α0,1 · x1

Let’s start by analyzing the case F (x0, x1) = α0,2 ·x2
1 +α1,0 ·x0 +α0,1 ·x1 with α0,2, α1,0 6= 0

(the following result is equivalent for F (x0, x1) = α2,0 · x2
0 + α1,0 · x0 + α0,1 · x1 with

α2,0, α0,1 6= 0). Without loss of generality (W.l.o.g.), we assume α0,2 = 1. Indeed, note
that SF over Fnp induced by F (x0, x1) = α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 is equivalent to
α0,2 · SF ′ induced by F ′(x0, x1) = x2

1 + α′1,0 · x0 + α′0,1 · x1 where α′1,0 = α1,0/α0,2 and
α′0,1 = α0,1/α0,2. (We emphasize that the same analysis/trick holds for the functions
analyzed in the following.)

The collision SF (x) = SF (y) occurs if and only if

∀i ∈ {0, . . . , n−1} : (xi+1−yi+1)·(xi+1 +yi+1) = −α1,0 ·(xi−yi)−α0,1 ·(xi+1−yi+1) .
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Via the change of variables

di := xi − yi and si := xi + yi, (3)

where xi = (si + di)/2 and yi = (si − di)/2, the collision SF (x) = SF (y) occurs if and
only if 

0 d1 0 . . . 0
0 0 d2 . . . 0
... . . . ...
0 0 0 . . . dn−1
d0 0 0 . . . 0

×

s0
s1
s2
...

sn−1

 = −


α1,0 · d0 + α0,1 · d1
α1,0 · d1 + α0,1 · d2
α1,0 · d2 + α0,1 · d3

...
α1,0 · dn−1 + α0,1 · d0

 . (4)

The determinant of the left-hand side (l.h.s.) matrix is −(−1)n ·
∏n−1
i=0 di:

• if di 6= 0 for all i ∈ {0, 1, . . . , n− 1}, then the system admits a solution for each given
s0, s1, . . . , sn−1, which corresponds to a collision;

• if di = 0 for a certain i ∈ {0, 1, . . . , n − 1}, e.g. d1 = 0, then the condition
d1 · s0 = −(α1,0 · d0 + α0,1 · d1) is satisfied only by d0 = 0. Working iteratively, we
get that if at least one di is zero, then the system admits a solution if and only if all
di are zero, which corresponds to x = y.

It follows that

Proposition 1. Let p ≥ 3 be a prime and let n ≥ 2. Let F : F2
p → Fp be defined as

F (x0, x1) = x2
1 +α1,0 ·x0 +α0,1 ·x1 where α1,0 6= 0. Let SF over Fnp be defined as in Def. 1.

The probability of a collision SF (x) = SF (y) for x, y ∈ Fnp such that x 6= y is

(p− 1)n
pn · (pn − 1) <

pn − 1
pn · (pn − 1) = p−n .

Moreover, if x, y ∈ Fnp such that x 6= y and SF (x) = SF (y), then xi 6= yi for each
i ∈ {0, 1, . . . , n− 1}.

(Note that, for any p ≥ 3 and any n ≥ 2, pn − 1 > (p− 1)n since
∑n−1
i=1

(
n
i

)
· pi > 0.)

The following Lemma provides the details of the collisions:

Lemma 4. Let p ≥ 3 be a prime and let n ≥ 2. Let F : F2
p → Fp be defined as

F (x0, x1) = x2
1 +α1,0 ·x0 +α0,1 ·x1 where α1,0 6= 0. Let SF over Fnp be defined as in Def. 1.

Two distinct inputs x, y ∈ Fnp satisfies form a collision SF (x) = SF (y) if and only

xi = α0,1

2 + di
2 ·
(
α1,0

di+1
+ 1
)

and yi = α0,1

2 + di
2 ·
(
α1,0

di+1
− 1
)

= xi + di ,

for each i ∈ {0, 1, . . . , n− 1}, where d0, d1, . . . , dn−1 ∈ Fnp \ {0}.

In order to prove the result, it is sufficient to invert the l.h.s. diagonal matrix given
in (4), and to make used of the definition of d, s given in (3). Given a difference d ∈ Fnp
and a sum s ∈ Fnp that correspond to a collision, that is, SF ((s+ d)/2) = SF ((s− d)/2),
we point out that SF ((s+ ω · d)/2) = SF ((s− ω · d)/2) for each ω ∈ Fp.

The Function SF over Fn
p via F (x0, x1) = x2

1 + α1,0 · x0 + α0,1 · x1 is 2n-Bounded
Surjective. As final step, we prove the following result.

Proposition 2. Let p ≥ 3 be a prime and let n ≥ 2. Let F : F2
p → Fp be defined as

F (x0, x1) = x2
1 + α1,0 · x0 + α0,1 · x1 where α1,0 6= 0. The SI-lifting function SF over Fnp

defined as in Def. 1 is 2n-bounded surjective.
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Proof. By definition of 2n-bounded surjective, we aim to prove that each output y of SF
admits at most 2n pre-images. W.l.o.g., we focus on α1,0 = 0 and α0,1 = 1 (the following
proof is equivalent for the other cases). By definition of F :

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + x2
i+1 −→ xi = Gyi(xi+1) := yi − x2

i+1 ,

for Gy : Fp → Fp given y ∈ Fp. Working iteratively, we have that

x0 = Gy0(x1) = Gy0 ◦Gy1(x2) = . . . = Gy0 ◦Gy1 ◦ . . . ◦Gyn−1(x0) .

That is, given y0, y1, . . . , yn−1 ∈ Fp, there exists a function Hy0,y1,...,yn−1 over Fp of degree
2n such that

Hy0,y1,...,yn−1(x0) := Gy0 ◦Gy1 ◦ . . . ◦Gyn−1(x0)− x0 = 0 .

Such function admits at most 2n distinct solutions in x0 ∈ Fp. For each one of the 2n
solutions x0, the values x1, x2, . . . , xn−1 are fixed and defined iteratively by xi = Gyi(xi+1)
for each i ∈ {1, 2, . . . , n − 1}. This means that each output of SF admits at most 2n
distinct pre-images.

As a concrete example, consider the case p = 7 and n = 2. The function SF (x0, x1) =
x2

0 + x1‖x2
1 + x0 over F2

p is “strictly” 4-bounded surjective, in the sense that there exists
at least one output in F2

p with four distinct pre-images: SF (0, 0) = SF (3, 5) = SF (5, 3) =
SF (6, 6) = (0, 0).

Before going on, we point out that the collision probability given in Prop. 1 is (much)
smaller than the corresponding probability obtained by combining Lemma 3 with the fact
that SF is 2n-bounded surjective, that is,

(p− 1)n
pn · (pn − 1)︸ ︷︷ ︸

≤p−n

� 2n − 1
pn − 1︸ ︷︷ ︸
≈2n·p−n

.

4.2 F (x) = x2 + α1 · x
Next, we compare the result just obtained with the collision probability of the SI-lifting
function SF over Fnp induced by F (x) = α2 · x2 +α1 · x for α2, α1 ∈ Fp. As before, w.l.o.g.,
we assume α2 = 1. The collision SF (x) = SF (y) occurs if and only if

∀i ∈ {0, . . . , n− 1} : (xi+1 − yi+1) · (xi+1 + yi+1 + α1) = 0 → di · (si + α1) = 0 ,

via the change of variables di := xi − yi and si := xi + yi given in (3). Obviously, the i-th
equation is satisfied if and only if (i) di = 0 and/or (ii) si = −α1, for a total of 2 · p− 1
possible values (di, si) for each i. Hence, the following result holds (note that the term
−pn is due to the case d0 = d1 = . . . = dn−1 = 0).

Lemma 5. Let p ≥ 3 be a prime and let n ≥ 2. Let F : Fp → Fp be defined as
F (x) = x2 + α1 · x. Let SF over Fnp be defined as in Def. 1. The probability of a collision
SF (x) = SF (y) for x, y ∈ Fnp such that x 6= y is

(2 · p− 1)n − pn
pn · (pn − 1) ≈ 2n − 1

pn − 1 ,

where the approximation holds for huge p� 1. Moreover, the function SF over Fnp induced
by F (x) = x2 + α1 · x is 2n-bounded surjective.

Note that SF (x0, x1, . . . , xn−1) is 2n-bounded surjective since (i) the n components of
SF are independent, and (ii) the function x 7→ x2 is 2-bounded surjective.
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4.3 F (x0, x1) = x0 · x1 + α1,0 · x0 + α0,1 · x1

Next, we analyze SF induced by F (x0, x1) = α1,1 · x0 · x1 + α1,0 · x0 + α0,1 · x1. W.l.o.g.,
we fix α1,1 = 2 (this allows for a simpler description when using the variables si and di).
Given F (x0, x1) = 2 · x0 · x1 + α1,0 · x0 + α0,1 · x1, the system of equations that defines
the collision SF (x) = SF (y) via the variables di := xi − yi and si := xi + yi introduced in
Eq. (3) is

d1 d0 0 0 . . . 0
0 d2 d1 0 . . . 0
0 0 d3 d2 . . . 0
... . . . . . . ...
0 0 0 . . . dn−1 dn−2

dn−1 0 0 . . . 0 d0


×



s0
s1
s2
...

sn−2
sn−1


= −



α1,0 · d0 + α0,1 · d1
α1,0 · d1 + α0,1 · d2
α1,0 · d2 + α0,1 · d3

...
α1,0 · dn−2 + α0,1 · dn−1
α1,0 · dn−1 + α0,1 · d0


. (5)

The determinant of the l.h.s. matrix is

(1− (−1)n) ·
n−1∏
i=0

di =
{

2 ·
∏n−1
i=0 di if n odd,

0 otherwise (if n even).

As we are going to show:

1. the probability that a collision occurs is strictly higher than (p−1)n
pn·(pn−1) , which corre-

sponds to the probability of having a collision for F (x0, x1) = x2
1 +x0 (and equivalent

functions) as given in Prop. 1;

2. a collision can occur also in the case in which n− 1 input differences di are equal to
zero.

Analysis of x, y ∈ Fn
p such that SF (x) = SF (y). About this second point, consider

the case di ∈ Fp \ {0} and dj = 0 for each j 6= i, for which the system of equation reduces
to

di · si−1 = −α0,1 · di and di · si+1 = −α1,0 · di .

The solution of it corresponds to si−1 = −α0,1 and si+2 = −α1,0 (no condition on the
others sl for l /∈ {0, 2}).

Collision Probability for n odd. First of all, note that if di 6= 0 for each i ∈ {0, 1, . . . , n−1},
then a collision can occur. Indeed, the determinant is different from zero, which means
that there exist s0, s1, . . . , sn−1 that satisfy the required condition for having a collision.

Let’s consider the case in which n− 1 differences di are equal to zero (note that there
are n different cases). This case is obviously not included in the previous one, since now
the determinant is equal to zero. As pointed out in the previous paragraph, a collision can
occur if si−1 and si+1 satisfy some particular equalities, while no condition is imposed on
the other sj . As a result, the probability of having a collision is at least equal

(p− 1)n + n · pn−2 · (p− 1)
pn · (pn − 1) >

(p− 1)n
pn · (pn − 1) ,

which is strictly bigger than the probability given in Prop. 1.
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Collision Probability for n even. Since the determinant of the matrix is always equal to
zero, there is a linear combination of its rows that is equal to zero. Assuming such linear
combination is defined via λ0, λ1, . . . , λn−1 ∈ Fp, a collision can occur if the right-hand side
(r.h.s.) of (5) satisfies the same linear relation, that is, if

∑n−1
i=0 λi ·(α1,0 ·di+α0,1 ·di+1) = 0.

In such a case, this implies that one difference di is fixed. W.l.o.g., assuming that d1
satisfies such linear relation, the collision takes place if

d2 d1 0 . . . 0
0 d3 d2 . . . 0
... . . . . . . ...
0 0 . . . dn−1 dn−2
0 0 . . . 0 d0

×

s1
s2
...

sn−2
sn−1

 = −


α1,0 · d1 + α0,1 · d2
α1,0 · d2 + α0,1 · d3

...
α1,0 · dn−2 + α0,1 · dn−1

(α1,0 + s0) · dn−1 + α0,1 · d0

 ,

where d1 is fixed and where no condition holds on s0. The determinant of the l.h.s. matrix
is equal to d0 ·

∏n−1
i=2 di. As before, a collision can occur if d0, d2, d3, . . . , dn−1 6= 0, since

in such a case the determinant of the matrix is different from zero. This is sufficient for
concluding that the probability of having a collision is at least equal to

p · (p− 1)n−1

pn · (pn − 1) >
(p− 1)n

pn · (pn − 1) ,

which is strictly bigger than the probability given in Prop. 1.

5 The MPC-Friendly PRFs Pluto and Hydra++

Inspired by Hydra’s body, we propose the PRF Pluto,5 a modified version of HadesMiMC
in which the external rounds are instantiated via the quadratic SI-lifting function SF over
Fnp proposed in the previous section. Hydra++ is simply defined as the PRF Hydra
whose body is replaced with Pluto. As we are going to show, Pluto and Hydra++
improve respectively HadesMiMC and Hydra from the multiplicative complexity point
of view (for the same security level and for the same size of the prime p).

5.1 The PRFs Pluto and Hydra++

5.1.1 Preliminary: HadesMiMC and Hydra

The Cipher HadesMiMC. The Hades design strategy [GLR+20] allows to design SPN
schemes over Fnq that aim to reduce the overall multiplicative complexity. In order to
guarantee security and maximize the efficiency:

• the external rounds at the beginning and at the end of the primitive are instantiated
with full S-Box layers (that is, n S-Boxes in each non-linear layer) for ensuring
security against statistical attacks, besides masking the internal rounds;

• the internal rounds instantiated with partial S-Box layers (that is, 1 S-Box and n− 1
identity functions) aim to increase the overall degree of the scheme ensuring security
against algebraic attacks, besides being cheaper to evaluate.

Let p > 263 (or equivalently, dlog2(p)e ≥ 64), and let n ≥ 2. Let K ∈ Fnp be the
secret master key. Let κ be the security level such that 280 ≤ 2κ ≤ min{p2, 2256}. Let

5In [GOPS22], authors called the updated modified version of Poseidon as Neptune. Following it,
here we decided to call this new version as Pluto, which is the Roman name of the Greek god Hades.
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d ≥ 3 be the smallest integer such that gcd(d, p− 1) = 1. The block cipher HadesMiMC
HK : Fnp → Fnp is defined as6

HK(x) = ERf+R′
f
−1 ◦ · · · ◦ ERf︸ ︷︷ ︸

=R′
f

rounds

◦ IRP−1 ◦ · · · ◦ I0︸ ︷︷ ︸
=RP rounds

◦ ERf−1 ◦ · · · ◦ E0︸ ︷︷ ︸
=Rf rounds

(x+ K)

where

∀i ∈ {0, 1, . . . , Rf +R′f − 1} : Ei(x) = ki +ME × SE(x) ,
∀j ∈ {0, 1, . . . , RI − 1} : Ij(x) = kj +MI × SI(x) ,

such that
• the external non-linear layer is defined as SE(x0, x1, . . . , xn−1) = xd0‖xd1‖ . . . ‖xdn−1;

• the internal non-linear layer is defined as SI(x0, x1, . . . , xn−1) = xd0‖x1‖ . . . ‖xn−1
(that is, the power map is applied only on the first component);

• ME = MI ∈ Fn×np is a MDS matrix that prevents the existence of invariants subspace
trails for the internal rounds – we refer to [GRS21] for a detailed description on how
to choose such matrices;

• ki, kj ∈ Fnp are the round sub-keys derived from the master key via an affine key-
schedule of the form

ki = (MK)i × K + ϕi , kj = (M ′K)j × K + ϕ′j (6)

for invertible matrices MK,M ′K ∈ Fn×np and for random round constants ϕi, ϕ′j ∈ Fnp
– we refer to [GLR+20, Sect. 3] for all details.

Let 240 ≤ 2κ/2 ≤ min{p, 2128} be the data limit available for the attack. The number
of rounds are given by Rf = R′f = 3 and RP = 4 +

⌈
κ

2·log2(d)

⌉
+ dlogd(n)e.7

The Body of Hydra. The PRF Hydra is based on the Megafono mode of operation
recently introduced in [GØWS22], a modified version of the Farfalle mode of opera-
tion [BDH+17] suitable for MPC applications. A scheme based on the Megafono mode
of operation is composed of two phases, that is, (1st) an initial phase in which the input is
mixed with the secret key via a PRP, and (2nd) an expansion phase in which the state is
expanded until the desired state size is reached. We refer to [GØWS22] for more details.

For the goal of this paper, we focus on the initial phase only. The primitive that
instantiates the initial phase – called body – is an Even-Mansour construction of the form

x 7→ K + B(x+ K) , (7)

where K is the secret key, and B is an unkeyed permutation. In the case in which the body
is indistinguishable from a PRP, the security of the entire Megafono construction can
be heavily simplified due to the fact that only few attacks apply, as a consequence of the
facts that (i) the attacker does not have access to the internal states of the construction,
as the inputs of the expansion phase (besides not being able to choose the outputs for
e.g. setting up a chosen ciphertext attacks), and (ii) the inputs of the expansion phase
(equivalently, the outputs of the initial phase) do not have any algebraic and statistical
structure. In the case of Hydra, the permutation B that instantiates the initial phase is
based on the Hades design strategy, but differs from HadesMiMC on the following points:

6In [GLR+20], authors use the nomenclature “Full” and “Partial” rounds for referring respectively to
the “External” and the “Internal” rounds. This new nomenclature has been introduced in [GOPS22].

7In [GLR+20], the number of rounds are provided only for the cases in which either p ≈ 2κ or pn ≈ 2κ.
The number of rounds given here is a simple generalization of the number of rounds given in the original
paper [GLR+20].
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• the body of Hydra is defined over F4
p (that is, n = 4 fixed and not variable);

• the non-linear layer SI of the internal rounds are instantiated via a degree 4 Lai-
Massey scheme that can be computed via only 2 Fp-multiplications, that is,

SI(x0, x1, . . . , xn−1) = x0 + z‖x1 + z‖ . . . ‖xn−1 + z (8)

where

z =

(n−1∑
i=0

λ
(0)
i · xi

)2

+
(
n−1∑
i=0

λ
(1)
i · xi

)2

such that (λ(0)
0 , . . . , λ

(0)
n−1), (λ(1)

0 , . . . , λ
(1)
n−1) ∈ (Fp \ {0})n are linearly independent

and satisfy
∑n−1
i=0 λ

(0)
i =

∑n−1
i=0 λ

(1)
i = 0;

• ME ∈ Fn×np is a MDS matrix, while MI ∈ Fn×np is an invertible matrix that aims for
destroying the invariant subspace trails of the Lai-Massey construction – we refer
to [GRS21,GØWS22] for all details about MI ;

• the round sub-keys are replaced by random round constants.

The number of rounds of Hydra’s body are given by Rf = 2, Rf ′ = 4, and RP =⌈
1.125 ·

⌈
κ
4 + 6− log2(d)

⌉⌉
, including a security margin of 12.5% for the internal rounds.

5.1.2 The PRFs Pluto and Hydra++

The PRF Pluto. Here, we propose the PRF Pluto as a modified version of the Hydra’s
body. Let p > 263 (or equivalently, dlog2(p)e ≥ 64), and let n ≥ 4. Let K ∈ Fnp be the
secret master key. Let κ be the security level such that

280 ≤ 2κ ≤ min
{
p2, 2256,

1
2 ·
( p

28

)n/2
}
.

The keyed PRF Pluto PK : Fnp → Fnp is defined as

PK(x) = ERE+RE′−1 ◦ · · · ◦ ERE︸ ︷︷ ︸
=RE′ rounds

◦ IRI−1 ◦ · · · ◦ I0︸ ︷︷ ︸
=RI rounds

◦ ERE−1 ◦ · · · ◦ E0︸ ︷︷ ︸
=RE rounds

(x+ K)

where

∀i ∈ {0, 1, . . . , RE +RE′ − 1} : Ei(x) = ki +ME × SE(x) ,
∀j ∈ {0, 1, . . . , RI − 1} : Ij(x) = kj +MI × SI(x) ,

such that

• the external non-linear layer SE is instantiated by the SI-lifting function SF over
Fnp induced by F (x0, x1) = x2

0 + x1; the internal non-linear layer SI of degree
2 ≤ 2l ≤ 2n−1 is instantiated via the Lai-Massey function defined in (8);8

8We do not exclude the possibility to instantiate z with a function of degree 2l in x0, x1, . . . , xn−1 (where
2 ≤ 2l ≤ 2n−1) that can be computed with l multiplications only. E.g., given z−1 = 0, let z = zl−1 where

z0, z1, . . . , zl−1 are computed iteratively as zi =
(
zi−1 +

∑n−1
j=0 λ

(i)
j · xj

)2
for each i ∈ {0, 1, . . . , l − 1},

where (λ(0)
0 , . . . , λ

(0)
n−1), (λ(1)

0 , . . . , λ
(1)
n−1), . . . , (λ(l−1)

0 , . . . , λ
(l−1)
n−1 ) ∈ (Fp \ {0})n are linearly independent

and satisfy
∑n−1

i=0 λ
(0)
i =

∑n−1
i=0 λ

(1)
i = . . . =

∑n−1
i=0 λ

(l−1)
i = 0. Even if having a round function with an

higher degree allows to reach maximum degree with a smaller number of rounds (with potential advantages
from the plain performance point of view), a problem with the density of the polynomial representation of
Pluto could arise. Following [GØWS22], we believe that the degree four 2l = 4 is a good compromise.
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• ME ∈ Fn×np is a MDS matrix, while MI ∈ Fn×np is an invertible matrix that aims for
destroying the invariant subspace trails of the Lai-Massey construction – we refer
to [GRS21,GØWS22] for all details about MI ;

• ki, kj are the round sub-keys defined as ki = K + ϕi and kj = K + ϕ′j for random
round constants ϕi, ϕ′j ∈ Fnp .

Obviously, this construction is not invertible anymore, but it can be used as a stream
cipher for encryption purpose, exactly as in the case of MiMC++ – see (2). The number of
rounds are given by

RE = RE′ = 4 and RI =
⌈
1.125 ·

⌈κ
4 + n

2 + log2(n) + 1
⌉⌉

,

where we add an arbitrary security margin of 12.5% for the internal rounds.

The PRF Hydra++. The keyed PRF Hydra++ is defined as the PRF Hydra whose
body is replaced with the keyed PRF Pluto just defined over F4

p.
Remark 2. We point out that the body of the PRF Hydra is instantiated via an Even-
Mansour construction x 7→ K + B(x+ K), where B is a permutation that is independent
of the secret key. In the case of Hydra++, its body is instantiated with a keyed iterated
PRF in which the key addition takes place in each round. We are not aware of any attack
on Hydra++ that exploits such difference.

5.2 Security Analysis of Pluto
Here we justify the number of rounds just given for Pluto (and Hydra++). Since the
security analysis is equivalent to the one given for HadesMiMC/Hydra’s body, we limit
ourselves to adapt the security analysis of HadesMiMC/Hydra’s body to Pluto. (We
refer to Sect. 3.2 for the description of the attacks analyzed here.) We explicitly state that
we do not make any security claim in the related-key setting.

5.2.1 Statistical Attacks

Let A over Fnp be an invertible affine transformation. As in the case of HadesMiMC, our
goal is to show that

x 7→ E7 ◦ · · · ◦ E4︸ ︷︷ ︸
=4 rounds

◦A ◦ E3 ◦ · · · ◦ E0︸ ︷︷ ︸
=4 rounds

(x) (9)

is secure against statistical attacks. The security of Pluto follows from the fact that
the security of this “weaker” scheme (9) is not reduced when A is replaced by internal
invertible non-linear rounds (note that the internal rounds of Pluto are invertible). As
in the case of HadesMiMC, two of the eight external rounds of Pluto aim to frustrate
partial key-guessing attacks.
Remark 3. Before going on, we clarify the choice of the key-schedule of Pluto compared
to the one of HadesMiMC. Let’s assume that the attacker partially guesses one sub-key
ki. In the case of HadesMiMC, due to its linear key-schedule (6), the attacker only
partially knows the relation between the entries of other sub-keys kj for j 6= i, but not the
exact values of its entry (in general). This choice aims to frustrate attacks in which the
attacker partially guesses multiple sub-keys. Due to the conditions p > 264, n ≥ 4, and
κ ≤ min{2 · blog2(p)c, 256}, here we claim that a simpler key-schedule (defined via random
round constants addition) is sufficient for reaching the same goal.
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Differential Attack. First of all, we analyze the probability that a collision occurs in
Pluto, keeping in mind that SF is a 2n-bounded subjective function. Since every bijective
function is a 1-bounded subjective function (see Lemma 1), the polynomial function
corresponding to the PRF Pluto is 28·n-bounded subjective due to Lemma 2 (remember
that the number of external rounds is eight). Based on the result proposed in Lemma 3,
the probability that a collision occurs is upper bounded by

28·n − 1
pn − 1 ≈

(
28

p

)n
< 2−2·κ ,

where the last inequality holds due to the assumption on κ. Since at most 2κ/2 texts are
available for the attack, the attacker can construct at most

(2κ/2

2
)
≈ 2κ−1 different pairs of

texts, which implies that observing a collision is very unrealistic.
Next, let’s consider the case of a differential characteristic without collision. Let

∆I ,∆O ∈ Fnp \ {0} be respectively an input/output (non-null) difference. The system of
equations SF (x+ ∆I)− SF (x) = ∆O is satisfied by x = (s−∆I)/2 ∈ Fnp where

0 ∆I
1 0 . . . 0

0 0 ∆I
2 . . . 0

... . . . ...
0 0 0 . . . ∆I

n−1
∆I

0 0 0 . . . 0

×

s0
s1
s2
...

sn−1

 = −


α1,0 ·∆I

0 + α0,1 ·∆I
1 −∆O

0
α1,0 ·∆I

1 + α0,1 ·∆I
2 −∆O

1
α1,0 ·∆I

2 + α0,1 ·∆3 −∆O
2

...
α1,0 ·∆I

n−1 + α0,1 ·∆I
0 −∆O

n−1

 .

Since ∆O 6= 0 ∈ Fnp , for each i ∈ {0, 1, . . . , n− 1}:

• if ∆I
i = 0, then the i-th equality is satisfied if and only if α1,0 ·∆I

i−1 = ∆O
i ;

• if ∆I
i 6= 0, then the i-th equality is satisfied if si = −(α1,0 ·∆I

i−1 + α0,1 ·∆I
i −∆O

i )/∆I
i .

Hence, the number of different solutions of SF (x+ ∆I)− SF (x) = ∆O is at most equal to
pz, where 0 ≤ z ≤ n− 1 is the number of zero Fp-components of ∆I .

Let’s now consider two consecutive rounds, and let’s introduce:

• a0 := number of active (i.e., non-zero) Fp-components at the input of the first
non-linear layer SF ;

• a1 := number of active (i.e., non-zero) Fp-components at the output of the first
non-linear layer SF ;

• a2 := number of active (i.e., non-zero) Fp-components at the input of the second
non-linear layer SF .

Given a0 ≥ 1 active inputs Fp-components, then at most a1 ≤ min{2·a0, n} Fp-components
are active at the output of SF . In particular, note that if the a0 ≤ n/2 active input Fp-
components are not in consecutive positions, then at most 2 · a0 are active in output. Since
ME ∈ Fn×np is a MDS matrix (hence, its branch number is n+ 1 – see e.g. [DR01,DR02] for
details), then at least a2 ≥ n+ 1− a1 Fp-components are active at the input of the second
round. Over two consecutive rounds, the probability of a differential trail is approximately
given by

1
p2·n · p

n−a0︸ ︷︷ ︸
1st round

· pn−a2︸ ︷︷ ︸
2nd round

= p−a0−a2 ≤ p−a0+a1−n−1

≤ p−a0+min{2a0,n}−n−1 = pmin{a0−n−1,−1−a0} ,
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since a2 ≥ n + 1 − a1 ≥ 1 and since a1 ≤ min{2 · a0, n}. It follows that the probability
over two rounds is upper bounded by

max
1≤a0≤n

pmin{a0−n−1,−1−a0} = max
{

max
1≤a0≤bn/2c

pa0−n−1, max
dn/2e≤a0≤n

p−1−a0

}
= p−dn/2e−1 .

Given two consecutive rounds per two times (equivalently to four external rounds only),
the probability of any differential trail based on trails with non-zero differences is at most
equal to (

p−dn/2e−1
)2
≤ p−2 · 2− 2

4 ·n·κ ≤ p−2 · 2−2·κ

since 2κ ≤ p2 and since n ≥ 4, which is much smaller than the security level. Moreover,
besides the external rounds E , the internal rounds I guarantee security against classical
differential attack as well, as pointed out in e.g. [KR21]. In particular, since no invariant
subspace with no active non-linear function can cover RI/2 (or more) internal rounds
(see [GØWS22] for details), then the probability of each characteristic of four external
rounds and RI internal rounds is upper bounded by

p−2 · 2−2·κ ·
(

3
p

)bRI/2c

,

where 3/p is the maximum differential probability of SI , as proved in [GØWS22, App. H].
Based on this, we conclude that Pluto instantiated with eight external rounds is secure
against classical differential attacks with a data limit of 2κ/2 texts available for the attacker.

Other Statistical Attacks. As in the case of HadesMiMC, eight external rounds
are sufficient for preventing other statistical attacks, including the linear one [Mat93],
the truncated differential one [Knu94], the impossible differential [Knu98,BBS99], the
boomerang attack [Wag99], the integral one [DKR97], the multiple-of-n/mixture differen-
tial [GRR17,Gra18], among others. This follows from the fact that no truncated differential
with probability 1 can cover more than a single external round, due to the facts that (1st)
ME is an MDS matrix and (2nd) SF is a full non-linear layer.

5.2.2 Algebraic Attacks

As before, we assume that two of the eight external rounds of Pluto aim to frustrate
partial key-guessing attacks.

Interpolation Attack. As explained in Sect. 3.2.2, a primitive can be considered secure
against the interpolation attack [JK97] if the number of unknown monomials that defines
the scheme is larger than the data available to the attacker.

Focusing on the backward direction, the function SF is not invertible. Working as in
Sect. 3.2.2, it is possible to define three sets X+,X−,Z ⊂ Fnp so that

• given z ∈ Z, then SF (y) 6= SF (z) for each y ∈ Fnp \ {z};

• given x, x′ ∈ Fnp \ Z such that SF (x) = SF (x′) and x 6= x′, then (i) x ∈ X+ and
x /∈ X− and (ii) x′ ∈ X− and x /∈ X+.

It follows that X+ ∪ X− ∪ Z = Fnp and that X+ ∩ X− = X+ ∩ Z = X− ∩ Z = ∅. Moreover,
since a collision can occur if and only if xi 6= x′i for each i ∈ {0, 1, . . . , n− 1}, we have that

|X+| = |X−| =
(p− 1)n

2 ≈ pn−1 · (p− n)
2 and |Z| = pn − (p− 1)n ≈ n · pn−1 .
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Analogous to the analysis proposed for MiMC++, while Z is uniquely defined, there are
several equivalent representations of X+ and X− (by carefully swapping two elements x
and x′ as before). It follows that only local inverses can be defined (e.g., from Fnp into
Z ∪ X±), where (1st) their algebraic expressions depend on such representations and (2nd)
they are in general of high degree. For these reasons, we conjecture that the last three
external rounds E are sufficient for stopping backward interpolation attacks.

Focusing on the forward direction,9 the degree growths as 22 · 4RI−n/2−log2(n)−2, where
we discount (i) one external round and log2(n) + 1 internal rounds in order to destroy
possible relations existing between the coefficients of the monomials (and so, to ensure
full diffusion) and (ii) n/2 + 1 extra internal rounds, since an attacker can cover at
most n/2 internal rounds via an invariant subspace without activating any function of I
(see [GØWS22] for more details).10 As a result:

22 · 4RI−n/2−log2(n)−2 ≥ 2κ/2 → RI ≥
κ

4 + n

2 + log2(n) + 1 .

Other Algebraic Attacks. As in the case of HadesMiMC and based on the same argument
proposed in Sect. 3.2.2, the security against the MitM interpolation attack implies security
against higher-order differential attack [BCD+20], the linearization attack [KS99] and the
Gröbner basis one [Buc76]. Without going into the details, the cost of a Gröbner basis
attack depends on several factors, including (i) the number of non-linear equations that
composed the system to solve, (ii) the number of independent variables, and (iii) the degree
of each equations to solve. Moreover, the cost of a Gröbner basis attack depends on the
considered representative of the system of equations. Due to the analogous Gröbner basis
attack on HadesMiMC and Hydra given in [GLR+20, Sect. 4] and in [GØWS22, Sect. 7],
two main strategies are possible for setting up a Gröbner basis attack:

(1st) working with a system of equations that involved only the inputs/outputs of the
entire permutation;

(2nd) considering a system of equations defined at round level.

In the first case, the number of variables if fixed, and the attacker can collect more
equations than the number of possible monomials. In such a case, Gröbner basis attack
reduces to a linearization attack, which does not outperform the interpolation attack just
described (see the analogous analysis proposed in Sect. 3.2.2). In the second case, the
number of variables is proportional to the number of rounds. Due to the analogous result
proposed for Hydra and HadesMiMC, we can conclude that the cost of such strategy is
higher than the security level. Other approaches do not seem to be competitive as the
ones just discussed.

5.3 Multiplicative Complexity: HadesMiMC/Hydra vs. Pluto/Hydra++

As final step, we compare the multiplicative complexity of HadesMiMC/Hydra versus
the one of Pluto/Hydra++ respectively. In the following, we denote the size of the text
to be encrypted by n.

Pluto vs. HadesMiMC. The number of multiplications required to evaluate Pluto is
(approximately)

9.125 · n + 2 ·
⌈
1.125 ·

⌈κ
4 + log2(n) + 1

⌉⌉
︸ ︷︷ ︸

≈ constant w.r.t. n

,

9Remember that deg(Ei) = deg(SF ) = 2 and that deg(Ij) = deg(SI) = 4.
10Note that we already discount three external rounds in order to prevent backward and MitM attacks.
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Table 2: Comparison between HadesMiMC (instantiated with x 7→ x3) and Pluto for
the case p ≈ 2128, κ = 128, and several values of n ∈ {4, 8, 12, 16}.

n Rf +Rf ′ & RE +RE′ RP & RI Multiplicative Complexity
HadesMiMC (d = 3) 4 6 47 142 (+ 22.4 %)

Pluto 4 8 42 116
HadesMiMC (d = 3) 8 6 48 192 (+ 24.7 %)

Pluto 8 8 45 154
HadesMiMC (d = 3) 12 6 49 242 (+ 24.7 %)

Pluto 12 8 49 194
HadesMiMC (d = 3) 16 6 49 290 (+ 26.1 %)

Pluto 16 8 51 230

where the factor that multiplies n is fixed and (approximately) equal to 9 in Pluto
(we recall that its external rounds are always instantiated with a quadratic function
independently of p). For comparison, the number of multiplications required to evaluate
HadesMiMC is

6 · (hw(d) + blog2(d)c − 1)︸ ︷︷ ︸
≥12

·n + (hw(d) + blog2(d)c − 1) ·
(

4 +
⌈

κ

2 · log2(d)

⌉
+ dlogd(n)e

)
︸ ︷︷ ︸

≈ constant w.r.t. n

,

where the factor that multiplies n depends on the value of d (which depends on p) in
HadesMiMC, and it is never smaller than 12.

As a result, we have been able to reduce the number of multiplications of HadesMiMC
without decreasing its security. A concrete comparison between the two schemes for small
values of n is proposed in Table 2 for the most common case p ≈ 2128, κ = 128 and d = 3.

Hydra++ vs. Hydra and Ciminion. A similar conclusion holds when comparing the body
of Hydra versus the body of Hydra++, for which we remember that n = 4 is fixed. In
particular, let’s consider the most common case for MPC applications, that is, p ≈ 2128

κ = 128 and d = 3. The number of Fp-multiplications for computing Ciminion (“without”
the key-schedule), Hydra, and Hydra++ are respectively given by

Ciminion (“without” KS) : 89 + 15 ·
⌈n

2

⌉
∈ O(7.5 · n) ,

Hydra : 132 + 41 ·
⌈n

8

⌉
∈ O(5 · n) ,

Hydra++ : 116 + 41 ·
⌈n

8

⌉
∈ O(5 · n) .

Hydra++’s body requires 116 Fp-multiplications versus 132 Fp-multiplications for the
Hydra’s body (that is, 13.8% more). The gap growths for bigger values of d. As a result,
this new variant of Hydra reduces the gap between the cost of Ciminion’s body with
respect to the one of Hydra’s body.

Remark 4. We remark that Hydra (and so Hydra++) outperform Ciminion (“without” the
key-schedule) for large values of n, while they all have similar performances for small values
of n. At the same time, in the common scenario in which the secret symmetric key is shared
among the parties, Hydra (and so Hydra++) are much more competitive than Ciminion,
whose performance is significantly reduced due to the fact that its expensive key-schedule
must also be computed in MPC for an extra/additional cost of 89 · n Fp-multiplications
(see [GØWS22] for more details).
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6 FHE-friendly Schemes: Implications on Masta, Pasta,
and Rubato

Masta [HKC+20], Pasta [DGH+21], and Rubato [HKL+22] are recent PRFs over Fnp
proposed for Homomorphic Encryption. For each one of these schemes, in the following
we show that it is possible to achieve better performance and/or security by modifying
them with the results proposed in this paper. Since all these schemes are inspired by
Rasta [DEG+18], we first recall it for pointing out the main common design strategy of all
these FHE-friendly PRFs.

Preliminary: Rasta. Rasta is a family of FHE-friendly stream ciphers over Fn2 for odd n
proposed at Crypto 2018. Given an input x ∈ Fn2 to encrypt, a public nonce N ∈ Fn2 and
a public block index counter i ∈ N, the ciphertext is generated as

(x,N) 7→ (x+ K + PN,i(K), N)

for a secret key K ∈ Fn2 . The public permutation PN,i : Fn2 → Fn2 consists of several rounds
R ≥ 1 of affine layers and non-linear layers of the form

PN,i(·) = AR,N,i ◦ Sχ ◦ . . . ◦ A1,N,i ◦ Sχ ◦ A0,N,i(·) , (10)

where

• Sχ over Fn2 is the SI-lifting function induced by the local map χ : F3
2 → F2 defined

as χ(x0, x1, x2) = x0 + x2 + x1 · x2. We recall that Sχ is invertible for odd n ≥ 3;

• for each j ∈ {0, 1, . . . , r}, Aj,N,i = Mj,N,i × x+ cj,N,i is an affine function over Fn2 ,
where Mj,N,i ∈ Fn×n2 is an invertible matrix and cj,N,i ∈ Fn2 .

In order to minimize the multiplicative depth, the design strategy adapted for Rasta is
quite different from the one usually adopted by “traditional/classical” symmetric primitives.
In general, given the size n and the security level κ, the number of rounds R of a symmetric
primitive is chosen in order to guarantee security (e.g., so that no known attack published
in the literature can break the scheme, besides a possible security margin). Exactly the
opposite occurs for Rasta. In order to minimize the depth (note that each round has depth
one, since Sχ is a quadratic function and Aj,N,i is an affine function), given the number of
rounds R and the security level κ, the size n is chosen in order to guarantee security, that
is, in order to frustrate any possible attack on the scheme. This usually results in huge
state size compared to “traditional/classical” symmetric primitives.

Besides that, another crucial feature of Rasta regards the affine layers Aj,N,i, which are
not fixed. At each new encryption, new random invertible affine layers A0,N,i, . . . ,AR,N,i
are generated via a public XOF that takes in input the nonce N and the counter i. This
fact has a crucial impact on the security against statistical attacks, as linear or differential
attacks. For a “traditional/classical” cipher, given a set of inputs and corresponding
outputs encrypted via the same algorithm, the attacker performs statistical analysis on
the output distribution in order to break the scheme. However, such strategy does not
work in the case of Rasta, since each input is encrypted via a different encryption scheme.

As a result, the main attack vector against Rasta results the linearization one, whose
cost – recalled in see Sect. 3.2.2 – is proportional to the number of monomials that define
the analyzed function.11

11Here, we do not discuss other attacks on Rasta that have been recently proposed in the litera-
ture [DMRS20,LSMI21,LSMI22], since they exploit the details of the non-linear Sχ over Fn2 and they
(currently) do not apply to the prime field case.
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About Masta. Masta can be seen as a direct translation of Rasta to Fnp for a prime
integer p ≥ 3. Both in Rasta and in Masta, the non-linear layer is defined via the SI-lifting
function Sχ over the entire state Fnq (where q = 2 for Rasta and q = p for Masta) induced
by the chi function χ : F3

q → Fq defined as before. The main difference between Masta
and Rasta regards the way in which the invertible matrices Mj,N,i that define the affine
layers are generated.

Our result proposed in Sect. 4.3 implies that Sχ over Fnp for p ≥ 3 and n ≥ 3 is
never invertible. This fact can be easily proven by adapting the proof just given for such
function. In the analyzed case, the equality given in (5) and corresponding to the collision
Sχ(x) = Sχ(y) re-written via the variables d, s ∈ Fnp becomes

0 d2 d1 0 . . . 0
0 0 d3 d2 . . . 0
... . . . . . . ...
0 0 0 . . . dn−1 dn−2

dn−1 0 0 . . . 0 d0
d1 d0 0 . . . 0 0


×



s0
s1
s2
...

sn−2
sn−1


= −



d0 + d2
d1 + d3
d2 + d4

...
dn−2 + d0
dn−1 + d1


.

Note that the l.h.s. matrix in this equality corresponds to the l.h.s. matrix in (5) after a
re-arrangement of the rows. Since the collision event Sχ(x) = Sχ(y) only depends on the
details of such matrix, the result follows immediately.

Hence, replacing Sχ in Masta with the SI-lifting function SF over Fnp induced by
F (x0, x1) = x2

0 + x1 (or equivalent) implies the following advantages:

• the costs of Sχ and of SF in terms of multiplications is equal;

• the resistant of Masta against linearization attacks does not change, since the
number of quadratic monomials of SF and of Sχ are equal;

• the probability that a collision occurs is smaller.

Regarding this last point, at the current state of the art, no attack on Masta based on
the fact that Sχ is not invertible has been proposed in the literature. As in the case of
Rasta, this is related to the fact that statistical attacks are frustrated by the change of the
affine layer at every encryption. At the same time, the proposed change allows to reduce
the collision probability without any other counter-effect.

About Pasta. With respect to Masta, Pasta is a variant of Rasta over Fnp instantiated
with invertible non-linear layers only, and in which the feed-forward is replaced by a final
truncation. That is, given an input x ∈ Fnp to encrypt, a public nonce N ∈ Fnp and a public
block index counter i ∈ N, the ciphertext is generated as

(x,N) 7→ (x+ T2n,n ◦ PN,i(K), N)

for a secret key K ∈ F2n
p , a public permutation PN,i : F2n

p → F2n
p , and a truncation function

T2n,n : F2n
p → Fnp . As in the case of Rasta, the public permutation PN,i consists of several

rounds R ≥ 1 of affine layers and non-linear layers of the form (10), where the non-linear
layers in the first R − 1 rounds is instantiated via two parallel (independent) Type-III
Feistel schemes over Fnp of the form

(x0, . . . , xn−2, xn−1) 7→ (x0 + (x1)2, . . . , xn−2 + (xn−1)2, xn−1) , (11)

while the last round is instantiated via power maps (x0, x1, . . . , x2n−1) 7→ (xd0, xd1, . . . , xd2n−1)
for an integer d ≥ 3 such that gcd(d, p− 1) = 1.
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One of the selling points of Pasta compared to Masta regards the fact that no internal
collision can occur due to the non-invertibility of the non-linear layer, see [DGH+21, Sect.
5.2]: “the χ-function is in general [actually, never] no permutation when working over Ftp,
which is why we consider some alternatives”. (Remember that a collision at the output
can always occur, since Pasta as well as Masta and Rasta are not invertible due to the
feed-forward/truncation construction). However, as we already pointed out, it seems hard
that an internal collision can be extended into an attack on the entire scheme. Indeed,
assume that a collision occurs at the R̃-th round for R̃ < R, that is,

Sχ ◦ AR̃,N,i ◦ . . . ◦ A1,N,i ◦ Sχ ◦ A0,N,i(x) = Sχ ◦ AR̃,N ′,i′ ◦ . . . ◦ A1,N ′,i′ ◦ Sχ ◦ A0,N ′,i′(x)

for N 6= N ′ and i 6= i′. Since Aj,N,i is (generally) different from Aj,N ′,i′ for each
j ∈ {R̃ + 1, . . . , R}, such collision does not survive the next rounds. Hence, replacing
the Type-III Feistel scheme as in (11) with the SI-lifting function SF over Fn2 induced by
F (x0, x1) = x2

0 + x1 (or equivalent) implies the following advantages:

• the depth of the entire construction (and so the overall cost) does not change;

• the obtained construction would be (slightly) more resistant against the linearization
attack, since the number of quadratic monomials in SF is slightly bigger than in the
Type-III Feistel scheme as in (11).

In particular, it is crucial to keep in mind that a collision occurs with probability approxi-
mately p−n, which is much smaller than the security level due to the huge size of Pasta
(and of Rasta-like design schemes in general). For all these reasons, we claim that the
advantages just proposed do not imply a smaller security level.

About Rubato. Rubato is a family of noisy stream ciphers over Fnp based on the Rasta
design strategy, targeting the transciphering framework for approximate homomorphic
encryption. The main difference with Pasta regards the way in which the encryption is
performed. First of all, given a certain m ≥ 1 and an input x ∈ Fnp to encrypt and a public
nonce N ∈ Fn+m

p , the ciphertext is generated as

(x,N) 7→ (x+NG + Tn+m,n ◦ EK(N), N)

for a secret key K ∈ Fn+m
p , a cipher EK : Fn+m

p → Fn+m
p , and a Gaussian noise NG ∈ Fnp .

With respect to the public permutation PN,i used in Rasta, Masta, and Pasta:

• a round-key addition takes place at each round of EK;

• the affine layer that define EK are fixed, that is, they do not change at each encryption;

• the round-keys are generated via an affine maps that change at every encryption
(as before, such affine maps are generated via a public XOF that takes in input the
nonce N).

In more details, the l-round sub-key kl ∈ Fnp for l ∈ {0, 1, . . . , r} of the i encryption for
i ≥ 0 is defined as kl = A′l,N,i(K) for an invertible affine layer A′l,N,i over Fnp . We refer
to [HKL+22] for more details. We emphasize that the noise addition does not play any
role in the following argument.

Having said that, since Rubato is instantiated with the same non-linear layers of Pasta,
that is, the quadratic Type-III Feistel scheme given in (11), the observations just proposed
for Pasta translate directly to Rubato as well.
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7 Final Warning
We conclude with the following warning:

we discourage the use of non-bijective components for designing symmetric primitives
in which the internal state is not obfuscated by a secret (e.g., a secret key).

In particular, we discourage the use of non-bijective components for building sponge-based
hash functions.

One of the reasons of this fact has been given in Sect. 4. Depending on the details of
the collision, it is potentially possible to set up a collision at the output of the first round
of a sponge hash functions, even given the constraint that the inner part must be equal to
a fixed initial value. More generally, the main reason is related to the fact that the attacker
can potentially use the full control they have over the inputs to ensure that they trigger
a collision. E.g., consider the case of a sponge over Ftp instantiated with a low-degree
non-bijective function, as the SI-lifting function SF induced by F (x0, x1) = x2

0 + x1. Due
to the low degree of such function, the attacker can potentially set up a collision at the
output of the second round of the non-linear function SF (assuming no collision can occur
at the output of the first round12) by simply solving a system of equations of degree 4 in
2 · r variables (where r is the rate).

For comparison, a similar problem does not arise – in general – for symmetric primitives
that depend on some secret key material, due to the fact that the concrete value of the
internal state is unknown and “masked” by the secret key.
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A Details of Sect. 4
A.1 F (x0, x1) = x2

0 + α0,2 · x2
1 + α1,0 · x0 + α0,1 · x1

Given F (x0, x1) = x2
0 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 where α0,2 6= 0 (w.l.o.g., we fixed
α2,0 = 1), the system of equations that defines the collision SF (x) = SF (y) via the variables
di := xi − yi and si := xi + yi introduced in Eq. (3) is

d0 α0,2 · d1 0 0 . . . 0
0 d1 α0,2 · d2 0 . . . 0
0 0 d2 α0,2 · d3 . . . 0
...

. . . . . .
...

0 0 0 . . . dn−2 α0,2 · dn−1
α0,2 · d0 0 0 . . . 0 dn−1

×


s0
s1
s2
...

sn−2
sn−1

 =

−
[
α1,0 · d0 + α0,1 · d1 α1,0 · d1 + α0,1 · d2 . . . α1,0 · dn−1 + α0,1 · d0

]T
,

(12)

where ·T denotes the transpose matrix/vector. The determinant of the l.h.s. matrix is
equal to

(1− (−α0,2)n) ·
n−1∏
i=0

di .

Hence, in order to give a lower bound on the probability of having a collision, we study
separately the two cases: (1st) 1 6= (−α0,2)n and (2nd) 1 = (−α0,2)n. Before going on, we
point out that SF costs n multiplications by pre-computing x2

0, x
2
1, . . . , x

2
n−1.

Analysis of x, y ∈ Fn
p such that SF (x) = SF (y). As first step, we analyze the details

of x, y such that SF (x) = SF (y). In this case, a collision does not necessary occur if n− 1
input differences di are equal to zero. E.g., in the case d1 ∈ Fp \ {0} and di = 0 for each
i 6= 1, the system of equations reduces to

α0,2 · d1 · s1 = −α0,1 · d1 and d1 · s1 = −α1,0 · d1 ,

https://ia.cr/2021/984
https://ia.cr/2021/984
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which is satisfied by s1 = −α1,0 and α0,2 · α1,0 = α0,1. If this second condition is not
satisfied, then a collision cannot occur, independently of the choice of si. At the same time,
if at least two differences are non-null (e.g., d1, d2 ∈ Fp \ {0}), then it is always possible to
have a collision (even if α0,1 6= α0,2 · α1,0). Indeed, in such a case, the system of equations
reduces to

α0,2 · d1 · s1 = −α0,1 · d1 ,

d1 · s1 + α0,2 · d2 · s2 = −α1,0 · d1 − α0,1 · d2 ,

d2 · s2 = −α1,0 · d2 ,

which is satisfied by s1 = −α0,1/α0,2, s2 = −α1,0 and by d1 = d2 · α0,2.

Collision Probability for 1− (−α0,2)n 6= 0. First of all, if all di are non-zero, then the
determinant of the l.h.s. matrix is non-zero, and a collision can occur by properly choosing
s0, s1, . . . , sn−1. Consider the case in which only two differences di, di+1 are non-null, and
all the others are equal to zero (note that there are n different cases). As pointed out in the
previous paragraph, given di, a collision can occur if si, si+1, di+1 satisfy some particular
relation (note that all the others sj for j ∈ {0, 1, . . . , n− 1} \ {i, i+ 1} are free to take any
possible value). As a result, the probability of having a collision is at least equal to

(p− 1)n + n · (p− 1) · pn−2

pn · (pn − 1) >
(p− 1)n

pn · (pn − 1) ,

which is strictly bigger than the probability given in Prop. 1.

Collision Probability for 1− (−α0,2)n = 0. If 1− (−α0,2)n = 0, then the determinant
of the l.h.s. matrix is equal to zero, which means that its rows satisfy a linear relation.
Working as in Sect. 4.3, a collision can occur if the r.h.s. of (12) satisfies the same linear
relation of the rows of the l.h.s. matrix, which implies that one difference di is fixed.
W.l.o.g., let’s assume d0 is fixed. In such a case, the collision takes place if
d1 α0,2 · d2 0 . . . 0
0 d2 α0,2 · d3 . . . 0
...

. . .
. . .

...
0 0 . . . dn−2 α0,2 · dn−1
0 0 . . . 0 dn−1

×


s1
s2
...

sn−2
sn−1

 = −


α1,0 · d1 + α0,1 · d2
α1,0 · d2 + α0,1 · d3

...
α1,0 · dn−2 + α0,1 · dn−1

α1,0 · dn−1 + (α0,1 + α0,2 · s0) · d0

 ,

where no condition on s0 ∈ Fp holds. The determinant of the l.h.s. matrix is equal to∏n−1
i=1 di, which is different from zero if d1, d2, . . . , dn−1 ∈ Fp \ {0}. This is sufficient for

concluding that the probability of having a collision is at least equal to

p · (p− 1)n−1

pn · (pn − 1) >
(p− 1)n

pn · (pn − 1) ,

which is strictly bigger than the probability given in Prop. 1.

A.2 F (x0, x1) = x0 · x1 + α2,0 · x2
0 + α1,0 · x0 + α0,1 · x1

Consider F (x0, x1) = α1,1 · x0 · x1 +α2,0 · x2
0 +α1,0 · x0 +α0,1 · x1 where α1,1, α2,0 6= 0 (the

following result is equivalent for F (x0, x1) = α1,1 · x0 · x1 + α0,2 · x2
1 + α1,0 · x0 + α0,1 · x1

where α1,1, α0,2 6= 0). W.l.o.g., we fix α1,1 = 2. Given F (x0, x1) = 2 · x0 · x1 + α2,0 · x2
0 +

α1,0 ·x0 +α0,1 ·x1 where α2,0 6= 0, the system of equations that corresponds to the collision
SF (x) = SF (y) via the variables di := xi − yi and si := xi + yi introduced in (3) is13

13In the equivalent case F (x0, x1) = α1,1 ·x0 ·x1 +α0,2 ·x2
1 +α1,0 ·x0 +α0,1 ·x1, the first and the second

diagonals of the matrix are basically swapped. We point out that this does not influence the analysis
proposed in this subsection, as e.g. the cases in which the determinant is equal to zero.
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

α2,0 · d0 + d1 d0 0 0 . . . 0
0 α2,0 · d1 + d2 d1 0 . . . 0
0 0 α2,0 · d2 + d3 d2 . . . 0
...

. . . . . .
...

0 0 0 . . . α2,0 · dn−2 + dn−1 dn−2
dn−1 0 0 . . . 0 α2,0 · dn−1 + d0


×
[
s0 s1 s2 . . . sn−2 sn−1

]T =

−
[
α1,0 · d0 + α0,1 · d1 α1,0 · d1 + α0,1 · d2 . . . α1,0 · dn−1 + α0,1 · d0

]T
.

Before going on, note that the function F can be computed via one multiplication only,
by re-writing it as F (x0, x1) = x0 · (α1,1 · x1 + α2,0 · x0) + α1,0 · x0 + α0,1 · x1.

Analysis of x, y ∈ Fn
p such that SF (x) = SF (y). In this case, a collision can occur

even if n− 1 differences di are equal to zero. E.g., if d1 6= 0 and di = 0 for each i 6= 1, the
system of equations reduces to

d1 · s0 = −α0,1 · d1 and α2,0 · d1 · s1 + d1 · s2 = −α1,0 · d1,

which is satisfied if s0 = −α0,1 and s2 = −α1,0 − α2,0 · s1, where s1, s3, s4, . . . , sn−1 are
free to take any possible value.

Collision Probability. The determinant of the l.h.s. matrix is

n−1∏
i=0

(α2,0 · di + di+1)− (−1)n ·
n−1∏
i=0

di .

By re-writing it with respect to d0, the determinant is equal to zero if and only if

α2,0 · β · d2
0 +

(
α2

2,0 · β · dn−1 + β · d1 − (−1)n ·
n−1∏
i=1

di

)
· d0 + α2,0 · d1 · β · dn−1 = 0 ,

where β :=
∏n−2
i=1 (α2,0 · di + di+1).

The case β 6= 0 holds if di−1 6= −α2,0 · di, i.e., dn−1 ∈ Fp and di ∈ Fp \ {−α2,0 · di+1}
for each i ∈ {1, 2, . . . , n− 2}. If β 6= 0, then the previous equation of degree two admits
at most two solutions in d0. This means that there are at least p · (p − 1)n−2 · (p − 2)
different values of d0, d1, . . . , dn−1 ∈ Fp for which the matrix is invertible, and so for which
a collision occurs.

As pointed out in the previous paragraph, a collision can also occur if n− 1 differences
are equal to zero. E.g., If di 6= 0, this happens if si−1 and si+1 satisfy some particular
relations given before. Note that this case is excluded from the previous case, since the
determinant is equal to zero. This is sufficient for concluding that the probability of having
a collision is at least equal to

p · (p− 1)n−2 · (p− 2) + n · (p− 1) · pn−2

pn · (pn − 1) = p · (p− 1) · ((p− 1)n−3 · (p− 2) + n · pn−3)
pn · (pn − 1) .

Since (p − 1)n−3 · (p − 2) + n · pn−3 ≥ (p − 1)n−2 if and only if n · pn−3 ≥ (p − 1)n−3

(which is always satisfied), then we conclude that such probability is strictly bigger than
the probability given in Prop. 1.
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A.3 F (x0, x1) = α2,0 · x2
0 + x0 · x1 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1

Given F (x0, x1) = α2,0 ·x2
0 +2 ·x0 ·x1 +α0,2 ·x2

1 +α1,0 ·x0 +α0,1 ·x1 for α2,0, α0,2 ∈ Fp \{0}
(w.l.o.g., we fixed α1,1 = 2), the system of equations that corresponds to the collision
SF (x) = SF (y) via the variables di := xi − yi and si := xi + yi introduced in Def. 3 is

α2,0 · d0 + d1 d0 + α0,2 · d1 0 . . . 0 0
0 α2,0 · d1 + d2 d2 + α0,2 · d3 . . . 0 0
...

. . .
. . .

...
0 0 0 . . . α2,0 · dn−2 + dn−1 dn−2 + α0,2 · dn−1

dn−1 + α0,2 · d0 0 0 . . . 0 α2,0 · dn−1 + d0


×
[
s0 s1 s2 . . . sn−2 sn−1

]T
=

−
[
α1,0 · d0 + α0,1 · d1 α1,0 · d1 + α0,1 · d2 . . . α1,0 · dn−1 + α0,1 · d0

]T
.

(13)

Multiplicative Complexity for Computing SF . Let’s start by discussing the cost of
computing SF , keeping in mind that our goal is to consider only quadratic non-linear layers
over Fnp that cost n multiplications. In general, computing SF , costs 2 · n multiplications,
since one has to compute both x2

0, x
2
1, . . . , x

2
n−1 and x0 · x1, x1 · x2, . . . , xn−1 · x0. However,

if F can be re-written as

F (x0, x1) = (ϕ0 · x0 + ϕ1 · x1) · (ψ0 · x0 + ψ1 · x1) + α1,0 · x0 + α0,1 · x1 =
= ϕ0 · ψ0 · x2

0 + (ϕ0 · ψ1 + ϕ1 · ψ0) · x0 · x1 + ϕ1 · ψ1 · x2
1 + α1,0 · x0 + α0,1 · x1

for certain ϕ0, ϕ1, ψ0, ψ1 ∈ Fp \ {0}, then the cost decreases to exactly n multiplications
for SF . This case occurs if the following equality are all satisfied:

α2,0 = ϕ0 · ψ0, α1,1 = ϕ0 · ψ1 + ϕ1 · ψ0, α0,2 = ϕ1 · ψ1 .

Given α2,0, α0,2 ∈ Fp \ {0} and α1,1 = 2, these three equality are satisfied if

α0,2 · ψ2
1 − 2ψ0 · ψ1 + α2,0 · ψ0 = 0 −→ ψ1 =

ψ0 · (1±
√

1− α0,2 · α2,0)
α0,2

.

The only case in which the square root exists independently of the value of p is α0,2 ·α2,0 = 1.
For this reason, we limit ourselves to work with α0,2 · α2,0 = 1 in the following.

Analysis of x, y ∈ Fn
p such that SF (x) = SF (y). First of all, we notice that a collision

can occur even if n− 1 differences di are equal to zero. E.g., if d1 6= 0 and di = 0 for each
i 6= 1, we have

d1 · s0 + α0,2 · d1 · s1 = −α0,1 · d1 and α2,0 · d1 · s1 + d1 · s2 = −α1,0 · d1

which is satisfied if s0 = −α0,2 ·s1−α0,1 and s2 = −α2,0 ·s1−α1,0, where s1, s3, s4, . . . , sn−1
can take any possible value in Fp.

Collision Probability. As before, our goal is to show that the probability of having a
collision is strictly bigger than (p−1)n

pn·(pn−1) . By simple computation, the determinant of the
matrix is equal to

n−1∏
i=0

(α2,0 · di + di+1)− (−1)n ·
n−1∏
i=0

(di + α0,2 · di+1) .
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Following the strategy proposed in App. A.2 and by re-writing the determinant with
respect to d0, it is equal to zero if and only if

d2
0 · (α2,0 · β + α0,2 · γ) + d0 · (α2

2,0 · β · dn−1 + β · d1 + α2
0,2 · d1 · γ + dn−1 · γ)

+ (α2,0 · β + α0,2 · γ) · d1 · dn−1 = 0 ,
(14)

where

β :=
n−2∏
i=1

(α2,0 · di + di+1) and γ := −(−1)n ·
n−2∏
i=1

(di + α0,2 · di+1) .

By limiting ourselves to focus on α0,2 · α2,0 = 1, note that

β =
n−2∏
i=1

(
1
α0,2

· di + di+1

)
=
(

1
α0,2

)n−2
·
n−2∏
i=1

(di+α0,2 ·di+1) = −
(
− 1
α0,2

)n−2
·γ . (15)

This implies that γ = 0 if and only if β = 0. Moreover, the coefficient α2,0 · β + α0,2 · γ of
d2

0 in (14) can be re-written as

α2,0 · β + α0,2 · γ = γ · α0,2 ·
(

1−
(
− 1
α0,2

)n)
,

which implies that

• if (−α0,2)n 6= 1, then the coefficient α2,0 · β + α0,2 · γ of d2
0 is equal to zero if and

only if β = γ = 0;

• if (−α0,2)n = 1, then the coefficient of d2
0 in Eq. (14) is always equal to zero.

Case: (−α0,2)n 6= 1. As we have just seen, the coefficient α2,0 ·β+α0,2 ·γ of d2
0 is equal

to zero if and only if β = γ = 0. Working as in App. A.2, by choosing d1, . . . , dn−1 ∈ Fp
such that di 6= −α2,0 · di−1 for each i ∈ {2, 3, . . . , n − 1} (where e.g. d1 is free to take
any possible value), then β, γ 6= 0. In such a case, there are at most two values of d0
that satisfies Eq. (14). In other words, there are p · (p− 1)n−2 · (p− 2) different values of
d0, d1, . . . , dn−1 for which the determinant is different from zero.

As pointed out in the previous paragraph, a collision can occur even if n− 1 differences
di are equal to zero (note that this case is obviously excluded from the previous one, since
the determinant would be zero). If di is not null, si−1, si+1 would be fixed, while all other
sj are free to take any possible. This is sufficient for concluding that the probability of
having a collision is at least equal to

p · (p− 1)n−2 · (p− 2) + n · (p− 1) · pn−2

pn · (pn − 1) = p · (p− 1) · ((p− 1)n−3 · (p− 2) + n · pn−3)
pn · (pn − 1) ,

which is strictly bigger than (p−1)n
pn·(pn−1) , that is, the probability given in Prop. 1.

Case: (−α0,2)n = 1. As we already pointed out, α2,0 · β + α0,2 · γ is equal to zero in
this case, which implies that Eq. (14) reduces to

d0 · (α2
2,0 · β · dn−1 + β · d1 + α2

0,2 · d1 · γ + dn−1 · γ) = 0 .

Since α0,2 · α2,0 = 1 and since γ = −α2
2,0 · β due to Eq. (15), such equation is always

satisfied for each d0, d1, β. It follows that the determinant is always equal to zero, and so
that the rows of the r.h.s. vector in Eq. (13) must satisfy the same linear relation of the
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rows of the l.h.s. matrix. This implies that one difference di is fixed. W.l.o.g., we assume
d0 satisfies such linear relation. In such a case, a collision takes place if


α2,0 · d1 + d2 d1 + α0,2 · d2 0 . . . 0 0

0 α2,0 · d2 + d3 d2 + α0,2 · d3 . . . 0 0
...

. . .
. . .

...
0 0 0 . . . α2,0 · dn−2 + dn−1 dn−2 + α0,2 · dn−1
0 0 0 . . . 0 α2,0 · dn−1 + d0


×
[
s1 s2 . . . sn−2 sn−1

]T
=

−
[
α1,0 · d1 + α0,1 · d2 . . . α1,0 · dn−2 + α0,1 · dn−1 α1,0 · dn−1 + α0,1 · d0 + s0 · (dn−1 + α0,2 · d0)

]T
,

where s0 can take any possible value in Fp. The determinant of the l.h.s. matrix is equal
to
∏n−1
i=1 (α2,0 · di + di+1). Since d0 is fixed, there are (p− 1)n−1 values of d1, d2, . . . , dn−1

for which such matrix is invertible, and so, for which a collision can occur. This is sufficient
for concluding that the probability of having a collision is at least equal to

p · (p− 1)n−1

pn · (pn − 1) >
(p− 1)n

pn · (pn − 1) ,

which is strictly bigger than the probability given in Prop. 1.
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