
1

cuZK: Accelerating Zero-Knowledge Proof with
A Faster Parallel Multi-Scalar Multiplication

Algorithm on GPUs
Tao Lu, Chengkun Wei, Ruijing Yu, Yi Chen, Li Wang, Chaochao Chen,

Zeke Wang, and Wenzhi Chen

Abstract—Zero-knowledge proof (ZKP) is a critical cryptographic protocol, and it has been deployed in various privacy-preserving
applications such as cryptocurrencies and verifiable machine learning. Unfortunately, ZKP has a high overhead on its proof generation
step, which consists of several time-consuming operations, including large-scale matrix-vector multiplication (MUL), number-theoretic
transform (NTT), and multi-scalar multiplication (MSM) on elliptic curves. Currently, several GPU-accelerated implementations of ZKP
have been developed to improve its performance. However, these existing GPU designs do not fully unleash the potential of GPUs.
Therefore, this paper presents cuZK, an efficient GPU implementation of ZKP with the following three optimizations to achieve higher
performance. First, we propose a new parallel MSM algorithm and deploy it in cuZK. This MSM algorithm is well adapted to the high
parallelism provided by GPUs, and it achieves nearly perfect linear speedup over the Pippenger algorithm, a well-known serial MSM
algorithm. Second, we parallelize the MUL operation, which is lightly disregarded by other existing GPU designs. Indeed, along with
our self-designed MSM parallel scheme and well-studied NTT parallel scheme, cuZK achieves the parallelization of all operations in
the proof generation step. Third, cuZK reduces the latency overhead caused by CPU-GPU data transfer (DT) by 1) reducing redundant
data transfer and 2) overlapping data transfer and device computation with the multi-streaming technique. We design a series of
evaluation schemes for cuZK. The evaluation results show that our MSM module provides over 2.08× (up to 2.63×) speedup versus
the state-of-the-art GPU implementation. cuZK achieves over 2.65× (up to 4.47×) speedup on standard benchmarks and 2.18×
speedup on a GPU-accelerated cryptocurrency application, Filecoin.

Index Terms—Zero-knowledge proof, parallel algorithm, multi-scalar multiplication, cryptographic, zkSNARK, GPU.

✦

1 INTRODUCTION

Z ERO-KNOWLEDGE proof (ZKP) [1] is a cryptographic
protocol that allows a prover to generate a proof π

to convince verifiers that a computation y = f(x,w) is
correctly calculated with a public input x and a prover’s
secret input w. The proof π leaks no information about
the secret input w. In recent years, ZKP has drawn much
attention from academia and industry due to the advent
of an advanced ZKP type called zkSNARK [2], which
stands for zero-knowledge Succinct Non-interactive ARgument
of Knowledge. Compared with other traditional ZKPs [3],
[4], [5], zkSNARK has much more succinct proof π, which
has only hundreds of bytes and is very fast to be verified
within several milliseconds. Therefore, zkSNARK is widely
considered to be the most practical ZKP, and it has been
applied to many private-preserving applications such as
electronic voting [6], verifiable database outsourcing [7],
cryptocurrencies [8], [9], [10], [11], and verifiable machine
learning [12], [13].

However, there is still a bottleneck that limits further
deployments of zkSNARK. Currently, the state-of-the-art
zkSNARK [2] (also traditional ZKPs) has a high overhead on

• Tao Lu, Chengkun Wei, Ruijing Yu, Yi Chen, Chaochao Chen, Zeke Wang,
and Wenzhi Chen are with Zhejiang Univerisity.
E-mail: {lutao2020, weichengkun, rjyu, chenyi2000, zjuccc, wangzeke,
chenwz}@zju.edu.cn
Li Wang is with Ant Financial Group.
E-mail: raymond.wangl@antgroup.com

its proof generation step. To generate a proof, the prover has
to perform various time-consuming operations, including
large-scaled matrix-vector multiplication (MUL), number-
theoretic transform (NTT), and multi-scalar multiplication
(MSM) on elliptic curves, leading to the overall proof gen-
eration time for a function f being much longer than the
time to evaluate this function, sometimes up to thousands
of times longer.

One of the solutions to reduce the proof generation time
is parallelizing this task on certain hardware. GPUs are
many-core computing platforms that support concurrent
execution of thousands of threads. They have been used
to accelerate a wide variety of computational modules in
many fields, such as deep learning [14], [15], cryptography
[16], [17], and graphics [18]. There are also several existing
GPU designs of zkSNARK. For example, Mina announced
a challenge for speeding up zkSNARK using GPUs with a
high reward ($ 100k). The final acceleration result of this
challenge has been open-sourced in [19]. Another GPU im-
plementation Bellperson [20] is improved from a CPU-based
version Bellman [21]. Bellperson has been deployed in a
well-known decentralized cryptocurrency network Filecoin
[10]. Figure 1 shows the percentage of their execution time
on zkSNARK operations, including MUL, NTT, MSM, and
the GPU-CPU data transfer (DT). Obviously, the overall
performance of zkSNARK largely depends on the efficiency
of the above four operations. Especially, MSM is the most
time-consuming operation, taking more than 70 percent of

2

the total runtime.
Nevertheless, the zkSNARK operations performed in

existing GPU implementations have the following three
weaknesses. 1) MSM: Their parallel algorithms for the MSM
computation are simply modified from those used in the
low-parallelism setting. However, these parallel algorithms
are hardly suitable for the case when there are thousands of
threads running simultaneously, which manifests an unsat-
isfiable increase in speedup with the increasing parallelism;
2) MUL: Existing GPU designs perform the MUL operation
serially on a CPU rather than parallelly on GPUs. The reason
for choosing such a design scheme may be due to the
matrix that MUL operates on being too large to be stored in
the GPU memory directly. The slow way of running MUL
serially hinders the overall performance; 3) DT: These GPU
implementations also waste too much time on CPU-GPU
data transfer, which can actually be mitigated by reducing
redundant data transfer and overlapping data transfer with
device computation. Note that Mina [19] consumes much
time in performing NTT serially, but we still do not consider
NTT to be a weakness of existing zkSNARK implemen-
tations, as there are already many efficient parallel NTT
schemes [16], [22], [23]. We can easily replace the serial
scheme with a parallel one. For example, the parallel NTT
scheme used in Bellperson is actually from OpenCL [24].

In this paper, we present cuZK, an efficient GPU im-
plementation of zkSNARK. We make three optimizations to
help cuZK achieve higher performance. First, we propose a
new parallel MSM algorithm. This algorithm is not only well
adapted to the high parallelism provided by GPUs, but also
has lower computational costs than existing MSM parallel
algorithms. Therefore, we deploy this new algorithm in
cuZK’s MSM module. Second, we notice the matrix that
MUL operates on is very large but sparse. We represent it
in sparse matrix format, which allows us to store the whole
matrix on GPUs and to perform MUL computation with
parallel schemes on sparse matrices. Furthermore, along
with our self-designed MSM parallel scheme and well-
studied NTT parallel scheme [16], [22], [23], cuZK indeed
achieves the parallelization of all zkSNARK operations.
Third, cuZK reduces the latency overhead caused by CPU-
GPU data transfer by overlapping data transfer and device
computation using the multi-streaming technique. Note that
redundant data transfer is automatically eliminated after
we perform all zkSNARK operations on GPUs. To sum up,
cuZK achieves high performance by optimizing three critical
zkSNAKR operations, namely MSM, MUL, and DT.

In particular, our proposed parallel MSM algorithm has
the greatest impact on the overall performance improve-
ment of cuZK. This MSM algorithm is unlike other tradi-
tional parallel methods that simply decompose the large
MSM computation into multiple smaller ones. We treat
all computational units of MSM as a whole and store all
elements of MSM in a sparse matrix. Then, we convert
the major operations used in the Pippenger algorithm [25],
a well-known serial MSM algorithm, to a series of basic
sparse matrix operations, including sparse matrix transpose
and sparse matrix-vector multiplication. This enables us to
utilize the technologies used in well-studied parallel sparse
matrix algorithms [26], [27], [28] to accelerate the MSM
computation. As a result, our parallel MSM algorithm has

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mina

Bellperson

MSM
NTT

MSM/NTT
MUL

DT
Other

Fig. 1: The percentage of the execution time on zkSNARK
operations. The label MSM/NTT means that MSM and NTT
are executed simultaneously.

nearly perfect linear speedup over the Pippenger algorithm,
where perfect linear speedup means the speedup ratio is
equal to the number of execution threads.

Precisely, the main contributions and scope of the paper
can be summarized as follows:

• We propose a new parallel MSM algorithm. This
algorithm is well adapted to the high parallelism
provided by GPUs, and it has nearly perfect linear
speedup over the Pippenger algorithm.

• We present cuZK, an efficient GPU implementation
of zkSNARK. It achieves high performance by de-
ploying a faster MSM algorithm, parallelizing the
MUL operation, offloading all zkSNARK operations
to GPUs, and overlapping CPU-GPU data transfer
and device computation.

• We design a series of evaluation schemes for cuZK.
The evaluation results show that our MSM module
provides over 2.08× (up to 2.63×) speedup versus
the state-of-the-art GPU implementation. The overall
performance of cuZK achieves over 2.65× (up to
4.47×) speedup on standard benchmarks and 2.18×
speedup on a GPU-accelerated cryptocurrency appli-
cation, Filecoin.

The rest of the paper is organized as follows: In Section
2, we introduce the preliminaries for this paper. In Section 3,
we provide full details of cuZK. Additionally, our proposed
MSM parallel algorithm is also described here. Section 4
gives our experiments, benchmarking, and comparison re-
sults. Finally, Section 5 draws some conclusions and pro-
vides guidelines for potential future work.

2 PRELIMINARIES

In this section, we give an introduction to the zkSNARK pro-
tocol, multi-scalar multiplication, the Pippenger algorithm,
sparse matrix, as well as Graphics Processing Units.

2.1 The zkSNARK Protocol
The zkSNARK protocol [2] is one of the state-of-the-art
ZKPs. It works like all ZKPs that allow a prover to generate
a proof π to convince verifiers a computation y = f(x,w) is
correctly calculated with a public input x and a prover’s
secret input w. The proof π leaks no information about
the secret input w. Compared with other traditional ZKPs
[3], [4], [5], the advantage of zkSNARK is its much more

3

r1cs

Generate Key

number

Compile

ProveVerify

Accept / Reject

r1cs

Preprocess

+

10
0
0
1
0
0

10
0
3
0
2
0

11
0
0
0
0
0

||

1 =

INTT

INTT

INTT

NTT

NTT

NTT

INTT

MSM
···

···， ，

|| ||Proof

MUL

0 1 0 0 0 0

5 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
0 0 3 0 2 0 1 0 0 0 0 00 0 0 1 0 0

MSMMUL

MUL MSM
···

=

r1cs

constraints = 3the number of
secret random

Proof

Fig. 2: The workflow of the zkSNARK protocol. INTT is the
inverse transformation of NTT. Its operation is similar to
NTT.

succinct proof, which has only hundreds of bytes and is
very fast to be verified within several milliseconds. There-
fore, zkSNARK is widely considered to be the most prac-
tical ZKP, and it has been adopted by various private-
preserving applications, including electronic voting [6], ver-
ifiable database outsourcing [7], cryptocurrencies [8], [9],
[10], and verifiable machine learning [12], [13].

The workflow of zkSNARK is shown in Figure 2. It
consists of three procedures: preprocess, prove, and
verify. The preprocess procedure is performed by a
third trusted party. It first compiles a function f to an
instance of Rank-1 Constraint System (R1CS). A simple
example of the compilation process is shown on the upper
right side of Figure 2. In short, the function f is decomposed
into multiple constraints, each of which can be represented
by three vectors. These constraint vectors ultimately form
three matrices, which are called the R1CS instance. The
number of constraints is commonly considered as the scale
of the R1CS instance. Next, the third trusted party uses this
R1CS instance and its secret random number to generate a
prover key pk and a verifier key vk. These two keys are
both public. That is to say, anyone can perform the prove
procedure to generate a proof π with the prover key pk, and
anyone can perform the verify procedure with the proof π
and the verifier key vk. The restriction is that only the proof
π generated by the prover who owns the secret input w that
satisfies y = f(x,w) can make verifiers accept. In addition,
due to the proof π leaking no information about the secret
input w, no one except the owner can get the value of the
secret input w.

In zkSNARK protocol, the preprocess procedure and
the verify procedure have lightweight computational

P
PDBL

1 0 0 1 1

2P4P8P16P

P3P19P

PADDPADDPADD

PDBLPDBLPDBL

19() 2 =

Fig. 3: An example of PMUT computation. O is the zero
element on elliptic curve.

costs. For the preprocess procedure, the two keys pk
and vk are infinitely reusable for the function f so that its
computational costs can be amortized over each use of two
keys. For the verify procedure, it only requires verifiers
to perform three bilinear pairing operations [29], which
only takes several milliseconds. The prove procedure is
the only high-expense procedure in zkSNARK. As shown
at the bottom of Figure 2, it requires the prover to perform
various time-consuming operations, including MUL, NTT,
and MSM. This leads to the prove procedure being the
bottleneck that limits zkSNAKR further deployments. Our
work focuses on accelerating this procedure with GPUs.

2.2 Multi-scalar Multiplication

Multi-scalar multiplication (MSM) is the most time-
consuming operation in zkSNARK, taking more than 70
percent of the total runtime; see Figure 1. Its definition is
given by the formula Q =

∑n
i=1 kiPi, where n is the scale

of MSM, ki is a λ-bits scalar, Pi is an elliptic curve (EC)
point, and the pair kiPi represents point scalar multiplica-
tion (PMULT) of ki and Pi. In short, EC points are basic
operands in elliptic curve arithmetic. They supports several
basic arithmetic operations such as point addition (PADD)
and point double (PDBL). PMULT of a scalar k and an
EC point P is another commonly used operation in elliptic
curve arithmetic. It is defined as k times self-PADD of P,
denoted by kP = P+P+...+P. We can use the double-and-
add method [30] to compute the pair kP is by performing
a series of PDBLs and PADDs. Figure 3 shows an example
of computing 19P. We start with representing the scalar 19
in the binary form (10011)2. Then, at each bit position, we
double the point P and add it to the result when the bit is 1.
The EC point obtained on the last bit is the result of PMULT.
Finally, the MSM result Q is calculated by adding all pairs
kiPi, where i ∈ [1, n].

Obviously, if we employ the double-and-add method to
compute MSM, we need to perform at most nλ + n − 1
PADDs and nλ − n PDBLs. In real-world applications, λ
commonly ranges from 254 to 768. The scale of MSM n
could be extremely large. For instance, Filecoin [10] has n
larger than a million. To make matters worse, the costs of
EC point operations like PADD and PDBL are much more
expensive than the regular scalar operations. Therefore, the
computational costs of using the double-and-add method
for MSM computation are intolerable. There are several
more efficient MSM algorithms, such as the Pippenger al-
gorithm [25], the Bos-Coster algorithm [31], and the Chang-
Lou algorithm [32]. Especially, the Pippenger algorithm
performs best when the scale of MSM is very large; see [33].

4

0100

0000

1011

1011

0000

1011

0100

1111 15

11

4

1 =

=

=

=

+

+ +

···

···

···

Fig. 4: An example of putting EC points into buckets.

2.3 The Pippenger Algorithm

The Pippenger algorithm [25] is a popular serial algorithm
for the MSM computation. Our proposed parallel MSM
algorithm is inspired by it. Therefore, in this section, we
first review the Pippenger algorithm and analyze its com-
putational costs. Then, we briefly introduce three existing
parallel Pippenger-based algorithms. The details of the Pip-
penger algorithm are shown in Algorithm 1, which mainly
consists of three steps.

The first step is to convert the original task Q =∑n
i=1 kiPi to multiple smaller subtasks. More specifically,

it starts by choosing a window size s and then divides
each λ-bits scalar ki into ⌈λs ⌉ parts. Each part is a s-bits

scalar mij , satisfying ki =
∑⌈λ

s ⌉
j=1 (2

(j−1)smij). The smaller
subtasks are defined as the computation Gj =

∑n
i=1 mijPi,

where j ∈ [1, ⌈λs ⌉]. The relation between the original task
and these subtasks can be expressed by Formula (1).

Q =
n∑

i=1

kiPi =
n∑

i=1

⌈λ
s ⌉∑

j=1

(2(j−1)smij)Pi

=

⌈λ
s ⌉∑

j=1

2(j−1)s

(
n∑

i=1

mijPi

)

=

⌈λ
s ⌉∑

j=1

2(j−1)sGj

(1)

The second step is to compute subtask results Gj , where
j ∈ [1, ⌈λs ⌉]. For each subtask, as shown in Figure 4, it puts
EC points Pi with the same scalar value ki into a bucket
whose index is equal to ki. Note that only 2s − 1 buckets
need to be prepared because the points corresponding to
zero scalars have no effect on the final result and are skipped
directly. Then, it adds up (PADD) all points in the same
buckets. The sum point of each bucket is called the bucket
point, denoted as Bl, where l is the bucket index and
l ∈ [1, 2s−1]. We can find the subtask result is exactly equal
to the sum of all bucket points weighted by their bucket
indexes, namely Gj =

∑2s−1
l=1 lBl. Next, it uses an efficient

approach proposed in [33] to compute
∑2s−1

l=1 lBl. Details
are presented in Algorithm 2. In short, it starts by calcu-
lating a serial of new EC points Ml =

∑2s−1
u=2s−l Bu with a

recursive method given by the formula Ml = Ml−1+B2s−l,
where l ∈ [1, 2s − 1] and the start point M1 = B2s−1.
The subtask result Gj can be obtained by adding up all

new EC points Ml, as shown in Formula (2). Actually,
Formula (2) achieves converting the expensive PMULT to
the lightweight PADD.

2s−1∑
l=1

Ml =
2s−1∑
l=1

2s−1∑
u=2s−l

Bu =
2s−1∑
l=1

lBl = Gj (2)

Algorithm 1 The Pippenger Algorithm [25]

Require: A scalar vector
−→
k n = [k1, k2, ..., kn], whose

elements are λ-bit scalars. A point vector
−→
Pn =

[P1,P2, ...,Pn]. A chosen window size s.
Ensure: Q =

∑n
i=1 kiPi

1: // Convert the original task into ⌈λs ⌉ subtasks.
2: for j ← (⌈λs ⌉) to 1 do
3: // Empty 2s − 1 buckets, O is the zero element on EC.
4:

−→
B2s−1 ← [O,O, ...,O]2s−1.

5: // Put each Pi into the corresponding bucket and add up
all points in the same bucket.

6: for i← 1 to n do
7: // mij is a part of ki used in this subtask.
8: mij ← (ki ≫ ((j − 1) ∗ s)) & ((1≪ s)− 1)
9: if mij ̸= 0 then

10: Bmij
← Bmij

+Pi

11: end if
12: end for
13: // Get the result of this subtask, Gj =

∑2s−1
l=1 lBl.

14: Gj ← BucketPointsReduction(
−→
B2s−1)

15: // Add Gj to the final result based on Formula (3).
16: if j ̸= ⌈λs ⌉ then
17: Tj ← 2sTj+1 +Gj

18: else
19: Tj ← Gj

20: end if
21: end for
22: Q = T1

23: return Q

Algorithm 2 BucketPointsReduction [33]

Require: A point vector
−→
B2s−1 = [B1,B2, ...,B2s−1]

Ensure: G =
∑2s−1

l=1 lBl

1: // O is the zero element on EC.
2: G← O
3: for l← 1 to 2s − 1 do
4: if l ̸= 1 then
5: Ml ←Ml−1 +B2s−l

6: else
7: Ml ← B2s−1

8: end if
9: end for

10: for l← 1 to 2s − 1 do
11: G← G+Ml

12: end for
13: return G

The third step is to compute the MSM result with

the subtask results, namely Q =
∑⌈λ

s ⌉
j=1 2

(j−1)sGj . It also
starts by calculating a serial of new EC points Tu =

5∑⌈λ
s ⌉−u+1

j=1 2(j−1)sGj+u−1 with an inverse recursive method
given by Formula (3), where u ∈ [1, ⌈λs ⌉] and the end
point T⌈λ

s ⌉
= G⌈λ

s ⌉
. Finally, we can find the MSM result

Q is exactly equal to T1. The computational costs of this
recursive method are lower than that of using Formula (1)
directly.

Tu = 2sTu+1 +Gu (3)

Complexity. For each subtask, it requires at most n
PADDs to put all points into the buckets and (2s+1 − 3)
PADDs to get the subtask result using Algorithm 2. In
order to add the subtask results to the final result, a recur-
sive method based on Formula (3) is used, which requires
around s PDBLs and 1 PADD per subtask on average. Since
there are ⌈λs ⌉ subtasks, the total computational costs of the
Pippenger algorithm are around ⌈λs ⌉(n+2s+1) PADDs plus
λ PDBLs. Note that we skip the costs of scalar operations
here because they are negligible compared to the costs of
EC point operations.

2.3.1 Existing Parallel Pippenger-based Algorithms
Thanks to the outstanding performance of the Pippenger
algorithm, many state-of-the-art parallel MSM algorithms
used in zkSNARK are based on it. Here, we briefly introduce
three existing parallel Pippenger-based algorithms and then
give their computational costs.

The first algorithm exists in a CPU implementation of
zkSNARK, gsnark [34]. It parallelizes the MSM computation
by the observation that all subtasks in the serial Pippenger
algorithm can be performed simultaneously. Therefore, it
arranges ⌈λs ⌉ threads to perform these subtasks simulta-
neously, where ⌈λs ⌉ is the total number of subtasks. After
all threads obtain the subtask results, one of the threads
adds these results to the final result based on Formula (3).
This parallel algorithm provides a speedup of at most ⌈λs ⌉,
which is much less than the number of cores GPU provides.
Therefore, it is not suitable for the GPU implementation of
MSM. Note that λ typically ranges from 254 to 768, and s
can be chosen at will.

The second algorithm is a more general parallel algo-
rithm of MSM. It exists in many zkSNARK implementa-
tions, including Bellman [21], libsnark [35], and DIZK [36].
This algorithm decomposes the original MSM computation
into t parts, where t is the total number of threads. Each
part is a small-scale MSM computation, namely Qj =∑n̂

i=1 kjn̂+iPjn̂+i, where j ∈ [0, t − 1] and n̂ = n
t . Next,

all threads perform the serial Pippenger algorithm for their
corresponding small-scale MSM computation. The final re-
sult Q =

∑t
j=1 Qj can be obtained with the parallel sum

algorithm. Recall that the advantage of the Pippenger al-
gorithm is to compute large-scale MSMs. However, here
it decomposes the large-scale MSM into multiple small-
scale MSMs, which obviously weakens the advantage of the
Pippenger algorithm.

The third algorithm combines the above two parallel
algorithms. It exists in a GPU implementation, Bellperson
[20]. First, this algorithm decomposes the original MSM
computation into t/⌈λs ⌉ small-scale MSM computations sim-
ilar to the second parallel algorithm. Next, for each small-
scale computation, it schedules ⌈λs ⌉ threads to perform the

0 5 0 4 0

ELL format

CSR format

7 2 0 0 1
0 0 3 0 0
0 0 0 0 0
0 8 2 0 0

5

col_idx

col_num = 5

row_num = 5

row_space = 3 Dense Matrix

row_length

data
col_idx
row_ptr

4
7 2 1
3

8 2

1 3
0 1 4
2

1 2

2
3
1
0
2

5 4 7 2 1 3 8 2
1 3 0 1 4 2 1 2
0 2 5 6 6 8

data

Fig. 5: Sparse matrix representations for a simple example
matrix a5×5.

first parallel algorithm. The final result can be obtained by
adding up all results of the t/⌈λs ⌉ small-scale computations.
The performance of this algorithm is better than the above
two algorithms in the case of high parallelism, but it still
cannot achieve perfect linear speedup over the serial Pip-
penger algorithm, where perfect linear speedup means the
speedup ratio is equal to the number of execution threads.

Complexity. The computational costs of the first algo-
rithm are around n + 2s+1 + ⌈λs ⌉ PADDs plus λ PDBLs for
each thread when the number of threads t is larger than ⌈λs ⌉;
the computational costs of the second algorithm are around
⌈λs ⌉(

n
t +2s+1)+ log t PADDs plus λ PDBLs for each thread;

the computational costs of the third algorithm are around
⌈λs ⌉(

n
t) + 2s+1 + ⌈λs ⌉ + log(t/⌈λs ⌉) PADDs plus λ PDBLs

for each thread. Note that we also skip the costs of scalar
operations here because they are negligible compared to the
costs of EC point operations.

2.4 Sparse Matrix

Sparse matrices have a significant impact on our work in
improving the efficiency of zkSNARK. Here, we present
their storage formats and the basic operations they support.

Compressed sparse row (CSR) format [37] and ELL-
PACK (ELL) format [38] are two of the most popular sparse
matrix storage formats. Examples of these two formats
are shown in Figure 5. The ELL format consists of three
structures, data, col_idx, and row_length. Specifically,
the nonzero elements in the same row of the sparse matrix
are stored in the same row of the data. The col_idx
stores the column indices of these nonzero elements. All
rows of the data and col_idx structures are padded to
length row_space to meet the alignment requirement. The
row_length stores the number of the nonzero elements in
each row of the sparse matrix. The CSR format also consists
of three structures, data, col_idx, and row_ptr. The first
two structures are the same as the two in the ELL format,
except that they do not need to meet the alignment require-
ments. The row_ptr is an array of length row_num + 1.
Its i-th element encodes the cumulative number of nonzero
elements up to the i-th row, where i ∈ [0,row_num].

The basic operations supported by sparse matrices in-
clude sparse matrix transposition, sparse matrix-vector mul-
tiplication, and so on. Many well-studied GPU implementa-
tions [26], [27], [28] are available for speeding up sparse ma-

6

trix basic operations, where they achieve high performance
based on classical GPU optimization methods, including
loop unrolling, load balancing, and coalescing memory ac-
cesses. Moreover, these GPU implementations have been
deployed in many industrial libraries [39], [40]. Therefore,
converting other complex operations to basic sparse matrix
operations is commonly a suitable and convenient choice to
improve the efficiency of the computation [41], [42], [43].

2.5 Graphics Processing Units

Graphics Processing Units (GPUs) are many-core computing
platforms that support concurrent execution of multiple
threads. A typical GPU consists of multiple Streaming Mul-
tiprocessors (SMs) and a global memory. Each SM includes
multiple Scalar Processors (SPs), a shared memory, and sev-
eral on-chip registers. These registers and various kinds of
memory constitute the multiple memory hierarchy architec-
ture of GPUs. The on-chip registers are the fastest memory
component but have minimal storage capacity, while the
global memory provides the largest storage capacity but
is the slowest. The performance of the shared memory is
between the on-chip registers and the global memory.

Another special thing about GPUs is their execution
fashion. Warps instead of threads are the basic execution
units on GPUs. Each warp typically consists of 32 or 64
threads and is scheduled by warp schedulers residing in
SMs. Specifically, each warp scheduler maintains a list of
active warps and picks a warp from the list on each cycle
to execute an instruction. Threads in a warp can carry their
own private data but have to execute the same instructions.
This execution fashion is known as the Single Instruction
Multiple Thread (SIMT).

3 OUR GPU IMPLEMENTATION

In this section, we present cuZK, our efficient GPU im-
plementation of zkSNARK. We first introduce our design
challenges and goals, and then provide full details of our
implementation.

3.1 Design Challenges and Goals

As mentioned in Section 2.1, the prove procedure is the
most time-consuming part of zkSNARK. It requires the
prover to generate a proof by performing a series of op-
erations, including large-scale matrix-vector multiplication
(MUL), number-theoretic transform (NTT), and multi-scalar
multiplication (MSM) on elliptic curves. Our work focuses
on improving the performance of this part with GPUs.
However, promoting the efficiency of proof generation is
not something that can be achieved painlessly. For example,
several GPU designs [19], [20] have challenged this task, but
their failure to fully utilize the computing power of GPUs
makes the final acceleration results unsatisfactory. Here, we
pose three design challenges according to the weaknesses
addressed in the existing GPU designs.

1) There is no parallel MSM algorithm adapted to the
high parallelism provided by GPUs. The algorithms
addressed in the existing GPU designs are simply
modified from those used in the low-parallelism

setting, which manifests an unsatisfiable increase in
speedup with the increasing parallelism.

2) The matrices that MUL operates on are too large to be
stored in the GPU memory directly. Thus, the existing
GPU designs choose to perform the MUL operation
serially in a CPU, which hinders the overall perfor-
mance of zkSNARK.

3) The latency overhead caused by large blocks of CPU-GPU
data transfer results in performance degradation. On the
one hand, the existing GPU designs have a great
amount of redundant data transfer; see Figure 6(a).
On the other hand, the prover key, which consists of
multiple large-scale EC point vectors, is required to
be moved to GPUs. It is very large in size.

In response to these challenges, we set the following four
design goals for our implementation.

1) Deploying a new faster parallel MSM algorithm. This
parallel MSM algorithm is not only required to be
adapted to high parallelism provided by GPUs but
also needs to have lower computational costs than
existing MSM parallel algorithms.

2) Parallelizing the MUL operation. The MUL operation
performs the matrix-vector multiplication on an
R1CS matrix. Therefore, we should choose an ap-
propriate parallel scheme for the MUL computation
based on the characteristics of the R1CS matrix.

3) Offloading all zkSNARK operations to GPUs. With our
self-designed MSM and MUL parallel schemes, as
well as the well-studied NTT parallel scheme, we in-
deed can achieve the parallelization of all zkSNARK
operations. These parallel schemes should be well-
suitable for execution on GPUs.

4) Reducing the latency overhead caused by CPU-GPU data
transfer. On the one hand, redundant data transfer
should be eliminated after we perform all zkSNARK
operations on GPUs; see Figure 6(b). On the other
hand, a fine-grained scheme of overlapping data
transfer and device computation needs to be de-
signed for large blocks of CPU-GPU data transfer.

3.2 Multi-scalar Multiplication
Multi-scalar multiplication (MSM) is the most time-
consuming operation in zkSNARK, taking more than 70
percent of the total runtime. Its definition is given by the
formula Q =

−→
k n ·

−→
Pn =

∑n
i=1 kiPi, where n is the scale

of MSM, ki is a λ-bits scalar, Pi is an EC point, and the pair
kiPi represents PMULT of ki and Pi. More details of the
MSM operation are shown in Section 2.2.

In this section, we first introduce our proposed parallel
MSM algorithm (Section 3.2.1) and then present the essential
details of its deployment on GPUs (Section 3.2.2).

3.2.1 Parallel MSM Algorithm
Our proposed parallel MSM algorithm is inspired by the
Pippenger algorithm [25], which is a famous serial algo-
rithm for the MSM computation. The details of the Pip-
penger algorithm are stated in Section 2.3. Our algorithm is
well-suitable for execution in GPUs and has nearly perfect
linear speedup over the Pippenger algorithm. The details of

7

CPU

GPU

r1cs

MULs INTTs NTTs INTT MSMs

Proof

r1cs

INTTs NTTs INTT MSMs

Proof

MULs

GPU

CPU

(a) Bellperson

CPU

GPU

r1cs

MULs INTTs NTTs INTT MSMs

Proof

r1cs

INTTs NTTs INTT MSMs

Proof

MULs

GPU

CPU

(b) Ours

Fig. 6: The workflows of Bellperson and ours. In Bellperson, only NTT and MSM are performed on GPUs, thus requiring
a great deal of redundant CPU-GPU data transfer. As a contrast, in our implementation, all zkSNARK operations are
performed on GPUs, and redundant CPU-GPU data transfer is no longer required.

0100

0000

1111

1011

0000

1011

0100

1011

Thread 1 4

11

15 4

11

1

1

2

1

Sparse Matrix
in ELL Format

data col_idx row_length

Thread 2

Thread 3

Thread 4

Fig. 7: An example of putting EC points into sparse matrix
in parallel.

our parallel MSM algorithm are described below and shown
in Algorithm 3.

Similar to the Pippenger algorithm, we start by convert-
ing the original task Q =

∑n
i=1 kiPi into ⌈λs ⌉ subtasks Gj ,

where s is the chosen window size as in the Pippenger
algorithm and j ∈ [1, ⌈λs ⌉]. The relation between the original
task and subtasks can be expressed by Formula (1). Next, we
execute these subtasks serially. For each subtask, we do the
following two steps:

The first step is to store all EC points Pi into a sparse
matrix. We begin with generating an empty sparse matrix
with t rows and 2s− 1 columns, where t is the total number
of threads. This sparse matrix is in ELL storage format and
its row_space is n

t . Then, we launch t threads to store these
EC points into the sparse matrix in parallel. Specifically, as
shown in Figure 7, we divide EC points into t parts. For each
part, EC points with the same scalar value are added and
stored in the same entry of a row by a thread. The column
index of this entry is set to the scalar value. Note that the
points corresponding to zero scalars have no effect on the
final result and can be skipped directly.

The second step is to get an EC point vector, whose ele-
ments play a similar role as bucket points in the Pippenger
algorithm. This EC point vector is donated as

−→
B

⟨j⟩
2s−1, where

j is the sequence number of the subtask. We begin with
converting the sparse matrix in ELL format to CSR format
and then transpose it in parallel. The reason that we employ
the CSR format is to save space costs, since the alignment
requirement of the ELL format leads to additional space
overhead for storing the matrix. Next, we add up all EC

Algorithm 3 Our Parallel MSM Algorithm

Require: A scalar vector
−→
k n = [k1, k2, ..., kn], whose

elements are λ-bit scalars. A point vector
−→
Pn =

[P1,P2, ...,Pn]. A chosen window size s. The number
of threads t.

Ensure: Q =
∑n

i=1 kiPi

1: // Convert the original task into ⌈λs ⌉ subtasks.
2: for j ← 1 to ⌈λs ⌉ do
3: // Generate an empty sparse matrix in ELL format.
4: row num← t
5: col num← 2s − 1
6: row space← n

t
7: ell← GenELLMtx(row num, col num, row space)
8: // mi is a part of ki used in this subtask
9: for i← 1 to n do in parallel

10: mi ← (ki ≫ ((j − 1) ∗ s)) & ((1≪ s)− 1)
11: end for
12: Synchronize()
13: −→mn ← [m1,m2, ...,mn]
14: // Store EC points into the sparse matrix; see Figure 7.
15: ell← pStoreECPoints(ell,−→mn,

−→
Pn, t)

16: csr ← pELL2CSR(ell, t)
17: csr ← pTranspose(csr, t)
18: // A scalar vector whose elements are all equal to 1.
19: −→v t ← [1, 1, ..., 1]t
20:

−→
B

⟨j⟩
2s−1 ← pSparseMatrixVectorMUL(csr,−→v t, t)

21: end for
22: for j ← 1 to ⌈λs ⌉ do in parallel
23: Gj ← pBucketPointsReduction(

−→
B

⟨j⟩
2s−1, t/⌈λs ⌉)

24: end for
25: Synchronize()
26: // Add Gj to the final result with Fomurla (3).
27: T⌈λ

s ⌉
← G⌈λ

s ⌉
28: for j ← (⌈λs ⌉ − 1) to 1 do
29: Tj ← 2sTj+1 +Gj

30: end for
31: Q← T1

32: return Q

8

Algorithm 4 pBucketPointsReduction

Require: EC point vectors
−→
B2s−1 = [B1,B2, ...,B2s−1].

The number of threads t.
Ensure: An EC point G =

∑2s−1
l=1 lBl.

1: // Thread ID, ξ ∈ [1, t].
2: ξ ← GetThreadID()
3: // Divide 2s − 1 vector elements into t parts. Each part has r

EC points.
4: r ← (2s − 1)/t
5: for l← 1 to r do
6: if l ̸= 1 then
7: M(ξ−1)r+l ←M(ξ−1)r+l−1 +Bξr+1−l

8: Sξ ← Sξ +M(ξ−1)r+l

9: else
10: M(ξ−1)r+l ← Bξr

11: Sξ ←M(ξ−1)r+l

12: end if
13: end for
14: // After completing the above loop,
15: // Sξ = B(ξ−1)r+1 + 2B(ξ−1)r+2 + ...+ rB(ξ−1)r+r

16: // Mξr = B(ξ−1)r+1 +B(ξ−1)r+2 + ...+B(ξ−1)r+r

17: Sξ ← Sξ + ((ξ − 1)r)Mξr

18: Synchronize()

19:
−→
S t ← [S1,S2, ...,St]

20: G← pSum(
−→
S t, t)

21: // After completing the pSum function,
22: // G = S1 + S2 + ...+ St

23: return G

points that are in the same row of the transposed matrix,
which is equivalent to performing the sparse matrix-vector
multiplication (SPMV) on the matrix and a scalar vector
whose elements are all equal to 1. The SPMV result is the EC
point vector that we need. Note that the above sparse matrix
operations are all performed in parallel with t threads.

After obtaining the EC point vectors of all subtasks, we
schedule t/⌈λs ⌉ threads for each subtask to compute the sum
of all points B

⟨j⟩
l weighted by their indexes l with Algo-

rithm 4. We can find the subtask results are exactly equal
to the results of Algorithm 4, namely Gj =

∑2s−1
l=1 lB

⟨j⟩
l .

Finally, we can get the final result Q by adding all subtask
results based on Formula (3).

Complexity. The computational costs of storing EC
points into the sparse matrix and the computational costs
of the sparse matrix-vector multiplication vary with the
scalar vector

−→
k n. However, the total computational costs of

these two parts are fixed. They are at most ⌈λs ⌉ n PADDs in
total, and thus each thread needs to perform ⌈λs ⌉(

n
t) PADDs

on average. PMULT is not needed because all elements
of the vector used in the matrix-vector multiplication are
equal to 1. Note that the computational load on each thread
may be imbalanced here, because a naive SPMV method
cannot guarantee the workload of each thread is the same.
Fortunately, this problem can be mitigated with our pro-
posed SPMV approach; see Section 3.2.2. After obtaining
the EC point vectors of all subtasks, it requires at most
⌈λs ⌉(

2s+1

t −1)+s+log t PADDs and s PDBLs for each thread
to get subtask results with Algorithm 4. Finally, in order to

add subtask results to the final result, a recursive method
implied by Formula (3) is used, which takes less than ⌈λs ⌉
PADDs and λ PDBLs. Therefore, the total computational
costs for each thread are around ⌈λs ⌉(

n
t + 2s+1

t) + s + log t
PADDs plus λ + s PDBLs. The values of s and log t are
both small. Therefore, our MSM algorithm has nearly per-
fect linear speedup over the Pippenger algorithm, whose
computational costs are around ⌈λs ⌉(n+ 2s+1) PADDs plus
λ PDBLs. Here we skip the computational costs of ELL-CSR
format conversion and sparse matrix transpose because they
only require some scalar operations and data movement
operations, whose costs are negligible compared to the costs
of EC point operations.

3.2.2 Implementation of Parallel MSM on GPUs
Our GPU implementation of MSM is based on the parallel
MSM algorithm proposed in Section 3.2.1. Below, we present
some crucial parts of our GPU implementation in detail.

We start by generating a sparse matrix of ELL format
on the global memory so that every thread can access this
matrix. Then, each thread should have performed as in
Figure 7 to store EC points. However, in practice, what we
store in the sparse matrix is not the EC points themselves but
their indexes in the EC point vector. This step helps to save
device storage costs. Roughly, each EC point typically has
hundreds of bits, while the index size is the logarithm of the
vector scale, only tens of bits. Next, after the indexes of these
EC points are stored into the sparse matrix, we convert this
matrix to the CSR format and then transpose it in parallel.

Afterward, we fetch the corresponding EC points from
host memory to device memory according to the indices
stored in the matrix and then sum up the EC points that
are in the same row of the transposed matrix. A naive
method of moving EC points from host memory to device
memory takes much time on data transfer. Fortunately, its
latency overhead can be almost eliminated by overlapping
CPU-GPU data transfer and device computing based on
the multi-streaming technique; see Section 3.5 for details.
The summation step is actually equivalent to performing
parallel sparse matrix-vector multiplication (SPMV) on the
matrix and a scalar vector whose elements are all equal to 1.
This step may introduce severe thread load imbalance due
to the different lengths of the matrix rows. To overcome load
imbalance, we propose a GPU-based SPMV implementation
called CSR-Balanced.

Specifically, CSR-Balanced overcomes load imbalance by
dynamically scheduling different numbers of threads to
work on different matrix rows. It first sorts the matrix rows
and divides them into different groups based on the row
lengths. Then, it only allows warps instead of threads to
work across these groups, and thus all threads in a wrap
have to work in the same group. This step guarantees that
the workload of all threads in a warp is almost balanced be-
cause rows in the same group have similar lengths. Next, in
order to balance the workload of each warp, CSR-Balanced
schedules different numbers of wraps for groups according
to the proportion of non-zero matrix entries in each group
so that the number of non-zero entries that each warp works
on is similar. The additional overhead of this method is the
sorting costs, which is negligible compared to the costs of EC
point operations. Note that CSR-Balanced cannot be used in

9

SPMV for regular scalar operations because the sorting costs
are relatively high compared to the costs of regular scalar
operations.

Another crucial part we need to be concerned with is
the parallel sum operation used in Algorithm 4. In fact, it
is a basic reduction operation commonly used in parallel
programming to add up all elements of a vector. The CUB
library [44] provides GPU implementation of the parallel
sum operation.

Finally, we present the multi-GPU implementation of our
MSM algorithm. As described in section 3.2.1, our parallel
MSM algorithm decomposes the original MSM task into
multiple subtasks. Here, we assign these subtasks to GPUs
evenly. Specifically, each GPU allocates its global memory
for a sparse matrix and follows the operations described in
the above four paragraphs to complete its corresponding
subtasks. There is no requirement for any GPU-GPU data
transfer, except that we need eventually add the subtask
results to the final result via Formula (3). Note that each
subtask result is an EC point. Therefore, our multi-GPU
implementation does not introduce substantial additional
overhead compared to our single-GPU implementation.

3.3 Matrix-vector Multiplication

In zkSNARK, matrix-vector multiplication (MUL) operates
on the R1CS matrix that is compiled from the function to
be proved in zkSNARK; see Section 2.1. The computational
costs of MUL mainly depend on the scale of the matrix it
operates on. In real-world applications, the R1CS matrix is
commonly very large but sparse. Therefore, we choose the
CSR storage format to store the R1CS matrix. This step helps
to reduce the storage costs and move the whole R1CS matrix
to the GPU memory.

After the R1CS matrix is moved into the GPU memory,
we perform the MUL computation with the parallel schemes
for the sparse matrices. There are many parallel sparse
matrix-vector multiplication (SPMV) schemes, including
CSR-Scalar [45], CSR-Vector [26], and CSR-Balanced. How-
ever, these schemes are not suitable for all sparse matrices
with different characteristics. For example, CSR-Scalar ar-
ranges each thread to work on each row of the sparse matrix.
This scheme may cause severe load imbalance when the
variance of matrix row lengths is very large. The character-
istics of the R1CS matrix are not fixed. They depend on the
function to be proved in zkSNARK, as shown in Section 2.1.
Therefore, we cannot choose only one static parallel scheme
for the MUL computation.

In our MUL implementation, we employ different SPMV
schemes for different R1CS matrices. For a specific R1CS
matrix, we first count out characteristics of the R1CS matrix,
such as the variance and mean of its row lengths. Then, we
choose CSR-Scalar for the R1CS matrix with small variance
and small mean, CSR-Vector for the R1CS matrix with small
variance and large mean, and CSR-Balanced for the R1CS
matrix with large variance. The above method can avoid
the drawbacks of these parallel SPMV schemes. In addition,
the operation for the matrix characteristics calculation and
the sort operation existing in CSR-Balanced can actually be
performed offline because the R1CS matrix that MUL oper-
ates on is infinitely reusable for the function to be proved

B

B

B

B

B

B

Stage 1 Stage 2 Stage 3

B

B

B

B

B

B

Fig. 8: The butterfly diagram for an 8-point NTT. B repre-
sents the butterfly operation.

in zkSNARK; see Section 2.1. Therefore, this method does
not introduce additional overhead for the MUL computation
online.

3.4 Number-theoretic Transform

The number-theoretic transform (NTT) is essentially discrete
fourier transform (DFT) over finite fields. It is defined as the
transform between two N -sized vectors −→a ′

N
def
= NTT(−→a N)

with their elements a′i =
∑N−1

j=0 ajω
ij
N , where a′i and aj are

λ-bits scalars in a finite field and ωN is the N th root of unity
in the same field. The exponents of ωN are called twiddle
factors. The inverse number-theoretic transform (INTT) is the
inverse transformation of NTT. It can be easily completed
by NTT with different twiddle factors. Actually, NTT is a
critical module commonly used in cryptography. Therefore,
there are many efficient GPU implementations [16], [23] that
have been developed for its computation. For instance, a
state-of-the-art implementation can be found in [22], which
is originally used in post-quantum encryption algorithms.
Actually, we can easily retrofit this NTT implementation so
that it is adapted to the setting of zkSNARK.

For more details, similar to the standard DFT algorithms
[46], we decomposes the overall computation of NTT into
logN stages, where each stage requires N/2 butterfly opera-
tions [47]. A single butterfly operation performs reading two
input values, processing input values, and storing results.
Figure 8 shows an example of the butterfly diagram for
an 8-point NTT. We can see that the butterfly operations
at each stage are independent. Therefore, we can parallelize
NTT by launching N/2 threads to perform these butterfly
operations concurrently. Note that we hold the results at the
intermediate stages in the global memory of GPUs because
faster registers and shared memory are not large enough to
accommodate these intermediate results in zkSNAKR. The
final results of NTT are exactly the results at the last stage.

3.5 Workflow of cuZK

Actually, we have achieved the parallelization of all zk-
SNARK operations with our self-designed MSM and MUL
parallel schemes and the well-studied NTT parallel scheme.
Moreover, these parallel schemes are well-suitable for execu-
tion on GPUs. Therefore, to make the best use of these par-
allel schemes, we offload all zkSNARK operations to GPUs.

10

Stream 2Stream 1

 R1CS Instance
 Function Inputs

MULs
NTTs
MSM

EC Point Vector

MSM

MSM

MSM

MSM

Time EC Point Vector

EC Point Vector

EC Point Vector

EC Point Vector

Data Transfer

Computation

Idle

Fig. 9: Timeline for the execution of cuZK with two streams.

The overall workflow of cuZK is shown in Figure 6(b). Note
that redundant CPU-GPU data transfer is no longer required
after all zkSNARK operations are performed on GPUs. Only
three storage modules need to be sent to GPUs once, namely
the R1CS instance, the function inputs, and the prover key.

In detail, we first transmit the R1CS instance and the
function inputs. As stated in Section 2.1 and Section 3.3,
the R1CS instance consists of three matrices in CSR format,
and the function inputs make up a vector whose elements
include all intermediate results of the compiled function. In
addition, we must finish this transfer before the device com-
putation begins because the above two storage modules are
required by the MUL operation, which is the first performed
operation in the proof generation step of zkSNAKR.

Another essential storage module, the prover key, con-
sists of multiple large-scale EC point vectors and thus is
very large in size. Moving the prover key to GPUs takes a
lot of time and also occupies a large amount of GPU memory
resources. Therefore, we choose to overlap its transfer and
device computation with the multi-streaming technique. As
shown in Figure 9, we transmit the first MSM-required EC
point vector while executing MULs and NTTs, the second
MSM-required EC point vector while executing the first
MSM operation, and so on. Moreover, in order to save
storage costs and adapt to large-scale MSM, cuZK frees the
corresponding memory when the whole EC point vector
or its some elements is no longer used. This overlapping
approach eliminates almost all latency overhead caused by
the data transfer of the prover key.

4 EVALUATION

The evaluation results presented in this section consist of
three parts. First, we give the benchmark results for our
MSM implementation. This aims to show the improvement
that our parallel MSM algorithm provides exclusively. Sec-
ond, we present the overall performance of cuZK. Third,
various real-world applications are showcased to demon-
strate the practicality of cuZK.

4.1 Setup

We perform the experiments on three testbeds: 1) G3060,
2) V100, and 3) 3700X, whose hardware configurations

TABLE 1: Hardware Configuration of Testbeds

Testbeds G3060 V100 3700X

Device (GPU) Nvidia GeForce
GTX 3060

Nvidia Tesla
V100 /

Core Count 3584 8 × 5120 /
Core Freq. 1.32 GHz 1.24 GHz /
Mem Capacity 12 GB 32 GB /
Mem BandW. 360 GB/sec 900 GB/sec /

Host (CPU) AMD Ryzen
3700X

Intel(R) Xeon(R)
Platinum 8260

AMD Ryzen
3700X

CPU Cores 8 2 × 24 8
CPU Freq. 3.60 GHz 2.40 GHz 3.60 GHz
Mem Capacity 32 GB 256 GB 32 GB

OS Ubuntu 20.04 CentOS 7.8 Ubuntu 20.04

TABLE 2: Some GPU/CPU Implementations of zkSNARK

Implementations Platforms Multiple GPUs
Supported

Optional
Elliptic Curves

cuZK (ours) GPU ✓
BLS381, MNT4753,

ALT-BN128

Bellperson [20] GPU ✓ BLS381
Mina [19] GPU × MNT4753

Bellman [21] CPU / BLS381

Libsnark [35] CPU / BLS381, MNT4753,
ALT-BN128

are shown in Table 1. The testbed V100 is equipped with
eight Nvidia Tesla V100 GPU cards. All GPU cards on the
testbed V100 are connected with efficient Nvidia NVLink.
Experiments on multi-GPU systems are executed on the
testbed V100. The testbed G3060 is only equipped with one
Nvidia GeForce GTX 3060 GPU card, and its CPU-GPU data
transfer is completed through PCI-E. The testbed 3700X is
not equipped with any GPU card. It is only used to evaluate
the performance of CPU implementations.

Table 2 gives the baseline implementations that we com-
pare in this paper. They are all state-of-the-art zkSNARK
implementations, including a single-GPU implementation
Mina [19], a multi-GPU implementation Bellperson [20], and
two CPU implementations, Libsnark [35] and Bellman [21].
Note that the difference in hardware resources can signif-
icantly affect comparison results between CPU and GPU
implementations. Therefore, in order to make comparisons
in a relatively fair manner, we choose to perform cuZK and
other CPU implementations in the two testbeds with chips
at a similar price, namely G3060 and 3700X.

4.2 Evaluating the MSM implementation
In this section, we present the performance results of our
MSM implementation. This aims to show the improvement
that our parallel MSM algorithm provides exclusively.

We first evaluate our MSM implementation on single
GPU systems. Table 3 gives the evaluation results, includ-
ing the execution times and speedups over other MSM
implementations. We perform these implementations with
different elliptic curves due to the limitation of their optional
elliptic curves. We choose the curve MNT4753 for Mina,
BLS381 for Bellperson and Bellman, and ALT-BN128 for

11

TABLE 3: Execution Time (sec) and Speedup for MSM Implementations
with Different MSM Scales on Single-PU Systems

Size
MNT4753 BLS381 ALT-BN128

Mina cuZK Bellperson cuZK Bellman cuZK Libsnark cuZK

(V100) (V100) (V100) (V100) (3700X) (G3060) (3700X) (G3060)

219 8.701 0.732 (11.89X) 0.241 0.116 (2.08X) 1.235 0.133 (9.29X) 0.767 0.087 (8.82X)

220 16.071 1.163 (13.82X) 0.409 0.188 (2.18X) 2.391 0.236 (10.13X) 1.468 0.153 (9.59X)

221 31.789 1.960 (16.22X) 0.727 0.331 (2.20X) 4.795 0.419 (11.44X) 2.763 0.282 (9.80X)

222 62.344 3.608 (17.28X) 1.301 0.578 (2.25X) 6.375 0.759 (8.40X) 5.259 0.532 (9.89X)

223 124.429 6.635 (18.75X) 2.637 1.154 (2.29X) 12.559 1.462 (8.59X) 9.999 1.059 (9.44X)

Libsnark. Our implementation supports all three curves.
To conclude, we achieve a speedup of up to 11.44× and
9.89× over the CPU implementations addressed in Bellper-
son and Libsnark, respectively. We achieve a speedup of
up to 18.75× and 2.29× over the GPU implementations
addressed in Mina and Bellperson, respectively. The per-
formance of the MSM implementation addressed in Mina is
relatively terrible because it employs a Straus-based parallel
MSM algorithm [48], which cannot perform as well as
Pippenger-based algorithms when the scale of MSM is very
large.

We also evaluate our MSM implementation on multi-
GPU systems. Figure 10 gives their execution times on
systems with different numbers of GPUs. Here we only
compare with Bellperson because it is the only baseline
implementation that supports multi-GPU execution. Our
MSM implementation yields up to 2.51× (2GPUs), 2.39×
(4GPUs), 2.63× (8GPUs) speedup over that in Bellperson.
In addition, we evaluate our MSM implementation with the
different number of threads to demonstrate that our MSM
algorithm is adapted to the high parallelism provided by
GPUs. As shown in Figure 11, the throughput of our MSM
implementation grows almost linearly with the number of
threads until the thread number exceeds GPU core number.
Note that we perform the experiment in the testbed V100,
where each GPU card has 5120 cores.

4.3 Evaluating the Overall Performance of cuZK

In this section, we give the overall performance of cuZK.
Here, we evaluate the baseline implementation and cuZK
using the BLS381 curve and perform all experiments on the
testbed V100 with single or multiple GPU cards.

Figure 12 gives the execution times of four zkSNARK
operations, namely DT, MUL, NTT, and MSM. The exper-
imental results show that cuZK provides a speedup of up
to 16.06×, 202.26×, and 2.55× over Bellperson for DT,
MUL, and MSM, respectively. It also yields 1.70× speedup
for NTT on the single-GPU system. Figure 13 gives more
intuitive evaluation results. It is obvious that our superiority
over the baseline implementation becomes more apparent
as the number of GPU cards increases. The overall perfor-
mance of cuZK achieves over 2.65× (1GPU), 3.02× (2GPU),
3.53× (4GPU), 4.47× (8GPU) speedup.

Below we give a deeper insight into our experimental re-
sults. First, as shown in Figure 13, our MSM part takes most
of the overall runtime of cuZK, while the other parts take
only a little bit in total. This is actually the result of our huge

1 2 4 8
Number of GPUs

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

ec
)

Bellperson
cuZK

(a) MSM scale: 220

1 2 4 8
Number of GPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(s

ec
)

Bellperson
cuZK

(b) MSM scale: 222

1 2 4 8
Number of GPUs

0

1

2

3

4

5
Ti

m
e

(s
ec

)
Bellperson
cuZK

(c) MSM scale: 224

1 2 4 8
Number of GPUs

0

5

10

15

20

Ti
m

e
(s

ec
)

Bellperson
cuZK

(d) MSM scale: 226

Fig. 10: Execution time for MSM implementations with
different MSM scales on single- and multi-GPU systems.

Number of Cores in a V100

Fig. 11: Throughput for our MSM implementation with the
different number of execution threads.

improvements in the DT and MUL implementations. Sec-
ond, as shown in Figure 12(b)(c), the lines corresponding to
the execution times of our MUL and NTT implementations
on single- and multi-GPU systems are nearly coincident.
This is because we perform all NTTs and MULs in each GPU
card instead of splitting them across GPUs. Bellperson uses

12

218 219 220 221 222 223
Number of Constraints

2 8

2 6

2 4

2 2

20

22

Ti
m

e
(s

ec
)

(a) DT

218 219 220 221 222 223
Number of Constraints

2 10

2 7

2 4

2 1

22

Ti
m

e
(s

ec
)

(b) MUL

218 219 220 221 222 223
Number of Constraints

2 7

2 5

2 3

2 1

21

Ti
m

e
(s

ec
)

(c) NTT

218 219 220 221 222 223
Number of Constraints

2 3

2 1

21

23

25

Ti
m

e
(s

ec
)

(d) MSM

218 219 220 221 222 223
Number of Constraints

27

29

211

213

215

217

219

Ti
m

e
(m

se
c)

Bellperson (1 x P8260)
Bellperson (1 x V100)
Bellperson (2 x V100)
Bellperson (4 x V100)

cuZK (1 x V100)
cuZK (2 x V100)
cuZK (4 x V100)

Fig. 12: The execution times of four zkSNARK operations,
namely DT, MUL, NTT, and MSM. P8260 represents the
CPU used in the testbed V100.

at most three GPUs (if available) to execute independent
NTTs simultaneously. However, as a trade-off, it introduces
additional overheads on GPU-GPU data transfer, leading to
its overall performance gain being limited.

4.4 Evaluating cuZK in Real-world Applications

Finally, we evaluate cuZK in real-world applications to
demonstrate its practicality. We choose to employ cuZK in
two cryptocurrency applications, namely ZCash (ZC) [9]
and Filecoin (FL) [10], and three classical cryptographic
workloads [49], namely Merkle Tree (MT), Hybrid Encryp-
tion (HE), and Augmented Auction (AA). We compare these
updated implementations with their original CPU/GPU
implementations. The comparison results are shown in Fig-
ure 14. Note that there is unfortunately no existing GPU
implementation for the other four applications except File-
coin, and thus we can only evaluate them with their CPU
implementations. As a result, cuZK provides a speedup of
2.18× over the original GPU implementation of Filecoin,
and a speedup of up to 8.83× when compared with their
CPU implementations.

5 CONCLUSION

In this work, we present cuZK, an efficient GPU implemen-
tation of zkSNARK. It achieves high performance with the
following approaches. First, cuZK adopts a new parallel
MSM algorithm. This algorithm converts the major opera-
tions used in the Pippenger algorithm to a series of basic
sparse matrix operations, which leads to it adapting to the

220 221 222 223
Number of Constraints

0

5

10

15

20

25

30

Ti
m

e
(s

ec
)

Other
DT
NTT/INTT
MUL
MSM

Bellp.

Bellp.

Bellp.

Bellp.

cuZK

cuZK

cuZK

cuZK
(a) 1 x V100

220 221 222 223
Number of Constraints

0

3

6

9

12

15

18

Ti
m

e
(s

ec
)

Other
DT
NTT/INTT
MUL
MSM

Bellp.

Bellp.

Bellp.

Bellp.

cuZK

cuZK

cuZK

cuZK

(b) 2 x V100

220 221 222 223
Number of Constraints

0

2

4

6

8

10

12

Ti
m

e
(s

ec
)

Other
DT
NTT/INTT
MUL
MSM

Bellp.

Bellp.

Bellp.

Bellp.

cuZK

cuZK

cuZK

cuZK

(c) 4 x V100

220 221 222 223
Number of Constraints

0

2

4

6

8

10

12

Ti
m

e
(s

ec
)

Other
DT
NTT/INTT
MUL
MSM

Bellp.

Bellp.

Bellp.

Bellp.

cuZK

cuZK

cuZK

cuZK

(d) 8 x V100

Fig. 13: The overall execution time of cuZK and Bellper-
son with the different number of constraints in the R1CS
instance.

MT HE AA ZC FL2 2

20

22

24

26

Ti
m

e
(s

ec
)

Original
(3700X)

Original
(G3060)

 cuZK
(G3060)

Fig. 14: The execution time of cuZK in real-world applica-
tions.

high parallelism provided by GPUs and having nearly per-
fect linear speedup over the Pippenger algorithm. Second,
we parallelize and perform the MUL operation of zkSNARK
in GPUs. Actually, along with our self-designed MSM par-
allel scheme and well-studied NTT parallel scheme, cuZK
achieves the parallelization of all computational zkSNARK
operations. Third, we reduce the latency overhead caused
by CPU-GPU data transfer by overlapping data transfer and
device computation. As a result, our evaluation shows cuZK
has a considerable speedup over other state-of-the-art GPU
implementations of zkSNARK.

Furthermore, our work can be extended to other ZKP
protocols that also require these zkSNAKR operations,
namely MUL, MSM, and NTT. In the future, we plan to
explore more GPU-accelerated methods for a wider range
of ZKP protocols.

13

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-
plexity of interactive proof systems,” SIAM Journal on computing,
vol. 18, no. 1, pp. 186–208, 1989.

[2] J. Groth, “On the size of pairing-based non-interactive argu-
ments,” in Annual international conference on the theory and appli-
cations of cryptographic techniques. Springer, 2016, pp. 305–326.

[3] J. Kilian, “A note on efficient zero-knowledge proofs and argu-
ments,” in Proceedings of the twenty-fourth annual ACM symposium
on Theory of computing, 1992, pp. 723–732.

[4] S. Micali, “Computationally sound proofs,” SIAM Journal on Com-
puting, vol. 30, no. 4, pp. 1253–1298, 2000.

[5] J. Groth, “Short pairing-based non-interactive zero-knowledge
arguments,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2010, pp. 321–340.

[6] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,”
in International Conference on Information and Communications Secu-
rity. Springer, 2015, pp. 82–96.

[7] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papa-
manthou, “vsql: Verifying arbitrary sql queries over dynamic
outsourced databases,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 863–880.

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from bitcoin,” in 2013 IEEE Sympo-
sium on Security and Privacy. IEEE, 2013, pp. 397–411.

[9] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments
from bitcoin,” in 2014 IEEE symposium on security and privacy.
IEEE, 2014, pp. 459–474.

[10] J. Benet and N. Greco, “Filecoin: A decentralized storage net-
work,” Protocol Labs, pp. 1–36, 2017.

[11] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, “Coda: Decentral-
ized cryptocurrency at scale,” Cryptology ePrint Archive, 2020.

[12] L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and B. Feng, “Veriml:
Enabling integrity assurances and fair payments for machine
learning as a service,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 10, pp. 2524–2540, 2021.

[13] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs
for decision tree predictions and accuracy,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 2039–2053.

[14] G. Lu, W. Zhang, and Z. Wang, “Optimizing depthwise separable
convolution operations on gpus,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 1, pp. 70–87, 2021.

[15] “Pytorch: Tensors and dynamic neural networks in python
with strong gpu acceleration,” 2012. [Online]. Available:
https://github.com/pytorch/pytorch

[16] Y. Gao, J. Xu, and H. Wang, “Cunh: Efficient gpu implementations
of post-quantum kem newhope,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 3, pp. 551–568, 2021.

[17] A. Al Badawi, B. Veeravalli, J. Lin, N. Xiao, M. Kazuaki, and
A. K. M. Mi, “Multi-gpu design and performance evaluation of
homomorphic encryption on gpu clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 379–391, 2020.

[18] X. Wang, Y. Qiu, S. R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu,
M. Tang, D. Manocha, and C. Jiang, “A massively parallel and
scalable multi-gpu material point method,” ACM Transactions on
Graphics (TOG), vol. 39, no. 4, pp. 30–1, 2020.

[19] “Gpu groth16 prover,” 2019. [Online]. Available:
https://github.com/MinaProtocol/gpu-groth16-prover-3x

[20] “bellperson: Gpu parallel acceleration for zksnark,” 2019. [Online].
Available: https://github.com/filecoin-project/bellperson

[21] “bellman: a crate for building zksnark circuits,” 2015. [Online].
Available: https://github.com/zkcrypto/bellman

[22] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “Pqc
acceleration using gpus: Frodokem, newhope, and kyber,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 3, pp.
575–586, 2020.

[23] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating num-
ber theoretic transformations for bootstrappable homomorphic
encryption on gpus,” in 2020 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2020, pp. 264–275.

[24] “Opencl: Open standard for parallel programming
of heterogeneous systems,” 2009. [Online]. Available:
https://www.khronos.org/opencl

[25] N. Pippenger, “On the evaluation of powers and related prob-
lems,” in 17th Annual Symposium on Foundations of Computer Science
(sfcs 1976). IEEE Computer Society, 1976, pp. 258–263.

[26] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings
of the conference on high performance computing networking, storage
and analysis, 2009, pp. 1–11.

[27] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector
multiplication on gpus using the csr storage format,” in SC’14:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2014, pp. 769–780.

[28] Y. Tao, Y. Deng, S. Mu, M. Zhu, L. Xiao, L. Ruan, and Z. Huang,
“Atomic reduction based sparse matrix-transpose vector multi-
plication on gpus,” in 2014 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 2014, pp. 987–
992.

[29] J. H. Silverman, The arithmetic of elliptic curves. Springer, 2009, vol.
106.

[30] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

[31] P. d. Rooij, “Efficient exponentiation using precomputation and
vector addition chains,” in Workshop on the Theory and Application
of of Cryptographic Techniques. Springer, 1994, pp. 389–399.

[32] C.-C. Chang and D.-C. Lou, “Fast parallel computation of multi-
exponentiation for public key cryptosystems,” in Proceedings of the
Fourth International Conference on Parallel and Distributed Computing,
Applications and Technologies. IEEE, 2003, pp. 955–958.

[33] D. J. Bernstein, J. Doumen, T. Lange, and J.-J. Oosterwijk, “Faster
batch forgery identification,” in International Conference on Cryptol-
ogy in India. Springer, 2012, pp. 454–473.

[34] “gnark-crypto: gnark-crypto provides efficient crypto-
graphic primitives in go.” 2020. [Online]. Available:
https://github.com/ConsenSys/gnark-crypto.git

[35] “libsnark: a c++ library for zksnark proofs,” 2014. [Online].
Available: https://github.com/scipr-lab/libsnark

[36] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “Dizk:
A distributed zero knowledge proof system,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 675–692.

[37] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[38] D. Kincaid, T. Oppe, and D. Young, “It-

packv 2d user’s guide,” 1989. [Online]. Available:
https://web.ma.utexas.edu/CNA/ITPACK/manuals/userv2d

[39] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[40] S. Dalton, N. Bell, L. Olson, and M. Garland, “Cusp: A c++
templated sparse matrix library,” URL http://cusplibrary. github. io.
Accessed: December, 2014.

[41] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance
graph algorithms from parallel sparse matrices,” in International
Workshop on Applied Parallel Computing. Springer, 2006, pp. 260–
269.

[42] E.-J. Im and K. Yelick, “Optimization of sparse matrix kernels for
data mining,” in submitted to First SIAM Conf. on Data Mining.
Citeseer, 2000.

[43] C. Chen, J. Zhou, L. Wang, X. Wu, W. Fang, J. Tan, L. Wang, A. X.
Liu, H. Wang, and C. Hong, “When homomorphic encryption
marries secret sharing: Secure large-scale sparse logistic regression
and applications in risk control,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 2652–2662.

[44] “Cub: Cooperative primitives for cuda c++.” 2013. [Online].
Available: https://nvlabs.github.io/cub

[45] M. Garland, “Sparse matrix computations on manycore gpu’s,” in
Proceedings of the 45th annual design automation conference, 2008, pp.
2–6.

[46] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965.

[47] A. V. Oppenheim, Discrete-time signal processing. Pearson Educa-
tion India, 1999.

[48] E. G. Straus, “Addition chains of vectors (problem 5125),” Ameri-
can Mathematical Monthly, vol. 70, no. 806-808, p. 16, 1964.

[49] “jsnark: A java library for zk-snark circuits,” 2015. [Online].
Available: https://github.com/akosba/jsnark

