
Efficient Linkable Ring Signature
from Vector Commitment

inexplicably named Multratug
Anton A. Sokolov

acmxddk@gmail.com

Abstract In this paper we revise the ideas of our previous work ‘Lin2-Xor lemma and Log-size Linkable Threshold
Ring Signature’ and introduce another lemma called Lin2-Choice, which extends the Lin2-Xor lemma. Using the
Lin2-Choice lemma we create a compact general-purpose setup-free log-size linkable threshold ring signature of
size 2 log2 (𝑛 + 1) + 3𝑙 + 1, where 𝑛 is the ring size and 𝑙 is the threshold. The scheme is composed of several public
coin arguments that are honest verifier zero-knowledge and have computational witness extended emulation. We
use an arbitrary vector commitment argument as the base building block, providing the possibility to use any of its
concrete implementations that have the above properties. Also, we present an extended version of our signature of
size 2 log2 (𝑛+ 𝑙 +1) +6𝑙 +4, that simultaneously proves the sum of hidden amounts attached to the signing keys, i.e.
proves the balance. All this in a prime order group without bilinear parings in which the decisional Diffie-Hellman
assumption holds.

Keywords: ring signature, linkable ring signature, log-size signature, threshold, anonymity, blockchain, hidden
amounts, sum proof, zero-knowledge, unforgeability, non-frameability, witness-extended emulation.

1 INTRODUCTION
In the previous paper [11] we created a log-size linkable threshold ring signature based on the Lin2-Xor lemma,

which we proved there. Now we want to know two things, namely, can we generalize the Lin2-Xor lemma using an
arbitrary vector commitment argument that has computational witness-extended emulation (WEE) and is honest
verifier zero-knowledge (HVZK)? Also, can we get a linkable threshold ring signature out of it that is more efficient
in size and verification time?

We answer both of these questions in the affirmative. Lin2-Choice lemma we present here and its accompanying
efficient ring signature seem to be useful findings. Our new ring signature keeps using the linking tag of the form
𝑥−1Hpoint (𝑥𝐺), which is indistinguishable from the time-tested since the work by Liu, Wei, and Wong [7] form of
linking tag 𝑥Hpoint (𝑥𝐺).

The signature we present herein turns out to be extensible; we also introduce an extended version of it, which
in addition to proving knowledge of signing keys also proves the sum of hidden amounts, i.e the balance. By proof
of the sum of hidden amounts, the balance for short, we mean that prover demonstrates a blinded commitment to
some secret amount and proves that this secret amount is equal to the sum of those amounts, which correspond to
the actual signing keys and are also blinded. To construct the extended version of the signature we provide one
more lemma, Lin2-2Choice, as we call it.

We will not repeat common words about signatures from the introduction of [11], they all remain valid. We will
keep our presentation concise, taking into account that many explanations can be taken from [11] as well as from
the work of Benedikt Bünz et al. [2]. As another basic ingredient, we will now use what we think is an elegant way
of turning a protocol into zero-knowledge by adding noise in an orthogonal dimension to all transmitted elements,
which we learned from the work of Heewon Chung et al. [3].

As for notation, we mainly use the notation from [11], supplementing it with notation from [2] and [3] where
necessary, more on this in Section 2.1. Also, we use a kind of protocol representation inspired by [3].

Overall, in this paper we assume that a reader has an understanding of the works [2, 3, 11] and possesses
an appropriate intuition, so we keep our descriptions and proofs brief, otherwise the paper would be too long.
Moreover, since the methods of proving unforgeability, anonymity, and other protocol properties used in [2, 3] are
already widely known, we describe only the key points for our proofs, believing that they suffice to reconstruct all
the details of interest.

1

1.1 CONTRIBUTION
This work results in two state-of-the art setup-free pairings-free DDH-based log-size schemes. The first is

called EFLRSL and is a linkable threshold ring signature, while the second is called Multratug and is a linkable
threshold ring signature with balance proof. So the first one is a lightened version of the second. Their sizes and
verification complexities are shown in Table 4.

Multratug can be used in blockchain. It integrates easily with the range proofs proposed in [2, 3], thus providing
everything usually required for a typical transaction with hidden amounts. EFLRSL is general-purpose, it can be
used in a wide range of trustless environments, especially where data size must be kept minimal.

A comparison with recently proposed solutions of the same class is represented in Tables 5, 6. It shows that
EFLRSL and Multratug are at least on par with the most efficient ones known so far. At the same time, they are the
only ones that present a solution that is both effective for blockchain and as a normal signature. For low thresholds,
the EFLRSL and Multratug proofs are shorter than most known solutions. However, as the threshold increases, they
grow faster than the others. Nevertheless, we see that this is more than compensated by the fact that the verification
complexities of EFLRSL and Multratug grow noticeably slower in this case.

Each of EFLRSL and Multratug is based on its own proof of membership. Both of the latter, in turn, are based
on a plain vector commitment argument, for which we use a log-size reduction in the spirit of the inner product
argument by Bünz et al. [2]. In the Lin2-Choice and Lin2-2Choice lemmas, respectively, we prove the honest
verifier zero-knowledg (HVZK) and witness-extended emulation (WEE) properties of these membership proofs.

The Lin2-Choice lemma is a generalization of the Lin2-Xor lemma [11] to the case of 𝑛 pairs of elements
such that 𝑛 is an arbitrary power of 2. Having a ring P = {𝑃𝑖}𝑛−1

𝑖=0 of 𝑛 elements and a commitment 𝑍 to an
arbitrary element 𝑃𝑠 ∈ P, using the Lin2-Choice lemma it is possible to prove membership of 𝑍 in P. We call this
metaphorically selecting an element from P. A novelty resides in the construction of this proof of membership,
which in a nutshell looks as the following game. Although, for sure, we simplify it for this preview.

At start both prover and verifier have 𝑍 and P. They jointly pick 𝑛 helper generators Q = {𝑄𝑖}𝑛−1
𝑖=0 such that

all elements of P ∪Q are orthogonal to each other. The prover publishes an element 𝐹. Then the verifier releases
challenges c = {𝑐𝑖}𝑛−1

𝑖=0 , and the prover replies with a scalar 𝑟. Next, the verifier releases random 𝛿. Finally, the
prover convinces the verifier using an arbitrary vector commitment argument that the element

𝑍 + 𝛿𝑟𝐹

is a weighted sum, with weights known to the prover, of the elements from the set

{𝑃𝑖 + 𝛿𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

Of course, the vector commitment argument is to be HVZK and has to have WEE. Also, note, the commitment
𝑍 and all elements published by prover are blinded, we omit showing the blinding components for simplicity.

It appears to be that the above game completes successfully only if there is some scalar 𝑝 known to the prover
such that 𝑝−1𝑍 ∈ P. The Lin2-Choice lemma guarantees this. Moving on, adding to this proof of membership a
linking tag of the form 𝑥−1Hpoint (𝑥𝐺) and optimizing the vector commitment argument involved, we obtain the
EFLRSL signature of size

2 log2 (𝑛 + 1) + 3𝑙 + 1.
The optimized vector commitment argument is presented in Section 5.7.3; it imposes the requirement that (𝑛 + 1),
instead of 𝑛, be a power of 2.

Turning to the hidden amounts, we assume that the ring P is amended with the set A = {𝐴𝑖}𝑛−1
𝑖=0 such that for

each index 𝑖 the key 𝑃𝑖 corresponds to the hidden amount 𝐴𝑖 . Also, we assume tha the total hidden amount 𝐴sum

is specified, and the balance with it needs to be proved. We might subtract 𝐴sum from each 𝐴𝑖 and prove that
for the actual signer this difference contains only the blinding component, as it is done e.g. in [9], however this
would prevent us from creating an effective threshold version. Therefore, we specify the set Atmp = {𝐴tmp

𝑘
}𝑙−1
𝑘=0 of

re-hidden amounts corresponding to the actual signers and, simply put, add them to the end of the ring.
So, the simplified game is that at start both prover and verifier have 𝑍,P,A,Atmp,Q such that Q is zoomed to

(𝑛 + 𝑙) generators and all elements of P∪A∪Atmp ∪Q are orthogonal to each other. It is impossible to ensure the
orthogonality of regular addresses and hidden amounts taken from a blockchain, however it is easily achieved by
adding their hashes-to-curve, we omit showing them in this preview. For 𝑘 ∈ [0 . . . 𝑙 − 1], the prover publishes the
elements 𝐹, 𝐸 , the verifier releases c = {𝑐𝑖}𝑛+𝑙−1

𝑖=0 , the prover replies with 𝑟 , the verifier releases random 𝛿1, 𝛿2, 𝜔,
the prover convinces the verifier that the element

𝑍 + 𝛿1𝑟𝐹 + 𝛿2𝑐𝑛+𝑘𝐸

is a weighted sum, with weights known to the prover, of the elements from the set

{𝑃𝑖 − 𝜔𝐴𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 ∪ {𝜔𝐴

tmp
𝑖−𝑛 + 𝛿2𝑐𝑖𝑄𝑖}𝑛+𝑙−1

𝑖=𝑛 .

2

The Lin2-2Choice lemma guarantees this game completes successfully only if the prover knows scalar 𝑝 and
index 𝑠 such that 𝑝−1𝑍 = 𝑃𝑠 ∈ P ∧ 𝐴𝑠 = 𝐴

tmp
𝑘

, of course, omitting blinding components everywhere in this
preview. After that, it only remains to check

∑𝑙−1
𝑘=0 𝐴

tmp
𝑘

= 𝐴sum, and the Multratug signature with the balance proof
is ready. Its size is

2 log2 (𝑛 + 1) + 6𝑙 + 4.

Thus, the contribution includes not only the final signatures EFLRSL and Multratug, the two membership
proofs and the corresponding lemmas can also be regarded as something new.

1.2 METHOD OVERVIEW
In this paper we construct a number of protocols, which we then use as building blocks for our signatures. For

each of the protocols we are interested in three properties, namely, completeness, HVZK, and WEE.
Completeness is seen from the protocol listings, we do not dwell on it. The HVZK property requires building

a simulator, yet luckily each our protocol has a property which simplifies things. Namely, each element of the
protocol transcripts, except for completely dependent elements, has the form

𝑋 + 𝜇𝐻, (1)

where 𝑋 is a semantic component of the element, 𝐻 is a blinding generator built in such a way as to be clearly
orthogonal to everything else, and 𝜇 is always an independent uniformly sampled scalar. Also, all the transcript
scalars are independent and indistinguishable from white noise. Therefore, we refer to the work [3], where the
situation is the same, and a simulator is constructed. We imply that for each of our protocols a simulator is
constructed in the same way.

For each protocol we prove the WEE property in detail by constructing an extractor that restores witness by
performing polynomial number of rewindings. We also prove that the obtained witness meets the limits specified
in protocol’s relation, otherwise the extractor breaks the DL assumption in a polynomial number of steps.

Thus, by the above, all our signatures rely on a complete, HVZK, and WEE underlying proving systems. All
additional signature elements, except for the linking tags also called as key images, have the form (1) and, thus, do
not reveal any information. Therefore, to establish unforgeability, anonymity, and other properties of our signatures,
we refer to the works [7, 4, 11] where the same properties are obtained by the same means using key images of the
forms 𝑥Hpoint (𝑥𝐺) and 𝑥−1Hpoint (𝑥𝐺), which are proven indistinguishable from each other in [11].

1.2.1 TWO ELEMENT COMMITMENT
The first helper sub-protocol is a two-element commitment argument. We denote it as

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ).

In this notation, the elements 𝑋, 𝐻,𝑌 are common input for prover and verifier, and 𝑥, ℎ are prover’s private input,
that is, they are witnesses known only for it. The zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ) argument proves the relation

R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 }, (2)

where 𝑋 and 𝐻 are orthogonal to each other. Also, we require the argument to be HVZK and WEE. In order to
rely on something concrete in calculating the size and complexity of our next protocols, in Figure 2 we provide an
uncomplicated implementation for it.

In sum, zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ) convinces verifier that prover knows a representation of element 𝑌 as a
weighted sum of orthogonal generators 𝑋 and 𝐻 with weights known to prover. We use a two-generators extension
of the Schnorr identification scheme as an implementation of this proof. Its size is one element inG and two scalars
in Fp̄.

1.2.2 VECTOR COMMITMENT
Vector commitment argument

zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)
provides a proof for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 }, (3)

where all generators from the set X ∪ {𝐻} are orthogonal to each other. That is, zkVC𝑛 convinces verifier that
prover knows 𝑛 + 1 weights, namely, a and 𝛼, in the decomposition of 𝑌 by the generators X∪ {𝐻}. The genearator
𝐻 together with its corresponding weight 𝛼 is used here to turn the protocol into zero-knowledge, as in [3].

3

Our implementation of zkVC𝑛 in Figure 3 is based on the inner product argument implementation from [2] for
the relation

R = {G,H ∈ G𝑛∗,𝑈, 𝑃 ∈ G; a, b ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ + ⟨b,H⟩ + ⟨a, b⟩𝑈 }, (4)

which we modify as follows. First, since we don’t really need the inner product argument, just only its vector
commitment part, we zero out the vector b in the relation (4), making the inner product ⟨a, b⟩ equal to zero
everywhere and leave only the vector commitment, i.e. only the argument for the relation

R = {G ∈ G𝑛∗, 𝑃 ∈ G; a ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ }. (5)

Second, we add zero-knowledge property to the inner product argument not the way it is done in [2], instead
we add it in a straighter way, as in [3]. That is, we respectively add the blinding summands 𝛼𝐻, 𝛽𝐻, and 𝛾𝐻 to
the vector commitment 𝑃 and to the 𝐿 and 𝑅 elements that are transmitted in the argument implementation in [2].
The secret factors 𝛼, 𝛽, 𝛾 are uniformly sampled from F∗p̄, the generator 𝐻 is chosen independently, and thus 𝑃
and all the transmitted 𝐿’s and 𝑅’s appear indistinguishable from random noise. We rename the vector G and the
commitment 𝑃 in the relation (5) as X and 𝑌 in the relation (3), respectively. The blinding summand 𝛼𝐻 is taken
into account in the relation (3).

Third, for the case 𝑛 = 1 we use our own Schnorr-like HVZK and WEE protocol, which is different from
sub-protocols used in [2] and [3]. Namely, we use zk2ElemComm for the case, and this does not alter the properties
of the entire zkVC𝑛 protocol. In any case, any HVZK and WEE protocol that proves 𝑌 = lin(𝑋0, 𝐻) will do instead
of zk2ElemComm for 𝑛 = 1 in zkVC𝑛.

Thus, our zkVC𝑛 implementation of the vector commitment argument in Figure 3 has the same properties as
the implementation of the inner product argument from [2] with b = 0𝑛, plus it is HVZK and, of course, it remains
to be having WEE.

If we compare our zkVC𝑛 protocol with the weighted inner product argument from [3], which is also based on
the inner product argument from [2], then just as with the comparison against the inner product argument from [2]
we zero out the vector b, thus making the weighted inner product a ⊙𝑦 b equal to zero. In doing so, we assume the
weight 𝑦 equal to 1 everywhere, and also use zk2ElemComm for the case 𝑛 = 1.

Note, actually our implementation of zkVC𝑛 is not based on the weighted inner product argument of [3], since
we use neither ‘weighted’ in the sense of [3] nor ‘inner product’. From [3] we only use the way we turn the argument
into zero-knowledge, type of notation that we find concise and convenient, and also we borrowed from [3] the idea
of using a custom Schnorr-like protocol for 𝑛 = 1.

Overall, size of our zero-knowledge vector commitment argument zkVC𝑛 is 2 log2 (𝑛) + 1 elements from G

and 2 scalar from Fp̄. Here and elsewhere, due to the implementation choice, we consider 𝑛 is a power of 2.
Although, as we have already noted, we are not generally bound to a particular realization of zkVC𝑛, any other
vector commitment argument with HVZK and WEE properties will do.

1.2.3 RANDOM WEIGHTING FOR 3-TUPLES
Another auxiliary argument,

zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

shown in Figure 4, connects a triplet of orthogonal elements (𝑃,𝑄, 𝑅) with a triplet of arbitrary elements (𝑍, 𝐹, 𝐸).
One of the two elements 𝑄 and 𝑅 in the first triplet can be zero, in which case the other two elements of the triplet
(𝑃,𝑄, 𝑅) must be orthogonal to each other. So, the protocol zk3ElemRW proves the following relation

R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 , (6)

where it is required that all non-zero elements from the set {𝑃,𝑄, 𝑅, 𝐻} are orthogonal to each other, which is
denoted as ort(nz(𝑃,𝑄, 𝑅, 𝐻)), and that at least one of𝑄 and 𝑅 is non-zero, which can be written as (𝑄 + 𝑅) ∈ G∗.

There are two sampled challenges 𝛿1 and 𝛿2 within the protocol zk3ElemRW. The two sums 𝑋 and 𝑌 together
with total blinding factor �̂� are constructed via these challenges

𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅,

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 .

4

As the second step, using an arbitrary complete, HVZK, and WEE argument it is proved that 𝑌 is a weighted sum
of 𝑋 and 𝐻 with some known to prover weights. Thus the relation (6) is proven.

In terms of [11], in the second step of zk3ElemRW a proof of 𝑌 = lin(𝑋, 𝐻) for prover is somehow obtained (in
an HVZK and WEE way). We will be often omitting everything connected with 𝐻 as a technical blinding detail,
so writting down this shortly as 𝑌 ∼ 𝑋 (to the accuracy of 𝐻).

Witness-extended emulation of the protocol zk3ElemRW can be proved by well-known methods, such as, e.g.,
in the RandomWeighting-WEE lemma proof in [11]. The extreme case, when one of the elements 𝑄 or 𝑅 is zero,
is not problematic.

1.2.4 SIMMETRIC VECTOR COMMITMENT
We will also need an argument to convince verifier that several, e.g. two or three, vector commitments share,

except for blinding summands, the same coefficients known to prover. That is, we will need an argument

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)

for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 , (7)

where all non-zero elements from the set P ∪Q ∪ R ∪ {𝐻} are orthogonal to each other, written as

ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}),

and where for any index 𝑖 ∈ [0 . . . 𝑛 − 1] at least one of two elements Q[𝑖] and R[𝑖] is nonzero, denoted as

(Q + R) ∈ G∗.

The relation (7) states that three different vector commitments 𝑍, 𝐹, 𝐸 are sort of ‘symmetrical’ to each other by
their common weights a, which are applied to the bases P,Q,R, respectively. The protocol zkSVC3,𝑛 is shown in
Figure 5.

Note again, that we require all elements in P to be non-zero, while vectors Q and R can contain zero elements,
as long as for each index there is at least one non-zero element at that index in them. This condition is necessary
for the protocol zkSVC3,𝑛 to be implementable.

Using random weighting we reduce the argument zkSVC3,𝑛 to the vector commitment argument zkVC𝑛 at zero
cost. Namely, for random 𝛿1 and 𝛿2 we construct

X = P + 𝛿1Q + 𝛿2R,
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 ,

and call
zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�).

As a result, we see that for each index 𝑖 ∈ [0 . . . 𝑛 − 1] the zk3ElemRW protocol is fulfilled, that means the
relation (6) is fulfilled for each triplet pair (𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖) and (𝑍𝑃𝑖 , 𝐹𝑄𝑖

, 𝐸𝑅𝑖
), and therefore the relation (7) is fulfilled.

Here 𝑍𝑃𝑖 means 𝑃𝑖’s component in decomposition of 𝑍 by the base P, the same applies to 𝐹𝑄𝑖
, 𝐸𝑅𝑖

. Of course,
when the protocol zkSVC3,𝑛 sucessfully completes, verifier is also convinced that the elements 𝑍, 𝐹, 𝐸 are weighted
direct sums with weights known to prover of the vectors P,Q,R, respectively.

1.2.5 LIN2-CHOICE LEMMA
In [11] we proved the Lin2-Xor lemma which, informally, allows us to select one pair of elements from two

pairs of elements, i.e., it provides an argument for the relation

R =
{

P,Q ∈ G2∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
, (8)

where the generators of P∪Q are orthogonal to each other. Also, in [11] by successive application of the Lin2-Xor
lemma log2 (𝑛) times we proved the Lin2-Selector lemma, which allows us to select one pair of elements from 𝑛

pairs of elements. In other words, the Lin2-Selector lemma [11] provides an argument for the relation

R =
{

P,Q ∈ G𝑛∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
. (9)

5

However, after some thought, we concluded that instead of proving the relation (9) by the Lin2-Selector lemma
protocol, it is better to prove it directly as if the Lin2-Xor lemma applies to 𝑛 pairs of element at once while making
an auxiliary call to some vector commitment argument. This way is more efficient in size, and also gives more
opportunities to optimize the verification complexity.

Intuition here is that in the first round of the Lin2-Xor lemma protocol both prover and verifier multiply one
element in each of the two original pairs (𝑃0, 𝑄0) and (𝑃1, 𝑄1) by a random challenge, so that each of the two
original pairs becomes a compound element with its random ’rotation’, namely, they become 𝑃0 + 𝑐0𝑄0 and
𝑃1 + 𝑐1𝑄1. Here we use the notation and indexing from [11]. In the second round of the Lin2-Xor protocol, prover
and verifier play a sub-protocol convincing the verifier that the element 𝑍 + 𝑟1𝐻1 is a linear combination of the two
compound elements, which carry their random ’rotations’ 𝑐0 and 𝑐1. It then turns out that this linear combination
can be only one-hot, otherwise the DL assumption would be broken. Indeed, since 𝑃0, 𝑄0, 𝑃1, 𝑄1, 𝑍, 𝐻1 are fixed
from the beginning, and as they are orthogonal to each other, the element 𝑍 + 𝑟1𝐻1 has at most one ‘degree of
freedom’ parameterized by 𝑟1. At the same time, each of the elements 𝑃0 + 𝑐0𝑄0 and 𝑃1 + 𝑐1𝑄1 has exactly one
degree of freedom defined by the parameters 𝑐0 and 𝑐1 respectively. Hence, if both coefficients 𝑎, 𝑏 in the linear
combination

𝑍 + 𝑟1𝐻1 = 𝑎(𝑃0 + 𝑐0𝑄0) + 𝑏(𝑃1 + 𝑐1𝑄1) (10)

are not equal to zero, then the right-hand side of the equality (10), which has two ‘degrees of freedom’ with the
random parameters 𝑐0 and 𝑐1, is balanced by one ‘degree of freedom’ of the left-hand side with the controlled
parameter 𝑟1, which is impossible without breaking orthogonality of 𝑃0, 𝑄0, 𝑃1, 𝑄1.

In line with this intuition, if we take 𝑛 pairs of elements and turn them into 𝑛 compound elements with random
‘rotations’ in the first round, and in the second round prove that 𝑍 + 𝑟1𝐻1 is a linear combination of these 𝑛
compound elements, then exactly the same way we obtain that the compound element 𝑍 + 𝑟1𝐻1 with one ‘degree
of freedom’ 𝑟1 must balance the weighted sum of the compound elements of the form 𝑃𝑖 + 𝑐𝑖𝑄𝑖 , each adding one
‘degree of freedom’ to the right side of the equality

𝑍 + 𝑟1𝐻1 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝑐𝑖𝑄𝑖), (11)

which is possible only if the vector of coefficients {𝑎𝑖}𝑛−1
𝑖=0 is one-hot. Thus, we obtain an argument for the relation

(9) as a two-round game, where in the first round 𝑟1 is chosen in response to 𝑛 challenges {𝑐𝑖}𝑛−1
𝑖=0 , and in the second

round
zkVC𝑛 ({𝑃𝑖 + 𝑐𝑖𝑄𝑖}𝑛−1

𝑖=0 , 𝐻, 𝑍 + 𝑟1𝐻1 ; a, 𝛼),

is played. Here 𝐻1 is fixed as in [11], 𝐻 is an independent generator for blinding, 𝛼 is the blinding factor, and a is
one-hot.

Also, since the vector Q carries only a technical role in the relation (9), in particular in [11] we get rid of 𝑄𝑠 by
adding a proof that 𝑞 = 0 everywhere in the signatures, we now include a proof of 𝑞 = 0 in our argument. Taking
everything into account, in the Lin2-Choice lemma (Theorem 5) we provide a HVZK and WEE protocol

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

shown in Figure 7 for the following relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}
, (12)

where P,Q, 𝐻 satisfy ort(P∪Q∪ {𝐻}) . Thus, our Lin2-Choice lemma allows to choose exactly one element from
the set of orthogonal elements P ∈ G𝑛∗.

Addressing the details, with the simultaneous proof of 𝑞 = 0, the Lin2-Choice lemma protocol zkLin2Choice𝑛
for the relation (12) is constructed as follows

• After the first P’s message both P andV have elements 𝑍 and 𝐹, where 𝐹 plays the same role as 𝐻1 in [11].
• All 𝑛 elements of Q are multiplied by the challenges {𝑐𝑖}𝑛−1

𝑖=0 respectively, so P and V build a vector of
elements Q̂ = {𝑐𝑖𝑄𝑖}𝑛−1

𝑖=0 .
• P replies with 𝑟 , which plays the same role as 𝑟1 in [11].
• P andV play zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝑟𝛽), where a is one-hot, 𝐻 is an orthogonal blinding generator,
𝛼 and 𝛽 are blinding factors of 𝑍 and 𝐹 respectively.

6

Informally, we can see that if a has more than one hot entry, then zkSVC2,𝑛 will not complete successfully for the
same reason as the equality (11) will not hold for such a. To be precise, the following equality is checked within
zkSVC2,𝑛, and it guarantees a is one-hot

𝑍 + 𝛿1𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖).

In addition to this, if zkSVC2,𝑛 completes successfully, then 𝑍 cannot contain elements from Q in the decomposition
since zkSVC2,𝑛 guarantees 𝑍 = lin(P ∪ {𝐻}).

1.2.6 SIGNATURE EFLRS1
Having zero-knowledge argument zkLin2Choice𝑛 for the relation (12), it is easy to build a ring signature, we

call it EFLRS1 (Efficient linkable ring signature for 1 actual signer). Its interactive scheme is shown in Figure 10

EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥).
By a ring we mean a set of 𝑛 public keys

P = {𝑃𝑖}𝑛−1
𝑖=0 , (13)

where 𝑛 ⩾ 1. The signature convinces verifier that signer knows a scalar 𝑥 such that the equality 𝑃𝑠 = 𝑥𝐺 holds
for some 𝑠 ∈ [0 . . . 𝑛 − 1]. There are no assumptions about the public keys {𝑃𝑖}𝑛−1

𝑖=0 , all they can be regarded as
adversarially chosen.

By corresponding to the ring decoy set, technically called so, we will mean a set of 𝑛 pairs of the form

{ (𝑃𝑖 + 𝜁Hpoint (𝑃𝑖), 𝑄𝑖) }𝑛−1
𝑖=0 , (14)

where 𝑃𝑖 is a public key in the ring, 𝜁 is a random weight, Hpoint is a hash to curve function, and𝑄𝑖 ∈ Q, where Q
is a set of auxiliary orthogonal generators that can be prepared in advance, provided that Hpoint always generates
elements orthogonal to Q.

At the same time, key image is defined as

𝐼 = 𝑥−1
Hpoint (𝑃𝑠), (15)

where 𝑥 is a private key for the public key 𝑃𝑠 such that there holds 𝑃𝑠 = 𝑥𝐺.
To obtain a signature it remains to define 𝑍 as

𝑍 = 𝐺 + 𝜁 𝐼, (16)

pick a blinding generator 𝐻 as orthogonal to all other generators, and apply the protocol of the Lin2-Choice lemma
as follows

zkLin2Choice𝑛 ({𝑃𝑖 + 𝜁Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 ,Q, 𝐻, 𝐺 + 𝜁 𝐼; 𝑠, 𝑥

−1, 0),
thus producing the signature of size 2 log2 (𝑛) + 6.

When calculating the signature size we assume that the bitwise representation of an element from G takes
as much space as the bitwise representation of a scalar from Fp̄. We take into account all elements and scalars
transmitted from prover to verifier, including the key image 𝐼. We ignore the ring of public keys {𝑃𝑖}𝑛−1

𝑖=0 , which is
assumed to be known beforehand for both prover and verifier.

Also, recalling that a signature signs an input message M for the first place, we use the well-known method
of binding a signature to message, described, e.g. in [5]. Namely, we assume that the signature’s random oracle
depends of the input message, and thus the entire series of random values in each signature is bound to M.

1.2.7 MULTIPLE VECTOR COMMITMENTS
To create a threshold version of the signature we need one more helper zero-knowledge argument, namely, a

proof of multiple vector commitment
zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶),

that for a given element vector Y ∈ G𝑙 proves every 𝑌𝑖 ∈ Y is a vector commitment over the vector of orthogonal
generators X ∪ {𝐻} ∈ G𝑛∗ × G, with the coefficients known to prover. It is shown in Figure 12, zkMVC𝑙,𝑛 is a
protocol for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } . (17)

The structure of this protocol is quite simple. All 𝑙 elements from the vector Y are combined into one element
𝑌 with random weights, then the protocol zkVC𝑛 proves that𝑌 is a vector commitment over the generators X∪ {𝐻},
thus convincing verifier that, due to the random weights, every 𝑌𝑖 ∈ Y is a vector commitment over X ∪ {𝐻}. This
way we obtain a proof for a set of vector commitments at the price of one vector commitment proof.

7

1.2.8 MANY-OUT-OF-MANY PROOF
The zkMVC𝑙,𝑛 protocol, according to the relation (17), proves the same as 𝑙 zkVC𝑛 protocols prove. Now we

will construct an efficient many-out-of-many proof of membership

zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶),

shown in Figure 13, for the following relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
, (18)

where P,Q, 𝐻 satisfy ort(P ∪Q ∪ {𝐻}) , which proves the same as 𝑙 concurrent insances of the one-out-of-many
proof of membership zkLin2Choice𝑛 for the reletion (12), at the price of one instance.

All the 𝑙 instances of zkLin2Choice𝑛 are played as a sequence of nested sub-protocol calls invoked simulta-
neously, we depict this as follows

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ 𝑙 × zkVC𝑛 . (19)

Since each of these 𝑙 concurrent zkLin2Choice𝑛 instances is completely independent of each other, we let all
the challenges be shared between them, provided that the random oracle which generates the challenges takes into
account all the filled parts of the common transcript.

The final 𝑙×zkVC𝑛 calls on the ‘invocation stack’ (19) are needed only to prove that each of 𝑙 vector commitments,
namely each element of

{𝑍𝑘 + 𝛿1𝑟𝑘𝐹𝑘}𝑙−1
𝑘=0

is constructed over the common set of orthogonal generators

{𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

Therefore, we can replace these 𝑙 × zkVC𝑛 calls with one call to zkMVC𝑙,𝑛, thus making the ‘invocation stack’ (19)
look as

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 .

1.2.9 SIGNATURE EFLRSL
The EFLRS1 signature scheme in Figure 10 we constructed in Section 1.2.6 is, in sum, about that prover builds

a key image 𝐼 of type (15), then publishes it, then verifier sends a challenge 𝜁 . Then using the one-out-of-many
proof of membership zkLin2Choice𝑛 the prover convinces the verifier that 𝑍 built by the formula (16) belongs to
the decoy set built by the formula (14), namely, the set of pairs

(P + 𝜁U, Q) , where U = {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0

Suppose prover publishes a vector of 𝑙 key images

I = {𝐼𝑘}𝑙−1
𝑘=0 ,

of type (15) each, corresponding to 𝑙 different indices s = {𝑠𝑘}𝑙−1
𝑘=0 which we call actual signing indices or actual

signers in the ring. The corresponding signing private keys x = {𝑥𝑘}𝑙−1
𝑘=0 are, of course, assumed to be known to the

prover. Taking random 𝜁 both prover and verifier construct 𝑙 values of 𝑍 by the formula (16), i.e. they construct
the vector

Z = {𝑍𝑘}𝑙−1
𝑘=0 = {𝐺}𝑙 + 𝜁 I = {𝐺 + 𝜁 𝐼𝑘}𝑙−1

𝑘=0 ,

and also they build the same decoy set by the formula (14). After that, as the last step, they play the zkLin2Choice𝑛
one-out-of-many proof protocol 𝑙 times for the decoy set and for each 𝑍𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1], we depict this as

𝑙 × zkLin2Choice𝑛 .

Although, instead of playing the one-out-of-many proof protocol 𝑙 times, they might as well play the many-out-
of-many proof protocol zkLin2mChoice𝑛,𝑙 once. By doing so, they obtain a threshold version of the signature,
which we call EFLRSL (Efficient linkable ring signature for 𝑙 actual signers), its scheme

EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

is shown in Figure 14. Its size is 2 log2 (𝑛) + 3𝑙 + 3. The key image vector {𝐼𝑘}𝑙−1
𝑘=0 is taken into account in the

calculation. Ring P is as usual assumed to be known beforehand for both prover and verifier.

8

1.2.10 HIDDEN AMOUNT EXTENSION
We created the EFLRS1 signature using the zkLin2Choice𝑛 protocol, which selects one element from a set of

elements or, in other words, which proves membership of 𝑍 to the set P in the form of the relation (12). Also, by
runnining multiple parallel instances of the zkLin2Choice𝑛 protocol and optimizing their execution, we created
EFLRSL, which is a threshold version of the signature EFLRS1.

Suppose that the EFLRSL signature is used in a blockchain, where besides the public key 𝑃 each address is
represented by an additional element 𝐴 containing some encrypted value called hidden amount. Formally, let’s
assume that each address is a pair (𝑃, 𝐴) such that

𝐴 = 𝑏𝐵 + 𝑑𝐷,

where 𝐵 and 𝐷 are independent fixed orthogonal generators, 𝑏 is an amount, and 𝑑 is this amount’s blinding factor.
That is, 𝐴 hides the amount 𝑏 protecting it from revealing with white noise 𝑑.

Now we want to enhance the EFLRSL signature so that it will also be a zero-knowledge argument of that all
𝑏’s, hidden behind 𝐴’s of actual signers, sum up to another hidden amount, denoted as 𝐴sum. We will describe the
main idea of how we are going to do this, however, first, let’s define designations.

• Let a ring be composed of 𝑛 pairs

{(𝑃𝑖 , 𝐴𝑖)}𝑛−1
𝑖=0 , where P = {𝑃𝑖}𝑛−1

𝑖=0 and A = {𝐴𝑖}𝑛−1
𝑖=0 . (20)

In the honest case we assume the following hold for it

𝑃𝑖 = 𝑝𝑖𝐺 , (21)
𝐴𝑖 = 𝑏𝑖𝐵 + 𝑑𝑖𝐷 . (22)

In general, as usual, we assume the dishonest case, i.e. that the equalities (22) and (21) may not hold and
thus some or all 𝑃𝑖’s and 𝐴𝑖’s in the ring may be adversarially chosen. However, now we will assume that
the proofs of (22) for all 𝐴𝑖’s in the ring are already provided and validated. In other words, we will assume
that the relation (22) is satisfied for all 𝐴𝑖’s participating in the ring. With this precondition, only 𝑃𝑖’s can
be adversarially chosen.

• P has two vectors, s = {𝑠𝑘}𝑙−1
𝑘=0 and x = {𝑥𝑘}𝑙−1

𝑘=0, which contain actual signing indices and corresponding
private keys such that

𝑃𝑠𝑘 = 𝑥𝑘𝐺.

• P andV have an element 𝐴sum which represents total hidden amount, P knows its opening

𝐴sum = 𝑏sum𝐵 + 𝑑sum𝐷. (23)

• P signs with x, in doing so it knows the actual signer hidden amount openings

Ain = {𝐴𝑠𝑘 }𝑙−1
𝑘=0 = {𝑏𝑠𝑘𝐵 + 𝑑𝑠𝑘𝐷}𝑙−1

𝑘=0 ⊆ A, where P knows all 𝑏𝑠𝑘 ’s and 𝑑𝑠𝑘 ’s.

• Along with the signature the prover must prove that

𝑏sum =

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 , (24)

i.e., that the sum of hidden amounts of the signing addresses equals to 𝐴sum with the accuracy of a blinding
component proportional to 𝐷.

Our idea of integrating the hidden amounts into the signature is that prover will send to verifier a vector of
‘temporary’ elements Atmp = {𝐴tmp

𝑘
}𝑙−1
𝑘=0 and prove the following three additional assertions

1. For each 𝑘 ∈ [0 . . . 𝑙 −1] the ‘temporary’ element 𝐴tmp
𝑘

is equal to 𝑠𝑘-th hidden amount 𝐴𝑠𝑘 in the ring to the
accuracy of blinding component prportional to 𝐻, where 𝐻 is a blinding generator of the signature. That is,

𝐴
tmp
𝑘

= 𝐴𝑠𝑘 + 𝑓𝑘𝐻𝐻 . (25)

Here prover is free to randomly sample all the factors 𝑓𝑘𝐻 .

9

2. All 𝐴tmp
𝑘
∈ Atmp sum up to 𝐴sum to the accuracy of a linear by 𝐻 and 𝐷 component. That is,

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴
tmp
𝑘
+ 𝑓𝐻𝐻 + 𝑓𝐷𝐷 . (26)

Here prover is free to randomly sample the factor 𝑓𝐷 , and at the same time to pick 𝑓𝐻 as

𝑓𝐻 = −
𝑙−1∑︁
𝑘=0

𝑓𝑘𝐻 . (27)

3. If 𝐴sum decomposes into a weighted sum of the generators 𝐵, 𝐻, and 𝐷 with known weights, then the weight
of the generator 𝐻 in the decomposition is zero, i.e. the form (23) is fulfilled in such a case.

Since the signature should not reveal the signing 𝑠𝑘’s and an observer should not be able to determine which 𝐴𝑠𝑘 ’s
were summed up, we introduce 𝐴tmp

𝑘
’s as the explicit replacements of the corresponding 𝐴𝑠𝑘 ’s. With 𝐴tmp

𝑘
’s an

observer still cannot determine anything due to the fact that each 𝐴tmp
𝑘

has a blinding componenet proportional to
𝐻, namely, 𝑓𝑘𝐻𝐻, where 𝑓𝑘𝐻 is randomly sampled by prover.

From the assertions 1, 2, and from the equalities (22), (25), (26) it follows that verifier is convinced that there
are the following decompositions of 𝐴sum with known weights

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴
tmp
𝑘
+ 𝑓𝐻𝐻 + 𝑓𝐷𝐷 =

𝑙−1∑︁
𝑘=0
(𝐴𝑠𝑘 + 𝑓𝑘𝐻𝐻) + 𝑓𝐻𝐻 + 𝑓𝐷𝐷 =

𝑙−1∑︁
𝑘=0
(𝑏𝑠𝑘𝐵 + 𝑑𝑠𝑘𝐷 + 𝑓𝑘𝐻𝐻) + 𝑓𝐻𝐻 + 𝑓𝐷𝐷 =

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘𝐵 +
(
𝑙−1∑︁
𝑘=0

𝑓𝑘𝐻 + 𝑓𝐻

)
𝐻 +

(
𝑙−1∑︁
𝑘=0

𝑑𝑠𝑘 + 𝑓𝐷

)
𝐷 , (28)

where the scalars 𝑓𝐻 and 𝑓𝐷 are chosen by prover. If prover chooses the scalar 𝑓𝐻 according to the equality (27),
then the 𝐻’s component of 𝐴sum is equal to zero, i.e.(

𝑙−1∑︁
𝑘=0

𝑓𝑘𝐻 + 𝑓𝐻

)
𝐻 = 0 .

Because of the assertion 3 the verifier is convinced that this is the case. Thus, the decomposition (28) for 𝐴sum gets
simplified to the decomposition

𝐴sum =

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘𝐵 +
(
𝑙−1∑︁
𝑘=0

𝑑𝑠𝑘 + 𝑓𝐷

)
𝐷 ,

which, taking into account the decomposition (23), proves the required equality (24).
Returning to the blockchain, having published the sets of output addresses and output hidden amounts in a

transaction, prover signs it and simultaneously proves the equality (24), taking the sum of the output hidden amounts
as 𝐴sum. Also, for each of the output hidden amounts the prover will have to give a range proof, however range
proofs are beyond the scope of this paper; they can be implemented with known methods, for instance, with those
described in [2, 3].

As for our assumption about the decompositions (22) for A, it can be fulfilled by including in each transaction
a proof that all the newly created output hidden amounts have these decompositions known to signer. Such a proof
can be obtained in many ways, the good thing is that it is already included in the case if the range proofs as in [2,
3] are used.

1.2.11 SIMPLIFIED LIN2-2CHOICE LEMMA
To implement the idea outlined in Section 1.2.10 we need to somehow insert the hidden amounts A, total hidden

amount 𝐴sum, temporary elements Atmp, and proofs of the assertions 1, 2, 3 from Section 1.2.10 into the signature

10

scheme. Apparently, A can be added to the decoy set with random weighting, i.e. instead of the form (14) the
decoy set entries might look something like (actually it will look a bit different)

(𝑃𝑖 + 𝜁Hpoint (𝑃𝑖) + 𝜔𝐴𝑖 , . . .) ,

where 𝜔 is an additional random weight. Also, by calling

zk2ElemComm(𝐷, 𝐻, 𝐴sum −
𝑙−1∑︁
𝑘=0

𝐴
tmp
𝑘

; 𝑓𝐷 , 𝑓𝐻)

prover can convince verifier that 𝐴sum equals to
∑𝑙−1
𝑘=0 𝐴

tmp
𝑘

to the accuracy of a linear by 𝐻 and 𝐷 component, thus
proving the assertion 2 from Section 1.2.10.

The assertion 3 from Section 1.2.10, in turn, can be obtained using an ideal hash to curve (in fact, to group)
function. We define the generator 𝐻 as a hash to curve of all the common inputs and transcript data written to the
moment of 𝐻’s first usage. This way the elements A, 𝐴sum, 𝐵, 𝐷 are included into 𝐻’s preimage. Thus, 𝐴sum is
prohibited from containing 𝐻 in its decomposition.

The only remaining problem is how to convince verifier in the assertion 1 from Section 1.2.10, i.e. how to equate
each 𝐴tmp

𝑘
to the corresponding 𝐴𝑠𝑘 to the accuracy of 𝐻. To solve this problem, we enchance the Lin2-Choice

lemma protocol and prove the properties of the enchanced protocol in a new lemma called Lin2-2Choice.
To facilitate understanding, for the first we formulate a simplified version of the Lin2-2Choice lemma with its

simplified protocol. This version proves, as usual, to the accuracy of 𝐻, that commitment 𝑍 is a weighted sum
with prover knowing the weights of 𝑃𝑠 and 𝑉𝑡 , where 𝑃𝑠 is a ring element under secret index 𝑠, and 𝑉𝑡 is another
ring element under publicly seen index 𝑡. Compared to the Lin2-Choice lemma, the simplified version of the
Lin2-2Choice lemma protocol allows us to select a weighted sum of exactly two ring elements at once, not just one.
We will see later what can be obtained from this.

So, the simplified version of the Lin2-2Choice lemma provides the argument

zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)

shown in Figure 16 for the following relation

R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1];
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}
, (29)

where the vectors P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗ are common prover and verifier input. All 2(𝑛 + 𝑚) elements in these
four vectors are orthogonal to each other. The vectors Q and W are for technical purposes, while the vectors P
and V are used to compose the element 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 , where 𝑠, 𝑝, 𝑣 are secret, and 𝑡 is public. The protocol
zkLin22sChoice𝑛,𝑚 is constructed as follows.

• P hands over the following pair of elements toV

𝐹 and 𝐸 . (30)

• V generates a set of 𝑛 + 𝑚 challenges {𝑐𝑖}𝑛+𝑚−1
𝑖=0 .

• P and V construct a decoy set of two parts and of size 𝑛 + 𝑚. The first part of the decoy set, of size 𝑛,
contains the following triplets

{(𝑃𝑖 , 𝑐𝑖𝑄𝑖 , 0)}𝑛−1
𝑖=0 , (31)

whereas the second part, of size 𝑚, contains the following ones

{(𝑉𝑖 , 0, 𝑐𝑛+𝑖𝑊𝑖)}𝑚−1
𝑖=0 . (32)

• P replies with a scalar 𝑟 , and then the following two elements are constructed

𝑟𝐹 , 𝑐𝑛+𝑡𝐸 . (33)

• As the last step, P andV play zkSVC3,𝑛 and thusV gets convinced that P knows weights of the following
decompositions 

𝑍 = lin(P,V)
𝐹 = lin(Q)
𝐸 = lin(W)

. (34)

11

Here we omit mentioning blinding with 𝐻 as an apparent procedure, which is always implied performed before
transmitting elements from prover to verifier.

An informal explanation of the zkLin22sChoice𝑛,𝑚 protocol is that considering the triplet of elements

(𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸) (35)

and proving with zkSVC3,𝑛 that the first, second, and third elements of the triplet (35) are linear combinations of
𝑛 + 𝑚 elements of, respectively, the first, second, and third dimensions of the decoy set composed of the parts (31)
and (32), we see that thereby all steps of the zkLin2Choice𝑛 protocol are actually performed for 𝑍’s ‘projections’
on P and on V such that

𝑍 = 𝑍𝑃 + 𝑍𝑉 , where 𝑍𝑃 = lin(P), 𝑍𝑉 = lin(V) . (36)

That is, all the steps of the Lin2-Choice lemma protocol have been performed for
◦ 𝑍𝑃 and the first part of the decoy set comprising 𝑛 triples (31). The actual index 𝑠 remains hidden because

the response 𝑟 is randomized, as in the Lin2-Choice lemma protocol.
◦ 𝑍𝑉 and the second part of the decoy set comprising 𝑚 triples (32). The actual index 𝑡 in this part is not

hidden because the ‘reply’ 𝑐𝑛+𝑡 clearly reveals it. Nevertheless, this does not wreck the Lin2-Choice lemma
argument, just makes it non-zero-knowledge by 𝑡.

Thus, by the Lin2-Choice lemma, verifier is convinced that the following holds for prover{
𝑍𝑃 ∼ 𝑃𝑠 , where 𝑠 is secret
𝑍𝑉 ∼ 𝑉𝑡 , where 𝑡 is public

, (37)

and therefore 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 for some 𝑝 and 𝑣 known to prover.

1.2.12 MULTIPLE SIMMETRIC VECTOR COMMITMENTS
Again, we need one more auxiliary zero-knowledge protocol.

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)

shown in Figure 17 proves the same thing as 𝑙 simultaneously played instances of the zkSVC3,𝑛 protocol prove.
This is a protocol for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 , (38)

where all generators P,Q,R, 𝐻 are orthogonal to each other, and for which the other accompanying requirements
are the same as for the relation (7) in Section 1.2.4.

We implement this protocol using random weighting, defining the following two vectors using random scalars
𝛿1 and 𝛿2

X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E ,

and invoking the zkMVC𝑙,𝑛 protocol for them. Thus, we get a proof for the relation (38) at the price (i.e., size) of
one protocol zkMVC𝑙,𝑛, and hence at the price of one zkVC𝑛.

1.2.13 LIN2-2CHOICE LEMMA
We can now construct the protocol

zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶)

shown in Figure 18, and prove the Lin2-2Choice lemma which states that zkLin22Choice𝑙,𝑛,𝑚 is a complete,
zero-knowledge argument having witness-extended emulation for the relation

R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
, (39)

where the generators P,Q,V,W, 𝐻 are orthogonal to each other and 𝑙 ⩽ 𝑚.

12

The relation (39) is essentially the relation (29) repeated for the first 𝑙 elements of the decoy set’s second part
(32). Having such a correspondence between the relations (39) and (29), the zkLin22Choice𝑙,𝑛,𝑚 protocol is 𝑙
instances of the protocol zkLin22sChoice𝑛,𝑚 run in parallel, with an only refinement.

The refinement is that all the 𝑙 instances of the zkLin22sChoice𝑛,𝑚 protocol are played in sync and indepen-
dently of each other (except for the common challenges, as for EFLRSL in Section 1.2.9) up to the last step, where
𝑙 instances of zkSVC3,𝑛 are called. All these 𝑙 calls of zkSVC3,𝑛, in turn, are replaced by one call to zkMSVC𝑙,3,𝑛,
which gives significant reduction in transcript size.

1.2.14 SIGNATURE EFLRSLSM (MULTRATUG) WITH HIDDEN AMOUNT SUM PROOF

Given a ring of the form (20), i.e. {(𝑃𝑖 , 𝐴𝑖)}𝑛−1
𝑖=0 , prover provides 𝑙 key images of the form (15) for different

indices 𝑠 in the ring. That is, knowing the secret indices s = {𝑠𝑘}𝑙−1
𝑘=0 and corresponding private keys x = {𝑥𝑘}𝑙−1

𝑘=0,
prover publishes the key images

I = {𝐼𝑘}𝑙−1
𝑘=0 = {𝑥−1

𝑘 Hpoint (𝑃𝑠𝑘)}𝑙−1
𝑘=0. (40)

Also, prover publishes an element 𝐴sum and declares that, to the accuracy of a component proportional to the
generator 𝐷, there holds

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 . (41)

Next, prover and verifier play the following game. They choose an orthogonal blinding generator 𝐻 as a hash to
curve of everything they have in common, and the prover provides to the verifier a vector Atmp of 𝑙 hidden amounts
which correspond to the actual signing keys blinded with 𝐻, i.e.

Atmp = {𝐴𝑠𝑘 + 𝜇𝑘𝐻}𝑙−1
𝑘=0 , where each 𝜇𝑘 is white noise. (42)

Then, prover sends to verifier a set of 𝑙 what we call ‘pseudo key images’ J, which are constructed as follows

J = {𝑥−1
𝑘 Hpoint (𝐻, 𝐴tmp

𝑘
) + 𝜐𝑘𝐻}𝑙−1

𝑘=0 , where each 𝜐𝑘 is white noise. (43)

The term ‘pseudo key image’ comes from the fact that each 𝐽𝑘 is structurally similar to 𝐼𝑘 , except for that 𝐼𝑘
takes Hpoint of 𝑃𝑘 , whereas 𝐽𝑘 takes Hpoint of (𝐻,Atmp

𝑘
) and, additionally, is blinded. Apparently, 𝐽𝑘 cannot be

used as the real key image 𝐼𝑘 for linking actual signers, since 𝐽𝑘 is not unique due to the blinding. Note, that all the
𝐼𝑘’s are published before 𝐻 is generated, so they are independent of 𝐻 even in the dishonest case.

In addition to this, prover and verifier generate one more orthogonal generator, 𝐾 , as a hash to curve of
everything they have in common to this moment. Now, using random weights 𝜁 , 𝜔, 𝜒 prover and verifier make
vectors

X = P − {𝐾}𝑛 + 𝜁 {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 − 𝜔A , (44)

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒 {Hpoint (𝐻, 𝐴tmp
𝑘
)}𝑙−1
𝑘=0 , (45)

Z = {𝐺}𝑙 + 𝜁I + 𝜒J , (46)

where I,Atmp, J are built by prover, in the honest case, by formulas (40), (42), (43).
Then, prover and verifier call the zkLin22Choice𝑙,𝑛,𝑚 protocol of the Lin2-2Choice lemma

zkLin22Choice𝑙,𝑛,𝑙 (X,Q,V,W, 𝐻,Z; s, x−1, x−1, 𝜶𝐻) , (47)

where Q,W are auxiliary orthogonal generators prepared in advance. Moreover, Q,W are also orthogonal to X
(44) and to V (45), this is accomplished by defining Hpoint in such a way so that all its returned elements are
orthogonal to Q,W. The vector 𝜶𝐻 comprises weights accumulated by the 𝐻 components within the protocol.

Let’s look inside the call (47)
• prover sends the vectors F,E ∈ G𝑙∗, they correspond to the elements 𝐹 and 𝐸 in the first step (30) of the

protocol zkLin22sChoice𝑛,𝑚,
• verifier generates challenges c = {𝑐𝑖}𝑛+𝑙−1

𝑖=0 ,

• prover replies with r ∈ F𝑙∗p̄ ,

• both prover and verifier build vectors F̂ = r ◦ F and Ê = c[𝑛:(𝑛+𝑙)] ◦ E with elements corresponding to the
pair (33),

13

• then the decoy set of two parts of the forms (31) and (32) is made. The first part of the decoy set of size 𝑛
unfolds as

{(𝑃𝑖 − 𝐾 + 𝜁Hpoint (𝑃𝑖) − 𝜔𝐴𝑖 , 𝑐𝑖𝑄𝑖 , 0)}𝑛−1
𝑖=0 , (48)

and the second part of size 𝑙 unfolds as

{(𝐾 + 𝜔𝐴tmp
𝑖
+ 𝜒Hpoint (𝐻, 𝐴tmp

𝑖
), 0, 𝑐𝑛+𝑖𝑊𝑖)}𝑙−1

𝑖=0 , (49)

• both parts (48) and (49) comprising element triplets are placed in the three vectors P̂, Q̂, R̂ ∈ G𝑛+𝑙 , respec-
tively. Then zkMSVC𝑙,3, (𝑛+𝑙) (P̂, Q̂, R̂, 𝐻,Z, F̂, Ê; . . .) is called.

As a result, by the relation (39), for the vector Z defined in (46), for each 𝑘 ∈ [0 . . . 𝑙 − 1], 𝑍𝑘 ∈ Z a proof (to the
accuracy of 𝐻 component) of the following chain of equalities is obtained

𝑍𝑘 = 𝑥
−1
𝑘 𝑋𝑠𝑘 + 𝑥−1

𝑘 𝑉𝑘 =

𝑥−1
𝑘 (𝑃𝑠𝑘 − 𝐾 + 𝜁Hpoint (𝑃𝑠𝑘) − 𝜔𝐴𝑠𝑘) + 𝑥−1

𝑘 (𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒Hpoint (𝐻, 𝐴tmp

𝑘
)) =

𝐺 + 𝜁 𝐼𝑘 + 𝑥−1
𝑘 𝜔(−𝐴𝑠𝑘 + 𝐴

tmp
𝑘
) + 𝜒𝐽𝑘 =

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 ,

which, in its turn, proves the following three things. First, it proves that prover actually knows the signing private
keys x. Second, that the key images I are honestly built by the formula (40). These first two give us the signature
just like EFLRSL. Third, that the equalities (25) hold for all the elements of Atmp, otherwise there would be a
summand with 𝜔 multiplier for 𝑍𝑘 .

Having the equalities (25) proven, recalling that 𝐴sum cannot contain 𝐻 in its decomposition by 𝐷, 𝐵, 𝐻,
prover and verifier perform a Schnorr-like two-generator (𝐻 and 𝐷) commitment protocol for the difference
𝐴sum −∑𝑙−1

𝑘=0 𝐴
tmp
𝑘

, namely, they call

zk2ElemComm(𝐷, 𝐻, 𝐴sum −
𝑙−1∑︁
𝑘=0

𝐴
tmp
𝑘

; 𝑓𝐷 , 𝑓𝐻) ,

obtaining this way a proof for the equality (41) to the accuracy of 𝐷.
Recalling all the ring hidden amounts A already have the proven form (22), they obtain a proof for the equality

(24), i.e., the sought proof of the sum of hidden amounts.
Thus, the log-size signature EFLRSLSM (Efficient linkable ring signature for 𝑙 actual signers with hidden

amount sum proof) of size 2 log2 (𝑛 + 𝑙) + 6𝑙 + 6, nicknamed Multratug, is completely created. Its scheme

EFLRSLSM.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

is shown in Figure 21.

2 PRELIMINARIES
At the beginning of the formal presentation, we first outline the definitions, assumptions, and methods that

we borrow from the base works. Also, we specify the notation we use in this paper. Then we provide the helper
protocols that we will use in the following chapters. Concrete implementations of the helper protocols are not
decisive; any other implementations can be used as long as they have the same properties. We show the concrete
implementations only for the purpose of calculating size and complexity of the resulting signature schemes, and
for finding out if they can be optimized.

2.1 DEFINITIONS AND BASE WORKS
All our protocols in this paper, including the helpers schemes and signatures, perform for prime order groups

without bilinear pairings in a trustless environment under the DDH assumption in the random oracle model. All
the context, namely, the common reference string, trustless setup, assumptions, orthogonality definition, non-
intaractivity through Fiat-Shamir heuristic, honest verifier zero knowledge (HVZK) and computational witness-
extended emulation (WEE) proof methods, which we use, are exactly the same as in the work of Bünz et al. [2].
Using them as already well known, we do not quote or explain them in detail to save space, instead referring simply
to the fact that they correspond to and can be taken from [2].

The same applies to the work of Chung et al. [3], which is based on [2]. The common reference string, setup,
assumptions, orthogonality, non-intaractivity, HVZK and WEE proof methods are the same. Similarly, for our
current work they can be taken from [3].

14

Our previous work [11] is also based on [2]. We conduct our research in [11] from the ground up, relying on
mathematical logic and computational theory, as a consequence we define some terms and methods which are not
used in [2] and [3]. Nevertheless, they are in agreement with [2] and [3], and, in sum, the common reference string,
setup, assumptions, orthogonality, non-intaractivity, HVZK and WEE proof methods are the same too.

In this paper we stick entirely to the canvas of modern cryptography. We prove that the underlying proving
system is HVZK and has WEE, as in [2, 3], and add a linking tag on top, which, although depriving the signature
of the HVZK property, still leaves it simulable enough to apply proof methods for unforgeability, anonymity, and
other useful properties from, for example, [5, 7].

For certainty, here we take the definitions from [2]. As a syntactic sugar we use the shorthands ‘∼’, ‘lin’, ‘ort’
defined in [11], although they can be resolved and omitted. Also, we use additive notation for exponentiation of
group elements as in [11]. We record our protocols in a form inspired by [3]. We imply non-interactive Fiat-Shamir
counterparts everywhere not mentioning them. In [11] we have collected existing definitions of the linkable ring
signature, its variations and security models from various sources, and we use these definitions in this paper, with
one slight difference in that what in [11] we call a generic linkable ring signature, here we simply call a linkable
ring signature.

In general, in this paper we denote elements, scalars, vectors, indices, etc. in the usual way that most closely
resembles the notation in our work [11]. To make reading easier, here is a list of basic notations

• p̄ denotes a big prime chosen to be the order of group G and of the corresponding scalar field Fp̄.

• lowercase italic and lowercase Greek letters denote scalars in Fp̄. Apostrophes, hats, and subscript indices
could be appended, e.g. 𝑎, 𝑏12, 𝑐

′, 𝜁 ′, 𝑥𝑘 . Also, lowercase italic letters can be used to designate integers
used as indices or limits, e.g. 𝑛, 𝑖, 𝑗1, 𝑠𝑘 , this usage is clear from the context. Superscripts, e.g. 𝜖2, denote
scalar exponentiation.

• a special case is a lowercase italic letter with a bold superscript, e.g. 𝑑𝚫sum, this denotes a regular scalar of
Fp̄, and the superscript in bold is purely explanatory.

• bold lowercase italic and bold lowercase Greek letters denote scalar vectors, e.g. a, b, 𝜶.

• bold lowercase Gothic letters denote scalar matrices, e.g. 𝔞.

• uppercase italic letters denote elements in G. Apostrophes, hats, and subscript indices could be appended,
e.g. 𝐴, 𝐵12, 𝐷

′, 𝑃𝑠𝑘 . Multiplication is used to denote element exponentiation by scalar, e.g. 𝑥𝐺.

• a special case is an uppercase italic letter with a bold superscript, e.g. 𝐴sum, this denotes a regular element
of G, and the superscript in bold is purely explanatory.

• bold uppercase italic letters denote element vectors, e.g. A, P.

• n̄ denotes a maximum number of elements in a ring.

• asterisk denotes that zero entries are excluded. That is, F∗p̄ means Fp̄ without scalar 0, G∗ means G without
element 0. Substantially, for vectors, if x ∈ F𝑛∗p̄ , P ∈ G𝑚∗, then x and P are assumed containing no zeros in
any position.

• star denotes Klein star. For instance, M ∈ {0, 1}★ means M is a bitstring.

• Hscalar and Hpoint are the ideal hash and hash to group element (to curve) functions respectively.

• the statement ort(𝑆) means that all elements of the set 𝑆 are orthogonal to each other. For example, if 𝑆 is
composed of images of Hpoint on different pre-images, then ort(𝑆).

• 𝐴 = lin(B), where B is a non-empty vector of non-zero elements, means there is a known vector x such that
𝐴 = ⟨x,B⟩. Syntactic sugar 𝐴 ∼ 𝐵 is equivalent to 𝐴 = lin({𝐵}).

• nz(B) means a subset of B containing all non-zero elements found in B.

• access to the vector and matrix items is performed using Python notation, following [2]. Also, having a
vector, say, vector A, we imply that 𝐴𝑖 means i-th item of A, i.e. we imply that 𝐴𝑖 is an alias of A[𝑖] and
therefore 𝐴𝑖 = A[𝑖] . Often we write explicitly ‘let 𝐴𝑖 ← A[𝑖]’, although the equality is already implied.

• adding an element to a vector is denoted by comma, e.g. X̂← [X, 𝐵] means that X̂ = [𝑋0, 𝑋1, . . . , 𝑋𝑛−1, 𝐵].
• writing our protocols we mix several assignment styles, they all are construed as imperative assignment.

That is, for example, the expression ‘let 𝑥 ← 𝑦’ means the same thing as ‘assign 𝑥 = 𝑦’. Typically we use
‘let 𝑥 ← 𝑦’ to indicate that 𝑥 gets the value of 𝑦 and both won’t change.

Using this notation, all the information available from the beginning to both P andV and known in all protocols
by default is shown in Figure 1.

15

Common information

• A big prime number p̄
• Definition of a finite scalar field Fp̄

• Definition of a prime order groupG over Fp̄

• A generator 𝐺 of the groupG

Figure 1: Information available to each party

2.2 TWO ELEMENT COMMITMENT

Theorem 1:
For two non-zero elements 𝑋, 𝐻 ∈ G∗ such that they are orthogonal to each other, for an element 𝑌 ∈ G, the
protocol zk2ElemComm in Figure 2 is a complete, HVZK argument having WEE for the relation (2).

Proof: Appendix A.
Overview: Section 1.2.1.

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ)

Relation R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 } // (2)

// 𝑋, 𝐻 in R satisfy ort(𝑋, 𝐻) .

P’s input : (𝑋, 𝐻,𝑌 ; 𝑥, ℎ)
V’s input : (𝑋, 𝐻,𝑌)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝜙, 𝜓 ←$ F∗p̄ and computes 𝑇 = 𝜙𝑋 + 𝜓𝐻

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝜏 = 𝜙 − 𝑐𝑥
𝜂 = 𝜓 − 𝑐ℎ

P → V : 𝜏, 𝜂

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇
?
= 𝜏𝑋 + 𝜂𝐻 + 𝑐𝑌

Figure 2: Zero-knowledge argument for two element commitment relation

2.3 BASIC VECTOR COMMITMENT

Theorem 2:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements X ∈ G𝑛∗, for a non-zero element 𝐻 ∈ G∗
such that all elements in X ∪ {𝐻} are orthogonal to each other, for an element 𝑌 ∈ G, the protocol zkVC𝑛 in
Figure 3 is a complete, HVZK argument having WEE for the relation (3).

Proof: Appendix B.
Overview: Section 1.2.2.

16

zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (3)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 1 then

P : 𝛽, 𝛾 ←$ F∗p̄ and computes �̂� = 𝑛/2

𝐿 =
〈
a[:�̂�] ,X[�̂�:]

〉
+ 𝛽𝐻

𝑅 =
〈
a[�̂�:] ,X[:�̂�]

〉
+ 𝛾𝐻

P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes â = 𝑒a[:�̂�] + 𝑒−1a[�̂�:]

�̂� = 𝛼 + 𝑒2𝛽 + 𝑒−2𝛾

P andV : run zkVC�̂� (X̂, 𝐻,𝑌 ; â, �̂�) // run recursively until n=1

else // n=1

P andV : let 𝑋0 ← X[0]
and run zk2ElemComm(𝑋0, 𝐻,𝑌 ; 𝑎0, 𝛼)

endif

Figure 3: Zero-knowledge argument for vector commitment relation

2.4 RANDOM WEIGHTING FOR 3-TUPLES

Theorem 3:
For a non-zero element 𝑃 ∈ G∗, for a pair of elements 𝑄, 𝑅 ∈ G, for a non-zero element 𝐻 ∈ G∗ such that all
non-zero elements of the set {𝑃,𝑄, 𝑅, 𝐻} are orthogonal to each other and at least one of the two elements 𝑄, 𝑅 is
non-zero, the protocol zk3ElemRW in Figure 4 is a complete, HVZK argument having WEE for the relation (6).

Proof: Appendix C.
Overview: 1.2.3.

17

zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

Relation R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 // (6)

// 𝑃, 𝑄, 𝑅, 𝐻 in R satisfy ort(nz(𝑃, 𝑄, 𝑅, 𝐻)) and (𝑄 + 𝑅) ∈ G∗

P’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)
V’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute 𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run any complete, HVZK, and WEE protocol that convincesV that
𝑎, 𝛼, 𝛽, 𝛾 at P’s privare input connect 𝑋 and 𝑌 so that 𝑌 = 𝑎𝑋 + �̂�𝐻

Figure 4: Zero-knowledge argument for two 3-tuples proportional to each other

2.5 SIMMETRIC VECTOR COMMITMENT
Theorem 4:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements P ∈ G𝑛∗, and for a pair of vectors of
elements Q,R ∈ G𝑛 such that (Q + R) ∈ G𝑛∗, for a non-zero element 𝐻 ∈ G∗ such that all non-zero elements in
the set P ∪ Q ∪ R ∪ {𝐻} are orthogonal to each other, for three elements 𝑍, 𝐹, 𝐸 ∈ G, the protocol zkSVC3,𝑛 in
Figure 5 is a complete, HVZK argument having WEE for the relation (7).

Proof: Appendix D.
Overview: 1.2.4.

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 // (7)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)
V’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute X = P + 𝛿1Q + 𝛿2R
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�), or run any other complete, HVZK, and WEE
protocol for the relation (3)

Figure 5: Zero-knowledge argument for 3 vector commitments with shared weights

18

As a special case of the zkSVC3,𝑛 protocol in Figure 5, we define the zkSVC2,n protocol in Figure 6 for R = 0𝑛,
requiring for it that all elements of Q be non-zero.

zkSVC2,𝑛 (P,Q, 𝐻, 𝑃, 𝑄; a, 𝛼, 𝛽)

zkSVC2,𝑛 (P,Q, 𝐻, 𝑍, 𝐹; a, 𝛼, 𝛽) = zkSVC3,𝑛 (P,Q, 0𝑛, 𝐻, 𝑍, 𝐹, 0; a, 𝛼, 𝛽, 0)
// where P,Q ∈ G𝑛∗ , 𝐻 ∈ G∗ , 𝑍, 𝐹 ∈ G; a ∈ F𝑛

p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

Figure 6: Zero-knowledge argument for 2 vector commitments with shared weights

3 LINKABLE RING SIGNATURE
In this chapter we prove the Lin2-Choice lemma, which introduces 1-out-of-many proof of membership

zkLin2Choice𝑛, and create a version of linkable ring signature for one actual signer, calling it EFLRS1.

3.1 LIN2-CHOICE LEMMA
Theorem 5 (Lin2-Choice lemma):
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for two vectors of non-zero elements P,Q ∈ G𝑛∗, for a non-zero element
𝐻 ∈ G∗ such that all elements of the set P ∪ Q ∪ {𝐻} are orthogonal to each other, for an element 𝑍 ∈ G, the
protocol zkLin2Choice𝑛 in Figure 7 is a complete, HVZK argument having WEE for the relation (12).

Proof: Appendix E.
Overview: Section 1.2.5.

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G ;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}

// (12)

// P,Q, 𝐻 in R satisfy ort(P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)
V’s input : (P,Q, 𝐻, 𝑍)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻

P → V : 𝐹

V : c←$ F𝑛∗p̄

V → P : c

P andV : compute Q̂ = c ◦Q

P : takes scalar 𝑐𝑠 at index 𝑠 in c, that is, lets 𝑐𝑠 ← c[𝑠] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽 ,

and lets a =

{
𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in one-hot a (or, if 𝑝 = 0, then a = 0𝑛)
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 − 1], 𝑖 ≠ 𝑠

P → V : 𝑟

P andV : let �̂� ← 𝑟𝐹

and run zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, �̂�; a, 𝛼, 𝛽)

Figure 7: Zero-knowledge argument for one element choice relation

19

3.2 ADDITIONAL DEFINITIONS
To create the signature, we extend the common information in Figure 1 with the information in Figure 8. It is

needed to ensure prover and verifier have identical definitions of hash Hscalar and hash to group Hpoint functions,
as well as a common set of orthogonal generators G.

The function Hscalar models the random oracle. Hpoint is used to generate a brand new element orthogonal to
a set of existing elements. The predefined set G is used to reduce the signature verification complexity.

Additional common information

• Maximum number of elements in a ring n̄
• Definition of an ideal hash finction Hscalar : {0, 1}★→ F∗p̄

• Definition of an ideal hash finction Hpoint : {0, 1}★→ G∗

• A vector of genearators G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺 n̄−1} ∈ Gn̄∗

such that for any set H of Hpoint images on different pre-images there holds ort(H ∪ {𝐺} ∪G)

Figure 8: Additional information available to each party

All public keys of signatures can be known to all participants, and there are no additional restrictions on them.
That is, in fact, we do not impose any rules on public keys, which is reflected in Figure 9.

Public keys

• There is an unlimited amount of public keys generated in the system.
• Each public key is considered visible to all parties, although this is not required.
• Each public key 𝑃 is assumed to have the following relation to its private key 𝑥

𝑃 = 𝑥𝐺 ,

although this is not required, i.e. there can exist public keys without any known 𝑥 in this relation.
There can exist adversarial public keys generated with purpose of breaking the signatures.

Figure 9: Public keys seen to all parties

3.3 SIGNATURE EFLRS1
Theorem 6:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements P ∈ G𝑛∗ which is considered as a ring of
public keys, the protocol EFLRS1 in Figure 10 is a linkable ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. and non-frameability w.r.t. chosen public key attackers.

Proof: Appendix F.
Overview: Section 1.2.6.

20

EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑥 ∈ F∗p̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : lets 𝑃𝑠 ← P[𝑠] ,
assert 𝑥 ≠ 0

lets 𝑝 ← 𝑥−1

lets 𝐼 ← 𝑝Hpoint (𝑃𝑠)

P → V : 𝐼

V : 𝜖, 𝜁 ←$ F∗p̄

V → P : 𝜖, 𝜁

P andV : assert all elements in P are non-zero and different

let U← {Hpoint (P[𝑖])}𝑛−1
𝑖=0 ,

𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, 𝑍, 𝐼) holds

compute P̂ = P + 𝜁U
𝑍 = 𝐺 + 𝜁 𝐼 ,

and run zkLin2Choice𝑛 (P̂,G[:𝑛] , 𝐻, 𝑍; 𝑠, 𝑝, 0)

Figure 10: EFLRS1 signing and verification

In the signature schemes we always imply presence of one more procedure, Link, although we do not specify
it explicitly. It is constructed trivially, as a comparison of key images 𝐼, just as in [7, 4, 11].

3.4 SIZE AND VERIFICATION COMPLEXITY
During execution of the EFLRS1.SignAndVerify1,𝑛 protocol a series of nested sub-protocols, up to the call

of zk2ElemComm, is executed as shown in the top box in Figure 11. As a result, assuming that verifier postpones
all calculations on its side until the end of the message exchange with prover, the verifier has only to check one
expanded equality shown in Figure 11.

SignAndVerify1,𝑛 ↩→ zkLin2Choice𝑛 ↩→ zkSVC2,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗) returns j-th bit of binary representation of i

𝑐
©­«𝐺 + 𝜁 𝐼 + 𝛿1𝑟𝐹 +

log2 (𝑛)−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗)

ª®¬ + 𝜂𝐻 − 𝑇 + 𝜏
𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗)−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 11: Unfolded equality for EFLRS1, verifier checks it

Table 1 shows the size and verification complexity of a batch of 𝑙 EFLRS1 signatures that are created over a
common ring of 𝑛 public keys. We consider 𝑙 signatures in order to compare the size and complexity against a
threshold variant later. To get the size and verification complexity of single signature simply let 𝑙 = 1.

To verify the batch, verifier combines 𝑙 instances of the equality in Figure 11 using random weighting. As in
[2, 3, 11], the verifier computes all the scalar weights which is considered negligibly time-consuming, and then
performs single multi-exponentiation, resulting complexity is shown in Table 1.

Table 1: EFLRS1 signature size and verification complexity

Size Verification complexity
EFLRS1 𝑙

(
2 log2 (𝑛) + 6

)
mexp

(
3𝑛 + 2𝑙 log2 (𝑛) + 3𝑙 + 2

)
+ (𝑛 + 1)Hpt

21

4 LINKABLE THRESHOLD RING SIGNATURE

To create a threshold variant of the signature we will define an auxiliary protocol zkMVC𝑙,𝑛 that proves the same
as 𝑙 instances of zkVC𝑛 do. Then, by running 𝑙 instances of zkLin2Choice𝑛 in parallel and substituting a zkMVC𝑙,𝑛
call for 𝑙 nested calls of zkVC𝑛 within them, we will get a many-out-of-many proof of membership, from which we
will create the linkable threshold ring signature called EFLRSL.

4.1 MULTIPLE VECTOR COMMITMENTS

Theorem 7:
For 𝑛, 𝑙 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements X ∈ G𝑛∗, for a non-zero element 𝐻 ∈ G∗
such that all elements in X ∪ {𝐻} are orthogonal to each other, for a vector of elements Y ∈ G𝑙 , the protocol
zkMVC𝑙,𝑛 in Figure 12 is a complete, HVZK argument having WEE for the relation (17).

Proof: Appendix G.
Overview: Section 1.2.7.

zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙 ; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } // (17)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝐻,Y; 𝔞,𝜶)
V’s input : (X, 𝐻,Y)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝝃 ←$ F𝑙∗p̄

V → P : 𝝃

P : computes a⊺ = 𝝃⊺ · 𝔞
𝛼 = ⟨𝝃,𝜶⟩

P andV : compute 𝑌 = ⟨𝝃,Y⟩
and run zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Figure 12: Zero-knowledge argument for multiple vector commitments

4.2 MANY-OUT-OF-MANY PROOF

Theorem 8:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for two vectors of non-zero elements P,Q ∈ G𝑛∗, for a non-zero element
𝐻 ∈ G∗ such that all elements of the set P∪Q∪ {𝐻} are orthogonal to each other, for a vector of elements Z ∈ G𝑙 ,
the protocol zkLin2mChoice𝑛,𝑙 in Figure 13 is a complete, HVZK argument having WEE for the relation (18).

Proof: Appendix H.
Overview: Section 1.2.8.

22

zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
// (18)

// P,Q, 𝐻 in R satisfy ort(P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : allocate X̂ ∈ G𝑛, Y ∈ G𝑙 , 𝔞 ∈ F𝑙×𝑛p̄ , �̂� ∈ F𝑙p̄ ,

and run the following block, depicted as foreach, in 𝑙 parallel threads (with shared challenges),

using common X̂,Y, 𝔞, �̂�
foreach 𝑘 ∈ [0 . . . 𝑙 − 1] // execute in parallel

let (𝑍𝑘 , 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) ← (Z[𝑘] , s[𝑘] , p[𝑘] ,𝜶[𝑘]) ,
run zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍𝑘 ; 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) without calling nested zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�) in it,

instead assign X̂ = X // X is the same in all threads

Y[𝑘] = 𝑌
𝔞 [𝑘] = a
�̂�[𝑘] = �̂� .

endforeach
run zkMVC𝑙,𝑛 (X̂, 𝐻,Y; 𝔞, �̂�)

Figure 13: Zero-knowledge argument for multiple element choice relation

4.3 SIGNATURE EFLRSL

Theorem 9:
For 𝑛, 𝑙 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements P ∈ G𝑛∗ which is considered as a ring of
public keys, the protocol EFLRSL in Figure 14 is a linkable threshold ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. non-frameability w.r.t. chosen public key attackers.

Proof: Appendix J.
Overview: Section 1.2.9.

23

EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are non-zero and different

let U← {Hpoint (P[𝑖])}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘] ≠ 0

p[𝑘] = x−1
[𝑘]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘] , p[𝑘]) ,
I[𝑘] = 𝑝𝑘 U[𝑠𝑘] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are different // here V ensures there is no actual signer signing twice

𝜖, 𝜁 ←$ F∗p̄

V → P : 𝜖, 𝜁

P andV : let 𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, Z, I) holds

compute P̂ = P + 𝜁U ,
Z = {𝐺}𝑙 + 𝜁I

run zkLin2mChoice𝑛,𝑙 (P̂,G[:𝑛] , 𝐻,Z; s, p, {0}𝑙)

Figure 14: EFLRSL signing and verification

4.4 SIZE AND COMPLEXITY
An only equality that verifier has to check in order to verify authenticity of the EFLRSL signature is shown in

Figure 15. The signature size and verification complexity are provided in Table 2.

SignAndVerify𝑙,𝑛 ↩→ × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗) returns j-th bit of binary representation of i

𝑐
©­«
𝑙−1∑︁
𝑘=0

𝜉𝑘 (𝐺 + 𝜁 𝐼𝑘 + 𝛿1𝑟𝑘𝐹𝑘) +
log2 (𝑛)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗)

ª®¬ + 𝜂𝐻 − 𝑇+
+ 𝜏

𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗)−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 15: Unfolded equality for EFLRSL, verifier checks it

Table 2: EFLRSL signature size and verification complexity

Size Verification complexity
EFLRSL 2 log2 (𝑛) + 3𝑙 + 3 mexp

(
3𝑛 + 2 log2 (𝑛) + 2𝑙 + 3

)
+ (𝑛 + 1)Hpt

Comparing Table 2 and Table 1, we find that the treshold variant of the signature is asymptotically 𝑙 times more
compact. Also, the verification of the treshold variant is asymptotically slightly faster.

24

5 LINKABLE THRESHOLD RING SIGNATURE WITH HIDDEN AMOUNT
SUM PROOF

Now we are going to append a proof of the sum of hidden amounts to the EFLRSL signature described in
Section 4.3. We assume that the signature ring has the form (20), and, additionally, that for all hidden amounts
𝐴𝑖 in the ring there are some proofs of the decompositions (22) that are already verified. Both prover and verifier
know the summary hidden amount 𝐴sum, and we want the prover to provide to the verifier a proof of the equalities
(23), (24) along with the signature.

For this purpose, we need to extend the Lin2-Choice lemma (Theorem 5) protocol in Figure 7 with a part
that will be responsible for the hidden amounts. We will introduce such an extension in Figure 16, and in the
Simplified Lin2-2Choice lemma (Theorem 10) we will prove its properties as an one-out-of-many proof with an
additional element. Next, like with the transition from zkLin2Choice𝑛 to zkLin2mChoice𝑛,𝑙 , we will proceed to
the many-out-of-many proof in Figure 18.

In the Lin2-2Choice lemma (Theorem 12) we will prove properties of the protocol in Figure 18 as a many-out-
of-many proof with additional elements. Based on this protocol we will construct the scheme EFLRSLSM aka
Multratug as a linkable threshold ring signature combined with a proof of the sum of hidden amounts.

5.1 SIMPLIFIED LIN2-2CHOICE LEMMA

Theorem 10:
For 𝑛, 𝑚 ∈ N∗ such that (𝑛 + 𝑚) is a power of 2, for four vectors of non-zero elements P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗,
for a non-zero element 𝐻 ∈ G∗ such that all elements in P∪Q∪V∪W∪ {𝐻} are orthogonal to each other, for an
element 𝑍 ∈ G, the protocol zkLin22sChoice𝑛,𝑚 in Figure 16 is a complete, HVZK argument having WEE for
the relation (29).

Proof: Appendix K.
Overview: Section 1.2.11.

25

zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1];
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}

// (29)

// P,Q,V,W, 𝐻 in R satisfy ort(P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)
V’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽, 𝛾 ←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻
𝐸 = 𝑣𝑊𝑡 + 𝛾𝐻

P → V : 𝐹, 𝐸

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : takes scalars 𝑐𝑠 , 𝑐𝑛+𝑡 at indices 𝑠 and 𝑛 + 𝑡 in c, that is, lets 𝑐𝑠 ← c[𝑠] , 𝑐𝑛+𝑡 ← c[𝑛+𝑡] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽

�̂� = 𝑐𝑛+𝑡𝛾 ,

and lets a =


𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in a
𝑎𝑛+𝑡 = 𝑣 // thus, a contains at most two hot entries
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 + 𝑚 − 1], 𝑖 ≠ 𝑠 ∧ 𝑖 ≠ (𝑛 + 𝑡)

P → V : 𝑟

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let �̂� ← 𝑟𝐹

�̂� ← c[𝑛+𝑡]𝐸 ,

and run zkSVC3,𝑛 (P̂, Q̂, R̂, 𝐻, 𝑍, �̂�, �̂� ; a, 𝛼, 𝛽, �̂�)

Figure 16: Simplified Lin2-2Choice lemma protocol, zero-knowledge argument for two-element choice relation

5.2 MULTIPLE SIMMETRIC VECTOR COMMITMENTS

To advance from the one-out-of-many proof to a many-out-of-many one, in Figure 17 we define a helper
protocol.

Theorem 11:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of non-zero elements P ∈ G𝑛∗, and for a pair of vectors of
elements Q,R ∈ G𝑛 such that (Q + R) ∈ G𝑛∗, for a non-zero element 𝐻 ∈ G∗ such that all non-zero elements in
the set P ∪ Q ∪ R ∪ {𝐻} are orthogonal to each other, for three vectors of elements Z,F,E ∈ G𝑙 , the protocol
zkMSVC𝑙,3,𝑛 in Figure 17 is a complete, HVZK argument having WEE for the relation (38).

Proof: Appendix L.
Overview: Section 1.2.12.

26

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙 ;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 // (38)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)
V’s input : (P,Q,R, 𝐻,Z,F,E)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝜶 + 𝛿1𝜷 + 𝛿2𝜸

P andV : compute X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E

and run zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞, �̂�)

Figure 17: Zero-knowledge argument for multiple 3-vector commitments with shared weights

5.3 LIN2-2CHOICE LEMMA. MULTIPLE TWO-ELEMENT CHOICES

Theorem 12 (Lin2-2Choice lemma):
For 𝑛, 𝑚, 𝑙 ∈ N∗ such that (𝑛 + 𝑚) is a power of 2 and 𝑙 ⩽ 𝑚, for four vectors of non-zero elements P,Q ∈
G𝑛∗, V,W ∈ G𝑚∗, for a non-zero element 𝐻 ∈ G∗ such that all elements in P ∪Q ∪V ∪W ∪ {𝐻} are orthogonal
to each other, for a vector of elements Z ∈ G𝑙 , the protocol zkLin22Choice𝑙,𝑛,𝑚 in Figure 18 is a complete, HVZK
argument having WEE for the relation (39)

Proof: Appendix M.
Overview: Section 1.2.13.

27

zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
// (39)

// P,Q,V,W, 𝐻 in R satisfy ort(P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q,V,W, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : q, 𝜷, 𝜸 ←$ F𝑙∗p̄ , allocates F,E ∈ G𝑙∗ ,
initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]

let (𝑠𝑘 , 𝑝𝑘 , 𝑣𝑘 , 𝛽𝑘 , 𝛾𝑘) ← (s[𝑘] , p[𝑘] , v[𝑘] , 𝜷[𝑘] , 𝜸[𝑘]) ,
if 𝑝𝑘 = 0 then q[𝑘] = 0 endif ,

let 𝑞𝑘 ← q[𝑘] ,
F[𝑘] = 𝑞𝑘𝑄𝑠𝑘 + 𝛽𝑘𝐻 // F is filled in, note random 𝑞𝑘 ’s are nullified when 𝑝𝑘 = 0

E[𝑘] = 𝑣𝑘𝑊𝑘 + 𝛾𝑘𝐻 // E is filled in

endforeach

P → V : F,E

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : allocates �̂�, �̂� ∈ F𝑙∗p̄ , 𝔞 ∈ F
𝑙×(𝑛+𝑚)
p̄ , samples r←$ F𝑙∗p̄ ,

and initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
let 𝑐𝑠𝑘 ← c[𝑠𝑘]

if 𝑝𝑘 ≠ 0 then r[𝑘] = 𝑐𝑠𝑘 𝑝𝑘/𝑞𝑘 endif // r is filled in here

endforeach ,

continues initialization �̂� = r ◦ 𝜷
�̂� = c[𝑛:(𝑛+𝑙)] ◦ 𝜸 ,

lets 𝔞 = {𝑎𝑘∈[0...𝑙−1],𝑖∈[0...𝑛+𝑚−1] } =

𝑎𝑘,𝑠𝑘 = 𝑝𝑘 // that is, 𝑝𝑘 is at 𝑠𝑘 ’th position in 𝑘’th row
𝑎𝑘,𝑛+𝑘 = 𝑣𝑘 // that is, 𝑣𝑘 is at (𝑛 + 𝑘)’th position in 𝑘’th row
𝑎𝑘,𝑖 = 0 if 𝑖 ≠ 𝑠𝑘 ∧ 𝑖 ≠ (𝑛 + 𝑘) // zeros for all the rest

P → V : r

V : 𝜃 ←$ F∗p̄

V → P : 𝜃

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let F̂← r ◦ F
Ê← c[𝑛:(𝑛+𝑙)] ◦ E ,

and run zkMSVC𝑙,3, (𝑛+𝑚) (P̂, Q̂, R̂, 𝐻,Z, F̂, Ê; 𝔞,𝜶, �̂�, �̂�)

Figure 18: Lin2-2Choice lemma protocol, zero-knowledge argument for multiple two-element choices relation

5.4 ADDITIONAL DEFINITIONS

Prior to constructing the signature with hidden amount sum proof, in Figure 19 we define how the hidden
amounts are represented in the system.

28

Hidden amounts

• Each public key 𝑃 is accompanied by a hidden amount 𝐴 in the system. Each ring has the form (20).
• Each hidden amount 𝐴 is assumed having the decomposition (22) by the predefined generators 𝐵, 𝐷, i.e.

𝐴 = 𝑏𝐵 + 𝑑𝐷 ,
where 𝑏 is the amount and 𝑑 is the amount’s blinding factor. It is assumed that for each hidden amount
𝐴 in the sysyem there is a valid proof of the decomposition (22) for it.

Figure 19: Hidden amounts seen to all parties

We also need to supplement the common information available to all parties according to Figure 1 and Figure 8
with an extended set of predefined orthogonal generators, and to update the function Hpoint one more time, as in
Figure 20, so that it will respect orthogonality of the additional generators.

Updated common information

• A couple of genearators 𝐵, 𝐷 ∈ G∗ and the enlarged vector G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺2n̄−1} ∈ G2n̄∗

such that for any set H of Hpoint images on different pre-images there holds ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G)
•Hpoint : {0, 1}★→ G∗ is updated so that the above ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G) holds.

Figure 20: Updated common information available to each party

5.5 SIGNATURE EFLRSLSM (MULTRATUG) WITH THE SUM PROOF
Theorem 13:
For 𝑛, 𝑙 ∈ N∗ such that (𝑛 + 𝑙) is a power of 2 and 𝑙 ⩽ 𝑛, for a vector of non-zero elements P ∈ G𝑛∗ together with a
vector of elements A ∈ G𝑛 which are considered a ring of (public key, hidden amount) pairs, for an element 𝐴sum,
for a non-zero element 𝐷 which is considered as a blinding generator for hidden amounts, the protocol in Figure 21
is a linkable threshold ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. non-frameability w.r.t. chosen public key attackers,

9. it is a proof of that 𝐴sum is a sum of 𝐴’s of the actual signing keys, to the accuracy of the blinding component
proportional to 𝐷.

Proof: Appendix O.
Overview: Section 1.2.14.

Note, Theorem 13 doesn’t impose any requirement on elements of the vector A and on 𝐴sum, i.e., there is no
assumption like (22) about their decompositions. At the same time, it’s easy to see that having the property 9)
proven the hidden amounts sum (24) proof immediately follows from a proof of the decomposition (22) for all
𝐴𝑘 ∈ A. Therefore, if along with Multratug a proof of the decomposition (22) for all 𝐴𝑘’s is obtained by any other
means, then the hidden amounts sum (24) proof is thus obtained.

29

EFLRSLSM.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ , 𝑑
𝚫sum ∈ Fp̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are non-zero and different

let U← {Hpoint (P[𝑖])}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘] ≠ 0

p[𝑘] = x−1
[𝑘]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘] , p[𝑘]) ,
I[𝑘] = 𝑝𝑘 U[𝑠𝑘] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are non-zero and different // V ensures there is no zero 𝐼 and no signer signing twice

𝜖 ←$ F∗p̄

V → P : 𝜖

P andV : let 𝐻 ← Hpoint (𝜖) // thus, 𝐻 is orthogonal to all known so far elements, i.e. ort(𝐻, 𝐺, P,A,U, I, 𝐴sum , 𝐷)

P : 𝝁, 𝝊 ←$ F𝑙∗p̄ , allocates Atmp ∈ G𝑙∗, 𝜶 ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
lets 𝜇𝑘 ← 𝝁[𝑘] ,

Atmp
[𝑘] = A[𝑠𝑘] + 𝜇𝑘𝐻 // Atmp is filled, amounts get double blinded (with 𝐷 and with 𝐻)

𝜶[𝑘] = 𝑝𝑘 𝜇𝑘 // 𝜶 is initialized here, it contains reduced Atmp’s second blinding factors

endforeach

computes total related to 𝐻 blinding factor 𝛼 =

𝑙−1∑︁
𝑘=0

𝜇𝑘

P → V : Atmp

P andV : let Û← {Hpoint (𝐻,Atmp
[𝑘])}𝑙−1

𝑘=0

P : lets J← {𝑝𝑘Û[𝑘] + 𝜐𝑘𝐻}𝑙−1
𝑘=0 // vector J is initialized here, it contains ‘pseudo key images’ built using Û

P → V : J

P andV : let 𝐾 ← Hpoint (𝐻,Atmp, J) // thus, ort(𝐾, 𝐻, 𝐺, P,A,U, I, 𝐴sum ,Atmp , Û, J) holds

V : 𝜁, 𝜔, 𝜒←$ F∗p̄

V → P : 𝜁, 𝜔, 𝜒

P andV : allocate X ∈ G𝑛∗, V,Z ∈ G𝑙∗, 𝑆 ∈ G ,

assign X = P − {𝐾}𝑛 + 𝜁U − 𝜔A , V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û , Z = {𝐺}𝑙 + 𝜁I + 𝜒J

assign 𝑆 = 𝐴sum −
𝑙−1∑︁
𝑘=0

Atmp
[𝑘]

run zk2ElemComm(𝐷, 𝐻, 𝑆; 𝑑𝚫sum,−𝛼)
run zkLin22Choice𝑙,𝑛,𝑙 (X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙)] , 𝐻,Z; s, p, p, −𝜔𝜶 + 𝜒𝝊)

Figure 21: Multratug signing and verification

30

5.6 SIZE AND COMPLEXITY
To verify the Multratug signatureV needs only to check the equalities (*) and (**) in Figure 22. Combining the

equalities (*) and (**) with random weighting and using multi-exponetiation techniqueV performs the verifiacation
in the time shown in Table 3, where signature size is also shown.

SignAndVerify𝑙,𝑛,𝑢 ↩→ zkLin22Choice𝑙,𝑛,𝑙 ↩→ zkMSVC𝑙,3, (𝑛+𝑙) ↩→ zkMVC𝑙, (𝑛+𝑙) ↩→ zkVC(𝑛+𝑙) ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗) returns j-th bit of binary representation of i

𝑐
©­«
𝑙−1∑︁
𝑘=0

𝜉𝑘 (𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 + 𝛿1𝑟𝑘𝐹𝑘 + 𝛿2𝑐 (𝑛+𝑘)𝐸𝑘) +
log2 (𝑛+𝑙)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗)

ª®¬ + 𝜂𝐻 − 𝑇 +
+ 𝜏 ©­«

𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗)−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 − 𝜔𝐴𝑖 + 𝐾 + 𝛿1𝑐𝑖𝐺𝑖) + (*)

+
𝑛+𝑙−1∑︁
𝑖=𝑛

©­«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗)−1
𝑗

ª®¬ (𝜔𝐴tmp
(𝑖−𝑛) + 𝜒�̂�(𝑖−𝑛) − 𝐾 + 𝛿2𝑐𝑖𝐺𝑖)

ª®¬ = 0

and
𝜏𝐷 + 𝜂𝐻 + 𝑐𝑆 − 𝑇 = 0 (**)

Figure 22: Multratug unfolded equality, verifier checks it

Table 3: Multratug signature size and verification complexity

Size Verification complexity
Multratug 2 log2 (𝑛 + 𝑙) + 6𝑙 + 6 mexp(4𝑛 + 2 log2 (𝑛 + 𝑙) + 7𝑙 + 7) + (𝑛 + 𝑙 + 2)Hpt

5.7 IMPROVEMENTS
5.7.1 USING RING OF SIZE N·L

It is possible to slightly reduce the size of the Multratug scheme by not using the Lin2-2Choice lemma and
instead repeating the ring 𝑙 times, each time for its amount 𝐴tmp

𝑘
. In this case, after appropriate optimizations, the

signature size would be
2 log2 (𝑛𝑙) + 5𝑙 + O(1).

Nevertheless, we still prefer the version with the Lin2-2Choice lemma, because it is impossible to just repeat
the ring 𝑙 times, even using for each repetition its own independent generator, e.g. of the form Hpoint (𝐴tmp

𝑘
). It

would be necessary to add more generators to keep all the ring elements linearly independent of each other, which
will correspondingly increase the verification time.

5.7.2 SAVING ONE ITEM IN ALL LOG-SIZE SCHEMES

It is possible to reduce by 1 the sizes of Multratug, EFLRSL, and other schemes that use the protocol zkVC𝑛 from
Figure 3. This saving is achieved in the following way. We modify the protocol zkVC𝑛 so that for 𝑛 = 2 it no longer
performs the reduction emitting elements 𝐿 and 𝑅, instead it immediately produces a proof that the commitment 𝑌
is a linear combination of three orthogonal elements, namely, 𝑋0, 𝑋1, 𝐻, with known to P coefficients.

A proof that a commitment is a linear combination of three orthogonal generators can be constructed in exactly
the same way as the proof zk2ElemComm in Figure 2 for two orthogonal generators. It would take one element inG
as the first message, and three scalars in Fp̄ as the reply. In sum, its size would be 4, instead of 3 for zk2ElemComm.
Thus, the size of the zkVC𝑛 proof for 𝑛 = 2 would be 4, instead of 2 + 3 = 5.

We denote such an optimized zkVC𝑛 as zkVCopt1
𝑛 . Theorem 2 remains valid for it, because its proof is

symmetrically transferred to zkVCopt1
𝑛 , just the transition to a custom Schnorr-like protocol occurs at 𝑛 = 2 instead

of 𝑛 = 1. The zkVCopt1
𝑛 protocol size is 2 log2 (𝑛) + 2.

31

5.7.3 SAVING ONE MORE ITEM IN ALL LOG-SIZE SCHEMES
The idea of this optimization is that, as we may have already noticed, for any 𝑛 ⩾ 1 it is always possible to

construct a custom Schnorr-like protocol for 𝑛 orthogonal generators, which is HVZK and has WEE, and is of size
𝑛 + 1. In this protocol, 𝑛 scalars are transmitted as a reply, by which the orthogonal generators are then multiplied.
However, it is not necessary to transmit these 𝑛 scalars, only a proof of their knowledge would suffice. Moreover,
this proof does not have to be HVZK, an argument having WEE only will suffice.

Speaking formally, for the first, we take the following vector commitment relation, which is actually the relation
(5) with the items renamed and, also, is the relation (3) with the blinding generator 𝐻 moved to the vector X.

R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } , (50)

and define the following Schnorr-like protocol for it.

zkNElemComm𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (50)

// 𝑋 in R satisfies ort(𝑋) .

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝝓←$ F𝑛∗p̄ and computes 𝑇 = ⟨𝝓,X⟩

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x

P → V : 𝝉

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇 − 𝑐𝑌 ?
= ⟨𝝉,X⟩

Figure 23: Zero-knowledge argument for n element commitment relation

Properties of the protocol zkNElemComm𝑛 in Figure 23 are specified in the next theorem. Note that, for 𝑛 = 2,
zkNElemComm2 is equivalent to zk2ElemComm in Figure 2.

Theorem 14:
For 𝑛 ∈ N∗ non-zero elements 𝑋 ∈ G𝑛∗ such that they are orthogonal to each other, for an element 𝑌 ∈ G, the
protocol zkNElemComm𝑛 in Figure 23 is a complete, HVZK argument having WEE for the relation (50).

Proof: The design of the protocol in Figure 23 is clearly Schnorr-like. Hence, its completeness, HVZK, and WEE
can be proved in the standard way, so we do not include a detailed proof here, clarifications are the same as for
zk2ElemComm in Appendix A.

For the second, in Figure 24 we define a log-size vector commitment argument argVC𝑛 for the same relation (50).
Note, we do use the blinding generator 𝐻 neither in zkNElemComm𝑛 nor in argVC𝑛. Also, note that zkNElemComm𝑛
is HVZK, whereas argVC𝑛 is not. Its properties are specified in the following theorem.

Theorem 15:
For 𝑛 ∈ N∗, 𝑛 is a power of 2, non-zero elements 𝑋 ∈ G𝑛∗ such that they are orthogonal to each other, for an
element 𝑌 ∈ G, the protocol argVC𝑛 in Figure 24 is a complete argument having WEE for the relation (50).

Proof: For 𝑛 > 4, the protocol in Figure 24 comprises the reductions from the inner product argument [2] with
b = {0}𝑛 and, hence, it is complete and has WEE for these reductions. For 𝑛 ⩽ 4, P simply opens the witness to
V and the latter checks the relation. Thus, for 𝑛 ⩾ 1, the protocol is complete and has WEE.

32

argVC𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (50)

// X in R satisfies ort(X) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 4 then

P : lets �̂�← 𝑛/2 and computes 𝐿 =
〈
x[:�̂�] ,X[�̂�:]

〉
𝑅 =

〈
x[�̂�:] ,X[:�̂�]

〉
P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes x̂ = 𝑒x[:�̂�] + 𝑒−1x[�̂�:]

P andV : run argVC�̂� (X̂, 𝑌 ; x̂) // run recursively until n=4

else // n ⩽ 4

P → V : x

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑌
?
= ⟨x,X⟩

endif

Figure 24: Efficient argument for vector commitment

Third, we combine zkNElemComm𝑛 with argVC𝑛 into a single one, as follows.

zkVC
opt2
𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (3)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : let X̂← [X, 𝐻]

P : 𝝓←$ F
(𝑛+1)∗
p̄ , lets x̂← [x, 𝛼], and computes 𝑇 =

〈
𝝓, X̂

〉
P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x̂

P andV : run argVC𝑛+1 (X̂, 𝑇 − 𝑐𝑌 ; 𝝉)

Figure 25: Efficient zero-knowledge argument for vector commitment

33

Theorem 16:
For a non-zero element 𝐻 ∈ G∗, for 𝑛 ∈ N∗ non-zero elements 𝑋 ∈ G𝑛∗ such that 𝑛 + 1 is a power of 2 and all the
elements of X ∪ {𝐻} are orthogonal to each other, for an element 𝑌 ∈ G, the protocol zkVCopt2

𝑛 in Figure 25 is a
complete, HVZK argument having WEE for the relation (3).

Proof: Completeness is by design. The argVC𝑛+1 call in the last step of zkVCopt2
𝑛 has WEE by Theorem 15. Having

extracted the witness 𝝉 from it, the protocol turns out to be zkNElemComm𝑛+1, which has WEE by Theorem 14.
Thus, zkVCopt2

𝑛 has WEE. Even with the opened 𝝉 the protocol remains HVZK by Theorem 14, so partially hiding
it inside argVC𝑛+1 doesn’t make zkVCopt2

𝑛 less zero-knowledge. Thus, zkVCopt2
𝑛 is HVZK.

Note that the magic of packing the scalars 𝝉 into the vector commitment argument is similar to the one in the
work of Tsz Hon Yuen et al. [15], however, they are different. We pack the reply that looks random, whereas in
[15] the true randomness sampled by prover is packed. In connection with this, providing the argument for these
scalars is sufficient in our case. Whereas the case as in [15], in our view, may require an additional proof that such
scalars are indeed random, otherwise prover may try to cheat with them, more on this in Section 6.2.

As a result, zkVCopt2
𝑛 size is 2 log2 (𝑛 + 1) + 1. After substituting it for zkVC𝑛, the new sizes of the Multratug

and EFLRSL schemes are shown in Table 4. The scheme verification times do not change much, so we do not
recalculate them. One more change is that from now we require (𝑛+ 𝑙+1) and (𝑛+1) to be powers of 2, respectively.

Table 4: Optimized characteristics of the Multratug and EFLRSL schemes

Size Verification complexity
Multratug 2 log2 (𝑛 + 𝑙 + 1) + 6𝑙 + 4 mexp(4𝑛 + 7𝑙 + . . .) + (𝑛 + 𝑙 + 2)Hpt
EFLRSL 2 log2 (𝑛 + 1) + 3𝑙 + 1 mexp (3𝑛 + 2𝑙 + . . .) + (𝑛 + 1)Hpt

. . . Insignificant summands are omitted.

5.8 BATCH VERIFICATION AND COMBINATION WITH OTHER PROOFS
Verification of a batch of Multratug signatures can be accomplished with checking just one equality, by

combining the equalities (*) and (**) in Figure 22 of all the signatures using random weighting. In this case, the
asymptotic verification complexity by ring size 𝑛 under the multi-exponent decreases from 4𝑛 to 3𝑛 due to the fact,
that all instances of the Multratug signature use the same vector of predefined generators G.

Multratug is rooted in a single vector commitment argument and doesn’t depend on the realization of the
argument. Hence, Multratug can be combined with any other argument that provides a proof of vector commitment,
e.g. with the inner product argument. For instance, Multratug can be combined with the single or aggregate range
proofs from [3], and they will share the component

log2 (𝑛+𝑙+𝑛rangeproof)−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒−2

𝑗 𝑅 𝑗),

where 𝑛rangeproof is equal to, in accordance with [3], bitsize of the range times number of the proofs aggregated.

5.9 SIGNATURE IN BLOCKCHAIN
Suppose, the Multratug signature is used to sign a transactions in an UTXO blockchain like [8, 13], where,

suppose, public keys, hidden amounts, hash functions, and predefined generators follow the rules in Figures 1, 8,
19, 20.

For every transaction, its sender P does the following
◦ picks from the ledger 𝑛 pairs of the form (𝑃, 𝐴), which become transaction inputs, and makes a ring (20) of

them,
◦ generates and places into the transaction 𝑚 pairs of the form (𝑃, 𝐴), which become the transaction outputs,

for convenience considering the 𝑚 hidden amounts 𝐴 of these outputs as vector Aout,
◦ lets 𝐴sum =

∑𝑚−1
𝑘=0 𝐴out

𝑘
,

◦ signs the transaction with the Multratug signature, knowing the vector s of actual signing indices at which it
knows private keys,
◦ proves ranges for all elements in Aout, for example with the aggregate range proof from [3], which is easily

combined with Multratug, as pointed out in Section 5.8,

34

◦ proves that each 𝐴out
𝑘
∈ Aout has the decomposition (22) with known to P coefficients. By the way, if a range

proof protocol from [2, 3] is used for the elements of Aout, then proofs of 𝐴out
𝑘

’s decompositions (22) are
included by that.

Thus, the transaction contains proofs that each output hidden amount 𝐴out
𝑘

has the form (22). Also, the transaction
contains Multratug, which proves that

∑𝑚−1
𝑘=0 𝐴out

𝑘
is equal to the sum

∑𝑙−1
𝑘=0 𝐴𝑠𝑘 of all hidden amounts related to the

signing indices s to the accuracy of 𝐷. Taking into account that all 𝐴𝑠𝑘 ’s in the ring are already proven having the
form (22), from these proofs follows that the sum of amounts related to the actual signing keys is equal to the sum
of the output amounts

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 =

𝑚−1∑︁
𝑘=0

𝑏out
𝑘 .

Finally, the same Multratug proves that P knows private keys of signing public keys corresponding to the
signing indices s, and provides the key image vector I which excludes reuse of these public keys as signing keys in
other transactions.

6 COMPARISON WITH EXISTING SCHEMES
At present, quite a large number of log-size ring signature schemes and also signatures with balance proofs

for the blockchains have already been proposed. Now we will compare our optimized Multratug and EFLRSL
schemes (Table 4) with the best performing ones, namely with Omniring [6], RingCT3.0 [14], Triptych [9], and
DualRing-EC [15], taking linear-size CLSAG [4] as the base line. Of course, we compare only with DDH-based,
setup-free schemes without bilinear pairings.

We distinguish two gradations of scheme anonymity inherently related to the key image (linking tag) forms used.
More on this in Section 6.1. In general, if a scheme has a key image or another public element of the form 𝑥−1𝑈,
then it has lower anonymity unless there is a restriction applied on the keys. The key image forms 𝑥−1Hpoint (𝑃)
and 𝑥Hpoint (𝑃) do not require any restrictions, as they reveal no information about the keys. However, it is still
required that the scheme has no other elements of the form 𝑥−1𝑈.

In Table 5 we compare the schemes with the balance proofs. We denote as Hsc the time of taking a hash,
it is omitted when its multiplier is logarithmic or less, Hpt the time of taking a hash to curve, mexp the multi-
exponentition. The schemes with ‘Any keys=Yes’ receive arbitrary keys, those with ‘Any keys=No’ remain secure
only with a special key format, e.g. as in [13]. So of course, the schemes with key image forms 𝑥−1Hpoint (𝑃)
and 𝑥Hpoint (𝑃) have an additional summand of roughly 𝑛Hpt in their verification complexity formulas. We do
not know whether the Omniring version with the key image 𝑥Hpoint (𝑃) admits arbitrary keys, since this version is
presented only in connection with an integration to a CryptoNote [13] based system in the corresponding paper [6].

We exclude key images together with input/output accounts, which occupy the same space for all schemes.
Also, we do not include the output range proofs, assuming they are separated into distinct blocks, although by
Section 5.8 our scheme effectively integrates with them, as does the Omniring [6]. Batch verification time is
generally 25%. . . 50% less for all log-size schemes due to common generators merging, we do not show it.

According to Table 5, assuming ring size is large, say 𝑛 = 210, and the number of inputs is very limited, say,
𝑙 < 5 with a bias toward 𝑙 = 2 which is in line with [14, 6, 9], Multratug provides the shortest proof size for 𝑙 = 1.
For 𝑙 = 2 the proof size is almost equal to the one of Omniring. For bigger 𝑙 Omniring provides the shortest proof
size. It is to be noted that since Multratug’s actual decoy set grows as 𝑛 + 𝑙, whereas Omniring’s one grows as 𝑛 𝑙,
which can be seen from the expressions under the log2, the verification time of Multratug should therefore grow
noticeably slower than Omniring’s.

Table 5: Comparison of LRS schemes that simultaneously prove the balance

Size Verification complexity Key image Any keys
CLSAG* 𝑛 + 2 (𝑛 + 2)Hsc + 2𝑛mexp(3) + 𝑛Hpt 𝑥Hpoint (𝑃) Yes
Triptych* 3 log2 (𝑛) + 8 mexp(2𝑛 + . . .) 𝑥−1𝑈 No
RingCT3.0 2 log2 (𝑛 𝑙) + 𝑙 + 17 mexp(2 𝑛 𝑙 + . . .) +mexp(𝑙 + 1) + . . . 𝑥−1𝑈 No
Omniring 2 log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3) + 9 *** 𝑥−1𝑈 No
Omniring 2 log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3) + 9 *** 𝑥Hpoint (𝑃) Probably**

Multratug 2 log2 (𝑛 + 𝑙 + 1) + 5𝑙 + 4 mexp(4𝑛 + 7𝑙 + . . .) + (𝑛 + 𝑙 + 2)Hpt 𝑥−1Hpoint (𝑃) Yes

∗ Authors did not specify any optimized threshold version, assuming it takes up 𝑙 times the size.
∗∗ Authors provide security model only for the less secure key image form 𝑥−1𝑈.
∗∗∗ Authors did not specify formula, we assume the quantity is average in its class.
. . . Insignificant summands are omitted.

35

In Table 6 we compare the streamlined versions of the schemes, which are ring signatures with one actual
signer. So, we take our EFLRSL signature for 𝑙 = 1. We also include in the comparison the DualRing-EC [15]
signature, which is published as the shortest known so far. For this comparision, we don’t distinguish between the
simple ring signatures and the linkable ones. When both versions are available we take the simple one, in this case
the linkable version usually takes up one more element of space.

According to Table 6, for a large ring size, such that log2 (𝑛 + 1) ≈ log2 (𝑛) with indistinguishable difference,
both the DualRing-EC and EFLRSL signatures have the shortest size.

Table 6: Comparison of DL-based ring signatures

Size Verification complexity
CLSAG 𝑛 + 1 𝑛Hsc + 𝑛mexp(2)
RingCT3.0 2 log2 (𝑛) + 14 mexp(2𝑛 + . . .) + . . .

Omniring 2 log2 (𝑛 + 2) + 9 ***

EFLRSL* 2 log2 (𝑛 + 1) + 4 mexp(3𝑛 + . . .) + (𝑛 + 1)Hpt
DualRing-EC** 2 log2 (𝑛) + 4 mexp(𝑛 + . . .)

∗ Only linkable version of the ring signature is available.
∗∗ See comments in Section 6.2.
∗∗∗ Authors did not specify formula, we assume the quantity is average in its class.
. . . Insignificant summands are omitted.

6.1 LOW ANONYMITY OF U/X
Let’s determine anonymity implications of having in a public transcript an element of the form 𝑥−1𝑈 such that

𝑈 is a fixed generator and 𝑥 is a private key. It may not necessarily be a linking tag, such element may appear, for
instance, in a part of the scheme proving the balance.

Consider a rather simple and therefore very possible case of non-uniform distribution of 𝑥’s. Let the distribution
have a high probability for pairs of private keys (𝑥1, 𝑥2) such that 𝑥2 = 2𝑥1. Consequently, two signatures signed
with keys from the same pair will be linked together by checking whether the element 𝑥−1

2 𝑈 multiplyed by 2 is
equal to its counterpart.

The obvious objection to this case is that the system may by design forbid such tightly coupled keys. This is,
for example, the case in [13], where private keys behind the public keys in the rings have the form 𝑥 = 𝑏 + 𝑟 with
hidden 𝑏, and independently and uniformly distributed 𝑟 which may be seen to an adversy. Thus, the element in
question takes the form

(𝑏 + 𝑟)−1𝑈 , where 𝑟 is independently and uniformly distributed, and is known to an adversary.

According to [6, 14, 9], this form makes it impossible to break anonymity, even if the adversary is diligently
observing 𝑟 .

Takeaway from this is that if a scheme conatains an element of the form 𝑥−1𝑈, then it is not anonymous w.r.t.
chosen public key attackers. Also, it is impossible to prove with the usual methods, for example, its existential
unforgeability against adaptive chosen message / public key attackers, even if it possesses this property at all.

6.2 NOTES ABOUT DUALRING-EC
We thank Tsz Hon Yuen et al. for the work [15] that led us to the optimization idea in Section 5.7.3. At the

same time, we consider the following attack in application to the DualRing-EC signature.
Let a dishonest P want to sign using a ring of four public keys, none of which it knows a secret key for. Knowing

no secret keys for 𝑄, 𝑅, 𝐾 and knowing a secret key for 𝑃, it composes the ring {𝑄, 𝑅, 𝑃 + 𝐾, 𝑃 − 𝐾}. Then P
performs as though it signs honestly with 𝑃’s secret key using three-element ring {𝑄, 𝑅, 𝑃}. Instead of creating
the Sum Argument [15] for three challenges 𝑐0, 𝑐1, 𝑐2, which correspond to 𝑄, 𝑅, 𝑃, it splits 𝑐2 into two halves and
includes the Sum Argument for four challenges 𝑐0, 𝑐1, 𝑐2/2, 𝑐2/2 into the forgery.

After that, the honest V seems to accept this signature. We still do not understand how the DualRing-EC is
protected against this attack.

7 CONCLUSION
In this paper we have created a setup-free, pairings-free, DDH-based linkable threshold ring signature called

Multratug, which simultaneously provides a proof of the balance. We have shown Multratug can be used to sign

36

transactions with hidden amounts in the blockchains. Built on top of a log-size vector commitment argument, it
can be combined with other proofs, e.g. with the log-size range proofs. We have also created a lightweight version
of Multratug, called EFLRSL, which does not involve account balances at all and can be used as a mere linkable
ring signature with threshold or without it.

In comparison with the most recent schemes providing the same, it turns out that Multratug and EFLRSL
are on a par with the shortest of them, and for several rather typical cases outperform. The comparison data are
summarized in Tables 5, 6. Also, Multratug and EFLRSL employ a form of linking tag which ensures anonymity
and unforgeability even when an adversarially chosen distribution of keys is used.

While constructing our schemes we have designed two logarithmic proofs of membership, which may be of
an independent interest. Under DDH these proofs have the honest verifier zero-knowledge and computational
witness-extended emulation properties, that we prove in the Lin2-Choice and Lin2-2Choice lemmas. As both these
protocols are based on an arbitrary honest verifier zero-knowledge and having computational witness-extended
emulation vector commitment argument, they can be further optimized.

REFERENCES
[1] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. Dan Boneh’s publications

web page, http://crypto.stanford.edu/~dabo/pubs/abstracts/bookShoup.html. https:
//toc.cryptobook.us/book.pdf. 2020.

[2] Benedikt Bünz et al. “Bulletproofs: Short proofs for confidential transactions and more”. In: 2018 IEEE
Symposium on Security and Privacy (SP). IEEE. 2018, pp. 315–334.

[3] Heewon Chung et al. Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger. Cryptology
ePrint Archive, Report 2020/735. https://ia.cr/2020/735. 2020.

[4] Brandon Goodell, Sarang Noether, and RandomRun. Concise Linkable Ring Signatures and Forgery Against
Adversarial Keys. Cryptology ePrint Archive, Report 2019/654. https://ia.cr/2019/654. 2019.

[5] Jens Groth and Markulf Kohlweiss. “One-out-of-many proofs: Or how to leak a secret and spend a coin”. In:
Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2015, pp. 253–280.

[6] Russell WF Lai et al. “Omniring: Scaling private payments without trusted setup”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. 2019, pp. 31–48.

[7] Joseph K Liu, Victor K Wei, and Duncan S Wong. “Linkable Spontaneous Anonymous Group Signature for
Ad Hoc Groups (Extended Abstract)”. In: Proc. Ninth Australasian Conf. Information Security and Privacy
(ACISP). 2004.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.
2008.

[9] Sarang Noether and Brandon Goodell. Triptych: logarithmic-sized linkable ring signatures with applications.
Cryptology ePrint Archive, Report 2020/018. https://ia.cr/2020/018. 2020.

[10] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptology 4.3 (1991), pp. 161–
174.

[11] Anton A. Sokolov. Lin2-Xor Lemma and Log-size Linkable Threshold Ring Signature. Cryptology ePrint
Archive, Report 2020/688. https://ia.cr/2020/688. 2020.

[12] Patrick P. Tsang et al. Separable Linkable Threshold Ring Signatures. Cryptology ePrint Archive, Report
2004/267. https://ia.cr/2004/267. 2004.

[13] Nicolas Van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/whitepaper.pdf. 2013.
[14] Tsz Hon Yuen et al. RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security.

Tech. rep. Cryptology ePrint Archive, Report 2019/508, 2019. https://eprint.iacr.org/2019/508,
2019.

[15] Tsz Hon Yuen et al. DualRing: Generic Construction of Ring Signatures with Efficient Instantiations.
Cryptology ePrint Archive, Paper 2021/1213. https://eprint.iacr.org/2021/1213. 2021.

A PROOF OF 2-ELEMENT COMMITMENT
Proof: [Theorem 1] The completeness, HVZK, and WEE of the protocol in Figure 2 for the relation (2) can be
proved using the well-known methods. They are the methods the completeness, HVZK, and WEE of the Schnorr

37

http://crypto.stanford.edu/~dabo/pubs/abstracts/bookShoup.html
https://toc.cryptobook.us/book.pdf
https://toc.cryptobook.us/book.pdf
https://ia.cr/2020/735
https://ia.cr/2019/654
https://bitcoin.org/bitcoin.pdf
https://ia.cr/2020/018
https://ia.cr/2020/688
https://ia.cr/2004/267
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2019/508
https://eprint.iacr.org/2021/1213

identification scheme [10] and other Schnorr-like protocols in [1, 3, 11] are proved. We will not repeat descriptions
of these methods here to save space and refer the interested reader to the mentioned works, where they are presented
in full detail.

B PROOF OF VECTOR COMMITMENT
Proof: [Theorem 2] The zkVC𝑛 protocol in Figure 3 is a slightly modified subset version of the Bulletproofs
logarithmic inner product argument from [2]. There are three modifications to it, as follows

• The inner product argument described in [2] has no HVZK property, we append this property to it the same
way this is done in [3], namely by adding a blinding component to all transmitted elements. We do not
provide a proof of HVZK for our zkVC𝑛 protocol here; it is completely identical to the HVZK proof in [3].

• With the above modification, the zkVC𝑛 protocol in Figure 3 is a subset case, namely b = 0𝑛, of the inner
product argument from [2] for the relation (4). Taking into account the appended HVZK property and
renaming elements, our protocol proves the relation (3).

• For the case 𝑛 = 1 in zkVC𝑛 we use the custom zero-knowledge zk2ElemComm protocol, which is complete,
HVZK, and has WEE by Theorem 1.

Each of the three above modifications clearly does not override the completeness and WEE properties of the
Bulletproofs logarithmic inner product argument. Also, the first modification adds the HVZK property. Thus, our
protocol zkVC𝑛 in Figure 3 is a complete, HVZK argument having WEE for the relation (3).

C PROOF OF 3-TUPLE RANDOM WEIGHTING
Proof: [Theorem 3] Completeness and HVZK properties of the zk3ElemRW protocol in Figure 4 are straightforward,
because zk3ElemRW adds nothing to transcript of a protocol called in the last step of it, which in its turn is complete
and HVZK by the premise.

WEE property of the zk3ElemRW protocol is also easy to establish, we will not present a detailed proof here to
save space, providing only the following sketch.

First, note that due to orthogonality of𝐻 to all other generators, components proportional to𝐻 of all participating
elements can be considered separately and be omitted in the main consideration. For the 𝐻 components of the
protocol, it suffices only that the factor �̂� be calculated as �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾.

Second, witness extraction can be accomplished in a well-known way, e.g., as in the proof of the RandomWeighting-
WEE lemma in [11].

Third, to ascertain that the witness 𝑎 has only one possible value in this protocol, we can write 𝑍, 𝐹, 𝐸 as
𝑍 = 𝑧𝑃𝑃 + 𝑧𝑄𝑄 + 𝑧𝑅𝑅
𝐹 = 𝑓𝑃𝑃 + 𝑓𝑄𝑄 + 𝑓𝑅𝑅
𝐸 = 𝑒𝑃𝑃 + 𝑒𝑄𝑄 + 𝑒𝑅𝑅

, (51)

since it is clear that, when 𝐻 is already excluded from the consideration, the elements 𝑍, 𝐹, 𝐸 cannot have
components not proportional to 𝑃,𝑄, 𝑅 without breaking the DL assumption. Inserting the decomposition (51)
into the equality 𝑌 = 𝑎𝑋 , we obtain

rank
([

1 𝛿1 or 0, if 𝑄 = 0 𝛿2 or 0, if 𝑅 = 0
𝑧𝑃 + 𝛿1 𝑓𝑃 + 𝛿2𝑒𝑃 𝑧𝑄 + 𝛿1 𝑓𝑄 + 𝛿2𝑒𝑄 𝑧𝑅 + 𝛿1 𝑓𝑅 + 𝛿2𝑒𝑅

])
< 2 ,

which immediately yields, for some unique 𝑎 
𝑍 = 𝑎𝑃

𝐹 = 𝑎𝑄

𝐸 = 𝑎𝑅

,

and from where it can be understood why we are demanding 𝑃 ≠ 0 ∧ (𝑄 ≠ 0 ∨ 𝑅 ≠ 0).

D PROOF OF SIMMETRIC VECTOR COMMITMENT
Proof: [Theorem 4] The protocol zkSVC3,𝑛 in Figure 5 adds nothing to the transcript of the protocol zkVC𝑛 (or,
to be precise, to transcript of any complete, HVZK, and WEE protocol called in the last step), thus inheriting the
HVZK property from the latter. Completeness of the protocol zkSVC3,𝑛 is clear. WEE property of the protocol is
easy to establish, the sketch follows.

38

First of all, we exclude 𝐻 from all considerations for the same reason as in Appendix C. Then, because of
orthogonality of all non-zero elements in P∪Q∪R, each of the elements 𝑍, 𝐹, and 𝐸 decomposes into a weighted
direct sum of P,Q,R respectively. Therefore, to prove the WEE property of zkSVC3,𝑛 it suffices to prove WEE for
zkSVC3,1.

In its turn, zkSVC3,1 is equivalent to the protocol zk3ElemRW in Figure 4, so by Theorem 3 zkSVC3,1 has WEE.
Thus we obtain WEE for zkSVC3,𝑛.

E PROOF OF LIN2-CHOICE LEMMA
Proof: [Theorem 5] Completeness and HVZK of the zkLin2Choice𝑛 protocol in Figure 7 are clear. We exclude
𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the WEE property of the protocol. In the last step of zkLin2Choice𝑛 there is a call to

zkSVC2,𝑛 (P, c ◦Q, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝛽),

and hence by Theorem 4 there holds the relation{
𝑍 = ⟨a, P⟩
𝑟𝐹 = ⟨a, c ◦Q⟩

, (52)

where a ∈ F𝑛p̄ is extracted by the zkSVC2,𝑛 protocol extractor.
Thus, if a contains only one non-zero scalar, say, under index 𝑗 , then the sought witness 𝑝 is extracted together

with the index 𝑠, namely, 𝑝 = 𝑎 𝑗 , 𝑠 = 𝑗 . If a = {0}𝑛 is the case, then the witness 𝑝 is extracted as zero, the index 𝑠
has no meaning.

Let’s show that a cannot contain more than one non-zero scalar, otherwise the zkLin2Choice𝑛 protocol
extractor is able to break the DL assumption. Suppose that a contains at least two non-zeros, 𝑎 𝑗 and 𝑎𝑘 , under the
indices 𝑗 and 𝑘 such that 𝑗 ≠ 𝑘 . Writing out 𝑍 and 𝑟𝐹 as weighted direct sums of P and Q, respectively, according
to the equalities (52) we obtain that having unwound the zkSVC2,𝑛 call the extractor has 𝑍, 𝐹, c, 𝑟, a such that the
following two equalities hold

𝑍 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑃𝑖 , (53)

𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑐𝑖𝑄𝑖 , (54)

where 𝑟 ≠ 0, otherwise the equality (54) would immediately produce a contradiction with ort(Q).
Let the extractor unwinds to the point where the challenges c were generated, and resumes obtaining new

c′, 𝑟 ′, a′. Thus, by the equality (54) there holds 𝑟 ′ ≠ 0, and by the equality (53) there holds a′ = a. By excluding 𝐹
from the equality (54) the extractor obtains

0 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (
𝑐𝑖

𝑟
−
𝑐′
𝑖

𝑟 ′
)𝑄𝑖 . (55)

Due to ort(Q) all weights of𝑄𝑖’s in the equality (55) must be zero, otherwise the extractor breaks the DL assumption.
According to our supposition, 𝑎 𝑗 ≠ 0 and 𝑎𝑘 ≠ 0, so we write out two equations for the weights of 𝑄 𝑗 and 𝑄𝑘{

0 =
𝑐 𝑗

𝑟
− 𝑐′

𝑗

𝑟 ′

0 =
𝑐𝑘
𝑟
− 𝑐′

𝑘

𝑟 ′

, (56)

where we have already performed division by non-zero 𝑎 𝑗 and 𝑎𝑘 . Since 𝑟 ≠ 0 and 𝑟 ′ ≠ 0, the system (56) reduces
to

𝑐𝑘

𝑐′
𝑘

=
𝑐 𝑗

𝑐′
𝑗

, (57)

which holds only with negligible probability. Therefore, if there is more than one non-zero element in a, then the
extractor with overwhelming probability obtains one or more non-zero weights of 𝑄𝑖’s in the equality (55). Thus,
under our supposition, the extractor breaks the DL assumption by expressing𝑄 𝑗 through the elements of Q \ {𝑄 𝑗 },
hence our supposition is incorrect.

By this we have proved that the extractor with overwhelming probability finds witness for the relation (12) and,
thus, the protocol zkLin2Choice𝑛 has WEE.

39

F SIGNATURE EFLRS1
Proof: [Theorem 6] As follows from Figure 10, EFLRS1 is a linkable ring signature by definition (we imply the
EFLRS1.Link method is defined usual way, i.e. matching key images, e.g., as in [7]).

All the listed properties of the EFLRS1 signature are proved by well-known methods, such as, for example, in
[7, 4, 11], which rely on the key image of the form of 𝑥±1Hpoint (𝑃) and on completeness, HVZK, and WEE of
the underlying proving system. We do not describe these proofs here due to their volume; instead, we refer the
interested reader to the cited publications.

G PROOF OF MULTIPLE VECTOR COMMITMENTS
Proof: [Theorem 7] As can be seen from Figure 12, the protocol zkMVC𝑙,𝑛 adds nothing to the transcript of the
protocol zkVC𝑛, thus inheriting the HVZK property. Completeness of the protocol zkMVC𝑙,𝑛 is clear. Let’s prove
the protocol WEE property.

This time, to show an example, we will not exclude the generator 𝐻 from our consideration. We add 𝐻 to X
obtaining the expanded vector X̄ ∈ G𝑛+1

X̄ =

[
X
𝐻

]
.

At the same time, we attach the vector of blinding factors 𝜶 ∈ F𝑙p̄ to the witness matrix 𝔞 ∈ F𝑙×𝑛p̄ , and thus define
the expanded witness matrix �̄� ∈ F𝑙×(𝑛+1)p̄ as

�̄� = [𝔞 𝜶] .

Also, we combine a ∈ F𝑛p̄ with 𝛼 ∈ Fp̄, and thus define ā ∈ F𝑛+1p̄

ā =

[
a
𝛼

]
.

Having unwound the zkVC𝑛 call, extractor obtains ā. As a result, for each 𝑖-th column 𝔞 [:,𝑖] of the matrix 𝔞

there holds the equality
ā[𝑖] = 𝝃⊺ · �̄� [:,𝑖] . (58)

The extractor repeats the unwinding 𝑙 times with re-sampled challenges 𝝃. This way the equality (58) repeated 𝑙
times turns into a matrix equation with random matrix of size 𝑙 × 𝑙, from which the extractor recovers each 𝑖’th
column �̄� [:,𝑖] , 𝑖 ∈ [0 . . . 𝑛] of the matrix �̄�. Thus, the extractor recovers the sought witness �̄�.

H PROOF OF THE PROPERTIES OF MANY-OUT-OF-MANY PROOF
Proof: [Theorem 8] Completeness and HVZK of the zkLin2mChoice𝑛,𝑙 protocol in Figure 13 are clear. Let’s
prove the WEE property of the protocol. We will consider 𝐻 this time.

First, extractor uses the zkMVC𝑙,𝑛 protocol extractor, which exists by Theorem 7, and restores witness (𝔞, �̂�)
from the zkMVC𝑙,𝑛 call in the last step of zkLin2mChoice𝑛,𝑙 . After that, for every 𝑘 ∈ [0 . . . 𝑙 − 1], it assigns

(a, �̂�) ← (𝔞 [𝑘] , �̂�[𝑘]) ,

and proceeds with the extraction using the zkLin2Choice𝑛 protocol extractor, which exists by Theorem 5, as
though the values of a, �̂� were obtained from zkVC𝑛 in the last step of zkLin2Choice𝑛. This way the extractor
obtains witness (𝑝, 𝛼), and maps it to 𝑘-th positions in p and 𝜶, respectively.

We have shown how the extractor restores witness (p,𝜶) for the relation (18) and, hence, the zkLin2mChoice𝑛,𝑙
protocol has WEE.

I SIGNATURE EFLRSL FOR L=1
As can be seen from Figure 14, for 𝑙 = 1 the EFLRSL protocol is the same as the EFLRS1 protocol in Figure 10,

with the variables and calls renamed. Although the multiplier 𝜉0 is applied to both commitment and witness in the
nested zkVC𝑛 call, this doesn’t distort the correspondence. Thus, by Theorem 6, for 𝑙 = 1, all the properties listed
in Theorem 9 hold.

40

J SIGNATURE EFLRSL FOR L ⩾ 1
Proof: [Theorem 9] The case 𝑙 = 1 proof is provided in Appendix I.

As can be seen from Figure 14, the EFLRSL protocol is a linkable threshold ring signature by definition (we
imply the EFLRSL.Link method is defined usual way, i.e. matching key images).

All the listed properties of the EFLRSL signature can be proved by well-known methods, for example, by
assuming that any of the properties does not hold, and reducing this case to the case 𝑙 = 1, i.e. to the contradiction
with the already proven in Appendix I. In this case, as e.g. in [7, 12, 4], the key image form 𝑥±1Hpoint (𝑃) and
completeness, HVZK, and WEE of the underlying proving system are used.

We do not present the proofs here because of their volume, referring the interested reader to the cited publica-
tions.

K PROOF OF SIMPLIFIED LIN2-2CHOICE LEMMA
Proof: [Theorem 10] Completeness and HVZK properties of the zkLin22sChoice𝑛,𝑚 protocol in Figure 16 are
clear. We exclude 𝐻 from the consideration for the same reason as in Appendix C.

Let’s prove the protocol WEE property. In the last step of zkLin22sChoice𝑛,𝑚 there is a call to

zkSVC3,𝑛

([
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻, 𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸 ; a, 𝛼, 𝛽, �̂�

)
,

and hence by Theorem 4 there holds the relation
𝑍 =

〈
a[:𝑛] , P

〉
+

〈
a[𝑛:] , V

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 , (59)

with the witness a ∈ F𝑛+𝑚p̄ restored by the zkSVC3,𝑛 protocol extractor.
Due to ort(P,V,Q,W), having 𝑍 = 𝑍𝑃 + 𝑍𝑉 according to the formula (36), the system (59) breaks down into

two subsystems {
𝑍𝑃 =

〈
a[:𝑛] , P

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉 , (60){
𝑍𝑉 =

〈
a[𝑛:] , V

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 . (61)

Each of the systems (60), (61) is similar to the system (52) and, therefore, by applying the same reasons to each of
them as in the proof of the WEE property of the Lin2-Choice lemma in Appendix E, we obtain the following two
equations respectively

𝑍𝑃 = 𝑝𝑃𝑠 , (62)
𝑍𝑉 = 𝑣𝑉𝑛+𝑠 , (63)

where 𝑝 and 𝑣 are scalars known to prover, and 𝑠, 𝑠 are indices also known to it (if 𝑝 = 0 or 𝑣 = 0, then respectively 𝑠
or 𝑠 is undefined). Furthermore, when obtaining the equality (62) from the subsystem (60), we take 𝑟 as a response
to the challenges c[:𝑛] , whereas obtaining the equality (63) from the subsystem (61), we take 𝑐𝑛+𝑡 as the response
to the challenges c[𝑛:] .

If 𝑣 ≠ 0 and 𝑠 ≠ 𝑡, then the extractor breaks the DL assumption by establishing a linear relationship between at
least two different elements from the orthogonal set R, hence we let 𝑠 = 𝑡 for 𝑣 ≠ 0 and write the equality (63) as

𝑍𝑉 = 𝑣𝑉𝑛+𝑡 . (64)

Now, recalling that 𝑍 decomposes into the sum 𝑍 = 𝑍𝑃 + 𝑍𝑉 by the formula (36) which is discussed in
Section 1.2.11, the extractor comes to the conclusion that the restored by the formulas (62), (64) values of (𝑝, 𝑣, 𝑠)
are the sought witnesses for the relation (29). Thus, we have proved the WEE property of zkLin22sChoice𝑛,𝑚.

L PROOF OF MULTIPLE SIMMETRIC VECTOR COMMITMENTS
Proof: [Theorem 11] As can be seen from Figure 17, the zkMSVC𝑙,3,𝑛 protocol adds nothing to the transcript of
the zkMVC𝑙,𝑛 protocol, thus inheriting the HVZK property. Completeness of the zkMSVC𝑙,3,𝑛 protocol is clear from
Figure 17. We exclude 𝐻 from all considerations for the same reason as in Appendix C.

41

Let’s prove the WEE property of the protocol. Having unwound the zkMVC𝑙,𝑛 call, extractor obtains a matrix
𝔞 ∈ F𝑙×𝑛p̄ such that according to the relation (17)

Y = 𝔞 · X . (65)

Thus, for each element 𝑌 𝑗 = Y[𝑗] , 𝑗 ∈ [0 . . . 𝑙 − 1], and for the corresponding row 𝔞 [𝑗 ,:] of the matrix 𝔞, there holds

𝑌 𝑗 = 𝔞 [𝑗 ,:] · X . (66)

At the same time, due to the equalities (66), the zkMVC𝑙,𝑛 protocol can be viewed as 𝑙 independent, except for
the common challenges (𝛿1, 𝛿2), instances of the zkSVC3,𝑛 protocol. Therefore, by Theorem 4, the restored by the
extractor matrix 𝔞 is the sought witness.

M PROOF OF LIN2-2CHOICE LEMMA
Proof: [Theorem 12] Completeness and HVZK of the protocol zkLin22Choice𝑙,𝑛,𝑚 in Figure 18 are clear.
Particularly, note that the vectors F and E do not reveal any information since their elements are blinded with 𝐻.
We further exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the protocol WEE property. In the last step of zkLin22Choice𝑙,𝑛,𝑚 there is a call to

zkMSVC𝑙,3, (𝑛+𝑚)

([
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻,Z, r ◦ F, c[𝑛:(𝑛+𝑙)] ◦ E; 𝔞,𝜶, �̂�, �̂�

)
,

and hence, by Theorem 11, there holds the following system of equalities

Z = 𝔞 ·
[
P
V

]
r ◦ F = 𝔞 ·

[
c[:𝑛] ◦Q

0𝑚

]
c[𝑛:(𝑛+𝑙)] ◦ E = 𝔞 ·

[
0𝑛

c[𝑛:] ◦W

] , (67)

where the matrix 𝔞 ∈ F𝑙×(𝑛+𝑚)p̄ is the witness restored by the zkMSVC𝑙,3, (𝑛+𝑚) protocol extractor.
Furthermore, the system (67) is 𝑙 systems of the form (59), with proper renaming, for each row 𝔞 [𝑡 ,:] , 𝑡 ∈

[0 . . . 𝑙 − 1] of the matrix 𝔞. Namely, the system (67) is the following 𝑙 systems
𝑍𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , P

〉
+

〈
𝔞 [𝑡 ,𝑛:] , V

〉
𝑟𝑡𝐹𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸𝑡 =

〈
𝔞 [𝑡 ,𝑛:] , c[𝑛:] ◦W

〉 , (68)

for each 𝑡 ∈ [0 . . . 𝑙 − 1].
The zkLin22Choice𝑙,𝑛,𝑚 protocol in Figure 18 comprises, up to the point of calling zkMSVC𝑙,3, (𝑛+𝑚) and with

the appropriate renaming, 𝑙 parallel instances of the protocol zkLin22sChoice𝑛,𝑚 from Figure 16. Hence, given
𝑙 parallel systems (68) for 𝑡 ∈ [0 . . . 𝑙 − 1], the extractor performs 𝑙 times, for each 𝑡, the same calculations as in
Appendix K. This way it obtains 𝑙 witnesses (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡), 𝑡 ∈ [0 . . . 𝑙 − 1] for 𝑙 instances of the relation (29). That
is, for each extracted tuple (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡) there holds

𝑍𝑡 = 𝑝𝑡𝑃𝑠𝑡 + 𝑣𝑡𝑉𝑡 , (69)

that means witnesses for the relation (39) are found and, hence, WEE property of the zkLin22Choice𝑙,𝑛,𝑚 protocol
is proven.

N PROOF OF CLAIM ABOUT LIN2-2CHOICE PROTOCOL CALL
Proof: [Claim 1] By Theorem 12 the call

zkLin22Choice𝑙,𝑛,𝑙 ((X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙)] , 𝐻,Z; . . .)

in the last step of the EFLRSLSM (Multratug) scheme in Figure 21 proves the relation (39).

42

Let’s demonsrate that this call also proves that v = p in the relation (39), where X,V,Z are defined according
to the EFLRSLSM scheme. Writing out their definitions here

X = P − {𝐾}𝑛 + 𝜁U − 𝜔A ,

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û ,

Z = {𝐺}𝑙 + 𝜁I + 𝜒J .

Suppose the opposite, i.e., that for some 𝑘 ∈ [0 . . . 𝑙 − 1] there holds 𝑣𝑘 ≠ 𝑝𝑘 . Then the zkLin22Choice𝑙,𝑛,𝑚
protocol extractor extracts such v, p, and for some index 𝑠𝑘 there holds, according to relation (39)

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 − 𝐾 + 𝜁𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘) + 𝑣𝑘 (𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) . (70)

Note that we omit writting out the 𝐻 component for the same reason as in Appendix C. However, it is always
implied present, and the factor of 𝐻 is implied extracted by the extractor for this and for the following equalities,
method of the extraction is straightforward.

By moving the 𝐾 component to the left-hand side of the (70) equality, the extractor gets

(𝑝𝑘 − 𝑣𝑘)𝐾 = −𝐺 − 𝜁 𝐼𝑘 − 𝜒𝐽𝑘 + 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘) + 𝑣𝑘 (𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) , (71)

that is, expresses 𝐾 as a linear combination (71) of𝐺, 𝐼𝑘 , 𝐽𝑘 , 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴𝑠𝑘 , 𝐴
tmp
𝑘
, �̂�𝑘 , 𝐻. However, according to the

EFLRSLSM scheme, all these elements are part of the pre-image of 𝐾 and, hence, 𝐾 is orthogonal to all of them.
Thus, under the supposition v ≠ p the extractor breaks the DL assumption, which is impossible, so the supposition
is incorrect and there holds

v = p . (72)

Using the equality (72), the equality (70) rewrites as

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜒�̂�𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘)) . (73)

Note that for the equality (73) the following holds

𝑝𝑘 ≠ 0 for each 𝑘 ∈ [0 . . . 𝑙 − 1] , (74)

since 𝑝𝑘 = 0 for some 𝑘 requires that the left-hand side of the equality (73) be equal to zero, however the left-hand
side contains non-zero element 𝐺 alongside with the randomly weighted elements 𝐼𝑘 , 𝐽𝑘 , and, hence there is only
negligible probability for it to be equal to zero. The implicit presence of 𝐻 component in the equality (73) does
not change the case; if the assertion (74) does not hold then the extractor breaks the DL assumption.

All elements in the right-hand part of the relation (73), namely 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴
tmp
𝑘
, 𝐴𝑠𝑘 , 𝐻, are in the preimage of

�̂�𝑘 . Thus, �̂�𝑘 is orthogonal to all of them, and hence, due to random weighting by 𝜒 to the accuracy of 𝐻, the
following equality holds

𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘)) . (75)

In other words, the equality (75) follows from the equality (73) by Theorem 3, where the triplets are taken as

(𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘), �̂�𝑘 , 0) and (𝐺 + 𝜁 𝐼𝑘 , 𝐽𝑘 , 0) .

Suppose that (𝐴tmp
𝑘
− 𝐴𝑠𝑘) ≠ 0. By unwinding and resuming the zkLin22Choice𝑙,𝑛,𝑙 call with different 𝜔′ the

extractor obtains different 𝑝′
𝑘

and, subtracting two instances of the equality (75) from each other, obtains

0 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘)) − 𝑝′𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔

′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘)) ,

which rewrites as
(𝑝′𝑘 − 𝑝𝑘) (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘) = (𝑝𝑘𝜔 − 𝑝

′
𝑘𝜔
′) (𝐴tmp

𝑘
− 𝐴𝑠𝑘) . (76)

Due to the orthogonality of 𝑃𝑠𝑘 and𝑈𝑠𝑘 in the EFLRSLSM scheme, there holds

(𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘) ≠ 0.

If 𝑝′
𝑘
= 𝑝𝑘 then the left-hand side of the equality (76) is zero, and hence 𝜔′ = 𝜔, that holds only with negligible

probability. So, with overwhelming probability 𝑝′
𝑘
≠ 𝑝𝑘 and the extractor divides the equality (76) by (𝑝′

𝑘
− 𝑝𝑘),

calculating scalar factor 𝑎 as follows

𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 = 𝑎 (𝐴tmp
𝑘
− 𝐴𝑠𝑘) , where 𝑎 =

𝑝𝑘𝜔 − 𝑝′𝑘𝜔
′

𝑝′
𝑘
− 𝑝𝑘

. (77)

43

Unwinding and resuming thezkLin22Choice𝑙,𝑛,𝑙 call with different 𝜁 ′ a couple of times, the extractor calculates
factor 𝑎′ such that

𝑃𝑠𝑘 + 𝜁 ′𝑈𝑠𝑘 = 𝑎′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘) . (78)

Subtracting the equality (77) from the equality (78) and dividing by (𝜁 ′ − 𝜁), which is non-zero with overwhelming
probability, the extractor obtains

𝑈𝑠𝑘 =
𝑎′ − 𝑎
𝜁 ′ − 𝜁 (𝐴

tmp
𝑘
− 𝐴𝑠𝑘) . (79)

Also, it obtains from the equalities (77) and (79)

𝑃𝑠𝑘 =

(
𝑎 − 𝜁 𝑎

′ − 𝑎
𝜁 ′ − 𝜁

)
(𝐴tmp

𝑘
− 𝐴𝑠𝑘) . (80)

After that, as 𝑈𝑠𝑘 ≠ 0, and hence (𝑎′ − 𝑎) ≠ 0 in the equality (79), the extractor expresses (𝐴tmp
𝑘
− 𝐴𝑠𝑘) through

𝑃𝑠𝑘 with it and inserts (𝐴tmp
𝑘
− 𝐴𝑠𝑘) into the equality (80), thus obtaining

𝑃𝑠𝑘 =

(
𝑎 − 𝜁 𝑎

′ − 𝑎
𝜁 ′ − 𝜁

)
𝜁 ′ − 𝜁
𝑎′ − 𝑎 𝑈𝑠𝑘 . (81)

Recalling 𝑃𝑠𝑘 and 𝑈𝑠𝑘 are orthogonal to each other the extractor breaks the DL assumption with the equality (81),
thus the supposition is wrong and there holds

𝐴
tmp
𝑘

= 𝐴𝑠𝑘 . (82)

In accordance with the equality (82) the equality (75), which is obtained by the extractor after unwinding the
zkLin22Choice𝑙,𝑛,𝑙 call, rewrites as

𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘) , (83)

where 𝑝𝑘 is known to the extractor. Thus the zkLin22Choice𝑙,𝑛,𝑙 call is an argument having WEE property for
the relation (84).

At the same time, according to the obtained by the extractor equality (82) the same zkLin22Choice𝑙,𝑛,𝑙 call
is an argument having WEE for the relation (85). Completeness and HVZK of the call follow from Theorem 12.
Claim 1 is proven.

O SIGNATURE MULTRATUG FOR L ⩾ 1
Proof: [Theorem 13] We first make the following statement.

Claim 1:
The call to zkLin22Choice𝑙,𝑛,𝑙 in the last step of the EFLRSLSM (Multratug) scheme in Figure 21 is a complete,
HVZK argument having WEE for the relation (18) with appropriate input renaming, i.e. for the relation

R =

{
(P + 𝜁U), G[:𝑛] ∈ G𝑛∗, 𝐻 ∈ G∗, ({𝐺}𝑙 + 𝜁I) ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘) + 𝛼𝑘𝐻

}
, (84)

and is also a complete, HVZK argument having WEE for the relation

R′ =
{

A ∈ G𝑛, Atmp ∈ G𝑙 , 𝐻 ∈ G∗ ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , 𝜷 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐴

tmp
𝑘

= 𝐴𝑠𝑘 + 𝛽𝑘𝐻

}
, (85)

such that witness s is common to the relations (84) and (85).

Proof: can be found in Appendix N.
Now let’s note that the vectors Atmp and J are indistinguishable from white noise, because according to Figure 21

all their elements contain independent blinding components with randomized factors from, respectively, 𝝁 and 𝝊.
We have obtained that in the last step of the EFLRSLSM scheme there is a call to the complete, HVZK, and

WEE proving system zkLin22Choice𝑙,𝑛,𝑙 producing a proof of the relation (84), which is actually the relation
(18) with proper renaming. In addition to this, all previous steps of the EFLRSLSM scheme do all the play of the
EFLRSL scheme from Figure 14 up to the proof of the relation (18). As for the vectors Atmp and J which are
all indistinguishable from white noise, they can be discarded as uninfluential. Thus, we see that the EFLRSLSM
scheme is the EFLRSL scheme with the substituted underlying proving system, which is also complete, HVZK,
and WEE.

44

Therefore, the EFLRSLSM scheme is a linkable threshold ring signature with the properties 1. . . 8), which hold
due to exactly the same reasons as the properties 1. . . 8) of the EFRLSL scheme in Theorem 9.

The property 9) holds due to the zk2ElemComm call in the last step of the EFLRSLSM scheme. By Theorem 1
there holds

𝐴sum =

𝑙−1∑︁
𝑘=0

Atmp
[𝑘] + 𝑓𝐻𝐻 + 𝑓𝐷𝐷 , (86)

where 𝑓𝐻 , 𝑓𝐷 are scalars known to prover. At the same time, by Claim 1 according to the relation (85), the equality
(86) unfolds as

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 +
(
𝑓𝐻 +

𝑙−1∑︁
𝑘=0

𝛽𝑘

)
𝐻 + 𝑓𝐷𝐷 . (87)

Recalling that according to the EFLRSLSM scheme the generator 𝐻 is an Hpoint image of the 𝐴sum,A, 𝐷 elements,
the equality (87) reduces to

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 + 𝑓𝐷𝐷 , (88)

which is exactly what the property 9) is. Theorem 13 is proven.

45

	Introduction
	Contribution
	Method overview
	Two element commitment
	Vector commitment
	Random weighting for 3-tuples
	Simmetric vector commitment
	Lin2-Choice lemma
	Signature EFLRS1
	Multiple vector commitments
	Many-out-of-many proof
	Signature EFLRSL
	Hidden amount extension
	Simplified Lin2-2Choice lemma
	Multiple simmetric vector commitments
	Lin2-2Choice lemma
	Signature EFLRSLSM (Multratug) with hidden amount sum proof

	Preliminaries
	Definitions and base works
	Two element commitment
	Basic vector commitment
	Random weighting for 3-tuples
	Simmetric vector commitment

	Linkable ring signature
	Lin2-Choice lemma
	Additional definitions
	Signature EFLRS1
	Size and verification complexity

	Linkable threshold ring signature
	Multiple vector commitments
	Many-out-of-many proof
	Signature EFLRSL
	Size and complexity

	Linkable threshold ring signature with hidden amount sum proof
	Simplified Lin2-2Choice lemma
	Multiple simmetric vector commitments
	Lin2-2Choice lemma. Multiple two-element choices
	Additional definitions
	Signature EFLRSLSM (Multratug) with the sum proof
	Size and complexity
	Improvements
	Using ring of size NL
	Saving one item in all log-size schemes
	Saving one more item in all log-size schemes

	Batch verification and combination with other proofs
	Signature in blockchain

	Comparison with existing schemes
	Low anonymity of U/x
	Notes about DualRing-EC

	Conclusion
	Proof of 2-element commitment
	Proof of vector commitment
	Proof of 3-tuple random weighting
	Proof of Simmetric vector commitment
	Proof of Lin2-Choice lemma
	Signature EFLRS1
	Proof of Multiple vector commitments
	Proof of the properties of Many-out-of-many proof
	Signature EFLRSL for L=1
	Signature EFLRSL for L 1
	Proof of Simplified Lin2-2Choice lemma
	Proof of Multiple simmetric vector commitments
	Proof of Lin2-2Choice lemma
	Proof of claim about Lin2-2Choice protocol call
	Signature Multratug for L 1

