TurRBOPACK: Honest Majority MPC with Constant Online
Communication

Daniel Escudero,! Vipul Goyal,?? Antigoni Polychroniadou' and Yifan Song?

1 J.P. Morgan Al Research, NY, USA
2 Carnegie Mellon University
3 NTT Research

Abstract. We present a novel approach to honest majority secure multiparty computation
in the preprocessing model with information theoretic security that achieves the best online
communication complexity. The online phase of our protocol requires 12 elements in total per
multiplication gate with circuit-dependent preprocessing, or 20 elements in total with circuit-
independent preprocessing. Prior works achieved linear online communication complexity in
n, the number of parties, with the best prior existing solution involving 1.5n elements per
multiplication gate. Only one recent work (Goyal et al, CRYPTO’22) achieves constant online
communication complexity, but the constants are large (108 elements for passive security, and
twice that for active security). That said, our protocol offers a very efficient information theoretic
online phase for any number of parties.

The total end-to-end communication cost with the preprocessing phase is linear in n, i.e.,
10n + 44, which is larger than the 4n complexity of the state-of-the-art protocols. The gap
is not significant when the online phase must be optimized as a priority and a reasonably
large number of parties is involved. Unlike previous works based on packed secret-sharing to
reduce communication complexity, we further reduce the communication by avoiding the use of
complex and expensive network routing or permutations tools. Furthermore, we also allow for a
maximal honest majority adversary, while most previous works require the set of honest parties
to be strictly larger than a majority.

Our protocol is simple and offers concrete efficiency. To illustrate this we present a full-fledged
implementation together with experimental results that show improvements in online phase
runtimes that go up to 5x in certain settings (e.g. 45 parties, LAN network, circuit of depth 10
with 1M gates).

1 Introduction

Secure multiparty computation (MPC) enables a set of parties, each having its own input, to
compute a given function on these without leaking anything besides the output while only involving
communication among each other, i.e. without relying on a central third party. Security requires
that, even if an adversary corrupts ¢ out of the n parties, this adversary learns nothing about the
inputs of non-corrupt/honest parties. Different protocols exist depending on the ratio ¢/n. If t < n/2,
which is referred to as the honest majority setting, it is known that information-theoretic security is
possible to achieve, whereby the adversary does not learn anything about the honest parties’ inputs
regardless of his/her computational power. In contrast, if ¢ > n/2, which is known as the dishonest
majority setting, computational assumptions are required to achieve security.

The focus of this work is the honest majority case, where the adversary corrupts at most a
minority of the parties, and information-theoretic security can be achieved. A crucial metric for the
performance of an MPC protocol is its communication complexity, meaning the amount of messages
that must be sent across the parties. Recent constructions such as [DNO7, GIPT14, CGHT18,
NV18, GSZ20, BGIN20, GLO*21] show that an arithmetic circuit C can be evaluated with overall
communication complexity O(|C| - n) elements, where |C| is the number of multiplication gates in
the circuit. Furthermore, some of these works achieve very small concrete constants: [GSZ20] and
[GLO*21] require 5.5n and 4n elements per multiplication gate, respectively. Moreover, different
works suggest that we cannot design MPC protocols with o(|C| - n) communication [DNPR16,
DLN19].

With the aim of further improving the communication complexity of honest majority MPC
protocols, we consider the widely used offline/online paradigm, in which the execution of the
protocol is split into two phases: an offline phase, which is independent of the parties’ inputs
and hence can be run in advance before these are known, and an online phase, which requires

knowledge of the inputs, and is typically much more lightweight than the offline phase. For
example, in the dishonest majority setting it is common to use the offline phase to preprocess
the so-called authenticated Beaver triples, which makes use of computational assumptions and
expensive cryptographic tools, and are then consumed in an online phase that is highly efficient
and information-theoretically secure. This is the trend followed in BeDOZa [BDOZ11], SPDZ
[DPSZ12a, DKL™13], and all the subsequent works in secret-sharing-based dishonest majority MPC.
The idea behind this approach is that, even though the end-to-end protocol may not provide certain
level of efficiency, since the online phase dictates the latency from the moment in which the parties
provide inputs to the moment they receive output, having a fast online phase may be enough for
a wide range of applications, especially if the parties can afford to pre-compute the offline phase
(e.g. while they are idle).

State-of-the-art protocols such as ATLAS [GLO"21] aim at minimizing total communication
complexity, achieving 4n elements per multiplication gate, distributed as 2n in the offline phase,
and 2n in the online phase. However, it is natural to wonder how much can the online phase alone
be optimized, while still achieving comparable overall efficiency as state-of-the-art work. In this
case, the protocol that offers the most lightweight online phase, asymptotically, is the recent work
of [GPS22]. This protocol focuses in the more general dishonest majority setting with ¢ < (1 — e)n
for some ¢ > 0, and it achieves an online phase whose communication complexity is O(|C|) (i.e. it
is independent of the number of parties). Setting ¢ = 1/2, we obtain the honest majority setting as
a particular case. However, one drawback of the construction from [GPS22] is the large constant
hidden in the big-O notation:

— For the online phase, the analysis of [GPS22] shows that their protocol requires 14 - n/k elements
of communication per multiplication and addition gate,* where, for the honest majority case,
k ~ n/4 and t < n — 2k + 1. Thus, the cost per addition and multiplication gate is about 56
elements. Assuming the number of addition gates is the same as the number of multiplication
gates, the effective cost per multiplication gate becomes 108 elements.

— For the preprocessing phase, the analysis of [GPS22] shows that their protocol requires 12 - n? /k?
elements of preprocessing data, where k ~ n/4 in the honest majority setting. The circuit size of
computing the preprocessing data would be 192|C|. When directly instantiating it by an IT MPC
in the standard honest majority setting, it costs at least 192|C| - n elements of communication.

— To achieve the malicious security, the work [GPS22] uses information-theoreitc MACs, which at
least double the cost in both the preprocessing phase and the online communication.

In contrast, the protocol with the next best online phase is DNO7 [DNO7] with the optimization from
[GSZ20], which requires 1.5n elements per multiplication gate in the online phase, but 4n elements
in the offline phase. Unless n > 72 for passive security, or n > 144 for active security, [GPS22] does
not necessarily offer a better online phase.

1.1 Our Contribution

In this work, we present a new honest majority MPC protocol, TURBOPACK, which has an online
phase whose total communication per multiplication gate is constant, irrespectively of the number
of parties, and furthermore, unlike [GPS22], this constant is concretely small. To better understand
the communication complexity of TURBOPACK, we split the computation into three phases:®

@ A circuit and input-independent phase, requiring 10n + 24 elements per multiplication gate
@ A circuit-dependent but input-independent phase, requiring 8 elements per multiplication gate
® A circuit and input-dependent phase, requiring 12 elements per multiplication gate.

More concrete theorem statements can be found in Thm. 1 and 2 for passive security, and 3
for active security. In the circuit-dependent preprocessing model (CD), the offline phase is allowed
to depend on the circuit to be computed, and in this case our online phase (®) requires only 12
elements per multiplication gate. In the circuit-independent preprocessing model (CI), where the
offline phase cannot depend on the circuit, our online phase (@+®) is only slightly larger, namely 20

4 Most protocols, including TURBOPACK, do not require communication for addition gates. The protocol of
[GPS22] is an exception.

5> We note that such a splitting of three phases has been considered in the line of works focusing on constant-
round MPC with malicious security such as [NST17, WRK17b, WRK17a, LPSY19].

field elements per multiplication gate. Either way, it only takes a small value of n for our online phase
to become more efficient than that of DNO7, and the more parties involved, the better TURBOPACK
becomes. Notice that the CD prep. model makes sense in many practical settings where the circuit is
already known in advance (e.g. perhaps it is fixed for certain task, like training a neural network
of a pre-determined architecture on data provided by the clients), and recent works have shown
some benefits of knowing the circuit in advance for the preprocessing [BENO19, ESV21, ACET21].
Nonetheless, the CI prep. model also has its advantages, such as allowing external parties or services
to produce preprocessing data “as a service”, while being agnostic to which computation is being
carried out.

While we achieve the best possible online phase, our overall costs are higher than ATLAS,
or even DNO7. However, this gap is not very large: the total communication of TURBOPACK is
10n + 44 elements per multiplication gate, a factor of 2.5x worse than ATLAS (the protocol with
the best overall communication) and ~ 1.8 x worse than DNO7 (the protocol with the best online
communication). For many application settings, this overhead can be considered to be small taking
into account the gains in the online phase.

We also remark that we consider both the passive and active security (with abort) settings,
but for most of the main body of this paper we focus on passive security. Our results for active
security are obtained by making use of the passively secure construction as a starting point, and
using existing techniques in distributed zero-knowledge proofs [BBCG*19] in a black-box manner
to verify the correctness of the computation. The overhead in terms of communication can be made
negligible, so the communication complexity of our actively secure protocol remains essentially the
same as that of the passive protocol.

We achieve constant communication in the online phase with the help of packed secret-sharing, a
technique to distribute and operate on multiple secrets simultaneously while only paying the cost of a
single secret (we refer the reader to Section 2 where we provide a detailed overview of TURBOPACK).
This tool has been used in several previous works [FY92, DIK10, GIP15, GIOZ17, BGJK21a, GPS21],
however, these works typically (1) only tolerate a smaller corruption threshold ¢ < (1/2 —¢) - n,
and (2) require complex network routing or permutation-based techniques to make packed secret-
sharing, which is more suitable for SIMD computations, compatible with less structured circuits.
Unlike the works mentioned above, TURBOPACK tolerates the optimal honest majority adversary
n = 2t+1, and it is concretely simple and efficient, avoiding complex network routing or permutation
tools. The only exception is the recent work of [GPS22], which uses packed secret-sharing in the
dishonest majority setting, which includes honest majority as a particular case. However, as we
have mentioned already, TURBOPACK is simpler and achieves much better concrete constants. A
more detailed description and comparison to this and several other relevant related works appears
in Section 1.2.

We have fully implemented the passive version of TURBOPACK, and we carried out a series of
experiments that assess the improvement of our online phase with respect to DNO7, the protocol
with the most efficient online phase for a reasonable number of parties. We experimentally observe
that, over a LAN network and in the CD prep. model, our online phase starts outperforming that of
DNO7 for small values of n such as n = 13, and for larger values of n, such as n = 45, and for circuits
of moderate width (100k), our online phase takes only 22% the time than that of DNO7. In the CI
prep. model our improvement is slightly smaller but still noticeable: for n = 45 and 100k width, our
(circuit-independent) online phase is almost twice as fast as that of DNO7. Other scenarios lead to
even better improvement factors of 6.7x, such as the localhost setting with at least 69-77 parties, as
evaluated in Table 5 in Section F in the Appendix. From the above, we regard TURBOPACK as an
important step towards achieving practical honest majority MPC for any number of parties.

1.2 Related Work

Honest-majority with maximal adversary. There is a long line of works studying the efficiency of
honest majority information-theoretic MPC in our settings of interest: passive security and active
security with abort, for an arbitrary number of parties (hence we do not consider protocols restricted
to small number of parties such as [BGIN19]). The first protocol in achieving linear communication
complexity in this setting is DNO7 [DNO7], whose concrete constants were improved in [GSZ20],
achieving, per multiplication gate, 4n elements in the offline phase and 1.5n elements in the online
phase. This is both for passive security and active security with abort, ignoring logarithmic terms in
|C| for the latter case. The protocol of [CGH' 18] showed that active security (with abort) could

be obtained with an overhead of only 2x with respect to passive security. In [DE21a], where the
authors aim at minimizing the online phase costs for general secret-sharing schemes, but when
instantiated with Shamir secret-sharing the same online complexity of 1.5n as above is obtained.
This can be brought down to 1n field elements by using MACs, as shown in [DE21a], at the expense
of increasing the communication complexity of the offline phase.

The protocol with the best overall communication complexity is ATLAS [GLO™21], which uses
4n elements in total per multiplication gate, distributed as 2n elements in the offline phase and 2n
elements in the online phase. As we have already pointed out, achieving o(|C|n) communication
complexity for the maximal adversary n = 2t + 1 is believed to be impossible. However, none of the
works above have achieved o(|C|n) even for the online phase of the protocol only. In our work, we
achieve an online phase with O(]C|) communication complexity, with actual small hidden constants.
The overall communication complexity is linear in n, and it is only a factor of < 2x worse than
state-of-the-art.

Finally, the work of [GPS22] considers packed secret-sharing in the context of dishonest majority
MPC, which in particular includes the case n = 2t + 1. However, as we explained in Section 1, their
work requires larger constants and only becomes practical for a very large number of parties.

Honest-majority with sub-maximal adversary. When the corruption threshold satisfies ¢t < (1/2—¢)-n
for some ¢ > 0, multiple works have made use of packed secret-sharing techniques to achieve a
total communication complexity that is independent of the number of parties [FY92, DIK10, GIP15,
GIOZ17, BGJK21a, GSY21, BGJK21b, GPS21]. Since packed secret-sharing is intended to operate
on vectors, performing the same operation at an entry-wise level, different techniques are needed
to accomodate for the fact that, for typical circuits, values must be re-ordered from one batch to the
next.

Different works tackle this difficulty in different ways. A prominent method is to preprocess
different permutation pairs that are used in the online phase to re-arrange secret-shared data. This
is the approach followed by the pioneering work of [DIK10]. Other works, such as [GSY21] and
[BGJK21b], use packed secret-sharing for circuits that are more “SIMD-friendly” ([GSY21] uses it
to preprocess multiplication triples, [BGJK21b] uses it on circuits having wide-enough blocks that
appear with high enough frequency). Most of the works mentioned above achieve a communication
complexity per multiplication gate of O(log |C|). The work [GPS21] first shows that an arithmetic
circuit C' can be evaluated with overall communication complexity O(1) elements per multiplication
gate, but again, this is still in the ¢ < (1/2 — ¢) - n setting. Furthermore, this requires complex
techniques related to network-routing in order to support general non-SIMD circuits, and the hidden
constants in the big-O notation are relatively large.

Our work is not comparable to these related works, given that we tolerate the maximal adversary
n = 2t + 1, while they require a gap between ¢ and (n — 1)/2. With this gap, it is possible to
obtain O(|C|) communication complexity overall [GPS21], which we cannot achieve in our setting.
However, it is important to mention that the hidden constants in works like [GPS21], coupled with
the complexities of impementing network routing, may make of TURBOPACK a better option in
practice, especially if 2¢ + 1 is close to n. For example, if ¢ = (n — 1)/2 + 1 — k, the protocol in
[GPS21] can be used with a “packing parameter” (the amount of secrets packed in one share) of k.
TURBOPACK, in contrast, has a packing parameter of ~ n/4. As a result, unless k > n/4, our packing
parameter—and hence our online phase—is better. Furthermore, asymptotically (in n) the overall
communication in [GPS21] may be better than ours, but the hidden constants in big-O notation
make it so that such improvement is only noticeable for very large values of n.

2 Technical Overview

In this section, we give an overview of our techniques. In the following, we will use a bold letter to
represent a vector.

2.1 Starting Idea: Efficient Online Protocol Based on [BBG121, GPS22]

When the corruption threshold is sub-optimal (either with honest majority or dishonest majority),
the generic approach of reducing the communication complexity is to use the packed secret sharing
technique introduced in [FY92]. Let k denote the packing parameter, which looking ahead, will be
set equal to k = (n — t + 1)/2. The idea of the packed secret sharing technique is to store k secrets

within a single secret sharing. In this way, we can evaluate a group of k (addition or multiplication)
gates in parallel. In particular, the cost of evaluating a group of k gates by using packed secret
sharings is the same as the cost of evaluating a single gate by using standard secret sharings. Ideally,
the overall communication complexity can be reduced by a factor of k.

However, the main issue of the above approach is to prepare input packed sharings for each
layer. The issue is due to the following two facts:

1. The secrets within a single packed secret sharing may not be in the correct order. When evaluating
a group of k gates, the protocols only support coordinate-wise operations, which requires the two
vectors of secrets to be correctly aligned.

2. The secrets within a single packed secret sharing may be scattered in different output packed
secret sharings in previous layers.

This issue is referred to as network routing in [GPS21]. The reason of why it cannot be easily solved
is because we need to collect the secrets and reorder them in a batch way. Doing it secret by secret
will cost O(k) communication per packed secret sharing, which eliminates the benefit of using the
packed secret sharing technique.

We note that the solutions in [GPS21, GPS22] are costly in term of the constant. What makes it
worse is that, even for a group of k addition gates, all parties still need to prepare input packed
secret sharings for these & gates. This is different from the IT MPC protocols in the standard honest
majority setting [DNO7, GIPT14, CGHT 18, NV18, GSZ20, BGIN20, GLO*21], where addition gates
can be evaluated without interaction.

Efficient Online Protocol in [BBG*21]. An exception is the online protocol in [BBG*21], which relies
on a circuit-dependent preprocessing phase (i.e., the correlated randomness can depend on the
circuit but not parties’ inputs) to avoid paying cost for addition gates and doing network routing
in the online phase. Despite that the work of [BBG*21] focuses on the sub-optimal corruption
threshold, we try to utilize their online protocol in our setting.

In the circuit-dependent preprocessing phase, a random value), is assigned to each wire « in
the circuit such that:

— For each output wire « of input gates® and multiplication gates,), is uniformly random.
- For each addition gate with input wires «, § and output wire v, A, = Ao + Ag.

Multiplication gates in each layer of the circuit are divided into groups of size k. For each group of
k multiplication gates, the random values associated with the first input wires and the second input
wires are shared by using packed secret sharings respectively.

In the online phase, if we use v, to represent the actual wire value associated with the wire «,
the goal is to compute p, = v, — M. The authors in [BBG'21] observe that it is sufficient to only
let a single party, say P, learn {p }o. It comes with two benefits:

— For each addition gate with input wires «, 5 and output wire v, since v, = v, +vg and A, =
Aa + A, Pi can locally compute p, = 1o + pg. Therefore, addition gates can be computed
without interaction.

— For each group of £ multiplication gates, let a denote the batch of the first input wires, and 3
denote the batch of the second input wires. Recall that P; learns {4} in clear. P; shares pq
and pg (which are two vectors of values) to all other parties by using packed secret sharings.
Since all parties hold packed secret sharings of A, and Ag prepared in the circuit-dependent
preprocessing phase, they can locally compute packed secret sharings of v, and vg without doing
network routing in the online phase.

Thus, the main task is to evaluate a group of multiplication gates and compute p., for the output
wires . To this end, we first review the packed Shamir secret sharing scheme, which is used in our
construction.

Review: Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The packed Shamir
secret sharing scheme [FY92] is a natural generalization of the standard Shamir secret sharing
scheme [Sha79]. It allows to secret-share a batch of secrets within a single Shamir sharing. For a
vector x € F*, we use [z]4 to denote a degree-d packed Shamir sharing, where k — 1 <d <n — 1.
It requires d + 1 shares to reconstruct the whole sharing, and any d — k + 1 shares are independent
of the secrets. The packed Shamir secret sharing scheme has the following nice properties:

® Qutput wires of input gates are just the input wires of the circuit.

- Linear Homomorphism: For all d > k — 1 and z,y € F*, [z + y]q = [z]a4 + [¥]a-
— Multiplicative: For all dy,ds > k — 1 subject to dy + do < n, and for all x,y € F*, [z * y]4, +d, =
[x]a, * [y]a,, where the multiplications are performed on the corresponding shares.

As noted in [GPS22], when d < n — k, all parties can locally multiply a public vector ¢ € F* with
a degree-d packed Shamir sharing [x]:

1. All parties first locally compute a degree-(k — 1) packed Shamir sharing of ¢, denoted by [c]x—1.
Note that for a degree-(k — 1) packed Shamir sharing, all shares are determined by the secrets.
2. All parties then locally compute [c * @],,—1 = [¢]x—1 * [x]n—k-

We simply write [¢ * x],,—1 = ¢ * [#],— to denote the above process. This property is referred to as
multiplication-friendliness in [GPS22].

To make sure that the packed Shamir secret sharing scheme is secure against ¢ corrupted parties,
we alsorequired > t+k—1.Whend =n—kand k = (n—t+1)/2 = (n+ 3)/4, the degree-(n — k)
packed Shamir secret sharing scheme is both multiplication-friendly and secure against ¢ corrupted
parties.

Using the Multiplication Protocols of [GPS22] in Our Setting. Recall that the work of [BBG*21]
focuses on the sub-optimal corruption threshold. Let ¢’ denote the corruption threshold in [BBGT21].
They use a degree-t (where ¢t = (n — 1)/2) packed Shamir sharing to store k' =t — ¢’ 4 1 secrets,
which allows all parties to locally compute a degree-(n — 1) packed Shamir sharing of p.. To see
this, note that p, = vy — Ay = va * vg — A4. Since all parties hold [va]:, [vg]:, [Ay]+, they can
locally compute
[y]n—1 = [val: * [val: — [Ay]:-

The resulting sharing has degree (n — 1) because n — 1 = 2 - t. Then they can reconstruct p., to
Py by sending their shares to P;.

Unfortunately, the approach in [BBGT21] does not work in our setting. This is because the
corruption threshold in our setting is already ¢.

— On one hand, if we keep using the same degree d = ¢ for the packed Shamir sharing, we can only
pack 1 = d — t + 1 secret in each sharing.

— On the other hand, if we choose to use a larger degree d > ¢, the resulting sharing would have
degree 2d > 2t = n — 1, which cannot be reconstructed by all parties.

To evaluate multiplication gates, we rely on the technique of packed Beaver triples in [GPS22],
which is a generalization of the technique of Beaver triples in [Bea92]. Informally, the idea is to
compute the multiplication between two packed Shamir sharings of [x], [y]4 by using a packed
Beaver triple ([a] 4, [b]d4, [c]a) such that a,b € F* are random vectors and ¢ = a * b. Similarly to
the technique of Beaver triple, all parties first reconstruct « + a and y + b. Then, they can use
z+a,y+band ([a]q, [b]a, [c]a) to locally compute a packed Shamir sharing of = * y.

We adapt the technique of packed Beaver triples in [GPS22] to our setting as follows. We set
k= (n+3)/4and d =t+ k — 1 =n — k. Recall that in this way, the degree-(n — k) packed Shamir
secret sharing scheme is both multiplication-friendly and secure against ¢ corrupted parties. For a
group of multiplication gates with input wires «, 3 and output wires ~, observe that

Py =Va * V8 — Ay = (o + Aa) * (g + Ag) — Ay
= o ¥ U8 + Ho ¥ Ag + B ¥ Ao + Aq ¥ Ag — Ay,

Recall that all parties hold [Aq]n—k, [Ag]n—r Prepared in the circuit-dependent preprocessing phase.
To compute the above equation, we require that

- In the circuit-dependent preprocessing phase, all parties also prepare a degree-(n — 1) packed
Shamir sharing of I, = Ao * Ag — A, as described later.

— In the online phase, the first party P; distributes pq, g by using degree-(k — 1) packed Shamir
sharings.

In this way, all parties can compute

[y]n—1 = [Halr—1 * [Ba]k—1 + [Halr-1 * [Agln—k
+ [psli-1 * [Aaln—k + [Ty]n-1.

Summary of the Online Protocol. For each group of multiplication gates, P; needs to distribute
two degree-(k — 1) packed Shamir sharings and all parties need to send their shares of [f],,—1 to
Py. Thus, the total communication complexity is 3n field elements per group of k¥ multiplication
gates. On average, the amortized communication complexity per multiplication gate is 3 - n/k ~ 12
elements.

2.2 Realizing Circuit-Dependent Preprocessing Phase

In the circuit-dependent preprocessing phase, our goal is to prepare the following two kinds of
packed Shamir sharings: for each group of £ multiplication gates,

For the input wires «, 3, all parties prepare [Aa]n—k, [Ag]n—k-
For the output wires =, all parties prepare [I’,],,—1, where I'y = Aq * Ag — A4.

Recall that the random value)\, associated with each wire « satisfies that

For each output wire « of input gates and multiplication gates,)\, is uniformly random.
For each addition gate with input wires «, § and output wire v, A, = Ao + Ag.

Although we only need to prepare packed Shamir sharings for the input wires of multiplication
gates, we need to first generate uniform values that are associated with the output wires of input
gates and multiplication gates, and then compute the random values associated with the input wires
of multiplication gates. We survey the potential solutions from [BBG*21] and [GPS22].

The Solution in [BBG*21]. In [BBGT™21], the authors rely on pseudo-random secret sharings to
prepare the random packed Shamir sharings for the input wires of multiplication gates. However,
this approach requires to use pseudo-random generators, which means that they are NOT in the IT
setting. And it only works when the number of corrupted parties is a constant since their construction
is based on the replicated secret sharing scheme where the share size grows exponentially with the
number of corrupted parties.

The Solution in [GPS22]. We can potentially use the protocol in [GPS22] to prepare the random
packed Shamir sharings for the input wires of multiplication gates. As we analysed above, it can
achieve O(n/k) elements of communication per secret in the circuit-dependent preprocessing phase
with O(n) elements of communication in the circuit-independent preprocessing phase. However,
directly using the approach in [GPS22] has the following two drawbacks:

— It requires O(Depth) rounds in the circuit-dependent preprocessing phase. This is because the
protocol in [GPS22] also needs to interact for addition gates, and the computation of addition
gates is done layer by layer.

— As discussed in the introduction, the constant factor hidden in the big-O notation is very large.

Our Solution. Our idea is to first prepare a single packed Shamir sharing for each wire. Concretely,
for each output wire « of input gates and multiplication gates, all parties prepare a random degree-
(n — k) packed Shamir sharing in the form [\, - 1],,_, where 1 = (1,...,1) € F*. In other words,
the secrets of [\, - 1],,—x are k copies of the same value \,.

Then all parties can locally compute [\, - 1],,— for each wire a, which is the output of an
addition gate. This is done by adding the two packed sharings associated with the input wires of an
addition gate. Next, for each group of k£ multiplication gates with input wires « and 3, suppose
a = (ay,...,a). All parties can locally compute a degree-(n — 1) packed Shamir sharing of A, by

[[Aa]]nfl = ey * [P\al .]-ﬂnfk + -t epx [[)\ak . 1]]n7k:a

where e; is the i-th unit vector in F* satisfying that all entries of e; are 0 except the i-th entry is 1.
To see why this is true, note that the secrets of the RHS are equal to

e1¥ Moy 1)+ +eprxNa, 1) =Xy -€1 4+ Ay, - €6 = Aar-

To obtain [Aq],—x from [A,],—1, all parties perform a degree-reduction step. As we will see
later, the degree-reduction step is merged with the computation of [I%],—1.
As a result, our approach avoids the expensive network routing and achieves constant rounds.

Preparing Packed Shamir Sharings for {I’,}~. For each group of multiplication gates, let o, 3 denote
the input wires and -~ denote the output wires. Recall that in the last step, all parties have locally
computed [Aq]ln—1, [Ag]n—1. Similarly, they can locally compute [A,],—1. To compute [I],_1,
where I, = Aq *Ag — A, the main task is to compute a packed Shamir sharing of the multiplication
result Ay * Ag.

We again rely on the technique of packed Shamir sharing in [GPS22]. Concretely, all parties first
prepare a random packed Beaver triple ([a],—k, [b]n—k, [¢]n—r), where a, b are random vectors in
F* and ¢ = a * b. Then all parties perform the following steps:

1. All parties locally compute [Ag+a],—1 = [Aa]n-1+[a]n—k and [Ag+b]n—1 = [Agln-1+[b]n—r"-

2. The first party P; collects the whole sharings [Aq + a]n—1,[As + b]»—1 and reconstructs the
secrets dy = Ao + a,dz = Ag + b. Then P, distributes [d;]x—1, [d2]x—1 to all parties.

3. All parties locally compute

[Aa * Agln—1 = [di]k—1 * [d2]k—1 — [d1]k—1 * [b]n—&k
- [[dQHk—l * [[aﬂn—k + [c]]n—L
The correctness follows from the fact that Ao, = d1 — a,Ag = d2 — b, and

Aa*Ag = (d1 —a) *(dz — b)
=dyxdys —dy xb—dyxa+axb
=di*dy—di*b—dy*xa+ec.

Note that, all parties can also locally compute [Aq]n—x = [di]k—1 — [a]n-r and [Ag]n—r =
[do]k—1 — [b]n—k- Thus, the degree-reduction steps have been implicit performed above.

Summary of the Circuit-Dependent Preprocessing Phase. In the circuit-dependent preprocessing
phase, for each group of k£ multiplication gates, all parties need to send their shares of [A, +
a]n-1,[Ag + b]n—1 to P1, and P; needs to distribute [d;]x—1, [d2]x—1 to all parties. Therefore, the
communication complexity per multiplication gate is 4 - n/k = 16 elements.

Note that the random packed Shamir sharings in the form of [\, - 1],,—x and the random packed
Beaver triples in the form of ([a],—k, [b]n—k, [¢]n—k) are prepared in the circuit-independent
preprocessing phase as discussed below.

2.3 Realizing Circuit-Independent Preprocessing Phase
In the circuit-independent preprocessing phase, our goal is to prepare the following random sharings.

— For each output wire of input gates and multiplication gates, all parties prepare a random
degree-(n — k) packed Shamir sharing in the form of [A, - 1], —«.
— For each group of multiplication gates, all parties prepare a random packed Beaver triples

([[a’]]n—kv [[b]]n—ka [[Cﬂn—k)'

Preparing Random Sharings for a Given Linear Secret Sharing Scheme. Let X be a linear secret sharing
scheme in F. To prepare random Y'-sharings, we follow a similar approach to that in [DNO7]. At a
high-level,

1. Each party P; first generates and distributes a random X' sharing, denoted by S @),

2. Let M" be a Vandermonde matrix of size n x (4 1) in F. All parties use M as a random extractor
to extract n — ¢t = ¢ + 1 random sharings. This is done by simply computing (R, ... R*+D)T =
M(SW, . .. s,

Note that each output sharing R") is a linear combination of {SU)}?:1. The correctness follows
from the fact that Y is a linear secret sharing scheme. Thus, all parties will output valid X'-sharings
in the above approach. The security follows from the fact that any sub-matrix of size (¢t + 1) - (¢ + 1)
of an n x (¢t 4+ 1) Vandermonde matrix is invertible. Therefore, given the random sharings prepared
by corrupted parties, there is a one-to-one map from the random sharings prepared by honest
parties and the output sharings. Thus, the output sharings are also random.

We can use the above approach to prepare random sharings in the form of [\, - 1],,—x. The
communication complexity per sharing is 2n elements.

7 In TURBOPACK, we need to use a random degree-(n — 1) packed Shamir sharing of 0 € F* to protect the
shares of honest parties. In the technical overview, we omit this issue for simplicity

Preparing Packed Beaver Triples. For ([a],—k, [b]n—k, [€]n—k), the first two sharings can be prepared
by using the above approach. However, we do not know how to efficiently compute a packed Shamir
sharing of the multiplication result ¢ = a * b from [a],—k, [b]n—«-

Our idea is to first prepare k standard Beaver triples by using degree-t Shamir sharings and then
transform them to a packed Beaver triple. To simplify the transformation, we choose to use different
secret slots in different degree-t Shamir sharings.

Shamir Sharings with Different Secret Slots: With more details, recall that a degree-t Shamir
secret sharing scheme corresponds to a degree-t polynomial f such that f(1),..., f(n) are the
shares and f(0) is the secret. However, we do not need to always use the evaluation point 0 to
store the secret. Concretely, for all ¢ € {1, ..., k}, we use [z|;]; to denote a degree-¢t Shamir sharing
whose secret is stored at the evaluation point —i + 18. Le., the corresponding polynomial f satisfies
that (1) f has degree ¢, (2) f(1),..., f(n) are the shares, and (3) f(—i + 1) is the secret.

Transforming to Packed Sharings: Let e; denote the i-th unit vector. Now suppose all parties
hold k degree-t Shamir sharings {[z;|;]+},. We observe that [z;|;]: can be viewed as a degree-t
packed Shamir sharing with the i-th secret to be z;. Therefore, all parties can locally convert them
to a degree-(n — k) packed Shamir sharing by computing [«],—r = e1 * [x1|1]: + - .. + ek * [z]+

Preparing Standard Beaver Triples: Thus, the problem is reduced to prepare {([a;/]¢, [b:]:]:, [cils]e) o,
For [a;|;]+, [bi]:]¢» we can use the above approach to prepare them, which costs 4n elements. To
compute [c;|;];, we rely on the state-of-the-art multiplication protocol [GLO'21] in the standard
honest majority setting, which costs 4n elements. The communication complexity of preparing
packed Beaver triples is 8n elements per multiplication gate.

Summary of the Circuit-Independent Preprocessing Phase. Beyond the above two kinds of random
sharings, we also need to prepare 3 random degree-(n — 1) packed Shamir sharings of 0 € F* for
each group of multiplication gates. These random sharings of 0 are used to protect the shares of
honest parties. By using the above approach to prepare them, the communication complexity per
multiplication gate is 6 - n/k =~ 24 elements.

In summary, our circuit-independent preprocessing phase has communication complexity 2n +
8n + 24 = 10n + 24 elements per multiplication gate.

2.4 An Optimization of TURBOPACK

We note that TURBOPACK uses the technique of packed Beaver triples [GPS22] two times. The first
time is in the online phase where all parties need to compute a packed Shamir sharing of v, * vg
for each group of multiplication gates. Here, all parties hold degree-(n — k) packed Shamir sharings
of Ao, Ag and the first party P; distributes two degree-(k — 1) packed Shamir sharings of i, 3.
The second time is in the circuit-dependent preprocessing phase where all parties need to compute
a packed Shamir sharing of A, * Ag for each group of multiplication gates. Here, all parties hold
degree-(n — k) packed Shamir sharings of a, b and the first party P; distributes two degree-(k — 1)
packed Shamir sharings of Ao + @ and Ag + b.

We observe that we can directly use the packed Beaver triple ([a],—k, [b]n—k, [c]n—k) in the
online phase. This requires P; to distribute degree-(k — 1) packed Shamir sharings of v + a,vg+b.
For v, + a, note that P, learns u, in the online phase and A, + a in the circuit-dependent
preprocessing phase, and v, + a = po + Ao + a. Thus, instead of asking P to distribute a degree-
(k — 1) packed Shamir sharing of p. in the online phase and a degree-(k — 1) packed Shamir
sharing of A, + a in the circuit-dependent preprocessing phase, we can let P; only distribute a
degree-(k — 1) packed Shamir sharing of p, + Ao + @ = v, + b in the online phase. In this way,
we can save the cost in the circuit-dependent preprocessing phase by a factor of 2.

We refer the readers to Section C for more details.

2.5 Towards Malicious Security

In this part, we discuss how to achieve the malicious security without affecting the concrete efficiency.
The main difficulty comes from the fact that degree-(n — k) packed Shamir sharing is not robust:
corrupted parties can change the secrets of a degree-(n — k) packed Shamir sharing by locally
changing their own shares. This is different from IT MPC protocols that are based on degree-t

8 Here we assume {—k + 1,...,n} are n + k distinct field elements in F. For a general field, they can be
replaced by any n + k distinct field elements.

(packed) Shamir sharings, where the whole sharing is fully determined by the shares of honest
parties. It also means that the verification protocols in the recent IT MPC protocols with honest
majority [GS20, BGIN20, GLO"21] do not work.

To add robustness, the work [GPS22] relies on IT MACs. However, the use of IT MACs would
increase the communication complexity by a factor of 2 and require a large enough finite field.

Recall that in the circuit-independent preprocessing phase, all parties prepare degree-(n — k)
packed Shamir sharings [a],—, [b]»—x for each group of multiplication gates. In the online phase,
all parties receive from P; two degree-(k — 1) packed Shamir sharings [va + a]k—1, [vg + b]k—1-
We observe that

— For [a],,_, all parties first prepare k individual degree-t Shamir sharings {[a;|;]:}*_, and then
transform them to a degree-(n — k) packed Shamir sharing.

- For [va + a]i—1, we can view it as a degree-(k — 1) Shamir sharing of v, + a; stored at the i-th
secret slot, i.e., [va, + aili]k—1-

Thus, if we keep the individual degree-t Shamir sharings {[a;|:]:}%_;, all parties can locally compute

il

In this way, all parties can compute an individual degree-t Shamir sharing for each input wire of
multiplication gates.

To check the correctness of the computation, note that each input of multiplication gates is equal
to some fixed linear combination of the outputs of multiplication gates in previous layers. Also note
that the output of a multiplication gate can be written as the product of its two inputs. Thus, for
each input of multiplication gates, what we want to verify is an inner-product. At this stage, we
still cannot use the verification protocols in [GS20, BGIN20, GLOT21] since the secrets of these
degree-t Shamir sharings do not use the same secret slot.

[va + alk-1 — [aililt = [va, + aili]k—1 — [aili]: = [va,

Verification Protocol in [BBG'21]. Recall that the work [BBGT21] focuses on the sub-optimal
corruption threshold and uses a degree-t packed Shamir sharing to store k£’ = ¢ — ¢’ + 1 secrets,
where ¢’ is the corruption threshold in [BBG*21]. In their verification protocol, however, the authors
view each degree-t packed Shamir sharing [x]; as a degree-t Shamir sharing for each secret z;, i.e.,
[xi|:]:- Thus, although our setting is different from that in [BBG"21], we can potentially use the
verification protocol in [BBGT21].

The verification protocol in [BBG™21] first transforms the check of |C| inner-products into one
check of a single inner-product. Then they adapt the technique in [BBCG"19] to verify the single
inner-product and achieves sub-linear communication complexity in the circuit size. However, the
verification protocol in [BBG*21] does not use the technique in [BBCGT19] in a black box way. It
has computation complexity O(|C| - \/|C|) due to the use of the technique in [BBCG*19] which
can be a bottleneck for the concrete efficiency.

Our Solution. Our verification protocol is also based on [BBCG™19] but we manage to use the
technique in [BBCG™19] in a black-box way. It allows us to directly use other variants of the
techniques in [BBCG'19] in a black box way, for example, the verification protocol in [GS20],
which naturally offers a trade-off between the round complexity and the computation complexity.
Concretely, for all d < /|C], the verification protocol in [GS20] can achieve O(|C| - d) computation
complexity at the cost of log, |C| rounds. This trade-off is also explored in the work [BGIN19] for
3-party setting and [BGIN20] for n-party setting.

Another issue that is not noticed in [BBG*21] is that directly transforming the check of |C|
inner-products into one check of a single inner-product may cost O(|C|?) local computation. This
is because an input of a multiplication gate can be a linear combination of O(|C|) outputs of
multiplication gates in the previous layers. Merging |C| inner-products, where each has size O(|C/),
into one inner-product would cost O(|C|?) local computation in the worst case. We show how to
efficiently compute the single inner-product that all parties need to check with O(]C|) computation
complexity.

As a result, our verification protocol also achieves sub-linear communication complexity in the
circuit size and is computationally efficient. We refer the readers to Section D for more details.

10

3 Preliminaries

3.1 The Model

We consider a set of parties { Py, Ps, ..., P,, } where each party can provide inputs, receive outputs, and
participate in the computation. For every pair of parties, there exists a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. The communication
complexity is measured by the number of bits X via private channels.

We focus on functions which can be represented as arithmetic circuits over a finite field F with
input, addition, multiplication, and output gates®. We use « to denote the security parameter and
let K be an extension field of F (with |K| > 2*). For simplicity, we use « to denote the size of an
element in K. In this work, we assume that the number of parties n and the circuit size |C| are
bounded by polynomials of the security parameter &.

In this work, we focus on the honest majority setting, where the number of corrupted parties
t = (n — 1)/2. We refer the readers to Section A for the security definition.

Client-Server Model. To simplify the security proofs, we consider consider the client-server model. In
the client-server model, clients provide inputs to the functionality and receive outputs, and servers
can participate in the computation but do not have inputs or get outputs. Each party may have
different roles in the computation. Note that, if every party plays a single client and a single server,
this corresponds to a protocol in the standard MPC model. One benefit of the client-server model is
that it is sufficient to only consider maximum adversaries, i.e., adversaries which corrupt exactly ¢
parties. Note that it does not hold in the standard MPC model. We refer the readers to Section A for
more details.

3.2 Packed Shamir Secret Sharing Scheme

In our work, we are interested in the packed Shamir secret sharing scheme. We use the packed
secret-sharing technique introduced by Franklin and Yung [FY92]. This is a generalization of the
standard Shamir secret sharing scheme [Sha79]. Let FF be a finite field of size |F| > 2n. Let n be
the number of parties and k be the number of secrets that are packed in one sharing. A degree-d
(d > k — 1) packed Shamir sharing of = = (z1,...,z;) € F¥ is a vector (w1, ..., w,) for which there
exists a polynomial f(-) € F[X] of degree at most d such that f(—i+ 1) = z; foralli € {1,2,...,k},
and f(i) = w; for all i € {1,2,...,n}. The i-th share w; is held by party P;. Reconstructing a
degree-d packed Shamir sharing requires d + 1 shares and can be done by Lagrange interpolation.
For a random degree-d packed Shamir sharing of x, any d — k£ + 1 shares are independent of the
secret x.

In our work, we use [x]4 to denote a degree-d packed Shamir sharing of z € F¥. In the following,
operations (addition and multiplication) between two packed Shamir sharings are coordinate-wise.
We recall two properties of the packed Shamir sharing scheme:

- Linear Homomorphism: For alld > k — 1 and z,y € F*, [z + y]q = [z]a4 + [¥]a-
— Multiplicative: Let * denote the coordinate-wise multiplication operation. For all dy,ds > k — 1
subject to dy + da < n, and for all z,y € F*, [z * y]a,+a, = [Z]a, - [Y]dp-

These two properties directly follow from the computation of the underlying polynomials.

Note that the second property implies that, for all «,c € F*, all parties can locally compute
[¢ * €] 44x—1 from [x]; and the public vector c. To see this, all parties can locally transform c to
a degree-(k — 1) packed Shamir sharing [¢];—1. Then, they can use the property of the packed
Shamir sharing scheme to compute [c * @]44x-1 = [¢]x—1 - [x]4- This property is referred to as
multiplication-friendliness in [GPS22].

Recall that ¢ is the number of corrupted parties. Also recall that a degree-d packed Shamir secret
sharing scheme is secure against t—k+1 corrupted parties. When setting k = (n—t+1)/2 = (n+3)/4,
a degree-(n — k) packed Shamir sharing is both secure against ¢ corrupted parties and multiplication-
friendly.

° In this work, we only focus on deterministic functions. A randomized function can be transformed into a
deterministic function by taking as input an additional random tape from each party. The XOR of the input
random tapes of all parties is used as the randomness of the randomized function.

11

Shamir Secret Sharing Schemes with Different Secret Slots. When the packing parameter k = 1, a
packed Shamir sharing degrades to a Shamir sharing. Generically, a Shamir sharing uses the default
evaluation point 0 to store the secret. In our work, we are interested in using different evaluation
points in different Shamir secret sharings.

Concretely, for all ¢ € {1,...,k}, we use [z|;]4 to represent a degree-d Shamir sharing of z
such that the secret is stored at the evaluation point —: + 1. If we use f to denote the degree-d
polynomial corresponding to [x|;]4, then f(—i+ 1) = z.

4 Efficient MPC via Packing with Semi-honest Security

Recall that, we use c to denote the number of clients and n to denote the number of parties. Also
recall the corruption threshold ¢ = (n—1)/2 and the packing parameter k = (n—t+1)/2 = (n+3)/4.

4.1 Ideal Functionality for Circuit-Dependent Preprocessing

We first give the ideal functionality Fp,p, given as Functionality 1 below, that prepares correlated
randomness for the online phase. We consider the circuit-dependent preprocessing phase. L.e., the
functionality will take as input the circuit C' without the real inputs. We will explain the reason of
generating these random sharings when introducing the online protocol in the next part.

,_[Functionality 1: Fp,c,]

1. Assign Random Values to Wires in C': Fp,., receives the circuit C' from all parties.
(a) For each output wire « of an input gate or a multiplication gate, Fp., samples a uniform value
Ao and associates it with the wire a.
(b) Starting from the first layer of C to the last layer, for each addition gate with input wires «, 5 and
output wire 7y, Fprep S€tS Ay = Ao + Ag.
2. Preparing Degree-(n — k) Packed Shamir Sharings: Fp,, receives the set of corrupted parties,
denoted by Corr. For each intermediate layer in C, all multiplication gates are divided into groups
of size k. For each group of multiplication gates with input wires «, 3:
(a) Fprep receives from the adversary a set of shares {ug.l), u;2)}jecor7~. Frrep computes degree-
(n — k) packed Shamir sharings [Aa]ln—x, [Ag]n—k such that for all P; € Corr, the j-th share of

(IAadn—k, [Xalns) is (uS", u®).
(b) Ferep distributes the shares of [Aa]n—k, [Ag]n—« to honest parties.

3. Preparing Degree-(n — 1) Packed Shamir Sharings: For the input layer, all input gates are divided
into groups of size k such that the input gates of each group belong to the same client. For each
group of input gates with output wires c:

(a) Fprep receives from the adversary a set of shares {u;} jccorr- Frrep Samples a random degree-
(n — 1) packed Shamir sharing [Aa]~—1 such that for all P; € Corr, the j-th share of [Aa]n—1 is
Uj.
(b) Fprep distributes the shares of [Aa]n—1 to honest parties.
Similarly, for the output layer in C, all output gates are divided into groups of size k such that the
output gates of each group belong to the same client. For each group of output gates with input
wires o, Fprep prepares and distributes [Aa]»—1 in the same way as above.

4. Preparing Packed Beaver Triples: For each group of multiplication gates with input wires «, 3 and
output wires ~y:

(a) Fprep receives from the adversary a set of shares {u;}jccorr. Frrep samples a random degree-
(n — 1) packed Shamir sharing [I’y].—1 such that for all P; € Corr, the j-th share of [I’],—1 is
Uj.

(b) Fprep distributes the shares of [I, = Aq * Ag — Ay]n—1 to honest parties.

4.2 Online Protocol via Packing

In the online phase, we want to maintain the invariant that for each wire «, the first party P; learns

the difference p, = vy — Ao, Where v, is the real values associated with the wire «. Then at the

end of the protocol, for each group of output gates that belong to some Client, all parties will send

their shares of [A,],—1 to Client, where « are the input wires associated with these output gates,

and P; will send p, to Client. In this way, Client can reconstruct his outputs vy = pta + Aa-
We will discuss how this invariant can be achieved as follows.

12

Input Phase. Recall that in the preprocessing phase, for each group of input gates that belong
to some Client, Fp, distributes a degree-(n — 1) packed Shamir sharing [A.],—1 to all parties,
where «a are the output wires associated with these input gates. To allow P; to learn p,, Client
first collects the whole sharing [Ao]»—1 from all parties, then reconstructs the secret A, and
finally computes and sends g = vo — Ao to P;. Note that here v,, are the inputs of Client. The
description of the protocol IIjnp,: appears in Protocol 1. The communication complexity per batch
of k input gates is n + k elements.

,_[Protocol 1: I1jnpyt }

1. For each group of input gates that belong to Client, let o denote the batch of output wires of these
input gates. All parties receive the sharing [Aa]n—1 from Fp,, and Client holds inputs ve.

2. All parties send to Client their shares of [Aa]n—1-

Client reconstructs the secret Ao and computes o = Vo — Aa.

4. Client sends po to Pi.

2

Computation Phase. Now we discuss how P; can learn p,, for every wire « in the circuit C. This
follows the idea in [BBG™21] with the change that we use the technique of packed Beaver triples
introduced in [GPS22] for multiplications.

The circuit is evaluated layer by layer. Note that the invariant is achieved in the first layer (the
input layer). Now assume the invariant is maintained in previous layers. L.e., P; learns p,, for every
input wire « of the current layer since « serves as an output wire in previous layers. For an addition
gate with input wires «, 5 and output wire -, we have v, = v, + vg. Recall that in Fpp,, we have
Ay = Aa + Ag. Therefore P, can locally compute

fy = vy = Ay = (Vo +08) = (Aa + Ag) = (Va — Aa) + (Vg — Ag) = pra + 1.

For multiplication gates, we follow the technique of packed Beaver triples in [GPS22]. The
description of the protocol 1y appears in Protocol 2. The communication complexity per batch of
k multiplication gates is 3n elements.

,-[Protocol 2: ITyyi }

1. For each group of multiplication gates with input wires «, 3 and output wires v, P; learns po, 13
and all parties receive three packed Shamir sharings [Aa]n—k, [Ag]ln—r and [Iy].—1 from Fpyep,
where I'y = Ao * Ag — Ay.

P, computes [pra]r—1 and [ug]r—1 and distributes the shares to all parties.

3. All parties locally compute

»

[ty]n-1 = [tali-1 * [a]k-1 + [Balk—-1 * [Ag]n—k
+ [pslk-1 * Aaln—k + [Ty]n-1.

4. P collects the whole sharing [tt+]»—1 from all parties and reconstructs ft-.

\.

,_[Functionality 2: Fpepind }

1. Preparing Random Packed Sharings: Fp.pind receives the set of corrupted parties, denoted by
Corr. For each output wire « of input gates and multiplication gates:
(@) Fprepina receives from the adversary a set of shares {u; }jeccorr. Fprepina Samples a random value
Ao and computes a degree-(n — k) packed Shamir sharing [Aq - 1], —& such that for all P; € Corr,
the j-th share of [Aa - 1]n—rk is u;.
(b) Fprepina distributes the shares of [\, - 1],,—« to honest parties.
2. Preparing Packed Beaver Triples: For each group of k& multiplication gates:

(a) Fprepina Teceives from the adversary a set of shares {(ug-l) ul? u(?’))}jec(m. Fprepind Samples two

s Uy Uy
random vectors a, b € F* and computes ¢ = a * b. Then Fppina computes three degree-(n — k)
packed Shamir sharings [a]n—x, [b]n—&, [c]n—& such that for all P; € Corr, the j-th share of
(laln—k, [Bln—r, [eln—) is (us", ul®, uf®).
(b) Fprepina distributes the shares of ([a]n—k, [b]n—«, [c]n—k) to honest parties.
3. Preparing Random Masked Sharings for Multiplication Gates: For each group of k¥ multiplication
gates:

13

(a) Fprepina receives from the adversary a set of shares {(u;1>7U‘§2),u§~3))}j€Corr- FPreplnd Sets

oV = 0 = 0® = 0 € F*. Then Fpeping samples three random degree-(n — 1) packed
Shamir sharings [0™"],_1, [0®]n-1, [0®]n-1 such that for all P; € Corr, the j-th share of
([O(l)]]nflv [[0(2)]]"*17 [[0(3)}]"*1) is (ugl)vuf)vugs))'
(b) Frrepina distributes the shares of ([0™V],—1, [0®]n-1, [0®*]n-1) to honest parties.
4. Preparing Random Masked Sharings for Input and Output Gates: For each group of k input
gates or output gates, Fprepind prepares a random degree-(n — 1) packed Shamir sharing of 0 € F*,
denoted by [o0].—-1, in the same way as above.

Output Phase. In the output layer, for each group of k output gates that belong to some Client,
let « denote the input wires of these output gates. Recall that all parties receive a degree-(n — 1)
packed Shamir sharing [Aq],—1 from Fp,ep in the preprocessing phase. By the invariant, P; learns
Mo = Vo — Ao. Note that v, are the output values of Client. Therefore, all parties send their
shares of [Ay]n—1 to Client and P; sends p, to Client. In this way, Client can reconstruct the
result v,,. The communication complexity per batch of k£ output gates is n + k elements.

Online Protocol. Now we are ready to present the online protocol. The description of the protocol
Ionine appears in Protocol 3.

,-[Protocol 3: ITonjine } <

1. Preprocessing Phase: All parties invoke Fp, to receive correlated randomness that will be used in
the online phase.

2. Input Phase: In the input layer, for each group of % input gates that belong to some Client, let
denote the output wires of these input gates. All parties and Client invoke Ijnpu:. At the end of
the protocol, P; learns pto. = Vo — Ao, Where v, are the input values of Client, and A are the
random values associated with the batch of wires o generated by Fprep.

3. Computation Phase: All parties maintain the invariant that for each wire o, P; learns o = vo — Aa,
where v,, is the real value associated with the wire «, and \., is a random value associated with «
generated by Fprp. The circuit is evaluated layer by layer. Assume that the invariant holds for wires
in previous layers. Consider gates in the current layer.

For each addition gate with input wires «, 8 and output wire , P; locally compute p1 = p1o + pg.
For each group of k¥ multiplication gates with input wires a, 3 and output wires «, all parties invoke
ITmur. At the end of the protocol, P; learns g~ .

4. Output Phase: For each group of k output gates that belong to some Client, let o denote the input
wires of these output gates. Recall that all parties receive [Aq]n—1 from Fprep, and by the invariant,
Py learns pro. = va — Ao All parties send their shares of [Aq]n—1 to Client, and P; sends pio to
Client. Then Client reconstructs Ao and computes vo = Aa + Ua-

\. .

,_[Functionality 3: Fuain]

1. Fumain receives the input from all clients. Let = denote the input and C' denote the circuit.
2. Fmain computes C(z) and distributes the output to all clients.

The online communication complexity of ITonjine is 3|C|-n/k+O(Depth -n) field elements, where
Depth is the circuit depth. The term O(Depth - n) is because all parties need to communicate at least
3n elements in each layer even if there is only a single multiplication gate. Recall that k = (n + 3) /4.
The online communication complexity of TURBOPACK is 12 elements per gate among all parties.

The ideal functionality Fu.i, appears in Functionality 3. We have the following lemma.

Lemma 1. Protocol oniine Securely computes Fiain in the Fprep-hybrid model against a semi-honest
adversary who controls t out of n = 2t + 1 parties and corrupts up to c of the clients.

The proof of Lemma 1 can be found in Section B.1.
4.3 Instantiating Circuit-Dependent Preprocessing

In this part, we show how to realize Fpp. Recall that in Fp,,, we need to prepare degree-(n — k)
packed Shamir sharings for the random values {)\, }, associated with the wires in the circuit. We

14

also need to prepare packed Beaver triples, which are the degree-(n — 1) packed Shamir sharings
for {I'y},. We refer the readers to Section 2 for an overview of our construction.

Functionality for the Circuit-Independent Preprocessing Phase. We first give the ideal functionality
Frrepind that prepares correlated randomness for the circuit-dependent preprocessing phase. The
functionality will take as input the number of gates in the circuit C' without the structure of C.

,_[Protocol 4: IIp,,

1. Circuit-Independent Preprocessing Phase: All parties invoke Fprepina to receive correlated random-
ness.

2. Computing a Random Sharing for Each Wire: For each output wire « of input gates and multi-
plication gates, all parties receive [Aq - 1] —x from Fprepina. All parties follow Step 1 of Fpr, and
compute [Aq - 1]»—x for each wire « in the circuit C.

3. Preparing Degree-(n — k) Packed Shamir Sharings: For each group of multiplication gates with
input wires o = (a1, ...,ax), 8= (Bi, ..., Bk), recall that all parties have computed {[Ao, - 1]}7—;
and {[)\s, - 1]}%_, in the last step. Let e; € F* be the i-th unit vector, i.e., all entries of e; are
0 except the i-th entry is 1. All parties locally compute [Aq]n-1 = Zle e; * [Aa; - 1]n—x and
alno1 = 3F e * [As, - 1]n—. All parties use ([a],—x, [0'”].—1) to reduce the degree of
[Aa]n—1. Here [a],—x, [0V].—1 are prepared in Fprepind.

(a) All parties locally compute [Aa + a]n—1 = [Aa]n_1+ [a]n_& + [0P]n_1.

(b) P: collects the whole sharing [Aa + a]ln—1 and reconstructs the secret d = Ao + a. Then P,
computes the degree-(k — 1) packed Shamir sharing [d]x—1 and distributes the shares to other
parties.

(c) All parties locally compute [Aa]n—t = [d]k-1 — [a]n—k-

Similarly, all parties use ([b],,_x, [0®]._1) to reduce the degree of [Ag],._1. Here [b] ., [0®]n_1
are prepared in Fprepind-

4. Preparing Degree-(n — 1) Packed Shamir Sharings: For each group of input gates, let o =
(a1,...,o) be the output wires of these gates. Recall that all parties have computed {[Aa, - 1]}5_;.
Let [o].—1 be the random degree-(n — 1) packed Shamir sharing of 0 € F* prepared in Fpyepina. All
parties locally compute [Aa]n—1 := >, € * [Aa; - Ln—r + [0]n—1-

The same step is done for the input wires of each group of output gates.

5. Preparing Packed Shamir Sharings for I’,: For a group of k£ multiplication gates with input wires
a, 3 and output wires -, all parties have computed [Aq]n—r and [Ag]n— in the last step, which
are in the forms [Aa]n—r = [di]k—1 — [@]n—r and [Ag]n—r = [d2]k—1 — [b]n—«- Recall that all
parties have computed {[\,, - 1]._x}%_;. Also recall that all parties receive [0'*)],,_1 from Fpepind.
All parties locally compute

IIF’Y]]n—l = [[dlﬂky—l * [[dQIIk;—l - [[dl]]k—l &3 [[b]]n—k - [[dQ]]k—l * [[a]]n—k
+efn-k — (Zf:l € * [Ay, - 1]n—k) + [[0(3)]]n—1~

Protocol for the Circuit-Dependent Preprocessing Phase. The description of the protocol IIp,., appears
in Protocol 4. The communication complexity of IIp,, is 4|C| - n/k field elements. Recall that
k = (n + 3)/4. The communication complexity of IIp,., is 16 elements per gate among all parties.

Lemma 2. Protocol IIp,e, securely computes Fpyep in the Fpreping-hybrid model against a semi-honest
adversary who controls t out of n = 2t + 1 parties.

The proof of Lemma 2 can be found in Section B.2.

4.4 Instantiating Circuit-Independent Preprocessing

In this part, we discuss how to realize Fp,cping. The task can be divided into two parts: (1) preparing
random sharings and (2) computing multiplications.
To prepare random sharings, we follow the technique in [DNO7] as described in Procedure 5.

Procedure 5: Trandsh () }

1. All parties agree on a Vandermonde matrix M of size nx (t+1)inF.
2. Each party P; randomly samples a random X-sharing S and distributes the shares to other parties.

15

3. (All(1>parties (t1+01§a11y compute (RW, ... R©NT = pM(SD ... §™)T and output
RO, . RO+,

To prepare a packed Beaver triple, we first prepare k Beaver triples by using Shamir secret
sharing schemes. These k Beaver triples are then transformed to a single packed Beaver triple. We
refer the readers to Section 2 for an overview of our construction.

Protocol for Fprepind. TURBOPACK uses the ideal functionality Fsinglemur: described in Functionality 4
below. The protocol IIpeping is described in Protocol 6.

,_[Functionality 4: Fsinglemult }

1. Fsinglemulr Teceives the secret position ¢ from all parties. Let [z|;]+, [y|:]+ denote the input sharings.

Fsinglemult Teceives from honest parties their shares of [z|]:, [y|:]¢- Then Fsingiemur: reconstructs the

secrets z, y. Fsinglemure further computes the shares of [z|;]:, [y|:]: held by corrupted parties, and

sends these shares to the adversary.

Fsinglemul: Teceives from the adversary a set of shares {z; }iccorr-

3. Fsinglemulr cOmputes x - y. Based on the secret z := z - y and the ¢ shares {z;}iccorr, FsingleMult
reconstructs the whole sharing [z|;]+ and distributes the shares of [z|;]: to honest parties.

»

,_[Protocol 6: Ilpepind]

1. Preparing Random Packed Sharings: Let N; be the number of input gates and output gates. Let
X1 be the secret sharing scheme corresponding to [r - 1],—x. All parties invoke N1 /(¢ + 1) times of
TRandsh (X1) to prepare N; random sharings in the form of [r - 1], —«.

2. Preparing Packed Beaver Triples: Let N, denote the number of groups of multiplication gates. For
alli € {1,2,...,k}, let X5 ; be the secret sharing scheme corresponding to r|;]:. All parties invoke
2N /(t + 1) times of Tranash (X2,;) to prepare 2N, random sharings in the form of [r|;].

(a) For each group of multiplication gates, let {[a;|:]:, [b:|:]:}*—1 be the unused random sharings.

(b) Foralli e {1,2,...,k}, all parties invoke Fsinglemur: ON (%, [ai|:]+, [bi]:]¢) and receive [c;|;]:.

(c) Let e; € F* be the i-th unit vector, i.e., all entries of e; are 0 except the i-th entry is 1. All parties
locally transform e; to the degree-(k — 1) packed Shamir sharing [e;]x—1. Then, all parties locally
compute

k
[aln-k = leidr-1 * [ail]:,

=1

[b]n—r = Z[[ei]]k—l * [bi]:]¢,
[e]n—r = Z[[ei]]k—l * [cild]e

i=1

3. Preparing Random Masked Sharings for Multiplication Gates: Let Y3 be the secret sharing
scheme corresponding to [0],—1, where 0 = (0, ...,0) € F*. All parties invoke 3N /(¢ + 1) times
of TRandsh (X'3) to prepare 3N, random sharings in the form of [0],,—1.

4. Preparing Random Masked Sharings for Input and Output Gates: Let N3 be the number of
groups of input gates and output gates. All parties invoke N3 /(¢ + 1) times of 7ranash (X'3) to prepare
N3 random sharings in the form of [0],—1.

We analyse the communication complexity of IIpepind:

— Step 1, Step 3, Step 4 require to prepare different kinds of random sharings. The procedure
Trandsh (&) outputs ¢ + 1 random Y'-sharings at the cost of communicating n X-sharings. Thus,
Step 1 requires to communicate 2N, -n elements. Step 3 requires to communicate 65 -n elements.
Step 4 requires to communicate 2N3 - n elements.

— Step 2 requires to first prepare random degree-¢ Shamir sharings, which is 4N5 - k - n elements.
Then for each group of & multiplication gates, all parties need to invoke Fsinglemui: & times. When
using [GLO™21] to instantiate Fsinglemuir, Which requires 4 elements of communication, the total
cost of Fsinglemult 1S 4N> - k - n elements. Thus, Step 2 requires to communicate 8N - k - n elements.

16

Note that N, is of size |C|, Nz is of size |C|/k, and N3 is small compared with the circuit size.
Thus, the communication complexity of ITprepind is 10|C| - n + 24|C| elements among all parties. The
amortized communication complexity per gate is 10n + 24 elements.

Lemma 3. Protocol Ipeping Securely computes Fprepind it the Fsinglemuit-hybrid model against a semi-
honest adversary who controls t out of n = 2t + 1 parties.

The proof of Lemma 3 can be found in Section B.3.
Combining our protocols Ipepind, prep, and Ioniine and instantiating Fsinglemuir by [GLOT21],
we obtain the following theorem.

Theorem 1. In the client-server model, let ¢ denote the number of clients, n denote the number of
parties (servers), and t = (n — 1)/2 denote the number of corrupted parties (servers). Let F be a finite
field of size |F| > 2n. For an arithmetic circuit C over F, there exists an information-theoretic MPC
protocol which securely computes the arithmetic circuit C' in the presence of a semi-honest adversary
controlling up to c clients and t parties. The splitting communication complexity per gate is (1) 10n + 24
elements per gate in the circuit-independent preprocessing phase, (2) 16 elements per gate in the
circuit-dependent preprocessing phase, and (3) 12 elements per gate in the online phase. (Terms that
are independent of or sub-linear in the circuit size are omitted as they only add cost o(1) per gate.)

In Section C, we show an optimization of TURBOPACK which allows us to further reduce the
communication complexity by a factor of 2 in the circuit-dependent preprocessing phase.

5 Performance Study

Number of parties

Width Prep.

5 13 21
TP (s) Factor (x) TP (s) Factor (x) TP (s) Factor (x)
100 (@) 0.16 / 0.45 8.70 / 1.09 0.24 / 0.40 3.54/0.88 0.51/0.61 4.23/ 1.14
CI 0.07 / 0.53 4.94/1.28 0.16/ 0.48 3.33/1.01 0.38/0.74 3.41/ 1.36
1k CDh 0.40 / 0.35 5.75/0.72 1.24/0.74 4.72 / 0.99 3.20/0.74 5.25/0.52
CI 0.29 / 0.46 5.03 /0.93 0.96/1.01 4.08 / 1.31 2.60/1.35 4.64 / 0.91
10k CD 2.97/70.94 5.13/ 1.08 11.39/1.68 5.24/0.61 30.88 / 3.54 5.68 / 0.42
CI 2.30/1.62 5.13/1.61 9.14/ 3.93 4.90 / 1.29 25.36 / 9.06 5.06 / 1.03
100k CD 33.51/4.81 6.07 / 0.97 113.39/13.28 5.40 / 0.52 306.50 / 30.85 5.78 / 0.38
CI 26.45/11.87 6.04 / 1.94 90.76 / 35.91 4.99 / 1.27 252.05 / 85.30 5.17 / 1.00

Number of parties
Width Prep.

idth Prep 29 37 45
TP (s) Factor (x) TP (s) Factor (x) TP (s) Factor (%)
100 CD 0.93/0.57 4.56 / 0.84 1.38/0.75 4.64 / 0.94 2.34/0.65 4.91/0.63
CI 0.73/0.77 3.89/1.11 1.16 / 0.97 4.18 /1.18 2.01/0.98 4.37 / 0.93
1k CD 6.66 / 1.15 5.87/0.51 11.73 / 1.56 6.51/0.39 19.74 / 1.81 7.16 / 0.27
CI 5.49 /231 5.13/1.01 9.91/3.39 5.82/0.83 16.96 / 4.59 6.36 / 0.66
10k (@) 65.18 / 6.41 6.42 / 0.33 119.13 /10.26 7.05/ 0.27 198.91/15.09 7.64 / 0.23
CI 54.46 / 17.13 5.69 / 0.86 101.28 / 28.11 6.26 / 0.74 171.79 / 42.21 6.83 / 0.63
100k (@) 645.41 / 59.45 6.25/0.31 1183.21/97.88 6.99 / 0.26 1990.68 / 147.61 7.62/0.22
CI 539.02 / 165.84 5.51/0.85 1007.70 / 273.39 6.22 7/ 0.72 1719.31 / 418.98 6.80 / 0.63

Table 1: Running times and comparison of TURBOPACK with DNO7, in a LAN setting with 1ms
latency and 1Gbps bandwidth, for a circuit of depth 10 and varying width and number of parties.
The TP columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to
the ratio between the running time of TURBOPACK and DNO7. The format of the timings and ratios
is “Offline / Online”. In the CD. Prep case our offline and online phases are ®+® and ®, while in
the CI. Prep scenario these are ® and @+®.

In this section we study the performance of TURBOPACK and compare it to existing work in the
context of maximal adversary honest majority MPC, where n = 2t + 1. As a baseline for comparison,
we choose an optimized version of DNO7 [DNO07], using ideas from [GSZ20] that reduces online

17

communication by setting some shares to be zero, together with the observations that the messages
sent by some of the parties are known already in a circuit-dependent offline phase, and hence the
online phase can be made lighter. The details of this protocol can be found in Section E in the
Appendix. This is the protocol with the most optimal online communication complexity, as it only
uses 1 element per party per multiplication gate in the online phase.!°!! We have fully implemented
the passive version of TURBOPACK, and in the same framework we implemented the optimized
DNO7 for a fair comparison. In this section we present and discuss the experimental results we have
obtained.

5.1 Communication Complexity

Type of prep. Phase Ours DNO7 Ours/DNO7
Offline (®+®) 10n + 32 4.5n 2.234+7.12/n
CD prep. model Online (®) 12 n 12/n
Offline (®) 10n + 24 In 254+6/n
Cl prep. model Online (2+®) 20 1.5n 13.34/n
Total (D+@+®) 10n + 44 5.5n 1.82+8/n

Table 2: Communication complexity per multiplication gate compared to the optimized DNO7
protocol. CD prep. refers to the setting when the offline phase is allowed to depend on the function,
while CI prep. is when the offline phase is both input and function-independent. Either case the
offline phase of DNO7 remains the same.

Table 2 summarizes the communication complexity per multiplication gate of TURBOPACK'? and
compares it with that of the optimized version of DNO7 from Section E in the Appendix.'® For our
protocol we use the optimized version from Section C in the Appendix. The complexities can be
found in Theorem 2. For the purpose of evaluating offline and online communication separately,
we consider two models as discussed above: circuit-dependent (CD) and circuit-independent (CI)
preprocessing. Part of TURBOPACK (phase ®) can be run while knowing the circuit but not the inputs,
so our online phase in the CD prep. model is better than in the CI prep. model. Such optimization is
not possible in DNO7.

We observe that the online phase of TURBOPACK, regardless of whether we are in the CD or
CI model, outperforms that of DNO7 asymptotically (in n) since the communication complexity
of our online phase is independent of the number of parties, while that of DNO7 grows linearly
with n. Furthermore, concrete constants are small enough so that improvements can be seen for
small values of n: in the CD case our online phase is better than that of DNO7 for n > 12, and in
the CI case this happens for n > 19, with the gap widening as n grows. For example, for n = 48
our online phase requires 4 x less communication than that of DNO7, and for n = 60 this improves
to 5x, in the CD prep. model, Regarding total communication complexity, TURBOPACK performs
around 1.8x worse than DNO7, asymptotically. This is not a large factor, considering the gains in
the online phase.

5.2 Implementation setup

TURBOPACK is end-to-end implemented from scratch in C++, without any dependencies besides
the C+ + standard library. The source code is open and can be found in https://github.com/

19 The protocol with the best total communication complexity is ATLAS [GLO"21], but since our goal is to
optimize the online phase, we compare to the protocol with the most optimal online phase. Asymptotically,
the best online phase is in [GPS22], but as we have argued in the introduction in practice it is DNO7 [DNO7].

1 'We remark that one of the protocols in [DE21b] achieves the same online communication complexity, but as
we argue in Section E in the Appendix, the optimized DNO7 protocol is simpler and more efficient.

12 We do not consider the optimization from Section C, which improves phase @ by a factor of two.

13 We remark that TURBOPACK performs better than that of DNO7 for input and output gates, but we assume
the number of such gates to be much smaller than the number of multiplication gates, and hence we ignore
this.

18

https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git

deescuderoo/turbopack.git. For an effective comparison, we also implement the optimized DNO7
protocol [DNO7], and use it as the baseline. The implementation of TURBOPACK does not include
the optimization discussed in Section C, and for the instantiation of Fsinglemuir We use DNO7, not the
optimal ATLAS. As a result, the communication complexity of phase @ is 11.5n + 24, that of @ is
16, and that of ® is 12, where, as described in Section 1, phase @ is circuit and input-independent,
phase @ is input-independent but circuit dependent, and phase @ is circuit and input-dependent.
Recall that the communication complexity of (optimized) DNO7 is 4n in the circuit-independent
offline phase, 0.5n in the circuit-dependent offline phase, and 1n elements in the online phase.

For the experiments we use the 61-bit Mersenne field for computation, and we deploy TURBOPACK
in a single machine. Each party is its own process, and we use interprocess communication for
emulating actual communication. To simulate real distributed environments, we make use of the
linux tc command from the network emulation package netem'* to modify bandwidth and latency.
We use a bandwidth of 1Gbps, and we use 1ms of latency, which aims at emulating a LAN network.
Other networking settings are considered in Section F in the Appendix. We use an AWS c5.metal
instance. Since each party runs as a single process, we chose to use a machine with a good amount
of cores (96) to support the amount of parties we consider without adding too much overhead due
to context switching and similar OS-related issues. This creates an experimental setup that is easier
to replicate for future works. All of our experiments report the average of five runs.

We acknowledge that running parties locally as a process in a single machine has the drawback
of decreasing the computational power per party when the number of parties increases, since these
processes will compete for the resources in the machine and there is a non-negligible overhead in
context switching (which is particularly relevant when the number of parties exceed the number
of available cores). As a result, for large number of parties our results may not reflect the exact
running times that one would get with TURBOPACK in an actual distributed scenario. However, we
argue that, for the purpose of determining the improvement factor of TURBOPACK with respect to
our baseline DNO7, this approach should be sufficient. Indeed, since both protocols are run in the
exact same setting, so both protocols get the same per-party computational slowdown, and hence
the improvement ratio of TURBOPACK with respect to DNO7—which is ultimately what we want to
measure—should remain faithful.

5.3 Performance comparison with respect to DNO7

Here we study what the improvement of TURBOPACK with respect to DNO7 is. To this end, we report
the running time of TURBOPACK and the improvement factor relative to DNO7' in several settings,
considering multiple circuits with different characteristics, and also varying the number of parties.
For our experiments we fix the depth to be 10, and focus on increasing the width of the circuit
(i.e. the amount of multiplications per layer), and we consider a LAN setting with 1ms latency and
1Gbps bandwidth. We do this in both the CD model, meaning that the preprocessing is allowed
to depend on the circuit, and also in the CI model, where the preprocessing does not depend on
the circuit. The results are presented in Table 1. For the number of parties up to 29 the results are
averaged over five iterations. For 37 and 45, only one iteration is used due to long running times.

We first begin by analyzing the effect of the width in our improvement factor. Since our
techniques enable the parties to pack & = (n + 3)/4 multiplications across the same layer into
one, the improvements of TURBOPACK can only be seen when the width is above certain threshold.
We see this in Table 1: for a small width of 100 the online phase of TURBOPACK generally offers
little-to-none improvement with respect to that of DNO7. However, as the width increases, we start
seeing noticeable improvements.

Now, the number of parties also plays an important role in how much better our online phase is
with respect to that of DNO7, since the number of parties dictate how many multiplication gates
can be packed. In the CD prep. model, the improvement factor of our online phase with respect to
that of DNO7 is 12/1n = 12/n, and in the CI prep. model it is 28/1.5n = 18.6/n (recall we are not
considering the optimizations to TURBOPACK discussed in Section C in the Appendix). This means
that, for large values of n our online phase will outperform that of DNO7, and indeed, we observe
this behavior experimentally.

4 https://wiki.linuxfoundation.org/networking/netem

> We do not include the running time of DNO7 since it can be derived from our running time and the
improvement factor.

19

https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://github.com/deescuderoo/turbopack.git
https://wiki.linuxfoundation.org/networking/netem

For example, for n = 5 we see generally little improvement, but when n grows to values like 29
or even 37 and 45, the online phase of TURBOPACK outperforms that of DNO7 by factors that range
from 3x to 5x, depending on the width, in the CD prep. model. In the CI prep. model, naturally, the
improvement factor of our online phase is smaller, but we still see improvements for large values of
n nevertheless. Furthermore, naturally, when even larger number of parties are considered are work
will offer even better improvement factors. One thing to note is that in many cases the experimental
improvement factor does not match exactly the expected communication improvement factor. For
example, for n = 21, in the CD prep. model the communication ratio is 12/21 ~ 0.57, which is
closely attained for a width of 1k, but then for a width of 10k this experimental factor drops to
0.42, and it drops even more for width 100k We believe this may be attributed to communication
playing a much larger role when the number of parties grow. For n = 45 on the other hand, the
communication ratio of the online phase in the CD prep. model is 12/45 ~ 0.27, which matches the
factor found in Table 1 for this setting, when the width is 1k, but then again it drops as the width
increases.

The offline phase in our implementation takes 11.5n + 40 elements per multiplication gate in
the CD prep. model, and 11.5n + 24 in the CI prep. model. In contrast, DNO7 takes 4.5n and 4n
elements, respectively. However, experimentally we find that the improvement factor in runtimes of
TURBOPACK with respect to DNO7 in the offline phase is slightly larger than expected. For example,
for n = 21, in the CD prep. model the communication factor of the offline phase is 2.98. However,
experimentally, these factors range from 4.23 up to 5.78. For the CI prep. model the communication
factor when again n = 21 is 3.16, but once again we get larger runtime factors that go from 3.41 up
to 5.17. When n is larger, say n = 45, the factor in the CI and CD models are 2.75 and 3, respectively,
but in our experiments we find these range from 4.37 to 6.80, and from 4.91 to 7.62, respectively. We
believe that, even though communication plays a major role, this might be caused by the overhead
in terms of computation that our techniques impose: the offline phase requires the parties to store
much more data, sampling many more shares, P; has to pack and unpacked shared values, which
are operations not needed in DNO7.

In Section F in the Appendix we present and discuss more experimental results ran in other
networking settings. One interesting thing we observe there is that, as the latency goes up, the
improvement factor of TURBOPACK with respect to DNO7 gets better, suggesting that indeed that
the mild computation overhead of TURBOPACK may be a cause of slowdown, and higher latency
give enough time for computation.

Finally, we also remark that our implementation for packed-secret sharing is very rudimen-
tary: polynomial interpolation and evaluation are achieved by simple non-optimized matrix
multiplications. We do not make use of any libraries for polynomial computation or linear al-
gebra with the aim of maintaining a portable and self-contained implementation. We believe
that using more efficient methods for manipulating polynomials (as discussed e.g. in https:
//github.com/becgabri/packed-ss-template), which is an operation needed extensively in TUR-
BOPACK, may help improve the computation overhead of our protocol and hence achieve better
performance ratios with respect to existing work.

Acknowledgments

V. Goyal, Y. Song—Supported by the NSF award 1916939, DARPA SIEVE program under Agreement
No. HR00112020025, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a
PNC center for financial services innovation award, and a Cylab seed funding award. Y. Song was
also supported by a Cylab Presidential Fellowship.

This paper was prepared in part for information purposes by the Artificial Intelligence Research
group of JPMorgan Chase & Co and its affiliates (‘JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits of participating in any transaction,
and shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation
under such jurisdiction or to such person would be unlawful. 2022 JP Morgan Chase & Co. All
rights reserved.

20

https://github.com/becgabri/packed-ss-template
https://github.com/becgabri/packed-ss-template

References

ACE*21.

BBCG*19.

BBGT21.

BDOZ11.

Bea92.

BENO19.

BGIN19.

BGIN20.

BGJK21a.

BGJK21b.

Can00.

CGH'18.

DE21a.

DE21b.

DIK10.

DKL*13.

DLN19.

DNO7.

DNPR16.

DPSZ12a.

DPSZ12b.

Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damgérd, and Chaoping Xing. Improved
single-round secure multiplication using regenerating codes. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 222-244. Springer, 2021.
Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear pcps. In Advances in Cryptology — CRYPTO 2019, pages
67-97, Cham, 2019. Springer International Publishing.

Fabrice Benhamouda, Elette Boyle, Niv Gilboa, Shai Halevi, Yuval Ishai, and Ariel Nof. General-
ized pseudorandom secret sharing and efficient straggler-resilient secure computation. In Kobbi
Nissim and Brent Waters, editors, Theory of Cryptography, pages 129-161, Cham, 2021. Springer
International Publishing.

Rikke Bendlin, Ivan Damgérd, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 169—-188. Springer, 2011.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology — CRYPTO 91, pages 420-432, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg.

Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double your online spdz!
improving spdz using function dependent preprocessing. In International Conference on Applied
Cryptography and Network Security, pages 530-549. Springer, 2019.

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party computation
via sublinear distributed zero-knowledge proofs. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 19, page 869?886, New York, NY, USA, 2019.
Association for Computing Machinery.

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via distributed
zero-knowledge proofs. In Advances in Cryptology — ASIACRYPT 2020, pages 244-276, Cham, 2020.
Springer International Publishing.

Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-c secure multiparty
computation for highly repetitive circuits. In Advances in Cryptology — EUROCRYPT 2021, pages
663-693, Cham, 2021. Springer International Publishing.

Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-c secure multiparty
computation for highly repetitive circuits. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 663-693. Springer, 2021.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143-202, 2000.

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof.
Fast large-scale honest-majority mpc for malicious adversaries. In Annual International Cryptology
Conference, pages 34-64. Springer, 2018.

Anders Dalskov and Daniel Escudero. Honest majority mpc with abort with minimal online
communication. In International Conference on Cryptology and Information Security in Latin
America, pages 453-472. Springer, 2021.

Anders Dalskov and Daniel Escudero. Honest majority mpc with abort with minimal online
communication. In International Conference on Cryptology and Information Security in Latin
America, pages 453-472. Springer, 2021.

Ivan Damgérd, Yuval Ishai, and Mikkel Krgigaard. Perfectly secure multiparty computation and
the computational overhead of cryptography. In Annual international conference on the theory and
applications of cryptographic techniques, pages 445-465. Springer, 2010.

Ivan Damgérd, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart.
Practical covertly secure mpc for dishonest majority—or: breaking the spdz limits. In European
Symposium on Research in Computer Security, pages 1-18. Springer, 2013.

Ivan Damgard, Kasper Green Larsen, and Jesper Buus Nielsen. Communication lower bounds
for statistically secure mpc, with or without preprocessing. In Annual International Cryptology
Conference, pages 61-84. Springer, 2019.

Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computa-
tion. In Annual International Cryptology Conference, pages 572-590. Springer, 2007.

Ivan Damgard, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On the com-
munication required for unconditionally secure multiplication. In Annual International Cryptology
Conference, pages 459—488. Springer, 2016.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Annual Cryptology Conference, pages 643—-662. Springer,
2012.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology—CRYPTO 2012, pages 643-662.
Springer, 2012.

21

ESV21.

FY92.

GIOZ17.

GIPT14.

GIP15.

GLO*21.

GPS21.

GPS22.

GS20.

GSY21.

GSZ20.

LPSY19.

NST17.

NV18.

Sha79.

WRK17a.

WRK17b.

Daniel Escudero and Eduardo Soria-Vazquez. Efficient information-theoretic multi-party computa-
tion over non-commutative rings. In Annual International Cryptology Conference, pages 335-364.
Springer, 2021.

Matthew Franklin and Moti Yung. Communication Complexity of Secure Computation (Extended
Abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC '92, page 699-710, New York, NY, USA, 1992. Association for Computing Machinery.

Juan Garay, Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. The price of low communication in
secure multi-party computation. In Advances in Cryptology — CRYPTO 2017, pages 420-446, Cham,
2017. Springer International Publishing.

Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient
to additive attacks with applications to secure computation. In Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 495-504, New York, NY, USA, 2014.
ACM.

Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computation: from
passive to active security via secure simd circuits. In Annual Cryptology Conference, pages 721-741.
Springer, 2015.

Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. Atlas: Efficient
and scalable mpc in the honest majority setting. In Advances in Cryptology — CRYPTO 2021, pages
244-274, Cham, 2021. Springer International Publishing.

Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-efficient
mpc via hall’s marriage theorem. In Annual International Cryptology Conference, pages 275-304.
Springer, 2021.

Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority mpc with packed secret sharing. Annual International Cryptology Conference, 2022.
Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority mpc. Cryptology
ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

S Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more the merrier: reducing the
cost of large scale mpc. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 694-723. Springer, 2021.

Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority mpc. In Advances in Cryptology — CRYPTO 2020, pages 618-646, Cham, 2020. Springer
International Publishing.

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant-round multi-
party computation combining bmr and spdz. Journal of Cryptology, 32(3):1026-1069, 2019.
Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure
2pc with function-independent preprocessing using lego. In Network and Distributed System Security
Symposium (NDSS), 2017.

Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority
mpc by batchwise multiplication verification. In Applied Cryptography and Network Security, pages
321-339, Cham, 2018. Springer International Publishing.

Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612-613, November 1979.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient maliciously
secure two-party computation. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS '17, page 21-37, New York, NY, USA, 2017. Association for
Computing Machinery.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
"17, page 39-56, New York, NY, USA, 2017. Association for Computing Machinery.

A The Model

A.1 Security Definition

In this work, we focus on the honest majority setting. Let ¢ = (n — 1)/2 be an integer. Let F be
a secure function evaluation functionality. An adversary A can corrupt at most ¢ parties, provide
inputs to corrupted parties, and receive all messages sent to corrupted parties. In this work, we
consider both semi-honest adversaries and malicious adversaries.

- If A is semi-honest, then corrupted parties honestly follow the protocol.
- If A is fully malicious, then corrupted parties can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary .4 controlling corrupted parties interacts with
honest parties. At the end of the protocol, the output of the real-world execution includes the inputs
and outputs of honest parties and the view of the adversary.

22

Ideal-World Execution. In the ideal world, a simulator S simulates honest parties and interacts with
the adversary A. Furthermore, S has one-time access to F, which includes providing inputs of
corrupted parties to F, receiving the outputs of corrupted parties, and sending instructions specified
in F (e.g., asking F to abort). The output of the ideal-world execution includes the inputs and
outputs of honest parties and the view of the adversary.

Semi-honest Security. We say that a protocol = computes F with perfect security if for all semi-honest
adversary A, there exists a simulator S such that the distribution of the output of the real-world
execution is identical to the distribution in the ideal-world execution.

Security-with-abort. We say that a protocol = securely computes F with abort if for all adversary
A, there exists a simulator S, which is allowed to abort the protocol, such that the distribution
of the output of the real-world execution is statistically close to the distribution in the ideal-world
execution.

A.2 Hybrid Model

We follow [Can00] and use the hybrid model to prove security. In the hybrid model, all parties are
given access to a trusted party (or alternatively, an ideal functionality) which computes a particular
function for them. The modular sequential composition theorem from [Can00] shows that it is
possible to replace the ideal functionality used in the construction by a secure protocol computing
this function. When the ideal functionality is denoted by g, we say the construction works in the
g-hybrid model.

A.3 Client-server Model

To simplify the security proofs, we consider consider the client-server model. In the client-server
model, clients provide inputs to the functionality and receive outputs, and servers can participate in
the computation but do not have inputs or get outputs. Each party may have different roles in the
computation. Note that, if every party plays a single client and a single server, this corresponds to a
protocol in the standard MPC model. Let ¢ denote the number of clients and n denote the number
of servers. For all clients and servers, we assume that every two of them are connected via a secure
(private and authentic) synchronous channel so that they can directly send messages to each other.
The communication complexity is measured in the same way as that in the standard MPC model.

Security in the Client-server Model. In the client-server model, an adversary .4 can corrupt at most c
clients and ¢ servers, provide inputs to corrupted clients, and receive all messages sent to corrupted
clients and servers. The security is defined similarly to the standard MPC model.

Benefits of the Client-server Model. In our construction, the clients only participate in the input phase
and the output phase. The main computation is conducted by the servers. For simplicity, we use
{P,...,P,} to denote the n servers, and refer to the servers as parties. Let Corr denote the set
of all corrupted parties and # denote the set of all honest parties. One benefit of the client-server
model is that it is sufficient to only consider maximum adversaries, i.e., adversaries which corrupt
exactly ¢ parties. At a high level, for an adversary .A which controls ¢’ < ¢ parties, we may construct
another adversary A’ which controls additional ¢ — ¢’ parties and behaves as follows:

— For a party corrupted by A, A’ follows the instructions of .A. This is achieved by passing messages
between this party and other n — ¢’ honest parties.
— For a party which is not corrupted by .4, but controlled by A’, A’ honestly follows the protocol.

Note that, if a protocol is secure against A’, then this protocol is also secure against .A since
the additional ¢ — ¢’ parties controlled by .A" honestly follow the protocol in both cases. Thus, we
only need to focus on A’ instead of 4. Note that in the regular model, each honest party may have
input. The same argument does not hold since the input of honest parties controlled by .4’ may be
compromised.

23

B Security Proofs of Our Semi-honest Protocol

B.1 Proof of Lemma 1

Lemma 1. Protocol Iloniine Securely computes Fiain in the Fprep-hybrid model against a semi-honest
adversary who controls t out of n = 2t + 1 parties and corrupts up to c of the clients.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties. Let Corr denote the set of corrupted parties and H denote the set of honest parties.
The correctness of ITonjine follows from the description.
We now describe the construction of the simulator S.

1. In the preprocessing phase, S emulates the ideal functionality Fp,, and receives the shares of
corrupted parties for each packed Shamir sharing. Note that Fp,., does not need to send any
message to corrupted parties.

2. In the input phase, for each group of k input gates that belong to some Client, let a denote the
batch of output wires of these input gates.

- If Client is honest, after receiving the shares of [Ay],—1 from all parties, S samples random
values as u., and sends them to P;.

— If Client is corrupted, S samples random values as A. Then based on the secrets A, and the
shares of corrupted parties, S randomly samples the whole sharing [A,],—1 and sends the
shares of [Aq]»—1 held by honest parties to Client. From the inputs v, of Client, S computes
Mo = Va — Aa-

3. In the computation phase, we will maintain the invariant that p,, for each wire « is known to S.
Note that this is true for wires in the first layer (the input layer).

For each addition gate with input wires «, § and output wire -y, S honestly compute 11, = 1o + 3.

For each group of k multiplication gates with input wires «, 3 and output wires ~, S simulates

Iy as follows.

- If P is honest, S computes degree-(k — 1) packed Shamir sharings [ptq]x—1 and [pg]x—1 based
on po and pg, which are known to S according to the invariant. Then, S computes the shares
of [ft+]n—1 of corrupted parties. S sets the shares of [~],—1 of honest parties to be uniform
elements. Finally, S reconstructs p, (which is a vector of k& random values).

- If P, is corrupted, S receives from P; the shares of [pq]r—1 and [pg]r—1 of honest parties.
Then S recovers the whole sharings [ftq]x—1 and [pg]k—1, and learns the shares of corrupted
parties. Now S can compute the shares of [u~],—1 of corrupted parties.

S samples random elements as the shares of [u~],—1 of honest parties and sends them to P;.
Finally, S reconstructs the secret u., (which is a vector of k£ random values).

4. In the output phase, for each group of k output gates that belong to some Client, let o denote
the batch of input wires of these output gates.

— If Client is honest, S does nothing.

— If Client is corrupted, S sends the inputs of corrupted clients to Fy.i, (since S can access to
the inputs and random tapes of corrupted clients and corrupted parties). Then S receives the
outputs v, of Client from Fain. Recall that S knows pie,. S computes Ay = v, — pho. Based
on the secrets A, and the shares of corrupted parties, S randomly samples the whole sharing
[Aa]n—1. Finally, S sends to Client the shares of [A,],—1 of honest parties. If P is honest, S
also sends to Client pq-

This completes the description of S.
We show that S perfectly simulates the behaviors of honest parties. It is sufficient to focus on the
places where honest parties and clients need to communicate with corrupted parties and clients:

— In the input phase, for each group of k input gates that belong to some Client, let « denote
the batch of output wires of these input gates. If Client is honest, then S needs to simulate the
values p,, sent from Client to P;. In the ideal world, S simply samples random elements as
. SiNce po = vo — A and A, are uniformly random, the values u,, are uniformly random.
Therefore the distribution of u, simulated by S has the same distribution as that in the real
world.

If Client is corrupted, then S needs to simulate the shares of [A,],—1 of honest parties. Since
[Aa]n—1 is a random degree-(n — 1) packed Shamir sharing given the shares of corrupted parties,
by the property of the packed Shamir secret sharing scheme, the secrets A, are uniformly

24

random given the shares of corrupted parties. In the ideal world, S randomly samples A, and
then randomly samples the shares of honest parties based on the secrets A, and the shares
of corrupted parties. Therefore, the distribution of the shares of [A,],—1 of honest parties is
identical to that in the real world. Note that from the inputs of Client, S can also compute pis.
Thus, S perfectly simulates the behaviors of honest parties and clients in the input phase.

— In the computation phase, we will show that S can always learn p,, for each wire « in the circuit.
Furthermore, {14}, has the same distribution as that in the real world. Note that this is true for
the first layer (the input layer).

For an addition gate with input wires «, 8 and output wire v, S can compute ., from 1, and pg.

The above statement holds.

For each group of k& multiplication gates with input wires «, 3 and output wires -, there are two

cases.

e If P, is honest, S honestly computes and distributes the sharings [pq]r—1 and [pgli—1-
Since the distribution of pq, pg is the same in both worlds, the distribution of the sharings
[talk—1, [1a]k—1 is also the same. As for [p~],—1, recall that

[prln-1 = [malk—1 * [Balk-1 + [Halk—1* [Agln—k
+ [pali—1 * [Aaln—r + [Ty]n-1-

Also recall that Iy = A * Ag — Ay. In Fprep, Ay are uniformly random. Therefore, I, are also
uniformly random. Thus, [I],—1 is a random degree-(n — 1) packed Shamir sharing given the
shares of corrupted parties. It satisfies that the shares of honest parties are uniformly random.
Thus, the shares of [u~],—1 of honest parties are uniformly random. In the ideal world, S
samples random elements as the shares of [u~],—1 and then computes pu.,. Thus, the values
p~ have the same distribution as those in the real world.

e If P, is corrupted, S receives the shares of [pq]k—1,[t8]k—1 of honest parties. Then S can
compute the shares of honest parties. Then S can compute the shares of [s],—1 of corrupted
parties. With the same argument as above, the shares of [~],,—1 of honest parties are uniformly
random. In the ideal world, S samples random elements as the shares of [],—1 of honest
parties and sends them to P;. Therefore, the distribution of the shares of [xu-],—_1 of honest
parties and the values p., is identical in both worlds.

In either case, S perfectly simulates the behaviors of honest parties and the values u-, have the

same distribution as those in the real world.

— Finally, in the output phase, for each group of k output gates that belong to some Client, let
denote the batch of input wires of these output gates. If Client is honest, honest parties and
clients do not need to send any messages to corrupted parties and clients. If Client is corrupted,
S can learn the outputs of Client from Fy,i,. Since S learns p,, S can compute A, . In both
worlds, [Aq]n—1 is a random degree-(n — 1) packed Shamir sharing given the secrets A, and
the shares of corrupted parties. Thus, the shares of honest parties generated by S have the same
distribution as that in the real world.

B.2 Proof of Lemma 2

Lemma 2. Protocol Ilp.e, securely computes Fpyep in the Fprepina-hybrid model against a semi-honest
adversary who controls t out of n = 2t 4 1 parties.

Proof. It can be verified that the secrets of the output sharings of IIp,., have the same distribution
of those of Fpyep.

We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote the
set of corrupted parties and H denote the set of honest parties.

The simulator S works as follows.

—_

. In Step 1, S emulates the ideal functionality Fp,eping and learns the shares of corrupted parties.
. In Step 2, S follows the protocol to compute the shares of corrupted parties for each [, - 1], —.
3. In Step 3, for each group of multiplication gates, S follows the protocol to compute the shares of
[Aaln-1 and [Ag]ln—1 of corrupted parties. Then S simulates the process of degree reduction for
[Aaln-1 as follows:
(a) In Step 3.(a), S computes the shares of [Ay + a],,—1 of corrupted parties and sets the shares of
honest parties to be uniform values.

N

25

(b) In Step 3.(b), if P; is honest, S honestly follows the protocol. Otherwise, S sends the shares
of [Aq + a1 of honest parties to P, and receives the shares of [d];_; of honest parties. S
recovers the whole sharing [d];—1 and learns the shares of corrupted parties.

(c) In Step 3.(c), S follows the protocol to compute the shares of [A,],—x of corrupted parties
and sends them to Fpyep.

S simulates the degree reduction for [Ag],—1 similarly.

4. In Step 4, for each group of input gates, S follows the protocol to compute the shares of [Ag]n—1
of corrupted parties. Then, S computes the shares of [Ao]n-1 := [Aa]n-1 + [0]~—1 held by
corrupted parties and sends them to Fpyep.

S does the same for the input wires of each group of output gates.

5. In Step 5, S follows the protocol and computes the shares of [I',],—1 of corrupted parties and

sends them to Fpyep.

This completes the description of S. Now, we show that S perfectly simulate the behaviors
of honest parties. We note that the only step where honest parties need to send messages to
corrupted parties is Step 3.(b). Observe that [a],—x is a random degree-(n — k) packed Shamir
sharing and [o(!)],,_; is a random degree-(n — 1) packed Shamir sharing of 0 € F*. Therefore,
[a]n_k + [0V],,_1 is a random degree-(n — 1) packed Shamir sharing. Recall that [Aq + a],_1 =
Maln-1 + [@]n_r + [0V]n_1. Thus, [Aq + a],_1 is a random degree-(n — 1) packed Shamir
sharing, which satisfies that the shares of honest parties are uniformly random given the shares of
corrupted parties. Thus, the shares of honest parties generated by S have the same distribution in
both worlds. After generating the shares of [An + a@],—1 of honest parties, S honestly follows Step
3.(b). Therefore, S perfectly simulates the behaviors of honest parties.

Then, we analyse the output of IIp,,. For each degree-(n — k) packed Shamir sharing of A,
prepared in Step 3, S can compute the shares of corrupted parties as described above. Since the
secrets A, in the real world have the same distribution as those computed by Fpy,, the sharing
[Aa]n—k has the same distribution in both worlds.

For each degree-(n — 1) packed Shamir sharing of A, prepared in Step 4, S can compute
the shares of corrupted parties as described above. In the real world, since [o],,—; is a random
degree-(n — 1) packed Shamir sharing of 0 € F*, [A,],._1 is a random degree-(n — 1) packed
Shamir sharing given the secrets A, and the shares of corrupted parties. In the ideal world, Fpyep
generates a random degree-(n — 1) packed Shamir sharing of A, given the shares of corrupted
parties. Therefore, the sharing [Ay]»—1 has the same distribution in both worlds.

Similarly, for each packed Shamir sharing of I’,, recall that

[Iy]n-1 = [di]k—1 * [do] k-1 — [di] k=1 * [B]r—k
— [da]k—1 * [a]n—k + [c]rn—k

k
— e [y, 1) + [0P] 1.
=1

S can compute the shares of corrupted parties. In the real world, since [[0(3)]]n_1 is a random
degree-(n — 1) packed Shamir sharing of 0 € F*, [I’,],,—1 is a random degree-(n — 1) packed Shamir
sharing of I', given the shares of corrupted parties. In the ideal world, Fp,, generates a random
degree-(n — 1) packed Shamir sharing of I', given the shares of corrupted parties. Therefore, the
distribution of [I',],—; is identical in both worlds.

We conclude that Protocol Ip,., securely computes Fpre, in the Fpreping-hybrid model against a
semi-honest adversary who controls ¢ parties.

B.3 Proof of Lemma 3

Lemma 3. Protocol ITpeping Securely computes Fprepind i the Fsinglemuit-hybrid model against a semi-
honest adversary who controls t out of n = 2t + 1 parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and # denote the set of honest parties. The simulator S works as
follows.

Simulating TRandsh-

1. In Step 1, S follows the protocol to agree on a Vandermonde matrix M.

26

2. In Step 2, for each honest party P;, S generates a random X-sharing and sends the shares to
corrupted parties. For each corrupted party P;, S learns the sharing generated by P; (since S has
access to the random tape of the corrupted party P;).

3. In Step 3, S computes the shares of corrupted parties for each Y-sharing R™.

Simulating the Main Protocol.

1. In Step 1, S simulates mrangsh (X1) as described above. Then S sends the shares of corrupted
parties to Fprepind-

2. In Step 2, S simulates mrangsh (X2,;) for all i € {1,2,...,k} as described above. Then, S emulates
Fsinglemulr and receives the shares of corrupted parties. Finally, for each group of multiplication
gates, S computes the shares of ([a],—k, [b]n—«, [¢]n—%) of corrupted parties, and sends them to
-/T"Preplnd-

3. In Step 3, S simulates 7ranash(X3) as described above. Then S sends the shares of corrupted
parties to]:Preplnd'

4. In Step 4, S simulates 7rangsh(X'3) as described above. Then S sends the shares of corrupted
parties to Fprepind-

This completes the description of S.

Now, we show that S perfectly simulate the behaviors of honest parties. We note that the only
place where honest parties need to send messages to corrupted parties is in Step 2 of wrangsh. The
simulator S honestly generates a random X-sharing as that in the real world. Thus, S perfectly
simulates the behaviors of honest parties.

Then, we show that the output of honest parties in both worlds have the same distribution. For
TRandsh, recall that the matrix M T is a Vandermonde matrix of size n x (t + 1), which satisfies that
any (t +1) x (t + 1) sub-matrix of M" is invertible. Therefore, given the X-sharings prepared by
corrupted parties and the shares of corrupted parties, there is a one-to-one map between {S®};c5,
and {R"}!*!, Since {8V };cy are n — t =t + 1 random Y-sharings given the shares of corrupted
parties, {R(i) fii are also ¢ + 1 random X'-sharings given the shares of corrupted parties. Thus, the
random sharings generated in Step 1, Step 3, and Step 4 have the same distribution in both worlds.

For Step 2 in the main protocol, following from the same argument as above, all parties hold
random degree-¢ Shamir sharings from mrangsh(X22,;) for all i € {1,2,...,k}. For each group of
multiplication gates, the sharings {[a;|;]:, [0:]:]+ }!_, satisfy that a;, b; are uniform values in the real
world. Then, all parties receive [c¢;|;]+ from Fsinglemuir such that ¢; = a; - b;. Finally, all parties locally
compute

[[aﬂnfk = Z[[ei]]kfl * [[%‘M]t [[bﬂnfk‘ = Z[[ei]]kfl * [[bi|iﬂt

k
leln—r = Zﬂei]]kq * [eilile
i=1

Observe that [a],,— is determined by the secrets a and the shares of corrupted parties. In the ideal
world, a is a uniform vector sampled by Fpreping and the shares are provided by the simulator S.
Recall that S simply follows the protocol to compute the shares of corrupted parties. Thus, [a],—x
has the same distribution in both worlds. The same argument works for [b],,— and [c],,—.

We conclude that Protocol Ilp.eping securely computes Fpreping il the Fsinglemuir-hybrid model
against a semi-honest adversary who controls ¢ parties.

C Optimization of TURBOPACK

In this part, we show an optimization of TURBOPACK which allows us to further reduce the
communication complexity by a factor of 2 in the circuit-dependent preprocessing phase.

Recall that in the online phase, we want to maintain the invariant that P; learns p, = vo — Ao
for all wires in the circuit, where v, is the real value and A, is a random value prepared in
the preprocessing phase. To this end, for each group of multiplication gates with input wires
a, B and output wires -, we use the technique of packed Beaver triples to compute p.,, which
requires all parties to prepare the following random sharings: [Aa]n—&, [Ag]n—r and [Iy]n_1,
where I'y = Xq * Ag — A,.

27

In the circuit-dependent preprocessing phase, to prepare [I],_1, we again use the tech-
nique of packed Beaver triples, which requires all parties to prepare a packed Beaver triple
([a]n-k;, [B]n—k, [€]n—r)- Our optimization is to directly use a packed Beaver triple to compute
1t in the online phase. That is, we skip the step of preparing [I,],— first.

Recall that p1, = v — Ay = v *vg — Ay. The main task is to compute v, * vg. The technique of
packed Shamir sharing requires all parties to hold degree-(k — 1) packed sharings [v, + a]x—1 and
[vg + b]k—1. In the online phase, the invariant ensures that P; learns po and pg. If P, also learns
(Vo + @) — po and (vg + b) — pg, Py can distribute degree-(k — 1) packed sharings [ve + a]k—1
and [vg + b]x—1 to all parties.

Note that (vy + a) — pta = Ao + @, Which are indeed learnt by P; in the circuit-dependent
preprocessing phase. Recall that in the circuit-dependent preprocessing phase, all parties first
compute a degree-(n — 1) packed Shamir sharing [A,],—1. Then they do degree reduction by using
([aln_k, [0V]n_1), where [0V)],,_; is a random degree-(n — 1) packed Shamir sharing of 0 € F*
prepared in Fprepind, and the resulting sharing has the form

[P‘a]]n—k = [[dlﬂk—l - [[a]]n_k.

During this process, P; reconstructs the sharing [Aa + a],_1 = [Aa]n_1 + [@]n_k + [0V],_1 and
learns A\, + a.

Therefore, we modify the online protocol by letting P; distribute [va + a]x—1 and [vg + b]x—1.
Then all parties can use the technique of packed Beaver triples to compute p.. For the circuit-
dependent preprocessing phase, we no longer needs to compute [Aq]n—k, [Agln—r and [I5]n—1.
Therefore, in Step 3.(b) of Ilp.,, P1 no longer needs to distribute [d];_; to all parties. As a
result, the communication complexity of the circuit-dependent preprocessing phase is reduced to
2|C| - n/k ~ 8|C| elements.

We elaborate the modifications as follows.

C.1 Modification of the Circuit-Dependent Preprocessing Phase
We modify the protocol IIp,, as follows.

- In Step 3.(b), Py collects the whole sharing [A, + a],—1 from all parties and reconstructs the
secrets d = Ay + a. P, does NOT distribute the degree-(k — 1) packed Shamir sharing [d];—1 to
all parties.

— Step 3.(c) is removed.

— At the end of Step 3, all parties compute [Ag + b],,—1 and reconstruct the secrets to P in a similar
way.

- In Step 4, the same step is done also for the output wires of each group of multiplication gates by
using [0(®)],,_;. That is, all parties will locally compute a random degree-(n — 1) packed Shamir
sharing [A4],—1 for the output wires ~ of each group of multiplication gates.

— Step 5 is replaced as follows: For each group of multiplication gates with input wires «, 3 and
output wires -, all parties take as output the packed Beaver triple ([a],—k, [b]n—&, [€]n-k)- P
also takes d,,ds as output. Here dy = Ao + a and dy = Ag + b.

For completeness, we give the functionality corresponding to the improved circuit-dependent
preprocessing phase.

,_[Functionality 5: Fprepimproved]

1. Assign Random Values to Wires in C: Fprepimproved receives the circuit C' from all parties. Then
Fhrepimproved assigns random values to wires in C' as follows.
(a) For each output wire « of an input gate or a multiplication gate, Fprepimproved Samples a uniform
value)\, and associates it with the wire a.
(b) Starting from the first layer of C' to the last layer, for each addition gate with input wires «, 8 and
OUtPUt wire >]:Preplmproved sets)\-y =)\a +)\ﬁ
2. Preparing Packed Beaver Triples: For each intermediate layer in C, all multiplication gates are
divided into groups of size k. For each group of k multiplication gates, Fprepimproved Prepares a packed
Beaver triple ([a]ln—&, [b]n—«, [€]~—k), which satisfies that ¢ = a * b. This is done by the following
steps.
(@) Frrepimproved Teceives the set of corrupted parties, denoted by Corr. Fprepimproved Teceives from

the adversary a set of shares {(u'" U(2)7U§'3))}jEC0rr- Frrepimproved Samples two random vec-

J 7

28

tors a,b € F* and computes ¢ = a * b. Then Fprepimproved cOMputes three degree-(n — k)
packed Shamir sharings [a]n—k, [b]n—&, [€]n—% such that for all P; € Corr, the j-th share of
(Lol [0, [elnr) is ("), 0,).

(b) Fprepimproved distributes the shares of ([a]n—k, [b]n—k, [€]n—%) to honest parties.

3. Distributing A, + a to P;: For each group of multiplication gates, let «, 3 denote the batch of
first input wires and that of the second input wires respectively. Let ([a]n—k, [b]n—&, [c]n—«) be the
packed Beaver triple associated with these gates. Fprepimproved COMputes Ao + @ and Ag + b, and
sends them to P;. Here Ao and Ag are the random values associated with the wires o and 8.

4. Preparing Degree-(n — 1) Packed Shamir Sharings: Fpcpimproved Will prepare degree-(n — 1) packed
Shamir sharings for the following batches of wires:

— For the input layer, all input gates are divided into groups of size k such that the input gates
of each group belong to the same client. For each group of input gates with output wires c,
Frrepimproved Will prepare a degree-(n — 1) packed Shamir sharing of A,.

— For the output layer in C, all output gates are divided into groups of size k such that the output
gates of each group belong to the same client. For each group of output gates with input wires o,
Frrepimproved Will prepare a degree-(n — 1) packed Shamir sharing of A,.

— For each group of multiplication gates with output wires -y, Fprepimproved Will prepare a degree-
(n — 1) packed Shamir sharing of A .

For each batch of wires « in the above scenarios, Fprepimproved d0es the following.

(@) Fprepimproved Teceives from the adversary a set of shares {u; }jecorr. Frrepimproved Samples a random
degree-(n — 1) packed Shamir sharing [Aa]»—1 such that for all P; € Corr, the j-th share of
[[)\a]]n—l is Uyj.

(b) Fprepimproved distributes the shares of [Aq]»—1 to honest parties.

C.2 Modification of the Online Phase
We modify the protocol ITy,; as follows.
,_[Protocol 7: IIvuiimproved]

1. For each group of multiplication gates with input wires «, 3 and output wires =, all parties receive
fI'OIIl]:Preplmproved
— A packed Beaver triple ([a]n—&, [b]n—k, [€]n-k),
— Arandom degree-(n — 1) packed Shamir sharing [A~].—1.
Py receives from Fprepimproved tWO Vectors d1 = Aq + a,d2 = Ag + b. P; also learns pq, pg during
the online phase.

2. P, locally computes vo + a = pa + di and vg + b = pg + do. Then, P; computes [va + alk—1
and [vg + b]x—1 and distributes the shares to all parties.

3. All parties locally compute

[pvln—1 = [va + alk—1 * [vg + blk—1 — [va + @fk—1 * [B]n—k
- IIUB + b]]k—l & Ha]]n—k + [[Cﬂn—k: - [[A—yﬂnfl-

4. P collects the whole sharing [gt+]»—1 from all parties and reconstructs ft~.

C.3 Theorem for the Improved Protocol
As for the security of our improved protocol, we note that

— In the original protocol, for each group of multiplication gates with input wires «, 3, P; will
distribute [Aq + a]x—1, [Ag + b]x—_1 in the circuit-dependent preprocessing phase and distribute
[ta]k—1, [#a]k—1 in the online phase.

— In the improved protocol, for each group of multiplication gates with input wires «, 3, P; will
distribute [vg + a]k—1, [vs + b]x—1 in the online phase.

Observe that [[’Ua + a]]}g,1 = [[)\a + aﬂk,1 + [[I»La]]k—l and [[’UB + bﬂk,1 = [[)\,3 + b]]k,1 + [[ulgﬂkfl.
Therefore, the messages exchanged in the improved protocol can be derived from the messages
exchanged in the original protocol. It implies that any attack made by a semi-honest adversary
towards the improved protocol also works for the original protocol. Thus, the improved protocol
achieves at least the same level of security as the original protocol. We have the following theorem.

29

Theorem 2. In the client-server model, let ¢ denote the number of clients, n denote the number of
parties (servers), and t = (n — 1)/2 denote the number of corrupted parties (servers). Let F be a finite
field of size |F| > 2n. For an arithmetic circuit C over F, there exists an information-theoretic MPC
protocol which securely computes the arithmetic circuit C' in the presence of a semi-honest adversary
controlling up to c clients and t parties. The splitting communication complexity per gate is (1) 10n + 24
elements per gate in the circuit-independent preprocessing phase, (2) 8 elements per gate in the circuit-
dependent preprocessing phase, and (3) 12 elements per gate in the online phase. (Terms that are
independent of or sub-linear in the circuit size are omitted as they only add cost o(1) per gate.)

D Malicious Security

In this section, we discuss how to compile TURBOPACK to achieve malicious security. We observe
that the main difficulty comes from the fact that degree-(n — k) packed Shamir sharing is not
robust: corrupted parties can change the secrets of a degree-(n — k) packed Shamir sharing by
locally changing their own shares. Concretely, for a degree-(n — k) packed Shamir sharing [x],,_,
corrupted parties can locally compute a degree-(n — k) packed Shamir sharing [A(x)]),,—x where

— The shares of [A(x)],—x of honest parties are 0.
— The first £ — 1 values of A(x) can be arbitrary values.

Recall that k = (n —t 4+ 1)/2, we have n — k = ¢t + k — 1. It means that a degree-(n — k) packed
Shamir sharing can be determined by n — k£ + 1 = ¢ + k values. Note that the above have fixed ¢ + &
values. Corrupted parties can locally compute the last value of A(x) and their shares of [A(z)],,—k.
Since the shares of [A(x)],,—« held by honest parties are 0, corrupted parties can locally compute
[z + A(x)],—k, causing a change of the secrets by A(x) without being noticed.

The previous work [GPS22] follows from [DPSZ12b] and uses information-theoretic MACs to
detect the above attack. However, this approach increases the communication complexity by at least
a factor of 2 since it requires to compute each multiplication gate 2 times in [GPS22]. Another
drawback is that the information-theoretic MAC requires to use a large enough finite field.

Our idea is to try to compute a degree-t Shamir sharing for each wire value as the state-of-the-art
MPC protocols [DNO7, GIP™14, CGH"18, NV18, GSZ20, BGIN20, GLO"21] in the honest majority
setting. However, our approach differs from previous techniques in the sense that the degree-t
Shamir sharings may use different evaluation points to store the secrets. We observe that, in our
improved semi-honest protocol in Section C, for each group of multiplication gates,

— All parties hold a packed Beaver triple ([a]n—&, [0]n—k, [c]n—k). In particular, all parties also hold
{(Tail:]¢, [bililes [eil:]¢) }_, in the circuit-independent preprocessing phase.

- In the online phase, P; will distribute vy + a]x—1, [vg + b]x—1 to all parties. In particular,
[va + a]x—1 can be viewed as a degree-(k — 1) Shamir sharing [v,, + a;|;]x—1 for all ¢ €
{1,2,...,k}.

Thus, all parties can compute a degree-t Shamir sharing [v,,
particular, the secret is stored at position .

Therefore, our semi-honest protocol has already allowed all parties to compute a degree-t Shamir
sharing for input wires of each multiplication gate. We will show that this is sufficient to verify the
correctness of the computation. In the following, we will introduce TURBOPACK phase by phase. Our
principle is to try to use the same semi-honest protocol so that we can achieve the same concrete
efficiency as the semi-honest version. We will highlight our changes compared with the semi-honest
protocol and explain the reasons.

e = [a, + aililk—1 — [aili]e. In

D.1 Circuit-Independent Preprocessing Phase
In the circuit-independent preprocessing phase, we make the following two changes:

1. For each packed Beaver triple ([a],—k, [b]n—«, [€]n—k), recall that they are computed from
{(Tas)]e, [osliles [eili]e) Yoo, - All parties will also take {([a;|:]¢, [bil:]¢, [cil:]) }r, as output.

2. For each group of input gates or output gates, all parties will prepare a random degree-t Shamir
sharing [r;|;]: for all ¢ € {1,2,...,k}. In the online phase, these degree-t Shamir sharings allow
clients to detect attacks launched by corrupted parties.

30

We first describe the functionality for the circuit-independent preprocessing phase with malicious
security. We allow an adversary to launch two kinds of additive attacks: (1) for each degree-(n — k)
packed Shamir sharing [\, - 1],,—x, an adversary is allowed to add a constant error (chosen by
himself) to the first secret; (2) for each multiplication triple ([a;|:]+, [bil:]+, [cil:]¢), an adversary
is allowed to add a constant error (chosen by himself) to the secret ¢;. The description of the
functionality appears in Fprepindmal-

,_[Functionality 6: FprepindMmal

1. Preparing Random Packed Sharings: Fp epinamal receives the set of corrupted parties, denoted by
Corr. Fprepinamal prepares a random degree-(n — k) packed Shamir sharing in the form of [Ao - 1]n—x
for each output wire « of an input gate a multiplication gate in C' as follows.

(@) Fprepindmal receives from the adversary a set of shares {u;}jecor- and an additive error d,. Let
er = (1,0,...,0) € F*. Fpepinamal samples a random value A, and computes a degree-(n — k)
packed Shamir sharing [Ao - 1 + o - €1]n—k such that for all P; € Corr, the j-th share of
[[)\a 0 1]]n—k is Uj.

(b) Fprepinaval distributes the shares of [Aq - 1 + 4 - €1]n—x to honest parties.

2. Preparing Packed Beaver Triples: For each group of k£ multiplication gates, Fprepinamal Prepares a
set of Beaver triples {([a:|:]¢, [b:]:]:, [cil:]:) }r=1, which satisfy that a;, b; are random values and
¢; = a; - b;. This is done by the following steps.

(@ For all ¢ € {1,2,...,k}, Fprepindavial receives from the adversary a set of shares
{(ug}}, ufj), ug?)}jeco” and an additive error 1;. Fprepinamal Samples two random values a;, b; € F

and computes ¢; = a; - b; + 1;. Then Fprepinamal computes three degree-t Shamir sharings
([aili]¢, [bs]:]¢, [cil:]¢) such that for all P; € Corr, the j-th share of ([a:|:]+, [bil:]¢, [cil:]¢) is
(uf) ul), ul?).
(b) Forall i € {1,2,...,k}, Frrepmama distributes the shares of ([ail:]s, [b:]:]¢, [c:]:]:) to honest
parties.
3. Preparing Random Masked Sharings for Multiplication Gates: For each group of k¥ multiplication
gates, Fprepindmal prepares three degree-(n — 1) packed Shamir sharings of 0 € F* as follows.
(@) Fprepinamal receives from the adversary a set of shares {(ug.l),ug?), u§.3>)}jecow. FprepindMal Sets

oV = 0@ = 0® = 0 € F*. Then Fprepinamal Samples three random degree-(n — 1) packed
Shamir sharings [0],—1, [0®],—1, [0®]n—1 such that for all P; € Corr, the j-th share of
[0V, 0P o1, o L) s (a0,).

(b) Fprepinamal distributes the shares of (JoM]n_1, [0P]n_1, [0¥]n_1) to honest parties.

4. Preparing Random Sharings for Input and Output Gates: For each group of k input gates or
output gates, Fprepindmal prepares a random degree-(n— 1) packed Shamir sharing of 0 € F*, denoted
by [o].-1, in the same way as above. Fprepindmal also prepares k random degree-t Shamir sharings
{[r:|:]¢}%_ in the same way as that for {[a:|:]:}%_;.

Now we describe the protocol [Iprepindmal that realizes Fprepinamal. It follows the semi-honest
version Ilpeping and uses the ideal functionality Fsinglemuitmal- Here by using a weaker functionality
FsingleMultMal, Which allows an additive attack towards the multiplication result, we can instantiate it
by the same semi-honest multiplication protocol in [GLOT21]. We refer the readers to [GLOT21]
for more details.

Regarding the communication complexity of IIpepinamal, the only difference compared with the
semi-honest protocol IIpeping is Step 4, where all parties need to prepare N3 - k random degree-t
Shamir sharings. Here N3 - k is the number of input and output gates. Since N3 - k is small compared
with the circuit size, the concrete efficiency of I7prepinamal remains 10|C| - n + 24|C| elements among
all parties.

,_[Functionality 7: FsingleMultMal }

1. Fsinglemultmal Teceives the secret position 4 from all parties. Let [z|;]¢, [y|:]+ denote the input sharings.
FsingleMultMal Teceives from honest parties their shares of [z|;], [y|:]:- Then Fsinglemuitmal reconstructs
the secrets z, y. Fsinglemuitmal further computes the shares of [x|;]¢, [y|:]+ held by corrupted parties,
and sends these shares to the adversary.

2. FsingleMultMal Teceives from the adversary a set of shares {z; }iccorr and an additive error 7.

3. FsingleMultMal COmputes x - y + 7. Based on the secret z := = - y + n and the ¢ shares {z;}iccorr,
FsingleMultmal Teconstructs the whole sharing [z];]+ and distributes the shares of [z|;]: to honest
parties.

31

,_[Protocol 8: IIpepindMal]

1. Preparing Random Packed Sharings: Let N; be the number of input gates and output gates. Let
X1 be the secret sharing scheme corresponding to [[r - 1],,—x. All parties invoke N1 /(¢ 4 1) times of
TRandsh (X1) to prepare N; random sharings in the form of [r - 1],,—. For each output wire of an
input gate or a multiplication gate, the first unused random sharing is associated with this wire.

2. Preparing Packed Beaver Triples: Let N, denote the number of groups of multiplication gates. For
alli € {1,2,...,k}, let X3 ; be the secret sharing scheme corresponding to [r|;]+. All parties invoke
2N2/(t + 1) times of Tranash (X2,;) to prepare 2N, random sharings in the form of [r|;].

(a) For each group of multiplication gates, let {[a|:]¢, [b:]:]:}—1 be the unused random sharings.
(b) Foralli e {1,2,...,k}, all parties invoke Fsinglemuiemal 01 (2, [ail:]¢, [bi:]¢) and receive [c;|:]:-
3. Preparing Random Masked Sharings for Multiplication Gates: Let Y3 be the secret sharing
scheme corresponding to [0],,—1, where 0 = (0, ..., 0) € F*. All parties invoke 3N> /(¢ + 1) times of
TRandsh (23) to prepare 3N, random sharings in the form of [0],,—1. For each group of multiplication
gates, the first 3 unused random sharings are associated with these group of multiplication gates.

4. Preparing Random Sharings for Input and Output Gates: Let N3 be the number of groups of
input gates and output gates. All parties invoke N3/(¢t + 1) times of mranash(X3) to prepare Ns
random sharings in the form of [0],,—1. For each group of input gates or output gates, the first
unused random sharing is associated with this group of gates.

For all 4 € {1,2,...,k}, all parties also invoke N3/(t + 1) times of Tranash(X2,:) to prepare N3
random sharings in the form of [r|;]:. For each group of input gates or output gates, the first unused
random sharing is associated with this group of gates.

Lemma 4. Protocol Ilprepinamal Securely computes FprepindMal i the Fsinglemutemal-hybrid model against
a fully malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and # denote the set of honest parties. The simulator S works as
follows.

Simulating Trandsh-

1. In Step 1, S follows the protocol to agree on a Vandermonde matrix M.

2. In Step 2, for each honest party P;, S generates a random X-sharing S and sends the shares
to corrupted parties. For each corrupted party P;, S receives the shares of S honest parties.
Depending on the sharing scheme used in 7rangsh, S sets the sharing S () distributed by P; as
follows:

- For X}, each X;-sharing is a degree-(n — k) packed Shamir sharing in the form of [r - 1],,—x. It
requires n — k + 1 = ¢ + k shares or secrets to reconstruct the whole sharing. S has received
the shares of honest parties from P;. S sets the last k£ — 1 secrets to be 0 and reconstructs the
whole sharing as ¥, denoted by [§(") - e],,_. Here e; = (1,0,...,0) € F*. Notice that the
last k — 1 secrets have been set to be 0. The value (") represents the first secret which can be
non-zero. It is also viewed as the additive error of S§*.

- For X, ;, each X5 ;-sharing is a degree-¢t Shamir sharing in the form of r|,];. It requires ¢ + 1
shares to reconstruct the whole sharing. S uses the shares of honest parties to reconstruct the
whole sharing.

- For X3, each Y3-sharing is a degree-(n — 1) packed Shamir sharing of 0 € F¥. It requires n
shares or secrets to reconstruct the whole sharing. S has received the shares of honest parties
from P,. S sets the secrets to be 0 and also sets the shares of the first n — (¢ + k + 1) corrupted
parties to be 0. Then S reconstructs the whole sharing as S®.

3. In Step 3, S computes the shares of corrupted parties for each X-sharing RY. For ¥y, S also
computes the additive error §; for each R Note that §; is a linear combination of the additive
errors {6(0}7_ of {§)}" . In particular, for each honest party P;, 6) = 0, and for each
corrupted party P;, 6() is the additive error computed in the last step.

S sends the shares of corrupted parties to Fprepindmal. For each ¥;-sharing, S also sends the

corresponding additive error to FpyepindMmal-

Simulating the Main Protocol.

1. In Step 1, S simulates mrangsh (1) as described above.

32

2. In Step 2, S simulates mrangsh (X2;) for all i € {1,2,...,k} as described above. Then, for each
pair of ([a;|;]¢, [bi]:]¢), S emulates Fsinglemuitmal and receives from the adversary the shares of
[¢:]:]+ of corrupted parties and the additive error ;. Finally, for each pair of ([a;|:]+, [bil:]¢), S
sends the shares of [¢;|;]; of corrupted parties and the additive error n; to FprepindMal-

3. In Step 3, S simulates wrangsh (X'3) as described above.

4. In Step 4, S simulates mranash (Z2,;) for all i € {1,2,...,k} and mranash (X3) as described above.

This completes the description of S.

Now, we show that S perfectly simulate the behaviors of honest parties. We note that the only
place where honest parties need to send messages to corrupted parties is in Step 2 of wrangsh. The
simulator S honestly generates a random X-sharing as that in the real world. Thus, S perfectly
simulates the behaviors of honest parties.

Then, we show that the output of honest parties in both worlds have the same distribution. For
TRandSh, We Observe that, when the shares of {S () }ien of corrupted parties are fixed and the shares
of {S(i)}iecow of honest parties are also fixed, the shares of {R”)}’;ﬁ held by honest parties are
independent of the shares of {S (i)}iec(m of corrupted parties. This is because honest parties can
compute their shares of {R(i)}ﬁi% by using their shares of {.S (i)}?zl. Once corrupted parties send
out the shares of {S (i)}ieCo'r’T of honest parties, they can no longer change the shares of {R(i)}ﬁii
of honest parties. It suggests that we may think the adversary first chooses the shares of corrupted
parties in the same way as S described above and later on changes the shares of corrupted parties
arbitrarily.

Recall that the matrix M is a Vandermonde matrix of size n x (¢ + 1), which satisfies that
any (t +1) x (t + 1) sub-matrix of M" is invertible. Therefore, given the X-sharings prepared by
corrupted parties and the shares of corrupted parties, there is a one-to-one map between {.S (i)}ie;.[
and { R }!*!. Note that for {S§"},cy, they are generated by honest parties. Therefore, {S };cx
aren —t =t + 1 random Y-sharings given the shares of corrupted parties.

- When ¥ = ¥, {R™}!*! are random ¥, -sharings with additive errors {#;}!! given the shares
of corrupted parties. In the ideal world, S sends the shares of corrupted parties and the additive
errors {62}22 to Fprepindval- Therefore, the random X';-sharings have the same distribution in
both worlds.

- When ¥ = %, ,, {R(i)}fii are random XY ;-sharings given the shares of corrupted parties. In
the ideal world, S sends the shares of corrupted parties to Fprepindmal. Therefore, the random
X5 ;-sharings have the same distribution in both worlds.

— When ¥ = 35, {R(i)}ﬁi} are random Xj3-sharings given the shares of corrupted parties. In
the ideal world, S sends the shares of corrupted parties to Fprepinamal. Therefore, the random
X’3-sharings have the same distribution in both worlds.

In Step 2, we have shown that ([a;|;]:, [bi]:]:) has the same distribution in both worlds. It is
sufficient to show that [¢;|;]; is also identically distributed in both worlds. Observe that a degree-t
Shamir sharing is determined by its secret and the shares of corrupted parties. In the real world, the
secret ¢; = a; - b; + 1;, where 5, is an additive error provided by the adversary in Fsingiemuitmal. The
shares of [¢;|;]; of corrupted parties are also chosen by the adversary in Fsinglemuitmar. In the ideal
world, S receives both 7; and the shares of corrupted parties when emulating Fsingiemuitmal. Then S
sends these values to Fpepindmal- Thus, [c¢;|;]+ is identically distributed in both worlds.

We conclude that Protocol Ilpepindmal Securely computes Fprepindmal it the Fsinglemuiemal-hybrid
model against a semi-honest adversary who controls ¢ parties.

D.2 Circuit-Dependent Preprocessing Phase

In the circuit-dependent preprocessing phase, we follow the improved version of IIp,, described in
Section C with the following change:

— For each group of input gates or output gates, all parties will also output {[r;|;];}*_, prepared in

JTPrepIndMah

- For each group of multiplication gates, all parties will output {([a;|:], [bili]¢, [cili]¢) }i_; instead
of ([[a]]nfkry [[bﬂnflm [[cﬂnfk)

— For each group of output gates with input wires «, all parties will reconstruct the vector A, + 7 to
Py.Herer = (ry,...,7r) and r1,..., 7y are the secrets of {[r;|;]:}*_; prepared for these output
gates.

33

We first describe the functionality for the circuit-dependent preprocessing phase with malicious
security. We allow an adversary to launch two kinds of additive attacks: (1) for each degree-(n — 1)
packed Shamir sharing [A,],—1, an adversary is allowed to add a vector of additive errors A(Ay,)
(chosen by himself) to the secrets; (2) for each multiplication triple ([a;|:]¢, [bi|:]:, [cili]:), an
adversary is allowed to add a constant error (chosen by himself) to the secret c;. We note that each
wire « in the circuit connects two gates, and it acts as an output wire of the first gate and acts as an
input wire of the second gate.

,_[Functionality 8: Fprepmal]

1. Assign Random Values to Wires in C: Fprepmal receives the circuit C' from all parties. Then Fprepmal
assigns random values to wires in C' as follows.

(a) For each output wire « of an input gate or a multiplication gate, Fprepmal Samples a uniform value
Ao and associates it with the wire a.

(b) Starting from the first layer of C to the last layer, for each addition gate with input wires «, 5 and
output wire 7y, FprepMal S€tS Ay = Ao + Ag.

2. Preparing Beaver Triples: Fp.pmal receives the set of corrupted parties, denoted by Corr. For each
group of k multiplication gates, Fprepmal prepares a set of Beaver triples {([a:|:]¢, [bi|:]¢, [cili]e) Yizs,
which satisfy that a;, b; are random values and ¢; = a; - b;. This is done by the following steps.

(@ For all ¢ € {1,2,...,k}, Fprpmal receives from the adversary a set of shares
{(ug}j), “5,2]')’ ug?j)}jecm and an additive error 7;. Fprepmal Samples two random values a;, b; € F
and computes ¢; = a; - b; + 1;. Then Fprepma computes three degree-t Shamir sharings
(Tasla]e, [bslile, [cili]¢) such that for all P; € Corr, the j-th share of ([a:|]e, [bi|:], [cil:]¢) is
(00, 0 0,

(b) Forallie {1’, 2,...,k}, Fprepmal distributes the shares of ([a:l:]¢, [bi]:]¢, [ci]:]¢) to honest parties.

3. Preparing Degree-t Shamir Sharings: For each group of k input gates or output gates, FprepMal
prepares a set of random degree-t Shamir sharings {[r;|:]+}7_, as follows.

(@) Foralli e {1,2,...,k}, Frrepmal receives from the adversary a set of shares {u; ; }jccorr. FrrepMal
samples a random value r; € F. Then Fprepmal computes a degree-¢ Shamir sharings [r;|;]: such
that for all P; € Corr, the j-th share of [r;|;]¢ is us ;.

(b) Foralli e {1,2,...,k}, Ferepmal distributes the shares of [r;|;]: to honest parties.
4. Distributing A, + a to Pi: For each group of multiplication gates, let «, 3 denote the batch
of first input wires and that of the second input wires respectively. Let a = (a1, a2,...,ar) and

b = (b1,bz,...,bx). FerepMal receives from the adversary two vectors A(Aq + a), A(Ag + b) € FF,
Then, Fprepmal computes A + a + A(Aa +a) and Ag + b+ A(Ag + b), and sends them to P;. Here
Ao and Ag are the random values associated with the wires e and 3.

For each group of output gates, let a denote the batch of input wires of these gates. Recall that

Frrepmal has prepared {[r:]:]¢}ooy. Let # = (1, ..., 71). FrrepMal teceives from the adversary a vector

A(Xa +7) € F*. Then, Fprepmal computes Ao + 7 + A(Aq + 7) and sends these values to P;. Here

A« are the random values associated with the wires c.

5. Preparing Degree-(n — 1) Packed Shamir Sharings: Fprepma Will prepare degree-(n — 1) packed

Shamir sharings for the following batches of wires:

- For the input layer, all input gates are divided into groups of size k such that the input gates of
each group belong to the same client. For each group of input gates with output wires o, Fprepmal
will prepare a degree-(n — 1) packed Shamir sharing of A..

- For each group of multiplication gates with output wires =, Fprepmal Will prepare a degree-(n — 1)
packed Shamir sharing of A~.

For each batch of wires o in the above scenarios, Fprepmal does the following: Fprepmal receives

from the adversary a set of shares {w;}ccorr. Frrepmal receives from the adversary a vector A(Aq).

Frrepmal Samples a random degree-(n — 1) packed Shamir sharing [Aa + A(Aa)]n—1 such that for

all P; € Corr, the j-th share of [Aa + A(Aa)]n—1 is u;. Then, Fprepmar distributes the shares of

[Aa + A(Aa)]n—1 to honest parties.

Now we describe the protocol IIpepmal that realizes Fprepmal. The communication complexity
of ITpepmal remains the same as its semi-honest version described in Section C, i.e., 8/C| elements
among all parties.

Protocol 9: Ilpepmal

1. Circuit-Independent Preprocessing Phase: All parties invoke Fprepindmal to receive correlated
randomness.

34

\.

2. Computing a Random Sharing for Each Wire: For each output wire a of an input gate or a
multiplication gate, all parties receive [Aq - 1],,—x from Fprepina. All parties follow Step 1 of Fprep
and compute [Aq - 1], for each wire « in the circuit C.

3. Preparing Beaver Triples: For each group of multiplication gates, all parties output
{([@il:]¢, [bi]:]¢, [ci]:]¢) Yooy, which are prepared in Fprepindmal-

4. Preparing Degree-¢t Shamir Sharings: For each group of input gates or output gates, all parties
output {[[ri|,-ﬂt}f=1, which are prepared in Fprepindmal-

5. Reconstructing Ao + a to P;: For each group of multiplication gates with input wires o =
(1,...,ax), B = (Bi,...,Br), recall that all parties have computed {[\a, - 1]}5_; and {[)g, -
1]]}1-“=1 in the last step. All parties also receive from Fprepinamal {([a:i]¢, [b:i]i]¢, [[ci|i]}t)}f=1 and
[0P]n-1,[0P]n_1.Leta = (a1,...,ax) and b= (b1,...,bx). Let e; € F* be the i-th unit vector,
i.e., all entries of e; are 0 except the i-th entry is 1.

(a) All parties locally compute

k k
Ao +aln-1 =) eix[a; Uk + Y _[edi—1 * [ail:]e + [0V]as
d=il d=il

k k
Mg+ bl = eix[Xs s+ D lekr * [bilile + [06P]n1
i=1 =1

(b) P collects the whole sharings [Aa + a]n—1,[Ag + b]n—1 and reconstructs the secrets Ao +
a, g+ b.
The same step is also done for each group of output gates with input wires a by using {[r:|:]+ }=_,
and [o],—1 prepared in Fprepindval- As a result, P; receives Aq + 7.
6. Preparing Degree-(n — 1) Packed Shamir Sharings: For each group of input gates, let a =
(a1, ..., ay) be the output wires of these gates. Recall that all parties have computed {[\a, - 1]}5_;.
All parties also receive from Fprepindmal [0]n—1. All parties locally compute

Paln-1=>ei*[Ma; - 1n—s + [0]n-1.

=1

The same step is also done for the output wires of each group of multiplication gates (by using
[0®],._1 prepared for this group of multiplication gates in Fpepindmal)-

Lemma 5. Protocol Ilprepmal Securely computes Fprepmal it the Fprepinamal-hybrid model against a fully
malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and # denote the set of honest parties. The simulator S works as
follows.

1.
2.

In Step 1, S emulates the ideal functionality Fprepindmal-

In Step 2, for each output wire « of an input gate or a multiplication gate, S receives from
the adversary the shares of [\, - 1],,— of corrupted parties and an additive error J, - e; when
emulating Fprepinamal. Here e; = (1,0,...,0) € F*. Recall that in FrrepindMal, the adversary can
only add a constant error to the first secret of [\, - 1],,—k-

Then S follows the protocol. For each wire «, S computes the shares of [\, - 1], of corrupted
parties and the corresponding error J, - e;.

. In Step 3, for each multiplication triple ([a;|:]+, [bil:]¢, [cil:]t), S receives from the adversary the

shares of corrupted parties and the additive error n; when emulating Fprepindmal- S sends these
values to Fprepmal-

. In Step 4, for each degree-t Shamir sharing [r;;]+, S receives from the adversary the shares of

corrupted parties when emulating Fpyepinamal. S sends the shares of corrupted parties in Fprepmal-

. In Step 5, for each group of multiplication gates with input wires «, 3, S follows the protocol

and computes the shares of [Ao + a],,—1 and [Ag + b],,—1 held by corrupted parties.

- If Py is an honest party, S receives from the adversary the shares of [Aq +a],—1 and [Ag+b],,—1
of corrupted parties, which can be different from those computed by S. Let [An + a],,—1 denote
the degree-(n — 1) packed Shamir sharing where the shares of corrupted parties are those
computed by S. S computes the shares of

[p(Xa +a)]n-1=[Aa +afn-1— [Aa +aln

35

of corrupted parties and sets the shares of honest parties to be all 0. Then, S reconstructs the
secrets p(Aq + a). Finally, S sets A(Aq + @) = p(Aq + @) + 64, - €1. S sends to Fprepmal the
vector of additive errors A(Ay + a).

Similarly, S computes the vector of additive errors A(Ag + b) and sends it to Fprepmal-

- If P, is corrupted, S sets A(Aq + a) = A(Ag +b) = 0 € F¥. Then S sends to Fpepmal the two
vectors of additive errors and receives A, + @, Ag + b. S generates a random degree-(n — 1)
packed Shamir sharing [A, + a],—1 based on the secrets Ay, + a = Ay + a + 04, - €1 and
the shares of corrupted parties computed by S. Finally, S sends the shares of [A,, + a],,—1 of
honest parties to P;.

Similarly, S generates a random degree-(n — 1) packed Shamir sharing [Ag + b],,—1 based on
the secrets Ag + b = Ag + b+ d3, - e; and the shares of corrupted parties computed by S. S
sends the shares of [Ag + b],,—1 of honest parties to P;.

For each group of output gates with input wires «, S simulates honest parties in the same way

when reconstructing A\, + 7 to P.

6. In Step 5, S follows the protocol and computes the shares of [Ay],,—1 of corrupted parties. Then,

S sets A(Ay) = dq, - €1. S sends the shares of [A,],—1 of corrupted parties computed by S and

the vector of additive errors A(Ay) t0 FprepMal-

This completes the description of the simulator S.

Now we use hybrid arguments to prove the security of IIpepmal.

Hybrid,: In this hybrid, S honestly follows the protocol.

Hybrid, : In this hybrid, for each wire o, S computes the shares of [\, - 1],,— of corrupted
parties and the corresponding error d,, - e;. Note that this hybrid does not change the behaviors of
honest parties. Therefore, the distribution of Hybrid, is identical to that of Hybrid,,.

Hybrid,: In this hybrid, Step 3 is simulated by S as described above. In Hybrid,, each mul-
tiplication triple ([a;|:]¢, [0:]:]¢, [cil:]¢) is generated by Fprepinamal- In particular, corrupted parties
choose their shares and the additive error #,. In Hybrid,, S provides the shares of corrupted parties
and the additive error to Fprepmar. Then Fprepmal generates ([a;l;]¢, [bili]¢, [cil:]+) in the same way
as that in Fprepinamal- Therefore, the distribution of Hybrid, is identical to that of Hybrid, .

Hybrid,: In this hybrid, Step 4 is simulated by S as described above. In Hybrid,, each degree-¢
Shamir sharing [r;|;]; is generated by Fprepindmal- In particular, corrupted parties choose their shares.
In Hybrid,, S provides the shares of corrupted parties to Fprepmal. Then Fprepmal generates [r;;];
in the same way as that in Fprepinamal. Therefore, the distribution of Hybrid, is identical to that of
Hybrid,.

Hybrid,: In this hybrid, Step 5 is simulated by S when P; is honest. In Hybrid,, P; reconstructs
Ao + a by using the shares of [A,, + a],—1 he received from all parties. Note that honest parties
always send the correct shares to P;. Observe the following two facts.

- Let [Aq + a],—1 denote the degree-(n — 1) packed Shamir sharing where the shares of corrupted

parties are those computed by S. This is to distinguish the degree-(n — 1) packed Shamir sharing
[Aa + a]—1 that P; receives from all parties. We claim that the secrets A, + a are the correct
secrets Ao + a plus a constant vector d,, - €1.
This is because in Fprepinamal, for each output wire « of an input gate or a multiplication gate,
an adversary has added an error 4, to the first secret of [\, - 1], —x, i.e., a vector of additive
errors d, - e;. The additive errors propagate to the secrets of [\, - 1],,—x for other wires « in the
circuit in Step 2. Following the equation that computes [A, + a],—1 in Step 4, the secrets are
equal to the correct secrets Ay, + a plus d,, - e1. (The rest of errors J,, - e; are zeroed out when
multiplying e;).

- In Hybrid;, P; reconstructs the secrets of [Ay + a],,—1. By the linearity of the packed Shamir
secret sharing scheme, the secrets of

[[P(’\a + a)ﬂnfl = [[’\a + aﬂnfl - [P\a + aﬂnfl

are the additive errors to the secrets A, + a due to the malicious behaviors of corrupted parties.
Thus, the secrets of [A, +a],—1 are equal to A, +a plus 0, -1 +p(Aq+a). Thatis, A(Aq+a) =
On, - €1+ p(Ae + @).

In Hybrid,, S has computed ¢,, for all wires in Hybrid,. Thus, S learns ¢, - e;. S can also learn
the shares of [Ay + a],—1 and [As + a],,—1 held by corrupted parties. Thus, S can compute the
shares of [p(Aq +a)]»—1 of corrupted parties. Also note that for both [Ay +a],,—1 and [Aq + a]n_1,

36

the shares of honest parties are identical. Therefore, the shares of [p(An + @)],,—1 of honest parties
are all 0. In this way, S reconstructs the secrets p(Ay + a). Thus, S computes and sends the vector
of additive errors A(Aq + @) = 04, - €1 + p(Aa + @) t0 Fprepmal, Which has the same distribution as
that in Hybrid,.

The same argument works for [Ag + b],,—1 for the other batch of input wires of each group of
multiplication gates, and works for [Ay + 7],,—1 for the batch of input wires of each group of output
gates.

Hybrid,: In this hybrid, Step 5 is emulated by S when P, is corrupted. In Hybrid,, honest parties
need to send their shares of [A,, + a],—1 to corrupted parties. As we have argued above, the shares
of [Aa + a],—1 held by honest parties are equal to the shares of [A, + a],—1 of honest parties. Also,
the secrets of [Ay + a],—1 are equal to the correct secrets A, + a plus d,, - e;. Furthermore, since
[o™)],._1 is a random degree-(n — 1) packed Shamir sharing of 0 € F*, [A, + a],,_1 is a random
degree-(n — 1) packed Shamir sharing of Ao, + a + ., - ;1.

In Hybrid;, S learns A, + a from Fpepma and has computed d,, - €1 in Hybrid, . S generates a
random degree-(n — 1) packed Shamir sharing as [A, + a],—1 based on the secrets Ao, +a+dq, - €1
and the shares of corrupted parties computed by S. Then S sends the shares of [A, + a],,—1 of
honest parties to P;, which have the same distribution as that in Hybrid,.

The same argument works for [Ag + b],,_1 for the other batch of input wires of each group of
multiplication gates, and works for [A,, + r],—1 for the batch of input wires of each group of output
gates.

Hybrid,: In this hybrid, Step 6 is emulated by S. Let [Ay],_1 denote the degree-(n — 1)
packed Shamir sharing where the shares of corrupted parties are those computed by S. In Hybrid;,
following a similar argument, the secrets of [An],,_1 are equal to the correct secrets Ay plus d,, - €;.
And [Aq]—1 is a random degree-(n — 1) packed Shamir sharing of Ay + da, - €.

In Hybridg, S sends to Fpepmal the shares of [Ay],—1 of corrupted parties and the vector of
additive errors A(Aq) = dq, - €1. Fprepmal generates a random degree-(n — 1) packed Shamir sharing
of Ao + d4, - €1 based on the shares of corrupted parties. Therefore, the shares of honest parties
generated by Fprepmal has the same distribution as that in Hybrid,.

Observe that Hybrid, is the execution in the ideal world. Therefore, ITpepmal Securely computes
FrrepMal i the Fpreping-hybrid model against a fully malicious adversary who controls ¢ corrupted
parties.

D.3 Online Phase — Evaluation

In the online phase, our goal is to compute degree-t Shamir sharings for input wires of multiplication
gates. This is different from the semi-honest protocol where all parties only need to reconstruct
{lta}o to P;. Recall that in the semi-honest protocol (the optimized version in Section C), for each
group of multiplication gates with input wires «, 3 and output wires ~, P; distributes [v, + a]x—1
and [vg + b]x—1 to all parties. These two sharings are used to compute and reconstruct p-, to P;.
We observe that we can reuse these two sharings to compute Shamir sharings for wires «, 3:

— Recall that in the circuit-dependent preprocessing phase, all parties will keep {[a|:], [bi|:] 5 ;-
- Foralli € {1,2,...,k}, [ve + a]x—1 can be viewed as [v,, + a;|;]x—1- Therefore, all parties can
locally compute [vg, |i] = [va; + aililk—1 — [a:]:]¢. Similarly, they can locally compute [vg, |;].

Therefore, the online protocol in the malicious security setting follows its semi-honest version to
evaluate the circuit and all parties locally compute degree-t Shamir sharings for input wires of
multiplication gates as described above. We give more details as follows.

Input Phase. In the input phase, we also need to obtain degree-t Shamir sharings for input values.
To this end, we choose to use a simple protocol which requires O(n) elements of communication
per gate. Although this is asymptotically worse than that in the semi-honest version, the number
of input gates is small compared with the circuit size. We believe this will not affect the concrete
efficiency of the protocol.

Recall that in Fprepmal, for each group of input gates that belong to some Client, all parties
have prepared

— A set of random degree-t Shamir sharings {[r;]:]:}%_;.
— A random degree-(n — 1) packed Shamir sharing [A,],—1, where « are the output wires of these
input gates.

37

Suppose v, are the input values of Client. All parties will send their shares of {[r;|;]:}*_; and
[Aa]n_1 to Client. Then, Client distributes a degree-t packed Shamir sharing [v,, + r]; to all
parties, where r = (r1,...,71). Here we choose to use a degree-t packed Shamir sharing so that
we do not need to verify whether the shares of honest parties form a valid degree-¢ packed Shamir
sharing. This is because a degree-¢ packed Shamir sharing requires ¢ + 1 shares to reconstruct the
secrets. Since there are n — ¢t = t + 1 honest parties, any shares of honest parties form a valid
degree-t packed Shamir sharing. Client also sends po = vo — Ao to Py as the semi-honest protocol.
Finally, all parties use [vy + 7] and {[r;|;]:}%_, to compute individual degree-t Shamir sharings
for inputs of Client.

The description of Iljnputmal @ppears in Protocol 10. The communication complexity of Iljnputmal i
(k+2)-n/k+1=mn+9 elements per input gate.

,_[Protocol 10: ljnpytmal }

1. For each group of input gates that belong to Client, let a denote the batch of output wires of these
input gates. All parties receive {[r;|;]: }f—; and [Aa]n—1 from Fpepmal and Client holds inputs ve.

2. All parties send to Client their shares of {[r|:]+}*—;, and [Aa]n—1.

3. Foralli € {1,2,...,k}, Client checks whether the shares of [r;|;]: lie on a degree-¢ polynomial. If
not, Client aborts.

4. Client reconstructs the secrets 7 = (r1,...,7;) and Aq. Then, Client samples a random degree-t
packed Shamir sharing [va + r]: and computes po = Vo — A

5. Client distributes the shares of [vo + 7]: to all parties and sends po to Pi.

6. Foralli € {1,2,...,k}, all parties locally compute [va, |:]¢ = [va + 7] — [7il:]e-

Computation Phase. As we explained above, we follow the semi-honest version except that all
parties locally compute degree-t Shamir sharings for input wires of multiplication gates. Concretely,
we will maintain the invariant that P; learns y, = v, — A, for all wire « in the circuit. Note that it
holds for the output wires of input gates.

For each addition gate with input wires «, 5 and output wire y, P, computes j., = o + i3 as
the semi-honest version.

For each group of multiplication gates with input wires «, 3 and output wires -, recall that P,
receives Ao + a and Ag + b from Fprepmal. P1 computes vq + @ = o + (Ao + @) and distributes
the degree-(k — 1) packed Shamir sharing v, + a1 to all parties. Similarly, P, computes vg + b
and distributes [vg + b]—1 to all parties. Note that these two steps are identical to the semi-honest
version. Recall that all parties receive {([a;|:]:, [bi|:]+, [cili]lt) le and [Ay]n—1 from Fprepmar. All
parties locally compute

la]n—r = [ei]r—1 * [ar|1]e + ... + [ex]k—1 * [a|x]:
[b]n—r = [ex]r—1 * [br]1]e + ... + [er]x—1 * [ox|r]:
leln—r = [ei]r—1 * [erla]e + - - + [er]x—1 * [cxlr]:
Here e; is the i-th unit vector in F¥, i.e., all entries are 0 except the i-th entry is 1. After receiving

from P; [va + a]k—1,[vg + b]k—1 , all parties locally compute a degree-(n — 1) packed Shamir
sharing of p., as follows:

[trln—1 = [va + a]k—1 % [vg + blk—1 — [va + @]i—1 * [B]n—rk
— [vg + k-1 * [a]n—r + [eln—t — [Ay]n—1.

The correctness follows the same argument as the semi-honest version in Section C. Finally all
parties use [ve + alk—1, [vg + blx—1 and {[a;|:]+, [bi|:]+}5_; to compute individual degree-t Shamir
sharings for input wires of multiplication gates.

The description of ITywmal @appears in Protocol 11. The communication complexity of ITyyitmal 1S
3n/k = 12 elements per gate among all parties.

Protocol 11: IIyyiemal }

1. For each group of multiplication gates with input wires «, 3 and output wires =, all parties receive
fI'OlTl]:PrepMaI
— A set of Beaver triples {([a:|:]¢, [b:|:]¢, [ci]i]e) Foon,

38

- Arandom degree-(n — 1) packed Shamir sharing [A~].—1.
Py receives from Fprepmal tWo vectors d1 = Aq + @, d2 = Ag + b. P also learns pq, pus during the
online phase.

2. P, locally computes va + @ = po + di and vg + b = pg + dz. Then, P computes v + alk—1
and [vg + b]x—1 and distributes the shares to all parties.

3. All parties locally compute

ﬂa]]nfk = [[61]]1671 * [[a1|1]]t + ...+ [[ekﬂk—l * [[ak\k]]t
[6]n—r = [e1]k—1 * [b1]1]t + - - - + [ex]e—1 * [br|x]+
[e]n—r = [e1]lk—1 * [ei]1]le + - - - + [er] k=1 * [ck|x]+
[pyln—1 = [va + alk—1 * [vg + blk—1 — [va + @Jk—1 * [B]n—k
— [vg + blk—1 * [aln—k + [c]n—r — [Ay]n-1.
Py collects the whole sharing [p~]»—1 from all parties and reconstructs fi-.

Foralli € {1,2,...,k}, all parties locally compute [vq, |i]: = [va + a]k—1 — [ail:]+ and [vg, |:]: =
[vs + blx—1 — [bili]:.

$0 =

Output Phase and Validity Check. After evaluating the whole circuit, we will compute a degree-t
Shamir sharing for each output gate. For each group of output gates with input wires «, recall that

— All parties receive a set of degree-t Shamir sharings {[r;|:]:}*_, from FPrepMal-
— P receives A + 7 from Fprepmal Where r = (11,79, ..., 7).
— Py learns po = Vo — Aa-

Similarly to the input wires of multiplication gates, P; locally computes vy + 7 = pto + (A + 1)
and distributes the degree-(k — 1) packed Shamir sharing [v,, + 7] to all parties. In this way, all
parties can locally compute degree-¢t Shamir sharings for input wires of output gates.

Before reconstructing the outputs to clients, we need to verify the correctness of the computation.
The verification contains two parts

— First, we need to verify that the degree-(k — 1) packed Shamir sharings distributed by P; are valid.
That is, for each degree-(k — 1) packed Shamir sharing distributed by P;, the shares of honest
parties lie on a degree-(k — 1) polynomial.

— Second, we need to check that for each input wire of a multiplication gate or an output gate, the
secret of the corresponding degree-t Shamir sharing is the correct wire value.

We will only do the first step in this part. As we will prove later, after the first check, the degree-t
Shamir sharings all parties hold are valid. In particular, any attack of the adversary can be reduced
to an additive attack. That is, what an adversary can do is to add a constant error to the secret of
each degree-t Shamir sharing. We will discuss how to verify the correctness of the secrets in the
next part.

To verify the degree-(k — 1) packed Shamir sharings distributed by P;, we simply compute a
random linear combination of all degree-(k — 1) packed Shamir sharings and then let each party
check the validity of the resulting sharing. To this end, we will need a functionality Fc.;, that
samples a random field element to all parties. An instantiation of Fc,;, can be found in [GS20],
which has communication complexity O(n?) elements.

Functionality 9: Fcoin }

1. Fcoin samples a random field element 7.

2. Fcoin sSends r to the adversary.
— If the adversary replies continue, Fcoin Sends r to honest parties.
— If the adversary replies abort, Fcoin Sends abort to honest parties.

Let K be an extension field of F such that |K| > 2%, where « is the security parameter. All parties
will use Feoin to generate a random field element » € K. Let {[w;]x—1}7", denote all degree-(k — 1)
packed Shamir sharings distributed by P;. All parties will locally compute

[wlk-1 = Zri_l [wi)g—1-

39

Then each party collects the whole sharing [w];_1 and checks whether the shares form a valid
degree-(k — 1) packed Shamir sharing. The description of IIconsistency appears in Protocol 12. The
communication complexity of IIconsistency 1S O(n?) elements in K, which is independent of the
number of sharings.

,_[Protocol 12: consistency]

1. Let {[w;]x—1}i~; denote all degree-(k — 1) packed Shamir sharings distributed by P;.
2. All parties invoke Fcoin to generate a random element r € K.
3. All parties locally compute

[w]k—1 = ZTFI Jwile—1-

4. Each party P; sends its share of [w]x—1 to all other parties. Then each party P; checks whether the
shares of [w]x—1 lie on a degree-(k — 1) polynomial. If true, P; accepts the check. Otherwise, P;
aborts.

In the following, when we say a degree-(k — 1) packed Shamir sharing [s];—1 is valid, we means
that the shares of [s];_1 of honest parties lie on a degree-(k — 1) polynomial. We have the following
lemma.

Lemma 6. If there exists i € {1,2,...,m} such that Jw;],_1 is not a valid degree-(k — 1) packed
Shamir sharing, then all honest parties abort in Ilconsistency With overwhelming probability.

Proof. Consider the following polynomial of sharings in K:

m

f(r)= Zri_l willk-1-

i=1

Suppose at least one degree-(k — 1) packed Shamir sharing in {[w;]x—1}, is invalid. We show
that the number of r such that f(r) is a valid degree-(k — 1) packed Shamir sharing is bounded by
m — 1.

If not, then there exists ry, 7, ...,7, such that f(r;) is a valid degree-(k — 1) packed Shamir

sharing. Consider the matrix M = (r;._l)i,j. Then

(.f(rl)a ERE) f(rm))T =M - ([[wlﬂkfh ceey [[wm]]kfl)?

Note that M is a Vandermonde matrix of size m x m, which is invertible. Therefore, each
[w;i]k—1 is a linear combination of f(r1),..., f(ry), which implies that Jw;],—; is also a valid
degree-(k — 1) packed Shamir sharing. However, it contradicts with the assumption that at least
one degree-(k — 1) packed Shamir sharing in {[w;];—1}, is invalid.

Therefore, the number of r such that f(r) is a valid degree-(k — 1) packed Shamir sharing is
bounded by m — 1. Since r is generated randomly by Fc.,, the probability that [w];_1 is valid is
bounded by 7%, which is negligible. Note that when [w]x_; is invalid, all honest parties will abort.

Summary. We describe the functionality Feyajuate in Functionality 10 for the evaluation of the circuit
in the online phase. The realization of Feyajuate, [lEvaluate, appears in Protocol 13. The communication
complexity of ITg,ajuate is 12 elements per multiplication gate among all parties.

,_[Functionality 10: Fgyajuate }

1. Feualate receives the input from all clients. Let C' denote the circuit.

2. Fevaluate TeCeEives the set of corrupted parties, denoted by Corr. For each group of input gates with
output wires a, let v, denote the input values associated with a.. For all i € {1,...,k}, Fevaluate
receives from the adversary a set of shares {u; ; } jecorr. Then Feyaiate computes a degree-t Shamir
sharing [va,|:]: such that for all P; € Corr, the j-th share of [va,|i]¢ iS ws,;. Finally, Fevaate
distributes the shares of [va,|:]+ to honest parties.

3. Fevaate €valuates the circuit C' layer by layer. For each addition gate with input wires «, 8 and
output wire v, Fevaluate COMputes v, = v, + vg. For each group of multiplication gates with input
wires «, 3,

(a) Fevalate receives two vectors of additive errors A(vq), A(vg) from the adversary. Then, Fevaiate
sets Vo = Vo + A(va) and vg = vg + A(vg).

40

\.

(b) Forall: € {1,2,...,k}, Fevaluate receives from the adversary a set of shares {(uE}J), ui?)}jecow.

Then Fevawate computes degree-¢t Shamir sharings [va, |:]¢ and [vg, |:]¢ such that for all P; € Corr,
the j-th share of [v, |:]: is ug}j) and the j-th share of [vg, |:]: is uz(',Qj)' Finally, Fevaiate distributes
the shares of [[va, |:]:, [vs,|:]: to honest parties.

(€) Fevaluate COMpULES Vy = Vg * V3.

4. For each group of output gates with input wires a,

(2) Fevaluate receives a vector of additive errors A(va) from the adversary. Then, Feyaate S€tS va =
Vo + A(Va).

(b) Foralli € {1,2,...,k}, Frualate receives from the adversary a set of shares {u; ;}ccorr. Then
Fevalvate cOmputes a degree-t Shamir sharing [vq, |s]: such that for all P; € Corr, the j-th share
of [va,|ill¢ is us,;. Finally, Fevawate distributes the shares of [vq, |i]+ to honest parties.

5. On receiving abort, Feyauate Sends abort to all parties.

,_[Protocol 13: ITg,.uate }

1. Preprocessing Phase: All parties invoke Fpepmal to receive correlated randomness that will be used
in the online phase.

2. Input Phase: In the input layer, for each group of k input gates that belong to some Client, let «
denote the output wires of these input gates. All parties and Client invoke [jnputmal- At the end of
the protocol, all parties hold {[va, |:]:}*=1. And P; learns pto, = v — Ao, Where v, are the input
values of Client, and A, are the random values associated with the batch of wires o generated by
Fi PrepMal -

3. Computation Phase: All parties maintain the invariant that for each wire o, P; learns o = vo — Aa,
where v,, is the real value associated with the wire a, and)\, is a random value associated with «
generated by Fprepmal. The circuit is evaluated layer by layer. Assume that the invariant holds for
wires in previous layers. Consider gates in the current layer.

For each addition gate with input wires «, 8 and output wire v, P; locally compute p = p1a + pg-
For each group of k multiplication gates with input wires «, 3 and output wires «, all parties invoke
IIyuimal- At the end of the protocol, all parties hold {[va, |:]¢, [vs; |:]: }i=1. And Pi learns i.

4. Output Phase and Validity Check: For each group of k output gates with input wires c, recall that

— All parties receive {[[m|i]]t}f:1 from FprepMal,

- P receives Aq + 7 from Fprepmal, Where » = (71, ..., 7%),

— P; learns po = va — Ao by the invariant.

P, computes vq + 7 = pto + (Aa + 7). Then P; distributes the degree-(k — 1) packed Shamir
sharing [va + r]kx—1 to all parties. For all ¢+ € {1,2,...,k}, all parties locally compute [va,|:]: =
[va + 7]k=1 — [ril]e-

Finally, let {Jw;]x—1};~; denote all degree-(k — 1) packed Shamir sharings distributed by P;. All
parties invoke ITconsistency tO check the validity of these sharings.

Lemma 7. Protocol Ilgaiate Securely computes Feyaiuate i the Fprepmal-hybrid model against a fully
malicious adversary who controls t parties and up to c clients.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and # denote the set of honest parties. The simulator S works as
follows.

1.

In Step 1, S emulates the ideal functionality Fpepmar as follows.

- For each sharing generated by Fprepmal, S receives from the adversary the shares of corrupted
parties.

— For each multiplication triple (Ja;|:]¢, [Dili]l¢, [cili]+), S receives from the adversary the corre-
sponding additive error ;.

— For each group of multiplication gates with input wires «, 3, S receives from the adversary two
vectors of additive errors A(Aq+a), A(Ag+b). S samples two random vectors as Ao +a, Ag+b
and computes d; = (Aq + a) + A(Aq +a),ds = (Ag +b) + A(Ag + b). Finally S sends d1, d»
to P1 .

Similarly, for each group of output gates with input wires «, S receives from the adversary
a vector of additive errors A(Aq + 7). S samples a random vector as A, + 7 and computes
d=(Aa+7)+ A(Xq + 7). Finally S sends d to P;.

41

— For each group of input gates with output wires «, S receives from the adversary a vector of
additive errors A(Ay). For each group of multiplication gates with output wires ~, S receives
from the adversary a vector of additive errors A(A~).

. In Step 2, for each group of k input gates that belong to some Client, let & denote the output

wires of these input gates. S simulates I1j,putmal @s follows.

— Case 1: Client is an honest party.

(a) S receives from corrupted parties their shares of {[r;|;]:}*_, and [Aq]n_1. For all i €
{1,2,...,k}, S checks whether the shares of [r;|;]; received from corrupted parties are
the same as those received in Fpepmal. If not, S aborts the protocol on behalf of Client.
Otherwise, S generates a random vector as v, + r and samples a random degree-t packed
Shamir sharing [ve, + 7];.

(b) S samples a random vector as pio. Let [Aq]n—1 denote the sharing that Client receives
from all parties, and [A,],_1 denote the sharing where the shares of corrupted parties are
replaced by those learnt by S when emulating Fprepmal- S computes the shares of corrupted
parties of the following sharing

[[p()‘a)ﬂnfl = [)‘aﬂnfl - [[E]]nfb

S sets the shares of honest parties to be 0 and reconstructs the secrets p(Aq).

(c) Recall that S receives a vector of additive errors A(Ay) from the adversary when emulating
FrrepMal- S 5et8 A(fta) = —p(Aa) — A(Aq) and sends o + A(pa) to Pi.

(d) Foralli € {1,...,k}, S computes the shares of [uv,,|;]; of corrupted parties by following
Step 6 of Iljnputmal and sends the shares of corrupted parties to ITgyaluate-

— Case 2: Client is a corrupted party.

(a) S generates a random vector as r = (r1, ...,). Then, based on the secret r; and the shares
of corrupted parties, S computes the shares of [r;|;]; held by honest parties. S sends the
shares of honest parties to Client.

(b) S samples a random vector as A, . Recall that S receives A(A,) from the adversary when
emulating Fpepmal. Based on the secrets Ao + A(Aq) and the shares of corrupted parties,
S samples a random degree-(n — 1) packed Shamir sharing [Ay + A(Aa)]n—1- S sends the
shares of honest parties to Client.

(c) S receives the shares of v, + 7]: of honest parties. Then S reconstructs the whole sharing
and learns the secrets v, + . S computes the inputs of Client by v, = (vo +7) — r and
sends v, to g auate-

(d) S computes po, = Vo — Aar-

e If P, is honest, S receives fi, from Client. S sets A(pg) = o — M-
o If P, is corrupted, S sets A(pa) = —A(Aq)-

(e) Foralli € {1,...,k}, S computes the shares of [u,,|;]: of corrupted parties by following
Step 6 of Ilinputmal and sends the shares of corrupted parties to Ilgyaiyate.

. In Step 3, S will compute p,, and A(u,) for each wire « in the circuit. Recall that S has computed

o and A(p,,) for each output wire of an input gate.

For each addition gate with input wires «, 5 and output wire v, S computes p, = 1o + g and

Alpy) = Alpa) + App).

For each group of multiplication gates with input wires «, 3 and output wires v, S simulates

IT\uiemar as follows.

— Case 1: P; is an honest party.

(a) Recall that S has explicitly generated A, +a and Ag + b when emulating Fprepmal. Also recall
that S received two vectors of additive errors A(Aq + a) and A(Ag + b) from the adversary
when emulating FprepMal-

(b) For a, 3, S learns pio, pg and A(pea), A(pg). S computes vy + @ = po + (Ao + a) and
vg+b=pg+ (Ag +b). Then S sets A(vy) = A(pta) + A(Aq + a) and A(vg) = A(ug) +
A()\/@ + b).

On behalf of P;, S computes and distributes [ve + a + A(va)]r—1 and [vg + b+ A(vg)]k-1
to all parties.

(c) S follows Step 3 of IT\yiema and computes the shares of [p4],,—1 of corrupted parties. Recall
that S receives 7, for each multiplication triple ([a;|;]+, [b:]:]¢, [¢il:]+) from the adversary
when emulating Fprepmal. S sets 1 = (11, ...,1). Also recall that S receives a vector of
additive errors A(A,) when emulating Fprepmal-

S samples a random vector as fi.

42

(d) S receives from corrupted parties their shares of [g~],—1. Let [fiz]»—1 denote the sharing
where the shares of corrupted parties are replaced by those computed by S. S computes the
shares of corrupted parties of the following sharing

[[p(ll"y)ﬂn—l = [[H»yﬂn_1 — [[ui'rﬂn—l-

S sets the shares of honest parties to be 0 and reconstructs the secrets p(u~). Then S sets

A(py) = p(py) + 1 — A(Ay).

(e) Foralli € {1,...,k}, S computes the shares of [v,,|:]:, [vs,|:]: of corrupted parties by follow-
ing Step 5 of IImuiemar. Then S sends A(vg), A(vg) and the shares of {[va,|i]+, [vs, i]]t}le
of corrupted parties to Feyaluate-

— Case 2: P, is a corrupted party.

(a) S receives from P; the shares of [ve + af,—1 and [vg + b]x—1 of honest parties.

e For each of [vg + a]i—1 and [vg + b]x_1, if the shares of honest parties do not lie on a
degree-(k — 1) packed Shamir sharing, S marks the computation as fail. From now, each
time S needs to send a value to Fryaluate, S sends 0 to Feyaiuate. In this case, S will abort
on behalf of honest parties at the end of the protocol.

e Otherwise, S reconstructs the whole sharings [ve + a@]x—1, [vg + b]x—1 and computes the

secrets, which are denoted by UZ\—T—/a, vg + b.

Recall that S has explicitly generated A, + a and Ag + b when emulating Fpepmal-
When the computation is NOT marked as fail, for o, 3, S learns pq, pg. S computes
vata = ua—l—(/)\\a/—i—a) and vg+b = pug+(Ag+b). Then S sets A(vy) = v;_\—l_—/a—(va—i—a)
and A(vg) =vg +b— (’U,@ +b).

(b) For each honest party, S samples a random field element as its share of [u-],—1. Then S

sends the shares of [u~],—1 of honest parties to P;.
If the computation is NOT marked as fail, S follows Step 3 of ITyuumar and computes the
shares of [p~],—1 of corrupted parties. Then S reconstructs the secrets fi~. Recall that S
received a vector of additive errors A(A,) from the adversary when emulating Fprepmal.
Also recall that S receives 7; for each multiplication triple ([a;|:]¢, [b:|:]:, [cil:]:) from the
adversary when emulating Fprepmal. S sets g = (n1,...,mx). S sets A(py) =n — A(Xy) and
computes fi = fiy — A(pt).

(c) If the computation is NOT marked as fail, S follows Step 5 of ITyuwmar and computes the
shares of {[va, |:]:, [vs:|i]:}5_; of corrupted parties. Then S sends A(vq), A(vg) and the
shares of {[va, |+, [vs, i]]t}le of corrupted parties to Feyaiuate-

4. In Step 4, for each group of output gates with input wires «, S simulates the behaviors of honest
parties as follows.
— Case 1: P; is an honest party.

(a) Recall that S has explicitly generated A, + » when emulating Fprepmal- Also recall that S
received a vector of additive errors A(A + r) from the adversary when emulating Fprepmal-

(b) For a, S learns pio, and A(py). S computes vy + 7 = i, + (A + 7). Then S sets A(vy) =
A(pa) + AXa +1).

On behalf of P;, S computes and distributes [vy + 7 + A(vq)]r—1 to all parties.

(c) Foralli € {1,...,k}, S computes the shares of [v,,|;]: of corrupted parties by following
the protocol. Then S sends A(v,,) and the shares of {[v,, |:]:}¥_; of corrupted parties to
]:Evaluate-

— Case 2: P, is a corrupted party.

(a) S receives from P; the shares of [vs + 7]x—1 of honest parties.

e For [vg + 7]k-1, if the shares of honest parties do not lie on a degree-(k — 1) packed
Shamir sharing, S marks the computation as fail. From now, each time S needs to send
a value to Feyaluate, S sends 0 to Feyaluate. In this case, S will abort on behalf of honest
parties at the end of the protocol.

e Otherwise, S reconstructs the whole sharing [vs + 7]—1 and computes the secrets, which
are denoted by v:\:r.
Recall that S has explicitly generated A, + 7 when emulating Fprepmal. When the compu-
tation is NOT marked as fail, for a, S learns p,. S computes vy + 7 = pio + (Ao + 7).
Then S sets A(vy) = Vo F T — (Ve + 7).

(b) If the computation is NOT marked as fail, S follows the protocol and computes the shares
of {[va, |:]+}¥_, of corrupted parties. Then S sends A(v,) and the shares of {[va,|:]:}%_, of
corrupted parties to Feyaluate-

43

Finally, S honestly follow the protocol IIconsistency.- Note that if P; is honest, S has explicitly
generated each degree-(k — 1) packed Shamir sharing that should be distributed by P;. If P; is
corrupted, S learns the shares of honest parties from P;. In either case, S can honestly follow
the protocol Ilconsistency- If S has marked the computation as fail but no honest party aborts in
HConsistency; S aborts.

This completes the description of the simulator S.

Now we use hybrid arguments to prove the security of ITgajuate-

Hybrid,: In this hybrid, S honestly follows the protocol.

Hybrid, : In this hybrid, S checks the degree-(k — 1) packed Shamir sharings distributed by P,
as described above. If there exists some degree-(k — 1) packed Shamir sharing such that the shares
of honest parties do not lie on a degree-(k — 1) packed Shamir sharing, S marks the computation as
fail. S simulates [Tconsistency as described above. If S has marked the computation as fail but no
honest party aborts in /Zconsistency, S aborts.

By Lemma 6, if there exists some degree-(k — 1) packed Shamir sharing such that the shares of
honest parties do not lie on a degree-(k — 1) packed Shamir sharing, then all honest parties abort
with overwhelming probability. Therefore the probability that S has marked the computation as
fail but no honest party aborts in IIconsistency is Negligible. Thus, Hybrid, is statistically close to
Hybrid,,.

Hybrid,: In this hybrid, for each group of input gates that belong to some Client, let & denote
the output wires of these group of gates. For each [v,,|;]:, S computes the secret v,,, and the shares
of corrupted parties by using the shares of honest parties. S sends v, and the shares of {[v,, |:]:}%_;
of corrupted parties to Feyaiuate-

Then, S computes v, for each wire « and prepares the values for Fg,ajate as follows:

- For each addition gate with input wires «, 5 and output wire v, S computes v, = vq + vg.

— For each group of multiplication gates with input wires «, 3 and output wire «, S computes
the secrets {v,,,v3, }¥_; and the shares of {[va,|:]s, [vs, |:]: }1 1 of corrupted parties by using
the shares of honest parties. Then S computes A(vy) = Vo — vo and A(vg) = vg — vg,
where vo = (Vays---,Va,) and vg = (vg,,...,05,). S sends A(vy), A(vg) and the shares of
{[vaies Tvg: |l oo 1 of corrupted parties to Fevaluate-

S computes v, = Vg * Vg.

— For each group of output gates with input wires «, S computes the secrets {v,, }*_, and the
shares of {[[v% li]e}k; of corrupted parties by using the shares of honest parties. Then S computes
A(vg) = Vg — Vo, Where vg = (Vag s+ -5 Vo)-

S sends A(vy) and the shares of {[v,, i]]t}le of corrupted parties to Feyanuate-

Finally, honest parties take the shares from Fgyajuate a5 oOutput.
We prove that Hybrid,, is identically distributed to Hybrid, .

— For each group of input gates with output wires c, we show that the shares of {[v,, |:]:}%_; of
honest parties in both hybrids are identical. In Hybrid,, honest parties take their shares computed
in ITgyaluate @s output. In Hybrid,, we first recover the secrets v,, and the shares of {[va, |:]: 15,
of corrupted parties from the shares held by honest parties. These values are sent to Feyajuate,
and Fgvauate computes the shares of honest parties based on the secrets v, and the shares of
{[va, i) }E_, of corrupted parties. Finally, honest parties take the shares computed by Feyajate as
output. Note that for a degree-t Shamir sharing, it is determined by the shares of honest parties,
and it is also determined by the shares of corrupted parties plus the secret. Thus, the shares
computed by Feyaate in Hybrid, are identical to the original shares held by honest parties.
Thus, the shares of {[va, |;]¢}¥_, of honest parties in both hybrids are identical.

— Note that S computes v, in the same way as that in Fgyauate- For each group of multiplica-
tion gates with input wires «, 8 and output wires -, the values v, and vg computed by S
are identical to those computed by Feyaluate- In Hybrid,, honest parties output their shares of
{[va:liles [vg: 1] }E_, . In Hybrid,, we first recover the secrets v, vg and the shares of {[va, |:]t, [vs,
of corrupted parties from the shares held by honest parties. Then, S sends the shares of corrupted
parties and A(vy) = Vo — Vo, A(vg) = Vg — Vg t0 Feyalyate. SiNCe Feyaate has computed the
same values v, and vg, Fevaate cOmputes the shares of honest parties based on the secrets
vo + A(ve) and vg + A(vg), which are just v4, vg, and the shares of corrupted parties. Thus
the shares computed by Fgyajuate in Hybrid, are identical to the original shares held by honest
parties.

Thus, the shares of {[vq,|:]:, [vs;

]]}7,1

;¢ %, of honest parties in both hybrids are identical.

44

— Following the same argument, we can show that for each group of output gates with input wires
a, the shares of {[v,,|:]:}*_, of honest parties in both hybrids are identical.

Thus, Hybrid, is identically distributed to Hybrid, .

Hybrid; ,: This hybrid is identical to Hybrid,. From Hybrid, , to Hybrid; 5, we focus on the
case where P; is an honest party.

Hybrid; ;: When P is honest, S computes the shares of corrupted parties as follows.

— For each group of input gates with output wires «, recall that each degree-t Shamir sharing
[va, |:]+ is computed by

it = [va + 7 — [rilile-

Recall that v, + r]: is distributed by the Client that holds inputs for these input gates. S
computes the shares of corrupted parties from the shares of honest parties. For [r;|;]:, S receives
from the adversary the shares of corrupted parties when emulating Fprepmai- Then, S computes
the shares of [u,,|:]: of corrupted parties.

— For each group of multiplication gates with input wires «, 3, each degree-t Shamir sharing [v,, |;]:
is computed by

[va,

it = [va + alk—1 — [aili]:-

Recall that v, + a]i—1 is distributed by P;. S computes the shares of corrupted parties from the
shares of honest parties. For [a;|;]:, S receives from the adversary the shares of corrupted parties
when emulating Fpepmal- Then, S computes the shares of [v,,|:]: of corrupted parties.
Similarly, S computes the shares of [vg,|;]; of corrupted parties.

— For each group of output gates with input wires «, S computes the shares of [vg,|;]; of corrupted
parties in the same way as that for the input wires of multiplication gates.

[va,

The distribution of Hybrid; ; is identical to that of Hybrid, ;.

Hybrid; ,: When P, is honest, S computes A(vy), A(vg) for each group of multiplication gates
and computes A(vy) for each group of output gates as follows.

For each group of multiplication gates with input wires «, 3, recall that [vq,|:]: = [va + a]: —
[a;l:]:. Since [a;|;]; is prepared by Fprepmal and the secret is determined by the shares of honest
parties, the adversary cannot insert any additive error to the secret a;. We have A(v,,) = A(va, +a;),
which means that A(v,) = A(ve + a). Recall that v, + a is computed by pg + (Ao + @). S has
received A(Ay + a). Thus S only needs to compute A(pg).

Since P; reconstructs { . } for the output wires of input gates and multiplication gates, it is
sufficient to first compute {A(u,)} for the output wires of input gates and multiplication gates,
and then compute {A(u,)} for the input wires of multiplication gates. For each group of input
gates with output wires «,

- If Client is honest, let [A,],-1 denote the sharing that Client receives from all parties, and
[Aa]ln—1 denote the sharing where the shares of corrupted parties are replaced by those learnt by
S when emulating Fprepmal- S computes the shares of corrupted parties of the following sharing

[p(ka)]]n—l = [[)\a]]n—l - [[XHn—l-

S sets the shares of honest parties to be 0 and reconstructs the secrets p(Ay). Then the secrets of

[Aaln—1, Aa, are equal to Ag + p(Aa). o
On the other hand, when emulating Fpepmal, S receives A(A,) and we have Ay = Ao + A(Aq).
Therefore, Ao, = Ao + p(Aa) + A(Aa)-

Since Client sends fiq = Va — Aa = o — (p(Aa) + A(Aq)) to Py, we have A(uq,) = —(p(Aa) +
A(Aq)). In this way, S computes A(p,) from p(Ay) and A(Ay).
— If Client is corrupted, recall that S has computed v, in Hybrid371. S computes o = Vo — Aar-

After S receives o, from Client, S computes A(po) = o — Ba-

For each group of multiplication gates with output wires -y, S computes the shares of [ft],—1 of
corrupted parties by following Step (3) of ITyyitmal- S receives from corrupted parties their shares
of [pt]n—1. Let [fi5]»—1 denote the sharing where the shares of corrupted parties are replaced by
those computed by S. S computes the shares of corrupted parties of the following sharing

[[p(l”“/)ﬂnfl = [[ll"‘/ﬂnfl - [[Hiy]]nfy

45

S sets the shares of honest parties to be 0 and reconstructs the secrets p(u-). Then the secrets of
111, i, are equal to 72y + p(jas).

On the other hand, when emulating Fprepmal, S receives A(Ay) and n = (n1,...,n;). We have
iy = iy +1n — A(X,). Therefore, py = py + p(pt4) +1 — A(Ay). In this way, S computes A(p)
from p(p),m, A(Ay).

The distribution of Hybrid; , is identical to that of Hybrid, ;.

Hybrid; ;: When P is honest for each group of multlphcatlons with input wires a, 3, S
randomly samples two vectors as Aq + a, Ag + b and then computes a = (Aq + @) — A, b =
(Ag + b) — Ag. For each group of output gates with input wires «, S randomly samples a vector as
Ao + 7 and then computes 7 = (Ay +7) — Aa-

The difference is that in Hybrid; ,, S first randomly samples a, b, and then computes Ay +
a, Ag + b for multiplication gates and A, + r for output gates. Note that the distribution of these
values are unchanged.

The distribution of Hybrid; ; is identical to that of Hybrid, ,.

Hybrid; ,: When P is honest, for each group of multiplication gates with output wires v, S
samples random values as the shares of [fi5], (defined in Hybrid; ,) of honest parties. Then, S
uses the shares of corrupted parties (computed in Hybrid,; ,) to compute 1z-. Next, S computes
My = iy — N + A(Ay) and computes Ay = vy — fi,.

In Hybrid3’3, the degree-(n — 1) packed Shamir sharing [A,],—1 generated by Fprepmal is @
random degree-(n — 1) packed Shamir sharing given the shares of corrupted parties. This is because
the secrets are equal to A + A(Ay) and A, are uniformly random. Therefore, [fi],—1 is a random
degree-(n — 1) packed Shamir sharing given the shares of corrupted parties. In particular, the shares
of honest parties are uniformly distributed and independent of the shares of corrupted parties. Thus,
the shares of [gi5], are identically distributed in both Hybrid, ; and Hybrid, ,.

By using the shares of [fz5],—1 of corrupted parties, we can reconstruct the secrets fi-,. From
the argument in Hybrid; ,, we have 115 = py + 1 — A(A,). We also have vy, = p + Ay. Thus, we
can compute A, from fi.

The distribution of Hybrid; , is identical to that of Hybrid, ;.

Hybrid375: When P, is honest, S simulates //jnputmal as described above.

— When Client is honest, S first checks the shares of {[r;|;];}*_, on behalf of Client. S aborts
on behalf of Client if the shares of corrupted parties are different from those received from the
adversary when emulating Fprpmal. Note that a degree-¢t Shamir sharing is determined by the
shares of honest parties. In Hybrid, ,, honest parties always use the correct shares. If corrupted
parties use different shares from those sent to Fprepmal, Client will abort. Thus, S aborts on
behalf of Client in Hybrid, ; if and only if Client aborts in Hybrid, ,.

Then, S samples a random vector as v, + r and generates a random degree-t packed Shamir
sharing [ve + 7]:. In Hybrid, 4, r are uniformly random. Therefore, v, + 7 are also uniformly
random. Also [vs + 7]: is a random degree-t packed Shamir sharing of [v, + 7];. Thus, the
distribution of [vs +], is identical in both hybrids.

Next, S samples a random vector as p, and computes A, = Vo — Ue. IN Hybrid37 45 Aq are
uniformly random. Therefore, u,, are also uniformly random. Thus, the vector p, has the same
distribution in both hybrids.

Finally, S computes po + A(pto) and sends them to P;. Here A(u) are computed in the same
way as that in Hybrid; , (described in Hybrid; ,).

— When Client is corrupted, S first generates a random vector r and then computes the shares
of {[r;|:]+}%_, of honest parties based on the shares of corrupted parties. Note that the way of
generating {[r;|;]:}%_, is identical to that in FprepMal il Hybrid37 4- Thus, the shares of {[r;]:]:}%_,
of honest parties have the same distribution in both hybrids.

Then, S first generates a random vector A, and samples a random degree-(n — 1) packed Shamir
sharing [Aa + A(Aa)], where A(Ay) is received from the adversary when emulating Fprepmal-
Note that the way of generating [Aq + A(Ao)] is identical to that in Fprepmal in Hybrid, ,. Thus,
the shares of [Ao + A(Aq)] of honest parties have the same distribution in both hybrids.

Next, S receives the shares of [v, + 7]; of honest parties and reconstructs v, + . S computes
Vo = (Vo +) — r. In Hybrid, ,, v, are computed from the shares of {[v,,|:]:}F_; of honest
parties. Recall that [v,, |:]: = [va + 7]t — [rili]:. Therefore, vy, = (va, + ;) — 7i, which means
that v, = (vs + r) — r. The inputs extracted by S have the same distribution as those computed
in Hybrid, ,.

46

In summary, the distribution of Hybrid, 5 is identical to that of Hybrid; ,.

Hybrid; ;: We observe that when P; is honest, all messages sent to corrupted parties and
corrupted clients, and all values sent to Fgyauate have been simulated by S without knowing the
inputs of honest parties in Hybrid, ;. The inputs of honest parties are only used to generate the
views of honest parties. In this hybrid, when P; is honest, S simulates the whole protocol ITg,ate
as described above. The distribution of Hybrid; ¢ is identical to that of Hybrid, ;.

Hybrid, : This hybrid is identical to Hybrid, ¢. From Hybrid, , to Hybrid, 5, we focus on the
case where P is a corrupted party.

Hybrid, ;: When P, is corrupted, S computes the shares of corrupted parties as follows.

— For each group of input gates with output wires «, recall that each degree-t Shamir sharing
[va, |:]+ is computed by
[Va;lilt = [va + 7]t — [rili]le-

Recall that [v,, + 7]: is distributed by the Client that holds inputs for these input gates. S
computes the shares of corrupted parties from the shares of honest parties. For [r;|;]:, S receives
from the adversary the shares of corrupted parties when emulating Fpepmar. Then, S computes
the shares of [u,,|;]: of corrupted parties.

— For each group of multiplication gates with input wires «, 3, each degree-t Shamir sharing [v,, |:]+
is computed by

[va,li]e = [va + alk—1 — [aild]-

Recall that [vs + a]x—1 is distributed by P;.

e If the computation is marked as fail, S sets the shares of [v,,
0.

e Otherwise, [v + a]x—1 is a valid degree-(k — 1) packed Shamir sharing. S computes the shares
of corrupted parties from the shares of honest parties. For [a;|;]:, S receives from the adversary
the shares of corrupted parties when emulating Fprepmai. Then, S computes the shares of
[va,l:]: of corrupted parties.

Similarly, S computes the shares of [vg,|;]; of corrupted parties.

— For each group of output gates with input wires «, S computes the shares of [vg,|;]; of corrupted
parties in the same way as that for the input wires of multiplication gates.

i]+ of corrupted parties to be all

Observe that the shares of corrupted parties computed in Hybrid, , is different from those in
Hybrid, , if and only if some degree-(k — 1) packed Shamir sharing distributed by P is invalid in
the sense that the shares of honest parties do not lie on a degree-(k — 1) polynomial. In this case,
both Hybrid, , and Hybrid, ; will abort. Therefore, the distribution of Hybrid, , is identical to that
of Hybrid, .

Hybrid, ,: When P, is corrupted, S computes A(vq), A(vg) for each group of multiplication
gates and computes A(v,,) for each group of output gates as follows.

For each group of multiplication gates with input wires «, 3, recall that [v,|:]; = [va + alt —
[a:il:]:. Since [a;|;]; is prepared by Fprepmal and the secret is determined by the shares of honest
parties, the adversary cannot insert any additive error to the secret a;. We have A(v,,) = A(vqy,; +as),
which means that A(vy) = A(ve + a). Recall that [ve, + a],—1 is distributed by P;.

- If the computation is marked as fail, S sets A(vq, +a) = 0.
— Otherwise, [vg + a]x—1 is a valid degree-(k — 1) packed Shamir sharing. S computes the secrets

vo + a and the shares of corrupted parties.

To compute A(v,, + a), it is sufficient to compute the correct values v, + a. Recall that v, + a is
computed by po + (Ao + @). S has generated A, + @ when emulating Fp,epmal. Thus S only needs
to compute fio,.

S will first compute {A(u,)}, for the output wires of input gates and multiplication gates, and
then compute {u,}, for the input wires of multiplication gates. For each group of input gates
with output wires «, recall that S has computed v, in Hybrid,. S has also generated A, when
emulating Fprepmal. S cOMpUtes o = Vo — Aa.

For each group of multiplication gates with input wires «, 3 and output wires -, we have
Vy = Ea/ * Eﬁ/ in FEvaluate-

— If the computation is marked as fail, S does nothing. Note that in this case, S will always use 0
as the vectors of additive errors. There is no need to compute ft..

47

— Otherwise, v + a]x—1 and [vg + b]ix—1 are valid degree-(k — 1) packed Shamir sharings. In

particular, v, + @ = U, + a and vg + b = vg + b. Again, this is because each value in a, b is
shared by a degree-t Shamir sharing. The adversary cannot insert additive errors to the values
a,b.

S computes the shares of [u~],—1 of corrupted parties by following Step (3) of ITyyiemar- Let [fi4]n—1
denote the sharing where the shares of corrupted parties are those computed by S. S reconstructs
the secrets i by using the shares of all parties. Note that, [v, + a]r—1 and [vg + b]—; are valid
degree-(k — 1) packed Shamir sharings, we have

iy = (6a + @) * (55 + b) — (6a + @) < b
— (vt b)xa+c—(Ay+ANy)).

The last term is because the secrets of [Ay],,_: distributed by Fpepmal are equal to Ay + A(A).
Recall that Feyaiate receives n = (11, ..., nx) from the adversary and computes ¢; = a; - b; + ;.
Thus, we have

Hy =va *vg + 1 — (Ay + A(Ay)).

Therefore, p, = ft5 — 1+ A(A,. Since S receives n and A(A,) from the adversary when emulating
FrrepMal, S computes g, from i, 1, A(A,.

Observe that the vectors of additive errors computed in Hybrid, , is different from those in
Hybrid, , if and only if some degree-(k — 1) packed Shamir sharing distributed by P is invalid in
the sense that the shares of honest parties do not lie on a degree-(k — 1) polynomial. In this case,
both Hybrid, ; and Hybrid, , will abort. Therefore, the distribution of Hybrid, , is identical to that
of Hybrid, ;.

Hybrid, ;: When P is corrupted, for each group of multiplications with input wires «, 3, S
randomly samples two vectors as Ao + @, Ag + b and then computes a = (Aa + a) — Ao, b =
(Ag + b) — Ag. For each group of output gates with input wires «, S randomly samples a vector as
Ao + 7 and then computes r = (A + 7)) — An-

The difference is that in Hybrid, ,, S first randomly samples a, b, and then computes Ay +
a, Ag + b for multiplication gates and A, + r for output gates. Note that the distribution of these
values are unchanged.

The distribution of Hybrid, ; is identical to that of Hybrid, ,.

Hybrid, ,: When P, is corrupted, for each group of multiplication gates with output wires v, S
samples random values as the shares of [fi5],—1 (defined in Hybrid, ,) of honest parties.

— If the computation is marked as fail, S does nothing.
- Otherwise, S uses the shares of corrupted parties (computed in Hybrid, ,) to compute 5. Next,
S computes py, = i, — 1+ A(A,).

For each group of multiplication gates, S does not generate the shares of {([a;|]¢, [b:]:]¢, [cili]¢) oy
and [A4],—1 of honest parties and does not compute (a, b, c) and A,. For each group of output
gates, S does not generate the shares of {[r;|;]:}*_, of honest parties and does not compute r.
These values are no longer needed in Hybrid, ,.

In Hybrid, 3 the degree-(n — 1) packed Shamir sharing [A],—1 generated by Fpepmal is @
random degree (n — 1) packed Shamir sharing given the shares of corrupted parties. This is
because the secrets are equal to Ay + A(Ay) and A, are uniformly random. Then the shares
of [Ay]»—1 of honest parties are uniformly random and independent of the shares of corrupted
parties. Since [[ft5],—1 is masked by [A,],—1, the shares of honest parties are uniformly distributed
and independent of the shares of corrupted parties. Thus, the shares of [fz],—1 are identically
distributed in both Hybrid, ; and Hybrid, ,.

The distribution of Hybr1d4 4 1S identical to that of Hybrid, ;. At this point, the behaviors of
honest parties in Step 3 and Step 4 of Igyalate are fully simulated by S without relying on honest
parties’ inputs.

Hybrid475: When P, is corrupted, S simulates ITj,,,tmal @s described above.

— When Client is honest, S first checks the shares of {[r;|;]:}%_, on behalf of Client. S aborts
on behalf of Client if the shares of corrupted parties are different from those received from the
adversary when emulating Fprepmal. Note that a degree-t Shamir sharing is determined by the
shares of honest parties. In Hybrid, ,, honest parties always use the correct shares. If corrupted

48

parties use different shares from those sent to Fprepmal, Client will abort. Thus, S aborts on
behalf of Client in Hybrid, ; if and only if Client aborts in Hybrid, ,.

Then, S samples a random vector as v, + r and generates a random degree-t packed Shamir
sharing [va + 7[;. In Hybrid, 4, r are uniformly random. Therefore, v, + 7 are also uniformly
random. Also [v,, + 7]; is a random degree-t packed Shamir sharing of [v, +];. Thus, the
distribution of v, +], is identical in both hybrids.

Next, S samples a random vector as pq. In Hybrid, ,, Ao are uniformly random. Therefore,
Mo = Vo — A are also uniformly random. Thus, the vector p., has the same distribution in both
hybrids.

Finally, let [A,],_1 denote the sharing that Client receives from all parties, and [A4],_1 denote
the sharing where the shares of corrupted parties are replaced by those learnt by S when
emulating Fpepmal. S computes the shares of corrupted parties of the following sharing

HP(AQ)]]n—l = [[)‘Oz]]n—l - HXHH—L

S sets the shares of honest parties to be 0 and reconstructs the secrets p(A). Then, we have
pP(Aa) = Ao — Ag. On the other hand, recall that S receives a vector of additive errors A(Aa)
from the adversary when emulating Fprepmal. We have Ao = Ao + A(Aa). Thus, Ay = Ao +
A(Aa) 4+ p(Aa)- Since Client should send 1, = vq — Ao t0 Py, S sets Alpra) = —p(Aa) —A(Aa)
and sends pto + A(po) to Py. The distribution of the values sent to P; is identical in both hybrids.
— When Client is corrupted, S first generates a random vector r» and then computes the shares
of {[r;|:]+}¥_, of honest parties based on the shares of corrupted parties. Note that the way of
generating {[r;|;];}}_, is identical to that in Fprepmar in Hybrid, ,. Thus, the shares of {[r;[s]:}}_,
of honest parties have the same distribution in both hybrids.
Then, S generates a random vector A, and samples a random degree-(n — 1) packed Shamir
sharing [Aq + A(Aa)], where A(Ay) is received from the adversary when emulating Fprepmal-
Note that the way of generating [Aa + A(Aa)] is identical to that in Fprepmar in Hybrid47 4- Thus,
the shares of [Ao + A(Aq)] of honest parties have the same distribution in both hybrids.
Next, S receives the shares of [v, + 7]; of honest parties and reconstructs v, + r. S computes
Vo = (Vo +) — 7. In Hybrid, ,, v, are computed from the shares of {[vq,|:]:}}—, of honest
parties. Recall that [vy, |;]: = [va + 7]t — [7:l:]:. Therefore, vy, = (va, + 7i) — r;, which means
that v, = (vs + r) — r. The inputs extracted by S have the same distribution as those computed
in Hybrid, ,.

In summary, the distribution of Hybrid, ; is identical to that of Hybrid, ,. Note that Hybrid, ;
is the execution in the ideal world. We have that Hybrid, ; is statistically close to Hybrid,, the
execution in the real world. Therefore, protocol /g auate Securely computes the ideal functionality
Fevaluate D the Fprepma-hybrid model against a fully malicious adversary who controls ¢ corrupted
parties and up to c clients.

D.4 Online Phase — Verification

To check the correctness of the computation, it is sufficient to check whether the adversary launches
an additive attack. We describe the functionality Fy.ir, for the verification of the computation in
Functionality 11.

,_[Functionality 11: Fyeris, }

1. Let C denote the circuit.

— For each group of input gates with output wires «, Fverir, receives from honest parties their
shares of {[va, |:]¢}5_. For alli € {1,2,...,k}, Fveity recovers the whole sharing [va,|:]: and
reconstructs the secret v,,. Then Fveriry sends the shares of [uq, |:]: of corrupted parties to the
adversary.

— For each group of multiplication gates with input wires o, 3, Fverity receives from honest par-
ties their shares of {[va,|:]¢, [[v5i|i]]t}f=1. For all ¢ € {1,2,...,k}, Fvenry recovers the whole
sharings [va, |:], [vs,|:]+ and reconstructs the secrets v,,, vg,. Then Fverir, sends the shares of
[va; i, [vs, |:]« of corrupted parties to the adversary.

- For each group of output gates with input wires c, Fverir, receives from honest parties their
shares of {[va, |i]¢}5_. Foralli € {1,2,...,k}, Fveniry recovers the whole sharings [va, |:]: and

49

reconstructs the secrets va,. Then Fyerir, sends the shares of [vq, |:]: of corrupted parties to the
adversary.
2. Fveity evaluates the circuit C' by using the secrets of the degree-t Shamir sharings associated with
input gates.
- For each addition gate with input wires «, S and output wire v, Fverif, COMputes vy, = va + vg.
— For each multiplication gate with input wires «, 8 and output wire v, Fverir, computes A(va) =
Ua — Vo and A(vg) = vg — vg. Then, Fyeriry sends A(vq), A(vg) to the adversary. Finally, Fyeriy
computes v, = Vg * Ug.
- For each output gate with input wire a, Fveriry computes A(ve) = Vo — va. Then, Fveris, sends
A(ve) to the adversary.
3. Fverify checks whether there exists an input wire « of multiplication gates and output gates such that
A(va) # 0. If true, Fveriry sends abort to all parties. Otherwise, Fverir, sends accept to all parties.
4. On receiving abort, Fverif, sends abort to all parties.

To realize Fyeriry, We follow the idea in [BBG'21].

Verification in [BBGT21]. Recall that our online protocol follows a similar approach to that
in [BBG™21]. In particular, in the online protocol in [BBG*21], all parties also only obtain sharings
for input wires of multiplication gates but NOT for output wires of multiplication gates. As noted
in [BBG™21], for each input wire of multiplication gates and output gates, the wire value should
be equal to some linear combination of the inputs of the circuit and the outputs of multiplication
gates. Note that the output of each multiplication is equal to the product of its two inputs. Thus,
the verification of the computation is transformed to verifying O(|C|) equations, one for each input
wire of multiplication gates and output gates. In particular, each equation only contains degree-2
monomials (for the outputs of multiplication gates) and degree-1 monomials (for the inputs of the
circuit).

The verification in [BBG™21] is adapted from the techniques in [BBCG*19]. The achieved
communication complexity is sub-linear in the circuit size. We observe that we can potentially use a
similar approach to that in [BBG*21] to realize Fyerify-

With more details, recall that the work [BBG™21] focuses on the strong honest majority setting,
where the number of corrupted parties ' = (1/2 — €) - n. They choose to use a degree-t packed
Shamir sharing, where ¢t = (n — 1)/2, to store ¥’ = t — ¢’ 4 1 secrets. Note that with ¢t < n/2, a
degree-t packed Shamir sharing can be fully determined by the shares of honest parties, and the
multiplication between two degree-t packed Shamir sharings can be done by a natural extension
of the DN multiplication protocol [DNO7], which works for the single-secret setting. In [BBGT21],
the authors note that a degree-t packed Shamir sharing [z]; can be viewed as k' degree-t Shamir
sharings [x1 1], [z2|2]¢, - - -, [|#]¢- Their verification works on degree-d Shamir sharings, one for
each wire value. Recall that we also obtain degree-t Shamir sharings, one for each wire value. Thus,
the verification protocol in [BBG'21] can potentially be used in our case.

Drawbacks of the Verification in [BBG'21]. However, the verification protocol in [BBGT21] does
not use the techniques in [BBCG*19] in a black box way. In particular, their protocol has compu-
tation complexity O(|C| - \/|C]) due to the use of the techniques in [BBCG*19] (see an analysis
in [BGIN19]), which can be a bottleneck for the concrete efficiency.

Our idea is to use the techniques in [BBCGT19] in a black box way. It allows us to directly use
other variants of the techniques in [BBCG'19] in a black box way, for example, the verification
protocol in [GS20], which naturally offers a trade-off between the round complexity and the
computation complexity. Concretely, for all d < /|C], the verification protocol in [GS20] can
achieve O(|C| - d) computation complexity at the cost of log, |C| rounds. This trade-off is also
explored in the work [BGIN19] for 3-party setting and [BGIN20] for n-party setting.

Step 1: Obtaining a Single Equation. We label the groups of input gates, multiplication gates, and
output gates by 1,2,...,m. We have m < |C|/k. For alli € {1,...,m},

— If the i-th group of gates are input gates with output wires «, we set

(o106 [0$21510) = ([vay |51, [11;1)-

Here the shares of [1|;]; are all 1.

50

— If the i-th group of gates are multiplication gates with input wires «, 3, we set

(2106, [0$21510) = ([vay |51, [o,151e)-

— If the i-th group of gates are output gates with input wires o, we set

([t 1520 1083 1530) = (Lo, 53, 12150
Here the shares of [1|;]; are all 1.

Consider the following set

o [v@\]+ is associated with some input wire
(b i,7) 4,5 17
7y

of multiplication gates and output gates.

Then, the verification of the computation can be represented in the following form: For each
(b,i,7) € T, the degree-t Shamir sharing [[vz(bj) |;]+ should satisfy

ICl/k &

b,i, 1) 2
Z Z 9(1 Z2J) él 2N EI?KZ)’

01=1l>=1

where {9(o j)} ¢, .0, are some known coefficients related to the circuit structure. We transform the
verification of these m equations to the verification of a single equation. Recall that K is an extension
field of IF such that |K| > 2%, where x is the security parameter. All parties invoke Fc.;, to generate
a random value r € K. Let u(b,i,5) = (i —1) -2k + (j — 1) - 2+ b. Then, all parties multiply r*(>#:7)~1
to the equation for 11() and sum them up. The final equation is

N k IC|/k (1) (2)
Z Tu(b,m)—l, § E @él,éz Wl 0 - 21,62) (D
(b,i,5)€T =1 £,=1

— rt b,i 1 (b,i,7)
where Oy, 0, = >4 jyer ™ (b= 9 ¢

1,2

Step 2: Performing Inner-Product Operations Via [GS20, BGIN20]. Recall that all parties hold degree-¢

Shamir sharings M,bj) |;]+ for each (b, 1, j). For the LHS of Equation 1, all parties can locally sum up
the degree-t Shamir sharings that use the same secret slot. Concretely, for each ¢» € {1,2,...,k},
all parties compute [, |r,]: = Y, 4y)er 727 - [[vg’gzuz]]t.

For the RHS of Equation 1, we want to compute a degree-t Shamir sharing of the inner-product
result Zflz/lk O .0, (véi’)eg -véf?eg). We rely on the following two functionalities Fi,ner and Finnerverify -
The functionality Fj,.., allows all parties efficiently compute the inner-product operation. It can be
instantiated by an extension of the DN multiplication protocol (this is a different extension from the
one used in [BBG'21]). The communication complexity is O(n) field elements. In particular, the
communication complexity is independent of the dimension ¢. We refer the readers to [GS20] for
the description of the protocol that realizes Fjnner (Protocol 10 in [GS20]).

The functionality Fj,..;, however, allows an additive error chosen by the adversary. We need
the second functionality Finnerverify to check the correctness of the inner-product result. The second
functionality Finerverify can be realized by techniques in [BBCG'19]. We choose to use the variants
presented in [GS20]'® and [BGIN20] which supports offers a trade-off between the round complexity
and the computation complexity. Both protocols can achieve O(log ¢) rounds with communication
complexity O(n? - log/ - x) field elements.

16 The original protocol in [GS20] is to verify a batch of multiplication triples. However, their first step is to
transform a batch of multiplication triples to one inner-product triple. We can simply view the innner-product
triple we want to verify as the output of the first step in [GS20].

51

,_[Functionality 12: Fj e }

1. Finner receives the secret position ¢ from all parties. Let ([x1]i]l¢, . . ., [z¢|:]¢) and ([yils]e, - - -, [yels]e)
denote the input sharings. For all j € {1,2,..., £}, Finer receives from honest parties their shares of
[z;]:]: and [y;|:]+- Then Finner reconstructs the secrets x;, y;. Finner further computes the shares of
[z;l:]¢, [y;]:]+ held by corrupted parties, and sends these shares to the adversary.

2. Finner receives from the adversary a set of shares {z; };ccor- and an additive error .

3. Finner cOmputes z = Zf.:l z; - y; + n. Based on the secret z and the ¢ shares {z;}iccorr, Finner
reconstructs the whole sharing [z|;]: and distributes the shares of [z|;]+ to honest parties.

,_[Functionality 13: Finnerverify]

1. Fimerverity reCeives the secret position 4 from all parties. The input is denoted by

((Tz1lale, - - -5 [zelale)s (Qyalile, - - - [welile), [2lale)-

— For all j € {1,2,...,€}, Finnerveriy Teceives from honest parties their shares of [z;|;]: and
ly;lille- Then Finnerveriry reconstructs the secrets x;, y;. Finnerverity further computes the shares
of [z;]:]+, [y;|:]+ held by corrupted parties, and sends these shares to the adversary.

— Finnerverify receives from honest parties their shares of [z|;]:. Then Finnerverity reconstructs the secret
z. Finnerverity further computes the shares of [z|;]: held by corrupted parties, and sends these
shares to the adversary.

— Finnerverify COMputes n = z — Zf.:l z; - y; and sends 7 to the adversary.

2. Finnerverify checks whether 7 # 0. If true, Fianerverity Sends abort to all parties. Otherwise, Finnerverify
sends accept to all parties.
3. On receiving abort, Finnerverify SeNds abort to all parties.

By using Finner and Finnerverify, all parties can compute a degree-t Shamir sharing [ye, |¢, [+ such

that
IC|/k

1 2
Yo =) Onts (Uél,)ez 'Uél,)éz)'
f=1

Step 3: Checking Summation of Sharings. After step 2, all parties hold {[x;|:]s, [w:l:]¢}5 . In
particular, Zle x; is equal to the LHS of Equation 1 and Zle y; is equal to the RHS of Equation 1.

Let [z;|:]+ = [=:l:]¢ — [v:l:]: for all i € {1,2,...,k}. The problem is reduce to checking whether
Zf=1 zi = 0.

To this end, each party P; prepares and distributes & random degree-¢ Shamir sharings {[[ogj) li]e e,

such that the summation of the secrets Zle ol(-j) = 0. Then, for all i {1,...,k}, all parties locally
compute [o;|;]: = Z?:I[[ogj |:]s. We will use {[o;];]¢}*_, as random masks.
All parties invoke Fc.i, to generate a random value ' € K. Then for all 7 € {1,...,k}, all

parties compute 1’ - [2;];]+ + [o;]:]+ and reconstruct secret to every party. Each party checks whether
Zle(Tl -z +0;) =0.

Summary of Our Verification Protocol. We describe our verification protocol in ITverit,. The communi-
cation complexity of Ily.f, is sub-linear in the circuit size. Therefore, it does not affect the concrete
efficiency. Also, by using techniques in [GS20, BGIN20] to instantiate Finnerverify, We estimate that
the computation complexity of the verification protocol will not become the bottleneck of the
running time.

,_[Protocol 14: Iy

1. Defining Inputs: Let C' denote the circuit. All groups of input gates, multiplication gates, and output
gates are labeled by 1,2,...,m. We have m < |C|/k. Forall: € {1,...,m},
— If the 4-th group of gates are input gates with output wires a, all parties hold {[va, [:]¢}5_,. All

parties set
1 2
(006 15D, 02 1510) = (v 15D, [L111)-
Here the shares of [1|,]: are all 1.

52

— If the i-th group of gates are multiplication gates with input wires «, 3, all parties hold
{[va; lile, [vs, s+ }izn- All parties set

(I8 1316, 02 1500) = (vas 15D+, Tos, 15T0)-
— If the i-th group of gates are output gates with input wires o, all parties hold {[va, |:]: }i=:. All

partles set
([10e [021510) = ([ay |51, [L151)-

Here the shares of [1|,]; are all 1.
2. Step 1 — Obtaining a Single Equation: Let T be the set defined as below:

(b.i.) [[vgl’]? ;] is associated with some input wire
%,7) : ’
of multiplication gates and output gates.

For all (b,i,5) € T, let {92’ 2’2])}41,@2 be the coefficients such that

[Cl/k k

(b,,7) (1) (2)
Z Z 951 52? 21152 Uy, @2)
=1 Lo=1

All parties invoke Fcoin and generates a random value r € K. Let u(b, 4, j) = (¢—1)-2k+(j—1)-2+b.
Then for all ¢, € {1,...,m},¢> € {1,...,k}, all parties locally compute

u(b,i,j)—1 b,1,
Ouia= o rEI g

(b,i,5)€T
All parties will verify
k ICI/k
Z p®en 'Uz(,bj) = Z Z Oy 05 - “g)h : (gf?zg) (@Y)
(b,id)ET £o=1 01=1

3. Step 2 — Performing Inner-Product Operations:
(a) Foralll; € {1,2,...,k}, all parties locally compute [¢, |e,[¢ = 3= 4 i 45)er pu(brirtz) =1 [[U§b22|22]]t.
Then, the LHS of Equatlon 1 is equal to Z L0 @o
(b) Forall 4, € {1,2,...,k},

i. All parties first locally compute [O¢, ¢, ~v2?[2 leo]t = Oey s - [[véi?£2|g2]]t forall¢, € {1,...,m}.
ii. All parties invoke Finner With inputs ([Op, ¢, - véi?ezuz]]t)gl and ([[Uéf?zz|g2]]t)[1 and output
[yes les]

iii. All parties invoke Finnerverity with inputs ([Oe, e, - 057y le]e)ers ([0, lex]e)er, and [ye |e,]
If Finnerveriy OUtPULS accept, all parties continue. Otherwise, all parties abort.
After this step, all parties will verify Ele fhy = Zle Yi-
4. Step 3 — Checking Summation of Sharings:

(a) Forall j € {1,2,...,n}, P; randomly generates {[[o§j>|i]]t}§:1 such that 3% 05” = 0 in the
extension field K. Then P; distributes {[[oij) l:]¢}£_; to other parties. Next for alli € {1,...,k},
all parties locally compute [o;|:]: = Z;;lﬂoij) i]¢-

(b) All parties invoke]—'cOin to generates a random value v’ € K. For all i € {1,...,k}, all parties
compute [z;]iJe = r"- ([2:li]e — [yilsle) + [os .

(c) All parties send their shares of {[[z;|:]+ }f, to every party P;. Then each party P; checks that:

- Forall: € {1,...,k}, the shares of [z;|;]: lie on a degree-t polynomial.
— The summation zi+...+ 2z =0.
P; accepts the verification if both checks pass. Otherwise, P; aborts.

Lemma 8. Protocol Ilveris, securely computes Fyerisy in the { Fcoin,
Finner, Finnerverify }-lybrid model against a fully malicious adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and # denote the set of honest parties. The simulator S works as
follows.

1. In Step 1, for each degree-t Shamir sharing, S receives from Fverir, the shares of corrupted parties.

53

2. In Step 2, by the definition of T', each (b,,j) € T satisfies that [[vgf’j)b]}t is associated with
some input wire of multiplication gates and output gates. For each (b7 i,7) € T, S receives from

Fverity the additive error A() Let v(O] denote the secret of [[v | ;l¢- Then the real secret is
(b) (b) — Av (b))

’UZJ —’U

Recall that the functionality Fyerif, computes each v by using the wire values with additive

errors in previous layers, i.e., {”el 090 Uel 42}51@». Therefore,

) ICl/k K) /(\—/

(b) (b (byi (1 2)

A(Z Z 951752] Up, e, vfiafz)’
l1=1 ly=1

S emulates Fcoin and randomly samples r € K. Then S computes Ag = 37, ; o pulbing)—1 .

Av (b))
3. In Step 3, S computes the shares of [z, |s,]+ of corrupted parties for all ¢; € {1,...,k}.
Forall ¢, € {1,...,k}, S emulates Fiyner and Finnerverify Dy Using the shares of {ﬂvi,j il v,i,5) of
corrupted parties. S receives the shares of [y, |¢,]: of corrupted parties. Concretely,
— For Finner, S uses the shares of {[[vg’j) |;]¢}s,5,5) of corrupted parties to computes the values that
should be sent to the adversary. Then S receives the shares of [yg,|¢,]: of corrupted parties and
the additive error 7.
— For Finnerverify, S uses the shares of {[[v | il v,i,5) and [ye, e,]+ of corrupted parties and the
additive error 7 to computes the values that should be sent to the adversary.
If all parties abort, S sends abort to Fyerif,-
4. In Step 4, for each honest party P;, S sends random values to the adversary as the shares

of {[[0(3 i J:}%,, and S sets A; = 0. For each corrupted party P;, S receives the shares of

{[[\ ¢}, of honest parties from the adversary. Then, S recovers the whole sharings and
reconstructs the secrets {0 }£_|. S sets A; = S8, 07,

S emulates Fcoi, and randomly samples ' € K. Then S computes the shares of [z;];]; of corrupted

parties forall i € {1,...,k}. S computes A =1+ Ay + Z;’:l A; and randomly samples z1, ..., 2

such that Zle zi = A.Foralli € {1,...,k}, based on the secret z; and the shares of corrupted

parties, S computes the shares of [[z;|;]; of honest parties.

S follows the rest of this step honestly.

— If some honest party aborts, S sends abort to Fyerify.

— If all honest parties accept, but there exists (b, 4, j) € T such that A(vl(,bj)) # 0, S sends abort to
-FVerify-

This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of Ilverif .
Hybrid,: In this hybrid, S honestly follows the protocol.
Hybrid, : In this hybrid,

- In Step 1, S computes the shares of { [[12(2 |1]¢}(v,i.5) of corrupted parties from the shares of honest

parties. S also computes the secrets {v&?}(b’i’j).
— In Step 2, for each (b,14,5) € T, S computes

() () W & (e
b b (b.i 1 2
Av; Do 200 (0 vk,
El 1 Zz 1
u(b,i,7)— b
Then, S computes Ao = >, ; iyer (b,2.5) =1 A(UE,J)). _
- In Step 4, for each corrupted party P;, S recovers the whole sharings {[[ogj) li]¢}¥_, by using the
shares of honest parties and reconstructs the secrets {o,Ej) k.. Then S computes A; = Zf 1 fJ).
For each honest party P;, S sets A; = 0.

Note that S does not change the behaviors of honest parties. The distribution of Hybrid, is
identical to that of Hybrid,,.

54

Hybrid,: In this hybrid, S prepares the shares of {[z];]:}%_, of honest parties as described
above.
In Hybrid,, all parties compute [z;|:]¢ = ' - ([2ils]e — [wilil¢) + [0il:]:. We first show that
k k w(byi b) k Cl/k
> i1 % = A Recall that 377y @ =3, verT (b.4:)=1 @(J and Zi:l Yi =Dy Zlel ‘/1 Oy,

(véll)22 véf)b). We have Zle(xi —1y;) = Ap. Also recall that Zle 0; = Ej 1 Zz 1 Z]) ZJ 1 4.
Therefore, 2% | z; =/ - Ag + S 4= A
We then show that zq,..., 2, are random values subject to Zk_l z; = A. Without loss of

generality, suppose P; is honest Then 0(1) . o,(cl) are random values subject to El 1 5) — 0.

Since z; =1’ - (x; — y;) + Zj 1 EJ), .., zx are random values subject to Zi:l 7z = A.

In Hybrid,, S randomly samples z1, ..., z;, subject to Zle z; = A. Therefore, the distribution
of z1,..., 2z, is identical in both hybrids. Since a degree-t Shamir sharing is determined by the
secret and the shares of corrupted parties, the shares of {[z;];]:}%_, of honest parties are identically
distributed in both hybrids.

Thus, Hybrid, is identically distributed to Hybrid, .

Hybrid,: In this hybrid, in Step 4, if all honest parties accept, but there exists (b,,j) € T such
that A(vg’bj)) # 0, S sends abort to Fyerir, and aborts on behalf of honest parties. We claim that

the probability that all honest parties accept but there exists (b,,j) € T such that A(vl(?) # 0 is
negligible.
Suppose there exists (b,,7) € T such that A(v (b)) # 0. We first show that, with overwhelming

probability, Aq is non-zero. Recall that Ay = Z(b,i, fer pulbij—1 - Ay, (®)) This can be viewed as a
polynomial in r and the degree is bounded by 2mk = O(|C]). With the same argument as that in
Lemma 6, the number of r such that Ay = 0 is bounded by O(|C]). Since the field size of K is 2",
with overwhelming probability, Ag # 0.

Then we show that, with overwhelming probability A # 0. Recall that A =" - Ag + Z?:1 Aj.
With the same argument as above, the number of ' such that A = 0 is at most 1. Therefore, with
overwhelming probability, A # 0.

Thus, if there exists (b, 4, j) € T such that A() # 0, with overwhelming probability, A # 0.
Note that all parties accept only if A = 0. Therefore Hybrid, is statistically close to Hybrid,.

Hybrid,: In this hybrid,

In Step 1, S uses the shares of {[[vz(bj)| 131 m) of corrupted parties received from Fyerisy.

In Step 2, for each (b,4,j) € T, S uses A() received from Fyerisy.

In Step 3, S emulates Finner and Finnerverify by using the shares of {[[vfz)| jil¢}v.4,5) of corrupted
parties.

In Step 4, for each honest party P;, S samples random values as the shares of {[o; (@)| ek, of
honest parties.

For Step 1 and Step 2, note that these values are computed by Fveris, in the same way as that in
Hybrid;. For Step 3, only the shares of corrupted parties are needed to emulate Finner and Finnerverify-

For Step 4, for each honest party P;, the shares of {HO(J)|]+ }¥_, of honest parties are uniformly
random in Hybrid,.

Therefore, Hybrid, is identically distributed to Hybrid,. Note that Hybrid, is the execution
in the ideal world. We have that Hybrid, is statistically close to Hybrid,,, the execution in the
real world. Therefore, protocol Ily..r securely computes the ideal functionality Fyeir, in the
{Fcoin, Finner, Finnerverify }-hybrid model against a fully malicious adversary who controls ¢ corrupted
parties and up to c clients.

Computing Coefficients for Step 2. Recall that in Step 2, all parties need to compute a coefficient
Oy, 4, for each input gate and multiplication gate. Computing all coefficients {Oy, ¢, }¢, ¢, directly
can occur O(|C|?) computation complexity: Recall that Or, ¢, = >, jer ru(bid) =1, 9211’227) In the
worst case each Oy, ,, is a summation of O(|C|) terms.

In this part, we give an algorithm which can compute all coefficients {Oy, ¢, }¢, ¢, With compu-
tation complexity O(|C|). Our idea is to assign a value to each wire «, denoted by weight(a), as
the weight of wire «. We will maintain the invariant that the weighted sum of all wire values is

55

equal to Z(b i)eT pubig) =1 (b) , the LHS of Equation 1. Initially, the weights are non-zero only
for the input wires of multlphcatlon gates and output gates. The algorithm will gradually change
the weight of wires while maintaining the invariant so that finally the weights are non-zero only
for the output wires of input gates and multiplication gates. Then the weights associated with the
output wires of input gates and multiplication gates are the coefficients we need.

1. Initialization: In the beginning, we set weight(a) = 0 for all wire «. For each input wire « of
multiplication gates and output gates, suppose vg?
weight(a) + r*(-43)=1 (Note that the output wire of a gate may be used as an input wire for
multiple gates.)

After the initialization, the weighted sum of all wire values is equal to 3, ; ;" RO (b).

2. Transformation: We change the weight of wires layer by layer. We start from the last layer
(except the output layer).

— For each addition gate in the current layer, suppose the input wires are «, § and the output
wire is . We set

is the wire value of «. We set weight(a) =

weight(a) = weight(a) + weight(y)
weight(8) = weight(f) + weight(y).

Then we set weight () = 0. Note that the weighted sum of all wire values remains unchanged.
It follows from the fact that v, + vg = v,.

— For each multiplication gate in the current layer, we do nothing. Note that the weight associated
with the output wire of this gate is the coefficient of this multiplication gate.

After modifying the weights of all addition gates in the current layer, all parties move to the

previous layer. The algorithm terminates when reaching the input layer.

Note that after the above process, only weights associated with the output wires of input gates
and multiplication gates are non-zero. The weighted sum of all wire values is equal to

k ICI/k

(2)
Z Z @Zlvb vfl Lo 51752)

=14,=

the RHS of Equation 1. One can verify that the coefficient of the output wire of an input gate or a
multiplication gate is the one we want to compute.

Regarding the computation complexity, note that we only visit each gate once in the above
process. Therefore, the computation complexity is O(|C|).

D.5 Summary: Main Protocol with Malicious Security

Now we are ready to present the main protocol I1y.inmal With malicious security. It is simply a
combination of Feyajuate aNd Fveriry. The ideal functionality Fuainmal appears in Functionality 14.
The security of ITyainmal follows from Feyaiyate and Fyerisy -

,_[Functionality 14: FyainMmal }

1. Fmainmal receives the input from all clients. Let = denote the input and C denote the circuit.

2. Fmainmal computes C'(x). Fuainmal first distributes the output of corrupted clients to the adversary.
— If the adversary replies continue, Fuainval distributes the output to all clients.
— If the adversary replies abort, Fuainmal Sends abort to all clients.

\.

,-[Protocol 15: ITyainMal

|
J

1. All parties and clients invoke Feyaiuate to compute a degree-¢ Shamir sharing for each output wire of
input gates, and for each input wire of multiplication gates and output gates.
2. All parties invoke Fveri, to check the correctness of the computation.
3. For each output gate that belongs to some Client, all parties hold a degree-t Shamir sharing [va, |:]+
that is associated with this gate.
(a) All parties send their shares of [va, |:]: to Client.

56

(b) Client checks whether the shares of [vq,|:]: lie on a degree-t polynomial. If true, Client
reconstructs the secret v, and takes it as the output of this gate. Otherwise, Client aborts.

When we combine our protocols IIpepindMal, ZIprepMals [l Evaluate, [verify, IIMainMal, and instantiate
the funCtiOﬂalifY]:SingleMultl\/laI by [GLO+21]; the functionalities -FCoin, ﬂnner, ‘/—'.InnerVerify bY [Gszo],
we obtain an information-theoretic MPC protocol in the client-server model with splitting communi-
cation complexity as follows:

— In the circuit-independent preprocessing phase, all parties need to communicate 10n+ 24 elements
per gate.

— In the circuit-dependent preprocessing phase, all parties need to communicate 8 elements per
gate.

— In the online phase, all parties need to communicate 12 elements per gate.

Observe that this is identical to our optimized semi-honest protocol presented in Section C. We have
the following theorem.

Theorem 3. In the client-server model, let c denote the number of clients, n denote the number of
parties (servers), and t = (n — 1)/2 denote the number of corrupted parties (servers). Let F be a
finite field of size |F| > 2n. For an arithmetic circuit C over F, there exists an information-theoretic
MPC protocol which securely computes the arithmetic circuit C' (with abort) in the presence of a fully
malicious adversary controlling up to c clients and t parties. The splitting communication complexity
per gate is (1) 10n + 24 elements per gate in the circuit-independent preprocessing phase, (2) 8 elements
per gate in the circuit-dependent preprocessing phase, and (3) 12 elements per gate in the online phase.
(Terms that are independent of or sub-linear in the circuit size are omitted as they only add cost o(1)
per gate.)

E DNO7 with Circuit-Dependent Preprocessing

In this section we describe the circuit-dependent preprocessing variant of DNO7 that we use for a
fair comparison. The standard DNO7 protocol [DNO7] achieves a total communication complexity
of 6n field elements per multiplication gate, distributed as 4n elements in an offline phase (which
is circuit-independent), and 2n in an online phase. ATLAS improves the total communication to
4n elements, but the online phase still consists of 2n elements. In [GSZ20], the online phase of
the original DNQ7 is improved from 2n to 1.5n elements, while keeping the offline phase to be
4n elements, but unfortunately this technique is not compatible with the approach from ATLAS.
Since our protocol optimizes the online phase, it is more reasonable to compare against the existing
protocol with the most efficient online phsae, so we do not consider ATLAS for our comparison.

Our main observation here is that DNO7, with the optimization from [GSZ20], can be tweaked
to achieve an online phase of 1n elements per multiplication gate, by moving some of the messages
from the online phase to a circuit-dependent offline phase. This way, the total communication of 5.5n
elements is distributed as 4n elements in the circuit-independent offline phase, 0.5n elements in the
circuit-dependent offline phase, and 1n elements in the online phase. Another interesting property
of the resulting protocol is that the last ¢ parties can go offline after the circuit-dependent phase,
which may be an important feature in some cases as it can help saving in server costs, and it reduces
communication channels. However, we remark that this is only possible for passive security (which
is the case we are concerned with here since this protocol is designed solely for experimentally
comparing against TURBOPACK, which we implemented in the semi-honest setting). For active
security the last ¢ parties must return for a final verification stage, but we do not discuss how such
protocol would work.

Comparison with [DE21b]. The protocol from [DE21b] also achieves an online phase in the circuit-
dependent preprocessing model that involves 1n field elements per multiplication gate. However,
for our comparison we decided to use the optimized version of DNO7 we present in this section
since as we now show its total communication complexity is better.

The protocol from [DE21b, Section 4] also allows the online phase to be executed among the
first ¢+ 1 parties only, and it can be seen as an execution among the first ¢ + 1 parties of the dishonest
majority MPC protocol Turbospeedz [BENO19], where the necessary preprocessing is generated by

57

all n = 2t + 1 parties. In the passive version, the preprocessing consists of additive triples among the
first t 4 1 parties of the form ((\,), (\g), (Ao - A3)), and then the online phase consists of opening
the sharing (u,) which is done by sending shares to P;, who reconstructs and send the result back.
This takes 2t =n — 1 < 1n field elements.

The preprocessing requires the circuit-dependent triples described above, which are generated by
sampling shares of uniformly random values first, and then using an existing multiplication protocol
(e.g. ATLAS [GLO™21]) to scurely compute the product. This results in a communication for the
preprocessing phase of 4n, coming from ATLAS, plus the costs of generating two random sharings
per multiplication gate. This results in a total communication complexity that is larger than the
optimized DNO7 protocol we propose here, while having the same online complexity.

E.1 Plain DNO7

The original DNO7 protocol [DNO7] operates as follows. In the (circuit-independent) offline phase,
one so-called double share per multiplication is generated, which is a pair of sharings ([r]:, [r]2:)
where r € F is uniformly random and unknown to the adversary. Then, in the online phase, given
[«]: and [y]: the parties obtain [z - y]: by computing locally [d]o: = [«]: - [¥]: — []2t, reconstructing
d, and then again computing locally [r]; + d = [- y]:. The reconstruction of d is done by all parties
first sending their shares of [d]s; to P, involving 1n field elements,'” followed by P; reconstructing
d and sending it back to the parties, adding 1n more elements. The instantiation of the offline
phase in [DNO7]—which is the best known that is compatible with this online phase and with the
optimization from [GSZ20] described below—requires 4n elements.

E.2 Optimization from [GSZ20]

In [GSZ20], the online phase from above is optimized from 2n to 1.5n elements as follows. The main
observation is that we can regard the step when P, sends d to the parties as P; distributing shares of
degree 0 of d. However, since these “shares” will be added to [r[, the parties could afford to receive
degree-t shares instead. It turns out that this enables P; to send less messages, given that degree-t
sharings of d can be obtained by setting, say, the share of the last ¢ parties to be 0, which then,
together with the “secret” d, determine a polynomial of degree ¢ and hence determine the remaining
shares. If P, computes the shares of d in this way, P; does not need to communicate with the last ¢
parties, who know their share is 0, and P; only needs to communicate to the remaining ¢ parties,
which corresponds to ¢t < n/2 messages. This leads to an online phase that uses 1n + 0.5n = 1.5n
field elements per multiplication gate.

E.3 Online Phase with 1n Elements using Circuit-Dependent Preprocessing

When allowing for circuit-dependent preprocessing, it turns out that 0.5n elements out of the 1.5n
elements in the online phase from the previous optimized protocol can be moved to a circuit-
dependent offline phase. This is achieved as follows. The main observation is that the shares of
[d]2¢ = [z]: - [y]s — [r]2: that Py receives from the last ¢ parties are determined already in the
offline phase if the circuit is known, and therefore these can be sent to P; in a circuit-dependent
offline phase. This removes ¢ = (n — 1)/2 messages from the online phase, and pushes them into
the circuit-dependent offline phase.

To see why this observation holds, we first make a more general claim, which is that the shares
of the last ¢ parties corresponding to each wire are already determined in the preprocessing phase
(assuming the circuit is known). This suffices for our claim above regarding the messages P, receives
in a multiplication, since these are derived from the shares of each wire held by the last ¢ parties.
Let us first describe the protocol by which the clients provide inputs. For each input gate, the parties
have shares [s]; where s € F is uniformly random, and the client knows the secret s. The client
sends x — s to the parties, who locally compute [z]; = (z — s) + [s]:. As with the multiplication
protocol, this can be improved so that the client sends sharings [z — s]; instead, where the last ¢
shares have been set to be zero. This implies that the shares of the input [z]; corresponding to the
last ¢ parties are equal to their shares of [s];, which are known from the preprocessing phase. A
similar observation holds for the multiplication gates: the resulting shares of the product are given

17 For simplicity we do count as communication the case when a party sends a message to him/herself. This
has little effect in the final complexity.

58

by [« - y] = [d]: + [r]:, where the last ¢ shares of [d]; are zero, so the shares of the product of the
last ¢ parties are given by the last ¢ shares of [r];, which are known at preprocessing time.

To summarize, the optimization where the online phase consists of 1n field elements consists
of the last ¢ parties sending their shares of [x]; - [y]+ — []2: in a circuit-dependent offline phase,
which is possible since as we argued the last ¢ shares of each wire value (and in particular, these of
[z]: and [y]:) are already determined in the offline phase. This way, in the online phase P; only
needs to hear from and talk to the first n — ¢t = ¢ 4 1 parties. Also, notice that this optimization also
allows us to run the online phase only among ¢ + 1 parties, or in other words, the last ¢ parties can
be shut down after they have sent their necessary shares out.'® This can be a useful feature.

F More Experimental Results

Number of parties

Width Prep.
5 13 21 29 37

TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X)

100 CD 0.36/1.14 2.87/0.98 0.53/0.86 1.87/0.78 0.88/1.16 1.82/1.01 1.36 / 1.30 1.98/1.10 2.06/1.25 2.25/0.91
CI 0.21/1.29 1.85/1.10 0.40 / 0.98 1.50/0.88 0.73/1.32 1.60/ 1.12 1.19/1.47 1.82/1.21 1.80/1.51 2.02/1.08

1K CD 1.54/1.07 7.00 / 0.96 3.00/1.30 5.99/0.97 4.49/1.23 4.68 / 0.65 7.17/1.58 4.38/0.56 12.54/1.86 5.12/0.39
CI 1.30/1.30 7.51/1.13 2.52/1.78 5.89/1.25 3.87/1.84 4.32/0.94 5.82/2.94 3.79/ 1.00 10.43/3.97 4.45/0.82

10k CcD 7.31/1.68 6.93/0.94 16.57 / 2.51 7.01/0.71 32.69 / 4.25 5.69/0.43 65.89 / 6.50 6.21/0.30 117.53 / 10.59 6.58 / 0.26
CI 6.24/2.74 7.02/1.41 14.25/ 4.82 7.03/1.25 27.37/9.58 5.33/0.92 55.24/17.15 5.52/0.78 100.36 / 27.75 5.87/0.67

CD 54.34/5.42 4.90/ 0.52 153.74 / 13.95 7.44/0.42 334.39/31.18 6.52/0.34 666.64 / 59.18 6.63/0.29 1167.04/97.12 6.93/0.25

100k CI 47.38/12.39 5.87/0.91 131.19 / 36.50 7.23/1.03 282.69 / 82.89 5.99/0.85 564.94/160.88 5.95/0.76 997.72/266.44 6.18 / 0.66

Table 3: Running times and comparison of TURBOPACK with DNO7, in a setting with 10ms latency
and 100Mbps bandwidth, for a circuit of depth 10 and varying width and number of parties. The
TP columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the
ratio between the running time of TURBOPACK and DNO7. The format of the timings and ratios is
“Offline / Online”. In the CD. Prep case our offline and online phases are ®+® and ®, while in the
CI. Prep scenario these are ® and @+®. The entries with N/A correspond to cases where the parties
crashed, so we could not obtain the corresponding data.

Width Prep. Number of parties

5 13 21 29 37

TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X) TP (s) Factor (X)

CcD 2.41/6.28 2.00/0.89 4.23/6.21 1.61/0.90 5.87/6.61 1.38/0.98 7.50 / 6.40 1.27 /7 0.93 9.45/ 6.57 1.25/0.95

100 CI 1.81/6.88 1.64 / 0.96 3.24/7.20 1.29/ 1.02 4.93/7.56 1.19/1.10 6.67/7.23 1.16 / 1.03 8.69 /7.33 1.17/ 1.04

CD 12.25/7.33 6.08 / 1.09 17.33/11.26 3.31/1.21 27.21/8.89 3.17/0.78 40.65 / 6.50 5.62/0.51 49.03 /7.87 4.84/0.45

1k CI 10.44/9.15 6.12 / 1.30 13.83/14.77 3.35/1.42 21.65/ 14.44 2.76 / 1.20 36.87 /10.28 5.59/0.77 46.57 / 10.34 4.83/0.58

10k CD 66.30/12.73 6.35/0.79 116.77 / 16.86 4.62/0.74 186.19 / 17.75 5.16 / 0.47 N/A N/A N/A N/A
CI 59.84/19.18 7.57 / 1.03 109.72 / 23.91 5.54/0.84 174.21/29.73 5.68 / 0.69 N/A N/A N/A N/A
100k CD 474.15/43.98 4.37 / 0.66 1067.8 / 83.15 6.03 / 0.63 1680.7 / 83.13 5.82/0.32 N/A N/A N/A N/A
CI 446.07 / 72.05 5.44/0.78 1011/ 139.92 5.82/1.03 1628.6/135.17 5.76/0.50 N/A N/A N/A N/A

Table 4: Running times and comparison of TURBOPACK with DNO7, in a setting with 100ms latency
and 100Mbps bandwidth, for a circuit of depth 10 and varying width and number of parties. The TP
columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the ratio
between the running time of TURBOPACK and DNO7. The format of the timings and ratios is “Offline
/ Online”. In the CD. Prep case our offline and online phases are ®+® and ®, while in the CI. Prep
scenario these are ® and @+®.

As a complement to Section 5, we also include experimental results that measure the performance
of TURBOPACK relative to DNO7, in other networking settings. In Section 5 we considered a
distributed setting with 1ms latency and 60Mbps bandwidth, which mimics a LAN scenario. Here
we include results for other two important settings. First, in Table 3 we present results for the same

18 Regarding output gates, the last ¢ parties can send their shares (which are determined in the circuit-dependent
offline phase already) to the corresponding output clients.

59

Number of parties

Width Prep. 37 45 53
TP (s) Factor (x) TP (s) Factor (x) TP (s) Factor (x)
1k CD 1.71/0.15 6.80/ 0.30 2.51/0.16 7.22/0.21 3.67 /0.23 6.17 / 0.19
CI 1.48/0.38 6.07 / 0.74 2.19/0.48 6.46 / 0.60 3.22/0.68 5.75/ 0.55
10k (@) 13.24/1.10 7.07 / 0.25 21.56/1.61 6.90 / 0.22 34.38 /2.26 6.83 /0.19
CI 11.39/ 2.94 6.31/0.67 18.80 / 4.37 6.18 / 0.59 30.52/6.12 6.19 / 0.52
100k CD 123.76 / 10.76 6.52/0.25 201.23 / 15.98 7.10 / 0.22 321.38 / 22.38 6.48 / 0.19
CI 105.57 / 28.95 5.76 / 0.66 174.11 / 43.09 6.33 / 0.59 283.22 / 60.54 5.82/0.52

Number of parties

Width Prep. o1 59 77
TP (s) Factor (x) TP (s) Factor (x) TP (s) Factor (x)
1k CD 5.72/0.31 6.29 /0.17 7.35/0.40 6.62/ 0.16 10.17 / 0.50 7.44/ 0.14
CI 5.13/0.91 5.71/0.50 6.60 /1.16 6.02 / 0.45 9.23/1.44 6.83 /0.41
10Kk (@) 49.97 / 3.05 7.02/0.17 69.28 / 3.96 7.52/0.16 92.78 / 5.01 7.92/0.15
CI 44.76 / 8.26 6.39 / 0.47 62.26 / 10.98 6.86 /7 0.43 84.00/ 13.78 7.26 / 0.40
100k CD 491.70 / 30.50 7.17 7/ 0.18 681.65 / 39.67 7.54 / 0.16 932.10 / 50.29 7.91/0.15
CI 440.25 / 81.94 6.52/ 0.47 614.41 / 106.91 6.89 / 0.42 846.57 / 135.82 7.29 / 0.39

Table 5: Running times and comparison of TURBOPACK with DNO7, in a localhost setting (i.e. with-
out altering the network), for a circuit of depth 1 and varying width and number of parties. The TP
columns refer to the running time of TURBOPACK in seconds. The “factor” columns refer to the ratio
between the running time of TURBOPACK and DNO7. The format of the timings and ratios is “Offline
/ Online”. In the CD. Prep case our offline and online phases are ®+® and ®, while in the CI. Prep
scenario these are ® and @+®.

range of parties as in Table 1, but increasing the latency from 1ms to 10ms This is intended to
emulate a distributed system over small distances. Then, in Table 5 we aim at exploring the effect
of having an even larger number of parties, for which we modify the networking setting by not
applying any limitation to the localhost network, and we also lower the depth from 10 to 1. This
is because of technical difficulties we encountered when running a large amount of parties in a
single machine with modifications to the network using tc.

Setting with 10ms latency The experiments here are run in the same setup as in Section 5. The
experiments for n = 5,13,21,29 are the average of five runs, while for n = 37,45 they are the
average of two runs. Comparing the results from Tables 1 (1ms latency, depth 10) and 3 (10ms
latency, depth 10), we see that the improvement factor of our online phase with respect to that of
DNO7 remains essentially the same. However, an interesting observation is that the ratio for the
offline phase seems to improve as the latency is increased, and this is particularly more noticeable
for small widths. In these cases, computation matters more, and this behavior seems to support
the idea that, when the latency is larger, more time can be spent while messages are in transit
in the extra computations involved in TURBOPACK which are, for example, packing/unpacking
secret-shared elements, or mapping pre-processed data to different parts of the circuit.

Setting with localhost communication Interprocess communication with TCP has much more
bandwidth and less latency than an actual distributed setting such as the ones we have emulated so
far for the previous experiments. However, in order to consider an even larger number of parties,
we found that we had to remove network emulation. We benchmark, in this setting, a circuit of
depth 1 with different widths and a much larger number of parties which ranges over the set
{29,37,45,53,61}. The results are presented in Table 5. We see that, as expected, the improvement
of TURBOPACK grows noticeably as the number of parties increases, and for n = 61, TURBOPACK
shows an improvement of 10x with respect to DNO7, even for circuits of small width. We remark
that technical difficulties prevented us from carrying out these experiments, but we expect that
further considering more realistic networks with constrained bandwidth and latency would lead to
even better improvement factors.

60

	TurboPack: Honest Majority MPC with Constant Online Communication
	Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou and Yifan Song

