Boosting Batch Arguments and RAM Delegation

Yael Tauman Kalai Alex Lombardi*
Microsoft Research and MIT Simons Institute and UC Berkeley
Vinod Vaikuntanathan Daniel Wichs
MIT Northeastern University and NTT Research
Abstract

We show how to generically improve the succinctness of non-interactive publicly verifiable
batch argument (BARG) systems. In particular, we show (under a mild additional assumption)
how to convert a BARG that generates proofs of length poly(m) - k! =€, where m is the length of
a single instance and k is the number of instances being batched, into one that generates proofs
of length poly(m) - poly log k, which is the gold standard for succinctness of BARGs. By prior
work, such BARGs imply the existence of SNARGs for deterministic time 7' computation with
optimal succinctness polylogT.

Our result reduces the long-standing challenge of building publicly-verifiable delegation
schemes to a much easier problem: building a batch argument system that beats the trivial
construction. It also immediately implies new constructions of BARGs and SNARGs with
polylogarithmic succinctness based on either bilinear maps or a combination of the DDH and
QR assumptions.

Along the way, we prove an equivalence between BARGs and a new notion of SNARGs
for (deterministic) RAM computations that we call “flexible RAM SNARGs with partial input
soundness.” This is the first demonstration that SNARGs for deterministic computation (of any
kind) imply BARGs. Our RAM SNARG notion is of independent interest and has already been
used in a recent work on constructing rate-1 BARGs (Devadas et. al. FOCS 2022).

*This research was conducted in part while the author was at MIT.

Contents

1 Introduction
1.1 This Work e

2 Our Techniques
2.1 Relation to [DGKV22]

3 Preliminaries
3.1 Hash Family with Local Opening
3.2 Somewhere Extractable Hash Families
3.3 Batch Arguments L

4 SEH families from Rate-1 String OT.

5 Low-Rate Fully-Local Hash (fISEH) Families.
5.1 Defining fISEH Families
5.2 Construction from any SEH o

6 Flexible RAM SNARGs with Partial Input Soundness
6.1 RAM Delegation
6.2 Defining Flexible RAM SNARGs with Partial Input Soundness
6.3 Construction from seBARGs

7 From Weak RAM SNARGs to Strong BARGs
7.1 Construction
7.2 Analysis

8 Obtaining our Main Results

A Rate-1 String-OT from k-LIN

10
10
12
13

16

18
18
20

23
23
25
26

35
35
37

39

43

1 Introduction

Efficient verification of computation is one of the most fundamental problems in theoretical computer
science. Recently, with the increasing popularity of blockchain technologies and cloud services,
efficient verification schemes are increasingly deployed in practice.

This reality motivates the study of succinct non-interactive arguments (SNARGs) [Mic94], which
are short, easy to verify, and computationally sound proofs that a statement x belongs to a
potentially complex language £. We would ideally like to construct SNARGs, given a (short, efficient-
to-generate) common reference string, for any language £ decidable in non-deterministic time 7'(|x|),
where the SNARG has proof size poly(),logT) and verification time poly(\,logT) + O(|xz|) given
security parameter A. In the random oracle model, such SNARGs were already constructed in a
seminal work of Micali [Mic94]; however, constructing SNARGs in the “plain model” under falsifiable
and preferably standard cryptographic assumptions remains a grand challenge, and will require
overcoming some serious barriers [GW11].

In this work, we study two different forms of SNARGs for restricted computations: SNARGs for
deterministic time T computation and SNARGs for batch NP computation (BARGS).

SNARGs for deterministic time 7" computation. There are a number of recent! constructions
of this form of SNARG based on falsifiable and standard assumptions:

o [KPY19] constructed SNARGs with succinctness poly(A,T¢) for any constant ¢ > 0 under a
falsifiable assumption on groups with bilinear maps.

o [JKKZ21] constructed SNARGs for any size S and depth D (log-space uniform) computation
with succinctness D - poly(A,log S) under LWE.

e Very recently, [CJJ21a] constructed SNARGs with succinctness poly(A,logT) from LWE.

SNARGs for batch NP computation (BARGs). In a BARG scheme, the prover wants to prove
k NP statements x1,...,z (given witnesses wi, ..., wg) with communication complexity (and
verification time) significantly smaller than k - m, where |w;|< m for all i. The key parameter of
interest here is k, the batch size, so we want protocols with a sublinear (or better) dependence on k.
There have also been a number of recent constructions of BARGs from standard assumptions:

e [CJJ21b] constructed a BARG with succinctness poly(\, m) - vk under a combination of the
Quadratic Residuosity (QR) and Decisional Diffie-Hellman DDH assumptions (or QR and LWE,
but this is subsumed below).

e [CJJ21a] constructed a BARG with succinctness poly(A, m,log k) under LWE.

e Building upon [CJJ21b], [HIKS22| constructed a BARG with succinctness poly(A,m) - k¢ for
any constant € > 0, under QR and DDH.

e More recently, Waters and Wu [WW22| constructed a BARG with succinctness poly(\, m) - k€
under the DLIN assumption (or relaxations of it?) on bilinear maps.

"We use SNARGs to refer to publicly verifiable SNARGs, which can be verified given the crs alone. We mention that
there is a line of work, starting with [KRR13, KRR14], that constructed various privately verifiable SNARGs under
standard assumptions. Since our focus is on publicly verifiable SNARGs, we do not elaborate on these works here.

2They can rely on the “k-LIN assumption” for arbitrary constant k > 1, which we refrain from writing due to
notation collision with the batch size k. We will sometimes refer to this as the O(1)-LIN assumption.

BARGs imply SNARGs for P. The recent constructions of BARGs and SNARGs for P are quite
closely tied together: two recent works [CJJ21a, KVZ21] showed that a BARG for batch NP with
L-parameterized® succinctness poly(m) - L(k, \) implies a SNARG for any time-T computation with
succinctness poly(\)- L(T, \) assuming the existence of somewhere extractable succinct commitments
with local opening.

The [CJJ21a,KVZ21] transformation requires that the underlying BARG satisfy one key property
regarding verification time that we will also assume throughout this work.* Namely, the BARG must
be compatible with succinct implicit inputs: if a time ¢ = ¢(n) Turing machine generates x; given i
as input (for all 7), then verifying the BARG for (z1,...,x%) can be done in time polynomial in ¢
and (as before) sublinear or better in k - m. Note that this means the verifier does not necessarily
have to read the k statements® (separately), but only their implicit description. Throughout this
introduction, when we refer to a BARG we assume it has this verifier efficiency guarantee.

These two works changed the focus of the community from constructing SNARGs to constructing
BARGs. Indeed, the recent BARG constructions of [CJJ21a, HIKS22, WW22] all imply constructions
of similarly efficient SNARGs for P.

1.1 This Work

Both primitives discussed above — SNARGs for P and BARGs for NP — have a “gold standard” for
succinctness and verifier efficiency:

e SNARGs for time T' (deterministic) computation with communication complexity poly(A,logT').
e BARGs with communication complexity poly(\, m,logk).

e For both BARGs and SNARGs, verification can require an additional quasi-linear time to
process explicit inputs but should otherwise match the communication complexity bounds.

However, of all of the recent constructions discussed so far, only [JKKZ21] (for bounded-depth
deterministic computation) and [CJJ21a] actually match this efficiency. The others [KPY19,
CJJ21b,HJKS22, WW22] achieve sublinear (and sometimes sub-polynomial) but not polylogarithmic
dependence on T and/or k. In this work, our main question centers on achieving optimal succinctness
for BARGs and SNARGs:

Question 1.1. When is it possible to build BARGs and SNARGs with polylogarithmic (w.r.t. k or
T) succinctness and verifier efficiency?

A second question we ask is whether there is any (partial) converse to the [CJJ21a, KVZ21] result
that BARGs imply SNARGs for P:

Question 1.2. Does some kind of SNARG for deterministic computation imply BARGs for NP ¢

A positive answer would establish a (loose) equivalence between these two kinds of argument systems.

3These works only considered the case L(k, \) = poly(),log(k)), but their results readily extend to any L.
“In [CJJ21a], a BARG with this efficiency guarantee was referred to as a BARG for index languages. In this work,
we actually only assume the existence of an object that is somewhat weaker than an index BARG; see Remark 3.5.
Since a verifier (in general) must read its entire input in order to decide whether to accept a proof, a naive BARG
for k NP statements would require the verifier to run for at least k - n time. This is unsatisfactory if the goal is to
have efficiency sublinear in k.

Our Results. We answer Question 1.1 by giving a generic procedure for boosting the efficiency
of BARGs. Specifically, we show how to convert any BARG with succinctness poly(m) - k/p()), for
some (sufficiently large) polynomial p()), into one with succinctness poly(\, m,log k).

Theorem 1.3 (Informal, see Theorem 8.1). There is a polynomial p such that if there exists

e A BARG for NP with succinctness poly(m) - k/p(X\) for all sufficiently large k > poly(\) (and
efficient verifier), and

o A rate-1 (2-message) string OT, which can be constructed based on LWE, DDH, O(1)-LIN, QR,
or DCR [DGIT19].

then there exists a BARG for NP with succinctness poly(\,m,logk) (and efficient verifier).

We briefly give some remarks on Theorem 1.3:

e A BARG with succinctness matching the hypothesis of Theorem 1.3 follows from the existence
of a BARG with succinctness poly(\,m) - k'~ for any constant ¢ > 0.

— If we make a subexponential security assumption, it is even possible to start with
any BARG with succinctness poly(A,m) - W, by setting the security parameter
A = polylog(k)’). However, the resulting fully succinct BARG will only be secure against

adversaries that run in time quasi-polynomial in m\’, which is meaningful but not ideal.

e Theorem 1.3 can start with BARGs with a long (poly(k, m, A)) common reference string, as
long as the verifier efficiency remains poly(m) - k/p(\) (taking as input only a designated part
of the crs of appropriate size). This is because a simple transformation can be used to first
reduce the size of the crs while preserving the above sublinear succinctness bound: to prove
k statements, pick a small constant € > 0 and execute k' ¢ copies of the initial BARG with
batch size k¢ (re-using a single crs).

e The rate-1 string OT is used (solely) to construct a somewhere extractable hash (SEH) family
with local opening (Section 4). This matches® what is required in the generic transformations
of [CJJ21a,KVZ21]. We state Theorem 1.3 using string OT simply to highlight the variety of
instantiations of the building block, many of which were not previously known (Lemma 4.5).

e We emphasize that our results (and proofs) are entirely in the setting of non-interactive
arguments. Unlike prior work such as [CCH'19, JKKZ21,CJJ21a,CJJ21b, HIKS22], we do not
make explicit use of interactive proofs or the Fiat-Shamir transform, but instead generically
convert a weakly succinct (non-interactive) BARG into a strongly succinct BARG.

Theorem 1.3, combined with the works of [CJJ21a, KVZ21], reduces the problem of constructing
ideal SNARGs for time-T" computations to constructing any non-trivial BARG, one that is slightly
more succinct that simply sending all the NP witnesses in the clear.

As corollaries to Theorem 1.3, we obtain multiple new constructions of BARGs for NP and

SNARGs for P:

SFor simplicity of the write-up, our SEH definition differs slightly from what was used in [CJJ21a]. We make use of
a form of deterministic succinct commitment schemes, while [CJJ21a] allows randomization. However, such schemes
can always be derandomized with a (public seed) PRF, so the primitives are equivalent.

e Together with the result of [WW22], Theorem 1.3 gives a BARG for NP with proof size
poly(A, m,log k) and a SNARG for time-T" computations of size poly(\,logT) (as opposed to
size poly(\, m, k) and poly(A,T¢)) from DLIN (or O(1)-LIN) on bilinear maps. Moreover, this
BARG can be obtained from the “base” scheme of [WW22] without their “bootstrapping” step.

e Together with the result of [CJJ21b], Theorem 1.3 gives BARGs and SNARGs with the above
efficiency from QR and DDH, as opposed to having a vk dependence in [CJJ21b] or a k€ (or
T°) dependence in [HJKS22].

Perhaps more importantly, we believe Theorem 1.3 is an important foundation that will lead to new
constructions of BARGs and SNARGs, since it reduces this goal to a significantly easier problem.
In order to prove Theorem 1.3, we also obtain an answer to Question 1.2 by considering the
setting of RAM delegation [KP16,BHK17]. We define (and construct) a new notion of RAM SNARG,
which we call a flexible RAM SNARG with partial input soundness (Definition 6.2). We then prove:

Theorem 1.4 (informal, see Theorem 8.3). Assuming the existence of rate-1 string OT, BARGs for
NP are existentially equivalent to flexible RAM SNARGs with partial input soundness.

We prove both directions of this equivalence (assuming rate-1 string OT):

1. BARGs for NP imply flexible RAM SNARGs in an efficiency-preserving manner. This is a
strengthening of the [CJJ21a,KVZ21] result, which only constructs a weaker form of RAM
delegation from BARGs.

2. Flexible RAM SNARGs, even with barely non-trivial succinctness, imply BARGs with succinct-
ness poly(A, m,logk).

Sequentially combining these two transformations yields Theorem 1.3. Combining them the opposite
order also implies that the succinctness of flexible RAM SNARGs can be boosted.

In addition to facilitating Theorem 1.3, we believe that our notion of flexible RAM SNARGs
is of independent interest; indeed, it has already been used to obtain a simplified rate-1 BARG
in [DGKV22].

2 Our Techniques

Somewhere extractable BARGs (seBARGs). Before diving into our techniques, we first simplify
our problem by replacing BARGs with a slightly stronger primitive without loss of generality. Namely,
we consider somewhere extractable BARGs, hereafter referred to as seBARGs. A BARG is defined
to be somewhere extractable if for some (hidden) choice of i, given an appropriate trapdoor td for
the crs, it is possible to extract a witness w; for x; given a valid BARG proof. This is essentially an
argument of knowledge property for BARGs.

Conveniently, assuming the existence of somewhere extractable hash functions with local opening,
BARGs can easily be modified to be somewhere extractable with the standard “commit-and-prove”
approach (for example, this was used implicitly in [CJJ21a, KVZ21]). From now on we work directly
with seBARGs instead of BARGs, since seBARGs are an easier-to-manipulate primitive.

Organization. We now give an overview of our proofs of both directions of Theorem 1.4; these
together also imply Theorem 1.3. We begin by recalling RAM delegation and give intuition for
why it should be useful for constructing BARGs. We then discuss our new notion of flexible RAM
SNARGs with partial input soundness and sketch our main proofs.

RAM delegation. A RAM SNARG, originally defined in [KP16], is similar to a SNARG for
deterministic computations but tailored to the RAM computational model. Concretely, we consider
the simplified setting of read-only RAM computation. A (read-only) RAM algorithm is given query-
access to a large input x (often referred to as its “memory”) and returns some output y. Queries to
memory are considered unit-cost operations.

In a RAM SNARG, the prover wants to convince the verifier that M(z) = y for some RAM
machine M input x, and output y. In addition to wanting verification that is efficient compared to
the runtime of M (x), it is also desired that verification is sublinear (preferably polylogarithmic)
in the length of the input x. However, the verifier must have some “handle” on x in order for
verification to be possible; to do so, the verifier is given a digest d = Digest(crs, x), which can roughly
be thought of as a Merkle tree commitment to x.

Given this syntax, we arrive at an important question: what does it mean for a RAM SNARG
to be sound? Observe that the map x ~— Digest(crs, z) is many-to-one, so the input z is not
information-theoretically defined from the point of view of the verifier. Thus, Digest(crs, -) is always
required to be collision-resistant, capturing the intuition that the prover should be committed to
some particular input x when it sends d.

In prior work [KP16,BHK17,KPY19,CJJ21a], soundness was formulated in two different ways:

e In [KP16,BHK17], a RAM SNARG is defined to be sound if it is computationally hard to prove
two contradictory statements; namely, to prove that both M(x) = 0 and M (z) = 1 with the
same machine M and digest d (note that a specific input = does not necessarily exist in this
security notion; the prover may not actually know one).

e In [KPY19,CJJ21a], a weaker security property was used: a RAM SNARG was defined to
be sound if it is computationally hard to simultaneously (1) make the verifier accept with
machine M, digest d, and output y and (2) produce an input x such that M(z) # y and
Digest(crs,z) = d. Note that the [KP16, BHK17] security definition implies this one.

Previous constructions of RAM SNARGs from standard assumptions [KPY19,CJJ21a] (and those
that follow by combining [CJJ21a] with [CJJ21b, HJKS22, WW22]) were only shown to satisfy the
weaker of the above two definitions. We emphasize that this soundness definition is quite weak:
soundness is guaranteed only against an adversary that “knows” the entire memory = corresponding
to a digest d. In this work, we revisit the notion of RAM SNARGs and provide a new, stronger
definition of soundness that overcomes this weakness and facilitates Theorems 1.3 and 1.4.

How to use SNARGs for RAM to build BARGs Before getting to our new definition, let us sketch
why SNARGs for RAM are useful for constructing BARGs; the connection is surprisingly simple in
hindsight. At a high level, the idea is for the prover P to treat its £ NP witnesses w1, ..., wy as the
memory of a RAM machine. Thus, the prover will compute d = Digest(crs, w1, ..., wx) (where crs is
associated with some SNARG for RAM) and send d to the verifier.

Now, the most naive approach would be for the prover to send a SNARG that wy, ..., wy are all
valid witnesses for x1,...,xx, but it is completely unclear how to argue soundness of the resulting
BARG relying on any soundness property of the SNARG.” The problem is that fundamentally, there
is no way to guarantee that an adversarial prover P* who makes the verifier accept (with digest d)
actually knows the contents of a memory (wy, ..., wy) that corresponds to d.

Instead, we will have the prover produce k different SNARGs 71, ..., 7, on memory (wq,...,wg)
with respect to k different RAM computations. Specifically, we define the ith RAM computation M;
to consider only the ith “chunk” of memory and verify that w; is a valid witness for x;. An initial
candidate BARG can then be the digest d along with mq, ..., m; the verifier simply checks each ;
separately (with respect to d).

Although we have not argued soundness, this is already a non-trivial candidate BARG! As long
as each m; is significantly shorter than m (the length of w;), the communication complexity of this
protocol will be significantly shorter than the trivial bound of k- m. This establishes an intuitive
connection between RAM SNARGs and BARGs.

Challenges in Arguing Soundness. Despite having a simple candidate BARG with non-trivial
efficiency, soundness of this candidate is not obvious and in fact does not seem to follow from
previous security definitions for RAM SNARGs. In fact, the problem seems similar to the “naive’
case: soundness of a RAM SNARG is only guaranteed against adversaries that “know” the entire
memory, which is wy, ..., wg, but there is no way to argue that an adversary P* must know such a
long string (since the BARG itself is short).

However, there is a key difference from before: each RAM computation M; only operates on a
small fraction of its memory, namely, w; (ignoring all w; for j # 7). Moreover, if Digest is somewhere
extractable [HW15] on m locations (henceforth called a m-SEH), it is possible to argue that an
adversary P* (at least inside a security reduction) knows the fraction of RAM memory that is
relevant to any particular M;. This opens up the possibility for the following kind of security proof:

?

e Suppose that P* is a convincing prover for the BARG, and let i be an index such that the
statement x; is false.

e Switch to a hybrid experiment in which the crs is statistically binding (and extractable) on
w;. In this hybrid, it is possible to produce both a valid BARG proof (where z; is false®) and
obtain the unique w; consistent with d.

e Argue that the proof m; produced by P* contradicts the soundness of the RAM SNARG.

Unfortunately, previous RAM SNARG security definitions [KP16, BHK17, KPY19,CJJ21a] are not
compatible with this security reduction. As a result, we next revisit and revise the foundations of
RAM delegation.

"We remark that in the privately verifiable setting, the batch argument system of [BHK17] is somewhat similar to
the “naive” construction above, but they do not rely on a RAM SNARG. Instead, they rely on what later became
known as a quasi-argument for NP [KPY19], which is a much more powerful building block.

81n this overview, we assume for simplicity that the statements x1, ...,z are fixed in advance. The situation is
more subtle if the z; are chosen adaptively, but non-trivial security properties can be argued (see Definition 3.4).

Flexible SNARGs for RAM. There are two significant issues with previous notions of RAM
SNARGsS if we want to use them. First of all, we want a RAM SNARG with the property that the
Digest algorithm is somewhere extractable on m locations. This begs the question: do such RAM
SNARGs exist? More generally, one can ask: which additional properties can the Digest algorithm
of a RAM SNARG potentially have?

We address these questions by defining flexible RAM SNARGs (Definition 6.2), which are a generic
RAM SNARG template making use of an arbitrary hash family with local opening.”? Specifically, a
flexible RAM SNARG is a scheme defined relative to a generic hash family, which plays the role of
the Digest algorithm. A flexible RAM SNARG has the property that for any secure hash family with
local opening, the resulting RAM SNARG is sound. In other words, flexible RAM SNARGs imply
that any hash family with local opening can be used as the Digest algorithm for a RAM SNARG.
This tells us that we can plug in a Digest algorithm that is somewhere extractable, provided that it
also has local openings.

Partial-Input Soundness. The second major problem with RAM SNARGs is that, as stated
earlier, they provide no security guarantees against adversaries who produce a digest d* without
knowledge of a full opening of d* to an input x (representing the full contents of a machine’s memory).
This is problematic in scenarios where a SNARG is used to prove statements about RAM machines
that only access a small fraction of their memory.

This motivates defining soundness (or argument of knowledge) properties for RAM delegation
schemes in situations where the adversary does not know an entire input z. Formulating such
security notions can be quite subtle. In this work, for simplicity, we focus on the following setting:

e The Digest hash function is eztractable on some set of locations S. This means that given
an arbitrary d*, it is possible to extract an assignment xg so that an opening of d* to any
location i € S must reveal the bit x;.

e The RAM machine M, when run on any memory consistent with xg, only reads locations in
S. This is equivalent to the assertion that this holds when M is run on the specific input z*
such that z] = x; for i € S and z] = 0 otherwise.

In this situation, we say that a RAM SNARG satisfies partial-input soundness if it is computationally
hard to produce a machine M, digest d*, output y, and proof 7 such that

e The verifier accepts (M, d*,y,), and
o M(x*) # y, where z* is obtained from d* as above, and M (z*) only reads locations in S.

We emphasize that this definition does not require that the adversary possesses an opening'® of d*
to xg; nevertheless, the string xg is well-defined (and efficiently accessible) in the security game.

9A hash family with local opening (Definition 3.1) is a deterministic, computationally binding succinct commitment
to a long string = along with a procedure for producing a short (poly())-size) opening to any bit x;. This commitment
need not hide information about x. In this paper, we relax the standard definition to allow for the hash key and hash
output to each have two parts: (potentially long) sender components (hk,v) and (short) receiver components (vk, rt)
(which are used for opening verification).

10 A natural alternative soundness definition would simply require that it is computationally hard for P* to produce
accepting (M, y,d, w) and local openings to a substring xg such that M (z*) only reads locations in S and M (z*) # y.
However, for technical reasons, this turns out to be an insufficient definition to support our transformations, since we
cannot always guarantee (in our soundness reductions) that P* knows how to open xs.

Armed with this definition, we return to our main results relating BARGs and RAM SNARGs:
assuming the existence of rate-1 string OT, the following two claims hold.

Claim 2.1. seBARGs imply flexible RAM SNARGs with partial-input soundness.

Claim 2.2. Flexible RAM SNARGs with partial-input soundness imply seBARGs. This transforma-
tion boosts succinctness from “non-trivial” to poly(A, m,logk).

So far, we sketched a weak variant of Claim 2.2 that does not boost succinctness. We conclude
by discussing how to prove Claim 2.2 (in full) and Claim 2.1.

Boosting Succinctness via Recursion. Recall our candidate non-trivial seBARG making use of
a (flexible) RAM SNARG:

e The prover sends a digest d = Digest(wy, ..., wy), and

e The prover sends k SNARGs 71, ..., associated with d, where 7; is a proof that w; is a valid
witness for xz;.

We indeed show that this construction is sound assuming that Digest is somewhere extractable and
the RAM SNARG satisfies partial-input soundness. However, this argument system is only somewhat
succinct: the size of the proof is |d|+ > _|m;|, which grows linearly with k. Can we do better?

The answer is that we can by adapting an insight from [CJJ21a] to our setting.!! Namely, we
observe that the proof string (d, m,...,m;) has reduced the problem of verifying w, ..., wy to the
easier problem of verifying mq,...,m. Provided that the time to verify each m; is at most half the

time required to verify each w;, we can pair adjacent proofs (me;_1,m2;) together and obtain a batch
NP verification problem with k/2 witnesses of complexity no larger than that of the original w;.
Then, instead of sending these witnesses (the ;) in the clear, we can have the prover recursively
run our protocol: send Digest(my, ..., 7;) and compute proofs 7/, ..., 7 /2 certifying that all pairs
(m2i—1,m2;) would be accepted by the RAM SNARG verifier. This recursion can be executed log k
times in total, resulting in a seBARG in which the prover sends log & digests do, ..., diog x—1, Where

d; is a digest of k/2% strings ng), ey 7['](:/)21- that are RAM SNARG proofs computed with respect to

di_1. At the end of the recursion, there will be a single RAM SNARG proof 7(1°8%) that the verifier
can receive and check on its own.

Crucially, we observe that as long as the RAM SNARG is non-trivially succinct — meaning that
the computational cost of verifying a pair (71, 72) is lower than the cost of verifying a single NP
witness w — then the resulting seBARG will have ideal succinctness poly(\, m,log k). This is what
enables our generic boosting results; see Section 7 for more details.

10One can view [CJJ21a] as implementing the following strategy: (1) construct a weakly succinct interactive batch
argument scheme, (2) extend this particular scheme to a fully succinct interactive batch argument scheme, and (3)
compile it into a BARG using the Fiat-Shamir transform [CCH"19]. (2) is accomplished via an interactive recursion.
Theorem 1.3 suggests an alternative approach: (1’) build a weakly succinct interactive scheme, (2') apply the Fiat-
Shamir transform right away to get a weakly succinct BARG, and (3') invoke Theorem 1.3 to boost the succinctness
generically.

Fully Local Hashing. So far, we have sketched how to construct seBARGs given a flexible RAM
SNARG with partial-input soundness, when the Digest algorithm for the RAM SNARG is somewhere
extractable on m locations. Next, we address a technical issue with this approach.

The problem is that flexible SNARGs for RAM are only as as efficient as the underlying Digest
algorithm plugged into them. Specifically, the verification time of the SNARG grows with the size of
a local opening for Digest. However, a hash family that is somewhere extractable on m locations
must necessarily have an output of length > m [HW15], so opening verification would seem to
require at least m time (even to read the hash value). This would result in a RAM SNARG whose
verification time grows with m, which for our candidate BARG above would be useless: the BARG’s
size would be larger than k - m.

This incompatibility is resolved with the recently introduced notion of a “fully local (somewhere
extractable) hash family” [DGKV22]. In such a hash family #, a hash evaluation can be divided into
two parts: a long (length > m) component v and a short (length poly(\)) component rt. (Similarly,
the hash key can be divided into a long component hk and a short component vk.) The hash family
is then required to be extractable given v and have local openings of rt of size poly()\) to individual
input bits. Finally, consistency between v and rt is enforced; rt = H.Digest(crs, v) is a fixed function
of v.

A fully local SEH hash family H resolves our technical issue and enables a provable construction
of seBARGs from flexible RAM SNARGs. But how is this building block instantiated? [DGKV22]
constructed such hash families from the LWE assumption. Their construction was complicated and
required powerful tools (including rate-1 FHE and seBARGs themselves!), but they were aiming for
a rate-1 fully local hash family.

In this work (see Theorem 5.2), we give a simple construction of a (low rate) fISEH family from
any SEH family with local opening. That is, we show that SEH families that are binding on a single
index (or on m indices with openings that grow linearly with m) can be generically made fully local.

At a high level, our fISEH family is constructed as follows. Suppose that we want to hash inputs
x € {0,1}" in a way that is extractable on m indices i1,...,i, € [n]. Since a m-SEH requires
openings of size > m (as discussed above), we instead separately hash x m different times using
SEH functions hq, ..., hy,. Each h; <~ H is set up to be extractable on poly(\) locations and have
openings of size poly(A). The resulting m hash values vy, ..., v, are defined to be the extractable
hash output v; v is then digested using a hash tree into a root rt of size poly()A). To open a bit x;
with respect to the root rt, a hash function index j is selected pseudorandomly'? (as a function of
i), vj is opened (w.r.t. rt), and then x; is opened (w.r.t. v;). This strategy enables us to make the
overall hash family extractable on index ¢ by making the hash function h; extractable on 4, and
thus allows for m-location extractability with poly())-size openings. See Section 5.2 for details.

Having resolved the local opening subtlety, this completes our overview of Claim 2.2.

Constructing our RAM SNARGs from seBARGs. Finally, we turn to Claim 2.1: constructing
flexible RAM SNARGs with partial input soundness from seBARGs. This construction additionally
uses a SEH family with local opening and closely follows the transformations of [CJJ21a, KVZ21].
To give a succinct proof that M(z) = y with respect to a digest d (computed with respect
to an arbitrary Digest algorithm with local opening), compute a somewhere extractable hash

2The notion of pseudorandomness required is that of a load-balancing hash function: the n indices {1,...,n}
should be mapped pseudorandomly into m buckets so that for any m-tuple (i1,...,im) no bucket has more than
poly(A) of those indices in it.

h = SEH.Hash(sty,...,stp), where sty, ..., sty denotes the sequence of memory configurations for
the execution of M (z). Then, generate and send a seBARG that, roughly speaking, st; — st;_ ; for
all 5. More formally, the seBARG is executed on a batch NP statement whose witnesses are openings
to pairs (st;,st;,) along with openings of d to the bit x; that st; asks to read; the NP relation
checks that the correct bit is read and that the state transformation st; — st; | is executed correctly.
Since this batch of NP statements has a succinct representation (given by d along with h and the
hash keys), the resulting RAM SNARG will be as succinct (up to poly(A, |st]) factors) as the BARG.

The main difference from the [CJJ21a, KVZ21] setting is that we wish to prove partial-input
soundness, which states that a (malicious) prover cannot produce a digest d and accepting SNARG
proof (M,y,) such that M (z*) # y, where x* is constructed by extracting a substring xg from
d and setting all other z; to 0. This follows from a hybrid argument combining the (extractable)
binding property of Digest with the (extractable) soundness property of the seBARG. Essentially, it
is possible to argue sequentially that for every time-step ¢, if the seBARG crs is set to be extractable
on the tth NP statement, then the extracted state st, must match the state of M (z*) at time ¢. We
refer the reader to Section 6 for more details.

This completes our sketch of Claim 2.1. Combining Claim 2.1 and Claim 2.2 appropriately, we
obtain Theorem 1.3 and Theorem 1.4.

2.1 Relation to [DGKV22]

A recent work of Devadas, Goyal, Kalai, and Vaikuntanathan [DGKV22| (concurrently with a work
of Paneth and Pass [PP22]) constructs seBARGs that have rate 1 with respect to the size of an NP
witness. The notion of “rate-1 fully local hash” was introduced in an initial version of [DGKV22] for
their construction; we then used a relaxation of their notion (a fully local hash family that has low
rate) in this work. Subsequently, an updated version of [DGKV22] gives a significantly simplified
construction of rate-1 seBARGs that leverages our notion of flexible RAM SNARGs (Definition 6.2)
adapted to their rate-1 setting.

3 Preliminaries

Notation. We use PPT to denote probabilistic polynomial-time, and denote the set of all positive
integers up to n as [n] := {1,...,n}. For any finite set S, x + S denotes a uniformly random
element = from the set S. Similarly, for any distribution D, x <— D denotes an element x drawn
from distribution D.

3.1 Hash Family with Local Opening

In this section we recall the definition of a hash family with local opening [Mer88].'> We generalize the
original definition to allow for a non-succinct hash key (hk,vk) that is divided into two components:
a (potentially long) sender component and a (short) receiver component that is actually used for
opening verification.

13Tn what follows we use the notation HT to denote a hash family with local opening, where HT symbolizes a Hash
Tree construction. We emphasize that we are not restricted to such a construction, and use this notation only to give
the reader an example to have in mind.

10

Syntax. A hash family (HT) with ¢(N, \)-succinct local opening consists of the following algo-
rithms:

Gen(N, 1) — (hk,vk). This is a probabilistic (not necessarily poly-time) algorithm that takes
as input the input length 1V and security parameter 1 in unary and outputs a key pair
(hk,vk) € {0, 1}PoY(NA) 5 £0 11PN hk is referred to as the hash key, while vk is referred to

as the verification key.

Hash(hk,z) — v. This is a deterministic poly-time algorithm that takes as input a hash key hk and
an input € {0,1}" and outputs a hash value v € {0, 1}4V:A),

Open(hk,z,j) — (b, p). This is a deterministic poly-time algorithm that takes as input a hash key
hk, an input = € {0,1}" and an index j € [N], and outputs a bit b € {0,1} and an opening
p € {0, 1NN,

Verify(vk, v, 7, b, p). This is a deterministic poly-time algorithm that takes as input a verification
key vk, a hash value v, an index j € [N], a bit b € {0,1} and an opening p € {0,1}*™V:Y) and
outputs 1 (accept) or 0 (reject).

Definition 3.1. (Properties of HT) A HT family (Gen, Hash, Open, Verify) is required to satisfy the
following properties.

¢-Succinctness. The runtime of Gen(N, 1) is bounded by £(N,), and the runtime of Verify
(and hence the size of v and (b, p)) is at most {(N,\).

Opening completeness. For any A € N, any N < 2*, any x € {0, l}N, and any indez j € [N],

(hk, vk) + Gen(1V, 1),
v = Hash(hk, z), =1 —negl(A).

bZ.’L‘j

br A Verify(vk,v, j,b,p) =1

Collision resistance w.r.t. opening. For any poly-size adversary A there exists a negligible
function negl(-) such that for every A € N,

Verify(vk, v, 7,0,p0) =1 ~ (hk,vk) < Gen(1V,1%),

P) . :)
r A Verify(vk,v,j,1,p1) =1 (v, 7, po, p1) < A(hk)

= negl(\).

We say that a HT family has succinct local openings if
e Gen runs in time poly(A) and always outputs hk = vk, and
e /(N,\) = poly(A,log N).

This variant is the standard notion from [Mer88].

Theorem 3.2 ([Mer88]). Assuming the existence of a collision resistant hash family there exists a
hash family with succinct local opening (according to Definition 3.1).

If a HT family has succinct local openings, we drop the vk notation and sometimes refer to the
hash value v as a root rt.

11

Remark 3.1 (Opening multiple locations). One can extend the Open algorithm to take a set of
indices J C N, as opposed to taking a single index j € [N], in the natural way. Namely,

Open(hk, z,J) = (Open(hk, z, 7)) es

Similarly, one can extend the Verify algorithm to verify a set of openings, as opposed to a single
opening.

Remark 3.2 (Offline/Online Opening Verification). In the interest of making opening verification as
efficient as possible, we optionally allow for a hash family with local opening HT to have offline/online
opening verification, which means that opening verification operates as follows:

e In the offline phase, only the hash value v is available. During this phase, an algorithm
Digest(vk, v) is executed, outputting a (short) advice string rt.

e In the online phase, Verify(vk, rt, j,b, p) now takes rt as input instead of v.

In such schemes, there are two efficiency metrics: (1) the size of the hash value v (and runtime of
Digest), and (2) the runtime of Verify(vk, rt, 7, b, p) (which can be smaller). In this situation, we will
use (-succinctness to refer to (2).

3.2 Somewhere Extractable Hash Families
Next, we recall the definition of a somewhere extractable (SEH) hash family based on prior

works [HW15, OPWW15].

Syntax. A SEH hash family consists of algorithms
(Gen, Hash, Open, Verify, Extract)

where Hash, Open, Verify have the same syntax as those of a hash family with local opening, and
Gen and Extract have the following syntax:

Gen(1*, N, i) — (hk,vk,td). This is a probabilistic poly-time setup algorithm that takes as input a
security parameter 1 in unary, a message length N, and an index i € [N]. It outputs a key
pair (hk,vk) along with trapdoor td.

Extract(td,v) — b. This is a deterministic poly-time extraction algorithm that takes as input a hash
value rt and a trapdoor td, and outputs a bit b.

Definition 3.3 (SEH). A {¢-succinct SEH hash family (Gen, Hash, Open, Verify, Extract) is required
to satisfy the following properties:

{-succinctness as in Definition 3.1.

Index hiding. For any poly-size adversary A = (A1, As) there exists a negligible function negl(-)
such that for every A € N,

(iO,ilaN) <~ “41(1)\)7 b <+ {07 1}

PriAaio =02 4k td) < Gen(1}, N, i)

1
< 5 + negl(A).

12

Opening completeness. For any A € N, any N < 2*, any indices i,j € [N], and any x €
{0, 13",

(hk, vk, td) - Gen(1*, N, 1),

v = Hash(hk, x), =1—negl(X).

Pr b=z,

A Verify(vk,v, j,b,p) =1
We note that this property is almost identical to that in Definition 3.1, where the above
definition quantifies over all i,j € [N], whereas Definition 3.1 quantified only over j € [N]
(the extraction index i did not exist there).

Somewhere statistical (resp. computational) extractability w.r.t. opening. For any all-
powerful (resp. polynomial-time) adversary A = (A1, As) there exists a negligible function
negl(:) such that for every A € N,

(i, N) + A1 (1Y)
(hk, vk, td) < Gen(1*, N,4), | < negl()).
(v, b, p) + Az(hk)

Py b # Extract(td, v)

A Verify(vk,v,i,b,p) =1
Remark 3.3. The index hiding property and the somewhere extractability w.r.t. opening property
of a SEH hash family together imply collision resistance w.r.t. opening as in Definition 3.1.

Remark 3.4 (m-SEH). Note that any SEH hash family (as defined in Definition 3.3) can be
converted into one that is extractable on m indices 41, ..., %y, by simply running all the algorithms in
parallel m times, where the Gen algorithm is run each time with a different index i;, resulting with
hk;, and the final hk is (hky,...,hk,,). The rest of the algorithms are run m times, each time with
a different hk;, and they output the concatenation of all the outputs. Under this transformation, if
the original SEH family had ¢-local openings, the new family will have £ - m-local openings.

Thus, more generally, we think of Gen as taking as input (1*, N, I) where I C [N], in which case
Extract(td, rt) outputs |I| bits (b;);cr. We sometimes refer to this an an m-SEH hash family, and
sometimes we omit m, and simply refer to it as an SEH hash family.

3.3 Batch Arguments
Let CSAT be the following language
CSAT = {(C,z) : 3w € {0,1}" s.t. C(z,w) =1}

where C': {0,1}" x {0,1}™ — {0, 1} is a Boolean circuit and = € {0,1}" is an instance.
Let BatchCSAT be the following language

BatchCSAT = {(C, z1,...,x) : Jwq,...,wi € {0,1}™ s.t. Vi € [k],C(a;,w;) =1}
Syntax. A publicly verifiable non-interactive batch argument (BARG) system for the language
BatchCSAT consists of the following algorithms:

Gen(1*,k,1%) — crs. This is a randomized (not necessarily poly-time)'® algorithm that takes as
input a security parameter 1*, number of instances k, and a circuit size 15. It outputs a
common reference string crs.

4 This algorithm is always required to run in time at most poly(k, s, \) though it is desirable that its runtime be
sublinear in k. See the succinctness property in Definition 3.4 below.

13

Plers,Cyxy, ..., xp, wy, ..., wg) — m. This is a poly-time prover algorithm that takes as input a crs,
a circuit C : {0,1}" x {0,1}"™ — {0, 1}, k instances z1,...,z; € {0,1}" and corresponding
witnesses wy, ..., w, € {0,1}", and outputs a proof .

V(ers,Cyxy, ..., xp, ™) — 0/1. This is a poly-time verification algorithm that takes as input a crs,
a circuit C : {0,1}" x {0,1}"™ — {0,1}, k instances x1,...,2z; € {0,1}", and a proof 7. It
outputs a bit to indicate whether the proof is valid or not.

Definition 3.4 (BARG for BatchCSAT). An L(-, -)-succinct BARG scheme (Gen, P, V) for BatchCSAT

1s required to satisfy the following properties:

L-Succinctness. The crs and proof m are of length at most L(k,\) - poly(s), and the running
time of Gen is at most L(k,) - poly(s).

L-Verification Efficiency. The verifier runs in time L(k, \) - poly(s) + k - poly(n, A).1?

Completeness. For any A\ € N, any k = k()\) and s = s(\) of size at most 2*, any circuit
C:{0,1}" x {0,1}™ — {0, 1} of size at most s, any k instances x1, ...,z € {0,1}" and their
corresponding witnesses wy, ..., w, € {0,1}", and any index i* € [k],

crs « Gen(1M, K, 1°,4%),

Pr | V(ers,C,zq,...,2p,m) =1
(crs, €, 21, - g,) IT <+ P(ers,Cyx1,y .oy Ty W1, - - ., Wi

) } =1 negl(\).

Semi-adaptive soundness. For any poly-size adversary A, and any polynomials k = k(\) and
s = s(\), and any index i* = i*(\) € [k())], there exists a negligible function negl(-) such that
for every A € N,

V(ers, Cyan,. . xp,m) =1 crs < Gen(1%, k, 1%, i%)
: < .
P [A (C x+) ¢ CSAT (C,z1,... x5, m) « Alcrs) | = negl(\)

Definition 3.5 (Index BARG). An index BARG scheme is a special case of BARG for BatchCSAT
where the instances x1, ..., x are restricted to be 1,2, ...k, and thus we omit them from the prover
algorithm P, the verifier algorithm V, and the extraction algorithm Extract. However, for such a
scheme, we require that V runs in time L(k, \) - poly(s) (with no additive poly(k,n) term), since the
mputs x1,...,xr no longer need to be read.

Remark 3.5. Both a BARG for BatchCSAT and an index BARG can be thought of as BARGs that
offer an efficiency gain in the case where the NP statements (C,x1), ..., (C, zx) have an efficient
representation. For Definition 3.4, this efficient representation lies in the fact that C' is reused across
instances, while for Definition 3.5, C alone describes the batch of instances.

For our purposes, the two notions are essentially equivalent:

e Given a BARG for BatchCSAT, setting the input length n = A implies an index BARG with
verification time L(k, \) - poly(s) + k - A, which can be made sublinear in & for any sublinear
(in k) function L by merging small (e.g. size k° or (log k)“(!)) groups of statements together
(increasing s by a small factor) and executing the proof system with a sublinear batch size.

15We choose this efficiency bound so that it is always smaller than the trivial k - s bound, although one could
conceivably consider BARGs with larger verification time. We do not know how to make use of such BARGs. [CJJ21a]
instead require a “split verification” property that in particular immediately implies the notion of Index BARG below.

14

e If there is a circuit family C” that on each input 7 outputs x;, one can obtain a BARG for
BatchCSAT with respect to (C,z1,...,) from an index BARG with respect to the circuit

Cli,w) = C(C"(i), w).

One of the main goals of this paper is to generically boost the succinctness of index BARGs.
However, we will mainly work with a strengthening of index BARGs called (index) somewhere
extractable BARGs (seBARGsS).

Definition 3.6 (seBARG for BatchCSAT). An L(-,-)-succinct seBARG scheme (Gen, P, V, Extract)
for BatchCSAT s a L(-,-)-succinct BARG (Definition 3.4) with the following augmented syntax.

Gen(1*, k,1°,i*) — (crs,td). The Gen algorithm now takes as additional input an index i* and
outputs a trapdoor td in addition to crs.

Extract(td, C, x1,..., x5, m) — w*. This is a poly-time extraction algorithm that takes as input a
trapdoor td, a circuit C : {0,1}" x {0,1}"™ — {0, 1}, k instances x; ...,z € {0,1}", and a
proof 7, and it outputs a witness w*.

An seBARG is then required to satisfy the following additional properties to that of a BARG:

Index hiding. For any polynomials k = k(\) and s(\) and any poly-size adversary A, there
exists a negligible function negl(-) such that for every A € N,

Q0,1 A
io,i1 € [k] éf_’ 1{)0’7},4(1) <

Pr)
A Alcrs) =b (crs,td) < Gen(12, k, 1%, p)

+ negl(A).

DN

Somewhere argument of knowledge. For any poly-size adversary A, and any polynomials
k= k(\) and s = s(\), and any index i* = i*(\) € [k(N)], there exists a negligible function
negl(-) such that for every A € N,

(crs,td) « Gen(1*, k, 1%, i)
(C,x1,. ..,z 7) < Alcrs) < negl(\).
w* < Extract(td, C, z1, ..., 2,)

Vers,Coxy, ... xp,m) =1

br A C(zp;w*) £ 1

The following two theorems are both used to obtain our main two corollaries.

Theorem 3.7 ([WW22]). Assuming O(1)-LIN, for every constant e > 0 there exists an L(k,\)-
succinct index seBARG, for L(k, \) = poly(\) - k€.

Theorem 3.8 ([CJJ21b]). Assuming QR and sub-exponential DDH, there exists an L(k, \)-succinct
index seBARG, for L(k) = poly(A\)Vk.

Implicit in the results of [CJJ21a, KVZ21] is the following lemma:

Lemma 3.9. Assume the existence of

e An L-succinct index BARG system for BatchCSAT, and

o A SEH family with local opening (Definition 3.3) satisfying statistical extractability.

15

Then, there exists an L-succinct index seBARG system for BatchCSAT. Moreover, there exists an
L-succinct seBARG system for BatchCSAT.

Lemma 3.9 is shown via the commit-and-prove paradigm: to build an index seBARG, make
the prover commit (using a SEH that is extractable on m locations, which has openings of size
poly(A) - m) to wy, ..., wk, and then send a BARG that for all i € [k], there exists an opening to a
valid witness w;. If the SEH is extractable on index i*, a witness w; can be extracted from any
hash value rt output by the adversary such that no string other than w;» can be opened on those
locations. This implies the somewhere argument of knowledge property. Moreover, this scheme can
be extended to a (non-index) seBARG by having the prover additionally commit to zy, ..., x; and
require opening to the x; as part of its BARG invocation.

4 SEH families from Rate-1 String OT.

In this section, we explain how we instantiate the SEH families required for Theorems 1.3 and 1.4.
We show that there is a generic construction of an SEH from any rate-1 String OT protocol satisfying
a “verifiable correctness” property (a relaxation of perfect correctness), defined below.

Definition 4.1 (Rate-1 (2-message) String OT). A rate-1 string OT protocol is executed between a
sender S, who has as input two strings xo,z1 € {0,1}, and receiver R, who has as input a single
bit b. Such a protocol has the following syntax:

e OT.Setup(1*,1V) is a randomized algorithm that takes as input the security parameter X and
string length N, and outputs a common reference string crs.

e OT.Com(crs,b; 1) is a randomized algorithm that takes as input the crs and receiver choice bit
b; it outputs a string mp.

e OT.Send(crs, mp, o, x1) takes as input the crs, receiver message mp, and sender inputs xo, T1;
it outputs a string mg.

e OT.Receive(crs, r,mg) takes as input the crs, receiver randomness r, and sender message mg;
1t outpuls a string x.

We require the following properties to hold of a scheme with this syntax:

e Correctness: For any xg,x1,b, if the sender and receiver execute their algorithms honestly
(and the crs is set up honestly), then the receiver’s output x is equal to x, with 1 — negl
probability.

e Receiver Privacy: (crs,OT.Com(crs,0)) is computationally indistinguishable from (crs, OT.Com(crs, 1)).

o Asymptotic Rate 1: The common reference string has length poly(\,log N) and an honestly
computed sender message mg has length N + poly(\,log N).

Our construction below works easily if correctness of the OT scheme holds with probability 1,
but this does not hold for all instantiations of the primitive (most notably, it does not hold for the
DDH-based construction of [DGIT19]). We require the following verifiable correctness property.

16

Definition 4.2. A string OT scheme satisfies verifiable correctness if there is a public, efficiently
computable predicate Valid(crs, mp, xo, x1) with the following properties:

e [fValid(crs,mp, xo,x1) = 1, then correctness w.r.t. (crs,mp,xo,x1) holds (with probability 1).
e For every b, xg, x1, the probability that Valid(crs, OT.Com(crs, b;), xg,x1) = 1 is 1 — negl()\).
Rate-1 String OT has a wide variety of known instantiations, as stated by the following lemma.

Lemma 4.3 ([DGIT19)). Rate-1 string OT schemes exist under any of the following cryptographic
hardness assumptions: (1) learning with errors; (2) quadratic residuosity; (3) decisional composite
residuosity; and (4) decisional Diffie-Hellman.

Moreover, it can be verified by inspection that the schemes described in [DGIT19] all satisfy
verifiable correctness:

e The QR and DCR-based protocols have perfect correctness.

e The DDH-based protocol with 1/ error incurs a correctness error only if the sender computes
a group element e such that e - ¢~! and e do not lie in the same component of a public
pseudorandom partition of the group, which is efficiently checkable (see Appendix A for more
details). This error is then reduced via repetition and an error-correcting code, and thus
correctness is verifiable by checking if the number of “base” errors is small.

e The LWE-based protocol is verifiably correct by a similar argument to the DDH-based protocol.

In addition, a straightforward modification of the techniques in [DGIT19] imply the following
additional instantiation. We present a full construction and proof in Appendix A for completeness.

Lemma 4.4. Rate-1 string OT schemes (with verifiable correctness) exist under the O(1)-LIN
assumption.

We combine Lemmas 4.3 and 4.4 with Lemma 4.5 below to give a wide variety of constructions
of SEH families with succinct local opening.

Lemma 4.5. Assuming any rate-1 string OT with verifiable correctness, there is a somewhere
statistically extractable hash function family with succinct local opening.

Proof. We assume without loss of generality that OT.Send is a deterministic algorithm. If OT
satisfies perfect correctness, this is immediate (set the randomness to 0), while if OT only satisfies
1 — negl (verifiable) correctness, this can be done by adding a short PRF seed s to the crs and
re-defining OT.Send to generate its randomness using s.

We follow the binary tree framework of [OPWW15]. That is, we first construct a two-mode
hash family (h,td) < Gen(1*,b) : {0, 1}2N — {0, 1}V +Poly(Mlog N) with the following extractability
guarantee: there is an extraction algorithm Ext(td,-) such that given y = h(xg,x1), Ext(td,y) = xp.

This hash family can be constructed as follows: a hash key hk in mode b consists of an OT
crs along with a receiver message mp < OT.Com(crs,b). To hash an input (xo,z1) € {0,1}2V
(for sufficiently large N = poly()\)), simply compute a sender message (crs, mpg,zg,z1) — mg,
resulting in an output of length N + poly(\,log N). An opening (x¢,x1) is verified by checking that
Valid(crs, mpg, g, 1) = 1 and that the commitment is equal to OT.Send(crs, mpg, zo, z1). Extraction

17

is then possible using the algorithm OT.Receive (setting the extraction trapdoor td to be the OT
receiver randomness), and somewhere extractability holds by the verifiable correctness property of
OT.

Finally, we use the construction of [OPWW15] Theorem 3.2, which states that any hash family
as above can be converted into a somewhere statistical binding hash family with local opening. In
this construction, a function in the SSB hash family with local opening will, on input z € {0, 1}V
compute and output the root of a Merkle tree, where at level k, pairs of elements of {0, l}k'p‘"y(’\) are
hashed (using a fresh hash key) to {0, 1} +1)Pol¥(}) wwhere the poly()\) term is a fixed polynomial.
Thus, as long as the two-mode hash family is extractable, the resulting SSB hash family with local
opening is also extractable: starting from the root, it is possible to recursively extract one of each
node’s two children in the Merkle tree, until one leaf is extracted. The somewhere extractability
property of this construction follows from the analogous property of the two-mode family. O

5 Low-Rate Fully-Local Hash (fISEH) Families.

The recent work of Devadas, Goyal, Kalai and Vaikuntanathan [DGKV22] defined the notion of a
fully local somewhere extractable hash (fISEH) family. This is an m-SEH, as defined in Definition 3.3
and in Remark 3.4, except that the size of an opening of each index is required to be smaller than
m, and so is the time to verify the opening.

At first, this notion seems impossible to achieve since the hash value is of size > m, which in
turn follows from the fact that it is statistically binding on m locations. In order to realize this
notion, we allow opening verification to work in an offline/online model (Remark 3.2): the hash
value v is first digested to a fully succinct value rt, and online opening verification takes rt (rather
than v) as input.

The work of [DGKV22] constructs a rate-1 fISEH hash family under LWE, and uses this as a
building block in their construction of a rate-1 seBARG. Their construction is quite complicated
due to the rate-1 requirement and relies essentially on tools only known from LWE.

In Section 5.1, we recall the definition of fISEH from [DGKV22] and relax their definition by
removing the rate-1 requirement. In Section 5.2, we give a new construction of a fISEH using any
SEH; by Section 4, this implies constructions from a wide variety of assumptions as opposed to just
LWE. In Section 7, our new fISEH will be used as a key tool for obtaining our main results.

5.1 Defining fISEH Families
Syntax. A fully-local SEH (fISEH) hash family consists of the following algorithms:

Gen(1*, N, I) — (hk, vk, td). Thisis a PPT setup algorithm that takes as input the security parameter
1* (in unary), an input length N (in binary), and a set of indices I C [N]. It outputs a hk of
length |I|-poly(\), a (short) vk, and a trapdoor td.

Hash(hk, z) — v. This is a deterministic poly-time hash algorithm that takes as input hk and message
z € {0,1}", and outputs hash value v of length |I|-poly(}).

Digest(vk,v) — rt. This is a deterministic poly-time algorithm that takes as input vk and a hash
value v, and outputs a (short) digest rt of v of length poly(\).

18

Open(hk, z,i) — (b, p). This is a deterministic poly-time opening algorithm that takes as input hk,
message z € {0,1}"", and index i € [N] and outputs a bit b € {0,1} and a local opening p.

Verify(vk, rt,i,b, p) — 0/1. This is a deterministic poly-time verification algorithm that takes as
input a (short) vk, a (short) rt, an index 7 € [N], a bit b € {0,1}, and local opening p, and
outputs 1 (accept) or 0 (reject).

Extract(td,v) — (b1, ... ’b\ll)' This is a deterministic poly-time extraction algorithm that takes as
input a hash value v and a trapdoor td, and outputs a string of bits (b1, ..., b))

Remark 5.1. We often abuse notation and let
Hash(hk, vk, z) = (v, rt)
where v = Hash(hk, z) and rt = Digest(vk, v).
Definition 5.1 (fISEH). A fISEH hash family is required to satisfy the following properties:

Efficiency. The running time of Verify(vk,rt,i,b, p) is poly(X,log N). The running time of Gen
and the length of a hash value v is |I|-poly(A,log N).

Opening completeness. For any A € N, any N < 2%, any set of indices I C [N], any index
i € [N], and any = € {0,1}"

(hk, vk, td) < Gen(1* N, I),
(v, rt) = Hash(hk, vk,), =1 —negl(N).
(b, p) = Open(hk, z,1),

b:CEi

Pr A Verify(vk, rt,i,b,p) =1

Opening soundness w.r.t. digest. For any poly-size adversary A = (A1, A2) there exists a
negligible function negl(-) such that for every \ € N,

(AN, 1) « A (1)

(hk, vk, td) < Gen(1*, N, I), | < negl()).
(rtai7p07pl) <~ A?(hkv\/k)

Verify(hk, rt, 7,0, pp) = 1

Pr A Verify(hk, rt,i,1,p1) =1

Opening soundness w.r.t. hash value. For any poly-size adversary A = (A, As) there exists
a negligible function negl(-) such that for every A € N,

(1Y, 1) < A (1)
el (hk, vk ,td) < Gen(1*, N, I),
Pr . . ey 15 vy, p") <= Aa(hk, vk). < negl(\).
A Verify(hk,rt,i,1 — x;, p*) =1 t — Digest(vk,v),

(x;)ier = Extract(td, v)

Index hiding. For any poly-size adversary A = (A1, A2) there exists a negligible function negl(-)
such that for every A € N,

(1N7[07II) — Al(lA)7
b+ {0,1}, — + negl(\).
(hk, vk, td) < Gen(1*, N, I)

—_

[lo|= |11

Pr A As(hk,vk) =b

\)

19

5.2 Construction from any SEH

In this section we construct a fISEH hash family from any SEH hash family with (poly(\)-succinct)
local opening.

In particular (invoking Lemmas 4.3 to 4.5), we obtain a fully succinct fISEH hash family from
any of the {DDH, O(1)-LIN, QR, DCR, LWE} assumptions, whereas previously we only knew how to
construct it based on LWE [DGKV22]. In addition, the construction presented here is significantly
simpler than the one in [DGKV22] since we do not require the rate-1 property.

Construction. We construct a fISEH hash family using three simple building blocks:

e A SEH family with succinct local opening (SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract),
e A hash family with succinct local opening (HT.Gen, HT.Hash, HT.Open, HT .Verify).

e A \-wise independent function family {F : [N] — [m]} with seed length and evaluation time
poly(A, log N,logm). This object exists unconditionally, and moreover has the property that
for every m-size subset I C [N], the “maximal load” of F on I is at most A with 1 — negl(\)
probability. For simplicity, one can also just pick {Fs} to be a pseudorandom function family.

Using these three ingredients, we will build a fISEH hash family that takes inputs in {0,1}" and
is somewhere extractable on sets I containing any m indices.

The idea behind the construction is simple: each function F describes a partition of [N] into m
subsets Si,...,Sy,. For any fixed set I C [N] of size m, the A\-wise independence of {F,} implies
that |1 N Sy|< A for all £ with probability 1 — negl(\). Therefore, our construction will use m hash
keys hky, ..., hk,, for a \-SEH; an input x will be hashed using each hk, to an output v,, but the
local opening of a bit z; is defined w.r.t. hkp, ;) (ignoring all other hk,). We then use a standard
hash function with local opening, such as a Merkle tree [Mer88], to digest (vi,...,vy) and let the
result rt be the digested output of the fISEH hash.

Our construction is described below.

e Gen(1*, N, I)

— Sample a seed s < {0,1}POY(N),

— For all j € I, compute Fs(j). Construct (in time |I|-poly(X)) the sets Ty = I N{j €
[N], Fs(j) = ¢}. If |Ty|> X for any ¢, abort.

— For 1 < £ < m, generate (hk,,tdy) < SEH.Gen(1*, N, T}).

— Generate hkyt < HT.Gen(1") and compute rt, = HT.Hash(hkyt, (hky, ..., hk,,)).
Let hk = (s, hky,..., hk,,, hkyt) and vk = (s, hkyt, rtpk). Let td = (s, I,tdy, ..., tdy,).
— Output (hk, vk, td).

e Hash(hk, z)

— Parse hk = (s, hky,..., hk,,, hkyt).
— For every ¢ € [m] compute v, = SEH.Hash (hk,, z).
— Output v = (v1,...,Vp).

20

e Digest(vk,v)

— Parse vk = (s, hky, rtnk)-
— Output rt = HT.Hash(hkyt, v).

e Open(hk,z,7)

— Parse hk = (s, hky, ..., hk,,, hkyt) and let £ = Fs(j).
— Compute v = (vi,...,Vvy) as above. Note that vy = SEH.Hash (hk,, z).
— Compute (v, 0) = HT.Open(hkyT,Vv, Iy) where I, is the interval corresponding to vy.

— Compute (hky, o) = HT.Open (hky, (hky, ..., hk,,),I;), where I is the interval corre-
sponding to hk,.

— Compute (b, p) = SEH.Open (hk,, z, 7).
— Let p* = (Véa th707 g, p)
— Output (b, p*).

o Verify(vk,rt, j, b, p*)

— Parse vk = (s, hkyt, rtpk) and p* = (vg, hky, 0,0, p), where £ = F¢(5).
— Output 1 if and only if the following three conditions hold:
1. HT.Verify(hkyT, rt, Ip, ve, 0) = 1,
2. HT .Verify(hkyT, rtnk, I}, hky, 0) = 1, and
3. SEH.Verify(hk,, v, 7, b, p) = 1.
e Extract(td,v)

— Parse v = (vi,...,vy,) and td = (s,tdy, ..., tdy).
— For every i € I, compute (bi,i’)i’ETFS@) = SEH.Extract(tdg,(;),VF,;))- Observe that
1€ TFS(z)
— Output (b;;)ier-
Theorem 5.2. The construction defined above is a fISEH scheme (see Definition 5.1).

Proof of Theorem 5.2. First, observe that the abort in Gen occurs with only negligible probability
by the A-wise independence of {F;}, so we will ignore this event for the rest of the analysis.

Efficiency. Follows directly from the efficiency properties of the underlying SEH hash family and
HT hash family.

Opening completeness. The opening completeness follows immediately from the opening
completeness of the underlying HT scheme (Definition 3.1) and SEH scheme (Definition 3.3).

Index hiding. Follows from the index hiding property of the underlying SEH hash family.

21

Opening soundness w.r.t. digest. Suppose for the sake of contradiction that there exists a
poly-size adversary A = (A1, A2) and a non-negligible function €(-) such that for every A € N,

(1%, 1) « A1 (1Y),
(hk, vk, td) < Gen(1*, N, I), | > €(\).
(I’t,j, pzk)ap){) — AQ(hk)

Verify(vk, rt, 5,0, p5) = 1

Pr A Verify(vk, rt, 5,1, p7) =1

Parse hk = (s, hky, ..., hk,,, hkyt), vk = (s, hkyT, rthk), let £ = Fy(j), and parse pj = (v}, hky,, oy, 05, pp)
for every b € {0, 1}. First, we observe that the collision-resistance w.r.t. opening property of HT
(see Definition 3.1) implies that hk, = hk, for both b € {0,1} (since rtyx was computed as an honest
HT-hash of (hky,...,hk,,) and Verify checks for a valid HT-opening of rtyi) except with negligible
probability.

This implies that for every A € N,

Vb € {0,1} : (1F,1) « Ay (1),
Pr | HT.Verify(hkyt,rt, Ir,vj,05) =1 : (hk,vk,td) < Gen(1*, N, I), | > €(\) — negl()).
A SEH.Verify(hkg, vy, 5, 0, pp) = 1 (rt, J; p. p1) < Az2(hk)

Then, the collision resistance w.r.t. opening property of HT together implies that for every A € N,

vy =Vv) =V (lk,I) <—A1(1>‘),
Pr|{ AVbe{0,1}: . (hk,vk,td) < Gen(1*, N, I), | > €(\) — negl(\).
SEH.Verify(hky, V', 7,b, pp) = 1 (rt, j, pi, p7) < Az(hk)

This contradicts the computational binding w.r.t. opening property of the underlying SEH hash
family (see Definition 3.3 and Remark 3.3).

Opening soundness w.r.t. hash value. Suppose for the sake of contradiction that there exists
a poly-size adversary A = (A;, A2) and a non-negligible function €(-) such that for every A € N,

(1%,1) «+ Ay (1)

(hk, vk, td) < Gen(1* N, 1),

(v,,p7) = Az(hk). > e(A).
rt = Digest(hk,v),

(z;)ier = Extract(td, v)

jel

Pr A Verify(vk, rt, j,1 —zj,p*) =1

Parse hk = (s,hky,...,hk,,,hkyt), vk = (s, hkyT, rthk), let £ = Fs(j), and parse p* = (V/,0,p).
pp = (v, hk’, 0,0, p). First, we observe that the collision-resistance w.r.t. opening property of HT
implies that hk’ = hk, (since rthx was computed as an honest HT-hash of (hky, ..., hk,,) and Verify
checks for a valid opening of rtpk) except with negligible probability.

By the definition of Verify this implies that for every A € N,

(1%, 1) « A (1Y)
jel (hk, vk, td) < Gen(1*, N, I),
Pr | A HT.Verify(hky, rt, Ip,v/,0) = 1 o (v, 4, p%) < Az(hk). > €(A) — negl().
A SEH.Verify(hk,, v/, j,1 — zj,p) =1 rt = Digest(hk, v),
(x;)ier = Extract(td, v)

22

Similarly, by the collision resistance w.r.t. opening property of the underlying HT hash family it
follows that for every A € N,

(17, 1) « Ay (1%)
jel (hk, vk, td) < Gen(1*, N, I),
Pr| AV =v o (v, 7, p%) < Aa(hk). > €(\) — negl()).
A SEH.Verify(hk,, vy, j,1 —zj,p) =1 rt = Digest(hk, v),
(x;)ier = Extract(td, v)

This contradicts the somewhere extractability w.r.t. opening property of the underlying SEH hash
family (see Definition 3.3), since Extract(td,v) computes x; by running SEH.Extract(tdy, v/). O

6 Flexible RAM SNARGs with Partial Input Soundness

In this section, we define and construct our new notion of flexible RAM SNARGs with partial input
soundness. We begin by recalling RAM delegation.

6.1 RAM Delegation

A RAM machine is modeled as a deterministic machine with random access to a memory of size 2"
In its standard definition, the machine has a local state of length O(W) in addition to its memory,
and at each time step, the machine reads or writes to a single memory cell and updates its local
state. Often it is assumed that the machine has no input outside of its memory.

In this work, we deviate from this modeling in several ways.

e We allow only read access to the memory, and do not allow writing access. As a result,

e We cannot assume that the local state is of length O(WW) and allow it to be of arbitrary length.

Jumping ahead, these modifications will allow us to construct a RAM SNARG where the digest
uses any hash family with local opening, including those that do not have efficient write
operations, which increases its “flexibility.”

e For convenience, we think of the input to the RAM machine as a pair £ = (Zimp, Zexp) Where
Timp is large and is stored in the random access memory, and ey is a short explicit input.

With the model specified, we now proceed to define RAM SNARGs. In Section 6.2, we will
introduce new definitions enabling flexibility (with respect to the Digest algorithm) and partial input
soundness.

Syntax. A RAM SNARG for machine R consists of the following algorithms:

Gen(1*,T) — crs. This is a randomized (not necessarily poly-time)!'® algorithm that takes as input
a security parameter 1* and a time bound 7', and outputs a common reference string crs.

Digest(crs,) — d. This is a deterministic polynomial-time algorithm that takes as input the crs
and a bit string « and outputs a digest d of size poly()).

16This algorithm is always required to run in time at most poly(T, A) though it is desirable that its runtime be
sublinear in T'. See the succinctness property in Definition 6.1 below.

23

P(crs, (Timp; Texp)) — (b,). This is a deterministic polynomial-time prover that takes as input the
crs and a pair (Zimp, Texp) Which consists of a (long) input jmp and a (short) input Zexp, and
outputs a bit b = R(Zimp, Texp) € {0, 1} and a proof .

V(crs,d, Texp, b,m) = {0,1}. This is a deterministic polynomial-time verifier that takes as input the
crs, a digest d of the long input, a short input Zexp, a bit b € {0,1}, and a proof 7, and outputs
1 (accept) or 0 (reject).

Definition 6.1. An L-succinct RAM SNARG (Gen, Digest, P, V) for a RAM computation R with
local state of size S > |Texp|+ log|Timp|, satisfies the following properties:

L-Succinct. The running time of Gen is at most L(T, \) - poly(S), and the length of a proof 7 is
at most L(T, \) - poly(S).

L-Verifier Efficiency. The running time of V is at most L(T,\) - poly(.S).

Completeness. For any \,n € N such that n < T(n) < 2* and any * = (Timp, Texp) € {0,1}"
such that R(z) halts within T time steps, we have that

crs < Gen(1M, T,
(b,) = P(crs,x = (Timp; Texp)), | = 1 — negl(N).
dz,,, = Digest(crs, Zimp)

V(crs, dximp, Texp, b, m) =1

Pr =R

Collision resistance of RAM digest. For any poly-size adversary A and any polynomial T = T'(\)
there exists a negligible function negl(-) such that for every A € N,

Digest(crs, 2) = Digest(crs,2’) crs «+ Gen(1},T),
: < .
br [ANx#a (x,2") < A(crs) < negl(})

Soundness. For any poly-size adversary A and polynomial T' = T(\), there exists a negligible
function negl(-) such that for every \ € N,

P [V(ers, duyy, Texp, 0,m0) =1 crs Gen(1*, 7)), } < negl(\).

A V(ers,dg, s Texps 1, 1) = 1 (d, , Zexp, mo, 1) < A(crs)
Remark 6.1. The above definition of soundness is taken from [KP16, BHK17]. This definition was
later weakened in [KPY19,CJJ21a]. These latter works construct a publicly verifiable RAM SNARG
under the weaker soundness condition which guarantees soundness only for adversaries who ”know”
the memory. Formally, this weaker soundness definition guarantees that for any poly-size adversary
A and polynomial T'= T'(\), there exists a negligible function negl(-) such that for every A € N,

crs < Gen(1M,T),
(x = (mimm xexp)7 b, 7[') «— A(CI’S), < nEgl(A)'
dg,., = Digest(crs, Zimp)

R(x) does not output b within 7" time steps

Pr A V(ers,da,,), Texp, b, ™) = 1

Timp

All known (publicly verifiable) RAM SNARGs under standard assumptions are w.r.t. this weakened
definition. We construct a RAM SNARG and prove soundness under the stronger definition (focusing
on the read-only setting). This proof is given only for completeness, since even this stronger

24

soundness guarantee is insufficient for our application of boosting a semi-succinct seBARG into a
succinct one.

To be useful for our application, we will require an incomparable strengthening of the weaker
soundness property. Intuitively, we require that if the adversary knows only part of the memory
then he cannot prove false claims about RAM computations that only touch that part of memory.
We give a formal definition of this soundness guarantee in Section 6.2 below.

6.2 Defining Flexible RAM SNARGs with Partial Input Soundness

As discussed in the introduction, our new RAM SNARG crucially achieves a soundness guarantee that
is stronger than the previously realized definition [KPY19,CJJ21a], which guaranteed soundness only
if the adversary knows the entire memory. We introduce partial input soundness, which intuitively
guarantees soundness even if the adversary only knows a part of the memory, as long as the RAM
computation only depends on that part of the memory.

In what follows we define the syntax of a flexible RAM SNARG. The syntax is almost identical
to that of a standard RAM SNARG (defined in Section 6.1), with the only difference being that the
hash key used to digest the memory is given explicitly as opposed to being part of the crs.

Syntax. Let R be a RAM machine. A flexible RAM SNARG for R is associated with a hash
family with local opening

HT = (HT.Gen, HT.Hash, HT.Open, HT .Verify),

and consists of the following algorithms (relative to HT):

Gen(1*,T) — crs. This is a randomized (not necessarily poly-time) setup algorithm that takes as
input a security parameter 1* and a time bound 7', and outputs a common reference string
crs.

Digest(hk, vk,) — rt. This is a deterministic polynomial-time algorithm that takes as input a
key pair (hk,vk) generated by HT.Gen(1*) and a string x, and outputs the digest rt =
HT.Hash(hk, vk, z). This algorithm is fixed by the choice of HT.

P(crs, hk, Zimp, Texp) — (b, 7). This is a deterministic polynomial-time prover that takes as input a
crs, a hash key hk, and a pair (Zimp, Texp) Which consists of a (long) implicit input Zimp and a
(short) explicit input Zexp, and outputs a bit b = R(Zimp, Texp) € {0, 1} and a proof =.

V(crs, vk, rt, Texp, b,) — {0,1}. This is a deterministic polynomial-time verifier that takes as input
a crs, a HT verification key vk, a digest rt of the (long) implicit input, a (short) explicit input
Texp, a bit b € {0,1}, and a proof 7, and outputs 1 (accept) or 0 (reject).
Definition 6.2. An L-succinct flexible RAM SNARG
(Gen, Digest, P, V)

associated with a hash family with local opening

HT = (HT.Gen, HT.Hash, HT.Open, HT . Verify)

25

satisfies the properties from Definition 6.1 (where the prover and verifier take as input also hk (which
is implicit in Definition 6.1). Since the succinctness € of local openings of HT is unspecified, verifier
efficiency of the RAM SNARG is required to be L(T, \) - poly(S,¢).

In addition, it satisfies the following partial-input soundness property:

Partial-input soundness: If the underlying hash family with local opening is somewhere ex-
tractable on m locations, now denoted by

SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract)

then for any poly-size adversary A = (A1, A2) and any polynomial T = T(\) there exists a
negligible function negl(-) such that for every X € N,

i crs < Gen(1*, 7)),
(AN, 1) = Ay (crs),
(hk, vk, td) < SEH.Gen(1*, N, I),

lI|<m
AV(crs, VK, rt, Texp, b*,m) =1 (rt Texp, b* 7r> = Ay (crs, hk)
PI' 9 Y 9 P Y . .) expy 9 9 9 S ne |)\
A R(ximpaxexp,T) = 1 —é and does deﬁne Timp € {0, l}N . g()
not read any location in [N]\ I (bi);e; = SEH.Extract(td, rt),

Vi € I, (Timp)i = bi
Vi € [N] \ I, (asimp)i =0

6.3 Construction from seBARGs

Theorem 6.3. Assume the existence of an L(k,\)-succinct index seBARG and a somewhere
extractable hash family with succinct local opening. Then there exists an L(T,\) - poly(X,logT)-
succinct flexible RAM SNARG (for some fized polynomial poly independent of seBARG).

Remark 6.2. In addition, we show that our construction satisfies the soundness guarantee from
[KP16,BHK17] (see Definition 6.1), which has not been shown before for a publicly verifiable scheme.

Proof of Theorem 6.3. Fix an L-succinct index seBARG scheme
(seBARG.Gen, seBARG.P,seBARG.V, seBARG.Extract)

(Definition 3.6 and Definition 3.5) and a poly(\, S)-somewhere extractable hash family with poly(}, .S)-
succinct local opening

SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract),

where we denote by S is the size of a local state of R. The L-succinct flexible RAM SNARG for a
machine R, corresponding to a hash family with ¢-local opening

HT = (HT.Gen, HT.Hash, HT.Open, HT.Verify),

is defined below.

e Gen(1M,T) — crs.

26

1. Fix (arbitrarily) i = 1.

2. Let (seBARG.crs,seBARG.td) « seBARG(1*, T, 1%,i), where s = poly(}, S) is specified
below.

3. Sample!” (SEH.hk,SEH.td) < SEH.Gen(1*,T- S, I;), where I; = {(i—1)-S+1,...,i-S}.
4. Output crs = (seBARG.crs, SEH.hk).

e P(crs, hk, vk, Zimp, Texp)-

[\

. Compute rt = HT.Hash(hk, vk, Zimp)-

. Compute all the local states (sty,...,sty) of R(Zimp, Texp, 1), and compute

rtse = SEH.Hash(hk, (sty,...,sty)).

3. If sty is an accepting state then set out = 1 and if sty is a rejecting state then set out = 0.
4. Parse crs = (seBARG.crs, SEH.hk).

5. Let C' = Cyk SEH.hkrtrtr,

zep,out D€ the circuit that on input (4, w;) outputs 1 if and only if

the following conditions hold:

6. Let

Parse w; = (st;_y,st;, pi—1, pi, bi, 0;).
For every b € {0, 1} check that if i —b > 0 then

SEH.Verify(hk, rtst, I;—p, St;_p, pi—p) = 1,

where I;_, ={(t—b—1)-S+1,...,(i—0b)- S}

Suppose that R given local state st;_; reads bit j; € [|Zimp|+|Texp|] from memory
and let N = [Zimp|.

If j; € [N] then check that HT.Verify(hk,rt, j;, b;,0;) = 1, and if j; > N then check
that b; = (a:exp)ji_N.

Check that if R given local state st;,_; reads bit b; from the j;’th memory location,
then it updates its local state to st,.

If 7 = 1 check that st; is the initial state.

If © =T and out = 1 then check that sty is an accepting state.

If ¢ = T and out = 0 then check that sty is a rejecting state.

s = |C|. Note that s = poly(\, S,logT) - time(HT .Verify).

7. For every i € [T1:

8. Let

Let (st;, p;) < SEH.Open(SEH.hk, (st,...,stp), I;), where I; = {(: —1) - S+1,...,3-
St.

Let j; be the bit in memory that R reads given local state st;_;.

Let (b;, 0;) < HT.Open(hk, Zimp, ji) if j; € [IV], and otherwise let b; = (Zexp)j,—N and
0; = L.

Let w; = (st;_1,st;, pi-1, pi, bi, 0i).

seBARG.7m = seBARG.P(seBARG.crs, C, wy, ..., wr).

1"Note that for our SEH succinctness parameters, no separate verification key is required.

27

9. Let m = (rtst, seBARG.)
10. Output (out,).

o V(crs, vk, rt, Teyp, out, m).

1. Parse m = (rts, seBARG.7) and parse crs = (seBARG.crs, SEH.hk).
2. Output 1 if and only if

seBARG.V(seBARG.crs, C\yk SEH.hk rt,rter, e out» SSBARG.T) = 1.

Lexp,
Remark 6.3 (Modified Construction for Offline/Online Opening Verification). In the event that
HT has offline/online opening verification (Remark 3.2), we make a slight modification to the above
construction for an efficiency gain. Namely, if Digest outputs an offline-online pair (v, rt), then
the circuit C' is defined to only run the online verification algorithm (taking rt as input), while
consistency between v and rt is checked directly by V as an additional verification step. In this
version, the runtime of the RAM SNARG verifier will only grow with the online opening verification
time of HT.

Jumping ahead, when HT is in fact a fISEH family, we will use this variant of the construction.

We now proceed to show that our construction satisfies all of the properties of a flexible RAM
SNARG with partial input soundness.

L-Relative Succinctness. The succinctness (and verifier efficiency) of the seBARG used in the
construction is L(T,)\)pfc\)E/(|C\) for some unspecified polynomial poly. Thus, L(T, X)poly(X, S, log T)-
relative succinctness'® follows immediately from the fact that the underlying seBARG scheme
is L-succinct, the succinctness of the underlying SEH hash family, and the size bound |C|<
poly(A, S, logT) - time(HT Verify).

Completeness. Follows immediately from the completeness of the underlying seBARG scheme
and the completeness of the underlying SEH hash family and the HT hash family.

Collision resistance of RAM digest Follows immediately from the collision resistance w.r.t.
opening property of the underlying hash family with local opening HT (Definition 3.1).

Soundness. Suppose for the sake of contradiction that there exists a poly-size adversary A, a
polynomial T'= T'(\) and a non-negligible function €(-) such that for every A € N,

crs < Gen(1*, 7)),
Pr ilzcers{Sth'}t Texp, b, mp) =1 . (hk,vk) ¢ HT.Gen(1%), > €(N).
s VG T Texp, 0,) = (I’t,xexpaﬂ'Ole) = A(crs, hk)

18T achieve efficiency L(T, X)poly(), S,log T'), we plug in the largest security parameter A’ < X into the construction
such that poly(\") < X. We assume that L is monotone so that L(T,\") < L(T,).

28

Parse crs = (seBARG.crs, SEH.hk), and for every b € {0,1} parse m, = (rtsp, sSeBARG. 7). By
the definition of V the above equation implies that for every A € N,

e (0.1) crs <+ Gen(1M,T),

€ A

Pr ’ . (hk,vk) < HT.Gen(1%), > €()\)
seBARG.V(seBARG.crs, Cj, seBARG.7m,) = 1 <rt,l’exp,7r0,7ﬁ) — Afcrs, hk)

where Cp = Cyk SEH.hk,rt, rty; zexpb-

For every j € [T, let Gen; be identical to Gen, except that rather than setting ¢ = 1 it sets ¢ = j.
By the index hiding property of SEH and the index hiding property of seBARG, the above equation
implies that there exists a negligible function p(-) such that for every i € [T] and every A € N,

crs « Gen; (12, 7),
py | Y0 €1{0.1} . (hk,vk) + HT.Gen(1%), > €e(\) — p(N)

seBARG.V(seBARG.crs, Cy, seBARG.) = 1 (rtyxexp;ﬂ_oaﬂ—l) — A(crs, hk)

In the equations below, to avoid lengthy equations, we abuse notation and let td denote both
seBARG.td and SEH.td (where these trapdoors correspond to crs = (seBARG.crs, SEH.hk)), and it
will be clear from the context which one we are referring to.

By the somewhere argument of knowledge property of the underlying seBARG scheme, the above
equation implies that there exists a negligible function v(-) such that for every i € [T] and every
AEN,

i crs < Gen,; (17, T), i
vb e {0,1} (hk, vk) < HT.Gen(1?),
Pr | seBARG.V(seBARG.crs, Cy, seBARG.m,) = 1 <rt, Texps 0, m) = A(crs, hk), > e(\)—v(\)
A Cyp(i,wp) =1 Vb € {0, 1}
i wy, = seBARG.Extract(td, Cy, seBARG.7) |

For every b € {0,1} parse wy, = (stb7i_1, Sty i Pbyi—15 Pbyis Zb.i» Obyi)-
We next argue that Equation (1) implies that there exists a negligible function £(-) such that for
every i € [T] and every A € N,

[Wb e {0,1} crs « Gen; (1), T), .
seBARG.V(seBARG.crs, Cy, seBARG.m,) =1 (hk,vk) <~ HT.Gen(1%),
Pr| A Cyli,wp) =1 : <rt, xexp,wo,m> — Alcrs, hk), > e(\)—i-€(N)
A 204 = 21, vb € {0,1}
| A\ st =Sty wp, = seBARG.Extract(td, C, seBARG.7;) |

(2)
Equation (2) with ¢ = T implies a contradiction, since it implies that with non-negligible probability
sty = sty p, and yet st p is a rejecting state and st; 1 is an accepting state.
Thus, it remains to prove Equation (2), which we do by induction on 1.

Base case: i = 1. Follows immediately from Equation (1) together with the definition of C, the

collision resistance w.r.t. opening property of the underlying HT hash family, and the fact that there
is a unique initial state st (and therefore a unique specified memory access location jp).

29

Induction step: Supposing Equation (2) holds for ¢ — 1, we proceed to prove that it holds for i,
as follows: The induction hypothesis implies that when generating crs < Gen;_1(1*,T), it holds
that sty ; = sty ,_; with probability € — (i — 1)§. By the somewhere extractability w.r.t. opening
property of the underlying SEH family it holds that there exists a negligible function v (-) such that
for every A € N,

[Vb e {0,1} T
seBARG.V(seBARG.crs, Cy, m,) =1 CrS < Gen; 1 (1%, T),
A Cy(i —1,wp) =1 (hk,vk) « HT.Gen(1%),
Pr| Azpi—1=214-1 : (rt, Texp, 05 7'&'1) = .A(crs, hk),
A sty i1 =Sty Vb e {0,1}
A Vb eA{0,1}, wy, = seBARG.Extract(td, Cy, seBARG. ;)
| sty;—1 = SEH.Extract(td, rts;)]

Ze(A) = (@ =1)-&(N) —ri(A)

Let Gen) be the algorithm that on input (1*, T') generates seBARG.crs w.r.t. index i, but generates
SEH.hk w.r.t. I;_; (as opposed to I;). Namely it generates

(seBARG.crs, seBARG.td) < seBARG(1*,T,1°,i) and (SEH.hk,SEH.td) « SEH.Gen(1*,T-S,I;_1),

where I,_; = {(i —2)-S+1,...,(: —1)-S}.
The equation above, together with the index hiding property of the underlying seBARG scheme,
implies that there exists a negligible function v5(-) such that for every A € N,

Vb € {0,1} crs < Genl(1, 7),
seBARG.V(seBARG.crs, Cy, mp) = 1 (hk, vk) <= HT.Gen(1%),
A SEH.Extract(td, rter o) =

SEH.Extract(td, rts 1) (rt, Texp, 70, 771) = A(crs, hk),
> e(A) = (i = 1) - €0 — 1 (N) — ()
By the somewhere argument of knowledge property of the underlying seBARG scheme, the above

equation implies that there exists a negligible function v3(-) such that for every A € N,

Vb e {0,1}
seBARG.V(seBARG.crs, Cy,) = 1

Pr

crs + Genj (1N, T),
(hk,vk) < HT.Gen(1%),

A SEH.Extract(td,vp) = (rt7$expa770’7f1) = Alcrs, hk),
SEH.Extract(td, v) wp = seBARG.Extract(td, Cy,, seBARG.7)

> e(N) = (i = 1) - €N — 11(A) = 1a(N) = 13(N)

By the somewhere extractability w.r.t. opening property of the underlying SEH family, together
with the definition of Cj, there exists a negligible function v4(-) such that for every A € N,

Vb € {0,1} crs + Genj(1\,T),
Pr seBARG.V(seBARG.crs, Cy, mp) = 1 : (hk,vk) <= HT.Gen(1%),
A Cyi,wp) =1 (rt,xexp,wo,m) = A(crs, hk),
NSty 1 =st; 1 wp = seBARG.Extract(td, Cy, seBARG.T3)

> e(A) — (i — 1) - €N — 1 () = 1a(A) = v3(X) — 1a(N)

30

where as above, wp = (sty;_1,Sty;, Pbi—1, Pbsi» 2b,i Obsi)-
By the index hiding property of the underlying SEH hash family, there exists a negligible function
v5(-) such that for every A € N,

Vb € {0,1} crs < Gen; (1, 7),
by | SeBARGV(seBARG.crs, Cy,my) = 1 (hk,vk) < HT.Gen(1%),
A Cy(i,wp) =1 (rt,xexp,wo,m) = A(crs, hk),
Nstg; 1 =5Sty; wy, = seBARG.Extract(td, Cy, seBARG.7;)

> e(A) = (i = 1) - EN) =i (A) = v2(A) = w3(A) = va(A) —vs5(N)

By the collision resistance w.r.t. opening property of the underlying HT hash family, and the
definition of Cj, the above equation proves the induction step, by setting £(\) = Z?Zl v(A), as
desired.

Partial-Input Soundness. Suppose the underlying hash family with local opening HT is some-
where extractable, and denote it by

SEH* = (SEH".Gen, SEH*.Hash, SEH*.Open, SEH* .Verify, SEH*.Extract)

(we use the notation SEH* to distinguish it from the hash family SEH used in the RAM SNARG
construction though of course these hash families may be the same).!?

Suppose for the sake of contradiction that there exists a poly-size adversary A = (A1, A2), a
polynomial T'= T'(\), and a non-negligible function € = () such that for every A € N,

[crs < Gen(1*,7),

(1IN, 1) = Ay(crs),

(hk, vk, td) < SEH*.Gen(1*, N, I),
<rt, Texp, b, 7T) = Ay(crs, hk),
define Zimp € {0,1}V :

(bj)jer = SEH™.Extract(td, rt),
Vjel, (ximp)j =b;

V_] S [N]\I’ (ximp)j =0

V(crs, vk, rt, Texp, b*, m) =1
Pr | A R(Zimp, Texp, T') = 1 — b* and does
not read any location in [N]\ I

As before, for every j € [T], let Gen; be identical to Gen, except that rather than setting ¢ = 1 it
sets ¢ = j. By the index hiding property of the somewhere extractable hash family SEH and the
index hiding property of seBARG it holds that there exists a negligible function pu(-) such that for
every i € [T] and every A € N,

19We note that now the RAM SNARG uses two somewhere extractable hash families: SEH* to digest the implicit
memory zimp and SEH to digest all the states (st,...,sty) of the RAM machine.

31

[crs « Gen; (12, 7),
(1IN, I) = Ay (crs),
(hk, vk, td) < SEH*.Gen(1* N, I),

V(CFS, Vk7 rt, Texp, b ’ 7T) =1 (rt7 Lexp) b*? ﬂ—) = Az (CFS, hk)’

Pr | A R(Zimp; Texp, I') = 1 — b* and does > €(A) — p(N)
not read any location in [N]\ I define zimp € {0, 1}V :
(bj)jer = SEH™ .Extract(td, rt),
Vj eSS, (fUimp)j = bj
i Vi € [NJ\ I, (Zimp)j = 0
3)

For any i € [T] let BAD; = BAD;()\) be the event that for crs < Gen;(1*,T), (1V,I) = Aj(crs),
(hk, vk, td) < SEH*.Gen(1*, N, I), (rt, Texp b, (rtst,seBARG.ﬂ)) = As(crs, hk), and (b;)je; = SEH* Extract(td, rt),
the following holds for @imp € {0,1}" defined as above:

1. V(crs, VK, rt, Texp, b*, m) = 1.
2. R(Zimp, Texp, I') does not read any location in [N]\ I.

3. st; = SEH.Extract(SEH.td, rts) is not the correct i’th local state of R(Zimp, Texp, '), Where
(SEH.hk, SEH.td) < SEH.Gen(1*, T\, I;) is sampled when generating crs = (seBARG.crs, SEH.hk).

Claim 6.4. There exists a negligible function v = v(\) such that for every i € [T},
Pr[BAD;| < v.

We note that Claim 6.4 (for ¢ = T') and Equation (3) (for ¢ = T) imply a contradiction, since
they imply that there exists a negligible function £(-) such that for every A € N,

i crs « Genp (12, 7)),
(1N, I) = Ay (crs),
(hk, vk, td) < SEH*.Gen(1* N, I),
(rt, Texp, 0*, T = (Itst, seBARG.w)) = As(crs, hk),
* sty = SEH.Extract(rts;, SEH.td), > €(A)=¢(A)
define ximp € {0,1} :
(bj)jer = SEH™.Extract(td, rt),
Vj (S S, (fEimp)j = bj
Vj € [NJ\ 1, (%imp); = 0

V(crs, vk, rt, Zexp, b*, m) =1

A R(Zimp, Texp, I') = 1 — b* and does
not read any location in [N]\ I

A sty is accepting iff b* =0

which, together with somewhere argument of knowledge property of the underlying seBARG scheme
and the somewhere extractable w.r.t. opening property of the underlying SEH scheme, implies that
there exists a negligible function &(+) such that for every A € N, and for crs = (seBARG.crs, SEH.hk) «

32

Genp (17, 7)),

crs < Genp (14, 7),
(1N, 1) = A (crs),
(hk, vk, td) < SEH*.Gen(1*, N, I),

V(CI’57 Vk, rt, Texp) b 77[') =1 (rt, Texps b*, — (rtsta SeBARGﬂ')) — AQ(CI’S, hk),

A R(Zimp, Texp, I') = 1 — b* and does
not read any location in [N]\ I
A sty is accepting iff b* =0 parse wy = (sty_y, Sty, pr—1, pr, by, 07),
define zimp € {0, 1V
(bj)jer = SEH*.Extract(td, rt),
Vj €1, (ximp)j = bj;Vj € [NJ\ 1, (Zimp);j = 0,

This contradicts the somewhere argument of knowledge property of the underlying seBARG scheme.
Thus, it remains to prove Claim 6.4.

Proof of Claim 6.4. It suffices to prove that for every ¢ € [T] there exists a negligible function
w; = pi(A) such that Pr[BAD;] < p;. We prove this by induction on i.

To this end, for every ¢ € [T] let G; be the event that the following conditions hold for
crs = (seBARG.crs, SEH.hk) < Gen; (1}, T), (1¥, 1) = A;(crs), (hk,vk,td) «+ SEH*(1*, N, I), and

(rt,xexp, b*,m = (rtst,seBARGJr)) = As(crs, hk)
where C' = Cyk SEH.hk,rt, rter, zexp,b* -
1. seBARG.V(seBARG.crs, C,seBARG.7) = 1.

2. R(Zimp, Texp, I') does not read any location in [N]\ I.
Base case: ¢ = 1. Let
wy = (sty, sty, p1,b), 0}) = seBARG.Extract(seBARG.td, seBARG.).
Recall that C(1,wq) = 1 implies the following;:

1. sty is the correct initial state.

2. R(Zimp, Texp, ') goes from the initial state st; to local state st; after reading bit b} from
memory location j; in memory.

3. If j1 € [N] then SEH*.Verify(hk, rt, j1,b;,07) = 1, and if j1 > N then b} = (Texp)j, —N-
4. SEH.Verify(SEH.hk, rtet, I1, sty, p1) = 1.

There exist negligible functions v and v, such that

Pr[G1 A st; is incorrect state | <

Pr{Gi N C(L,w;) =0]+Pr[G; AN C(l,w;) =1 A sty is incorrect state | <
vi+Pr[Gy A C(1,w1) =1 A st; is incorrect state | <

vi +Pr[Gr A C(Liwy) =1 A (V) #bj,)] <

V1 + Vo,

33

* wp = seBARG.Extract(seBARG.td, seBARG.T), > €(A)—€(N)

where the first equation follows from basic probability; the second equation follows from the
somewhere argument of knowledge property of the underlying seBARG scheme (Definition 3.6);
the third equation follows from the fact that C(1,w;) =1 A (b] = b;,) implies that st; is the
correct local state; and the fourth equation follows from the somewhere extractability w.r.t.
opening property of the underlying hash family SEH (where b;, is the bit extracted from rt if
J1 € I and bj; = (Texp)j,—N Otherwise).

Inductive step: We prove that there exists a negligible function p; such that

Let
w; = (st;_q,st;, pi—1, pi, b, 0;) = seBARG.Extract(seBARG.td, seBARG.7),

(2

where (rts, seBARG.7) is the proof generated by As(crs, hk), for crs < Gen;(1*,T), (1N, 1) =
Ai(crs), (hk,vk,td) < SEH*.Gen(1*, N, I). Recall that C(i,w;) = 1 implies the following:

1. R(Zimp, Texp, I') goes from local state st;_; to local state st; after reading bit] from

memory.
2. If j; € [N] then SEH*.Verify(hk, rt, j;, b}, 0.) = 1, and if j; > N then b; = (Texp)j;—N-

Rt

3. For every b € {0,1}, SEH.Verify(SEH.hk;,v, I;_p,st;_p, pi—p) = 1.
There exist negligible functions vy, vs, v3 such that

Pr[G; A st; is incorrect state | <

Pr[G; N C(i,w;)) =0]+Pr[G; A C(i,w;)) =1 A st; is incorrect state | <

vi +Pr[Gi N C(i,w;) =1 A st; is incorrect state | <

v1 +Pr[G; A C(i,w;)) =1 A st;_; is incorrect state |+

Pr[G; N C(i,w;) =1 A st;_; is correct state A st; is incorrect state | <

vi + Pr[BAD;_1] + 12 +Pr[G; A C(i,w;) =1 A st;_; is correct state A st; is incorrect state | <
v1 + Pr[BAD;_1] + v2 + Pr[G; A C(i,w;)) =1 A (b #b;,)] <

v1 + Pr[BAD;_1] + v2 + v,

where the first equation follows from basic probability; the second equation follows from the
somewhere argument of knowledge property of the underlying seBARG scheme; the third
equation follows from basic probability; the fourth equation is explained below; the fifth
equation follows from the fact that

C(i,w;) =1 A st;_; is correct state A (b = b;,)

implies that st; is the correct local state; and the sixth equation follows from the somewhere
extractability w.r.t. opening property of the underlying hash family SEH (where b;; is the bit
extracted from rt if j; € I and bj, = (Zexp)j,— N Otherwise).

It remains to argue that there exists a negligible function v such that

Pr[G; N C(i,w;)) =1 A st;_; is incorrect state | < Pr[BAD;_1] + v. (5)

34

We prove Equation (5) via two hybrids. First, by the index hiding property of the underlying
SEH hash family (Definition 3.3), it suffices to prove Equation (5) when SEH.hk is replaced by
SEH.hk,_; generated by

(SEH.hk;_,, SEH.td;_1) ¢~ SEH.Gen <1A,T- G —2) S+, (1) 5}) .

Second, by the somewhere extractable w.r.t. opening property of the underlying SEH hash fam-
ily (Definition 3.3), it suffices to prove Equation (5) where st;,_; = SEH.Extract(SEH.td;_1,v).
With these two changes the probability in Equation (5) is at most the probability of BAD;_1,
as desired. O

This completes the proof of Theorem 6.3.]

7 From Weak RAM SNARGs to Strong BARGs

In this section we construct a poly(\, m, log k)-succinct index seBARG for BatchCSAT assuming the
existence of the following primitives:

e A somewhere extractable hash family with succinct local opening (Definition 3.3). Rather
than using a SEH family directly, we invoke Theorem 5.2 and instead use as a building block
a fISEH hash family

(fISEH.Gen, fISEH.Hash, ISEH. Digest, fISEH.Open, fISEH. Verify)

as in Definition 5.1.

e An L-succinct flexible RAM SNARG scheme with partial input soundness
(RAM.Gen, RAM.Digest, RAM.P, RAM.V, RAM.Extract)

as in Section 6 (see Theorem 6.3), where for all sufficiently large T' > Ty(A) = poly(\), we
have that L(T,\) < ﬁ (note that ﬁ < g since T < 2* by definition) for a specific
constant c.

Combining this construction with Theorem 6.3, we will establish Theorems 1.3 and 1.4.

7.1 Construction

Let R be the RAM machine that takes as implicit input (C, w1, 01, ..., wg,, ok,) (and explicit input
(ke, 1)) and outputs 1 if and only if C(i,w;) = 1 and o; consists of the values of all intermediate wires
of C' in the computation of C(i,w;). Observe that a natural instantiation of R has S = O(log(ks)),
where s = |C|. We let (C) denote the description length of C, which is O(slog s).

Our construction uses an L-succinct flexible RAM SNARG with partial input soundness (see
Definition 6.2) w.r.t. the underlying fISEH hash family. We will treat the entirety of (C, 4, w1, ..., wp)
as the implicit input (which will be digested).

In what follows, we assume for simplicity (and without loss of generality) that & is a power of 2.
For every ¢ € [log k] we denote by k, = k/2/7L.

35

e Gen(1*,k,1%,4)

1.

2.

Let T'= § - slog s, which is an upper bound on the runtime of R for a circuit C' of size
at most s. If T < Ty(A) re-define (increase) s so that 1" = Tp(A).

For every ¢ € [log k| sample
(hkg, vke, tdg) < fISEH.Gen(1*, (k¢ + 1)s, I)
where Ip = {1,...,(s)} U{(s) + (i —1)s+ 1,...,(s) +is}, where (s) < T denotes the
description length of a size-s circuit, and let
hk = (hke) gefiog] - VK = (VKe) eeog k]

For every ¢ € [log k] generate RAM.crsy < RAM.Gen(1*, 7).
Output
crs = (hk, vk, RAM.crsy, ..., RAM.crsjoq 1)

and
td = (tde)sefiog k-

e Plcrs,Ciwy, ..., wg)

1.

N otk W

Parse crs = (hk, vk, RAM.crsy, ..., RAM.crsjoq), hk = (hkf)ZG[logk]’ and vk = (ka)ee[logk]-

Let C) = C, and let wz(l) = w; for every i € [k].
Set ¢ = 1.

For every i € [k], let o

%

Compute (vg, rty) = fISEH.Hash (hke, (C(Z), wg), ag), e ,w](:;), 0}9)).

denote the wire assignment for (C(e), i, w;)).

Compute an opening p, of rt,, to C® on locations {1,...,(C)}.

For every i € [k¢], compute

RAM.7() = RAM.P (RAM.chg, hk,, ((C@, w0l w?, a,g?) (ke z))) .

. For every i € [ky41], let

w™ = RAM.7{ | RAM.7{D).

Let C(+) = D) be a circuit such that for every i € [ksy1],

crsy,vky,rty
o) (ijw(€+1)> -1

if and only if for every b € {0, 1},
RAM.V (RAM.crsy, vk, rty, (kr, 2i — b) ,RAM.7l)) = 1.
We note that by the efficiency property of RAM.V, we know that
|cEDI< 2. L(T, N).

Since T > Tp, we know that 2- L(T,\) < 2-
|C®)|< s for all £.

— T __ — g This maintains an invariant that
clogT

36

9. If £ = log k then output (v(l),pl, RVIC k),plogk, wglogkﬂ)).

10. Else, go back to Item 4 with £ = ¢+ 1.
o V(crs,C,m)

_ (log k+1)
1. Parse m = (Vlapla---,Vlogkyplogk;wl .

2. Compute rt, = fISEH.Digest(vkg, v¢) for all .

3. For every £, construct the circuit C© and verify that py is an opening of rt; to CY) on
the first (s) input locations.

4. Output 1 if and only if C(long) (1, wglogkﬂ)) =1.

rtlog k

e Extract(td, C,)

log k-+1
L. Parse td = (tdy) e gy and ™ = (Vl,/)h . ,Vloglmplogkaw§0g *)>-

2. Output w = fISEH.Extract (tdy, v1).

7.2 Analysis

Theorem 7.1. The above construction is a polylog-succinct index seBARG for BatchCSAT assuming
there exists a polynomial Ty(X) such that L(T,\) < T/clogT for all T > Ty(N).

Proof of Theorem 7.1.

Completeness. Follows from the completeness of the underlying RAM SNARG and opening
correctness of fISEH. We note that the /th invocation of the RAM SNARG uses a statement that is
independent of crsy, and the ¢th invocation of the fISEH is used on an input that is independent of
hk,, so this holds even in the case of 1 — negl(\) non-adaptive completeness.

polylog-Efficiency. This follows from the invariant that |C'©)|< max(s, To(\)) for all £ (see Item 8)
and the efficiency properties of fISEH and RAM.V. Specifically, the efficiency of fISEH.Digest (with
our choice of extractability parameter) is at most 7" - poly(A) < slog(s) - poly(A) and the efficiency
of RAM.V is at most L(T,\) < max(s, poly(})).

Index hiding. Follows directly from the index hiding property of the underlying fISEH hash
family.

Somewhere argument of knowledge. Suppose for the sake of contradiction that there exists
a poly-size adversary A, polynomials k = k(\) and s = s(A), an index i* = i*(\) € [k()\)], and a
non-negligible function €(-) such that for every A € N,

(crs,td) « Gen(1*, k, 1%, i%)
o (C,m) < Alcrs) > €(N). (6)
w* < Extract(td, C,)

V(crs,C,m) =

1
Prio o, w) =0

37

Parse
crs = (hk, vk, RAM.crsy, ..., RAM.crsjoq 1)

where hk = (hky) jcpioq) and vk = (Vkg) gepioq)5 Parse td = (tdg) yeqoq - and parse

™= (Vlnola -+ 3 Vlog ks Plog k> wglogk—i_l)))
For every /¢ € [log k]| let
(5(@ @/22 1]) = fISEH.Extract (tdy, v¢) . ()

Equation (6) implies that
Pr [V(crs, Cr)=1 A C (w! >) o}).
Moreover, the somewhere extractability property of fISEH implies that
Pr [V(crs, Cr)=1AC (i*,wﬁ)) —0 A V,CO = c@} > €(\) — negl(\).

By definition, V(crs, C,) = 1 implies that CUogk+1) (1,w§l°g kH)) = 1. Thus, the equation above
implies that

Pr [C0=RD (1)) =1 A O (i wl) =0 A v, 00 = O] > () — negl(N).

By a standard hybrid argument, this implies that that there exists ¢ € [log k] and a non-negligible
function § = () such that

*

i* ~
Pr [O“*”((1, (f?ﬁq)ﬂ A O“><{2@_J,wﬁfi/y_q)=0 A C“>=C“>} > 50 (8)

Parse

F”/lz)q (RAM. 79, RAM.7r1).

The fact that C(“+1) ([241 571250 = 1 implies that for every b € {0, 1},

RAM.V (RAM.chg,vkg, g, (k}g, 2 /2¢] — b) , RAM.Trb) — 1.

Fix b* € {0, 1} such that (21}—:1 = 2(;71 — b*. Then, the above equation for b = b* can equivalently
be written as

i*
RAM.V <RAM.crs@,vk4,rtg, <k‘g, [24 11) ,RAM.wb*> =1. (9)

Equation (8) implies that with non-negligible probability 6 = 6(\) the following three conditions
hold:

1. Equation (9) holds.

2. R(Zimp, Texp) = 0 where zeyp = (kg, (2,_?—:1) and Zimp € {0, 1} $)ths ig zero everywhere except

on the set of indices I C [(s) + ks] of size (s) + s corresponding to the circuit C) = C®) and
0

the (24 s+— | 'th wire assignment which is set to contain the invalid witness w* = = Wk jge-1)-

3. R(Zimp, Texp) does not read from memory any location in [|Zimp|] \ 1.

This contradicts the partial input soundness property of the underlying flexible RAM SNARG scheme.
O

38

8 Obtaining our Main Results

In this section, we formally state our results (Theorems 1.3 and 1.4) and show how they follow from
the results proved in Sections 3 to 7.

Theorem 8.1. Assume the existence of rate-1 String OT with verifiable correctness (Definitions 4.1
and 4.2), or more generally a SEH family with succinct local opening (Definition 3.3).

Then, there exists an explicit polynomial p(\) such that the following holds.

Let L(k,\) denote any function such that L(k,\) < k/p(\) for all sufficiently large k > poly(X).
Assuming the existence of a L(k, X)-succinct index BARG for BatchCSAT, there exists a poly(A,log k)-
succinct index BARG for BatchCSAT. Moreover, there ezists a poly(\,log T')-succinct SNARG for P
(and for RAM computation).

Remark 8.1. As discussed in the introduction,

e Index BARGs with efficiency poly(m, A\)k' =0 for any constant § > 0 suffice for the L(k,\)
hypothesis, and thus imply fully succinct BARGs (assuming a SEH).

e Index BARGs with efficiency poly(m,)\)(h)gk’% with sub-exponential security also suffice by
setting A = poly log(k - \') for a new security parameter \’. The resulting fully succinct BARG
will only be secure against adversaries that run in time quasi-polynomial in m -\, as the proof
of Theorem 8.1 calls the weak BARG with batch size poly(m). This is a significant drawback

but still a meaningful BARG.

By Remark 3.5, the use of index BARGs in these two instantiations could be replaced with the
use of (non-index) BARGs for BatchCSAT. However, this remains a stronger assumption than the
existence BARGs for L* for some NP-complete language L.

Proof of Theorem 8.1. First of all, Lemma 4.5 tells us that rate-1 String OT satisfying verifiable

correctness implies an SEH family with succinct local opening. In turn, Theorem 5.2 implies that

an SEH family with succinct local opening implies the existence of a fISEH family (Definition 5.1).
We proceed to prove Theorem 8.1 by a composition of several transformations.

e By Lemma 3.9, L(k, \)-succinct index BARGs for BatchCSAT (along with a SEH family with
local opening) imply L (k,\) = L(k,) - poly()\)-succinct index seBARGs for BatchCSAT.

e By Theorem 6.3, L(® (k, \)-succinct index BARGs for BatchCSAT (along with a SEH family
with local opening) imply L®)(T,\) = L(T,\) - poly(\, log T)-succinct flexible SNARGs for
RAM with partial-input soundness.

e By Theorem 7.1, L®) (T, \)-succinct flexible SNARGs for RAM with partial-input soundness
imply polylog-succinct index seBARGs provided that L) (T, \) < T/ for sufficiently large
T > To(N).

e Finally, by [CJJ21a, KVZ21] we already know that polylog-succinct index seBARGs imply
SNARGs for P and for RAM. By Theorem 6.3, they in fact even imply flexible RAM SNARGs
with partial-input soundness.

39

Since each of the transformations can be implemented in a way that incurs a fized poly(\) overhead,
the theorem follows. O

Corollary 8.2. There ezist poly(\,log k)-succinct index BARGs for BatchCSAT and poly(A,log T')-
succinct SNARGs for P under either

1. The O(1)-LIN assumption on a pair of cryptographic groups with efficient bilinear map, or
2. A combination of the sub-exponential DDH assumption and the QR assumption.

Proof. By Lemmas 4.3 and 4.4, we know that under any of the DDH, QR, and O(1)-LIN assumptions,
there exists a rate-1 string OT scheme to fulfill the hypothesis of Theorem 8.1.

Moreover, [WW22] constructed an index-BARG scheme for BatchCSAT with sublinear succinct-
ness under O(1)-LIN on bilinear maps. They first construct a scheme with (polylogarithmic online
communication and) a large crs of size poly(k, m, \); instead of reducing the crs size by using Section
5 of [WW22], we can simply execute k'~9 copies of the scheme with batch size k° (re-using the same
short crs) to immediately obtain sublinear overall succinctness (choosing small enough § < 1/2).

Additionally, [CJJ21b] constructed?® an index-BARG scheme for BatchCSAT with sublinear
succinctness under sub-exponential DDH and QR

Given these building blocks, the claimed results follow by Theorem 8.1. 0

Theorem 8.3. Assume the existence of rate-1 String OT with verifiable correctness (Definitions 4.1
and 4.2), or more generally a SEH family with succinct local opening (Definition 3.3).

Then, poly(A, log k)-succinct index BARGs for BatchCSAT exist if and only if poly(\,log T',log N)-
succinct flexible RAM SNARGs with partial-input soundness (Definition 6.2) exist.

Proof. Lemma 4.5 tells us that the String OT building block implies an SEH family with succinct
local opening. In turn, Theorem 5.2 implies that an SEH family with succinct local opening implies
the existence of a fISEH family.

The equivalance can then be established as follows:

e By Lemma 3.9, succinct index BARGs for BatchCSAT (along with a SEH family with local
opening) imply succinct index seBARGs for BatchCSAT.

e By Theorem 6.3, succinct seBARGs for BatchCSAT (along with a SEH family with local
opening) imply flexible RAM SNARGs with partial-input soundness.

e By Theorem 7.1, flexible RAM SNARGs with partial-input soundness (along with a fISEH
family) imply succinct BARGs for BatchCSAT. 0

References

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41-55. Springer, Heidel-
berg, August 2004.

2Tndex BARGs were not defined in [CJJ21b], but it is easily seen that their construction satisfies the required
efficiency property. [CJJ21b] Corollary 1 and Corollary 2 establish (|C|+k)poly(A) efficiency for C-index languages; by
combining groups of Vk statements together, we obtain sublinear succinctness. Similarly, the notion of semi-adaptive
soundness was not defined in [CJJ21b], but their unmodified construction satisfies it.

40

[BGI16]

[BHK17]

[CCH*19]

[CJJ21a]

[CJJ21D)

[DGI*19)

[DGKV22]

[GW11]

[HIKS22]

[HKO7]

[HW15]

Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509-539. Springer, Heidelberg,
August 2016.

Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474-482. ACM, 2017.

Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082-1090. ACM Press, June 2019.

Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for \mathcal{P}
from LWE. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 68-79. IEEE, 2021.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch
arguments for NP from standard assumptions. In Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part IV, pages 394-423, 2021.

Nico Déttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 3-32. Springer, Heidelberg, August 2019.

Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-np and applications. In Proceedings of FOCS 2022,
2022.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99-108. ACM Press, June 2011.

James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs
for P from sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski,
editors, FUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 520-549. Springer,
Heidelberg, May / June 2022.

Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encap-
sulation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
553-571. Springer, Heidelberg, August 2007.

Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163-172.
ACM, January 2015.

41

[JKKZ21]

[KP16]

[KPY19]

[KRR13]

[KRR14]

[KVZ21]

[Merg8]

[Mic94]

[OPWW15]

[PP22]

[Sha07]

[WW22]

Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. Snargs
for bounded depth computations and PPAD hardness from sub-exponential LWE. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 708-721. ACM, 2021.

Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part II, pages 91-118, 2016.

Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoeniz, AZ, USA, June 253-26, 2019, pages 1115-1124, 2019.

Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 565-574, 2013.

Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 201/, pages 485-494, 2014.

Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere
statistical soundness, post-quantum security, and snargs. In Kobbi Nissim and Brent
Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture

Notes in Computer Science, pages 330—-368. Springer, 2021.

Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369-378. Springer,
Heidelberg, August 1988.

Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436-453. IEEE
Computer Society Press, November 1994.

Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realiza-
tions of somewhere statistically binding hashing and positional accumulators. In Tetsu
Iwata and Jung Hee Cheon, editors, ASTACRYPT 2015, Part I, volume 9452 of LNCS,
pages 121-145. Springer, Heidelberg, November / December 2015.

Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In Proceedings of FOCS 2022, 2022.

Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. Cryptology ePrint Archive, 2007.

Brent Waters and David J Wu. Batch arguments for np and more from standard
bilinear group assumptions. Cryptology ePrint Archive, 2022.

42

A Rate-1 String-OT from k-LIN

Lemma A.1 (Lemma 4.4, restated). Rate-1 string OT schemes (with verifiable correctness) exist
under the k-LIN assumption [BBS04, HK07, Sha07] for any constant k > 1.

Proof sketch. We show a direct construction of rate-1 string OT from k-LIN. Recall that the k-LIN
assumption postulates that it is computationally hard to distinguish between the distribution of
(g, g™) where M € Z,(Dkﬂ)xn has rank k versus when it is uniformly random. By a hybrid argument,

this also implies the hardness of distinguishing between (g, g™) where M € Zék—m)xn has rank k
versus when it is uniformly random. It is this version that we will use in our protocol.

We construct a rate-1 batch-OT scheme from which a construction of rate-1 string-OT scheme
follows immediately. The receiver of the OT has a choice-vector x € {0,1}". She picks a uniformly
random matrix B € Z}(,]Hn)xn of rank k together with vectors u; = (—v;, €;) € Z’;+” in its left-kernel,
where e; is the i’ unit vector in {0,1}". Let X = Diag(x) € Zy*™ be a matrix with x; as the (i, i)th

entry and zeroes elsewhere; and let Y € Z}(,nJrk)X” be a matrix with X as its bottom n x n block and

zeroes elsewhere. The receiver sends gB*Y to the sender. Notice already that the k-LIN assumption
immediately tells us that the receiver’s message hides x.

The sender has a pair of vectors a,b € {0,1}" and wishes to transmit (a —b) ©x+ b € {0,1}"
to the receiver, where ® denotes componentwise product. This step makes additional use of a public
seed sd for a PRF mapping Z, to {0,1}" for large enough ¢ = O(logn).

The sender computes

h = g(B+Y)(a—b) ®gok\|b

Let h = (h" ht) € G**". Moreover, let z = (2; = Distsq(h;") (mod 2))™,, where Distgq(h) is
the smallest integer z such that PRFgq(h - g*) = 0° [BGI16]. The sender sends (h',z) to the receiver.
Given these k group elements h' and n bits z, the receiver computes and outputs (for every i)

Dists((vih") ™) @ z;,

where v;h' is interpreted to mean applying the linear map v; in the exponent of the group.
Note that by construction, for every ¢ we have

vih' - hi =u; - h = guzithil=20),

Therefore, if Distsg(hi- - g~1) = Distsq(hi") @ 1, the receiver is guaranteed to decode the output

correctly (because (VZ'hT)f1 is guaranteed to be either hf- or hil -g~1). Finally, by choosing t
appropriately, this condition will hold with probability 1 — 1/n\, resulting in overall correctness

error 1 — 1/\.
This scheme is then bootstrapped to 1 — negl(\) (verifiable) correctness by use of repetition and
an error-correcting code with efficient erasure decoding as in [DGIT19]. O

43

	Introduction
	This Work

	Our Techniques
	Relation to DevadasGKV22

	Preliminaries
	Hash Family with Local Opening
	Somewhere Extractable Hash Families
	Batch Arguments

	SEH families from Rate-1 String OT.
	Low-Rate Fully-Local Hash (flSEH) Families.
	Defining flSEH Families
	Construction from any SEH

	Flexible RAM SNARG s with Partial Input Soundness
	RAM Delegation
	Defining Flexible RAM SNARG s with Partial Input Soundness
	Construction from seBARG s

	From Weak RAM SNARG s to Strong BARG s
	Construction
	Analysis

	Obtaining our Main Results
	Rate-1 String-OT from k-LIN

