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Abstract. We present a novel approach to honest majority secure multiparty computation
in the preprocessing model with information theoretic security that achieves the best online
communication complexity. The online phase of our protocol requires 12 elements in total per
multiplication gate with circuit-dependent preprocessing, or 20 elements in total with circuit-
independent preprocessing. Prior works achieved linear online communication complexity in
n, the number of parties, with the best prior existing solution involving 1.5n elements per
multiplication gate. Only one recent work (Goyal et al, CRYPTO’22) achieves constant online
communication complexity, but the constants are large (108 elements for passive security, and
twice that for active security). That said, our protocol offers a very efficient information theoretic
online phase for any number of parties.
The total end-to-end communication cost with the preprocessing phase is linear in n, i.e.,
10n + 44, which is larger than the 4n complexity of the state-of-the-art protocols. The gap
is not significant when the online phase must be optimized as a priority and a reasonably
large number of parties is involved. Unlike previous works based on packed secret-sharing to
reduce communication complexity, we further reduce the communication by avoiding the use of
complex and expensive network routing or permutations tools. Furthermore, we also allow for a
maximal honest majority adversary, while most previous works require the set of honest parties
to be strictly larger than a majority.
Our protocol is simple and offers concrete efficiency. To illustrate this we present a full-fledged
implementation together with experimental results that show improvements in online phase
runtimes that go up to 5× in certain settings (e.g. 45 parties, LAN network, circuit of depth 10
with 1M gates).

1 Introduction

Secure multiparty computation (MPC) enables a set of parties, each having its own input, to
compute a given function on these without leaking anything besides the output while only involving
communication among each other, i.e. without relying on a central third party. Security requires
that, even if an adversary corrupts t out of the n parties, this adversary learns nothing about the
inputs of non-corrupt/honest parties. Different protocols exist depending on the ratio t/n. If t < n/2,
which is referred to as the honest majority setting, it is known that information-theoretic security is
possible to achieve, whereby the adversary does not learn anything about the honest parties’ inputs
regardless of his/her computational power. In contrast, if t ≥ n/2, which is known as the dishonest
majority setting, computational assumptions are required to achieve security.

The focus of this work is the honest majority case, where the adversary corrupts at most a
minority of the parties, and information-theoretic security can be achieved. A crucial metric for the
performance of an MPC protocol is its communication complexity, meaning the amount of messages
that must be sent across the parties. Recent constructions such as [DN07, GIP+14, CGH+18,
NV18, GSZ20, BGIN20, GLO+21] show that an arithmetic circuit C can be evaluated with overall
communication complexity O(|C| · n) elements, where |C| is the number of multiplication gates in
the circuit. Furthermore, some of these works achieve very small concrete constants: [GSZ20] and
[GLO+21] require 5.5n and 4n elements per multiplication gate, respectively. Moreover, different
works suggest that we cannot design MPC protocols with o(|C| · n) communication [DNPR16,
DLN19].

With the aim of further improving the communication complexity of honest majority MPC
protocols, we consider the widely used offline/online paradigm, in which the execution of the
protocol is split into two phases: an offline phase, which is independent of the parties’ inputs
and hence can be run in advance before these are known, and an online phase, which requires



knowledge of the inputs, and is typically much more lightweight than the offline phase. For
example, in the dishonest majority setting it is common to use the offline phase to preprocess
the so-called authenticated Beaver triples, which makes use of computational assumptions and
expensive cryptographic tools, and are then consumed in an online phase that is highly efficient
and information-theoretically secure. This is the trend followed in BeDOZa [BDOZ11], SPDZ
[DPSZ12a, DKL+13], and all the subsequent works in secret-sharing-based dishonest majority MPC.
The idea behind this approach is that, even though the end-to-end protocol may not provide certain
level of efficiency, since the online phase dictates the latency from the moment in which the parties
provide inputs to the moment they receive output, having a fast online phase may be enough for
a wide range of applications, especially if the parties can afford to pre-compute the offline phase
(e.g. while they are idle).

State-of-the-art protocols such as ATLAS [GLO+21] aim at minimizing total communication
complexity, achieving 4n elements per multiplication gate, distributed as 2n in the offline phase,
and 2n in the online phase. However, it is natural to wonder how much can the online phase alone
be optimized, while still achieving comparable overall efficiency as state-of-the-art work. In this
case, the protocol that offers the most lightweight online phase, asymptotically, is the recent work
of [GPS22]. This protocol focuses in the more general dishonest majority setting with t < (1− ϵ)n
for some ϵ > 0, and it achieves an online phase whose communication complexity is O(|C|) (i.e. it
is independent of the number of parties). Setting ϵ = 1/2, we obtain the honest majority setting as
a particular case. However, one drawback of the construction from [GPS22] is the large constant
hidden in the big-O notation:

– For the online phase, the analysis of [GPS22] shows that their protocol requires 14 · n/k elements
of communication per multiplication and addition gate,4 where, for the honest majority case,
k ≈ n/4 and t ≤ n − 2k + 1. Thus, the cost per addition and multiplication gate is about 56
elements. Assuming the number of addition gates is the same as the number of multiplication
gates, the effective cost per multiplication gate becomes 108 elements.

– For the preprocessing phase, the analysis of [GPS22] shows that their protocol requires 12 · n2/k2

elements of preprocessing data, where k ≈ n/4 in the honest majority setting. The circuit size of
computing the preprocessing data would be 192|C|. When directly instantiating it by an IT MPC
in the standard honest majority setting, it costs at least 192|C| · n elements of communication.

– To achieve the malicious security, the work [GPS22] uses information-theoreitc MACs, which at
least double the cost in both the preprocessing phase and the online communication.

In contrast, the protocol with the next best online phase is DN07 [DN07] with the optimization from
[GSZ20], which requires 1.5n elements per multiplication gate in the online phase, but 4n elements
in the offline phase. Unless n > 72 for passive security, or n > 144 for active security, [GPS22] does
not necessarily offer a better online phase.

1.1 Our Contribution

In this work, we present a new honest majority MPC protocol, TURBOPACK, which has an online
phase whose total communication per multiplication gate is constant, irrespectively of the number
of parties, and furthermore, unlike [GPS22], this constant is concretely small. To better understand
the communication complexity of TURBOPACK, we split the computation into three phases:5

➀ A circuit and input-independent phase, requiring 10n+ 24 elements per multiplication gate
➁ A circuit-dependent but input-independent phase, requiring 8 elements per multiplication gate
➂ A circuit and input-dependent phase, requiring 12 elements per multiplication gate.

More concrete theorem statements can be found in Thm. 1 and 2 for passive security, and 3
for active security. In the circuit-dependent preprocessing model (CD), the offline phase is allowed
to depend on the circuit to be computed, and in this case our online phase (➂) requires only 12
elements per multiplication gate. In the circuit-independent preprocessing model (CI), where the
offline phase cannot depend on the circuit, our online phase (➁+➂) is only slightly larger, namely 20

4 Most protocols, including TURBOPACK, do not require communication for addition gates. The protocol of
[GPS22] is an exception.

5 We note that such a splitting of three phases has been considered in the line of works focusing on constant-
round MPC with malicious security such as [NST17, WRK17b, WRK17a, LPSY19].
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field elements per multiplication gate. Either way, it only takes a small value of n for our online phase
to become more efficient than that of DN07, and the more parties involved, the better TURBOPACK

becomes. Notice that the CD prep. model makes sense in many practical settings where the circuit is
already known in advance (e.g. perhaps it is fixed for certain task, like training a neural network
of a pre-determined architecture on data provided by the clients), and recent works have shown
some benefits of knowing the circuit in advance for the preprocessing [BENO19, ESV21, ACE+21].
Nonetheless, the CI prep. model also has its advantages, such as allowing external parties or services
to produce preprocessing data “as a service”, while being agnostic to which computation is being
carried out.

While we achieve the best possible online phase, our overall costs are higher than ATLAS,
or even DN07. However, this gap is not very large: the total communication of TURBOPACK is
10n+ 44 elements per multiplication gate, a factor of 2.5× worse than ATLAS (the protocol with
the best overall communication) and ≈ 1.8× worse than DN07 (the protocol with the best online
communication). For many application settings, this overhead can be considered to be small taking
into account the gains in the online phase.

We also remark that we consider both the passive and active security (with abort) settings,
but for most of the main body of this paper we focus on passive security. Our results for active
security are obtained by making use of the passively secure construction as a starting point, and
using existing techniques in distributed zero-knowledge proofs [BBCG+19] in a black-box manner
to verify the correctness of the computation. The overhead in terms of communication can be made
negligible, so the communication complexity of our actively secure protocol remains essentially the
same as that of the passive protocol.

We achieve constant communication in the online phase with the help of packed secret-sharing, a
technique to distribute and operate on multiple secrets simultaneously while only paying the cost of a
single secret (we refer the reader to Section 2 where we provide a detailed overview of TURBOPACK).
This tool has been used in several previous works [FY92, DIK10, GIP15, GIOZ17, BGJK21a, GPS21],
however, these works typically (1) only tolerate a smaller corruption threshold t < (1/2 − ϵ) · n,
and (2) require complex network routing or permutation-based techniques to make packed secret-
sharing, which is more suitable for SIMD computations, compatible with less structured circuits.
Unlike the works mentioned above, TURBOPACK tolerates the optimal honest majority adversary
n = 2t+1, and it is concretely simple and efficient, avoiding complex network routing or permutation
tools. The only exception is the recent work of [GPS22], which uses packed secret-sharing in the
dishonest majority setting, which includes honest majority as a particular case. However, as we
have mentioned already, TURBOPACK is simpler and achieves much better concrete constants. A
more detailed description and comparison to this and several other relevant related works appears
in Section 1.2.

We have fully implemented the passive version of TURBOPACK, and we carried out a series of
experiments that assess the improvement of our online phase with respect to DN07, the protocol
with the most efficient online phase for a reasonable number of parties. We experimentally observe
that, over a LAN network and in the CD prep. model, our online phase starts outperforming that of
DN07 for small values of n such as n = 13, and for larger values of n, such as n = 45, and for circuits
of moderate width (100k), our online phase takes only 22% the time than that of DN07. In the CI
prep. model our improvement is slightly smaller but still noticeable: for n = 45 and 100k width, our
(circuit-independent) online phase is almost twice as fast as that of DN07. Other scenarios lead to
even better improvement factors of 6.7×, such as the localhost setting with at least 69-77 parties, as
evaluated in Table 5 in Section F in the Appendix. From the above, we regard TURBOPACK as an
important step towards achieving practical honest majority MPC for any number of parties.

1.2 Related Work

Honest-majority with maximal adversary. There is a long line of works studying the efficiency of
honest majority information-theoretic MPC in our settings of interest: passive security and active
security with abort, for an arbitrary number of parties (hence we do not consider protocols restricted
to small number of parties such as [BGIN19]). The first protocol in achieving linear communication
complexity in this setting is DN07 [DN07], whose concrete constants were improved in [GSZ20],
achieving, per multiplication gate, 4n elements in the offline phase and 1.5n elements in the online
phase. This is both for passive security and active security with abort, ignoring logarithmic terms in
|C| for the latter case. The protocol of [CGH+18] showed that active security (with abort) could
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be obtained with an overhead of only 2× with respect to passive security. In [DE21a], where the
authors aim at minimizing the online phase costs for general secret-sharing schemes, but when
instantiated with Shamir secret-sharing the same online complexity of 1.5n as above is obtained.
This can be brought down to 1n field elements by using MACs, as shown in [DE21a], at the expense
of increasing the communication complexity of the offline phase.

The protocol with the best overall communication complexity is ATLAS [GLO+21], which uses
4n elements in total per multiplication gate, distributed as 2n elements in the offline phase and 2n
elements in the online phase. As we have already pointed out, achieving o(|C|n) communication
complexity for the maximal adversary n = 2t+ 1 is believed to be impossible. However, none of the
works above have achieved o(|C|n) even for the online phase of the protocol only. In our work, we
achieve an online phase with O(|C|) communication complexity, with actual small hidden constants.
The overall communication complexity is linear in n, and it is only a factor of < 2× worse than
state-of-the-art.

Finally, the work of [GPS22] considers packed secret-sharing in the context of dishonest majority
MPC, which in particular includes the case n = 2t+ 1. However, as we explained in Section 1, their
work requires larger constants and only becomes practical for a very large number of parties.

Honest-majority with sub-maximal adversary. When the corruption threshold satisfies t < (1/2−ϵ) ·n
for some ϵ > 0, multiple works have made use of packed secret-sharing techniques to achieve a
total communication complexity that is independent of the number of parties [FY92, DIK10, GIP15,
GIOZ17, BGJK21a, GSY21, BGJK21b, GPS21]. Since packed secret-sharing is intended to operate
on vectors, performing the same operation at an entry-wise level, different techniques are needed
to accomodate for the fact that, for typical circuits, values must be re-ordered from one batch to the
next.

Different works tackle this difficulty in different ways. A prominent method is to preprocess
different permutation pairs that are used in the online phase to re-arrange secret-shared data. This
is the approach followed by the pioneering work of [DIK10]. Other works, such as [GSY21] and
[BGJK21b], use packed secret-sharing for circuits that are more “SIMD-friendly” ([GSY21] uses it
to preprocess multiplication triples, [BGJK21b] uses it on circuits having wide-enough blocks that
appear with high enough frequency). Most of the works mentioned above achieve a communication
complexity per multiplication gate of O(log |C|). The work [GPS21] first shows that an arithmetic
circuit C can be evaluated with overall communication complexity O(1) elements per multiplication
gate, but again, this is still in the t < (1/2 − ϵ) · n setting. Furthermore, this requires complex
techniques related to network-routing in order to support general non-SIMD circuits, and the hidden
constants in the big-O notation are relatively large.

Our work is not comparable to these related works, given that we tolerate the maximal adversary
n = 2t + 1, while they require a gap between t and (n − 1)/2. With this gap, it is possible to
obtain O(|C|) communication complexity overall [GPS21], which we cannot achieve in our setting.
However, it is important to mention that the hidden constants in works like [GPS21], coupled with
the complexities of impementing network routing, may make of TURBOPACK a better option in
practice, especially if 2t + 1 is close to n. For example, if t = (n − 1)/2 + 1 − k, the protocol in
[GPS21] can be used with a “packing parameter” (the amount of secrets packed in one share) of k.
TURBOPACK, in contrast, has a packing parameter of ≈ n/4. As a result, unless k > n/4, our packing
parameter—and hence our online phase—is better. Furthermore, asymptotically (in n) the overall
communication in [GPS21] may be better than ours, but the hidden constants in big-O notation
make it so that such improvement is only noticeable for very large values of n.

2 Technical Overview

In this section, we give an overview of our techniques. In the following, we will use a bold letter to
represent a vector.

2.1 Starting Idea: Efficient Online Protocol Based on [BBG+21, GPS22]

When the corruption threshold is sub-optimal (either with honest majority or dishonest majority),
the generic approach of reducing the communication complexity is to use the packed secret sharing
technique introduced in [FY92]. Let k denote the packing parameter, which looking ahead, will be
set equal to k = (n− t+ 1)/2. The idea of the packed secret sharing technique is to store k secrets
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within a single secret sharing. In this way, we can evaluate a group of k (addition or multiplication)
gates in parallel. In particular, the cost of evaluating a group of k gates by using packed secret
sharings is the same as the cost of evaluating a single gate by using standard secret sharings. Ideally,
the overall communication complexity can be reduced by a factor of k.

However, the main issue of the above approach is to prepare input packed sharings for each
layer. The issue is due to the following two facts:

1. The secrets within a single packed secret sharing may not be in the correct order. When evaluating
a group of k gates, the protocols only support coordinate-wise operations, which requires the two
vectors of secrets to be correctly aligned.

2. The secrets within a single packed secret sharing may be scattered in different output packed
secret sharings in previous layers.

This issue is referred to as network routing in [GPS21]. The reason of why it cannot be easily solved
is because we need to collect the secrets and reorder them in a batch way. Doing it secret by secret
will cost O(k) communication per packed secret sharing, which eliminates the benefit of using the
packed secret sharing technique.

We note that the solutions in [GPS21, GPS22] are costly in term of the constant. What makes it
worse is that, even for a group of k addition gates, all parties still need to prepare input packed
secret sharings for these k gates. This is different from the IT MPC protocols in the standard honest
majority setting [DN07, GIP+14, CGH+18, NV18, GSZ20, BGIN20, GLO+21], where addition gates
can be evaluated without interaction.

Efficient Online Protocol in [BBG+21]. An exception is the online protocol in [BBG+21], which relies
on a circuit-dependent preprocessing phase (i.e., the correlated randomness can depend on the
circuit but not parties’ inputs) to avoid paying cost for addition gates and doing network routing
in the online phase. Despite that the work of [BBG+21] focuses on the sub-optimal corruption
threshold, we try to utilize their online protocol in our setting.

In the circuit-dependent preprocessing phase, a random value λα is assigned to each wire α in
the circuit such that:

– For each output wire α of input gates6 and multiplication gates, λα is uniformly random.
– For each addition gate with input wires α, β and output wire γ, λγ = λα + λβ .

Multiplication gates in each layer of the circuit are divided into groups of size k. For each group of
k multiplication gates, the random values associated with the first input wires and the second input
wires are shared by using packed secret sharings respectively.

In the online phase, if we use vα to represent the actual wire value associated with the wire α,
the goal is to compute µα = vα − λα. The authors in [BBG+21] observe that it is sufficient to only
let a single party, say P1, learn {µα}α. It comes with two benefits:

– For each addition gate with input wires α, β and output wire γ, since vγ = vα + vβ and λγ =
λα + λβ , P1 can locally compute µγ = µα + µβ . Therefore, addition gates can be computed
without interaction.

– For each group of k multiplication gates, let α denote the batch of the first input wires, and β
denote the batch of the second input wires. Recall that P1 learns {µα}α in clear. P1 shares µα

and µβ (which are two vectors of values) to all other parties by using packed secret sharings.
Since all parties hold packed secret sharings of λα and λβ prepared in the circuit-dependent
preprocessing phase, they can locally compute packed secret sharings of vα and vβ without doing
network routing in the online phase.

Thus, the main task is to evaluate a group of multiplication gates and compute µγ for the output
wires γ. To this end, we first review the packed Shamir secret sharing scheme, which is used in our
construction.

Review: Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The packed Shamir
secret sharing scheme [FY92] is a natural generalization of the standard Shamir secret sharing
scheme [Sha79]. It allows to secret-share a batch of secrets within a single Shamir sharing. For a
vector x ∈ Fk, we use JxKd to denote a degree-d packed Shamir sharing, where k − 1 ≤ d ≤ n− 1.
It requires d+ 1 shares to reconstruct the whole sharing, and any d− k + 1 shares are independent
of the secrets. The packed Shamir secret sharing scheme has the following nice properties:

6 Output wires of input gates are just the input wires of the circuit.
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– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, Jx+ yKd = JxKd + JyKd.
– Multiplicative: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x,y ∈ Fk, Jx ∗ yKd1+d2

=
JxKd1

∗ JyKd2
, where the multiplications are performed on the corresponding shares.

As noted in [GPS22], when d ≤ n− k, all parties can locally multiply a public vector c ∈ Fk with
a degree-d packed Shamir sharing JxKd:

1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of c, denoted by JcKk−1.
Note that for a degree-(k − 1) packed Shamir sharing, all shares are determined by the secrets.

2. All parties then locally compute Jc ∗ xKn−1 = JcKk−1 ∗ JxKn−k.

We simply write Jc ∗xKn−1 = c ∗ JxKn−k to denote the above process. This property is referred to as
multiplication-friendliness in [GPS22].

To make sure that the packed Shamir secret sharing scheme is secure against t corrupted parties,
we also require d ≥ t+ k− 1. When d = n− k and k = (n− t+1)/2 = (n+3)/4, the degree-(n− k)
packed Shamir secret sharing scheme is both multiplication-friendly and secure against t corrupted
parties.

Using the Multiplication Protocols of [GPS22] in Our Setting. Recall that the work of [BBG+21]
focuses on the sub-optimal corruption threshold. Let t′ denote the corruption threshold in [BBG+21].
They use a degree-t (where t = (n− 1)/2) packed Shamir sharing to store k′ = t− t′ + 1 secrets,
which allows all parties to locally compute a degree-(n− 1) packed Shamir sharing of µγ . To see
this, note that µγ = vγ − λγ = vα ∗ vβ − λγ . Since all parties hold JvαKt, JvβKt, JλγKt, they can
locally compute

JµγKn−1 = JvαKt ∗ JvβKt − JλγKt.

The resulting sharing has degree (n− 1) because n− 1 = 2 · t. Then they can reconstruct µγ to
P1 by sending their shares to P1.

Unfortunately, the approach in [BBG+21] does not work in our setting. This is because the
corruption threshold in our setting is already t.

– On one hand, if we keep using the same degree d = t for the packed Shamir sharing, we can only
pack 1 = d− t+ 1 secret in each sharing.

– On the other hand, if we choose to use a larger degree d > t, the resulting sharing would have
degree 2d > 2t = n− 1, which cannot be reconstructed by all parties.

To evaluate multiplication gates, we rely on the technique of packed Beaver triples in [GPS22],
which is a generalization of the technique of Beaver triples in [Bea92]. Informally, the idea is to
compute the multiplication between two packed Shamir sharings of JxKd, JyKd by using a packed
Beaver triple (JaKd, JbKd, JcKd) such that a, b ∈ Fk are random vectors and c = a ∗ b. Similarly to
the technique of Beaver triple, all parties first reconstruct x + a and y + b. Then, they can use
x+ a,y + b and (JaKd, JbKd, JcKd) to locally compute a packed Shamir sharing of x ∗ y.

We adapt the technique of packed Beaver triples in [GPS22] to our setting as follows. We set
k = (n+ 3)/4 and d = t+ k − 1 = n− k. Recall that in this way, the degree-(n− k) packed Shamir
secret sharing scheme is both multiplication-friendly and secure against t corrupted parties. For a
group of multiplication gates with input wires α,β and output wires γ, observe that

µγ = vα ∗ vβ − λγ = (µα + λα) ∗ (µβ + λβ)− λγ

= µα ∗ µβ + µα ∗ λβ + µβ ∗ λα + λα ∗ λβ − λγ .

Recall that all parties hold JλαKn−k, JλβKn−k prepared in the circuit-dependent preprocessing phase.
To compute the above equation, we require that

– In the circuit-dependent preprocessing phase, all parties also prepare a degree-(n− 1) packed
Shamir sharing of Γγ = λα ∗ λβ − λγ as described later.

– In the online phase, the first party P1 distributes µα,µβ by using degree-(k − 1) packed Shamir
sharings.

In this way, all parties can compute

JµγKn−1 = JµαKk−1 ∗ JµβKk−1 + JµαKk−1 ∗ JλβKn−k

+ JµβKk−1 ∗ JλαKn−k + JΓγKn−1.
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Summary of the Online Protocol. For each group of multiplication gates, P1 needs to distribute
two degree-(k − 1) packed Shamir sharings and all parties need to send their shares of JµγKn−1 to
P1. Thus, the total communication complexity is 3n field elements per group of k multiplication
gates. On average, the amortized communication complexity per multiplication gate is 3 · n/k ≈ 12
elements.

2.2 Realizing Circuit-Dependent Preprocessing Phase

In the circuit-dependent preprocessing phase, our goal is to prepare the following two kinds of
packed Shamir sharings: for each group of k multiplication gates,

– For the input wires α,β, all parties prepare JλαKn−k, JλβKn−k.
– For the output wires γ, all parties prepare JΓγKn−1, where Γγ = λα ∗ λβ − λγ .

Recall that the random value λα associated with each wire α satisfies that

– For each output wire α of input gates and multiplication gates, λα is uniformly random.
– For each addition gate with input wires α, β and output wire γ, λγ = λα + λβ .

Although we only need to prepare packed Shamir sharings for the input wires of multiplication
gates, we need to first generate uniform values that are associated with the output wires of input
gates and multiplication gates, and then compute the random values associated with the input wires
of multiplication gates. We survey the potential solutions from [BBG+21] and [GPS22].

The Solution in [BBG+21]. In [BBG+21], the authors rely on pseudo-random secret sharings to
prepare the random packed Shamir sharings for the input wires of multiplication gates. However,
this approach requires to use pseudo-random generators, which means that they are NOT in the IT
setting. And it only works when the number of corrupted parties is a constant since their construction
is based on the replicated secret sharing scheme where the share size grows exponentially with the
number of corrupted parties.

The Solution in [GPS22]. We can potentially use the protocol in [GPS22] to prepare the random
packed Shamir sharings for the input wires of multiplication gates. As we analysed above, it can
achieve O(n/k) elements of communication per secret in the circuit-dependent preprocessing phase
with O(n) elements of communication in the circuit-independent preprocessing phase. However,
directly using the approach in [GPS22] has the following two drawbacks:

– It requires O(Depth) rounds in the circuit-dependent preprocessing phase. This is because the
protocol in [GPS22] also needs to interact for addition gates, and the computation of addition
gates is done layer by layer.

– As discussed in the introduction, the constant factor hidden in the big-O notation is very large.

Our Solution. Our idea is to first prepare a single packed Shamir sharing for each wire. Concretely,
for each output wire α of input gates and multiplication gates, all parties prepare a random degree-
(n− k) packed Shamir sharing in the form Jλα · 1Kn−k, where 1 = (1, . . . , 1) ∈ Fk. In other words,
the secrets of Jλα · 1Kn−k are k copies of the same value λα.

Then all parties can locally compute Jλα · 1Kn−k for each wire α, which is the output of an
addition gate. This is done by adding the two packed sharings associated with the input wires of an
addition gate. Next, for each group of k multiplication gates with input wires α and β, suppose
α = (α1, . . . , αk). All parties can locally compute a degree-(n− 1) packed Shamir sharing of λα by

JλαKn−1 = e1 ∗ Jλα1 · 1Kn−k + · · ·+ ek ∗ Jλαk
· 1Kn−k,

where ei is the i-th unit vector in Fk satisfying that all entries of ei are 0 except the i-th entry is 1.
To see why this is true, note that the secrets of the RHS are equal to

e1 ∗ (λα1 · 1) + · · ·+ ek ∗ (λαk
· 1) = λα1 · e1 + · · ·+ λαk

· ek = λα.

To obtain JλαKn−k from JλαKn−1, all parties perform a degree-reduction step. As we will see
later, the degree-reduction step is merged with the computation of JΓγKn−1.

As a result, our approach avoids the expensive network routing and achieves constant rounds.
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Preparing Packed Shamir Sharings for {Γγ}γ . For each group of multiplication gates, let α,β denote
the input wires and γ denote the output wires. Recall that in the last step, all parties have locally
computed JλαKn−1, JλβKn−1. Similarly, they can locally compute JλγKn−1. To compute JΓγKn−1,
where Γγ = λα∗λβ−λγ , the main task is to compute a packed Shamir sharing of the multiplication
result λα ∗ λβ.

We again rely on the technique of packed Shamir sharing in [GPS22]. Concretely, all parties first
prepare a random packed Beaver triple (JaKn−k, JbKn−k, JcKn−k), where a, b are random vectors in
Fk and c = a ∗ b. Then all parties perform the following steps:

1. All parties locally compute Jλα+aKn−1 = JλαKn−1+JaKn−k and Jλβ+bKn−1 = JλβKn−1+JbKn−k
7.

2. The first party P1 collects the whole sharings Jλα + aKn−1, Jλβ + bKn−1 and reconstructs the
secrets d1 = λα + a,d2 = λβ + b. Then P1 distributes Jd1Kk−1, Jd2Kk−1 to all parties.

3. All parties locally compute

Jλα ∗ λβKn−1 = Jd1Kk−1 ∗ Jd2Kk−1 − Jd1Kk−1 ∗ JbKn−k

− Jd2Kk−1 ∗ JaKn−k + JcKn−1.

The correctness follows from the fact that λα = d1 − a,λβ = d2 − b, and

λα ∗ λβ = (d1 − a) ∗ (d2 − b)

= d1 ∗ d2 − d1 ∗ b− d2 ∗ a+ a ∗ b
= d1 ∗ d2 − d1 ∗ b− d2 ∗ a+ c.

Note that, all parties can also locally compute JλαKn−k = Jd1Kk−1 − JaKn−k and JλβKn−k =
Jd2Kk−1 − JbKn−k. Thus, the degree-reduction steps have been implicit performed above.

Summary of the Circuit-Dependent Preprocessing Phase. In the circuit-dependent preprocessing
phase, for each group of k multiplication gates, all parties need to send their shares of Jλα +
aKn−1, Jλβ + bKn−1 to P1, and P1 needs to distribute Jd1Kk−1, Jd2Kk−1 to all parties. Therefore, the
communication complexity per multiplication gate is 4 · n/k ≈ 16 elements.

Note that the random packed Shamir sharings in the form of Jλα ·1Kn−k and the random packed
Beaver triples in the form of (JaKn−k, JbKn−k, JcKn−k) are prepared in the circuit-independent
preprocessing phase as discussed below.

2.3 Realizing Circuit-Independent Preprocessing Phase

In the circuit-independent preprocessing phase, our goal is to prepare the following random sharings.

– For each output wire of input gates and multiplication gates, all parties prepare a random
degree-(n− k) packed Shamir sharing in the form of Jλα · 1Kn−k.

– For each group of multiplication gates, all parties prepare a random packed Beaver triples
(JaKn−k, JbKn−k, JcKn−k).

Preparing Random Sharings for a Given Linear Secret Sharing Scheme. Let Σ be a linear secret sharing
scheme in F. To prepare random Σ-sharings, we follow a similar approach to that in [DN07]. At a
high-level,

1. Each party Pj first generates and distributes a random Σ sharing, denoted by S(j).
2. Let MT be a Vandermonde matrix of size n× (t+1) in F. All parties use M as a random extractor

to extract n− t = t+1 random sharings. This is done by simply computing (R(1), . . . ,R(t+1))T =

M(S(1), . . . ,S(n))T.

Note that each output sharing R(i) is a linear combination of {S(j)}nj=1. The correctness follows
from the fact that Σ is a linear secret sharing scheme. Thus, all parties will output valid Σ-sharings
in the above approach. The security follows from the fact that any sub-matrix of size (t+ 1) · (t+ 1)
of an n× (t+ 1) Vandermonde matrix is invertible. Therefore, given the random sharings prepared
by corrupted parties, there is a one-to-one map from the random sharings prepared by honest
parties and the output sharings. Thus, the output sharings are also random.

We can use the above approach to prepare random sharings in the form of Jλα · 1Kn−k. The
communication complexity per sharing is 2n elements.

7 In TURBOPACK, we need to use a random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk to protect the
shares of honest parties. In the technical overview, we omit this issue for simplicity
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Preparing Packed Beaver Triples. For (JaKn−k, JbKn−k, JcKn−k), the first two sharings can be prepared
by using the above approach. However, we do not know how to efficiently compute a packed Shamir
sharing of the multiplication result c = a ∗ b from JaKn−k, JbKn−k.

Our idea is to first prepare k standard Beaver triples by using degree-t Shamir sharings and then
transform them to a packed Beaver triple. To simplify the transformation, we choose to use different
secret slots in different degree-t Shamir sharings.

Shamir Sharings with Different Secret Slots: With more details, recall that a degree-t Shamir
secret sharing scheme corresponds to a degree-t polynomial f such that f(1), . . . , f(n) are the
shares and f(0) is the secret. However, we do not need to always use the evaluation point 0 to
store the secret. Concretely, for all i ∈ {1, . . . , k}, we use Jx|iKt to denote a degree-t Shamir sharing
whose secret is stored at the evaluation point −i+ 18. I.e., the corresponding polynomial f satisfies
that (1) f has degree t, (2) f(1), . . . , f(n) are the shares, and (3) f(−i+ 1) is the secret.

Transforming to Packed Sharings: Let ei denote the i-th unit vector. Now suppose all parties
hold k degree-t Shamir sharings {Jxi|iKt}ni=1. We observe that Jxi|iKt can be viewed as a degree-t
packed Shamir sharing with the i-th secret to be xi. Therefore, all parties can locally convert them
to a degree-(n− k) packed Shamir sharing by computing JxKn−k = e1 ∗ Jx1|1Kt + . . .+ ek ∗ Jxk|kKt.

Preparing Standard Beaver Triples: Thus, the problem is reduced to prepare {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1.
For Jai|iKt, Jbi|iKt, we can use the above approach to prepare them, which costs 4n elements. To
compute Jci|iKt, we rely on the state-of-the-art multiplication protocol [GLO+21] in the standard
honest majority setting, which costs 4n elements. The communication complexity of preparing
packed Beaver triples is 8n elements per multiplication gate.

Summary of the Circuit-Independent Preprocessing Phase. Beyond the above two kinds of random
sharings, we also need to prepare 3 random degree-(n− 1) packed Shamir sharings of 0 ∈ Fk for
each group of multiplication gates. These random sharings of 0 are used to protect the shares of
honest parties. By using the above approach to prepare them, the communication complexity per
multiplication gate is 6 · n/k ≈ 24 elements.

In summary, our circuit-independent preprocessing phase has communication complexity 2n+
8n+ 24 = 10n+ 24 elements per multiplication gate.

2.4 An Optimization of TURBOPACK

We note that TURBOPACK uses the technique of packed Beaver triples [GPS22] two times. The first
time is in the online phase where all parties need to compute a packed Shamir sharing of vα ∗ vβ

for each group of multiplication gates. Here, all parties hold degree-(n− k) packed Shamir sharings
of λα,λβ and the first party P1 distributes two degree-(k − 1) packed Shamir sharings of µα,µβ.
The second time is in the circuit-dependent preprocessing phase where all parties need to compute
a packed Shamir sharing of λα ∗ λβ for each group of multiplication gates. Here, all parties hold
degree-(n− k) packed Shamir sharings of a, b and the first party P1 distributes two degree-(k − 1)
packed Shamir sharings of λα + a and λβ + b.

We observe that we can directly use the packed Beaver triple (JaKn−k, JbKn−k, JcKn−k) in the
online phase. This requires P1 to distribute degree-(k− 1) packed Shamir sharings of vα+a,vβ + b.
For vα + a, note that P1 learns µα in the online phase and λα + a in the circuit-dependent
preprocessing phase, and vα + a = µα + λα + a. Thus, instead of asking P1 to distribute a degree-
(k − 1) packed Shamir sharing of µα in the online phase and a degree-(k − 1) packed Shamir
sharing of λα + a in the circuit-dependent preprocessing phase, we can let P1 only distribute a
degree-(k − 1) packed Shamir sharing of µα + λα + a = vα + b in the online phase. In this way,
we can save the cost in the circuit-dependent preprocessing phase by a factor of 2.

We refer the readers to Section C for more details.

2.5 Towards Malicious Security

In this part, we discuss how to achieve the malicious security without affecting the concrete efficiency.
The main difficulty comes from the fact that degree-(n− k) packed Shamir sharing is not robust:
corrupted parties can change the secrets of a degree-(n − k) packed Shamir sharing by locally
changing their own shares. This is different from IT MPC protocols that are based on degree-t

8 Here we assume {−k + 1, . . . , n} are n + k distinct field elements in F. For a general field, they can be
replaced by any n+ k distinct field elements.
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(packed) Shamir sharings, where the whole sharing is fully determined by the shares of honest
parties. It also means that the verification protocols in the recent IT MPC protocols with honest
majority [GS20, BGIN20, GLO+21] do not work.

To add robustness, the work [GPS22] relies on IT MACs. However, the use of IT MACs would
increase the communication complexity by a factor of 2 and require a large enough finite field.

Recall that in the circuit-independent preprocessing phase, all parties prepare degree-(n− k)
packed Shamir sharings JaKn−k, JbKn−k for each group of multiplication gates. In the online phase,
all parties receive from P1 two degree-(k − 1) packed Shamir sharings Jvα + aKk−1, Jvβ + bKk−1.
We observe that

– For JaKn−k, all parties first prepare k individual degree-t Shamir sharings {Jai|iKt}ki=1 and then
transform them to a degree-(n− k) packed Shamir sharing.

– For Jvα + aKk−1, we can view it as a degree-(k − 1) Shamir sharing of vαi
+ ai stored at the i-th

secret slot, i.e., Jvαi + ai|iKk−1.

Thus, if we keep the individual degree-t Shamir sharings {Jai|iKt}ki=1, all parties can locally compute

Jvα + aKk−1 − Jai|iKt = Jvαi
+ ai|iKk−1 − Jai|iKt = Jvαi

|iKt.

In this way, all parties can compute an individual degree-t Shamir sharing for each input wire of
multiplication gates.

To check the correctness of the computation, note that each input of multiplication gates is equal
to some fixed linear combination of the outputs of multiplication gates in previous layers. Also note
that the output of a multiplication gate can be written as the product of its two inputs. Thus, for
each input of multiplication gates, what we want to verify is an inner-product. At this stage, we
still cannot use the verification protocols in [GS20, BGIN20, GLO+21] since the secrets of these
degree-t Shamir sharings do not use the same secret slot.

Verification Protocol in [BBG+21]. Recall that the work [BBG+21] focuses on the sub-optimal
corruption threshold and uses a degree-t packed Shamir sharing to store k′ = t − t′ + 1 secrets,
where t′ is the corruption threshold in [BBG+21]. In their verification protocol, however, the authors
view each degree-t packed Shamir sharing JxKt as a degree-t Shamir sharing for each secret xi, i.e.,
Jxi|iKt. Thus, although our setting is different from that in [BBG+21], we can potentially use the
verification protocol in [BBG+21].

The verification protocol in [BBG+21] first transforms the check of |C| inner-products into one
check of a single inner-product. Then they adapt the technique in [BBCG+19] to verify the single
inner-product and achieves sub-linear communication complexity in the circuit size. However, the
verification protocol in [BBG+21] does not use the technique in [BBCG+19] in a black box way. It
has computation complexity O(|C| ·

√
|C|) due to the use of the technique in [BBCG+19] which

can be a bottleneck for the concrete efficiency.

Our Solution. Our verification protocol is also based on [BBCG+19] but we manage to use the
technique in [BBCG+19] in a black-box way. It allows us to directly use other variants of the
techniques in [BBCG+19] in a black box way, for example, the verification protocol in [GS20],
which naturally offers a trade-off between the round complexity and the computation complexity.
Concretely, for all d <

√
|C|, the verification protocol in [GS20] can achieve O(|C| · d) computation

complexity at the cost of logd |C| rounds. This trade-off is also explored in the work [BGIN19] for
3-party setting and [BGIN20] for n-party setting.

Another issue that is not noticed in [BBG+21] is that directly transforming the check of |C|
inner-products into one check of a single inner-product may cost O(|C|2) local computation. This
is because an input of a multiplication gate can be a linear combination of O(|C|) outputs of
multiplication gates in the previous layers. Merging |C| inner-products, where each has size O(|C|),
into one inner-product would cost O(|C|2) local computation in the worst case. We show how to
efficiently compute the single inner-product that all parties need to check with O(|C|) computation
complexity.

As a result, our verification protocol also achieves sub-linear communication complexity in the
circuit size and is computationally efficient. We refer the readers to Section D for more details.
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3 Preliminaries

3.1 The Model

We consider a set of parties {P1, P2, ..., Pn} where each party can provide inputs, receive outputs, and
participate in the computation. For every pair of parties, there exists a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. The communication
complexity is measured by the number of bits X via private channels.

We focus on functions which can be represented as arithmetic circuits over a finite field F with
input, addition, multiplication, and output gates9. We use κ to denote the security parameter and
let K be an extension field of F (with |K| ≥ 2κ). For simplicity, we use κ to denote the size of an
element in K. In this work, we assume that the number of parties n and the circuit size |C| are
bounded by polynomials of the security parameter κ.

In this work, we focus on the honest majority setting, where the number of corrupted parties
t = (n− 1)/2. We refer the readers to Section A for the security definition.

Client-Server Model. To simplify the security proofs, we consider consider the client-server model. In
the client-server model, clients provide inputs to the functionality and receive outputs, and servers
can participate in the computation but do not have inputs or get outputs. Each party may have
different roles in the computation. Note that, if every party plays a single client and a single server,
this corresponds to a protocol in the standard MPC model. One benefit of the client-server model is
that it is sufficient to only consider maximum adversaries, i.e., adversaries which corrupt exactly t
parties. Note that it does not hold in the standard MPC model. We refer the readers to Section A for
more details.

3.2 Packed Shamir Secret Sharing Scheme

In our work, we are interested in the packed Shamir secret sharing scheme. We use the packed
secret-sharing technique introduced by Franklin and Yung [FY92]. This is a generalization of the
standard Shamir secret sharing scheme [Sha79]. Let F be a finite field of size |F| ≥ 2n. Let n be
the number of parties and k be the number of secrets that are packed in one sharing. A degree-d
(d ≥ k− 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) for which there
exists a polynomial f(·) ∈ F[X] of degree at most d such that f(−i+1) = xi for all i ∈ {1, 2, . . . , k},
and f(i) = wi for all i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi. Reconstructing a
degree-d packed Shamir sharing requires d+ 1 shares and can be done by Lagrange interpolation.
For a random degree-d packed Shamir sharing of x, any d− k + 1 shares are independent of the
secret x.

In our work, we use JxKd to denote a degree-d packed Shamir sharing of x ∈ Fk. In the following,
operations (addition and multiplication) between two packed Shamir sharings are coordinate-wise.
We recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, Jx+ yKd = JxKd + JyKd.
– Multiplicative: Let ∗ denote the coordinate-wise multiplication operation. For all d1, d2 ≥ k − 1

subject to d1 + d2 < n, and for all x,y ∈ Fk, Jx ∗ yKd1+d2 = JxKd1 · JyKd2 .

These two properties directly follow from the computation of the underlying polynomials.
Note that the second property implies that, for all x, c ∈ Fk, all parties can locally compute

Jc ∗ xKd+k−1 from JxKd and the public vector c. To see this, all parties can locally transform c to
a degree-(k − 1) packed Shamir sharing JcKk−1. Then, they can use the property of the packed
Shamir sharing scheme to compute Jc ∗ xKd+k−1 = JcKk−1 · JxKd. This property is referred to as
multiplication-friendliness in [GPS22].

Recall that t is the number of corrupted parties. Also recall that a degree-d packed Shamir secret
sharing scheme is secure against t−k+1 corrupted parties. When setting k = (n−t+1)/2 = (n+3)/4,
a degree-(n−k) packed Shamir sharing is both secure against t corrupted parties and multiplication-
friendly.

9 In this work, we only focus on deterministic functions. A randomized function can be transformed into a
deterministic function by taking as input an additional random tape from each party. The XOR of the input
random tapes of all parties is used as the randomness of the randomized function.
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Shamir Secret Sharing Schemes with Different Secret Slots. When the packing parameter k = 1, a
packed Shamir sharing degrades to a Shamir sharing. Generically, a Shamir sharing uses the default
evaluation point 0 to store the secret. In our work, we are interested in using different evaluation
points in different Shamir secret sharings.

Concretely, for all i ∈ {1, . . . , k}, we use Jx|iKd to represent a degree-d Shamir sharing of x
such that the secret is stored at the evaluation point −i + 1. If we use f to denote the degree-d
polynomial corresponding to Jx|iKd, then f(−i+ 1) = x.

4 Efficient MPC via Packing with Semi-honest Security

Recall that, we use c to denote the number of clients and n to denote the number of parties. Also
recall the corruption threshold t = (n−1)/2 and the packing parameter k = (n−t+1)/2 = (n+3)/4.

4.1 Ideal Functionality for Circuit-Dependent Preprocessing

We first give the ideal functionality FPrep, given as Functionality 1 below, that prepares correlated
randomness for the online phase. We consider the circuit-dependent preprocessing phase. I.e., the
functionality will take as input the circuit C without the real inputs. We will explain the reason of
generating these random sharings when introducing the online protocol in the next part.

Functionality 1: FPrep

1. Assign Random Values to Wires in C: FPrep receives the circuit C from all parties.
(a) For each output wire α of an input gate or a multiplication gate, FPrep samples a uniform value

λα and associates it with the wire α.
(b) Starting from the first layer of C to the last layer, for each addition gate with input wires α, β and

output wire γ, FPrep sets λγ = λα + λβ .
2. Preparing Degree-(n − k) Packed Shamir Sharings: FPrep receives the set of corrupted parties,

denoted by Corr. For each intermediate layer in C, all multiplication gates are divided into groups
of size k. For each group of multiplication gates with input wires α,β:

(a) FPrep receives from the adversary a set of shares {u(1)
j , u

(2)
j }j∈Corr. FPrep computes degree-

(n− k) packed Shamir sharings JλαKn−k, JλβKn−k such that for all Pj ∈ Corr, the j-th share of
(JλαKn−k, JλβKn−k) is (u(1)

j , u
(2)
j ).

(b) FPrep distributes the shares of JλαKn−k, JλβKn−k to honest parties.
3. Preparing Degree-(n− 1) Packed Shamir Sharings: For the input layer, all input gates are divided

into groups of size k such that the input gates of each group belong to the same client. For each
group of input gates with output wires α:

(a) FPrep receives from the adversary a set of shares {uj}j∈Corr. FPrep samples a random degree-
(n− 1) packed Shamir sharing JλαKn−1 such that for all Pj ∈ Corr, the j-th share of JλαKn−1 is
uj .

(b) FPrep distributes the shares of JλαKn−1 to honest parties.
Similarly, for the output layer in C, all output gates are divided into groups of size k such that the
output gates of each group belong to the same client. For each group of output gates with input
wires α, FPrep prepares and distributes JλαKn−1 in the same way as above.

4. Preparing Packed Beaver Triples: For each group of multiplication gates with input wires α,β and
output wires γ:

(a) FPrep receives from the adversary a set of shares {uj}j∈Corr. FPrep samples a random degree-
(n− 1) packed Shamir sharing JΓγKn−1 such that for all Pj ∈ Corr, the j-th share of JΓγKn−1 is
uj .

(b) FPrep distributes the shares of JΓγ = λα ∗ λβ − λγKn−1 to honest parties.

4.2 Online Protocol via Packing

In the online phase, we want to maintain the invariant that for each wire α, the first party P1 learns
the difference µα = vα − λα, where vα is the real values associated with the wire α. Then at the
end of the protocol, for each group of output gates that belong to some Client, all parties will send
their shares of JλαKn−1 to Client, where α are the input wires associated with these output gates,
and P1 will send µα to Client. In this way, Client can reconstruct his outputs vα = µα + λα.

We will discuss how this invariant can be achieved as follows.
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Input Phase. Recall that in the preprocessing phase, for each group of input gates that belong
to some Client, FPrep distributes a degree-(n− 1) packed Shamir sharing JλαKn−1 to all parties,
where α are the output wires associated with these input gates. To allow P1 to learn µα, Client
first collects the whole sharing JλαKn−1 from all parties, then reconstructs the secret λα, and
finally computes and sends µα = vα − λα to P1. Note that here vα are the inputs of Client. The
description of the protocol ΠInput appears in Protocol 1. The communication complexity per batch
of k input gates is n+ k elements.

Protocol 1: ΠInput

1. For each group of input gates that belong to Client, let α denote the batch of output wires of these
input gates. All parties receive the sharing JλαKn−1 from FPrep and Client holds inputs vα.

2. All parties send to Client their shares of JλαKn−1.
3. Client reconstructs the secret λα and computes µα = vα − λα.
4. Client sends µα to P1.

Computation Phase. Now we discuss how P1 can learn µα for every wire α in the circuit C. This
follows the idea in [BBG+21] with the change that we use the technique of packed Beaver triples
introduced in [GPS22] for multiplications.

The circuit is evaluated layer by layer. Note that the invariant is achieved in the first layer (the
input layer). Now assume the invariant is maintained in previous layers. I.e., P1 learns µα for every
input wire α of the current layer since α serves as an output wire in previous layers. For an addition
gate with input wires α, β and output wire γ, we have vγ = vα + vβ . Recall that in FPrep, we have
λγ = λα + λβ . Therefore P1 can locally compute

µγ = vγ − λγ = (vα + vβ)− (λα + λβ) = (vα − λα) + (vβ − λβ) = µα + µβ .

For multiplication gates, we follow the technique of packed Beaver triples in [GPS22]. The
description of the protocol ΠMult appears in Protocol 2. The communication complexity per batch of
k multiplication gates is 3n elements.

Protocol 2: ΠMult

1. For each group of multiplication gates with input wires α,β and output wires γ, P1 learns µα,µβ

and all parties receive three packed Shamir sharings JλαKn−k, JλβKn−k and JΓγKn−1 from FPrep,
where Γγ = λα ∗ λβ − λγ .

2. P1 computes JµαKk−1 and JµβKk−1 and distributes the shares to all parties.
3. All parties locally compute

JµγKn−1 = JµαKk−1 ∗ JµβKk−1 + JµαKk−1 ∗ JλβKn−k

+ JµβKk−1 ∗ JλαKn−k + JΓγKn−1.

4. P1 collects the whole sharing JµγKn−1 from all parties and reconstructs µγ .

Functionality 2: FPrepInd

1. Preparing Random Packed Sharings: FPrepInd receives the set of corrupted parties, denoted by
Corr. For each output wire α of input gates and multiplication gates:

(a) FPrepInd receives from the adversary a set of shares {uj}j∈Corr. FPrepInd samples a random value
λα and computes a degree-(n− k) packed Shamir sharing Jλα ·1Kn−k such that for all Pj ∈ Corr,
the j-th share of Jλα · 1Kn−k is uj .

(b) FPrepInd distributes the shares of Jλα · 1Kn−k to honest parties.
2. Preparing Packed Beaver Triples: For each group of k multiplication gates:

(a) FPrepInd receives from the adversary a set of shares {(u(1)
j , u

(2)
j , u

(3)
j )}j∈Corr. FPrepInd samples two

random vectors a, b ∈ Fk and computes c = a ∗ b. Then FPrepInd computes three degree-(n− k)
packed Shamir sharings JaKn−k, JbKn−k, JcKn−k such that for all Pj ∈ Corr, the j-th share of
(JaKn−k, JbKn−k, JcKn−k) is (u(1)

j , u
(2)
j , u

(3)
j ).

(b) FPrepInd distributes the shares of (JaKn−k, JbKn−k, JcKn−k) to honest parties.
3. Preparing Random Masked Sharings for Multiplication Gates: For each group of k multiplication

gates:
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(a) FPrepInd receives from the adversary a set of shares {(u(1)
j , u

(2)
j , u

(3)
j )}j∈Corr. FPrepInd sets

o(1) = o(2) = o(3) = 0 ∈ Fk. Then FPrepInd samples three random degree-(n − 1) packed
Shamir sharings Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1 such that for all Pj ∈ Corr, the j-th share of
(Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1) is (u(1)

j , u
(2)
j , u

(3)
j ).

(b) FPrepInd distributes the shares of (Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1) to honest parties.
4. Preparing Random Masked Sharings for Input and Output Gates: For each group of k input

gates or output gates, FPrepInd prepares a random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk,
denoted by JoKn−1, in the same way as above.

Output Phase. In the output layer, for each group of k output gates that belong to some Client,
let α denote the input wires of these output gates. Recall that all parties receive a degree-(n− 1)
packed Shamir sharing JλαKn−1 from FPrep in the preprocessing phase. By the invariant, P1 learns
µα = vα − λα. Note that vα are the output values of Client. Therefore, all parties send their
shares of JλαKn−1 to Client and P1 sends µα to Client. In this way, Client can reconstruct the
result vα. The communication complexity per batch of k output gates is n+ k elements.

Online Protocol. Now we are ready to present the online protocol. The description of the protocol
ΠOnline appears in Protocol 3.

Protocol 3: ΠOnline

1. Preprocessing Phase: All parties invoke FPrep to receive correlated randomness that will be used in
the online phase.

2. Input Phase: In the input layer, for each group of k input gates that belong to some Client, let α
denote the output wires of these input gates. All parties and Client invoke ΠInput. At the end of
the protocol, P1 learns µα = vα − λα, where vα are the input values of Client, and λα are the
random values associated with the batch of wires α generated by FPrep.

3. Computation Phase: All parties maintain the invariant that for each wire α, P1 learns µα = vα−λα,
where vα is the real value associated with the wire α, and λα is a random value associated with α
generated by FPrep. The circuit is evaluated layer by layer. Assume that the invariant holds for wires
in previous layers. Consider gates in the current layer.
For each addition gate with input wires α, β and output wire γ, P1 locally compute µγ = µα + µβ .
For each group of k multiplication gates with input wires α,β and output wires γ, all parties invoke
ΠMult. At the end of the protocol, P1 learns µγ .

4. Output Phase: For each group of k output gates that belong to some Client, let α denote the input
wires of these output gates. Recall that all parties receive JλαKn−1 from FPrep, and by the invariant,
P1 learns µα = vα − λα. All parties send their shares of JλαKn−1 to Client, and P1 sends µα to
Client. Then Client reconstructs λα and computes vα = λα + µα.

Functionality 3: FMain

1. FMain receives the input from all clients. Let x denote the input and C denote the circuit.
2. FMain computes C(x) and distributes the output to all clients.

The online communication complexity of ΠOnline is 3|C| ·n/k+O(Depth ·n) field elements, where
Depth is the circuit depth. The term O(Depth · n) is because all parties need to communicate at least
3n elements in each layer even if there is only a single multiplication gate. Recall that k = (n+3)/4.
The online communication complexity of TURBOPACK is 12 elements per gate among all parties.

The ideal functionality FMain appears in Functionality 3. We have the following lemma.

Lemma 1. Protocol ΠOnline securely computes FMain in the FPrep-hybrid model against a semi-honest
adversary who controls t out of n = 2t+ 1 parties and corrupts up to c of the clients.

The proof of Lemma 1 can be found in Section B.1.

4.3 Instantiating Circuit-Dependent Preprocessing

In this part, we show how to realize FPrep. Recall that in FPrep, we need to prepare degree-(n− k)
packed Shamir sharings for the random values {λα}α associated with the wires in the circuit. We
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also need to prepare packed Beaver triples, which are the degree-(n− 1) packed Shamir sharings
for {Γγ}γ . We refer the readers to Section 2 for an overview of our construction.

Functionality for the Circuit-Independent Preprocessing Phase. We first give the ideal functionality
FPrepInd that prepares correlated randomness for the circuit-dependent preprocessing phase. The
functionality will take as input the number of gates in the circuit C without the structure of C.

Protocol 4: ΠPrep

1. Circuit-Independent Preprocessing Phase: All parties invoke FPrepInd to receive correlated random-
ness.

2. Computing a Random Sharing for Each Wire: For each output wire α of input gates and multi-
plication gates, all parties receive Jλα · 1Kn−k from FPrepInd. All parties follow Step 1 of FPrep and
compute Jλα · 1Kn−k for each wire α in the circuit C.

3. Preparing Degree-(n− k) Packed Shamir Sharings: For each group of multiplication gates with
input wires α = (α1, . . . , αk), β = (β1, . . . , βk), recall that all parties have computed {Jλαi · 1K}ki=1

and {Jλβi · 1K}ki=1 in the last step. Let ei ∈ Fk be the i-th unit vector, i.e., all entries of ei are
0 except the i-th entry is 1. All parties locally compute JλαKn−1 =

∑k
i=1 ei ∗ Jλαi · 1Kn−k and

JλβKn−1 =
∑k

i=1 ei ∗ Jλβi · 1Kn−k. All parties use (JaKn−k, Jo(1)Kn−1) to reduce the degree of
JλαKn−1. Here JaKn−k, Jo(1)Kn−1 are prepared in FPrepInd.

(a) All parties locally compute Jλα + aKn−1 = JλαKn−1 + JaKn−k + Jo(1)Kn−1.
(b) P1 collects the whole sharing Jλα + aKn−1 and reconstructs the secret d = λα + a. Then P1

computes the degree-(k − 1) packed Shamir sharing JdKk−1 and distributes the shares to other
parties.

(c) All parties locally compute JλαKn−k = JdKk−1 − JaKn−k.
Similarly, all parties use (JbKn−k, Jo(2)Kn−1) to reduce the degree of JλβKn−1. Here JbKn−k, Jo(2)Kn−1

are prepared in FPrepInd.
4. Preparing Degree-(n − 1) Packed Shamir Sharings: For each group of input gates, let α =

(α1, . . . , αk) be the output wires of these gates. Recall that all parties have computed {Jλαi · 1K}ki=1.
Let JoKn−1 be the random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk prepared in FPrepInd. All
parties locally compute JλαKn−1 :=

∑k
i=1 ei ∗ Jλαi · 1Kn−k + JoKn−1.

The same step is done for the input wires of each group of output gates.
5. Preparing Packed Shamir Sharings for Γγ : For a group of k multiplication gates with input wires

α,β and output wires γ, all parties have computed JλαKn−k and JλβKn−k in the last step, which
are in the forms JλαKn−k = Jd1Kk−1 − JaKn−k and JλβKn−k = Jd2Kk−1 − JbKn−k. Recall that all
parties have computed {Jλγi · 1Kn−k}ki=1. Also recall that all parties receive Jo(3)Kn−1 from FPrepInd.
All parties locally compute

JΓγKn−1 = Jd1Kk−1 ∗ Jd2Kk−1 − Jd1Kk−1 ∗ JbKn−k − Jd2Kk−1 ∗ JaKn−k

+JcKn−k − (
∑k

i=1 ei ∗ Jλγi · 1Kn−k) + Jo(3)Kn−1.

Protocol for the Circuit-Dependent Preprocessing Phase. The description of the protocol ΠPrep appears
in Protocol 4. The communication complexity of ΠPrep is 4|C| · n/k field elements. Recall that
k = (n+ 3)/4. The communication complexity of ΠPrep is 16 elements per gate among all parties.

Lemma 2. Protocol ΠPrep securely computes FPrep in the FPrepInd-hybrid model against a semi-honest
adversary who controls t out of n = 2t+ 1 parties.

The proof of Lemma 2 can be found in Section B.2.

4.4 Instantiating Circuit-Independent Preprocessing

In this part, we discuss how to realize FPrepInd. The task can be divided into two parts: (1) preparing
random sharings and (2) computing multiplications.

To prepare random sharings, we follow the technique in [DN07] as described in Procedure 5.

Procedure 5: πRandsh(Σ)

1. All parties agree on a Vandermonde matrix MT of size n× (t+ 1) in F.
2. Each party Pi randomly samples a random Σ-sharing S(i) and distributes the shares to other parties.
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3. All parties locally compute (R(1), . . . ,R(t+1))T = M(S(1), . . . ,S(n))T. and output
(R(1), . . . ,R(t+1)).

To prepare a packed Beaver triple, we first prepare k Beaver triples by using Shamir secret
sharing schemes. These k Beaver triples are then transformed to a single packed Beaver triple. We
refer the readers to Section 2 for an overview of our construction.

Protocol for FPrepInd. TURBOPACK uses the ideal functionality FSingleMult described in Functionality 4
below. The protocol ΠPrepInd is described in Protocol 6.

Functionality 4: FSingleMult

1. FSingleMult receives the secret position i from all parties. Let Jx|iKt, Jy|iKt denote the input sharings.
FSingleMult receives from honest parties their shares of Jx|iKt, Jy|iKt. Then FSingleMult reconstructs the
secrets x, y. FSingleMult further computes the shares of Jx|iKt, Jy|iKt held by corrupted parties, and
sends these shares to the adversary.

2. FSingleMult receives from the adversary a set of shares {zi}i∈Corr.
3. FSingleMult computes x · y. Based on the secret z := x · y and the t shares {zi}i∈Corr, FSingleMult

reconstructs the whole sharing Jz|iKt and distributes the shares of Jz|iKt to honest parties.

Protocol 6: ΠPrepInd

1. Preparing Random Packed Sharings: Let N1 be the number of input gates and output gates. Let
Σ1 be the secret sharing scheme corresponding to Jr · 1Kn−k. All parties invoke N1/(t+ 1) times of
πRandSh(Σ1) to prepare N1 random sharings in the form of Jr · 1Kn−k.

2. Preparing Packed Beaver Triples: Let N2 denote the number of groups of multiplication gates. For
all i ∈ {1, 2, . . . , k}, let Σ2,i be the secret sharing scheme corresponding to Jr|iKt. All parties invoke
2N2/(t+ 1) times of πRandSh(Σ2,i) to prepare 2N2 random sharings in the form of Jr|iKt.

(a) For each group of multiplication gates, let {Jai|iKt, Jbi|iKt}ki=1 be the unused random sharings.
(b) For all i ∈ {1, 2, . . . , k}, all parties invoke FSingleMult on (i, Jai|iKt, Jbi|iKt) and receive Jci|iKt.
(c) Let ei ∈ Fk be the i-th unit vector, i.e., all entries of ei are 0 except the i-th entry is 1. All parties

locally transform ei to the degree-(k− 1) packed Shamir sharing JeiKk−1. Then, all parties locally
compute

JaKn−k =

k∑
i=1

JeiKk−1 ∗ Jai|iKt,

JbKn−k =

k∑
i=1

JeiKk−1 ∗ Jbi|iKt,

JcKn−k =

k∑
i=1

JeiKk−1 ∗ Jci|iKt.

3. Preparing Random Masked Sharings for Multiplication Gates: Let Σ3 be the secret sharing
scheme corresponding to J0Kn−1, where 0 = (0, . . . , 0) ∈ Fk. All parties invoke 3N2/(t+ 1) times
of πRandSh(Σ3) to prepare 3N2 random sharings in the form of J0Kn−1.

4. Preparing Random Masked Sharings for Input and Output Gates: Let N3 be the number of
groups of input gates and output gates. All parties invoke N3/(t+1) times of πRandSh(Σ3) to prepare
N3 random sharings in the form of J0Kn−1.

We analyse the communication complexity of ΠPrepInd:

– Step 1, Step 3, Step 4 require to prepare different kinds of random sharings. The procedure
πRandSh(Σ) outputs t+ 1 random Σ-sharings at the cost of communicating n Σ-sharings. Thus,
Step 1 requires to communicate 2N1 ·n elements. Step 3 requires to communicate 6N2 ·n elements.
Step 4 requires to communicate 2N3 · n elements.

– Step 2 requires to first prepare random degree-t Shamir sharings, which is 4N2 · k · n elements.
Then for each group of k multiplication gates, all parties need to invoke FSingleMult k times. When
using [GLO+21] to instantiate FSingleMult, which requires 4 elements of communication, the total
cost of FSingleMult is 4N2 ·k ·n elements. Thus, Step 2 requires to communicate 8N2 ·k ·n elements.
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Note that N1 is of size |C|, N2 is of size |C|/k, and N3 is small compared with the circuit size.
Thus, the communication complexity of ΠPrepInd is 10|C| · n+24|C| elements among all parties. The
amortized communication complexity per gate is 10n+ 24 elements.

Lemma 3. Protocol ΠPrepInd securely computes FPrepInd in the FSingleMult-hybrid model against a semi-
honest adversary who controls t out of n = 2t+ 1 parties.

The proof of Lemma 3 can be found in Section B.3.
Combining our protocols ΠPrepInd, ΠPrep, and ΠOnline and instantiating FSingleMult by [GLO+21],

we obtain the following theorem.

Theorem 1. In the client-server model, let c denote the number of clients, n denote the number of
parties (servers), and t = (n− 1)/2 denote the number of corrupted parties (servers). Let F be a finite
field of size |F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-theoretic MPC
protocol which securely computes the arithmetic circuit C in the presence of a semi-honest adversary
controlling up to c clients and t parties. The splitting communication complexity per gate is (1) 10n+24
elements per gate in the circuit-independent preprocessing phase, (2) 16 elements per gate in the
circuit-dependent preprocessing phase, and (3) 12 elements per gate in the online phase. (Terms that
are independent of or sub-linear in the circuit size are omitted as they only add cost o(1) per gate.)

In Section C, we show an optimization of TURBOPACK which allows us to further reduce the
communication complexity by a factor of 2 in the circuit-dependent preprocessing phase.

5 Performance Study

Width Prep.
Number of parties

5 13 21

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

100 CD 0.16 / 0.45 8.70 / 1.09 0.24 / 0.40 3.54 / 0.88 0.51 / 0.61 4.23 / 1.14
CI 0.07 / 0.53 4.94 / 1.28 0.16 / 0.48 3.33 / 1.01 0.38 / 0.74 3.41 / 1.36

1k CD 0.40 / 0.35 5.75 / 0.72 1.24 / 0.74 4.72 / 0.99 3.20 / 0.74 5.25 / 0.52
CI 0.29 / 0.46 5.03 / 0.93 0.96 / 1.01 4.08 / 1.31 2.60 / 1.35 4.64 / 0.91

10k CD 2.97 / 0.94 5.13 / 1.08 11.39 / 1.68 5.24 / 0.61 30.88 / 3.54 5.68 / 0.42
CI 2.30 / 1.62 5.13 / 1.61 9.14 / 3.93 4.90 / 1.29 25.36 / 9.06 5.06 / 1.03

100k CD 33.51 / 4.81 6.07 / 0.97 113.39 / 13.28 5.40 / 0.52 306.50 / 30.85 5.78 / 0.38
CI 26.45 / 11.87 6.04 / 1.94 90.76 / 35.91 4.99 / 1.27 252.05 / 85.30 5.17 / 1.00

Width Prep.
Number of parties

29 37 45

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

100 CD 0.93 / 0.57 4.56 / 0.84 1.38 / 0.75 4.64 / 0.94 2.34 / 0.65 4.91 / 0.63
CI 0.73 / 0.77 3.89 / 1.11 1.16 / 0.97 4.18 / 1.18 2.01 / 0.98 4.37 / 0.93

1k CD 6.66 / 1.15 5.87 / 0.51 11.73 / 1.56 6.51 / 0.39 19.74 / 1.81 7.16 / 0.27
CI 5.49 / 2.31 5.13 / 1.01 9.91 / 3.39 5.82 / 0.83 16.96 / 4.59 6.36 / 0.66

10k CD 65.18 / 6.41 6.42 / 0.33 119.13 / 10.26 7.05 / 0.27 198.91 / 15.09 7.64 / 0.23
CI 54.46 / 17.13 5.69 / 0.86 101.28 / 28.11 6.26 / 0.74 171.79 / 42.21 6.83 / 0.63

100k CD 645.41 / 59.45 6.25 / 0.31 1183.21 / 97.88 6.99 / 0.26 1990.68 / 147.61 7.62 / 0.22
CI 539.02 / 165.84 5.51 / 0.85 1007.70 / 273.39 6.22 / 0.72 1719.31 / 418.98 6.80 / 0.63

Table 1: Running times and comparison of TURBOPACK with DN07, in a LAN setting with 1ms
latency and 1Gbps bandwidth, for a circuit of depth 10 and varying width and number of parties.
The TP columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to
the ratio between the running time of TURBOPACK and DN07. The format of the timings and ratios
is “Offline / Online”. In the CD. Prep case our offline and online phases are ➀+➁ and ➂, while in
the CI. Prep scenario these are ➀ and ➁+➂.

In this section we study the performance of TURBOPACK and compare it to existing work in the
context of maximal adversary honest majority MPC, where n = 2t+1. As a baseline for comparison,
we choose an optimized version of DN07 [DN07], using ideas from [GSZ20] that reduces online
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communication by setting some shares to be zero, together with the observations that the messages
sent by some of the parties are known already in a circuit-dependent offline phase, and hence the
online phase can be made lighter. The details of this protocol can be found in Section E in the
Appendix. This is the protocol with the most optimal online communication complexity, as it only
uses 1 element per party per multiplication gate in the online phase.1011 We have fully implemented
the passive version of TURBOPACK, and in the same framework we implemented the optimized
DN07 for a fair comparison. In this section we present and discuss the experimental results we have
obtained.

5.1 Communication Complexity

Type of prep. Phase Ours DN07 Ours/DN07

CD prep. model
Offline (➀+➁) 10n+ 32 4.5n 2.23 + 7.12/n

Online (➂) 12 1n 12/n

CI prep. model
Offline (➀) 10n+ 24 4n 2.5 + 6/n

Online (➁+➂) 20 1.5n 13.34/n

Total (➀+➁+➂) 10n+ 44 5.5n 1.82 + 8/n

Table 2: Communication complexity per multiplication gate compared to the optimized DN07
protocol. CD prep. refers to the setting when the offline phase is allowed to depend on the function,
while CI prep. is when the offline phase is both input and function-independent. Either case the
offline phase of DN07 remains the same.

Table 2 summarizes the communication complexity per multiplication gate of TURBOPACK12 and
compares it with that of the optimized version of DN07 from Section E in the Appendix.13 For our
protocol we use the optimized version from Section C in the Appendix. The complexities can be
found in Theorem 2. For the purpose of evaluating offline and online communication separately,
we consider two models as discussed above: circuit-dependent (CD) and circuit-independent (CI)
preprocessing. Part of TURBOPACK (phase ➁) can be run while knowing the circuit but not the inputs,
so our online phase in the CD prep. model is better than in the CI prep. model. Such optimization is
not possible in DN07.

We observe that the online phase of TURBOPACK, regardless of whether we are in the CD or
CI model, outperforms that of DN07 asymptotically (in n) since the communication complexity
of our online phase is independent of the number of parties, while that of DN07 grows linearly
with n. Furthermore, concrete constants are small enough so that improvements can be seen for
small values of n: in the CD case our online phase is better than that of DN07 for n ≥ 12, and in
the CI case this happens for n ≥ 19, with the gap widening as n grows. For example, for n = 48
our online phase requires 4× less communication than that of DN07, and for n = 60 this improves
to 5×, in the CD prep. model, Regarding total communication complexity, TURBOPACK performs
around 1.8× worse than DN07, asymptotically. This is not a large factor, considering the gains in
the online phase.

5.2 Implementation setup

TURBOPACK is end-to-end implemented from scratch in C++, without any dependencies besides
the C++ standard library. The source code is open and can be found in https://github.com/
10 The protocol with the best total communication complexity is ATLAS [GLO+21], but since our goal is to

optimize the online phase, we compare to the protocol with the most optimal online phase. Asymptotically,
the best online phase is in [GPS22], but as we have argued in the introduction in practice it is DN07 [DN07].

11 We remark that one of the protocols in [DE21b] achieves the same online communication complexity, but as
we argue in Section E in the Appendix, the optimized DN07 protocol is simpler and more efficient.

12 We do not consider the optimization from Section C, which improves phase ➁ by a factor of two.
13 We remark that TURBOPACK performs better than that of DN07 for input and output gates, but we assume

the number of such gates to be much smaller than the number of multiplication gates, and hence we ignore
this.

18

https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git


deescuderoo/turbopack.git. For an effective comparison, we also implement the optimized DN07
protocol [DN07], and use it as the baseline. The implementation of TURBOPACK does not include
the optimization discussed in Section C, and for the instantiation of FSingleMult we use DN07, not the
optimal ATLAS. As a result, the communication complexity of phase ➀ is 11.5n+ 24, that of ➁ is
16, and that of ➂ is 12, where, as described in Section 1, phase ➀ is circuit and input-independent,
phase ➁ is input-independent but circuit dependent, and phase ➂ is circuit and input-dependent.
Recall that the communication complexity of (optimized) DN07 is 4n in the circuit-independent
offline phase, 0.5n in the circuit-dependent offline phase, and 1n elements in the online phase.

For the experiments we use the 61-bit Mersenne field for computation, and we deploy TURBOPACK

in a single machine. Each party is its own process, and we use interprocess communication for
emulating actual communication. To simulate real distributed environments, we make use of the
linux tc command from the network emulation package netem14 to modify bandwidth and latency.
We use a bandwidth of 1Gbps, and we use 1ms of latency, which aims at emulating a LAN network.
Other networking settings are considered in Section F in the Appendix. We use an AWS c5.metal
instance. Since each party runs as a single process, we chose to use a machine with a good amount
of cores (96) to support the amount of parties we consider without adding too much overhead due
to context switching and similar OS-related issues. This creates an experimental setup that is easier
to replicate for future works. All of our experiments report the average of five runs.

We acknowledge that running parties locally as a process in a single machine has the drawback
of decreasing the computational power per party when the number of parties increases, since these
processes will compete for the resources in the machine and there is a non-negligible overhead in
context switching (which is particularly relevant when the number of parties exceed the number
of available cores). As a result, for large number of parties our results may not reflect the exact
running times that one would get with TURBOPACK in an actual distributed scenario. However, we
argue that, for the purpose of determining the improvement factor of TURBOPACK with respect to
our baseline DN07, this approach should be sufficient. Indeed, since both protocols are run in the
exact same setting, so both protocols get the same per-party computational slowdown, and hence
the improvement ratio of TURBOPACK with respect to DN07—which is ultimately what we want to
measure—should remain faithful.

5.3 Performance comparison with respect to DN07

Here we study what the improvement of TURBOPACK with respect to DN07 is. To this end, we report
the running time of TURBOPACK and the improvement factor relative to DN0715 in several settings,
considering multiple circuits with different characteristics, and also varying the number of parties.
For our experiments we fix the depth to be 10, and focus on increasing the width of the circuit
(i.e. the amount of multiplications per layer), and we consider a LAN setting with 1ms latency and
1Gbps bandwidth. We do this in both the CD model, meaning that the preprocessing is allowed
to depend on the circuit, and also in the CI model, where the preprocessing does not depend on
the circuit. The results are presented in Table 1. For the number of parties up to 29 the results are
averaged over five iterations. For 37 and 45, only one iteration is used due to long running times.

We first begin by analyzing the effect of the width in our improvement factor. Since our
techniques enable the parties to pack k = (n + 3)/4 multiplications across the same layer into
one, the improvements of TURBOPACK can only be seen when the width is above certain threshold.
We see this in Table 1: for a small width of 100 the online phase of TURBOPACK generally offers
little-to-none improvement with respect to that of DN07. However, as the width increases, we start
seeing noticeable improvements.

Now, the number of parties also plays an important role in how much better our online phase is
with respect to that of DN07, since the number of parties dictate how many multiplication gates
can be packed. In the CD prep. model, the improvement factor of our online phase with respect to
that of DN07 is 12/1n = 12/n, and in the CI prep. model it is 28/1.5n = 18.6/n (recall we are not
considering the optimizations to TURBOPACK discussed in Section C in the Appendix). This means
that, for large values of n our online phase will outperform that of DN07, and indeed, we observe
this behavior experimentally.

14 https://wiki.linuxfoundation.org/networking/netem
15 We do not include the running time of DN07 since it can be derived from our running time and the

improvement factor.
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For example, for n = 5 we see generally little improvement, but when n grows to values like 29
or even 37 and 45, the online phase of TURBOPACK outperforms that of DN07 by factors that range
from 3× to 5×, depending on the width, in the CD prep. model. In the CI prep. model, naturally, the
improvement factor of our online phase is smaller, but we still see improvements for large values of
n nevertheless. Furthermore, naturally, when even larger number of parties are considered are work
will offer even better improvement factors. One thing to note is that in many cases the experimental
improvement factor does not match exactly the expected communication improvement factor. For
example, for n = 21, in the CD prep. model the communication ratio is 12/21 ≈ 0.57, which is
closely attained for a width of 1k, but then for a width of 10k this experimental factor drops to
0.42, and it drops even more for width 100k We believe this may be attributed to communication
playing a much larger role when the number of parties grow. For n = 45 on the other hand, the
communication ratio of the online phase in the CD prep. model is 12/45 ≈ 0.27, which matches the
factor found in Table 1 for this setting, when the width is 1k, but then again it drops as the width
increases.

The offline phase in our implementation takes 11.5n+ 40 elements per multiplication gate in
the CD prep. model, and 11.5n + 24 in the CI prep. model. In contrast, DN07 takes 4.5n and 4n
elements, respectively. However, experimentally we find that the improvement factor in runtimes of
TURBOPACK with respect to DN07 in the offline phase is slightly larger than expected. For example,
for n = 21, in the CD prep. model the communication factor of the offline phase is 2.98. However,
experimentally, these factors range from 4.23 up to 5.78. For the CI prep. model the communication
factor when again n = 21 is 3.16, but once again we get larger runtime factors that go from 3.41 up
to 5.17. When n is larger, say n = 45, the factor in the CI and CD models are 2.75 and 3, respectively,
but in our experiments we find these range from 4.37 to 6.80, and from 4.91 to 7.62, respectively. We
believe that, even though communication plays a major role, this might be caused by the overhead
in terms of computation that our techniques impose: the offline phase requires the parties to store
much more data, sampling many more shares, P1 has to pack and unpacked shared values, which
are operations not needed in DN07.

In Section F in the Appendix we present and discuss more experimental results ran in other
networking settings. One interesting thing we observe there is that, as the latency goes up, the
improvement factor of TURBOPACK with respect to DN07 gets better, suggesting that indeed that
the mild computation overhead of TURBOPACK may be a cause of slowdown, and higher latency
give enough time for computation.

Finally, we also remark that our implementation for packed-secret sharing is very rudimen-
tary: polynomial interpolation and evaluation are achieved by simple non-optimized matrix
multiplications. We do not make use of any libraries for polynomial computation or linear al-
gebra with the aim of maintaining a portable and self-contained implementation. We believe
that using more efficient methods for manipulating polynomials (as discussed e.g. in https:
//github.com/becgabri/packed-ss-template), which is an operation needed extensively in TUR-
BOPACK, may help improve the computation overhead of our protocol and hence achieve better
performance ratios with respect to existing work.
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A The Model

A.1 Security Definition

In this work, we focus on the honest majority setting. Let t = (n − 1)/2 be an integer. Let F be
a secure function evaluation functionality. An adversary A can corrupt at most t parties, provide
inputs to corrupted parties, and receive all messages sent to corrupted parties. In this work, we
consider both semi-honest adversaries and malicious adversaries.

– If A is semi-honest, then corrupted parties honestly follow the protocol.
– If A is fully malicious, then corrupted parties can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A controlling corrupted parties interacts with
honest parties. At the end of the protocol, the output of the real-world execution includes the inputs
and outputs of honest parties and the view of the adversary.
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Ideal-World Execution. In the ideal world, a simulator S simulates honest parties and interacts with
the adversary A. Furthermore, S has one-time access to F , which includes providing inputs of
corrupted parties to F , receiving the outputs of corrupted parties, and sending instructions specified
in F (e.g., asking F to abort). The output of the ideal-world execution includes the inputs and
outputs of honest parties and the view of the adversary.

Semi-honest Security. We say that a protocol π computes F with perfect security if for all semi-honest
adversary A, there exists a simulator S such that the distribution of the output of the real-world
execution is identical to the distribution in the ideal-world execution.

Security-with-abort. We say that a protocol π securely computes F with abort if for all adversary
A, there exists a simulator S, which is allowed to abort the protocol, such that the distribution
of the output of the real-world execution is statistically close to the distribution in the ideal-world
execution.

A.2 Hybrid Model

We follow [Can00] and use the hybrid model to prove security. In the hybrid model, all parties are
given access to a trusted party (or alternatively, an ideal functionality) which computes a particular
function for them. The modular sequential composition theorem from [Can00] shows that it is
possible to replace the ideal functionality used in the construction by a secure protocol computing
this function. When the ideal functionality is denoted by g, we say the construction works in the
g-hybrid model.

A.3 Client-server Model

To simplify the security proofs, we consider consider the client-server model. In the client-server
model, clients provide inputs to the functionality and receive outputs, and servers can participate in
the computation but do not have inputs or get outputs. Each party may have different roles in the
computation. Note that, if every party plays a single client and a single server, this corresponds to a
protocol in the standard MPC model. Let c denote the number of clients and n denote the number
of servers. For all clients and servers, we assume that every two of them are connected via a secure
(private and authentic) synchronous channel so that they can directly send messages to each other.
The communication complexity is measured in the same way as that in the standard MPC model.

Security in the Client-server Model. In the client-server model, an adversary A can corrupt at most c
clients and t servers, provide inputs to corrupted clients, and receive all messages sent to corrupted
clients and servers. The security is defined similarly to the standard MPC model.

Benefits of the Client-server Model. In our construction, the clients only participate in the input phase
and the output phase. The main computation is conducted by the servers. For simplicity, we use
{P1, . . . , Pn} to denote the n servers, and refer to the servers as parties. Let Corr denote the set
of all corrupted parties and H denote the set of all honest parties. One benefit of the client-server
model is that it is sufficient to only consider maximum adversaries, i.e., adversaries which corrupt
exactly t parties. At a high level, for an adversary A which controls t′ < t parties, we may construct
another adversary A′ which controls additional t− t′ parties and behaves as follows:

– For a party corrupted by A, A′ follows the instructions of A. This is achieved by passing messages
between this party and other n− t′ honest parties.

– For a party which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since
the additional t− t′ parties controlled by A′ honestly follow the protocol in both cases. Thus, we
only need to focus on A′ instead of A. Note that in the regular model, each honest party may have
input. The same argument does not hold since the input of honest parties controlled by A′ may be
compromised.
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B Security Proofs of Our Semi-honest Protocol

B.1 Proof of Lemma 1

Lemma 1. Protocol ΠOnline securely computes FMain in the FPrep-hybrid model against a semi-honest
adversary who controls t out of n = 2t+ 1 parties and corrupts up to c of the clients.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties. Let Corr denote the set of corrupted parties and H denote the set of honest parties.

The correctness of ΠOnline follows from the description.
We now describe the construction of the simulator S.

1. In the preprocessing phase, S emulates the ideal functionality FPrep and receives the shares of
corrupted parties for each packed Shamir sharing. Note that FPrep does not need to send any
message to corrupted parties.

2. In the input phase, for each group of k input gates that belong to some Client, let α denote the
batch of output wires of these input gates.
– If Client is honest, after receiving the shares of JλαKn−1 from all parties, S samples random

values as µα and sends them to P1.
– If Client is corrupted, S samples random values as λα. Then based on the secrets λα and the

shares of corrupted parties, S randomly samples the whole sharing JλαKn−1 and sends the
shares of JλαKn−1 held by honest parties to Client. From the inputs vα of Client, S computes
µα = vα − λα.

3. In the computation phase, we will maintain the invariant that µα for each wire α is known to S.
Note that this is true for wires in the first layer (the input layer).
For each addition gate with input wires α, β and output wire γ, S honestly compute µγ = µα+µβ .
For each group of k multiplication gates with input wires α,β and output wires γ, S simulates
ΠMult as follows.
– If P1 is honest, S computes degree-(k−1) packed Shamir sharings JµαKk−1 and JµβKk−1 based

on µα and µβ, which are known to S according to the invariant. Then, S computes the shares
of JµγKn−1 of corrupted parties. S sets the shares of JµγKn−1 of honest parties to be uniform
elements. Finally, S reconstructs µγ (which is a vector of k random values).

– If P1 is corrupted, S receives from P1 the shares of JµαKk−1 and JµβKk−1 of honest parties.
Then S recovers the whole sharings JµαKk−1 and JµβKk−1, and learns the shares of corrupted
parties. Now S can compute the shares of JµγKn−1 of corrupted parties.
S samples random elements as the shares of JµγKn−1 of honest parties and sends them to P1.
Finally, S reconstructs the secret µγ (which is a vector of k random values).

4. In the output phase, for each group of k output gates that belong to some Client, let α denote
the batch of input wires of these output gates.
– If Client is honest, S does nothing.
– If Client is corrupted, S sends the inputs of corrupted clients to FMain (since S can access to

the inputs and random tapes of corrupted clients and corrupted parties). Then S receives the
outputs vα of Client from FMain. Recall that S knows µα. S computes λα = vα − µα. Based
on the secrets λα and the shares of corrupted parties, S randomly samples the whole sharing
JλαKn−1. Finally, S sends to Client the shares of JλαKn−1 of honest parties. If P1 is honest, S
also sends to Client µα.

This completes the description of S.
We show that S perfectly simulates the behaviors of honest parties. It is sufficient to focus on the

places where honest parties and clients need to communicate with corrupted parties and clients:

– In the input phase, for each group of k input gates that belong to some Client, let α denote
the batch of output wires of these input gates. If Client is honest, then S needs to simulate the
values µα sent from Client to P1. In the ideal world, S simply samples random elements as
µα. Since µα = vα − λα and λα are uniformly random, the values µα are uniformly random.
Therefore the distribution of µα simulated by S has the same distribution as that in the real
world.
If Client is corrupted, then S needs to simulate the shares of JλαKn−1 of honest parties. Since
JλαKn−1 is a random degree-(n− 1) packed Shamir sharing given the shares of corrupted parties,
by the property of the packed Shamir secret sharing scheme, the secrets λα are uniformly
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random given the shares of corrupted parties. In the ideal world, S randomly samples λα and
then randomly samples the shares of honest parties based on the secrets λα and the shares
of corrupted parties. Therefore, the distribution of the shares of JλαKn−1 of honest parties is
identical to that in the real world. Note that from the inputs of Client, S can also compute µα.
Thus, S perfectly simulates the behaviors of honest parties and clients in the input phase.

– In the computation phase, we will show that S can always learn µα for each wire α in the circuit.
Furthermore, {µα}α has the same distribution as that in the real world. Note that this is true for
the first layer (the input layer).
For an addition gate with input wires α, β and output wire γ, S can compute µγ from µα and µβ .
The above statement holds.
For each group of k multiplication gates with input wires α,β and output wires γ, there are two
cases.
• If P1 is honest, S honestly computes and distributes the sharings JµαKk−1 and JµβKk−1.

Since the distribution of µα,µβ is the same in both worlds, the distribution of the sharings
JµαKk−1, JµβKk−1 is also the same. As for JµγKn−1, recall that

JµγKn−1 = JµαKk−1 ∗ JµβKk−1 + JµαKk−1 ∗ JλβKn−k

+ JµβKk−1 ∗ JλαKn−k + JΓγKn−1.

Also recall that Γγ = λα ∗ λβ − λγ . In FPrep, λγ are uniformly random. Therefore, Γγ are also
uniformly random. Thus, JΓγKn−1 is a random degree-(n− 1) packed Shamir sharing given the
shares of corrupted parties. It satisfies that the shares of honest parties are uniformly random.
Thus, the shares of JµγKn−1 of honest parties are uniformly random. In the ideal world, S
samples random elements as the shares of JµγKn−1 and then computes µγ . Thus, the values
µγ have the same distribution as those in the real world.

• If P1 is corrupted, S receives the shares of JµαKk−1, JµβKk−1 of honest parties. Then S can
compute the shares of honest parties. Then S can compute the shares of JµγKn−1 of corrupted
parties. With the same argument as above, the shares of JµγKn−1 of honest parties are uniformly
random. In the ideal world, S samples random elements as the shares of JµγKn−1 of honest
parties and sends them to P1. Therefore, the distribution of the shares of JµγKn−1 of honest
parties and the values µγ is identical in both worlds.

In either case, S perfectly simulates the behaviors of honest parties and the values µγ have the
same distribution as those in the real world.

– Finally, in the output phase, for each group of k output gates that belong to some Client, let α
denote the batch of input wires of these output gates. If Client is honest, honest parties and
clients do not need to send any messages to corrupted parties and clients. If Client is corrupted,
S can learn the outputs of Client from FMain. Since S learns µα, S can compute λα. In both
worlds, JλαKn−1 is a random degree-(n − 1) packed Shamir sharing given the secrets λα and
the shares of corrupted parties. Thus, the shares of honest parties generated by S have the same
distribution as that in the real world.

B.2 Proof of Lemma 2

Lemma 2. Protocol ΠPrep securely computes FPrep in the FPrepInd-hybrid model against a semi-honest
adversary who controls t out of n = 2t+ 1 parties.

Proof. It can be verified that the secrets of the output sharings of ΠPrep have the same distribution
of those of FPrep.

We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote the
set of corrupted parties and H denote the set of honest parties.

The simulator S works as follows.

1. In Step 1, S emulates the ideal functionality FPrepInd and learns the shares of corrupted parties.
2. In Step 2, S follows the protocol to compute the shares of corrupted parties for each Jλα · 1Kn−k.
3. In Step 3, for each group of multiplication gates, S follows the protocol to compute the shares of

JλαKn−1 and JλβKn−1 of corrupted parties. Then S simulates the process of degree reduction for
JλαKn−1 as follows:

(a) In Step 3.(a), S computes the shares of Jλα + aKn−1 of corrupted parties and sets the shares of
honest parties to be uniform values.

25



(b) In Step 3.(b), if P1 is honest, S honestly follows the protocol. Otherwise, S sends the shares
of Jλα + aKn−1 of honest parties to P1 and receives the shares of JdKk−1 of honest parties. S
recovers the whole sharing JdKk−1 and learns the shares of corrupted parties.

(c) In Step 3.(c), S follows the protocol to compute the shares of JλαKn−k of corrupted parties
and sends them to FPrep.

S simulates the degree reduction for JλβKn−1 similarly.
4. In Step 4, for each group of input gates, S follows the protocol to compute the shares of JλαKn−1

of corrupted parties. Then, S computes the shares of JλαKn−1 := JλαKn−1 + JoKn−1 held by
corrupted parties and sends them to FPrep.
S does the same for the input wires of each group of output gates.

5. In Step 5, S follows the protocol and computes the shares of JΓγKn−1 of corrupted parties and
sends them to FPrep.

This completes the description of S. Now, we show that S perfectly simulate the behaviors
of honest parties. We note that the only step where honest parties need to send messages to
corrupted parties is Step 3.(b). Observe that JaKn−k is a random degree-(n − k) packed Shamir
sharing and Jo(1)Kn−1 is a random degree-(n − 1) packed Shamir sharing of 0 ∈ Fk. Therefore,
JaKn−k + Jo(1)Kn−1 is a random degree-(n− 1) packed Shamir sharing. Recall that Jλα + aKn−1 =
JλαKn−1 + JaKn−k + Jo(1)Kn−1. Thus, Jλα + aKn−1 is a random degree-(n − 1) packed Shamir
sharing, which satisfies that the shares of honest parties are uniformly random given the shares of
corrupted parties. Thus, the shares of honest parties generated by S have the same distribution in
both worlds. After generating the shares of Jλα + aKn−1 of honest parties, S honestly follows Step
3.(b). Therefore, S perfectly simulates the behaviors of honest parties.

Then, we analyse the output of ΠPrep. For each degree-(n − k) packed Shamir sharing of λα

prepared in Step 3, S can compute the shares of corrupted parties as described above. Since the
secrets λα in the real world have the same distribution as those computed by FPrep, the sharing
JλαKn−k has the same distribution in both worlds.

For each degree-(n − 1) packed Shamir sharing of λα prepared in Step 4, S can compute
the shares of corrupted parties as described above. In the real world, since JoKn−1 is a random
degree-(n − 1) packed Shamir sharing of 0 ∈ Fk, JλαKn−1 is a random degree-(n − 1) packed
Shamir sharing given the secrets λα and the shares of corrupted parties. In the ideal world, FPrep

generates a random degree-(n − 1) packed Shamir sharing of λα given the shares of corrupted
parties. Therefore, the sharing JλαKn−1 has the same distribution in both worlds.

Similarly, for each packed Shamir sharing of Γγ , recall that

JΓγKn−1 = Jd1Kk−1 ∗ Jd2Kk−1 − Jd1Kk−1 ∗ JbKn−k

− Jd2Kk−1 ∗ JaKn−k + JcKn−k

− (

k∑
i=1

ei ∗ Jλγi · 1Kn−k) + Jo(3)Kn−1.

S can compute the shares of corrupted parties. In the real world, since Jo(3)Kn−1 is a random
degree-(n−1) packed Shamir sharing of 0 ∈ Fk, JΓγKn−1 is a random degree-(n−1) packed Shamir
sharing of Γγ given the shares of corrupted parties. In the ideal world, FPrep generates a random
degree-(n− 1) packed Shamir sharing of Γγ given the shares of corrupted parties. Therefore, the
distribution of JΓγKn−1 is identical in both worlds.

We conclude that Protocol ΠPrep securely computes FPrep in the FPrepInd-hybrid model against a
semi-honest adversary who controls t parties.

B.3 Proof of Lemma 3

Lemma 3. Protocol ΠPrepInd securely computes FPrepInd in the FSingleMult-hybrid model against a semi-
honest adversary who controls t out of n = 2t+ 1 parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

Simulating πRandSh.

1. In Step 1, S follows the protocol to agree on a Vandermonde matrix MT.
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2. In Step 2, for each honest party Pi, S generates a random Σ-sharing and sends the shares to
corrupted parties. For each corrupted party Pi, S learns the sharing generated by Pi (since S has
access to the random tape of the corrupted party Pi).

3. In Step 3, S computes the shares of corrupted parties for each Σ-sharing R(i).

Simulating the Main Protocol.

1. In Step 1, S simulates πRandSh(Σ1) as described above. Then S sends the shares of corrupted
parties to FPrepInd.

2. In Step 2, S simulates πRandSh(Σ2,i) for all i ∈ {1, 2, . . . , k} as described above. Then, S emulates
FSingleMult and receives the shares of corrupted parties. Finally, for each group of multiplication
gates, S computes the shares of (JaKn−k, JbKn−k, JcKn−k) of corrupted parties, and sends them to
FPrepInd.

3. In Step 3, S simulates πRandSh(Σ3) as described above. Then S sends the shares of corrupted
parties to FPrepInd.

4. In Step 4, S simulates πRandSh(Σ3) as described above. Then S sends the shares of corrupted
parties to FPrepInd.

This completes the description of S.
Now, we show that S perfectly simulate the behaviors of honest parties. We note that the only

place where honest parties need to send messages to corrupted parties is in Step 2 of πRandSh. The
simulator S honestly generates a random Σ-sharing as that in the real world. Thus, S perfectly
simulates the behaviors of honest parties.

Then, we show that the output of honest parties in both worlds have the same distribution. For
πRandSh, recall that the matrix MT is a Vandermonde matrix of size n× (t+ 1), which satisfies that
any (t+ 1)× (t+ 1) sub-matrix of MT is invertible. Therefore, given the Σ-sharings prepared by
corrupted parties and the shares of corrupted parties, there is a one-to-one map between {S(i)}i∈H
and {R(i)}t+1

i=1. Since {S(i)}i∈H are n− t = t+ 1 random Σ-sharings given the shares of corrupted
parties, {R(i)}t+1

i=1 are also t+ 1 random Σ-sharings given the shares of corrupted parties. Thus, the
random sharings generated in Step 1, Step 3, and Step 4 have the same distribution in both worlds.

For Step 2 in the main protocol, following from the same argument as above, all parties hold
random degree-t Shamir sharings from πRandSh(Σ2,i) for all i ∈ {1, 2, . . . , k}. For each group of
multiplication gates, the sharings {Jai|iKt, Jbi|iKt}ti=1 satisfy that ai, bi are uniform values in the real
world. Then, all parties receive Jci|iKt from FSingleMult such that ci = ai · bi. Finally, all parties locally
compute

JaKn−k =

k∑
i=1

JeiKk−1 ∗ Jai|iKt JbKn−k =

k∑
i=1

JeiKk−1 ∗ Jbi|iKt

JcKn−k =

k∑
i=1

JeiKk−1 ∗ Jci|iKt

Observe that JaKn−k is determined by the secrets a and the shares of corrupted parties. In the ideal
world, a is a uniform vector sampled by FPrepInd and the shares are provided by the simulator S.
Recall that S simply follows the protocol to compute the shares of corrupted parties. Thus, JaKn−k

has the same distribution in both worlds. The same argument works for JbKn−k and JcKn−k.
We conclude that Protocol ΠPrepInd securely computes FPrepInd in the FSingleMult-hybrid model

against a semi-honest adversary who controls t parties.

C Optimization of TURBOPACK

In this part, we show an optimization of TURBOPACK which allows us to further reduce the
communication complexity by a factor of 2 in the circuit-dependent preprocessing phase.

Recall that in the online phase, we want to maintain the invariant that P1 learns µα = vα − λα

for all wires in the circuit, where vα is the real value and λα is a random value prepared in
the preprocessing phase. To this end, for each group of multiplication gates with input wires
α,β and output wires γ, we use the technique of packed Beaver triples to compute µγ , which
requires all parties to prepare the following random sharings: JλαKn−k, JλβKn−k and JΓγKn−1,
where Γγ = λα ∗ λβ − λγ .

27



In the circuit-dependent preprocessing phase, to prepare JΓγKn−1, we again use the tech-
nique of packed Beaver triples, which requires all parties to prepare a packed Beaver triple
(JaKn−k, JbKn−k, JcKn−k). Our optimization is to directly use a packed Beaver triple to compute
µγ in the online phase. That is, we skip the step of preparing JΓγKn−1 first.

Recall that µγ = vγ −λγ = vα ∗vβ−λγ . The main task is to compute vα ∗vβ. The technique of
packed Shamir sharing requires all parties to hold degree-(k − 1) packed sharings Jvα + aKk−1 and
Jvβ + bKk−1. In the online phase, the invariant ensures that P1 learns µα and µβ. If P1 also learns
(vα + a)− µα and (vβ + b)− µβ, P1 can distribute degree-(k − 1) packed sharings Jvα + aKk−1

and Jvβ + bKk−1 to all parties.
Note that (vα + a) − µα = λα + a, which are indeed learnt by P1 in the circuit-dependent

preprocessing phase. Recall that in the circuit-dependent preprocessing phase, all parties first
compute a degree-(n− 1) packed Shamir sharing JλαKn−1. Then they do degree reduction by using
(JaKn−k, Jo(1)Kn−1), where Jo(1)Kn−1 is a random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk

prepared in FPrepInd, and the resulting sharing has the form

JλαKn−k = Jd1Kk−1 − JaKn−k.

During this process, P1 reconstructs the sharing Jλα + aKn−1 = JλαKn−1 + JaKn−k + Jo(1)Kn−1 and
learns λα + a.

Therefore, we modify the online protocol by letting P1 distribute Jvα + aKk−1 and Jvβ + bKk−1.
Then all parties can use the technique of packed Beaver triples to compute µγ . For the circuit-
dependent preprocessing phase, we no longer needs to compute JλαKn−k, JλβKn−k and JΓγKn−1.
Therefore, in Step 3.(b) of ΠPrep, P1 no longer needs to distribute JdKk−1 to all parties. As a
result, the communication complexity of the circuit-dependent preprocessing phase is reduced to
2|C| · n/k ≈ 8|C| elements.

We elaborate the modifications as follows.

C.1 Modification of the Circuit-Dependent Preprocessing Phase

We modify the protocol ΠPrep as follows.

– In Step 3.(b), P1 collects the whole sharing Jλα + aKn−1 from all parties and reconstructs the
secrets d = λα + a. P1 does NOT distribute the degree-(k − 1) packed Shamir sharing JdKk−1 to
all parties.

– Step 3.(c) is removed.
– At the end of Step 3, all parties compute Jλβ +bKn−1 and reconstruct the secrets to P1 in a similar

way.
– In Step 4, the same step is done also for the output wires of each group of multiplication gates by

using Jo(3)Kn−1. That is, all parties will locally compute a random degree-(n− 1) packed Shamir
sharing JλγKn−1 for the output wires γ of each group of multiplication gates.

– Step 5 is replaced as follows: For each group of multiplication gates with input wires α,β and
output wires γ, all parties take as output the packed Beaver triple (JaKn−k, JbKn−k, JcKn−k). P1

also takes d1,d2 as output. Here d1 = λα + a and d2 = λβ + b.

For completeness, we give the functionality corresponding to the improved circuit-dependent
preprocessing phase.

Functionality 5: FPrepImproved

1. Assign Random Values to Wires in C: FPrepImproved receives the circuit C from all parties. Then
FPrepImproved assigns random values to wires in C as follows.

(a) For each output wire α of an input gate or a multiplication gate, FPrepImproved samples a uniform
value λα and associates it with the wire α.

(b) Starting from the first layer of C to the last layer, for each addition gate with input wires α, β and
output wire γ, FPrepImproved sets λγ = λα + λβ .

2. Preparing Packed Beaver Triples: For each intermediate layer in C, all multiplication gates are
divided into groups of size k. For each group of k multiplication gates, FPrepImproved prepares a packed
Beaver triple (JaKn−k, JbKn−k, JcKn−k), which satisfies that c = a ∗ b. This is done by the following
steps.

(a) FPrepImproved receives the set of corrupted parties, denoted by Corr. FPrepImproved receives from
the adversary a set of shares {(u(1)

j , u
(2)
j , u

(3)
j )}j∈Corr. FPrepImproved samples two random vec-
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tors a, b ∈ Fk and computes c = a ∗ b. Then FPrepImproved computes three degree-(n − k)
packed Shamir sharings JaKn−k, JbKn−k, JcKn−k such that for all Pj ∈ Corr, the j-th share of
(JaKn−k, JbKn−k, JcKn−k) is (u(1)

j , u
(2)
j , u

(3)
j ).

(b) FPrepImproved distributes the shares of (JaKn−k, JbKn−k, JcKn−k) to honest parties.
3. Distributing λα + a to P1: For each group of multiplication gates, let α,β denote the batch of

first input wires and that of the second input wires respectively. Let (JaKn−k, JbKn−k, JcKn−k) be the
packed Beaver triple associated with these gates. FPrepImproved computes λα + a and λβ + b, and
sends them to P1. Here λα and λβ are the random values associated with the wires α and β.

4. Preparing Degree-(n−1) Packed Shamir Sharings: FPrepImproved will prepare degree-(n−1) packed
Shamir sharings for the following batches of wires:
– For the input layer, all input gates are divided into groups of size k such that the input gates

of each group belong to the same client. For each group of input gates with output wires α,
FPrepImproved will prepare a degree-(n− 1) packed Shamir sharing of λα.

– For the output layer in C, all output gates are divided into groups of size k such that the output
gates of each group belong to the same client. For each group of output gates with input wires α,
FPrepImproved will prepare a degree-(n− 1) packed Shamir sharing of λα.

– For each group of multiplication gates with output wires γ, FPrepImproved will prepare a degree-
(n− 1) packed Shamir sharing of λγ .

For each batch of wires α in the above scenarios, FPrepImproved does the following.
(a) FPrepImproved receives from the adversary a set of shares {uj}j∈Corr. FPrepImproved samples a random

degree-(n − 1) packed Shamir sharing JλαKn−1 such that for all Pj ∈ Corr, the j-th share of
JλαKn−1 is uj .

(b) FPrepImproved distributes the shares of JλαKn−1 to honest parties.

C.2 Modification of the Online Phase

We modify the protocol ΠMult as follows.

Protocol 7: ΠMultImproved

1. For each group of multiplication gates with input wires α,β and output wires γ, all parties receive
from FPrepImproved

– A packed Beaver triple (JaKn−k, JbKn−k, JcKn−k),
– A random degree-(n− 1) packed Shamir sharing JλγKn−1.
P1 receives from FPrepImproved two vectors d1 = λα + a,d2 = λβ + b. P1 also learns µα,µβ during
the online phase.

2. P1 locally computes vα + a = µα + d1 and vβ + b = µβ + d2. Then, P1 computes Jvα + aKk−1

and Jvβ + bKk−1 and distributes the shares to all parties.
3. All parties locally compute

JµγKn−1 = Jvα + aKk−1 ∗ Jvβ + bKk−1 − Jvα + aKk−1 ∗ JbKn−k

− Jvβ + bKk−1 ∗ JaKn−k + JcKn−k − JλγKn−1.

4. P1 collects the whole sharing JµγKn−1 from all parties and reconstructs µγ .

C.3 Theorem for the Improved Protocol

As for the security of our improved protocol, we note that

– In the original protocol, for each group of multiplication gates with input wires α,β, P1 will
distribute Jλα + aKk−1, Jλβ + bKk−1 in the circuit-dependent preprocessing phase and distribute
JµαKk−1, JµβKk−1 in the online phase.

– In the improved protocol, for each group of multiplication gates with input wires α,β, P1 will
distribute Jvα + aKk−1, Jvβ + bKk−1 in the online phase.

Observe that Jvα + aKk−1 = Jλα + aKk−1 + JµαKk−1 and Jvβ + bKk−1 = Jλβ + bKk−1 + JµβKk−1.
Therefore, the messages exchanged in the improved protocol can be derived from the messages
exchanged in the original protocol. It implies that any attack made by a semi-honest adversary
towards the improved protocol also works for the original protocol. Thus, the improved protocol
achieves at least the same level of security as the original protocol. We have the following theorem.
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Theorem 2. In the client-server model, let c denote the number of clients, n denote the number of
parties (servers), and t = (n− 1)/2 denote the number of corrupted parties (servers). Let F be a finite
field of size |F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-theoretic MPC
protocol which securely computes the arithmetic circuit C in the presence of a semi-honest adversary
controlling up to c clients and t parties. The splitting communication complexity per gate is (1) 10n+24
elements per gate in the circuit-independent preprocessing phase, (2) 8 elements per gate in the circuit-
dependent preprocessing phase, and (3) 12 elements per gate in the online phase. (Terms that are
independent of or sub-linear in the circuit size are omitted as they only add cost o(1) per gate.)

D Malicious Security

In this section, we discuss how to compile TURBOPACK to achieve malicious security. We observe
that the main difficulty comes from the fact that degree-(n − k) packed Shamir sharing is not
robust: corrupted parties can change the secrets of a degree-(n − k) packed Shamir sharing by
locally changing their own shares. Concretely, for a degree-(n− k) packed Shamir sharing JxKn−k,
corrupted parties can locally compute a degree-(n− k) packed Shamir sharing J∆(x)Kn−k where

– The shares of J∆(x)Kn−k of honest parties are 0.
– The first k − 1 values of ∆(x) can be arbitrary values.

Recall that k = (n − t + 1)/2, we have n − k = t + k − 1. It means that a degree-(n − k) packed
Shamir sharing can be determined by n− k+ 1 = t+ k values. Note that the above have fixed t+ k
values. Corrupted parties can locally compute the last value of ∆(x) and their shares of J∆(x)Kn−k.
Since the shares of J∆(x)Kn−k held by honest parties are 0, corrupted parties can locally compute
Jx+∆(x)Kn−k, causing a change of the secrets by ∆(x) without being noticed.

The previous work [GPS22] follows from [DPSZ12b] and uses information-theoretic MACs to
detect the above attack. However, this approach increases the communication complexity by at least
a factor of 2 since it requires to compute each multiplication gate 2 times in [GPS22]. Another
drawback is that the information-theoretic MAC requires to use a large enough finite field.

Our idea is to try to compute a degree-t Shamir sharing for each wire value as the state-of-the-art
MPC protocols [DN07, GIP+14, CGH+18, NV18, GSZ20, BGIN20, GLO+21] in the honest majority
setting. However, our approach differs from previous techniques in the sense that the degree-t
Shamir sharings may use different evaluation points to store the secrets. We observe that, in our
improved semi-honest protocol in Section C, for each group of multiplication gates,

– All parties hold a packed Beaver triple (JaKn−k, JbKn−k, JcKn−k). In particular, all parties also hold
{(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1 in the circuit-independent preprocessing phase.

– In the online phase, P1 will distribute Jvα + aKk−1, Jvβ + bKk−1 to all parties. In particular,
Jvα + aKk−1 can be viewed as a degree-(k − 1) Shamir sharing Jvαi

+ ai|iKk−1 for all i ∈
{1, 2, . . . , k}.

Thus, all parties can compute a degree-t Shamir sharing Jvαi
|iKt = Jvαi

+ ai|iKk−1 − Jai|iKt. In
particular, the secret is stored at position i.

Therefore, our semi-honest protocol has already allowed all parties to compute a degree-t Shamir
sharing for input wires of each multiplication gate. We will show that this is sufficient to verify the
correctness of the computation. In the following, we will introduce TURBOPACK phase by phase. Our
principle is to try to use the same semi-honest protocol so that we can achieve the same concrete
efficiency as the semi-honest version. We will highlight our changes compared with the semi-honest
protocol and explain the reasons.

D.1 Circuit-Independent Preprocessing Phase

In the circuit-independent preprocessing phase, we make the following two changes:

1. For each packed Beaver triple (JaKn−k, JbKn−k, JcKn−k), recall that they are computed from
{(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1. All parties will also take {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1 as output.

2. For each group of input gates or output gates, all parties will prepare a random degree-t Shamir
sharing Jri|iKt for all i ∈ {1, 2, . . . , k}. In the online phase, these degree-t Shamir sharings allow
clients to detect attacks launched by corrupted parties.
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We first describe the functionality for the circuit-independent preprocessing phase with malicious
security. We allow an adversary to launch two kinds of additive attacks: (1) for each degree-(n− k)
packed Shamir sharing Jλα · 1Kn−k, an adversary is allowed to add a constant error (chosen by
himself) to the first secret; (2) for each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt), an adversary
is allowed to add a constant error (chosen by himself) to the secret ci. The description of the
functionality appears in FPrepIndMal.

Functionality 6: FPrepIndMal

1. Preparing Random Packed Sharings: FPrepIndMal receives the set of corrupted parties, denoted by
Corr. FPrepIndMal prepares a random degree-(n−k) packed Shamir sharing in the form of Jλα ·1Kn−k

for each output wire α of an input gate a multiplication gate in C as follows.
(a) FPrepIndMal receives from the adversary a set of shares {uj}j∈Corr and an additive error δα. Let

e1 = (1, 0, . . . , 0) ∈ Fk. FPrepIndMal samples a random value λα and computes a degree-(n − k)
packed Shamir sharing Jλα · 1 + δα · e1Kn−k such that for all Pj ∈ Corr, the j-th share of
Jλα · 1Kn−k is uj .

(b) FPrepIndMal distributes the shares of Jλα · 1+ δα · e1Kn−k to honest parties.
2. Preparing Packed Beaver Triples: For each group of k multiplication gates, FPrepIndMal prepares a

set of Beaver triples {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1, which satisfy that ai, bi are random values and
ci = ai · bi. This is done by the following steps.

(a) For all i ∈ {1, 2, . . . , k}, FPrepIndMal receives from the adversary a set of shares
{(u(1)

i,j , u
(2)
i,j , u

(3)
i,j )}j∈Corr and an additive error ηi. FPrepIndMal samples two random values ai, bi ∈ F

and computes ci = ai · bi + ηi. Then FPrepIndMal computes three degree-t Shamir sharings
(Jai|iKt, Jbi|iKt, Jci|iKt) such that for all Pj ∈ Corr, the j-th share of (Jai|iKt, Jbi|iKt, Jci|iKt) is
(u

(1)
i,j , u

(2)
i,j , u

(3)
i,j ).

(b) For all i ∈ {1, 2, . . . , k}, FPrepIndMal distributes the shares of (Jai|iKt, Jbi|iKt, Jci|iKt) to honest
parties.

3. Preparing Random Masked Sharings for Multiplication Gates: For each group of k multiplication
gates, FPrepIndMal prepares three degree-(n− 1) packed Shamir sharings of 0 ∈ Fk as follows.

(a) FPrepIndMal receives from the adversary a set of shares {(u(1)
j , u

(2)
j , u

(3)
j )}j∈Corr. FPrepIndMal sets

o(1) = o(2) = o(3) = 0 ∈ Fk. Then FPrepIndMal samples three random degree-(n − 1) packed
Shamir sharings Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1 such that for all Pj ∈ Corr, the j-th share of
(Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1) is (u(1)

j , u
(2)
j , u

(3)
j ).

(b) FPrepIndMal distributes the shares of (Jo(1)Kn−1, Jo(2)Kn−1, Jo(3)Kn−1) to honest parties.
4. Preparing Random Sharings for Input and Output Gates: For each group of k input gates or

output gates, FPrepIndMal prepares a random degree-(n−1) packed Shamir sharing of 0 ∈ Fk, denoted
by JoKn−1, in the same way as above. FPrepIndMal also prepares k random degree-t Shamir sharings
{Jri|iKt}ki=1 in the same way as that for {Jai|iKt}ki=1.

Now we describe the protocol ΠPrepIndMal that realizes FPrepIndMal. It follows the semi-honest
version ΠPrepInd and uses the ideal functionality FSingleMultMal. Here by using a weaker functionality
FSingleMultMal, which allows an additive attack towards the multiplication result, we can instantiate it
by the same semi-honest multiplication protocol in [GLO+21]. We refer the readers to [GLO+21]
for more details.

Regarding the communication complexity of ΠPrepIndMal, the only difference compared with the
semi-honest protocol ΠPrepInd is Step 4, where all parties need to prepare N3 · k random degree-t
Shamir sharings. Here N3 ·k is the number of input and output gates. Since N3 ·k is small compared
with the circuit size, the concrete efficiency of ΠPrepIndMal remains 10|C| · n+ 24|C| elements among
all parties.

Functionality 7: FSingleMultMal

1. FSingleMultMal receives the secret position i from all parties. Let Jx|iKt, Jy|iKt denote the input sharings.
FSingleMultMal receives from honest parties their shares of Jx|iKt, Jy|iKt. Then FSingleMultMal reconstructs
the secrets x, y. FSingleMultMal further computes the shares of Jx|iKt, Jy|iKt held by corrupted parties,
and sends these shares to the adversary.

2. FSingleMultMal receives from the adversary a set of shares {zi}i∈Corr and an additive error η.
3. FSingleMultMal computes x · y + η. Based on the secret z := x · y + η and the t shares {zi}i∈Corr,

FSingleMultMal reconstructs the whole sharing Jz|iKt and distributes the shares of Jz|iKt to honest
parties.
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Protocol 8: ΠPrepIndMal

1. Preparing Random Packed Sharings: Let N1 be the number of input gates and output gates. Let
Σ1 be the secret sharing scheme corresponding to Jr · 1Kn−k. All parties invoke N1/(t+ 1) times of
πRandSh(Σ1) to prepare N1 random sharings in the form of Jr · 1Kn−k. For each output wire of an
input gate or a multiplication gate, the first unused random sharing is associated with this wire.

2. Preparing Packed Beaver Triples: Let N2 denote the number of groups of multiplication gates. For
all i ∈ {1, 2, . . . , k}, let Σ2,i be the secret sharing scheme corresponding to Jr|iKt. All parties invoke
2N2/(t+ 1) times of πRandSh(Σ2,i) to prepare 2N2 random sharings in the form of Jr|iKt.

(a) For each group of multiplication gates, let {Jai|iKt, Jbi|iKt}ki=1 be the unused random sharings.
(b) For all i ∈ {1, 2, . . . , k}, all parties invoke FSingleMultMal on (i, Jai|iKt, Jbi|iKt) and receive Jci|iKt.

3. Preparing Random Masked Sharings for Multiplication Gates: Let Σ3 be the secret sharing
scheme corresponding to J0Kn−1, where 0 = (0, . . . , 0) ∈ Fk. All parties invoke 3N2/(t+1) times of
πRandSh(Σ3) to prepare 3N2 random sharings in the form of J0Kn−1. For each group of multiplication
gates, the first 3 unused random sharings are associated with these group of multiplication gates.

4. Preparing Random Sharings for Input and Output Gates: Let N3 be the number of groups of
input gates and output gates. All parties invoke N3/(t + 1) times of πRandSh(Σ3) to prepare N3

random sharings in the form of J0Kn−1. For each group of input gates or output gates, the first
unused random sharing is associated with this group of gates.
For all i ∈ {1, 2, . . . , k}, all parties also invoke N3/(t + 1) times of πRandSh(Σ2,i) to prepare N3

random sharings in the form of Jr|iKt. For each group of input gates or output gates, the first unused
random sharing is associated with this group of gates.

Lemma 4. Protocol ΠPrepIndMal securely computes FPrepIndMal in the FSingleMultMal-hybrid model against
a fully malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

Simulating πRandSh.

1. In Step 1, S follows the protocol to agree on a Vandermonde matrix MT.
2. In Step 2, for each honest party Pi, S generates a random Σ-sharing S(i) and sends the shares

to corrupted parties. For each corrupted party Pi, S receives the shares of S(i) honest parties.
Depending on the sharing scheme used in πRandSh, S sets the sharing S(i) distributed by Pi as
follows:
– For Σ1, each Σ1-sharing is a degree-(n− k) packed Shamir sharing in the form of Jr · 1Kn−k. It

requires n− k + 1 = t+ k shares or secrets to reconstruct the whole sharing. S has received
the shares of honest parties from Pi. S sets the last k − 1 secrets to be 0 and reconstructs the
whole sharing as S(0), denoted by Jδ(i) · e1Kn−k. Here e1 = (1, 0, . . . , 0) ∈ Fk. Notice that the
last k − 1 secrets have been set to be 0. The value δ(i) represents the first secret which can be
non-zero. It is also viewed as the additive error of S(i).

– For Σ2,i, each Σ2,i-sharing is a degree-t Shamir sharing in the form of Jr|iKt. It requires t+ 1
shares to reconstruct the whole sharing. S uses the shares of honest parties to reconstruct the
whole sharing.

– For Σ3, each Σ3-sharing is a degree-(n − 1) packed Shamir sharing of 0 ∈ Fk. It requires n
shares or secrets to reconstruct the whole sharing. S has received the shares of honest parties
from Pi. S sets the secrets to be 0 and also sets the shares of the first n− (t+ k + 1) corrupted
parties to be 0. Then S reconstructs the whole sharing as S(0).

3. In Step 3, S computes the shares of corrupted parties for each Σ-sharing R(i). For Σ1, S also
computes the additive error δi for each R(i). Note that δi is a linear combination of the additive
errors {δ(i)}ni=1 of {S(i)}ni=1. In particular, for each honest party Pi, δ(i) = 0, and for each
corrupted party Pi, δ(i) is the additive error computed in the last step.
S sends the shares of corrupted parties to FPrepIndMal. For each Σ1-sharing, S also sends the
corresponding additive error to FPrepIndMal.

Simulating the Main Protocol.

1. In Step 1, S simulates πRandSh(Σ1) as described above.
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2. In Step 2, S simulates πRandSh(Σ2,i) for all i ∈ {1, 2, . . . , k} as described above. Then, for each
pair of (Jai|iKt, Jbi|iKt), S emulates FSingleMultMal and receives from the adversary the shares of
Jci|iKt of corrupted parties and the additive error ηi. Finally, for each pair of (Jai|iKt, Jbi|iKt), S
sends the shares of Jci|iKt of corrupted parties and the additive error ηi to FPrepIndMal.

3. In Step 3, S simulates πRandSh(Σ3) as described above.
4. In Step 4, S simulates πRandSh(Σ2,i) for all i ∈ {1, 2, . . . , k} and πRandSh(Σ3) as described above.

This completes the description of S.
Now, we show that S perfectly simulate the behaviors of honest parties. We note that the only

place where honest parties need to send messages to corrupted parties is in Step 2 of πRandSh. The
simulator S honestly generates a random Σ-sharing as that in the real world. Thus, S perfectly
simulates the behaviors of honest parties.

Then, we show that the output of honest parties in both worlds have the same distribution. For
πRandSh, we observe that, when the shares of {S(i)}i∈H of corrupted parties are fixed and the shares
of {S(i)}i∈Corr of honest parties are also fixed, the shares of {R(i)}t+1

i=1 held by honest parties are
independent of the shares of {S(i)}i∈Corr of corrupted parties. This is because honest parties can
compute their shares of {R(i)}t+1

i=1 by using their shares of {S(i)}ni=1. Once corrupted parties send
out the shares of {S(i)}i∈Corr of honest parties, they can no longer change the shares of {R(i)}t+1

i=1

of honest parties. It suggests that we may think the adversary first chooses the shares of corrupted
parties in the same way as S described above and later on changes the shares of corrupted parties
arbitrarily.

Recall that the matrix MT is a Vandermonde matrix of size n × (t + 1), which satisfies that
any (t+ 1)× (t+ 1) sub-matrix of MT is invertible. Therefore, given the Σ-sharings prepared by
corrupted parties and the shares of corrupted parties, there is a one-to-one map between {S(i)}i∈H
and {R(i)}t+1

i=1. Note that for {S(i)}i∈H, they are generated by honest parties. Therefore, {S(i)}i∈H
are n− t = t+ 1 random Σ-sharings given the shares of corrupted parties.

– When Σ = Σ1, {R(i)}t+1
i=1 are random Σ1-sharings with additive errors {δi}t+1

i=1 given the shares
of corrupted parties. In the ideal world, S sends the shares of corrupted parties and the additive
errors {δi}t+1

i=1 to FPrepIndMal. Therefore, the random Σ1-sharings have the same distribution in
both worlds.

– When Σ = Σ2,i, {R(i)}t+1
i=1 are random Σ2,i-sharings given the shares of corrupted parties. In

the ideal world, S sends the shares of corrupted parties to FPrepIndMal. Therefore, the random
Σ2,i-sharings have the same distribution in both worlds.

– When Σ = Σ3, {R(i)}t+1
i=1 are random Σ3-sharings given the shares of corrupted parties. In

the ideal world, S sends the shares of corrupted parties to FPrepIndMal. Therefore, the random
Σ3-sharings have the same distribution in both worlds.

In Step 2, we have shown that (Jai|iKt, Jbi|iKt) has the same distribution in both worlds. It is
sufficient to show that Jci|iKt is also identically distributed in both worlds. Observe that a degree-t
Shamir sharing is determined by its secret and the shares of corrupted parties. In the real world, the
secret ci = ai · bi + ηi, where ηi is an additive error provided by the adversary in FSingleMultMal. The
shares of Jci|iKt of corrupted parties are also chosen by the adversary in FSingleMultMal. In the ideal
world, S receives both ηi and the shares of corrupted parties when emulating FSingleMultMal. Then S
sends these values to FPrepIndMal. Thus, Jci|iKt is identically distributed in both worlds.

We conclude that Protocol ΠPrepIndMal securely computes FPrepIndMal in the FSingleMultMal-hybrid
model against a semi-honest adversary who controls t parties.

D.2 Circuit-Dependent Preprocessing Phase

In the circuit-dependent preprocessing phase, we follow the improved version of ΠPrep described in
Section C with the following change:

– For each group of input gates or output gates, all parties will also output {Jri|iKt}ki=1 prepared in
FPrepIndMal.

– For each group of multiplication gates, all parties will output {(Jai|iKt, Jbi|iKt, Jci|iKt)}ti=1 instead
of (JaKn−k, JbKn−k, JcKn−k).

– For each group of output gates with input wires α, all parties will reconstruct the vector λα+r to
P1. Here r = (r1, . . . , rk) and r1, . . . , rk are the secrets of {Jri|iKt}ki=1 prepared for these output
gates.
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We first describe the functionality for the circuit-dependent preprocessing phase with malicious
security. We allow an adversary to launch two kinds of additive attacks: (1) for each degree-(n− 1)
packed Shamir sharing JλαKn−1, an adversary is allowed to add a vector of additive errors ∆(λα)
(chosen by himself) to the secrets; (2) for each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt), an
adversary is allowed to add a constant error (chosen by himself) to the secret ci. We note that each
wire α in the circuit connects two gates, and it acts as an output wire of the first gate and acts as an
input wire of the second gate.

Functionality 8: FPrepMal

1. Assign Random Values to Wires in C: FPrepMal receives the circuit C from all parties. Then FPrepMal

assigns random values to wires in C as follows.
(a) For each output wire α of an input gate or a multiplication gate, FPrepMal samples a uniform value

λα and associates it with the wire α.
(b) Starting from the first layer of C to the last layer, for each addition gate with input wires α, β and

output wire γ, FPrepMal sets λγ = λα + λβ .
2. Preparing Beaver Triples: FPrepMal receives the set of corrupted parties, denoted by Corr. For each

group of k multiplication gates, FPrepMal prepares a set of Beaver triples {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1,
which satisfy that ai, bi are random values and ci = ai · bi. This is done by the following steps.

(a) For all i ∈ {1, 2, . . . , k}, FPrepMal receives from the adversary a set of shares
{(u(1)

i,j , u
(2)
i,j , u

(3)
i,j )}j∈Corr and an additive error ηi. FPrepMal samples two random values ai, bi ∈ F

and computes ci = ai · bi + ηi. Then FPrepMal computes three degree-t Shamir sharings
(Jai|iKt, Jbi|iKt, Jci|iKt) such that for all Pj ∈ Corr, the j-th share of (Jai|iKt, Jbi|iKt, Jci|iKt) is
(u

(1)
i,j , u

(2)
i,j , u

(3)
i,j ).

(b) For all i ∈ {1, 2, . . . , k}, FPrepMal distributes the shares of (Jai|iKt, Jbi|iKt, Jci|iKt) to honest parties.
3. Preparing Degree-t Shamir Sharings: For each group of k input gates or output gates, FPrepMal

prepares a set of random degree-t Shamir sharings {Jri|iKt}ki=1 as follows.
(a) For all i ∈ {1, 2, . . . , k}, FPrepMal receives from the adversary a set of shares {ui,j}j∈Corr. FPrepMal

samples a random value ri ∈ F. Then FPrepMal computes a degree-t Shamir sharings Jri|iKt such
that for all Pj ∈ Corr, the j-th share of Jri|iKt is ui,j .

(b) For all i ∈ {1, 2, . . . , k}, FPrepMal distributes the shares of Jri|iKt to honest parties.
4. Distributing λα + a to P1: For each group of multiplication gates, let α,β denote the batch

of first input wires and that of the second input wires respectively. Let a = (a1, a2, . . . , ak) and
b = (b1, b2, . . . , bk). FPrepMal receives from the adversary two vectors ∆(λα + a),∆(λβ + b) ∈ Fk.
Then, FPrepMal computes λα +a+∆(λα +a) and λβ + b+∆(λβ + b), and sends them to P1. Here
λα and λβ are the random values associated with the wires α and β.
For each group of output gates, let α denote the batch of input wires of these gates. Recall that
FPrepMal has prepared {Jri|iKt}ki=1. Let r = (r1, . . . , rk). FPrepMal receives from the adversary a vector
∆(λα + r) ∈ Fk. Then, FPrepMal computes λα + r +∆(λα + r) and sends these values to P1. Here
λα are the random values associated with the wires α.

5. Preparing Degree-(n− 1) Packed Shamir Sharings: FPrepMal will prepare degree-(n− 1) packed
Shamir sharings for the following batches of wires:
– For the input layer, all input gates are divided into groups of size k such that the input gates of

each group belong to the same client. For each group of input gates with output wires α, FPrepMal

will prepare a degree-(n− 1) packed Shamir sharing of λα.
– For each group of multiplication gates with output wires γ, FPrepMal will prepare a degree-(n− 1)

packed Shamir sharing of λγ .
For each batch of wires α in the above scenarios, FPrepMal does the following: FPrepMal receives
from the adversary a set of shares {uj}j∈Corr. FPrepMal receives from the adversary a vector ∆(λα).
FPrepMal samples a random degree-(n− 1) packed Shamir sharing Jλα +∆(λα)Kn−1 such that for
all Pj ∈ Corr, the j-th share of Jλα + ∆(λα)Kn−1 is uj . Then, FPrepMal distributes the shares of
Jλα +∆(λα)Kn−1 to honest parties.

Now we describe the protocol ΠPrepMal that realizes FPrepMal. The communication complexity
of ΠPrepMal remains the same as its semi-honest version described in Section C, i.e., 8|C| elements
among all parties.

Protocol 9: ΠPrepMal

1. Circuit-Independent Preprocessing Phase: All parties invoke FPrepIndMal to receive correlated
randomness.
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2. Computing a Random Sharing for Each Wire: For each output wire α of an input gate or a
multiplication gate, all parties receive Jλα · 1Kn−k from FPrepInd. All parties follow Step 1 of FPrep

and compute Jλα · 1Kn−k for each wire α in the circuit C.
3. Preparing Beaver Triples: For each group of multiplication gates, all parties output

{(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1, which are prepared in FPrepIndMal.
4. Preparing Degree-t Shamir Sharings: For each group of input gates or output gates, all parties

output {Jri|iKt}ki=1, which are prepared in FPrepIndMal.
5. Reconstructing λα + a to P1: For each group of multiplication gates with input wires α =

(α1, . . . , αk), β = (β1, . . . , βk), recall that all parties have computed {Jλαi · 1K}ki=1 and {Jλβi ·
1K}ki=1 in the last step. All parties also receive from FPrepIndMal {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1 and
Jo(1)Kn−1, Jo(2)Kn−1. Let a = (a1, . . . , ak) and b = (b1, . . . , bk). Let ei ∈ Fk be the i-th unit vector,
i.e., all entries of ei are 0 except the i-th entry is 1.

(a) All parties locally compute

Jλα + aKn−1 =

k∑
i=1

ei ∗ Jλαi · 1Kn−k +

k∑
i=1

JeiKk−1 ∗ Jai|iKt + Jo(1)Kn−1

Jλβ + bKn−1 =

k∑
i=1

ei ∗ Jλβi · 1Kn−k +

k∑
i=1

JeiKk−1 ∗ Jbi|iKt + Jo(2)Kn−1

(b) P1 collects the whole sharings Jλα + aKn−1, Jλβ + bKn−1 and reconstructs the secrets λα +
a,λβ + b.

The same step is also done for each group of output gates with input wires α by using {Jri|iKt}ki=1

and JoKn−1 prepared in FPrepIndMal. As a result, P1 receives λα + r.
6. Preparing Degree-(n − 1) Packed Shamir Sharings: For each group of input gates, let α =

(α1, . . . , αk) be the output wires of these gates. Recall that all parties have computed {Jλαi · 1K}ki=1.
All parties also receive from FPrepIndMal JoKn−1. All parties locally compute

JλαKn−1 =

k∑
i=1

ei ∗ Jλαi · 1Kn−k + JoKn−1.

The same step is also done for the output wires of each group of multiplication gates (by using
Jo(3)Kn−1 prepared for this group of multiplication gates in FPrepIndMal).

Lemma 5. Protocol ΠPrepMal securely computes FPrepMal in the FPrepIndMal-hybrid model against a fully
malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

1. In Step 1, S emulates the ideal functionality FPrepIndMal.
2. In Step 2, for each output wire α of an input gate or a multiplication gate, S receives from

the adversary the shares of Jλα · 1Kn−k of corrupted parties and an additive error δα · e1 when
emulating FPrepIndMal. Here e1 = (1, 0, . . . , 0) ∈ Fk. Recall that in FPrepIndMal, the adversary can
only add a constant error to the first secret of Jλα · 1Kn−k.
Then S follows the protocol. For each wire α, S computes the shares of Jλα · 1Kn−k of corrupted
parties and the corresponding error δα · e1.

3. In Step 3, for each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt), S receives from the adversary the
shares of corrupted parties and the additive error ηi when emulating FPrepIndMal. S sends these
values to FPrepMal.

4. In Step 4, for each degree-t Shamir sharing Jri|iKt, S receives from the adversary the shares of
corrupted parties when emulating FPrepIndMal. S sends the shares of corrupted parties in FPrepMal.

5. In Step 5, for each group of multiplication gates with input wires α,β, S follows the protocol
and computes the shares of Jλα + aKn−1 and Jλβ + bKn−1 held by corrupted parties.
– If P1 is an honest party, S receives from the adversary the shares of Jλα+aKn−1 and Jλβ+bKn−1

of corrupted parties, which can be different from those computed by S. Let Jλα + aKn−1 denote
the degree-(n − 1) packed Shamir sharing where the shares of corrupted parties are those
computed by S. S computes the shares of

Jρ(λα + a)Kn−1 = Jλα + aKn−1 − Jλα + aKn−1
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of corrupted parties and sets the shares of honest parties to be all 0. Then, S reconstructs the
secrets ρ(λα + a). Finally, S sets ∆(λα + a) = ρ(λα + a) + δα1

· e1. S sends to FPrepMal the
vector of additive errors ∆(λα + a).
Similarly, S computes the vector of additive errors ∆(λβ + b) and sends it to FPrepMal.

– If P1 is corrupted, S sets ∆(λα + a) = ∆(λβ + b) = 0 ∈ Fk. Then S sends to FPrepMal the two
vectors of additive errors and receives λα + a,λβ + b. S generates a random degree-(n− 1)
packed Shamir sharing Jλα + aKn−1 based on the secrets λα + a = λα + a + δα1

· e1 and
the shares of corrupted parties computed by S. Finally, S sends the shares of Jλα + aKn−1 of
honest parties to P1.
Similarly, S generates a random degree-(n− 1) packed Shamir sharing Jλβ + bKn−1 based on
the secrets λβ + b = λβ + b+ δβ1 · e1 and the shares of corrupted parties computed by S. S
sends the shares of Jλβ + bKn−1 of honest parties to P1.

For each group of output gates with input wires α, S simulates honest parties in the same way
when reconstructing λα + r to P1.

6. In Step 5, S follows the protocol and computes the shares of JλαKn−1 of corrupted parties. Then,
S sets ∆(λα) = δα1

· e1. S sends the shares of JλαKn−1 of corrupted parties computed by S and
the vector of additive errors ∆(λα) to FPrepMal.

This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of ΠPrepMal.
Hybrid0: In this hybrid, S honestly follows the protocol.
Hybrid1: In this hybrid, for each wire α, S computes the shares of Jλα · 1Kn−k of corrupted

parties and the corresponding error δα · e1. Note that this hybrid does not change the behaviors of
honest parties. Therefore, the distribution of Hybrid1 is identical to that of Hybrid0.

Hybrid2: In this hybrid, Step 3 is simulated by S as described above. In Hybrid1, each mul-
tiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt) is generated by FPrepIndMal. In particular, corrupted parties
choose their shares and the additive error ηi. In Hybrid2, S provides the shares of corrupted parties
and the additive error to FPrepMal. Then FPrepMal generates (Jai|iKt, Jbi|iKt, Jci|iKt) in the same way
as that in FPrepIndMal. Therefore, the distribution of Hybrid2 is identical to that of Hybrid1.

Hybrid3: In this hybrid, Step 4 is simulated by S as described above. In Hybrid2, each degree-t
Shamir sharing Jri|iKt is generated by FPrepIndMal. In particular, corrupted parties choose their shares.
In Hybrid3, S provides the shares of corrupted parties to FPrepMal. Then FPrepMal generates Jri|iKt
in the same way as that in FPrepIndMal. Therefore, the distribution of Hybrid3 is identical to that of
Hybrid2.

Hybrid4: In this hybrid, Step 5 is simulated by S when P1 is honest. In Hybrid3, P1 reconstructs
λα + a by using the shares of Jλα + aKn−1 he received from all parties. Note that honest parties
always send the correct shares to P1. Observe the following two facts.

– Let Jλα + aKn−1 denote the degree-(n− 1) packed Shamir sharing where the shares of corrupted
parties are those computed by S. This is to distinguish the degree-(n− 1) packed Shamir sharing
Jλα + aKn−1 that P1 receives from all parties. We claim that the secrets λα + a are the correct
secrets λα + a plus a constant vector δα1

· e1.
This is because in FPrepIndMal, for each output wire α of an input gate or a multiplication gate,
an adversary has added an error δα to the first secret of Jλα · 1Kn−k, i.e., a vector of additive
errors δα · e1. The additive errors propagate to the secrets of Jλα · 1Kn−k for other wires α in the
circuit in Step 2. Following the equation that computes Jλα + aKn−1 in Step 4, the secrets are
equal to the correct secrets λα + a plus δα1 · e1. (The rest of errors δαi · e1 are zeroed out when
multiplying ei).

– In Hybrid3, P1 reconstructs the secrets of Jλα + aKn−1. By the linearity of the packed Shamir
secret sharing scheme, the secrets of

Jρ(λα + a)Kn−1 = Jλα + aKn−1 − Jλα + aKn−1

are the additive errors to the secrets λα + a due to the malicious behaviors of corrupted parties.
Thus, the secrets of Jλα+aKn−1 are equal to λα+a plus δα1 ·e1+ρ(λα+a). That is, ∆(λα+a) =
δα1 · e1 + ρ(λα + a).

In Hybrid4, S has computed δα for all wires in Hybrid1. Thus, S learns δα1 · e1. S can also learn
the shares of Jλα + aKn−1 and Jλα + aKn−1 held by corrupted parties. Thus, S can compute the
shares of Jρ(λα+a)Kn−1 of corrupted parties. Also note that for both Jλα+aKn−1 and Jλα + aKn−1,
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the shares of honest parties are identical. Therefore, the shares of Jρ(λα + a)Kn−1 of honest parties
are all 0. In this way, S reconstructs the secrets ρ(λα + a). Thus, S computes and sends the vector
of additive errors ∆(λα + a) = δα1 · e1 + ρ(λα + a) to FPrepMal, which has the same distribution as
that in Hybrid3.

The same argument works for Jλβ + bKn−1 for the other batch of input wires of each group of
multiplication gates, and works for Jλα + rKn−1 for the batch of input wires of each group of output
gates.

Hybrid5: In this hybrid, Step 5 is emulated by S when P1 is corrupted. In Hybrid4, honest parties
need to send their shares of Jλα + aKn−1 to corrupted parties. As we have argued above, the shares
of Jλα + aKn−1 held by honest parties are equal to the shares of Jλα+aKn−1 of honest parties. Also,
the secrets of Jλα + aKn−1 are equal to the correct secrets λα + a plus δα1

· e1. Furthermore, since
Jo(1)Kn−1 is a random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk, Jλα + aKn−1 is a random
degree-(n− 1) packed Shamir sharing of λα + a+ δα1

· e1.
In Hybrid5, S learns λα + a from FPrepMal and has computed δα1

· e1 in Hybrid1. S generates a
random degree-(n−1) packed Shamir sharing as Jλα + aKn−1 based on the secrets λα+a+ δα1 ·e1
and the shares of corrupted parties computed by S. Then S sends the shares of Jλα + aKn−1 of
honest parties to P1, which have the same distribution as that in Hybrid4.

The same argument works for Jλβ + bKn−1 for the other batch of input wires of each group of
multiplication gates, and works for Jλα + rKn−1 for the batch of input wires of each group of output
gates.

Hybrid6: In this hybrid, Step 6 is emulated by S. Let JλαKn−1 denote the degree-(n − 1)
packed Shamir sharing where the shares of corrupted parties are those computed by S. In Hybrid5,
following a similar argument, the secrets of JλαKn−1 are equal to the correct secrets λα plus δα1

·e1.
And JλαKn−1 is a random degree-(n− 1) packed Shamir sharing of λα + δα1

· e1.
In Hybrid6, S sends to FPrepMal the shares of JλαKn−1 of corrupted parties and the vector of

additive errors ∆(λα) = δα1
·e1. FPrepMal generates a random degree-(n−1) packed Shamir sharing

of λα + δα1 · e1 based on the shares of corrupted parties. Therefore, the shares of honest parties
generated by FPrepMal has the same distribution as that in Hybrid5.

Observe that Hybrid6 is the execution in the ideal world. Therefore, ΠPrepMal securely computes
FPrepMal in the FPrepInd-hybrid model against a fully malicious adversary who controls t corrupted
parties.

D.3 Online Phase — Evaluation

In the online phase, our goal is to compute degree-t Shamir sharings for input wires of multiplication
gates. This is different from the semi-honest protocol where all parties only need to reconstruct
{µα}α to P1. Recall that in the semi-honest protocol (the optimized version in Section C), for each
group of multiplication gates with input wires α,β and output wires γ, P1 distributes Jvα + aKk−1

and Jvβ + bKk−1 to all parties. These two sharings are used to compute and reconstruct µγ to P1.
We observe that we can reuse these two sharings to compute Shamir sharings for wires α,β:

– Recall that in the circuit-dependent preprocessing phase, all parties will keep {Jai|iKt, Jbi|iKt}ki=1.
– For all i ∈ {1, 2, . . . , k}, Jvα + aKk−1 can be viewed as Jvαi

+ ai|iKk−1. Therefore, all parties can
locally compute Jvαi

|iK = Jvαi
+ ai|iKk−1 − Jai|iKt. Similarly, they can locally compute Jvβi

|iK.

Therefore, the online protocol in the malicious security setting follows its semi-honest version to
evaluate the circuit and all parties locally compute degree-t Shamir sharings for input wires of
multiplication gates as described above. We give more details as follows.

Input Phase. In the input phase, we also need to obtain degree-t Shamir sharings for input values.
To this end, we choose to use a simple protocol which requires O(n) elements of communication
per gate. Although this is asymptotically worse than that in the semi-honest version, the number
of input gates is small compared with the circuit size. We believe this will not affect the concrete
efficiency of the protocol.

Recall that in FPrepMal, for each group of input gates that belong to some Client, all parties
have prepared

– A set of random degree-t Shamir sharings {Jri|iKt}ki=1.
– A random degree-(n− 1) packed Shamir sharing JλαKn−1, where α are the output wires of these

input gates.
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Suppose vα are the input values of Client. All parties will send their shares of {Jri|iKt}ki=1 and
JλαKn−1 to Client. Then, Client distributes a degree-t packed Shamir sharing Jvα + rKt to all
parties, where r = (r1, . . . , rk). Here we choose to use a degree-t packed Shamir sharing so that
we do not need to verify whether the shares of honest parties form a valid degree-t packed Shamir
sharing. This is because a degree-t packed Shamir sharing requires t+ 1 shares to reconstruct the
secrets. Since there are n − t = t + 1 honest parties, any shares of honest parties form a valid
degree-t packed Shamir sharing. Client also sends µα = vα−λα to P1 as the semi-honest protocol.
Finally, all parties use Jvα + rKt and {Jri|iKt}ki=1 to compute individual degree-t Shamir sharings
for inputs of Client.

The description of ΠInputMal appears in Protocol 10. The communication complexity of ΠInputMal is
(k + 2) · n/k + 1 = n+ 9 elements per input gate.

Protocol 10: ΠInputMal

1. For each group of input gates that belong to Client, let α denote the batch of output wires of these
input gates. All parties receive {Jri|iKt}ki=1 and JλαKn−1 from FPrepMal and Client holds inputs vα.

2. All parties send to Client their shares of {Jri|iKt}ki=1 and JλαKn−1.
3. For all i ∈ {1, 2, . . . , k}, Client checks whether the shares of Jri|iKt lie on a degree-t polynomial. If

not, Client aborts.
4. Client reconstructs the secrets r = (r1, . . . , rk) and λα. Then, Client samples a random degree-t

packed Shamir sharing Jvα + rKt and computes µα = vα − λα.
5. Client distributes the shares of Jvα + rKt to all parties and sends µα to P1.
6. For all i ∈ {1, 2, . . . , k}, all parties locally compute Jvαi |iKt = Jvα + rKt − Jri|iKt.

Computation Phase. As we explained above, we follow the semi-honest version except that all
parties locally compute degree-t Shamir sharings for input wires of multiplication gates. Concretely,
we will maintain the invariant that P1 learns µα = vα − λα for all wire α in the circuit. Note that it
holds for the output wires of input gates.

For each addition gate with input wires α, β and output wire γ, P1 computes µγ = µα + µβ as
the semi-honest version.

For each group of multiplication gates with input wires α,β and output wires γ, recall that P1

receives λα + a and λβ + b from FPrepMal. P1 computes vα + a = µα + (λα + a) and distributes
the degree-(k − 1) packed Shamir sharing Jvα + aKk−1 to all parties. Similarly, P1 computes vβ + b
and distributes Jvβ + bKk−1 to all parties. Note that these two steps are identical to the semi-honest
version. Recall that all parties receive {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1 and JλγKn−1 from FPrepMal. All
parties locally compute

JaKn−k = Je1Kk−1 ∗ Ja1|1Kt + . . .+ JekKk−1 ∗ Jak|kKt
JbKn−k = Je1Kk−1 ∗ Jb1|1Kt + . . .+ JekKk−1 ∗ Jbk|kKt
JcKn−k = Je1Kk−1 ∗ Jc1|1Kt + . . .+ JekKk−1 ∗ Jck|kKt

Here ei is the i-th unit vector in Fk, i.e., all entries are 0 except the i-th entry is 1. After receiving
from P1 Jvα + aKk−1, Jvβ + bKk−1 , all parties locally compute a degree-(n − 1) packed Shamir
sharing of µγ as follows:

JµγKn−1 = Jvα + aKk−1 ∗ Jvβ + bKk−1 − Jvα + aKk−1 ∗ JbKn−k

− Jvβ + bKk−1 ∗ JaKn−k + JcKn−k − JλγKn−1.

The correctness follows the same argument as the semi-honest version in Section C. Finally all
parties use Jvα +aKk−1, Jvβ + bKk−1 and {Jai|iKt, Jbi|iKt}ki=1 to compute individual degree-t Shamir
sharings for input wires of multiplication gates.

The description of ΠMultMal appears in Protocol 11. The communication complexity of ΠMultMal is
3n/k = 12 elements per gate among all parties.

Protocol 11: ΠMultMal

1. For each group of multiplication gates with input wires α,β and output wires γ, all parties receive
from FPrepMal

– A set of Beaver triples {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1,
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– A random degree-(n− 1) packed Shamir sharing JλγKn−1.
P1 receives from FPrepMal two vectors d1 = λα + a,d2 = λβ + b. P1 also learns µα,µβ during the
online phase.

2. P1 locally computes vα + a = µα + d1 and vβ + b = µβ + d2. Then, P1 computes Jvα + aKk−1

and Jvβ + bKk−1 and distributes the shares to all parties.
3. All parties locally compute

JaKn−k = Je1Kk−1 ∗ Ja1|1Kt + . . .+ JekKk−1 ∗ Jak|kKt
JbKn−k = Je1Kk−1 ∗ Jb1|1Kt + . . .+ JekKk−1 ∗ Jbk|kKt
JcKn−k = Je1Kk−1 ∗ Jc1|1Kt + . . .+ JekKk−1 ∗ Jck|kKt

JµγKn−1 = Jvα + aKk−1 ∗ Jvβ + bKk−1 − Jvα + aKk−1 ∗ JbKn−k

− Jvβ + bKk−1 ∗ JaKn−k + JcKn−k − JλγKn−1.

4. P1 collects the whole sharing JµγKn−1 from all parties and reconstructs µγ .
5. For all i ∈ {1, 2, . . . , k}, all parties locally compute Jvαi |iKt = Jvα + aKk−1 − Jai|iKt and Jvβi |iKt =

Jvβ + bKk−1 − Jbi|iKt.

Output Phase and Validity Check. After evaluating the whole circuit, we will compute a degree-t
Shamir sharing for each output gate. For each group of output gates with input wires α, recall that

– All parties receive a set of degree-t Shamir sharings {Jri|iKt}ki=1 from FPrepMal.
– P1 receives λα + r from FPrepMal where r = (r1, r2, . . . , rk).
– P1 learns µα = vα − λα.

Similarly to the input wires of multiplication gates, P1 locally computes vα + r = µα + (λα + r)
and distributes the degree-(k − 1) packed Shamir sharing Jvα + rK to all parties. In this way, all
parties can locally compute degree-t Shamir sharings for input wires of output gates.

Before reconstructing the outputs to clients, we need to verify the correctness of the computation.
The verification contains two parts

– First, we need to verify that the degree-(k−1) packed Shamir sharings distributed by P1 are valid.
That is, for each degree-(k − 1) packed Shamir sharing distributed by P1, the shares of honest
parties lie on a degree-(k − 1) polynomial.

– Second, we need to check that for each input wire of a multiplication gate or an output gate, the
secret of the corresponding degree-t Shamir sharing is the correct wire value.

We will only do the first step in this part. As we will prove later, after the first check, the degree-t
Shamir sharings all parties hold are valid. In particular, any attack of the adversary can be reduced
to an additive attack. That is, what an adversary can do is to add a constant error to the secret of
each degree-t Shamir sharing. We will discuss how to verify the correctness of the secrets in the
next part.

To verify the degree-(k − 1) packed Shamir sharings distributed by P1, we simply compute a
random linear combination of all degree-(k − 1) packed Shamir sharings and then let each party
check the validity of the resulting sharing. To this end, we will need a functionality FCoin that
samples a random field element to all parties. An instantiation of FCoin can be found in [GS20],
which has communication complexity O(n2) elements.

Functionality 9: FCoin

1. FCoin samples a random field element r.
2. FCoin sends r to the adversary.

– If the adversary replies continue, FCoin sends r to honest parties.
– If the adversary replies abort, FCoin sends abort to honest parties.

Let K be an extension field of F such that |K| ≥ 2κ, where κ is the security parameter. All parties
will use FCoin to generate a random field element r ∈ K. Let {JwiKk−1}mi=1 denote all degree-(k − 1)
packed Shamir sharings distributed by P1. All parties will locally compute

JwKk−1 =

m∑
i=1

ri−1 · JwiKk−1.
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Then each party collects the whole sharing JwKk−1 and checks whether the shares form a valid
degree-(k − 1) packed Shamir sharing. The description of ΠConsistency appears in Protocol 12. The
communication complexity of ΠConsistency is O(n2) elements in K, which is independent of the
number of sharings.

Protocol 12: ΠConsistency

1. Let {JwiKk−1}mi=1 denote all degree-(k − 1) packed Shamir sharings distributed by P1.
2. All parties invoke FCoin to generate a random element r ∈ K.
3. All parties locally compute

JwKk−1 =

m∑
i=1

ri−1 · JwiKk−1.

4. Each party Pi sends its share of JwKk−1 to all other parties. Then each party Pj checks whether the
shares of JwKk−1 lie on a degree-(k − 1) polynomial. If true, Pj accepts the check. Otherwise, Pj

aborts.

In the following, when we say a degree-(k− 1) packed Shamir sharing JsKk−1 is valid, we means
that the shares of JsKk−1 of honest parties lie on a degree-(k− 1) polynomial. We have the following
lemma.

Lemma 6. If there exists i ∈ {1, 2, . . . ,m} such that JwiKk−1 is not a valid degree-(k − 1) packed
Shamir sharing, then all honest parties abort in ΠConsistency with overwhelming probability.

Proof. Consider the following polynomial of sharings in K:

f(r) =

m∑
i=1

ri−1 · JwiKk−1.

Suppose at least one degree-(k − 1) packed Shamir sharing in {JwiKk−1}mi=1 is invalid. We show
that the number of r such that f(r) is a valid degree-(k − 1) packed Shamir sharing is bounded by
m− 1.

If not, then there exists r1, r2, . . . , rm such that f(rj) is a valid degree-(k − 1) packed Shamir
sharing. Consider the matrix M = (ri−1

j )i,j . Then

(f(r1), . . . ,f(rm))T = M · (Jw1Kk−1, . . . , JwmKk−1)
T.

Note that M is a Vandermonde matrix of size m × m, which is invertible. Therefore, each
JwiKk−1 is a linear combination of f(r1), . . . ,f(rm), which implies that JwiKk−1 is also a valid
degree-(k − 1) packed Shamir sharing. However, it contradicts with the assumption that at least
one degree-(k − 1) packed Shamir sharing in {JwiKk−1}mi=1 is invalid.

Therefore, the number of r such that f(r) is a valid degree-(k − 1) packed Shamir sharing is
bounded by m− 1. Since r is generated randomly by FCoin, the probability that JwKk−1 is valid is
bounded by m

2κ , which is negligible. Note that when JwKk−1 is invalid, all honest parties will abort.

Summary. We describe the functionality FEvaluate in Functionality 10 for the evaluation of the circuit
in the online phase. The realization of FEvaluate, ΠEvaluate, appears in Protocol 13. The communication
complexity of ΠEvaluate is 12 elements per multiplication gate among all parties.

Functionality 10: FEvaluate

1. FEvaluate receives the input from all clients. Let C denote the circuit.
2. FEvaluate receives the set of corrupted parties, denoted by Corr. For each group of input gates with

output wires α, let vα denote the input values associated with α. For all i ∈ {1, . . . , k}, FEvaluate

receives from the adversary a set of shares {ui,j}j∈Corr. Then FEvaluate computes a degree-t Shamir
sharing Jvαi |iKt such that for all Pj ∈ Corr, the j-th share of Jvαi |iKt is ui,j . Finally, FEvaluate

distributes the shares of Jvαi |iKt to honest parties.
3. FEvaluate evaluates the circuit C layer by layer. For each addition gate with input wires α, β and

output wire γ, FEvaluate computes vγ = vα + vβ . For each group of multiplication gates with input
wires α,β,

(a) FEvaluate receives two vectors of additive errors ∆(vα),∆(vβ) from the adversary. Then, FEvaluate

sets vα = vα +∆(vα) and vβ = vβ +∆(vβ).
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(b) For all i ∈ {1, 2, . . . , k}, FEvaluate receives from the adversary a set of shares {(u(1)
i,j , u

(2)
i,j )}j∈Corr.

Then FEvaluate computes degree-t Shamir sharings Jvαi |iKt and Jvβi |iKt such that for all Pj ∈ Corr,
the j-th share of Jvαi |iKt is u(1)

i,j and the j-th share of Jvβi |iKt is u(2)
i,j . Finally, FEvaluate distributes

the shares of Jvαi |iKt, Jvβi |iKt to honest parties.
(c) FEvaluate computes vγ = vα ∗ vβ.

4. For each group of output gates with input wires α,
(a) FEvaluate receives a vector of additive errors ∆(vα) from the adversary. Then, FEvaluate sets vα =

vα +∆(vα).
(b) For all i ∈ {1, 2, . . . , k}, FEvaluate receives from the adversary a set of shares {ui,j}j∈Corr. Then

FEvaluate computes a degree-t Shamir sharing Jvαi |iKt such that for all Pj ∈ Corr, the j-th share
of Jvαi |iKt is ui,j . Finally, FEvaluate distributes the shares of Jvαi |iKt to honest parties.

5. On receiving abort, FEvaluate sends abort to all parties.

Protocol 13: ΠEvaluate

1. Preprocessing Phase: All parties invoke FPrepMal to receive correlated randomness that will be used
in the online phase.

2. Input Phase: In the input layer, for each group of k input gates that belong to some Client, let α
denote the output wires of these input gates. All parties and Client invoke ΠInputMal. At the end of
the protocol, all parties hold {Jvαi |iKt}ki=1. And P1 learns µα = vα − λα, where vα are the input
values of Client, and λα are the random values associated with the batch of wires α generated by
FPrepMal.

3. Computation Phase: All parties maintain the invariant that for each wire α, P1 learns µα = vα−λα,
where vα is the real value associated with the wire α, and λα is a random value associated with α
generated by FPrepMal. The circuit is evaluated layer by layer. Assume that the invariant holds for
wires in previous layers. Consider gates in the current layer.
For each addition gate with input wires α, β and output wire γ, P1 locally compute µγ = µα + µβ .
For each group of k multiplication gates with input wires α,β and output wires γ, all parties invoke
ΠMultMal. At the end of the protocol, all parties hold {Jvαi |iKt, Jvβi |iKt}

k
i=1. And P1 learns µγ .

4. Output Phase and Validity Check: For each group of k output gates with input wires α, recall that
– All parties receive {Jri|iKt}ki=1 from FPrepMal,
– P1 receives λα + r from FPrepMal, where r = (r1, . . . , rk),
– P1 learns µα = vα − λα by the invariant.
P1 computes vα + r = µα + (λα + r). Then P1 distributes the degree-(k − 1) packed Shamir
sharing Jvα + rKk−1 to all parties. For all i ∈ {1, 2, . . . , k}, all parties locally compute Jvαi |iKt =
Jvα + rKk−1 − Jri|iKt.
Finally, let {JwiKk−1}mi=1 denote all degree-(k − 1) packed Shamir sharings distributed by P1. All
parties invoke ΠConsistency to check the validity of these sharings.

Lemma 7. Protocol ΠEvaluate securely computes FEvaluate in the FPrepMal-hybrid model against a fully
malicious adversary who controls t parties and up to c clients.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

1. In Step 1, S emulates the ideal functionality FPrepMal as follows.
– For each sharing generated by FPrepMal, S receives from the adversary the shares of corrupted

parties.
– For each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt), S receives from the adversary the corre-

sponding additive error ηi.
– For each group of multiplication gates with input wires α,β, S receives from the adversary two

vectors of additive errors ∆(λα+a), ∆(λβ+b). S samples two random vectors as λα+a,λβ+b
and computes d1 = (λα + a) +∆(λα + a),d2 = (λβ + b) +∆(λβ + b). Finally S sends d1,d2

to P1.
Similarly, for each group of output gates with input wires α, S receives from the adversary
a vector of additive errors ∆(λα + r). S samples a random vector as λα + r and computes
d = (λα + r) +∆(λα + r). Finally S sends d to P1.
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– For each group of input gates with output wires α, S receives from the adversary a vector of
additive errors ∆(λα). For each group of multiplication gates with output wires γ, S receives
from the adversary a vector of additive errors ∆(λγ).

2. In Step 2, for each group of k input gates that belong to some Client, let α denote the output
wires of these input gates. S simulates ΠInputMal as follows.
– Case 1: Client is an honest party.
(a) S receives from corrupted parties their shares of {Jri|iKt}ki=1 and JλαKn−1. For all i ∈

{1, 2, . . . , k}, S checks whether the shares of Jri|iKt received from corrupted parties are
the same as those received in FPrepMal. If not, S aborts the protocol on behalf of Client.
Otherwise, S generates a random vector as vα + r and samples a random degree-t packed
Shamir sharing Jvα + rKt.

(b) S samples a random vector as µα. Let JλαKn−1 denote the sharing that Client receives
from all parties, and JλαKn−1 denote the sharing where the shares of corrupted parties are
replaced by those learnt by S when emulating FPrepMal. S computes the shares of corrupted
parties of the following sharing

Jρ(λα)Kn−1 = JλαKn−1 − JλαKn−1.

S sets the shares of honest parties to be 0 and reconstructs the secrets ρ(λα).
(c) Recall that S receives a vector of additive errors ∆(λα) from the adversary when emulating

FPrepMal. S sets ∆(µα) = −ρ(λα)−∆(λα) and sends µα +∆(µα) to P1.
(d) For all i ∈ {1, . . . , k}, S computes the shares of Jvαi |iKt of corrupted parties by following

Step 6 of ΠInputMal and sends the shares of corrupted parties to ΠEvaluate.
– Case 2: Client is a corrupted party.
(a) S generates a random vector as r = (r1, . . . , rk). Then, based on the secret ri and the shares

of corrupted parties, S computes the shares of Jri|iKt held by honest parties. S sends the
shares of honest parties to Client.

(b) S samples a random vector as λα. Recall that S receives ∆(λα) from the adversary when
emulating FPrepMal. Based on the secrets λα +∆(λα) and the shares of corrupted parties,
S samples a random degree-(n− 1) packed Shamir sharing Jλα +∆(λα)Kn−1. S sends the
shares of honest parties to Client.

(c) S receives the shares of Jvα + rKt of honest parties. Then S reconstructs the whole sharing
and learns the secrets vα + r. S computes the inputs of Client by vα = (vα + r)− r and
sends vα to ΠEvaluate.

(d) S computes µα = vα − λα.
• If P1 is honest, S receives µ̃α from Client. S sets ∆(µα) = µ̃α − µα.
• If P1 is corrupted, S sets ∆(µα) = −∆(λα).

(e) For all i ∈ {1, . . . , k}, S computes the shares of Jvαi |iKt of corrupted parties by following
Step 6 of ΠInputMal and sends the shares of corrupted parties to ΠEvaluate.

3. In Step 3, S will compute µα and ∆(µα) for each wire α in the circuit. Recall that S has computed
µα and ∆(µα) for each output wire of an input gate.
For each addition gate with input wires α, β and output wire γ, S computes µγ = µα + µβ and
∆(µγ) = ∆(µα) +∆(µβ).
For each group of multiplication gates with input wires α,β and output wires γ, S simulates
ΠMultMal as follows.
– Case 1: P1 is an honest party.
(a) Recall that S has explicitly generated λα+a and λβ+b when emulating FPrepMal. Also recall

that S received two vectors of additive errors ∆(λα + a) and ∆(λβ + b) from the adversary
when emulating FPrepMal.

(b) For α,β, S learns µα,µβ and ∆(µα), ∆(µβ). S computes vα + a = µα + (λα + a) and
vβ + b = µβ + (λβ + b). Then S sets ∆(vα) = ∆(µα) +∆(λα + a) and ∆(vβ) = ∆(µβ) +
∆(λβ + b).
On behalf of P1, S computes and distributes Jvα + a+∆(vα)Kk−1 and Jvβ + b+∆(vβ)Kk−1

to all parties.
(c) S follows Step 3 of ΠMultMal and computes the shares of JµγKn−1 of corrupted parties. Recall

that S receives ηi for each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt) from the adversary
when emulating FPrepMal. S sets η = (η1, . . . , ηk). Also recall that S receives a vector of
additive errors ∆(λγ) when emulating FPrepMal.
S samples a random vector as µγ .
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(d) S receives from corrupted parties their shares of JµγKn−1. Let JµγKn−1 denote the sharing
where the shares of corrupted parties are replaced by those computed by S. S computes the
shares of corrupted parties of the following sharing

Jρ(µγ)Kn−1 = JµγKn−1 − JµγKn−1.

S sets the shares of honest parties to be 0 and reconstructs the secrets ρ(µγ). Then S sets
∆(µγ) = ρ(µγ) + η −∆(λγ).

(e) For all i ∈ {1, . . . , k}, S computes the shares of Jvαi |iKt, Jvβi |iKt of corrupted parties by follow-
ing Step 5 of ΠMultMal. Then S sends ∆(vα), ∆(vβ) and the shares of {Jvαi |iKt, Jvβi |iKt}ki=1

of corrupted parties to FEvaluate.
– Case 2: P1 is a corrupted party.
(a) S receives from P1 the shares of Jvα + aKk−1 and Jvβ + bKk−1 of honest parties.

• For each of Jvα + aKk−1 and Jvβ + bKk−1, if the shares of honest parties do not lie on a
degree-(k − 1) packed Shamir sharing, S marks the computation as fail. From now, each
time S needs to send a value to FEvaluate, S sends 0 to FEvaluate. In this case, S will abort
on behalf of honest parties at the end of the protocol.

• Otherwise, S reconstructs the whole sharings Jvα + aKk−1, Jvβ + bKk−1 and computes the

secrets, which are denoted by ṽα + a, ṽβ + b.
Recall that S has explicitly generated λα + a and λβ + b when emulating FPrepMal.
When the computation is NOT marked as fail, for α,β, S learns µα,µβ. S computes
vα+a = µα+(λα+a) and vβ+b = µβ+(λβ+b). Then S sets ∆(vα) = ṽα + a−(vα+a)

and ∆(vβ) = ṽβ + b− (vβ + b).
(b) For each honest party, S samples a random field element as its share of JµγKn−1. Then S

sends the shares of JµγKn−1 of honest parties to P1.
If the computation is NOT marked as fail, S follows Step 3 of ΠMultMal and computes the
shares of JµγKn−1 of corrupted parties. Then S reconstructs the secrets µγ . Recall that S
received a vector of additive errors ∆(λγ) from the adversary when emulating FPrepMal.
Also recall that S receives ηi for each multiplication triple (Jai|iKt, Jbi|iKt, Jci|iKt) from the
adversary when emulating FPrepMal. S sets η = (η1, . . . , ηk). S sets ∆(µγ) = η −∆(λγ) and
computes µγ = µγ −∆(µγ).

(c) If the computation is NOT marked as fail, S follows Step 5 of ΠMultMal and computes the
shares of {Jvαi

|iKt, Jvβi
|iKt}ki=1 of corrupted parties. Then S sends ∆(vα), ∆(vβ) and the

shares of {Jvαi
|iKt, Jvβi

|iKt}ki=1 of corrupted parties to FEvaluate.
4. In Step 4, for each group of output gates with input wires α, S simulates the behaviors of honest

parties as follows.
– Case 1: P1 is an honest party.
(a) Recall that S has explicitly generated λα + r when emulating FPrepMal. Also recall that S

received a vector of additive errors ∆(λα + r) from the adversary when emulating FPrepMal.
(b) For α, S learns µα and ∆(µα). S computes vα + r = µα + (λα + r). Then S sets ∆(vα) =

∆(µα) +∆(λα + r).
On behalf of P1, S computes and distributes Jvα + r +∆(vα)Kk−1 to all parties.

(c) For all i ∈ {1, . . . , k}, S computes the shares of Jvαi |iKt of corrupted parties by following
the protocol. Then S sends ∆(vα) and the shares of {Jvαi |iKt}ki=1 of corrupted parties to
FEvaluate.

– Case 2: P1 is a corrupted party.
(a) S receives from P1 the shares of Jvα + rKk−1 of honest parties.

• For Jvα + rKk−1, if the shares of honest parties do not lie on a degree-(k − 1) packed
Shamir sharing, S marks the computation as fail. From now, each time S needs to send
a value to FEvaluate, S sends 0 to FEvaluate. In this case, S will abort on behalf of honest
parties at the end of the protocol.

• Otherwise, S reconstructs the whole sharing Jvα + rKk−1 and computes the secrets, which
are denoted by ṽα + r.
Recall that S has explicitly generated λα + r when emulating FPrepMal. When the compu-
tation is NOT marked as fail, for α, S learns µα. S computes vα + r = µα + (λα + r).
Then S sets ∆(vα) = ṽα + r − (vα + r).

(b) If the computation is NOT marked as fail, S follows the protocol and computes the shares
of {Jvαi

|iKt}ki=1 of corrupted parties. Then S sends ∆(vα) and the shares of {Jvαi
|iKt}ki=1 of

corrupted parties to FEvaluate.
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Finally, S honestly follow the protocol ΠConsistency. Note that if P1 is honest, S has explicitly
generated each degree-(k − 1) packed Shamir sharing that should be distributed by P1. If P1 is
corrupted, S learns the shares of honest parties from P1. In either case, S can honestly follow
the protocol ΠConsistency. If S has marked the computation as fail but no honest party aborts in
ΠConsistency, S aborts.

This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of ΠEvaluate.
Hybrid0: In this hybrid, S honestly follows the protocol.
Hybrid1: In this hybrid, S checks the degree-(k − 1) packed Shamir sharings distributed by P1

as described above. If there exists some degree-(k − 1) packed Shamir sharing such that the shares
of honest parties do not lie on a degree-(k − 1) packed Shamir sharing, S marks the computation as
fail. S simulates ΠConsistency as described above. If S has marked the computation as fail but no
honest party aborts in ΠConsistency, S aborts.

By Lemma 6, if there exists some degree-(k − 1) packed Shamir sharing such that the shares of
honest parties do not lie on a degree-(k − 1) packed Shamir sharing, then all honest parties abort
with overwhelming probability. Therefore the probability that S has marked the computation as
fail but no honest party aborts in ΠConsistency is negligible. Thus, Hybrid1 is statistically close to
Hybrid0.

Hybrid2: In this hybrid, for each group of input gates that belong to some Client, let α denote
the output wires of these group of gates. For each Jvαi |iKt, S computes the secret vαi and the shares
of corrupted parties by using the shares of honest parties. S sends vα and the shares of {Jvαi |iKt}ki=1

of corrupted parties to FEvaluate.
Then, S computes vα for each wire α and prepares the values for FEvaluate as follows:

– For each addition gate with input wires α, β and output wire γ, S computes vγ = vα + vβ .
– For each group of multiplication gates with input wires α,β and output wire γ, S computes

the secrets {ṽαi , ṽβi}ki=1 and the shares of {Jvαi |iKt, Jvβi |iKt}ki=1 of corrupted parties by using
the shares of honest parties. Then S computes ∆(vα) = ṽα − vα and ∆(vβ) = ṽβ − vβ,
where ṽα = (ṽα1

, . . . , ṽαk
) and ṽβ = (ṽβ1

, . . . , ṽβk
). S sends ∆(vα), ∆(vβ) and the shares of

{Jvαi
|iKt, Jvβi

|iKt}ki=1 of corrupted parties to FEvaluate.
S computes vγ = ṽα ∗ ṽβ.

– For each group of output gates with input wires α, S computes the secrets {ṽαi}ki=1 and the
shares of {Jvαi |iKt}ki=1 of corrupted parties by using the shares of honest parties. Then S computes
∆(vα) = ṽα − vα, where ṽα = (ṽα1 , . . . , ṽαk

).
S sends ∆(vα) and the shares of {Jvαi

|iKt}ki=1 of corrupted parties to FEvaluate.

Finally, honest parties take the shares from FEvaluate as output.
We prove that Hybrid2 is identically distributed to Hybrid1.

– For each group of input gates with output wires α, we show that the shares of {Jvαi |iKt}ki=1 of
honest parties in both hybrids are identical. In Hybrid1, honest parties take their shares computed
in ΠEvaluate as output. In Hybrid2, we first recover the secrets vα and the shares of {Jvαi

|iKt}ki=1

of corrupted parties from the shares held by honest parties. These values are sent to FEvaluate,
and FEvaluate computes the shares of honest parties based on the secrets vα and the shares of
{Jvαi |iKt}ki=1 of corrupted parties. Finally, honest parties take the shares computed by FEvaluate as
output. Note that for a degree-t Shamir sharing, it is determined by the shares of honest parties,
and it is also determined by the shares of corrupted parties plus the secret. Thus, the shares
computed by FEvaluate in Hybrid2 are identical to the original shares held by honest parties.
Thus, the shares of {Jvαi

|iKt}ki=1 of honest parties in both hybrids are identical.
– Note that S computes vα in the same way as that in FEvaluate. For each group of multiplica-

tion gates with input wires α,β and output wires γ, the values vα and vβ computed by S
are identical to those computed by FEvaluate. In Hybrid1, honest parties output their shares of
{Jvαi

|iKt, Jvβi
|iKt}ki=1. In Hybrid2, we first recover the secrets ṽα, ṽβ and the shares of {Jvαi

|iKt, Jvβi
|iKt}ki=1

of corrupted parties from the shares held by honest parties. Then, S sends the shares of corrupted
parties and ∆(vα) = ṽα − vα, ∆(vβ) = ṽβ − vβ to FEvaluate. Since FEvaluate has computed the
same values vα and vβ, FEvaluate computes the shares of honest parties based on the secrets
vα +∆(vα) and vβ +∆(vβ), which are just ṽα, ṽβ, and the shares of corrupted parties. Thus
the shares computed by FEvaluate in Hybrid2 are identical to the original shares held by honest
parties.
Thus, the shares of {Jvαi

|iKt, Jvβi
|iKt}ki=1 of honest parties in both hybrids are identical.
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– Following the same argument, we can show that for each group of output gates with input wires
α, the shares of {Jvαi

|iKt}ki=1 of honest parties in both hybrids are identical.

Thus, Hybrid2 is identically distributed to Hybrid1.
Hybrid3,0: This hybrid is identical to Hybrid2. From Hybrid3,0 to Hybrid3,6, we focus on the

case where P1 is an honest party.
Hybrid3,1: When P1 is honest, S computes the shares of corrupted parties as follows.

– For each group of input gates with output wires α, recall that each degree-t Shamir sharing
Jvαi |iKt is computed by

Jvαi |iKt = Jvα + rKt − Jri|iKt.

Recall that Jvα + rKt is distributed by the Client that holds inputs for these input gates. S
computes the shares of corrupted parties from the shares of honest parties. For Jri|iKt, S receives
from the adversary the shares of corrupted parties when emulating FPrepMal. Then, S computes
the shares of Jvαi |iKt of corrupted parties.

– For each group of multiplication gates with input wires α,β, each degree-t Shamir sharing Jvαi
|iKt

is computed by
Jvαi

|iKt = Jvα + aKk−1 − Jai|iKt.

Recall that Jvα + aKk−1 is distributed by P1. S computes the shares of corrupted parties from the
shares of honest parties. For Jai|iKt, S receives from the adversary the shares of corrupted parties
when emulating FPrepMal. Then, S computes the shares of Jvαi |iKt of corrupted parties.
Similarly, S computes the shares of Jvβt

|iKt of corrupted parties.
– For each group of output gates with input wires α, S computes the shares of Jvβt |iKt of corrupted

parties in the same way as that for the input wires of multiplication gates.

The distribution of Hybrid3,1 is identical to that of Hybrid3,0.
Hybrid3,2: When P1 is honest, S computes ∆(vα), ∆(vβ) for each group of multiplication gates

and computes ∆(vα) for each group of output gates as follows.
For each group of multiplication gates with input wires α,β, recall that Jvαi |iKt = Jvα + aKt −

Jai|iKt. Since Jai|iKt is prepared by FPrepMal and the secret is determined by the shares of honest
parties, the adversary cannot insert any additive error to the secret ai. We have ∆(vαi

) = ∆(vαi
+ai),

which means that ∆(vα) = ∆(vα + a). Recall that vα + a is computed by µα + (λα + a). S has
received ∆(λα + a). Thus S only needs to compute ∆(µα).

Since P1 reconstructs {µα}α for the output wires of input gates and multiplication gates, it is
sufficient to first compute {∆(µα)}α for the output wires of input gates and multiplication gates,
and then compute {∆(µα)}α for the input wires of multiplication gates. For each group of input
gates with output wires α,

– If Client is honest, let JλαKn−1 denote the sharing that Client receives from all parties, and
JλαKn−1 denote the sharing where the shares of corrupted parties are replaced by those learnt by
S when emulating FPrepMal. S computes the shares of corrupted parties of the following sharing

Jρ(λα)Kn−1 = JλαKn−1 − JλαKn−1.

S sets the shares of honest parties to be 0 and reconstructs the secrets ρ(λα). Then the secrets of
JλαKn−1, λ̃α, are equal to λα + ρ(λα).
On the other hand, when emulating FPrepMal, S receives ∆(λα) and we have λα = λα +∆(λα).
Therefore, λ̃α = λα + ρ(λα) +∆(λα).
Since Client sends µ̃α = vα − λ̃α = µα − (ρ(λα)+∆(λα)) to P1, we have ∆(µα) = −(ρ(λα)+
∆(λα)). In this way, S computes ∆(µα) from ρ(λα) and ∆(λα).

– If Client is corrupted, recall that S has computed vα in Hybrid3,1. S computes µα = vα − λα.
After S receives µ̃α from Client, S computes ∆(µα) = µ̃α − µα.

For each group of multiplication gates with output wires γ, S computes the shares of JµγKn−1 of
corrupted parties by following Step (3) of ΠMultMal. S receives from corrupted parties their shares
of JµγKn−1. Let JµγKn−1 denote the sharing where the shares of corrupted parties are replaced by
those computed by S. S computes the shares of corrupted parties of the following sharing

Jρ(µγ)Kn−1 = JµγKn−1 − JµγKn−1.
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S sets the shares of honest parties to be 0 and reconstructs the secrets ρ(µγ). Then the secrets of
JµγKn−1, µ̃γ , are equal to µγ + ρ(µγ).

On the other hand, when emulating FPrepMal, S receives ∆(λγ) and η = (η1, . . . , ηk). We have
µγ = µγ + η −∆(λγ). Therefore, µ̃γ = µγ + ρ(µγ) + η −∆(λγ). In this way, S computes ∆(µγ)
from ρ(µγ),η, ∆(λγ).

The distribution of Hybrid3,2 is identical to that of Hybrid3,1.
Hybrid3,3: When P1 is honest, for each group of multiplications with input wires α,β, S

randomly samples two vectors as λα + a,λβ + b and then computes a = (λα + a) − λα, b =
(λβ + b)− λβ. For each group of output gates with input wires α, S randomly samples a vector as
λα + r and then computes r = (λα + r)− λα.

The difference is that in Hybrid3,2, S first randomly samples a, b, r and then computes λα +
a,λβ + b for multiplication gates and λα + r for output gates. Note that the distribution of these
values are unchanged.

The distribution of Hybrid3,3 is identical to that of Hybrid3,2.
Hybrid3,4: When P1 is honest, for each group of multiplication gates with output wires γ, S

samples random values as the shares of JµγKn−1 (defined in Hybrid3,2) of honest parties. Then, S
uses the shares of corrupted parties (computed in Hybrid3,2) to compute µγ . Next, S computes
µγ = µγ − η +∆(λγ) and computes λγ = vγ − µγ .

In Hybrid3,3, the degree-(n − 1) packed Shamir sharing JλγKn−1 generated by FPrepMal is a
random degree-(n− 1) packed Shamir sharing given the shares of corrupted parties. This is because
the secrets are equal to λγ +∆(λγ) and λγ are uniformly random. Therefore, JµγKn−1 is a random
degree-(n− 1) packed Shamir sharing given the shares of corrupted parties. In particular, the shares
of honest parties are uniformly distributed and independent of the shares of corrupted parties. Thus,
the shares of JµγKn−1 are identically distributed in both Hybrid3,3 and Hybrid3,4.

By using the shares of JµγKn−1 of corrupted parties, we can reconstruct the secrets µγ . From
the argument in Hybrid3,2, we have µγ = µγ + η −∆(λγ). We also have vγ = µγ + λγ . Thus, we
can compute λγ from µγ .

The distribution of Hybrid3,4 is identical to that of Hybrid3,3.
Hybrid3,5: When P1 is honest, S simulates ΠInputMal as described above.

– When Client is honest, S first checks the shares of {Jri|iKt}ki=1 on behalf of Client. S aborts
on behalf of Client if the shares of corrupted parties are different from those received from the
adversary when emulating FPrepMal. Note that a degree-t Shamir sharing is determined by the
shares of honest parties. In Hybrid3,4, honest parties always use the correct shares. If corrupted
parties use different shares from those sent to FPrepMal, Client will abort. Thus, S aborts on
behalf of Client in Hybrid3,5 if and only if Client aborts in Hybrid3,4.
Then, S samples a random vector as vα + r and generates a random degree-t packed Shamir
sharing Jvα + rKt. In Hybrid3,4, r are uniformly random. Therefore, vα + r are also uniformly
random. Also Jvα + rKt is a random degree-t packed Shamir sharing of Jvα + rKt. Thus, the
distribution of Jvα + rKt is identical in both hybrids.
Next, S samples a random vector as µα and computes λα = vα − µα. In Hybrid3,4, λα are
uniformly random. Therefore, µα are also uniformly random. Thus, the vector µα has the same
distribution in both hybrids.
Finally, S computes µα +∆(µα) and sends them to P1. Here ∆(µα) are computed in the same
way as that in Hybrid3,4 (described in Hybrid3,2).

– When Client is corrupted, S first generates a random vector r and then computes the shares
of {Jri|iKt}ki=1 of honest parties based on the shares of corrupted parties. Note that the way of
generating {Jri|iKt}ki=1 is identical to that in FPrepMal in Hybrid3,4. Thus, the shares of {Jri|iKt}ki=1

of honest parties have the same distribution in both hybrids.
Then, S first generates a random vector λα and samples a random degree-(n− 1) packed Shamir
sharing Jλα +∆(λα)K, where ∆(λα) is received from the adversary when emulating FPrepMal.
Note that the way of generating Jλα +∆(λα)K is identical to that in FPrepMal in Hybrid3,4. Thus,
the shares of Jλα +∆(λα)K of honest parties have the same distribution in both hybrids.
Next, S receives the shares of Jvα + rKt of honest parties and reconstructs vα + r. S computes
vα = (vα + r) − r. In Hybrid3,4, vα are computed from the shares of {Jvαi |iKt}ki=1 of honest
parties. Recall that Jvαi |iKt = Jvα + rKt − Jri|iKt. Therefore, vαi = (vαi + ri)− ri, which means
that vα = (vα + r)− r. The inputs extracted by S have the same distribution as those computed
in Hybrid3,4.
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In summary, the distribution of Hybrid3,5 is identical to that of Hybrid3,4.
Hybrid3,6: We observe that when P1 is honest, all messages sent to corrupted parties and

corrupted clients, and all values sent to FEvaluate have been simulated by S without knowing the
inputs of honest parties in Hybrid3,5. The inputs of honest parties are only used to generate the
views of honest parties. In this hybrid, when P1 is honest, S simulates the whole protocol ΠEvaluate

as described above. The distribution of Hybrid3,6 is identical to that of Hybrid3,5.
Hybrid4,0: This hybrid is identical to Hybrid3,6. From Hybrid4,0 to Hybrid4,5, we focus on the

case where P1 is a corrupted party.
Hybrid4,1: When P1 is corrupted, S computes the shares of corrupted parties as follows.

– For each group of input gates with output wires α, recall that each degree-t Shamir sharing
Jvαi

|iKt is computed by
Jvαi

|iKt = Jvα + rKt − Jri|iKt.

Recall that Jvα + rKt is distributed by the Client that holds inputs for these input gates. S
computes the shares of corrupted parties from the shares of honest parties. For Jri|iKt, S receives
from the adversary the shares of corrupted parties when emulating FPrepMal. Then, S computes
the shares of Jvαi

|iKt of corrupted parties.
– For each group of multiplication gates with input wires α,β, each degree-t Shamir sharing Jvαi

|iKt
is computed by

Jvαi |iKt = Jvα + aKk−1 − Jai|iKt.

Recall that Jvα + aKk−1 is distributed by P1.
• If the computation is marked as fail, S sets the shares of Jvαi

|iKt of corrupted parties to be all
0.

• Otherwise, Jvα+aKk−1 is a valid degree-(k− 1) packed Shamir sharing. S computes the shares
of corrupted parties from the shares of honest parties. For Jai|iKt, S receives from the adversary
the shares of corrupted parties when emulating FPrepMal. Then, S computes the shares of
Jvαi

|iKt of corrupted parties.
Similarly, S computes the shares of Jvβt

|iKt of corrupted parties.
– For each group of output gates with input wires α, S computes the shares of Jvβt |iKt of corrupted

parties in the same way as that for the input wires of multiplication gates.

Observe that the shares of corrupted parties computed in Hybrid4,1 is different from those in
Hybrid4,0 if and only if some degree-(k − 1) packed Shamir sharing distributed by P1 is invalid in
the sense that the shares of honest parties do not lie on a degree-(k − 1) polynomial. In this case,
both Hybrid4,0 and Hybrid4,1 will abort. Therefore, the distribution of Hybrid4,1 is identical to that
of Hybrid4,0.

Hybrid4,2: When P1 is corrupted, S computes ∆(vα), ∆(vβ) for each group of multiplication
gates and computes ∆(vα) for each group of output gates as follows.

For each group of multiplication gates with input wires α,β, recall that Jvαi |iKt = Jvα + aKt −
Jai|iKt. Since Jai|iKt is prepared by FPrepMal and the secret is determined by the shares of honest
parties, the adversary cannot insert any additive error to the secret ai. We have ∆(vαi

) = ∆(vαi
+ai),

which means that ∆(vα) = ∆(vα + a). Recall that Jvα + aKk−1 is distributed by P1.

– If the computation is marked as fail, S sets ∆(vα + a) = 0.
– Otherwise, Jvα + aKk−1 is a valid degree-(k − 1) packed Shamir sharing. S computes the secrets

ṽα + a and the shares of corrupted parties.

To compute ∆(vα + a), it is sufficient to compute the correct values vα + a. Recall that vα + a is
computed by µα + (λα + a). S has generated λα + a when emulating FPrepMal. Thus S only needs
to compute µα.

S will first compute {∆(µα)}α for the output wires of input gates and multiplication gates, and
then compute {µα}α for the input wires of multiplication gates. For each group of input gates
with output wires α, recall that S has computed vα in Hybrid2. S has also generated λα when
emulating FPrepMal. S computes µα = vα − λα.

For each group of multiplication gates with input wires α,β and output wires γ, we have
vγ = ṽα ∗ ṽβ in FEvaluate.

– If the computation is marked as fail, S does nothing. Note that in this case, S will always use 0
as the vectors of additive errors. There is no need to compute µγ .
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– Otherwise, Jvα + aKk−1 and Jvβ + bKk−1 are valid degree-(k − 1) packed Shamir sharings. In

particular, ṽα + a = ṽα + a and ṽβ + b = ṽβ + b. Again, this is because each value in a, b is
shared by a degree-t Shamir sharing. The adversary cannot insert additive errors to the values
a, b.

S computes the shares of JµγKn−1 of corrupted parties by following Step (3) of ΠMultMal. Let JµγKn−1

denote the sharing where the shares of corrupted parties are those computed by S. S reconstructs
the secrets µγ by using the shares of all parties. Note that, Jvα + aKk−1 and Jvβ + bKk−1 are valid
degree-(k − 1) packed Shamir sharings, we have

µγ = (ṽα + a) ∗ (ṽβ + b)− (ṽα + a) ∗ b
− (ṽβ + b) ∗ a+ c− (λγ +∆(λγ)).

The last term is because the secrets of JλγKn−1 distributed by FPrepMal are equal to λγ +∆(λγ).
Recall that FEvaluate receives η = (η1, . . . , ηk) from the adversary and computes ci = ai · bi + ηi.
Thus, we have

µγ = ṽα ∗ ṽβ + η − (λγ +∆(λγ)).

Therefore, µγ = µγ −η+∆(λγ . Since S receives η and ∆(λγ) from the adversary when emulating
FPrepMal, S computes µγ from µγ ,η, ∆(λγ .

Observe that the vectors of additive errors computed in Hybrid4,2 is different from those in
Hybrid4,1 if and only if some degree-(k − 1) packed Shamir sharing distributed by P1 is invalid in
the sense that the shares of honest parties do not lie on a degree-(k − 1) polynomial. In this case,
both Hybrid4,1 and Hybrid4,2 will abort. Therefore, the distribution of Hybrid4,2 is identical to that
of Hybrid4,1.

Hybrid4,3: When P1 is corrupted, for each group of multiplications with input wires α,β, S
randomly samples two vectors as λα + a,λβ + b and then computes a = (λα + a) − λα, b =
(λβ + b)− λβ. For each group of output gates with input wires α, S randomly samples a vector as
λα + r and then computes r = (λα + r)− λα.

The difference is that in Hybrid4,2, S first randomly samples a, b, r and then computes λα +
a,λβ + b for multiplication gates and λα + r for output gates. Note that the distribution of these
values are unchanged.

The distribution of Hybrid4,3 is identical to that of Hybrid4,2.
Hybrid4,4: When P1 is corrupted, for each group of multiplication gates with output wires γ, S

samples random values as the shares of JµγKn−1 (defined in Hybrid4,2) of honest parties.

– If the computation is marked as fail, S does nothing.
– Otherwise, S uses the shares of corrupted parties (computed in Hybrid4,2) to compute µγ . Next,
S computes µγ = µγ − η +∆(λγ).

For each group of multiplication gates, S does not generate the shares of {(Jai|iKt, Jbi|iKt, Jci|iKt)}ki=1

and JλγKn−1 of honest parties and does not compute (a, b, c) and λγ . For each group of output
gates, S does not generate the shares of {Jri|iKt}ki=1 of honest parties and does not compute r.
These values are no longer needed in Hybrid4,4.

In Hybrid4,3, the degree-(n − 1) packed Shamir sharing JλγKn−1 generated by FPrepMal is a
random degree-(n − 1) packed Shamir sharing given the shares of corrupted parties. This is
because the secrets are equal to λγ + ∆(λγ) and λγ are uniformly random. Then the shares
of JλγKn−1 of honest parties are uniformly random and independent of the shares of corrupted
parties. Since JµγKn−1 is masked by JλγKn−1, the shares of honest parties are uniformly distributed
and independent of the shares of corrupted parties. Thus, the shares of JµγKn−1 are identically
distributed in both Hybrid4,3 and Hybrid4,4.

The distribution of Hybrid4,4 is identical to that of Hybrid4,3. At this point, the behaviors of
honest parties in Step 3 and Step 4 of ΠEvaluate are fully simulated by S without relying on honest
parties’ inputs.

Hybrid4,5: When P1 is corrupted, S simulates ΠInputMal as described above.

– When Client is honest, S first checks the shares of {Jri|iKt}ki=1 on behalf of Client. S aborts
on behalf of Client if the shares of corrupted parties are different from those received from the
adversary when emulating FPrepMal. Note that a degree-t Shamir sharing is determined by the
shares of honest parties. In Hybrid4,4, honest parties always use the correct shares. If corrupted
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parties use different shares from those sent to FPrepMal, Client will abort. Thus, S aborts on
behalf of Client in Hybrid4,5 if and only if Client aborts in Hybrid4,4.
Then, S samples a random vector as vα + r and generates a random degree-t packed Shamir
sharing Jvα + rKt. In Hybrid4,4, r are uniformly random. Therefore, vα + r are also uniformly
random. Also Jvα + rKt is a random degree-t packed Shamir sharing of Jvα + rKt. Thus, the
distribution of Jvα + rKt is identical in both hybrids.
Next, S samples a random vector as µα. In Hybrid4,4, λα are uniformly random. Therefore,
µα = vα − λα are also uniformly random. Thus, the vector µα has the same distribution in both
hybrids.
Finally, let JλαKn−1 denote the sharing that Client receives from all parties, and JλαKn−1 denote
the sharing where the shares of corrupted parties are replaced by those learnt by S when
emulating FPrepMal. S computes the shares of corrupted parties of the following sharing

Jρ(λα)Kn−1 = JλαKn−1 − JλαKn−1.

S sets the shares of honest parties to be 0 and reconstructs the secrets ρ(λα). Then, we have
ρ(λα) = λ̃α − λα. On the other hand, recall that S receives a vector of additive errors ∆(λα)

from the adversary when emulating FPrepMal. We have λα = λα + ∆(λα). Thus, λ̃α = λα +

∆(λα)+ρ(λα). Since Client should send µ̃α = vα− λ̃α to P1, S sets ∆(µα) = −ρ(λα)−∆(λα)
and sends µα +∆(µα) to P1. The distribution of the values sent to P1 is identical in both hybrids.

– When Client is corrupted, S first generates a random vector r and then computes the shares
of {Jri|iKt}ki=1 of honest parties based on the shares of corrupted parties. Note that the way of
generating {Jri|iKt}ki=1 is identical to that in FPrepMal in Hybrid4,4. Thus, the shares of {Jri|iKt}ki=1

of honest parties have the same distribution in both hybrids.
Then, S generates a random vector λα and samples a random degree-(n − 1) packed Shamir
sharing Jλα +∆(λα)K, where ∆(λα) is received from the adversary when emulating FPrepMal.
Note that the way of generating Jλα +∆(λα)K is identical to that in FPrepMal in Hybrid4,4. Thus,
the shares of Jλα +∆(λα)K of honest parties have the same distribution in both hybrids.
Next, S receives the shares of Jvα + rKt of honest parties and reconstructs vα + r. S computes
vα = (vα + r) − r. In Hybrid3,4, vα are computed from the shares of {Jvαi

|iKt}ki=1 of honest
parties. Recall that Jvαi

|iKt = Jvα + rKt − Jri|iKt. Therefore, vαi
= (vαi

+ ri)− ri, which means
that vα = (vα + r)− r. The inputs extracted by S have the same distribution as those computed
in Hybrid4,4.

In summary, the distribution of Hybrid4,5 is identical to that of Hybrid4,4. Note that Hybrid4,5

is the execution in the ideal world. We have that Hybrid4,5 is statistically close to Hybrid0, the
execution in the real world. Therefore, protocol ΠEvaluate securely computes the ideal functionality
FEvaluate in the FPrepMal-hybrid model against a fully malicious adversary who controls t corrupted
parties and up to c clients.

D.4 Online Phase — Verification

To check the correctness of the computation, it is sufficient to check whether the adversary launches
an additive attack. We describe the functionality FVerify for the verification of the computation in
Functionality 11.

Functionality 11: FVerify

1. Let C denote the circuit.
– For each group of input gates with output wires α, FVerify receives from honest parties their

shares of {Jvαi |iKt}ki=1. For all i ∈ {1, 2, . . . , k}, FVerify recovers the whole sharing Jvαi |iKt and
reconstructs the secret vαi . Then FVerify sends the shares of Jvαi |iKt of corrupted parties to the
adversary.

– For each group of multiplication gates with input wires α,β, FVerify receives from honest par-
ties their shares of {Jvαi |iKt, Jvβi |iKt}

k
i=1. For all i ∈ {1, 2, . . . , k}, FVerify recovers the whole

sharings Jvαi |iKt, Jvβi |iKt and reconstructs the secrets ṽαi , ṽβi . Then FVerify sends the shares of
Jvαi |iKt, Jvβi |iKt of corrupted parties to the adversary.

– For each group of output gates with input wires α, FVerify receives from honest parties their
shares of {Jvαi |iKt}ki=1. For all i ∈ {1, 2, . . . , k}, FVerify recovers the whole sharings Jvαi |iKt and
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reconstructs the secrets ṽαi . Then FVerify sends the shares of Jvαi |iKt of corrupted parties to the
adversary.

2. FVerify evaluates the circuit C by using the secrets of the degree-t Shamir sharings associated with
input gates.
– For each addition gate with input wires α, β and output wire γ, FVerify computes vγ = vα + vβ .
– For each multiplication gate with input wires α, β and output wire γ, FVerify computes ∆(vα) =

ṽα − vα and ∆(vβ) = ṽβ − vβ . Then, FVerify sends ∆(vα),∆(vβ) to the adversary. Finally, FVerify

computes vγ = ṽα ∗ ṽβ .
– For each output gate with input wire α, FVerify computes ∆(vα) = ṽα − vα. Then, FVerify sends

∆(vα) to the adversary.
3. FVerify checks whether there exists an input wire α of multiplication gates and output gates such that

∆(vα) ̸= 0. If true, FVerify sends abort to all parties. Otherwise, FVerify sends accept to all parties.
4. On receiving abort, FVerify sends abort to all parties.

To realize FVerify, we follow the idea in [BBG+21].

Verification in [BBG+21]. Recall that our online protocol follows a similar approach to that
in [BBG+21]. In particular, in the online protocol in [BBG+21], all parties also only obtain sharings
for input wires of multiplication gates but NOT for output wires of multiplication gates. As noted
in [BBG+21], for each input wire of multiplication gates and output gates, the wire value should
be equal to some linear combination of the inputs of the circuit and the outputs of multiplication
gates. Note that the output of each multiplication is equal to the product of its two inputs. Thus,
the verification of the computation is transformed to verifying O(|C|) equations, one for each input
wire of multiplication gates and output gates. In particular, each equation only contains degree-2
monomials (for the outputs of multiplication gates) and degree-1 monomials (for the inputs of the
circuit).

The verification in [BBG+21] is adapted from the techniques in [BBCG+19]. The achieved
communication complexity is sub-linear in the circuit size. We observe that we can potentially use a
similar approach to that in [BBG+21] to realize FVerify.

With more details, recall that the work [BBG+21] focuses on the strong honest majority setting,
where the number of corrupted parties t′ = (1/2 − ϵ) · n. They choose to use a degree-t packed
Shamir sharing, where t = (n − 1)/2, to store k′ = t − t′ + 1 secrets. Note that with t ≤ n/2, a
degree-t packed Shamir sharing can be fully determined by the shares of honest parties, and the
multiplication between two degree-t packed Shamir sharings can be done by a natural extension
of the DN multiplication protocol [DN07], which works for the single-secret setting. In [BBG+21],
the authors note that a degree-t packed Shamir sharing JxKt can be viewed as k′ degree-t Shamir
sharings Jx1|1Kt, Jx2|2Kt, . . . , Jxk′ |k′Kt. Their verification works on degree-d Shamir sharings, one for
each wire value. Recall that we also obtain degree-t Shamir sharings, one for each wire value. Thus,
the verification protocol in [BBG+21] can potentially be used in our case.

Drawbacks of the Verification in [BBG+21]. However, the verification protocol in [BBG+21] does
not use the techniques in [BBCG+19] in a black box way. In particular, their protocol has compu-
tation complexity O(|C| ·

√
|C|) due to the use of the techniques in [BBCG+19] (see an analysis

in [BGIN19]), which can be a bottleneck for the concrete efficiency.
Our idea is to use the techniques in [BBCG+19] in a black box way. It allows us to directly use

other variants of the techniques in [BBCG+19] in a black box way, for example, the verification
protocol in [GS20], which naturally offers a trade-off between the round complexity and the
computation complexity. Concretely, for all d <

√
|C|, the verification protocol in [GS20] can

achieve O(|C| · d) computation complexity at the cost of logd |C| rounds. This trade-off is also
explored in the work [BGIN19] for 3-party setting and [BGIN20] for n-party setting.

Step 1: Obtaining a Single Equation. We label the groups of input gates, multiplication gates, and
output gates by 1, 2, . . . ,m. We have m ≤ |C|/k. For all i ∈ {1, . . . ,m},

– If the i-th group of gates are input gates with output wires α, we set

(Jv(1)i,j |jKt, Jv
(2)
i,j |jKt) = (Jvαj

|jKt, J1|jKt).

Here the shares of J1|jKt are all 1.
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– If the i-th group of gates are multiplication gates with input wires α,β, we set

(Jv(1)i,j |jKt, Jv
(2)
i,j |jKt) = (Jvαj |jKt, Jvβj |jKt).

– If the i-th group of gates are output gates with input wires α, we set

(Jv(1)i,j |jKt, Jv
(2)
i,j |jKt) = (Jvαj

|jKt, J1|jKt).

Here the shares of J1|jKt are all 1.

Consider the following set

T =

{
(b, i, j) :

Jv(b)i,j |jKt is associated with some input wire

of multiplication gates and output gates.

}

Then, the verification of the computation can be represented in the following form: For each
(b, i, j) ∈ T , the degree-t Shamir sharing Jv(b)i,j |jKt should satisfy

v
(b)
i,j =

|C|/k∑
ℓ1=1

k∑
ℓ2=1

θ
(b,i,j)
ℓ1,ℓ2

· (v(1)ℓ1,ℓ2
· v(2)ℓ1,ℓ2

),

where {θ(b,i,j)ℓ1,ℓ2
}ℓ1,ℓ2 are some known coefficients related to the circuit structure. We transform the

verification of these m equations to the verification of a single equation. Recall that K is an extension
field of F such that |K| ≥ 2κ, where κ is the security parameter. All parties invoke FCoin to generate
a random value r ∈ K. Let u(b, i, j) = (i− 1) · 2k+(j− 1) · 2+ b. Then, all parties multiply ru(b,i,j)−1

to the equation for v(b)i,j and sum them up. The final equation is

∑
(b,i,j)∈T

ru(b,i,j)−1 · v(b)i,j =

k∑
ℓ2=1

|C|/k∑
ℓ1=1

Θℓ1,ℓ2 · (v
(1)
ℓ1,ℓ2

· v(2)ℓ1,ℓ2
) (1)

where Θℓ1,ℓ2 =
∑

(b,i,j)∈T ru(b,i,j)−1 · θ(b,i,j)ℓ1,ℓ2
.

Step 2: Performing Inner-Product Operations Via [GS20, BGIN20]. Recall that all parties hold degree-t
Shamir sharings Jv(b)i,j |jKt for each (b, i, j). For the LHS of Equation 1, all parties can locally sum up
the degree-t Shamir sharings that use the same secret slot. Concretely, for each ℓ2 ∈ {1, 2, . . . , k},
all parties compute Jxℓ2 |ℓ2Kt =

∑
(b,i,ℓ2)∈T ru(b,i,ℓ2)−1 · Jv(b)i,ℓ2

|ℓ2Kt.
For the RHS of Equation 1, we want to compute a degree-t Shamir sharing of the inner-product

result
∑|C|/k

ℓ1=1 Θℓ1,ℓ2 · (v
(1)
ℓ1,ℓ2

·v(2)ℓ1,ℓ2
). We rely on the following two functionalities FInner and FInnerVerify.

The functionality FInner allows all parties efficiently compute the inner-product operation. It can be
instantiated by an extension of the DN multiplication protocol (this is a different extension from the
one used in [BBG+21]). The communication complexity is O(n) field elements. In particular, the
communication complexity is independent of the dimension ℓ. We refer the readers to [GS20] for
the description of the protocol that realizes FInner (Protocol 10 in [GS20]).

The functionality FInner, however, allows an additive error chosen by the adversary. We need
the second functionality FInnerVerify to check the correctness of the inner-product result. The second
functionality FInnerVerify can be realized by techniques in [BBCG+19]. We choose to use the variants
presented in [GS20]16 and [BGIN20] which supports offers a trade-off between the round complexity
and the computation complexity. Both protocols can achieve O(log ℓ) rounds with communication
complexity O(n2 · log ℓ · κ) field elements.

16 The original protocol in [GS20] is to verify a batch of multiplication triples. However, their first step is to
transform a batch of multiplication triples to one inner-product triple. We can simply view the innner-product
triple we want to verify as the output of the first step in [GS20].
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Functionality 12: FInner

1. FInner receives the secret position i from all parties. Let (Jx1|iKt, . . . , Jxℓ|iKt) and (Jy1|iKt, . . . , Jyℓ|iKt)
denote the input sharings. For all j ∈ {1, 2, . . . , ℓ}, FInner receives from honest parties their shares of
Jxj |iKt and Jyj |iKt. Then FInner reconstructs the secrets xj , yj . FInner further computes the shares of
Jxj |iKt, Jyj |iKt held by corrupted parties, and sends these shares to the adversary.

2. FInner receives from the adversary a set of shares {zi}i∈Corr and an additive error η.
3. FInner computes z =

∑ℓ
j=1 xj · yj + η. Based on the secret z and the t shares {zi}i∈Corr, FInner

reconstructs the whole sharing Jz|iKt and distributes the shares of Jz|iKt to honest parties.

Functionality 13: FInnerVerify

1. FInnerVerify receives the secret position i from all parties. The input is denoted by

((Jx1|iKt, . . . , Jxℓ|iKt), (Jy1|iKt, . . . , Jyℓ|iKt), Jz|iKt).

– For all j ∈ {1, 2, . . . , ℓ}, FInnerVerify receives from honest parties their shares of Jxj |iKt and
Jyj |iKt. Then FInnerVerify reconstructs the secrets xj , yj . FInnerVerify further computes the shares
of Jxj |iKt, Jyj |iKt held by corrupted parties, and sends these shares to the adversary.

– FInnerVerify receives from honest parties their shares of Jz|iKt. Then FInnerVerify reconstructs the secret
z. FInnerVerify further computes the shares of Jz|iKt held by corrupted parties, and sends these
shares to the adversary.

– FInnerVerify computes η = z −
∑ℓ

j=1 xj · yj and sends η to the adversary.
2. FInnerVerify checks whether η ̸= 0. If true, FInnerVerify sends abort to all parties. Otherwise, FInnerVerify

sends accept to all parties.
3. On receiving abort, FInnerVerify sends abort to all parties.

By using FInner and FInnerVerify, all parties can compute a degree-t Shamir sharing Jyℓ2 |ℓ2Kt such
that

yℓ2 =

|C|/k∑
ℓ1=1

Θℓ1,ℓ2 · (v
(1)
ℓ1,ℓ2

· v(2)ℓ1,ℓ2
).

Step 3: Checking Summation of Sharings. After step 2, all parties hold {Jxi|iKt, Jyi|iKt}ki=1. In
particular,

∑k
i=1 xi is equal to the LHS of Equation 1 and

∑k
i=1 yi is equal to the RHS of Equation 1.

Let Jzi|iKt = Jxi|iKt − Jyi|iKt for all i ∈ {1, 2, . . . , k}. The problem is reduce to checking whether∑k
i=1 zi = 0.
To this end, each party Pj prepares and distributes k random degree-t Shamir sharings {Jo(j)i |iKt}ki=1

such that the summation of the secrets
∑k

i=1 o
(j)
i = 0. Then, for all i ∈ {1, . . . , k}, all parties locally

compute Joi|iKt =
∑n

j=1Jo
(j)
i |iKt. We will use {Joi|iKt}ki=1 as random masks.

All parties invoke FCoin to generate a random value r′ ∈ K. Then for all i ∈ {1, . . . , k}, all
parties compute r′ · Jzi|iKt + Joi|iKt and reconstruct secret to every party. Each party checks whether∑k

i=1(r
′ · zi + oi) = 0.

Summary of Our Verification Protocol. We describe our verification protocol in ΠVerify. The communi-
cation complexity of ΠVerify is sub-linear in the circuit size. Therefore, it does not affect the concrete
efficiency. Also, by using techniques in [GS20, BGIN20] to instantiate FInnerVerify, we estimate that
the computation complexity of the verification protocol will not become the bottleneck of the
running time.

Protocol 14: ΠVerify

1. Defining Inputs: Let C denote the circuit. All groups of input gates, multiplication gates, and output
gates are labeled by 1, 2, . . . ,m. We have m ≤ |C|/k. For all i ∈ {1, . . . ,m},
– If the i-th group of gates are input gates with output wires α, all parties hold {Jvαi |iKt}ki=1. All

parties set
(Jv(1)i,j |jKt, Jv

(2)
i,j |jKt) = (Jvαj |jKt, J1|jKt).

Here the shares of J1|jKt are all 1.
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– If the i-th group of gates are multiplication gates with input wires α,β, all parties hold
{Jvαi |iKt, Jvβi |iKt}

k
i=1. All parties set

(Jv(1)i,j |jKt, Jv
(2)
i,j |jKt) = (Jvαj |jKt, Jvβj |jKt).

– If the i-th group of gates are output gates with input wires α, all parties hold {Jvαi |iKt}ki=1. All
parties set

(Jv(1)i,j |jKt, Jv
(2)
i,j |jKt) = (Jvαj |jKt, J1|jKt).

Here the shares of J1|jKt are all 1.
2. Step 1 — Obtaining a Single Equation: Let T be the set defined as below:

T =

{
(b, i, j) :

Jv(b)i,j |jKt is associated with some input wire

of multiplication gates and output gates.

}

For all (b, i, j) ∈ T , let {θ(b,i,j)ℓ1,ℓ2
}ℓ1,ℓ2 be the coefficients such that

v
(b)
i,j =

|C|/k∑
ℓ1=1

k∑
ℓ2=1

θ
(b,i,j)
ℓ1,ℓ2

· (v(1)ℓ1,ℓ2
· v(2)ℓ1,ℓ2

).

All parties invoke FCoin and generates a random value r ∈ K. Let u(b, i, j) = (i−1)·2k+(j−1)·2+b.
Then for all ℓ1 ∈ {1, . . . ,m}, ℓ2 ∈ {1, . . . , k}, all parties locally compute

Θℓ1,ℓ2 =
∑

(b,i,j)∈T

ru(b,i,j)−1 · θ(b,i,j)ℓ1,ℓ2
.

All parties will verify

∑
(b,i,j)∈T

ru(b,i,j)−1 · v(b)i,j =

k∑
ℓ2=1

|C|/k∑
ℓ1=1

Θℓ1,ℓ2 · (v(1)ℓ1,ℓ2
· v(2)ℓ1,ℓ2

) (1)

3. Step 2 — Performing Inner-Product Operations:
(a) For all ℓ2 ∈ {1, 2, . . . , k}, all parties locally compute Jxℓ2 |ℓ2Kt =

∑
(b,i,ℓ2)∈T ru(b,i,ℓ2)−1 ·Jv(b)i,ℓ2

|ℓ2Kt.
Then, the LHS of Equation 1 is equal to

∑k
i=1 xi.

(b) For all ℓ2 ∈ {1, 2, . . . , k},
i. All parties first locally compute JΘℓ1,ℓ2 ·v

(1)
ℓ1,ℓ2

|ℓ2Kt = Θℓ1,ℓ2 · Jv
(1)
ℓ1,ℓ2

|ℓ2Kt for all ℓ1 ∈ {1, . . . ,m}.

ii. All parties invoke FInner with inputs (JΘℓ1,ℓ2 · v(1)ℓ1,ℓ2
|ℓ2Kt)ℓ1 and (Jv(2)ℓ1,ℓ2

|ℓ2Kt)ℓ1 and output
Jyℓ2 |ℓ2Kt.

iii. All parties invoke FInnerVerify with inputs (JΘℓ1,ℓ2 · v(1)ℓ1,ℓ2
|ℓ2Kt)ℓ1 , (Jv(2)ℓ1,ℓ2

|ℓ2Kt)ℓ1 , and Jyℓ2 |ℓ2Kt.
If FInnerVerify outputs accept, all parties continue. Otherwise, all parties abort.

After this step, all parties will verify
∑k

i=1 xi =
∑k

i=1 yi.
4. Step 3 — Checking Summation of Sharings:

(a) For all j ∈ {1, 2, . . . , n}, Pj randomly generates {Jo(j)i |iKt}ki=1 such that
∑k

i=1 o
(j)
i = 0 in the

extension field K. Then Pj distributes {Jo(j)i |iKt}ki=1 to other parties. Next for all i ∈ {1, . . . , k},
all parties locally compute Joi|iKt =

∑n
j=1Jo

(j)
i |iKt.

(b) All parties invoke FCoin to generates a random value r′ ∈ K. For all i ∈ {1, . . . , k}, all parties
compute Jzi|iKt = r′ · (Jxi|iKt − Jyi|iKt) + Joi|iKt.

(c) All parties send their shares of {Jzi|iKt}ki=1 to every party Pj . Then each party Pj checks that:
– For all i ∈ {1, . . . , k}, the shares of Jzi|iKt lie on a degree-t polynomial.
– The summation z1 + . . .+ zk = 0.
Pj accepts the verification if both checks pass. Otherwise, Pj aborts.

Lemma 8. Protocol ΠVerify securely computes FVerify in the {FCoin,
FInner,FInnerVerify}-hybrid model against a fully malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

1. In Step 1, for each degree-t Shamir sharing, S receives from FVerify the shares of corrupted parties.
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2. In Step 2, by the definition of T , each (b, i, j) ∈ T satisfies that Jv(b)i,j |jKt is associated with
some input wire of multiplication gates and output gates. For each (b, i, j) ∈ T , S receives from

FVerify the additive error ∆(v
(b)
i,j ). Let ṽ(b)i,j denote the secret of Jv(b)i,j |jKt. Then the real secret is

v
(b)
i,j = ṽ

(b)
i,j −∆(v

(b)
i,j ).

Recall that the functionality FVerify computes each v
(b)
i,j by using the wire values with additive

errors in previous layers, i.e., {ṽ(0)ℓ1,ℓ2
, ṽ

(1)
ℓ1,ℓ2

}ℓ1<i. Therefore,

∆(v
(b)
i,j ) = ṽ

(b)
i,j −

|C|/k∑
ℓ1=1

k∑
ℓ2=1

θ
(b,i,j)
ℓ1,ℓ2

· (ṽ(1)ℓ1,ℓ2
· ṽ(2)ℓ1,ℓ2

).

S emulates FCoin and randomly samples r ∈ K. Then S computes ∆0 =
∑

(b,i,j)∈T ru(b,i,j)−1 ·
∆(v

(b)
i,j ).

3. In Step 3, S computes the shares of Jxℓ2 |ℓ2Kt of corrupted parties for all ℓ2 ∈ {1, . . . , k}.
For all ℓ2 ∈ {1, . . . , k}, S emulates FInner and FInnerVerify by using the shares of {Jv(b)i,j |jKt}(b,i,j) of
corrupted parties. S receives the shares of Jyℓ2 |ℓ2Kt of corrupted parties. Concretely,
– For FInner, S uses the shares of {Jv(b)i,j |jKt}(b,i,j) of corrupted parties to computes the values that

should be sent to the adversary. Then S receives the shares of Jyℓ2 |ℓ2Kt of corrupted parties and
the additive error η.

– For FInnerVerify, S uses the shares of {Jv(b)i,j |jKt}(b,i,j) and Jyℓ2 |ℓ2Kt of corrupted parties and the
additive error η to computes the values that should be sent to the adversary.

If all parties abort, S sends abort to FVerify.
4. In Step 4, for each honest party Pj , S sends random values to the adversary as the shares

of {Jo(j)i |iKt}ki=1, and S sets ∆j = 0. For each corrupted party Pj , S receives the shares of
{Jo(j)i |iKt}ki=1 of honest parties from the adversary. Then, S recovers the whole sharings and
reconstructs the secrets {o(j)i }ki=1. S sets ∆j =

∑k
i=1 o

(j)
i .

S emulates FCoin and randomly samples r′ ∈ K. Then S computes the shares of Jzi|iKt of corrupted
parties for all i ∈ {1, . . . , k}. S computes ∆ = r′ ·∆0 +

∑n
j=1 ∆j and randomly samples z1, . . . , zk

such that
∑k

i=1 zi = ∆. For all i ∈ {1, . . . , k}, based on the secret zi and the shares of corrupted
parties, S computes the shares of Jzi|iKt of honest parties.
S follows the rest of this step honestly.
– If some honest party aborts, S sends abort to FVerify.
– If all honest parties accept, but there exists (b, i, j) ∈ T such that ∆(v

(b)
i,j ) ̸= 0, S sends abort to

FVerify.

This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of ΠVerify.
Hybrid0: In this hybrid, S honestly follows the protocol.
Hybrid1: In this hybrid,

– In Step 1, S computes the shares of {Jv(b)i,j |jKt}(b,i,j) of corrupted parties from the shares of honest

parties. S also computes the secrets {ṽ(b)i,j }(b,i,j).
– In Step 2, for each (b, i, j) ∈ T , S computes

∆(v
(b)
i,j ) = ṽ

(b)
i,j −

|C|/k∑
ℓ1=1

k∑
ℓ2=1

θ
(b,i,j)
ℓ1,ℓ2

· (ṽ(1)ℓ1,ℓ2
· ṽ(2)ℓ1,ℓ2

).

Then, S computes ∆0 =
∑

(b,i,j)∈T ru(b,i,j)−1 ·∆(v
(b)
i,j ).

– In Step 4, for each corrupted party Pj , S recovers the whole sharings {Jo(j)i |iKt}ki=1 by using the
shares of honest parties and reconstructs the secrets {o(j)i }ki=1. Then S computes ∆j =

∑k
i=1 o

(j)
i .

For each honest party Pj , S sets ∆j = 0.

Note that S does not change the behaviors of honest parties. The distribution of Hybrid1 is
identical to that of Hybrid0.
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Hybrid2: In this hybrid, S prepares the shares of {Jzi|iKt}ki=1 of honest parties as described
above.

In Hybrid1, all parties compute Jzi|iKt = r′ · (Jxi|iKt − Jyi|iKt) + Joi|iKt. We first show that∑k
i=1 zi = ∆. Recall that

∑k
i=1 xi =

∑
(b,i,j)∈T ru(b,i,j)−1 · ṽ(b)i,j and

∑k
i=1 yi =

∑k
ℓ2=1

∑|C|/k
ℓ1=1 Θℓ1,ℓ2 ·

(ṽ
(1)
ℓ1,ℓ2

· ṽ(2)ℓ1,ℓ2
). We have

∑k
i=1(xi− yi) = ∆0. Also recall that

∑k
i=1 oi =

∑n
j=1

∑k
i=1 o

(j)
i =

∑n
j=1 ∆j .

Therefore,
∑k

i=1 zi = r′ ·∆0 +
∑n

j=1 ∆j = ∆.

We then show that z1, . . . , zk are random values subject to
∑k

i=1 zi = ∆. Without loss of
generality, suppose P1 is honest. Then o

(1)
1 , . . . , o

(1)
k are random values subject to

∑k
i=1 o

(1)
i = 0.

Since zi = r′ · (xi − yi) +
∑n

j=1 o
(j)
i , z1, . . . , zk are random values subject to

∑k
i=1 zi = ∆.

In Hybrid2, S randomly samples z1, . . . , zk subject to
∑k

i=1 zi = ∆. Therefore, the distribution
of z1, . . . , zk is identical in both hybrids. Since a degree-t Shamir sharing is determined by the
secret and the shares of corrupted parties, the shares of {Jzi|iKt}ki=1 of honest parties are identically
distributed in both hybrids.

Thus, Hybrid2 is identically distributed to Hybrid1.
Hybrid3: In this hybrid, in Step 4, if all honest parties accept, but there exists (b, i, j) ∈ T such

that ∆(v
(b)
i,j ) ̸= 0, S sends abort to FVerify and aborts on behalf of honest parties. We claim that

the probability that all honest parties accept but there exists (b, i, j) ∈ T such that ∆(v
(b)
i,j ) ̸= 0 is

negligible.
Suppose there exists (b, i, j) ∈ T such that ∆(v

(b)
i,j ) ̸= 0. We first show that, with overwhelming

probability, ∆0 is non-zero. Recall that ∆0 =
∑

(b,i,j)∈T ru(b,i,j)−1 ·∆(v
(b)
i,j ). This can be viewed as a

polynomial in r and the degree is bounded by 2mk = O(|C|). With the same argument as that in
Lemma 6, the number of r such that ∆0 = 0 is bounded by O(|C|). Since the field size of K is 2κ,
with overwhelming probability, ∆0 ̸= 0.

Then we show that, with overwhelming probability ∆ ̸= 0. Recall that ∆ = r′ ·∆0 +
∑n

j=1 ∆j .
With the same argument as above, the number of r′ such that ∆ = 0 is at most 1. Therefore, with
overwhelming probability, ∆ ̸= 0.

Thus, if there exists (b, i, j) ∈ T such that ∆(v
(b)
i,j ) ̸= 0, with overwhelming probability, ∆ ̸= 0.

Note that all parties accept only if ∆ = 0. Therefore, Hybrid3 is statistically close to Hybrid2.
Hybrid4: In this hybrid,

– In Step 1, S uses the shares of {Jv(b)i,j |jKt}(b,i,j) of corrupted parties received from FVerify.

– In Step 2, for each (b, i, j) ∈ T , S uses ∆(v
(b)
i,j ) received from FVerify.

– In Step 3, S emulates FInner and FInnerVerify by using the shares of {Jv(b)i,j |jKt}(b,i,j) of corrupted
parties.

– In Step 4, for each honest party Pj , S samples random values as the shares of {Jo(j)i |iKt}ki=1 of
honest parties.

For Step 1 and Step 2, note that these values are computed by FVerify in the same way as that in
Hybrid3. For Step 3, only the shares of corrupted parties are needed to emulate FInner and FInnerVerify.
For Step 4, for each honest party Pj , the shares of {Jo(j)i |iKt}ki=1 of honest parties are uniformly
random in Hybrid3.

Therefore, Hybrid4 is identically distributed to Hybrid3. Note that Hybrid4 is the execution
in the ideal world. We have that Hybrid4 is statistically close to Hybrid0, the execution in the
real world. Therefore, protocol ΠVerify securely computes the ideal functionality FVerify in the
{FCoin,FInner,FInnerVerify}-hybrid model against a fully malicious adversary who controls t corrupted
parties and up to c clients.

Computing Coefficients for Step 2. Recall that in Step 2, all parties need to compute a coefficient
Θℓ1,ℓ2 for each input gate and multiplication gate. Computing all coefficients {Θℓ1,ℓ2}ℓ1,ℓ2 directly
can occur O(|C|2) computation complexity: Recall that Θℓ1,ℓ2 =

∑
(b,i,j)∈T ru(b,i,j)−1 · θ(b,i,j)ℓ1,ℓ2

. In the
worst case each Θℓ1,ℓ2 is a summation of O(|C|) terms.

In this part, we give an algorithm which can compute all coefficients {Θℓ1,ℓ2}ℓ1,ℓ2 with compu-
tation complexity O(|C|). Our idea is to assign a value to each wire α, denoted by weight(α), as
the weight of wire α. We will maintain the invariant that the weighted sum of all wire values is
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equal to
∑

(b,i,j)∈T ru(b,i,j)−1 · v(b)i,j , the LHS of Equation 1. Initially, the weights are non-zero only
for the input wires of multiplication gates and output gates. The algorithm will gradually change
the weight of wires while maintaining the invariant so that finally the weights are non-zero only
for the output wires of input gates and multiplication gates. Then the weights associated with the
output wires of input gates and multiplication gates are the coefficients we need.

1. Initialization: In the beginning, we set weight(α) = 0 for all wire α. For each input wire α of
multiplication gates and output gates, suppose v

(b)
i,j is the wire value of α. We set weight(α) =

weight(α) + ru(b,i,j)−1. (Note that the output wire of a gate may be used as an input wire for
multiple gates.)
After the initialization, the weighted sum of all wire values is equal to

∑
(b,i,j)∈T ru(b,i,j)−1 · v(b)i,j .

2. Transformation: We change the weight of wires layer by layer. We start from the last layer
(except the output layer).
– For each addition gate in the current layer, suppose the input wires are α, β and the output

wire is γ. We set

weight(α) = weight(α) + weight(γ)

weight(β) = weight(β) + weight(γ).

Then we set weight(γ) = 0. Note that the weighted sum of all wire values remains unchanged.
It follows from the fact that vα + vβ = vγ .

– For each multiplication gate in the current layer, we do nothing. Note that the weight associated
with the output wire of this gate is the coefficient of this multiplication gate.

After modifying the weights of all addition gates in the current layer, all parties move to the
previous layer. The algorithm terminates when reaching the input layer.

Note that after the above process, only weights associated with the output wires of input gates
and multiplication gates are non-zero. The weighted sum of all wire values is equal to

k∑
ℓ2=1

|C|/k∑
ℓ1=1

Θℓ1,ℓ2 · (v
(1)
ℓ1,ℓ2

· v(2)ℓ1,ℓ2
),

the RHS of Equation 1. One can verify that the coefficient of the output wire of an input gate or a
multiplication gate is the one we want to compute.

Regarding the computation complexity, note that we only visit each gate once in the above
process. Therefore, the computation complexity is O(|C|).

D.5 Summary: Main Protocol with Malicious Security

Now we are ready to present the main protocol ΠMainMal with malicious security. It is simply a
combination of FEvaluate and FVerify. The ideal functionality FMainMal appears in Functionality 14.
The security of ΠMainMal follows from FEvaluate and FVerify.

Functionality 14: FMainMal

1. FMainMal receives the input from all clients. Let x denote the input and C denote the circuit.
2. FMainMal computes C(x). FMainMal first distributes the output of corrupted clients to the adversary.

– If the adversary replies continue, FMainMal distributes the output to all clients.
– If the adversary replies abort, FMainMal sends abort to all clients.

Protocol 15: ΠMainMal

1. All parties and clients invoke FEvaluate to compute a degree-t Shamir sharing for each output wire of
input gates, and for each input wire of multiplication gates and output gates.

2. All parties invoke FVerify to check the correctness of the computation.
3. For each output gate that belongs to some Client, all parties hold a degree-t Shamir sharing Jvαi |iKt

that is associated with this gate.
(a) All parties send their shares of Jvαi |iKt to Client.
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(b) Client checks whether the shares of Jvαi |iKt lie on a degree-t polynomial. If true, Client
reconstructs the secret vαi and takes it as the output of this gate. Otherwise, Client aborts.

When we combine our protocols ΠPrepIndMal, ΠPrepMal, ΠEvaluate, ΠVerify, ΠMainMal, and instantiate
the functionality FSingleMultMal by [GLO+21], the functionalities FCoin, FInner, FInnerVerify by [GS20],
we obtain an information-theoretic MPC protocol in the client-server model with splitting communi-
cation complexity as follows:

– In the circuit-independent preprocessing phase, all parties need to communicate 10n+24 elements
per gate.

– In the circuit-dependent preprocessing phase, all parties need to communicate 8 elements per
gate.

– In the online phase, all parties need to communicate 12 elements per gate.

Observe that this is identical to our optimized semi-honest protocol presented in Section C. We have
the following theorem.

Theorem 3. In the client-server model, let c denote the number of clients, n denote the number of
parties (servers), and t = (n − 1)/2 denote the number of corrupted parties (servers). Let F be a
finite field of size |F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-theoretic
MPC protocol which securely computes the arithmetic circuit C (with abort) in the presence of a fully
malicious adversary controlling up to c clients and t parties. The splitting communication complexity
per gate is (1) 10n+24 elements per gate in the circuit-independent preprocessing phase, (2) 8 elements
per gate in the circuit-dependent preprocessing phase, and (3) 12 elements per gate in the online phase.
(Terms that are independent of or sub-linear in the circuit size are omitted as they only add cost o(1)
per gate.)

E DN07 with Circuit-Dependent Preprocessing

In this section we describe the circuit-dependent preprocessing variant of DN07 that we use for a
fair comparison. The standard DN07 protocol [DN07] achieves a total communication complexity
of 6n field elements per multiplication gate, distributed as 4n elements in an offline phase (which
is circuit-independent), and 2n in an online phase. ATLAS improves the total communication to
4n elements, but the online phase still consists of 2n elements. In [GSZ20], the online phase of
the original DN07 is improved from 2n to 1.5n elements, while keeping the offline phase to be
4n elements, but unfortunately this technique is not compatible with the approach from ATLAS.
Since our protocol optimizes the online phase, it is more reasonable to compare against the existing
protocol with the most efficient online phsae, so we do not consider ATLAS for our comparison.

Our main observation here is that DN07, with the optimization from [GSZ20], can be tweaked
to achieve an online phase of 1n elements per multiplication gate, by moving some of the messages
from the online phase to a circuit-dependent offline phase. This way, the total communication of 5.5n
elements is distributed as 4n elements in the circuit-independent offline phase, 0.5n elements in the
circuit-dependent offline phase, and 1n elements in the online phase. Another interesting property
of the resulting protocol is that the last t parties can go offline after the circuit-dependent phase,
which may be an important feature in some cases as it can help saving in server costs, and it reduces
communication channels. However, we remark that this is only possible for passive security (which
is the case we are concerned with here since this protocol is designed solely for experimentally
comparing against TURBOPACK, which we implemented in the semi-honest setting). For active
security the last t parties must return for a final verification stage, but we do not discuss how such
protocol would work.

Comparison with [DE21b]. The protocol from [DE21b] also achieves an online phase in the circuit-
dependent preprocessing model that involves 1n field elements per multiplication gate. However,
for our comparison we decided to use the optimized version of DN07 we present in this section
since as we now show its total communication complexity is better.

The protocol from [DE21b, Section 4] also allows the online phase to be executed among the
first t+1 parties only, and it can be seen as an execution among the first t+1 parties of the dishonest
majority MPC protocol Turbospeedz [BENO19], where the necessary preprocessing is generated by
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all n = 2t+1 parties. In the passive version, the preprocessing consists of additive triples among the
first t+ 1 parties of the form (⟨λα⟩ , ⟨λβ⟩ , ⟨λα · λβ⟩), and then the online phase consists of opening
the sharing ⟨µγ⟩ which is done by sending shares to P1, who reconstructs and send the result back.
This takes 2t = n− 1 ≤ 1n field elements.

The preprocessing requires the circuit-dependent triples described above, which are generated by
sampling shares of uniformly random values first, and then using an existing multiplication protocol
(e.g. ATLAS [GLO+21]) to scurely compute the product. This results in a communication for the
preprocessing phase of 4n, coming from ATLAS, plus the costs of generating two random sharings
per multiplication gate. This results in a total communication complexity that is larger than the
optimized DN07 protocol we propose here, while having the same online complexity.

E.1 Plain DN07

The original DN07 protocol [DN07] operates as follows. In the (circuit-independent) offline phase,
one so-called double share per multiplication is generated, which is a pair of sharings (JrKt, JrK2t)
where r ∈ F is uniformly random and unknown to the adversary. Then, in the online phase, given
JxKt and JyKt the parties obtain Jx ·yKt by computing locally JdK2t = JxKt · JyKt− JrK2t, reconstructing
d, and then again computing locally JrKt + d = Jx · yKt. The reconstruction of d is done by all parties
first sending their shares of JdK2t to P1, involving 1n field elements,17 followed by P1 reconstructing
d and sending it back to the parties, adding 1n more elements. The instantiation of the offline
phase in [DN07]—which is the best known that is compatible with this online phase and with the
optimization from [GSZ20] described below—requires 4n elements.

E.2 Optimization from [GSZ20]

In [GSZ20], the online phase from above is optimized from 2n to 1.5n elements as follows. The main
observation is that we can regard the step when P1 sends d to the parties as P1 distributing shares of
degree 0 of d. However, since these “shares” will be added to JrKt, the parties could afford to receive
degree-t shares instead. It turns out that this enables P1 to send less messages, given that degree-t
sharings of d can be obtained by setting, say, the share of the last t parties to be 0, which then,
together with the “secret” d, determine a polynomial of degree t and hence determine the remaining
shares. If P1 computes the shares of d in this way, P1 does not need to communicate with the last t
parties, who know their share is 0, and P1 only needs to communicate to the remaining t parties,
which corresponds to t ≤ n/2 messages. This leads to an online phase that uses 1n+ 0.5n = 1.5n
field elements per multiplication gate.

E.3 Online Phase with 1n Elements using Circuit-Dependent Preprocessing

When allowing for circuit-dependent preprocessing, it turns out that 0.5n elements out of the 1.5n
elements in the online phase from the previous optimized protocol can be moved to a circuit-
dependent offline phase. This is achieved as follows. The main observation is that the shares of
JdK2t = JxKt · JyKt − JrK2t that P1 receives from the last t parties are determined already in the
offline phase if the circuit is known, and therefore these can be sent to P1 in a circuit-dependent
offline phase. This removes t = (n− 1)/2 messages from the online phase, and pushes them into
the circuit-dependent offline phase.

To see why this observation holds, we first make a more general claim, which is that the shares
of the last t parties corresponding to each wire are already determined in the preprocessing phase
(assuming the circuit is known). This suffices for our claim above regarding the messages P1 receives
in a multiplication, since these are derived from the shares of each wire held by the last t parties.
Let us first describe the protocol by which the clients provide inputs. For each input gate, the parties
have shares JsKt where s ∈ F is uniformly random, and the client knows the secret s. The client
sends x − s to the parties, who locally compute JxKt = (x − s) + JsKt. As with the multiplication
protocol, this can be improved so that the client sends sharings Jx− sKt instead, where the last t
shares have been set to be zero. This implies that the shares of the input JxKt corresponding to the
last t parties are equal to their shares of JsKt, which are known from the preprocessing phase. A
similar observation holds for the multiplication gates: the resulting shares of the product are given
17 For simplicity we do count as communication the case when a party sends a message to him/herself. This

has little effect in the final complexity.
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by Jx · yK = JdKt + JrKt, where the last t shares of JdKt are zero, so the shares of the product of the
last t parties are given by the last t shares of JrKt, which are known at preprocessing time.

To summarize, the optimization where the online phase consists of 1n field elements consists
of the last t parties sending their shares of JxKt · JyKt − JrK2t in a circuit-dependent offline phase,
which is possible since as we argued the last t shares of each wire value (and in particular, these of
JxKt and JyKt) are already determined in the offline phase. This way, in the online phase P1 only
needs to hear from and talk to the first n− t = t+ 1 parties. Also, notice that this optimization also
allows us to run the online phase only among t+ 1 parties, or in other words, the last t parties can
be shut down after they have sent their necessary shares out.18 This can be a useful feature.

F More Experimental Results

Width Prep.
Number of parties

5 13 21 29 37

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

100
CD 0.36 / 1.14 2.87 / 0.98 0.53 / 0.86 1.87 / 0.78 0.88 / 1.16 1.82 / 1.01 1.36 / 1.30 1.98 / 1.10 2.06 / 1.25 2.25 / 0.91
CI 0.21 / 1.29 1.85 / 1.10 0.40 / 0.98 1.50 / 0.88 0.73 / 1.32 1.60 / 1.12 1.19 / 1.47 1.82 / 1.21 1.80 / 1.51 2.02 / 1.08

1k
CD 1.54 / 1.07 7.00 / 0.96 3.00 / 1.30 5.99 / 0.97 4.49 / 1.23 4.68 / 0.65 7.17 / 1.58 4.38 / 0.56 12.54 / 1.86 5.12 / 0.39
CI 1.30 / 1.30 7.51 / 1.13 2.52 / 1.78 5.89 / 1.25 3.87 / 1.84 4.32 / 0.94 5.82 / 2.94 3.79 / 1.00 10.43 / 3.97 4.45 / 0.82

10k
CD 7.31 / 1.68 6.93 / 0.94 16.57 / 2.51 7.01 / 0.71 32.69 / 4.25 5.69 / 0.43 65.89 / 6.50 6.21 / 0.30 117.53 / 10.59 6.58 / 0.26
CI 6.24 / 2.74 7.02 / 1.41 14.25 / 4.82 7.03 / 1.25 27.37 / 9.58 5.33 / 0.92 55.24 / 17.15 5.52 / 0.78 100.36 / 27.75 5.87 / 0.67

100k
CD 54.34 / 5.42 4.90 / 0.52 153.74 / 13.95 7.44 / 0.42 334.39 / 31.18 6.52 / 0.34 666.64 / 59.18 6.63 / 0.29 1167.04 / 97.12 6.93 / 0.25
CI 47.38 / 12.39 5.87 / 0.91 131.19 / 36.50 7.23 / 1.03 282.69 / 82.89 5.99 / 0.85 564.94 / 160.88 5.95 / 0.76 997.72 / 266.44 6.18 / 0.66

Table 3: Running times and comparison of TURBOPACK with DN07, in a setting with 10ms latency
and 100Mbps bandwidth, for a circuit of depth 10 and varying width and number of parties. The
TP columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the
ratio between the running time of TURBOPACK and DN07. The format of the timings and ratios is
“Offline / Online”. In the CD. Prep case our offline and online phases are ➀+➁ and ➂, while in the
CI. Prep scenario these are ➀ and ➁+➂. The entries with N/A correspond to cases where the parties
crashed, so we could not obtain the corresponding data.

Width Prep.
Number of parties

5 13 21 29 37

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

100
CD 2.41 / 6.28 2.00 / 0.89 4.23 / 6.21 1.61 / 0.90 5.87 / 6.61 1.38 / 0.98 7.50 / 6.40 1.27 / 0.93 9.45 / 6.57 1.25 / 0.95
CI 1.81 / 6.88 1.64 / 0.96 3.24 / 7.20 1.29 / 1.02 4.93 / 7.56 1.19 / 1.10 6.67 / 7.23 1.16 / 1.03 8.69 / 7.33 1.17 / 1.04

1k
CD 12.25 / 7.33 6.08 / 1.09 17.33 / 11.26 3.31 / 1.21 27.21 / 8.89 3.17 / 0.78 40.65 / 6.50 5.62 / 0.51 49.03 / 7.87 4.84 / 0.45
CI 10.44 / 9.15 6.12 / 1.30 13.83 / 14.77 3.35 / 1.42 21.65 / 14.44 2.76 / 1.20 36.87 / 10.28 5.59 / 0.77 46.57 / 10.34 4.83 / 0.58

10k
CD 66.30 / 12.73 6.35 / 0.79 116.77 / 16.86 4.62 / 0.74 186.19 / 17.75 5.16 / 0.47 N/A N/A N/A N/A
CI 59.84 / 19.18 7.57 / 1.03 109.72 / 23.91 5.54 / 0.84 174.21 / 29.73 5.68 / 0.69 N/A N/A N/A N/A

100k
CD 474.15 / 43.98 4.37 / 0.66 1067.8 / 83.15 6.03 / 0.63 1680.7 / 83.13 5.82 / 0.32 N/A N/A N/A N/A
CI 446.07 / 72.05 5.44 / 0.78 1011 / 139.92 5.82 / 1.03 1628.6 / 135.17 5.76 / 0.50 N/A N/A N/A N/A

Table 4: Running times and comparison of TURBOPACK with DN07, in a setting with 100ms latency
and 100Mbps bandwidth, for a circuit of depth 10 and varying width and number of parties. The TP
columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the ratio
between the running time of TURBOPACK and DN07. The format of the timings and ratios is “Offline
/ Online”. In the CD. Prep case our offline and online phases are ➀+➁ and ➂, while in the CI. Prep
scenario these are ➀ and ➁+➂.

As a complement to Section 5, we also include experimental results that measure the performance
of TURBOPACK relative to DN07, in other networking settings. In Section 5 we considered a
distributed setting with 1ms latency and 60Mbps bandwidth, which mimics a LAN scenario. Here
we include results for other two important settings. First, in Table 3 we present results for the same

18 Regarding output gates, the last t parties can send their shares (which are determined in the circuit-dependent
offline phase already) to the corresponding output clients.
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Width Prep.
Number of parties

37 45 53

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

1k CD 1.71 / 0.15 6.80 / 0.30 2.51 / 0.16 7.22 / 0.21 3.67 / 0.23 6.17 / 0.19
CI 1.48 / 0.38 6.07 / 0.74 2.19 / 0.48 6.46 / 0.60 3.22 / 0.68 5.75 / 0.55

10k CD 13.24 / 1.10 7.07 / 0.25 21.56 / 1.61 6.90 / 0.22 34.38 / 2.26 6.83 / 0.19
CI 11.39 / 2.94 6.31 / 0.67 18.80 / 4.37 6.18 / 0.59 30.52 / 6.12 6.19 / 0.52

100k CD 123.76 / 10.76 6.52 / 0.25 201.23 / 15.98 7.10 / 0.22 321.38 / 22.38 6.48 / 0.19
CI 105.57 / 28.95 5.76 / 0.66 174.11 / 43.09 6.33 / 0.59 283.22 / 60.54 5.82 / 0.52

Width Prep.
Number of parties

61 69 77

TP (s) Factor (×) TP (s) Factor (×) TP (s) Factor (×)

1k CD 5.72 / 0.31 6.29 / 0.17 7.35 / 0.40 6.62 / 0.16 10.17 / 0.50 7.44 / 0.14
CI 5.13 / 0.91 5.71 / 0.50 6.60 / 1.16 6.02 / 0.45 9.23 / 1.44 6.83 / 0.41

10k CD 49.97 / 3.05 7.02 / 0.17 69.28 / 3.96 7.52 / 0.16 92.78 / 5.01 7.92 / 0.15
CI 44.76 / 8.26 6.39 / 0.47 62.26 / 10.98 6.86 / 0.43 84.00 / 13.78 7.26 / 0.40

100k CD 491.70 / 30.50 7.17 / 0.18 681.65 / 39.67 7.54 / 0.16 932.10 / 50.29 7.91 / 0.15
CI 440.25 / 81.94 6.52 / 0.47 614.41 / 106.91 6.89 / 0.42 846.57 / 135.82 7.29 / 0.39

Table 5: Running times and comparison of TURBOPACK with DN07, in a localhost setting (i.e. with-
out altering the network), for a circuit of depth 1 and varying width and number of parties. The TP
columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the ratio
between the running time of TURBOPACK and DN07. The format of the timings and ratios is “Offline
/ Online”. In the CD. Prep case our offline and online phases are ➀+➁ and ➂, while in the CI. Prep
scenario these are ➀ and ➁+➂.

range of parties as in Table 1, but increasing the latency from 1ms to 10ms This is intended to
emulate a distributed system over small distances. Then, in Table 5 we aim at exploring the effect
of having an even larger number of parties, for which we modify the networking setting by not
applying any limitation to the localhost network, and we also lower the depth from 10 to 1. This
is because of technical difficulties we encountered when running a large amount of parties in a
single machine with modifications to the network using tc.

Setting with 10ms latency The experiments here are run in the same setup as in Section 5. The
experiments for n = 5, 13, 21, 29 are the average of five runs, while for n = 37, 45 they are the
average of two runs. Comparing the results from Tables 1 (1ms latency, depth 10) and 3 (10ms
latency, depth 10), we see that the improvement factor of our online phase with respect to that of
DN07 remains essentially the same. However, an interesting observation is that the ratio for the
offline phase seems to improve as the latency is increased, and this is particularly more noticeable
for small widths. In these cases, computation matters more, and this behavior seems to support
the idea that, when the latency is larger, more time can be spent while messages are in transit
in the extra computations involved in TURBOPACK which are, for example, packing/unpacking
secret-shared elements, or mapping pre-processed data to different parts of the circuit.

Setting with localhost communication Interprocess communication with TCP has much more
bandwidth and less latency than an actual distributed setting such as the ones we have emulated so
far for the previous experiments. However, in order to consider an even larger number of parties,
we found that we had to remove network emulation. We benchmark, in this setting, a circuit of
depth 1 with different widths and a much larger number of parties which ranges over the set
{29, 37, 45, 53, 61}. The results are presented in Table 5. We see that, as expected, the improvement
of TURBOPACK grows noticeably as the number of parties increases, and for n = 61, TURBOPACK

shows an improvement of 10× with respect to DN07, even for circuits of small width. We remark
that technical difficulties prevented us from carrying out these experiments, but we expect that
further considering more realistic networks with constrained bandwidth and latency would lead to
even better improvement factors.
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