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Abstract

Gordon and Katz, in [GK10], present a protocol for two-party computation with partial fairness
which depends on presumptions on the size of the input or output of the functionality. They also
show that for some other functionalities, this notion of partial fairness is impossible to achieve.
In this work, we get around this impossibility result using verifiable delay functions, a primitive
which brings in an assumption on the inability of an adversary to compute a certain function in a
specified time. We present a gadget using VDF's which allows for any MPC to be carried out with
~ 1/R partial fairness, where R is the number of communication rounds.

1 Introduction

A desirable property for a multi-party computation is fairness - that either all parties should receive
their output or none should. Unfortunately, by a result of Cleve [Cle86], it is impossible in general to
achieve fairness with all-but-negligible probability with a dishonest majority. As an alternative, the
literature has considered protocols that achieve fairness with inverse-polynomial probability, which is
known as partial fairness.

The reason for the impossibility of general complete fairness might be described as follows: There
is always some communication round in which some party gains, for the first time, knowledge of their
output. If an adversary knows which round this is, they can cease communication in that round,
obtaining their output but without the honest party having learned their output. Gordon and Katz
[GK10] mitigate this as much as possible by obscuring the round in which this critical knowledge is
passed. This works by adding a second phase to the end of the protocol where secret shares to potential
outputs are passed one at a time, and at some point these shares reveal the true outputs. This does
not make the protocol completely fair - the adversary may still randomly guess the round - but if the
adversary cannot identify a true output just by looking at it, they will send the honest party output
share before they realize that this contains the critical information. This at least gives a probability
of 1/R that this naive attack will succeed, where R is the number of rounds of share-passing.

Unfortunately, if the functionality to be computed is complicated enough, this obscuring process is
again impossible. It might be that the adversary can inspect the information revealed in each round
and determine if it matches what the output is expected to look like. Gordon and Katz make this
rigorous in their Theorem 11, which shows that for a particular functionality, there is no protocol to
compute it even with partial fairness.

In this work, we show how Verifiable Delay Functions (VDFs) [BBBF18] can be used to get around
this obstacle. The conceit of a delay function is that it acts essentially as a random oracle, but
one which can only be computed in time ¢, even by an adversary with access to parallel computation
resources. VDFs make this more convenient by also providing a way of quickly proving that the output
of the VDF indeed comes from a given input. VDFs have been proposed for applications requiring an
unbiasable source of randomness, such as leader selection in consensus mechanisms [CPNX20].

Here, we use VDFs to create a protocol, similar to [GK10], but that works for general multi-party
functionalities. The main idea of our protocol is to let the random choice of the critical round depend
on VDF outputs, which means that it cannot be determined until after all the communication of the
protocol is over. This ensures that the best an adversary can do is to arbitrarily guess a round to halt



in, and hope that this round ends up being the critical round. Still, by computing the VDF, an honest
party can always eventually decrypt their output in the event of an attack.

1.1 Prior work

A variety of approaches to fair Multi-Party Computation have been put forward over the years.

As we have mentioned, our approach uses time-delay encryption, a technique which was perhaps
first brought to the literature by Rivest et al. in [RSW96]. This is not the first time time-delay
encryption has been used for MPC; the approach of Pinkas in [Pin03] makes use of a variant of the
“timed commitments” of [BNOO] for fairness in general two-party computation. In that case however,
Pinkas does not try to achieve a protocol that runs in a fixed amount of time polynomial in the security
parameter. Rather, that work obtains a protocol where the parties create timed commitments that
reveal after shorter and shorter time periods, walking down from an exponential amount of time. With
this, the honest party does an amount of work proportional to the adversary’s work to obtain their
input. The adversary can choose how much work this is though, and [GK10] points out that if the
adversary knows the honest party’s computational limits they may choose an amount that is barely
higher than the honest party is willing to invest.

Another approach, from [BG89, GLI0], takes the tack of revealing some information about the
output in each round - but only a limited amount. In each round, parties learn a bit which is obscured
by noise; as the protocol progresses they gain greater and greater confidence in the value of their
output. If an adversary stops halfway through, then both parties may have a guess about the value of
their output, but no certainty. This setting is undesirable when the adversary is happy learning even
a little information about their secret, but where we personally only feel comfortable if we obtain full
knowledge of our secret. In fact, the Gordon and Katz protocol has a similar issue, in that it is not
obvious to the honest party whether the adversary has succeeded in violating fairness when they stop
early.

In Table 1, we lay out the performance of these approaches.

Prob. adversary | Prob. honest Honest work General Correct outputs
output correct | output correct | to recover output | functionalities obvious?
[Pin03] 1 1 O(2F~7) Yes Yes
[BGRI] | =~ ®(ky/r+1) ~ O (k) 0(1) Yes No
[GK10] (r+1)/R r/R O(1) No No
Ours (r+1)/R r/R O(R) Yes Yes

Table 1: Performance of various approaches to general fair MPC, when the adversary halts in round
r out of R. ® represents the Gaussian CDF, and k is a constant chosen by the protocol designer.

Our approach might be seen as a synthesis of the Gordon and Katz approach with the time-delay
technique of Pinkas. Rather than letting the time-delay hide the output all on its own, we can add
the time-delayed data to the secret shares. We gain the ability to deal with general outputs in the
functionality, and we only need to delay the data for the length of the communication phase.

2 The Protocol

As a preliminary, we note that we use the “trapdoor” VDF definition of Wesolowski [Wes19] rather than
the original formulation of [BBBF18] (a choice we explain in subsection 2.2). This defines Verifiable
Delay Function as a quadruple of algorithms:

VDF.KeyGen() — (pk, sk), VDF.Trapdoor(sk, z, A) — (y,7),
VDF.Eval(pk, z, A) — (y, ), VDF Verify(x,y, 7) — {0,1}

The VDF.KeyGen function generates a public and a secret key. The VDF.Trapdoor and VDF.Eval
functions can be modeled as a random oracles which computes y as a function of an input z. VDF.Eval is
meant to take time A for the adversary to compute (even with a parallel computer), while VDF.Trapdoor
computes the same y, but which uses the secret key sk, and may take less time. Both additionally



output 7, a quickly-verifiable “proof”. The VDF .Verify function can then take such a proof along with
x,y, and outputs 1 if this is the result of a valid call to VDF.Trapdoor or VDF.Eval, otherwise it returns
0.

We consider the following protocol for a set of N parties, with inputs x; € X, who wish to securely
compute functions f; : X — {0, 1}" with no other information being leaked, and with fairness 1/R.

1. Each party sets up VDF parameters and gets the keys pk;, sk; < VDF.KeyGen() and broadcasts
the public key to all other parties. The parties individually choose random values v; to input
to their VDF. They compute the VDF on these values with A = JR, where § is the period of
time taken up by one round of communication. They get an output in the form of a uniformly
random pair of a share randomness and a round randomness s;,7; € {0,1}"™ x [R], as well as a
VDF proof m; output ((s;,r;),m) := VDF.Trapdoor(sk, v;, A). They broadcast commitments to
the v; values to the other parties.

2. The parties supply their inputs z;, along with s;, r;, to a secure-with-abort MPC protocol which
computes the following:

(a) The MPC computes the critical round as a mixture of the individual round randomnesses
r* = (Y,enri) mod R.

(b) The MPC computes a encryption pad s as a mixture of the individual share randomnesses
s = Djen si-

(c) For each pair of parties ¢, j, and each round r, the MPC sends a message m; ;, to party i.

This message is intended to be sent from party 7 to party j in the rth round of the reveal
phase below:

e For r = r*, the the messages (m; j.~);c/n) form a random secret share of party j’s
output OTP encrypted with the VDF pad s with the ;¢ n) mi - = s @ f;(Z).
o If r # r*, the value is chosen uniformly at random m; j, < {0,1}".
(d) Each party j additionally receives from the functionality a vector of commitments to all the

entries of all messages m; ;, intended for them, and party 7 receives an opening for that
commitment. Parties additionally receive commitments to s;,r; that party ¢ can open.

3. The parties, using the v;, s;, r;, m; values they hold, complete zero-knowledge proofs for each other
that VDF.Verify yields a pass on these values and that the commitments to these values match
the commitments issued by the MPC.

4. They then start the VDF timer and open their commitments to v; to each other, and the reveal

phase begins.

(a) In round r of the reveal phase, if all previous rounds have been successful, and the VDF
timer has not elapsed, each party i opens the commitment to each m; ;, they hold to the
corresponding j. Party j verifies the opening, and halts if the verification fails.

5. After the reveal phase ends, all parties compute VDF.Eval on the v; values to obtain s;,r;, and
from this, s, and r*. (Optionally, instead, parties can open their commitments to the s;,r; to
save each other the trouble of recomputing the VDF).

6. If a party j received all messages m; ;- in the r*th round of the reveal phase, then that party
outputs f;(Z) = s ® B¢ n) Mg+
2.1 Partial fairness argument
We now argue that the above protocol meets our design criteria:
Theorem 1. The protocol presented above is a secure 1/R-fair MPC protocol.

Proof. We first show that the protocol is secure: An adversary controlling some set of parties cannot
learn the inputs or outputs of any parties not in the set, beyond what can be learned from the inputs
and outputs of parties in the set. This follows from the fact that for any honest party j, the adversary
will never receive m; ; »-. This message is a component of the secret share hiding f;(Z). Without it, all



other messages m; j - are jointly distributed uniformly at random, and so they provide no information
about f;(Z).

To see that the protocol is 1/R-fair, observe first that no party can successfully send a message
in the reveal phase other than what the protocol tells them to, since all data sent takes the form of
opening a commitment previously provided by the MPC. Since at least one party ¢ must be honest,
parties do not possess s; or r; during the reveal phase, so the adversary’s best guess distribution over
s and r* is uniform until the phase is complete. Lack of knowledge of s means that all m; ;, are
independent and uniformly randomly distributed from the adversary’s perspective. Thus, we may
assume without loss of generality that the adversary’s strategy is to select some round 7 to halt in,
so that they receive only the messages up to and including that round, and honest parties receive only
message from before that round. If »* = 7* (which may happen with probability at most 1/R) then
the adversary learns their outputs while the honest parties do not, but if »* < r*, no party learns
their output, and if r* > r*, all parties learn their outputs. O

Note that we must hide both the value of r* and s within the VDF output: r* because it is critical
that the adversary not know the precise round to stop, and s because if it is revealed early, a party
might compute s & Gaje[ N] i j,re 8t the beginning of each communication round to see if it matches
what the output is expected to look like, and then only send their data in the latter half of the round
if it does not match.

It’s worth explaining how this construction is possible, given Theorem 11 from [GK10]. That
theorem presents a particular functionality based on verifying a MAC and shows that this functionality
cannot be computed with partial fairness. The proof of the theorem constructs an adversary which
checks the putative output from each round (that is, the output if the other party were to halt after
that round), and halts when the output passes the MAC verification.

The time-delay encryption model turns out to be critically important for circumventing this attack.
In the standard model, it is always possible for the adversary to compute the putative output from
each round instantly, and make decisions on that basis. But with our protocol, this involves computing
VDF.Eval, so it would take up all the time remaining in the reveal phase. Honest parties only continue
the reveal phase while the VDF timer has not elapsed, so any response taking this long will always be
ignored, and running this attack on our protocol would essentially be the same as halting.

2.2 Choice of VDF

We note that the above protocol requires the use of the VDF in a non-black-box way: While the
VDF.Eval function is computed by individual parties, the VDF.Verify function must be evaluated within
some zero-knowledge proof system. This proof system may be interactive or non-interactive, but it
must be zero-knowledge to hide the value of the s;,r; outputs. We could modify the formalism to
make a VDF-with-commit, in which VDF.Verify takes a commit to the VDF output rather than the
output itself, and then this could be used as a black-box.

Indeed, recalling that the earliest design for a VDF was simply an iterated hash function evaluated
within a SNARK, one might describe the protocol without any VDF at all, and use instead any time
delay function with the SNARK. We feel it makes sense to characterize the primitive as a VDF, though,
as many VDF constructions have more efficient proof systems than the naive approach of running a
generic zk-SNARK over the evaluation function.

To elaborate on why the Wesolowski VDF-with-trapdoor formulation is slightly superior to the
Boneh et al. formulation for our purposes, we note that if the parties call VDF.Eval in step 1 rather
than VDF.Trapdoor, we would expect step 1 to take A time, as long as the entire reveal phase. The
VDF of [Piel8], for example (like the constructions in [Wes19, RSW96]), is based on RSA groups of
unknown order pq, and uses the evaluation function = — 22" mod pq: If a party knows the factors of
the modulus, they may compute the output of the VDF by evaluating 27 mod ¢(pq), and as a result
it is possible for VDF.Trapdoor to be computed in less time than VDF.Eval (O(v/T log T) time, in fact).
This is useful for our protocol, since it may avoid the need for any party to undertake any slow VDF
computation at all, approximately halving the protocol runtime.



2.3 Reducing VDF Usage

In service of simplicity, the protocol above is described symmetrically, so that all parties take the same
actions in every step of the protocol. If we were to relax this, could we improve the protocol, perhaps
in a way that allows the participants to compute fewer VDF's all told?

In fact this is possible. Considering the two-party setting, with two participants Alice and Bob,
we describe a modification of the protocol where only Alice initializes a VDF, but the protocol still
remains partially fair: In Step 1, let Alice alone create and compute her VDF, and let the outputs of
this evaluation be themselves r* and s. In the reveal phase, instead of letting both parties broadcast
their round r messages simultaneously, let Alice send her message first, and Bob send his message
second (this might be seen as switching the communication model and doubling the number of rounds).
While Alice will be able to decrypt her result immediately after Bob sends his message in round r*
and potentially determine if this is the critical round from its contents, this does not help Alice break
the fairness, since she has already sent Bob’s critical round message.

A more extreme approach to “reducing” the number of VDF computations might be to take a
different approach of evaluating a single VDF within the MPC, or of passing inputs to a single party
to run the VDF evaluation in a homomorphic encryption. While these approaches would technically
require only polynomial computation in the security and fairness parameters, in practice, the slowdown
from computing a VDF as a circuit within another protocol would likely be prohibitive.

3 Rational Security

A deficiency of the above protocol is that its fairness is not only partial but unincentivized. By the end
of the final round, each participant has received all of the messages that their counterparties intend
to send, and no action of theirs at that point can change what these messages contain. Since we are
studying fairness, it is natural to assume any malicious parties have a goal of preventing honest parties
from obtaining their output. This being the case, one might expect the malicious parties to always
refuse to send their last message.

Can this be avoided? Similar to Groce and Katz [GK12], we show that if we move to a setting
where a participant’s preference for receiving their own inputs outweighs their preference over others’
outcomes, the answer is yes. We outline a modification of the protocol to ensure better delivery, based
on the idea that the participants will act rationally according to a linear utility function on the delivery
of the outputs to themselves and to others. This makes it possible to motivate malicious actors to
continue the protocol by making their reward contingent on them continuing to send messages.

For simplicity, we consider the setting of two parties where one is honest and the other is dishonest,
but where the dishonest party adversary assigns a utility a to receiving their own output and utility
—1 for the honest party receiving their output. We will also assume the dishonest party has some
small incentive to complete the protocol honestly ¢ (we might think of this as corresponding to the
cost of developing a hacked client).

Rather than computing a uniformly random r* as (ZZ eN ri) mod R, we let the r; pseudorandomly
generate a draw from an arbitrary distribution. We can keep the protocol e-fair as long as the weight
on each round is at most €. But we can also make continuing the protocol incentive compatible for the
adversary: As long as 1 < a, we will see that if we let the probability decay exponentially with rate %
as we approach the final round, the adversary will continue to send.

Theorem 2. Given 1 < a,0 < c and0 < e < 1, let R, be the smallest n such that ca™ ' > ¢, and let
R, be minimal such that Ree > 1 — Zflo ca™. Then the optimal number of rounds is R. + Ry, and

this is met by the following distribution on r*:

o Forl < i< R, we have Pr[r* =1i] =e.

e For all i > R, we have Pr[r* = i] = ¢(a)™"

e Fori=1, we have Pr[r* =i =1— Ree — Efio ca™

Proof. In order for the protocol to be incentive compatible, the adversary must prefer completing the
protocol to halting in any round. If the adversary halts in round i, then their utility is a Pr[r* <



i] — Pr[r* < 4]. Incentive compatibility is therefore equivalent to the following condition on the
distribution holding for all + < R.

aPrlr* <i]—-Pr[r* <i]<a-1+c¢

Rewriting this in terms of Pr[r* > i] and Pr[r* = {], we see this is equivalent to the condition

Prir* =i < (a—1)Pr[r* > i] +c. (1)

From fairness, we get the condition

Prlr* =il <e. (2)

We see that the distribution we have described satisfies these constraints: Equation 1 is obeyed
with equality for i > R., and holds for all ¢ < R, by virtue of the fact that

Prirf =i <e<(a—1)Pr[r* > R]+c < (a—1)Pr[r* > i +e¢,

where the second inequality comes from the choice of R,. Equation 2 holds with equality on i < R,
on i > R, by choice of R,, and on i = R, by choice of R..

To see that our distribution is round-optimal, note that equation 1 for i = R gives us Pr[r* = R] < ¢.
By induction on R — i, we then get that for any 1 < i < R, we actually must have

Pr(r* = i) < ca®™™* (3)

Thus, the distribution we have described maximizes the value of Pr(r* = R —n) for all n < R.
With fewer rounds, these probabilities would not sum to 1, so R, + R, must be the the optimal number
of rounds.

O

Just as in the Groce and Katz work, we see that an exponentially decaying distribution on the
critical round allows the protocol to be cognizant of the motivations of the players. It is interesting to
see that this can be combined with the simple Gordon and Katz approach to produce a distribution
that is partly uniform, partly geometric, and which respects both definitions of fairness.

4 Conclusion

We have presented a VDF-based protocol for 1/R-fair MPC supporting arbitrary functionalities, secure
against any number of corruptions. We have also discussed considerations for modifying this protocol,
both to reduce the number of times the VDF evaluation function is called, as well as to make the
protocol more effective in the presence of a rational adversary.

A possible avenue for future work might be to examine the communication model with more
care. For the purposes of stating the protocol and the proving of 2, it was convenient to deal with
a synchronous communication protocol in which all parties send their messages for a given round at
once. But this leaves an honest party who is sending their message at the start of a round without the
knowledge of whether their counterparties will send to them, and so they have less information than
if we proceeded with alternating communication rounds. We saw that we can get rid of at least one of
the VDF evaluations if we switch to this model - is it possible to improve this more?
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