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Abstract In this paper we revise the idea of our previous work ‘Lin2-Xor lemma and Log-size Linkable Threshold
Ring Signature’ and introduce another lemma, called Lin2-Choice, which extends the Lin2-Xor lemma. Using a
membership proof protocol defined in the Lin2-Choice lemma, we create a compact general-purpose trusted-setup-
free log-size linkable threshold ring signature called EFLRSL. The signature size is 2 log2 (𝑛+1) +3𝑙 +1, where 𝑛 is
the ring size and 𝑙 is the threshold. It is composed of several public coin arguments that are special honest verifier
zero-knowledge and have computational witness-extended emulation. As the base building block which contributes
most to the size, we use a black-box pivot argument that proves knowledge of a committed scalar vector. This makes
our signature combinable with other proofs with further size reduction. Also, we present an extended version of
the EFLRSL signature of size 2 log2 (𝑛 + 𝑙 + 1) + 7𝑙 + 4, aliased as Multratug, which simultaneously proves balance
and allows for easy multiparty signing. All this takes place in a prime-order group without bilinear parings under
the decisional Diffie-Hellman assumption in the random oracle model. Both of our signatures are unforgeable
w.r.t insider corruption and are also EU-CMA. They remain anonymous even for non-uniformly distributed and
malformed keys, which makes it possible to use them as a log-size drop-in replacement for LSAG-based schemes.

Keywords: ring signature, linkable ring signature, log-size signature, threshold, anonymity, blockchain, hidden
amounts, sum proof, zero-knowledge, unforgeability, non-frameability, witness-extended emulation.

1 INTRODUCTION
In the paper [26] we created a log-size linkable threshold ring signature based on the Lin2-Xor lemma, which

we proved there. Now we want to know two things, namely, can we generalize the Lin2-Xor lemma using an
arbitrary vector commitment argument that has computational witness-extended emulation (cWEE) and is special
honest verifier zero-knowledge (sHVZK)? Also, can we get a linkable threshold ring signature out of it that is more
efficient in size and verification time?

We answer both of these questions in the affirmative. Lin2-Choice lemma and its accompanying efficient ring
signature we present herein seem to be useful findings. Our new ring signature keeps using the linking tag of the
form 𝑥−1Hpoint (𝑥𝐺), and also has a version with the linking tag form 𝑥Hpoint (𝑥𝐺), which is time-tested since the
work by Liu, Wei, and Wong [20]. Although, both of these linking tags are indistinguishable from each other and
from the independent uniform randomness [26, 11].

By vector commitment, or equivalently by commitment to a vector, we mean a weighted sum of a predefined set
of orthogonal generators in a group that binds the corresponding weight vector. By vector commitment argument
we mean a proof of knowledge of such a bound weight vector. Vector commitment argument is the pivotal unit for
the other our arguments in this paper.

The signature we present, called EFLRSL, turns out to be extensible; we also introduce an extended version of
it, called Multratug, which in addition to proving knowledge of signing keys also proves the sum of hidden amounts.
By proof of the sum of hidden amounts, proof of balance for short, we mean that prover demonstrates a blinded
commitment to some secret amount and proves that this secret amount is equal to the sum of those amounts which
correspond to the actual signing keys and are also blinded. To construct the extended version of our signature we
provide one more lemma, Lin2-2Choice, as we call it.

We will not repeat common words about signatures from the introduction of [26], they all remain valid. We will
keep our presentation brief, considering that many detailed explanations can be taken from [26] as well as from the
work of Benedikt Bünz et al. [6]. As another basic ingredient, we will now use what we think is an elegant way
of turning a protocol into zero-knowledge by adding noise in a separate orthogonal dimension, which we found in
the work of Heewon Chung et al. [8]. Although, this method of making a protocol zero-knowledge seems to have
been introduced a bit earlier, e.g., in the work of Attema and Cramer [2].
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Overall, in this paper we assume that a reader has an understanding of the works [6, 8, 26] and possesses
an appropriate intuition, so we keep our descriptions and proofs concise, otherwise the paper would be too long.
Moreover, since the methods of proving sHVZK and cWEE properties of protocols are already widely known, e.g.,
from [6, 8, 2], and the same for unforgeability, anonymity, and other properties of signatures, e.g., from [20, 13,
11, 22], we describe only the key points for our proofs, believing that they suffice to reconstruct all the details of
interest.

1.1 MOTIVATION
Besides the two questions we have already outlined at the beginning, our motive in creating this paper is that we

see no one among the most prominent log-size ring signatures available nowadays that is as universally applicable
as the linear-size schemes originating from AOS [1] and LSAG [20]. Of course, we are considering only the portion
of the large number of existing signatures that does not require trusted setups or curve pairings, and is under the
types of Diffie-Hellman assumption.

By the universal applicability of a signature scheme we mean a possibility of using it, maybe with some additive
modifications, for solving the following list of problems:
⋄ regular anonymous 1-out-of-many signing,

⋄ signing only once (linkable ring signature),

⋄ simultaneous proof of balance (support of hidden amounts),

⋄ 𝑙-out-of-𝑛 signing (threshold case, we use the word ‘threshold’ in this sense hereinafter and assume 𝑙 ≪ 𝑛

for performance comparison; signature size is expected to be less than simply 𝑙×1-out-of-many case size),

⋄ the case when public keys are formed according to the CryptoNote [28] protocol rules (which are adopted in
many blockchains these days),

⋄ and also the most general case when public keys are not restricted by anything (e.g., can be generated ad hoc
and be completely malformed, nevertheless the LSAG signature remains secure and anonymous with them).

In addition, it is desirable that a signature allows for easy implementation of multiparty signing operations, especially
in the blockchain context (multisignature operations, described, e.g., in [14]).

After conducting a kind of pragmatic research, we found that the recently proposed linear-size CLSAG scheme
[11], which generalizes and optimizes LSAG, solves all the listed problems except for the threshold case. So,
we took CLSAG for reference and compared the applicability of the currently known top-performance log-size
schemes with it; the results are collected in Table 1.

Table 1: Applicability of signature schemes

Log-sz Regular Linkable Balance Thresh.* Blockchain General MP**

CLSAG [11] ✓ ✓ ✓ ✓ ✓ ✓
Lelantus Spark [14] ✓ ✓ ✓ ✓ ✓ ✓
Triptych [22] ✓ ✓ ✓ ✓ ✓
RingCT3.0 [29] ✓ ✓ ✓ ✓ ✓ ✓
Omniring [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓
DualRing-EC [30] ✓ ✓

∗ Many-out-of-many size with threshold=𝑙 is asymptotically, for big 𝑛 and 𝑙, lower than 1-out-of-many size times 𝑙.
∗∗ Multiparty signing is easy to implement.

All of the considered schemes are log-size, except for the referenced CLSAG, and they all provide the func-
tionality of a regular ring signature. They are roughly ordered by size in the table. Of course, their versions that
implement additional check-marked properties contribute extra bytes to the sizes.

The most size and verification time efficient DualRing-EC signature [30] doesn’t have any linkable version
by-design. Although, its security model requires only properly generated keys, a forgery for the contrary case is
shown in Appendix Y.

All the other log-size signatures are linkable by-design, however, for each of them, linkability seems to can
be eliminated in a trivial way (just for the sake of this comparison). All of them include balance proofs and
are compatible with CryptoNote public keys, aka stealth addresses [28], of the form 𝐵 + Hscalar (𝑟𝐴)𝐺. Only
RingCT3.0 [29] and Omniring [18] substantially save signature space when several signers sign simultaneously.
Triptych [22], RingCT3.0, and Omniring have linking tags of the form𝑈/𝑥, where𝑈 is a predefined generator; this
fact deanonymizes them in the general case, as we show in Appendix Z.
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The fact of having private key 𝑥 in the tag’s denominator also makes it hard to implement multisignature
operations. Lelantus Spark [14] has its own subsystem that solves this problem, however, the entire scheme seems
too narrowly tied to decentralized anonymous payments to be considered general (we compare to the general case
for our pure interest, most of the top-performing schemes are claimed only as blockchain payment oriented).

Omniring has a version with linking tag form 𝑥Hpoint (𝑥𝐺), the same form is used in CLSAG. This tag is
invulnerable to malformed keys and is multisignature-friendly, however the original Omniring paper [18] provides
security model only for the less secure𝑈/𝑥 tag. So, we have to assume that both versions of the scheme are bound
to the CryptoNote stealth addresses regardless of the tag used. As confirmed by the Omniring authors, there is no
claim that the scheme will be anonymous with malformed keys in the scenario described in Appendix Z, in which
LSAG and CLSAG still remain to be.

So, our second motivation is to try to create a general-purpose scheme that covers all the properties specified in
Table 1, as shown in Table 2, and is also close to the bottom of the table, i.e., is of a relatively good size for typical
use cases.

Table 2: Applicability of our scheme

Log-sz Regular Linkable Balance Thresh. Blockchain General MP
EFLRSL / Multratug ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

With all this, our main objective remains to determine what can be obtained from the Lin2-Choice and
Lin2-2Choice lemma protocols presented in this paper, and how practical it would be. In the most elementary
cryptographic group and with minimal additional means, i.e., using a compact vector commitment argument without
even involving the inner product argument.

1.2 COMMITMENT TO VECTOR, VECTOR COMMITMENT, AND ITS ARGUMENT
Our pivotal protocol, which all proofs of membership and signatures in this paper ultimately refer to by calling

it only once in the last step, is a vector commitment argument. Throughout this paper, by the vector commitment
or by the commitment to a vector, we use these terms interchangeably, we mean a published element 𝑃 such that
𝑃 = ⟨a,P⟩, where P is a vector of orthogonal generators in a group, and a is a vector of scalar weights, typically
large. Vector commitment argument, respectively, is an argument that proves knowledge of all the weights in a at
once. This is similar to the Sum Argument defined in [30], however our implementation is a bit different.

The term vector commitment is already used in the literature for a construction described, e.g., in [7, 19, 12], in
relation to groups with bilinear pairings. On the contrary, we denote by this term a construction in a pairings-free
group that can be thought of as an extremely simplified form of the construction from [7]. In favor of our denotation
is, for example, a similar construction in [4].

A blinded version of the vector commitment of the form 𝑃 = ⟨a,P⟩ + 𝛼𝐻, where 𝐻 is orthogonal to P, and
𝛼 is independently uniformly sampled, is commonly called as Pedersen vector commitment. It is defined in [6]
as an extension to Pedersen commitment [23]. In our terminology, Pedersen vector commitment is a subset of the
vector commitment. Both of the vector commitment and Pedersen vector commitment are binding, however only
the latter is necessarily hiding, and the former becomes hiding only when blinded.

1.3 RELATED WORK
The closely resembling argument, in terms of its role in the larger scheme and its construction, is the compressed

pivotal argument by Attema and Cramer in [2]. Our implementation of the vector commitment argument can be
thought of as a subset case of this compressed pivot with the empty set of connected linear forms 𝐿 ≡ ∅. Further
in their work, Attema and Cramer obtain results for 𝐿 ≠ ∅. Meanwhile, we investigate the other direction from the
point 𝐿 ≡ ∅ by studying what happens if the base set of orthogonal generators P varies with challanges.

For a prime-order group without bilinear pairings, historically there are two main methods of constructing
trusted-setup-free log-size membership proofs and signatures in it. The first of them derives from the identification
scheme and its variations by Groth and Kohlweiss [13], and the second comes from the inner product argument
and subsequent proof for an arbitrary arithmetic circuit by Bünz et al. [6].

We have already outlined the recent efficient schemes in Table 1. Thus, Triptych [22] and Lelantus Spark
[14] rely on the idea of Groth and Kohlweiss [13] by building on top of it. At the same time, RingCT3.0 [29]
and Omniring [18] heavily employ the inner product argument by Bünz et al. [6]. Also, there exist a number of
other discrete-log, prime-order, pairings-free, trusted-setup-free, log-size schemes and approaches, which we do
not mention because of their lower efficiency compared to the top-performers [29, 18, 22, 14].

The DualRing-EC signature by Tsz Hon Yuen et al. [30] has a rather restrictive security model, nevertheless it
advances an elegant idea of better compression. Although we do not use this idea directly, it has inspired us for an
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optimized version of our vector commitment argument, which ended up being almost the same as the compressed
pivot in [2] and having the strong security model.

An informal introduction to the topic of commitments and log-size arguments in a prime-order group, as well
as a detailed explanation of the work [6] including an overview for the corresponding optimization techniques, such
as multi-exponentiation and batch verification, can be found in the article by Adam Gibson [10].

Our previous paper [26] represents an approach based on an own identification scheme which is different from
[13, 6]. Namely, in [26] we provide the early results of what can be obtained by building the ring P of element
pairs and ‘rotating’ them with challenges. However, the signature constructed in [26] is somewhat large in size. In
the current paper, we will reinvent the idea of [26] immediately targeting many-out-of-many proofs and will obtain
the much more efficient schemes this way. Nonetheless, now we will still use all the definitions of the signature
properties, e.g., unforgeability, anonymity, non-frameability collected in [26].

Recent work by Russell W. F. Lai et al. [17] introduces a method of building succinct arguments for bilinear
group arithmetic. The method relies on an enhanced commitment, which in addition to a scalar vector can contain
group elements as witnesses to a system of generalized bilinear relations which is further compressed. The method
is presented in a group with pairings and can be applied equally well in non-pairing groups, as shown in [16].
Possibility of constructing a variety of signatures using the bilinear group arithmetic also follows from [17].

The subsequent work by Thomas Attema et al. [3] takes a more efficient approach to constructing the bilinear
group arithmetic relations while retaining the same type of the enhanced commitment. An efficient transparent
setup threshold signature scheme (TSS) is built in [3], giving an idea of its applicability and size. Compared to our
current work, first of all, in the TSS terminology ‘threshold’ means that 𝑘 signatures can be dynamically merged
after creation, which is stronger than our ‘threshold’ that simply requires 𝑙 signing keys when creating a signature.
Second, merged TSS size is independent of 𝑘 , whereas our signatures have linear by 𝑙 sizes. Third, for large ring
sizes 𝑛 the asymptote of TSS is at least 4⌈log2 (𝑛)⌉, while the asymptote of our signatures is 2⌈log2 (𝑛)⌉. Thus, TSS
is more space efficient for big thresholds. Our region of interest, however, is low thresholds with large rings, and
our signatures are more efficient within it.

1.4 CONTRIBUTION
This paper proposes the following novel efficient trusted-setup-free pairings-free DDH-based log-size schemes,

including the concise general-purpose EFLRSL and blockchain-oriented balance-proof Multratug signatures.
They are based on an arbitrary vector commitment argument, which can be taken as a subset of the inner product

argument from [6] to begin with. They use neither the full inner product argument from [6], nor a bilinear group
arithmetic as in [17, 3], and are also based on the underlying proving system different from [13].

1.4.1 LIN2-CHOICE LEMMA’S MEMBERSHIP PROOF
Lin2-Choice lemma is a generalization of the Lin2-Xor lemma [26] to the case of 𝑛 pairs of elements. Having

a ring P = {𝑃𝑖}𝑛−1
𝑖=0 of 𝑛 orthogonal elements and a commitment 𝑍 to an arbitrary element 𝑃𝑠 ∈ P, using the

Lin2-Choice lemma protocol it is possible to prove membership of 𝑍 in P. This, itself, takes only 1 group elements
and 1 scalar, to which the size of an externally employed vector commitment argument is added.

Thus, the lemma provides a concise 1-out-of-many membership proof. The design of the lemma protocol is
quite simple. In addition, it easily extends into a many-out-of-many membership proof. Also, the external vector
commitment argument can be shared with other protocols to save space.

We prove in detail that the lemma’s membership proof has computational witness-extended emulation (cWEE).
We also informally show why it is special honest verifier zero-knowledge (sHVZK), referring to the similar design
in [2, 8] which is formally proved there.

1.4.2 EFLRSL SIGNATURE
EFLRSL is a regular linkable threshold ring signature immediately derived from the many-out-of-many version

of the Lin2-Choice lemma proof of membership, with size

2⌈log2 (𝑛 + 1)⌉ + 3𝑙 + 1.

This is a simplified version of our larger Multratug signature, without any balance proof or multiparty signing, with
an uncomplicated design and linking tag (aka key image) form 𝑥−1Hpoint (𝑥𝐺).

Nevertheless, EFLRSL is general-purpose, that is, it suits for environments where keys can be generated by
signers ad hoc and be arbitrarily malformed. For example, EFLRSL is appropriate for implementing whistleblowing
or e-voting systems, for which LSAG [20] used to be chosen. Compared to the streamlined versions of the recent
top-performance schemes listed in Table 1, EFLRSL appears to be by far the best sized simple general-purpose
linkable ring signature, the respective comparison is shown in Table 10.

4



Since EFLRSL is based on a proof of membership which, according to the Lin2-Choice lemma, is sHVZK and
has cWEE, the signature appears to be unforgeable and anonymous. We provide a proof sketch for this, mostly
referring to the work in [20, 22, 11, 13, 26], where the situation is similar and the appropriate proof techniques are
provided in detail.

1.4.3 LIN2-2CHOICE LEMMA’S MEMBERSHIP PROOF WITH ADDITIONAL ELEMENT
Lin2-2Choice lemma is an extended version of the Lin2-Choice lemma; its protocol comprises 𝑙 instances of

the Lin2-Choice lemma 1-out-of-many membership proof, each of them extended in such a way as to select a linear
combination of exactly two elements of the ring instead of one. All together optimized.

It can be introduced by the following example. For the ring P ∪ V = {𝑃𝑖}𝑛−1
𝑖=0 ∪ {𝑉𝑘}

𝑙−1
𝑘=0 of (𝑛 + 𝑙) elements

and a set of 𝑙 commitments Z = {𝑍𝑘}𝑙−1
𝑘=0, using the Lin2-2Choice lemma protocol it is possible to convince verifier

that, for each 𝑍𝑘 ∈ Z, there holds 𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 for some 𝑝𝑘 , 𝑣𝑘 , 𝑠𝑘 known to prover. This takes only 2𝑙 group
elements and 𝑙 scalars, plus the size of an external vector commitment argument.

We prove in detail that this extended membership proof has cWEE, and also informally show it is sHVZK,
referring to the similar design in [8]. The lemma’s protocol appears to be so generic that later on we use it to
substitute linking tag 𝑥Hpoint (𝑥𝐺) for 𝑥−1Hpoint (𝑥𝐺) in the Multratug signature.

1.4.4 HELPER ARGUMENT: RANDOM WEIGHTING FOR T-S TUPLES
Suppose we have two tuples, possibly blinded. Taking their inner products with a random scalar vector, we

wonder: if these inner products are shown to be proportional to each other, does this prove that the tuples are
elementwise and with the same factor proportional to each other? This question emerged in one of our proofs. We
have looked in the existing literature and found no answer.

Therefore, we compiled an appropriate argument, defined sufficient conditions, and presented the answer in this
paper. It is that, in brief, for any T = {𝑇𝑖}𝑛−1

𝑖=0 and D = {𝐷𝑖}𝑛−1
𝑖=0 , if for random 𝝃 = {𝜉𝑖}𝑛−1

𝑖=0 prover provides a valid
proof of knowledge of 𝑎 such that ⟨𝝃,D⟩ = 𝑎 ⟨𝝃,T⟩, and also if T contains at least two orthogonal to each other
elements, then verifier is convinced that there holds D = 𝑎T.

1.4.5 MULTRATUG SIGNATURE WITH BALANCE PROOF
Multratug is an universally applicable ring signature derived from the Lin2-2Choice lemma protocol. It

simultaneously provides a proof of balance. Multratug has linking tag 𝑥Hpoint (𝑥𝐺) and also has all the properties
check-marked in Table 2, its size is

2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 7𝑙 + 4.

We provide a proof sketch for its unforgeability and anonymity, and also prove correctness of its balance in detail.
Multratug expands the scope of EFLRSL by adding support for hidden amounts and multisignature operations.

Multratug is suitable for blockchains. Since the multisignature operations are typically a must-have feature for
contemporary blockchains, it makes sense to compare Multratug only with those signatures that allow them (column
‘MP’ in Table 1). The full comparison results are shown in Table 8 and in Table 9.

1.5 PREVIEW OF THE CORE PROTOCOLS
1.5.1 LIN2-CHOICE LEMMA’S MEMBERSHIP PROOF

For the orthogonal ring P = {𝑃𝑖}𝑛−1
𝑖=0 and commitment 𝑍 , the Lin2-Choice lemma protocol proves membership

of 𝑍 in P. In a nutshell, it looks as the following game, although we simplify it for this preview.
At the start both of the prover and verifier have 𝑍 and P. They jointly pick 𝑛 helper generators Q = {𝑄𝑖}𝑛−1

𝑖=0
such that all elements of P ∪Q are orthogonal to each other. The prover publishes an element 𝐹. Then the verifier
releases challenges c = {𝑐𝑖}𝑛−1

𝑖=0 , and the prover replies with a scalar 𝑟 . Next, the verifier releases random 𝛿. Finally,
the prover convinces the verifier using an arbitrary vector commitment argument that the element �̂� defined as

�̂� = 𝑍 + 𝛿𝑟𝐹

is a weighted sum, with weights known to the prover, of elements from the set

{𝑃𝑖 + 𝛿𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

The involved vector commitment argument must be sHVZK and has to have cWEE. Also, note, the commitment
𝑍 and all elements published by prover are blinded, we omit showing the blinding components in this preview.

It turns out that the above game succeeds only if either there exists some nonzero scalar 𝑝 known to the prover
such that 𝑝−1𝑍 ∈ P, or if there holds 𝑍 = 0. The Lin2-Choice lemma guarantees this.
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1.5.2 LIN2-2CHOICE LEMMA’S MEMBERSHIP PROOF
Compared to the Lin2-Choice lemma’s simplified game, one for the Lin2-2Choice lemma looks as follows. The

former ring P expands to (𝑛 + 𝑙) entries by the second part V = {𝑉𝑘}𝑙−1
𝑘=0 together with the jointly picked helper

generators W = {𝑊𝑘}𝑙−1
𝑘=0.

So, now at the start both of the prover and verifier have the ring P ∪ V, the set of commitments Z = {𝑍𝑘}𝑙−1
𝑘=0,

and the set of helper generators Q ∪W such that all elements of P ∪V ∪Q ∪W are orthogonal to each other. The
prover publishes 𝑙 element pairs (𝐹𝑘 , 𝐸𝑘), 𝑘 ∈ [0 . . . 𝑙 − 1], the verifier releases random c = {𝑐𝑖}𝑛+𝑙−1

𝑖=0 , the prover
replies with 𝑙 scalars 𝑟𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1], the verifier releases random 𝛿1, 𝛿2. The prover convinces the verifier that,
for each 𝑘 ∈ [0 . . . 𝑙 − 1], the element �̂�𝑘 built as

�̂�𝑘 = 𝑍𝑘 + 𝛿1𝑟𝑘𝐹𝑘 + 𝛿2𝑐𝑛+𝑘𝐸𝑘

is a weighted sum, with weights known to the prover, of elements from the set

{𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 ∪ {𝑉𝑖−𝑛 + 𝛿2𝑐𝑖𝑊𝑖−𝑛}𝑛+𝑙−1

𝑖=𝑛 . (1)

Moreover, for all �̂�𝑘’s, the proover convinces the verifier of the above in one step by proving that the random sum

𝑙−1∑︁
𝑘=0

𝜆𝑘 �̂�𝑘 ,

with sampled coefficients 𝜆𝑘’s, is the weighted sum of elements from the set (1).
The Lin2-2Choice lemma guarantees this game completes successfully only if prover knows indices s = {𝑠𝑘}𝑙−1

𝑘=0
and scalar factors p = {𝑝𝑘}𝑙−1

𝑘=0, v = {𝑣𝑘}𝑙−1
𝑘=0 such that, for each 𝑍𝑘 ∈ Z, there holds

𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 .

1.5.3 PIVOT: OPTIMIZED VECTOR COMMITMENT ARGUMENT
Our membership proofs invoke the pivotal vector commitment argument directly or indirectly as a black box.

As our signatures are built on top of these membership proofs, to be able to prove they are unforgeable we require
this black-boxed pivot to be complete, sHVZK, and to have cWEE. We put a preview of one of its possible
implementations here, although any other implementation that proves the same having the same properties will do.
Note, our pivot is conceptually similar to and can be understood as the compressed pivot with 𝐿 ≡ ∅ in [2].

The idea is that initially we build a complete, sHVZK, and having cWEE linear-size Schnorr-like vector
commitment argument that convinces verifier that given element 𝑌 is a weighted sum, with weights known to the
prover, of elements from the vector X = {𝑋𝑖}𝑛−1

𝑖=0 such that all 𝑋𝑖’s ∈ X are orthogonal to each other. It looks as
follows. The prover publishes an element 𝑇 as the first message, the verifier issues a challenge 𝑐, the prover replies
with a scalar vector 𝝉, the verifier checks that ⟨𝝉,X⟩ + 𝑐𝑌 = 𝑇 . This game comprises 𝑛 played in parallel Schnorr
identification protocol games [24], for each 𝑋𝑖 ∈ X. The fact that 𝑌 and 𝑇 are necessarily weighted direct sums
of X implies all 𝑛 parallel games are independent of each other, otherwise the orthogonality of X can be shown
broken.

Next, for 𝑛 > 4 in this game, instead of replying with 𝝉 the prover replies with a proof of knowledge of 𝝉, which
takes only 2⌈log2 (𝑛)⌉ elements if the reduction from [6] is used. This proof need not be sHVZK, as 𝝉 itself does
already reveal nothing. Thus, we obtain a complete, sHVZK, and cWEE optimized vector commitment argument
of size 2⌈log2 (𝑛)⌉ + 1.

When 𝑌 is blinded, the blinding generator denoted as 𝐻 is orthogonal to X, we usually precompute it as a
hash to curve Hpoint of everything publicly visible at the moment. In this case, we implicitly append 𝐻 to X in
the above game. Thus, the size of the pivotal argument gets increased by one under the logarithm and becomes
2⌈log2 (𝑛 + 1)⌉ + 1.

1.5.4 LINKABLE THRESHOLD RING SIGNATURE EFLRSL

Having a ring of public keys (addresses) P = {𝑃𝑖}𝑛−1
𝑖=0 , for the first, we orthogonalize it into the orthogonal

decoy set (P + 𝜁U), where U = {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 and 𝜁 is random. The simple linkable ring signature for one

actual signer EFLRS1 is obtained by defining the key image as 𝐼 = 𝑥−1Hpoint (𝑥𝐺), where 𝑃𝑠 = 𝑥𝐺 for some index
𝑠 ∈ [0 . . . 𝑛 − 1], and by applying the Lin2-Choice lemma’s membership proof to the commitment 𝑍 = 𝐺 + 𝜁 𝐼 in
the above decoy set.

For 𝑙 instances of EFLRS1 running in parallel over the same ring P, using random weights 𝑙 instances of
the Lin2-Choice lemma’s membership proof easily merge into one. Thus, we obtain the linkable threshold ring
signature EFLRSL, which makes only one call to the Lin2-Choice lemma’s membership proof.
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1.5.5 MULTRATUG SIGNATURE WITH BALANCE PROOF
Suppose that the ring P of public keys (addresses) is complemented by the set of hidden (blinded) amounts

A = {𝐴𝑖}𝑛−1
𝑖=0 such that, for each index 𝑖, the hidden amount 𝐴𝑖 ∈ A is related to the address 𝑃𝑖 ∈ P. Also, suppose,

a total hidden amount 𝐴sum is given, and the balance with it should be proved.
We might subtract 𝐴sum from each 𝐴𝑖 and prove that for actual signer this difference contains only the blinding

component, as it is done, e.g., in [22]. However, this would prevent us from creating an efficient threshold version
of the signature. Therefore, we specify the set Atmp = {𝐴tmp

𝑘
}𝑙−1
𝑘=0 of re-hidden (with re-randomized blinding factor)

amounts corresponding to the actual signing indices and, simply put, add them to the end of the ring.
Since we already have in our disposal the Lin2-2Choice lemma’s extended membership proof, we adjust it a bit

for our needs by making p = v. This is achieved by adding a new orthogonal generator 𝐾 = Hpoint (Z,P,V, . . . )
to each element in P, and subtracting 𝐾 from each element in V. Further we do not mention 𝐾 , and consider that
our extended membership proof convinces verifier, for all 𝑍𝑘 ∈ Z, that

𝑍𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 +𝑉𝑘), where 𝑠𝑘 , 𝑝𝑘 are known to prover.

So, the simplified game for Multratug is that at the start both of the prover and verifier have P,A,Atmp, and the
helper generators Q,W required by the Lin2-2Choice lemma protocol. It is impossible to ensure the orthogonality
of regular addresses and hidden amounts taken from a blockchain, nevertheless, the orthogonality can easily be
established by adding the corresponding hashes-to-group, e.g. as it is done using the hashes U in Section 1.5.4, we
omit showing them in this preview.

After making the appropriate orthogonalization, for a randomly sampled 𝜔, the prover and verifier have all
elements in (P−𝜔A)∪𝜔Atmp∪Q∪W orthogonal to each other. Letting, for each 𝑘 ∈ [0 . . . 𝑙−1], the commitment
𝑍𝑘 be equal to 𝐺 and using the Lin2-2Choice lemma membership proof, the prover convinces the verifier that it
knows 𝑠𝑘 , 𝑝𝑘 such that

𝐺 = 𝑝𝑘 ((𝑃𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝜔𝐴
tmp
𝑘
) . (2)

This equality splits into 𝐺 = 𝑝𝑠𝑘𝑃𝑠𝑘 and 𝐴𝑠𝑘 = 𝐴
tmp
𝑘

. Of course, we have omitted blinding components in this
preview. We assume all elements in P are validated different from each other and nonzero here.

Thus, for all 𝑘’s, the equalities (2) prove knowledge of signing private keys at indices 𝑠𝑘’s, and also they prove
that each 𝐴tmp

𝑘
is equal to 𝐴𝑠𝑘 to the accuracy of blinding component. After that, it only remains to check that∑𝑙−1

𝑘=0 𝐴
tmp
𝑘

= 𝐴sum holds to the accuracy of blinding component, and the balance is proved.
In addition, the Multratug signature replaces the inherited from EFLRSL key image 𝑥−1Hpoint (𝑥𝐺) with

𝑥Hpoint (𝑥𝐺), using the same techinque as for proving the equalities of hidden amounts to their re-hidden counter-
parts in Atmp. Section 9.1.2 explains this in detail.

2 PRELIMINARIES
We first outline the definitions, assumptions, and methods that we borrow from the base works. Also, we

specify the notation and base environment we use in this paper. Since we construct our signatures from many lesser
protocols, we combine the latter under the name of underlying proving system.

2.1 DEFINITIONS AND BASE WORKS
2.1.1 CONTEXT

All our protocols, including the helpers schemes and signatures, perform for a prime-order group without
bilinear pairings in a trustless environment under the decisional Diffie–Hellman (DDH) assumption in the random
oracle model, as in [6]. All of our protocols are written as interactive, however, we always imply the existence of
their non-interactive Fiat-Shamir counterparts not mentioning them.

All the context, namely, the common reference string, trustless setup, discrete logarithm (DL) relation and DDH
assumptions, orthogonality, commitment binding and hiding, non-interactivity through Fiat-Shamir heuristic,
perfect completeness (we call it simply completeness), argument of knowledge, special honest verifier zero-
knowledge (sHVZK) and computational witness-extended emulation (cWEE) definitions and proof methods, which
we use, are exactly the same as in [6, 8]. Taking them as already well known, we do not quote or explain them in
detail to save space, instead referring simply to the fact that they correspond to and can be copied from [6].

2.1.2 COMMON WITH OUR PREVIOUS WORK
As a syntactic sugar we use the shorthands ‘∼’, ‘lin’, ‘ort’ defined in [26], although they can be resolved and

omitted. We use additive notation for exponentiation of group elements, as, e.g., in [22, 26]. We refer to [26] for
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proving some few auxiliary statements, for example, to prove the statistical indistinguishability of each other for
the linking tags in the forms 𝑥Hpoint (𝑥𝐺) and 𝑥−1Hpoint (𝑥𝐺).

In [26] we have collected the existing definitions of linkable ring signature, its variations and security models
from various sources; we use these definitions hereinafter, with the only one difference in that what in [26] is called
a generic linkable ring signature now we simply call a linkable ring signature.

2.1.3 RELATIONS AND UNIQUENESS OF WITNESS
We use the same method of proving soundness of our protocols as in [6]. Namely, for each of them, we prove

that it has cWEE for the corresponding polynomial-time-decidable relation denoted as R. It should be observed
that while cWEE implies prover’s knowledge of R’s witness, it does not guarantee that the witness is unique. We
use the term uniqueness in the same sense as [6, 26]. And, prover’s private input is always R’s witness in this paper.

In most cases, as in [6], the uniqueness follows from the fact that witness contains an opening of some binding
commitment included in the statement in R. When this is not the case or is not obvious, we prove uniqueness by
showing that knowing two different witnesses causes breaking the DL relation assumption.

2.2 NOTATION
Here is a list of basic notations and shorthands
• G is a prime-order group, Fp̄ is its corresponding scalar field.
• p̄ denotes a big prime chosen to be the order of the group G and, respectively, of its scalar field Fp̄.
• lowercase italic and lowercase Greek letters denote scalars in Fp̄. Apostrophes, hats, and subscript indices

could be appended, e.g., 𝑎, 𝑏12, 𝑐
′, 𝜁 ′, 𝑥𝑘 . Also, lowercase italic and, sometimes, Greek letters denote

integers used as indices or limits, e.g., 𝑛, 𝑖, 𝑗1, 𝑠𝑘 , 𝑥𝜋 , this usage is clear from context. Superscripts, e.g.,
𝜖2, denote scalar exponentiation.

• a special case is a lowercase italic letter with a bold superscript, such as 𝑑𝚫sum; it stands for the usual scalar
in Fp̄, and the superscript in bold is purely explanatory.

• bold lowercase italic and bold lowercase Greek letters denote scalar vectors, e.g., a, b, 𝜶.
• bold lowercase Gothic letters denote scalar matrices, e.g., 𝔞, 𝔟.
• uppercase italic letters denote elements inG. Apostrophes, hats, and subscript indices can be appended, e.g.,
𝐴, 𝐵12, 𝐷

′, 𝑃𝑠𝑘 . Multiplication syntax is used to denote element exponentiation by a scalar, e.g., 𝑥𝐺.
• a special case is an uppercase italic letter with a bold superscript, such as 𝐴sum; it stands for the regular

element in G, and the superscript in bold is purely explanatory.
• bold uppercase italic letters denote element vectors, e.g., A, P.
• n̄ denotes a maximum number of elements in a ring.
• The zero element inG and the zero scalar in Fp̄ are denoted as 0; it is clear from context which set 0 belongs

to. A vector of 𝑛 zeros is denoted either as 0𝑛 or as {0}𝑛, both notations are equivalent.
• asterisk denotes that zero entries are excluded. That is, F∗p̄ means Fp̄ without the scalar 0, G∗ means G

without the element 0. Substantially, for vectors, if x ∈ F𝑛∗p̄ , P ∈ G𝑚∗, then x and P are assumed to contain
no zeros in any position.

• star denotes Klein star. For instance, M ∈ {0, 1}★ means M is a bitstring.
• Hscalar and Hpoint are the ideal hash and hash to group (to curve) functions, respectively.
• 𝐴 = lin(B), where B is a non-empty vector of nonzero elements, means there is a known vector x such that
𝐴 = ⟨x,B⟩. The syntactic sugar 𝐴 ∼ 𝐵 is equivalent to 𝐴 = lin({𝐵}).

• 𝐴 != lin(B), where B is a non-empty vector of nonzero elements, means that weights in 𝐴’s representation
as a weighted sum of elements in B cannot be found. The sugar 𝐴 !∼ 𝐵 is equivalent to 𝐴 = != lin({𝐵}).

• for any non-empty set S, ort(S) means that a non-trivial relation [6] between elements in S cannot be found.
This is in accordance with the DL relation assumption [26]. If S is a set of Hpoint images on different
pre-images, then there always holds ort(S). As an equivalent definition, ort(S) actually means that, for each
element 𝐸 ∈ S, no one in the system knows weights in 𝐸’s representation as a weighted sum of elements in
S \ {𝐸}. Note, if S contains the zero element, then ort(S) never holds.

• we say that all elements in S are orthogonal to each other, iff ort(S) holds. We emphasize this because
‘orthogonal to each other’ can be read as pairwise orthogonality, which certainly is a weaker property. Here
and elsewhere, by writing that elements in S are ortogonal to each other we always imply the stronger
property, namely, that ort(S) holds.
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• nz(B) means a subset of B containing all nonzero elements found in B.
• access to vector and matrix items is performed using Python notation, as in [6]. Also, having a vector, say,

A, we imply that 𝐴𝑖 denotes 𝑖-th item of A, i.e., we imply that 𝐴𝑖 is an alias of A[𝑖 ] and therefore 𝐴𝑖 = A[𝑖 ] .
Often we write explicitly ‘let 𝐴𝑖 ← A[𝑖 ]’, although the equality is already implied.

• appending an element into a vector is denoted by comma, e.g., X̂← [X, 𝐵]means that X̂ = [𝑋0, . . . , 𝑋𝑛−1, 𝐵].
• when writing down our protocols we mix several assignment styles, they all are construed as the imperative

assignment. That is, e.g., the expression ‘let 𝑥 ← 𝑦’ means the same as ‘assign 𝑥 = 𝑦’. Typically we use ‘let
𝑥 ← 𝑦’ to indicate that 𝑥 gets the value of 𝑦 and both of them won’t change.

• as a rule, when we use the letter 𝑛 to represent an integer, we assume that 𝑛 is subject to an additional
restriction, e.g., that 𝑛 or (𝑛 + 1) is a power of 2. The exact body of this restriction is entirely determined by
a concrete vector commitment argument in which this 𝑛 is directly or indirectly used.

• everywhere log2 (. . . ) is meant as its ceiling ⌈log2 (. . . )⌉, when used together with integers in formulas.

2.3 COMMONLY AVAILABLE INFORMATION
With the above notation all the commonly available to both of P andV information is shown in Figure 1. This

information is also assumed to be accessible in all protocols hereinafter.

Common information

• A big prime number p̄
• Definition of a finite scalar field Fp̄

• Definition of a prime-order groupG over Fp̄

• A generator 𝐺 of the groupG

Figure 1: Information available to each party

2.4 UNDERLYING PROVING SYSTEM
In this paper we construct a number of arguments and use them as building blocks for our signatures. For each

of the arguments, we are interested in the three properties, namely, in completeness, sHVZK, and cWEE.
Completeness is seen from the code of the protocols, we do not dwell on it. The sHVZK property requires

building a simulator in each case. Fortunately, almost (this ‘almost’ is due to a couple of easy exceptional cases
outlined in Section 2.4.2) all of our arguments can be rendered zero-knowledge using the concise and currently
widely known method presented, e.g., in the works of Attema et al.[2], Chung et al.[8]. Namely, each scalar in our
protocol public transcripts is by-design masked with an independently and uniformly sampled summand, whereas
each element 𝐸 in the transcripts either is completely dependent or has the form

𝐸 = 𝑋 + 𝜇𝐻, (3)

where 𝑋 is the value component of the element 𝐸 . And, 𝐻 is a blinding generator built in such a way as to be
clearly orthogonal to everything else, 𝜇 is always an independently and uniformly sampled scalar.

The intuition here is that the form (3) is Pedersen commitment [23, 6], which is perfectly hiding [6]. Thus,
we refer to the work [8], where the public transcript have the same structure and the corresponding simulator is
constructed. We will imply that for each of our protocols a simulator is built in the same way as in [8], and we will
not build it explicitly.

For each of our arguments, we prove its cWEE property in detail by constructing an extractor that restores
witness performing polynomial number of rewindings. For some elementary protocols, we instead refer to the
works where detailed information about building their extractors can be found. For each of our extractors, we
also prove that the obtained witness meets the corresponding protocol relation limits and is unique, otherwise the
extractor breaks the DL relation assumption in a polynomial number of steps.

2.4.1 CONNECTION TO SIGNATURES
Thus, by the above, each of our signatures relies on a complete, sHVZK, and cWEE underlying proving system.

Therefore, to establish unforgeability, anonymity, and other their properties we refer to the work in [20, 11, 26],
where these properties are obtained from the sHVZK and cWEE properties of the undrlying proving systems for
the signatures with key images 𝑥Hpoint (𝑥𝐺) or 𝑥−1Hpoint (𝑥𝐺).
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2.4.2 EXCEPTIONAL SHVZK CASES

We have the only two exceptional sHVZK protocols which do not follow the form (3) for their public transcript
elements. Anyway, their sHVZK can be easily established. The first of them is the two-element Schnorr-like
scheme in Figure 2, which splits into two Schnorr-id protocols and, hence, can be proven sHVZK by combining
outputs of two Schnorr-id simulators.

The second one is the optimized version of our pivot vector commitment argument in Figure 27, previewed
in Section 1.5.3. It is sHVZK since its first message 𝑇 is the sum of elements, each randomized according to the
Schnorr-id scheme. At the same time, the scalar vector 𝝉 in it needs not to be hidden. That is, the argument is
already sHVZK with open 𝝉, and the replacement of 𝝉 with its proof of knowledge does not revoke the sHVZK
property of the entire argument.

As another way of proving the above, it suffices to recall the argument in Figure 27 is a subset case (with
minor differences which do not affect core properties) of the compressed pivot in [2]. Hence, proof of sHVZK for
the argument in Figure 27 can be borrowed from [2]. Moreover, the argument in Figure 2 is a subset case of the
argument in Figure 27, therefore for both of our exceptional sHVZK cases we can simply refer to the proof in [2].

2.5 INFORMAL INTERPRETATION
Proving the cWEE property for each protocol is a necessary and one of the difficult steps when designing

a cryptosystem under the DL assumption. However, to create a protocol when it doesn’t already exist, neither
the cWEE property definition nor sHVZK gives an idea of what it should look like. Fortunately, we can use
the following metaphor when constructing the protocols we need. This metaphor allows us to guess what those
protocols might be for which we are likely to have a chance to prove that they have cWEE.

The metaphor is that all elements in G can be thought of as vectors of an infinite-dimensional linear space
with countable base 𝔏 over Fp̄. A set of orthogonal elements in a protocol corresponds to a set of linearly
independent vectors in 𝔏 which determine a linear subspace in it. Note, others vectors of the protocol are not
assumed as belonging to this subspace by default. Addition and multiplication by a scalar in 𝔏 are the same as in
G. Calculating the dot product between two vectors in 𝔏 is assumed hard, which corresponds to the DL assumption
in G. This metaphor allows for a geometrical interpretation of the protocols.

For example, the well-known Schnorr-id scheme can be interpreted as the following game in 𝔏. For two given
vectors 𝐺 and 𝑌 , prover P must convince verifier V that 𝑌 is collinear to 𝐺. Note that V itself cannot check
whether this is the case by taking the dot product between𝐺 and𝑌 . So, P publishes some vector 𝑇 , thenV issues a
challenge 𝑐 and P replies with the factor 𝑟 such that 𝑟𝐺 = 𝑇 − 𝑐𝑌 , thus showing that the vector (𝑇 − 𝑐𝑌 ) is collinear
to 𝐺. As 𝑐 is random, this convincesV that both of 𝑇 and 𝑌 are collinear to 𝐺.

As another example, consider the simplest case of the reduction by Bünz et al. [6], where P proves that given𝑌
belongs to the plane of 𝑋0 and 𝑋1 by demonstrating some 𝐿 and 𝑅 such that𝑌 = 𝑌 + 𝜖2𝐿 + 𝜖−2𝑅 holds for a random
𝜖 , and also, for 𝑌 it is shown that it belongs the plane of 𝑋0 and 𝑋1. It is easy to see that the vector (𝜖2𝐿 + 𝜖−2𝑅) is
randomly placed in the plane of vectors 𝐿 and 𝑅. Therefore, if 𝑌 does not belong to the same plane, then 𝑌 will not
be in any predetermined plane. However, as defined right above, it is shown that 𝑌 belongs to the predetermined
plane which is of 𝑋0 and 𝑋1. So 𝑌 belongs to the plane of 𝐿 and 𝑅, and hence 𝑌 belongs to it too. However, 𝑌
belongs to to the plane of 𝑋0 and 𝑋1, which means that 𝑌, 𝐿, 𝑅 also belong to the plane of 𝑋0 and 𝑋1.

Since this is an informal method, we will not mention it further in the text, except for a few informal explanations.
And, of course, we do not use it in the formal proofs. Anyway, keeping this metaphor in mind can be helpful in
understanding our arguments.

3 ELEMENTARY PROTOCOLS
We begin with the simple protocols, each representing an argument of knowledge for the corresponding basic

relation. We will use these arguments later in our lemmas and signatures. Although, generally speaking, they can
be used independently or as the parts of other systems. And, concrete implementations of those in Section 3.1.1
and Section 3.1.2 are not decisive; other implementations will do, as long as they prove the same relations and are
complete, sHVZK, and have cWEE.

Some of the relations given below clearly can be interpreted as definitions of binding commitments, and we
call their respective elements commitments. For most of them, the binding property follows directly from binding
of Pedersen vector commitment [6]. In any case, for all of our arguments their relations have unique witnesses, as
we have already pointed out in Section 2.1.3.

As for hiding, we do not require it by default; the sHVZK property of the corresponding arguments suffices for
our needs. Anyway, hiding for our commitments follows from hiding of Pedersen vector commitment when scalar
factors of the blinding generator, usually denoted as 𝐻, are independently and uniformly sampled.
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3.1 OVERVIEW
3.1.1 TWO ELEMENT COMMITMENT

The first helper protocol is a two-element commitment argument. We denote it as

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ).

In this notation, the elements 𝑋, 𝐻,𝑌 are common input for prover and verifier. And the scalar pair 𝑥, ℎ is a prover
private input, it is the witness known only to the prover. The protocol zk2ElemComm is an argument for the relation

R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 }, (4)

where 𝑋 and 𝐻 are orthogonal to each other.
We require zk2ElemComm to be sHVZK and to have cWEE. Additionally, we require the witness (𝑥, ℎ) of

the relation (4) to be proved unique, which fortunately is trivial. In Figure 2 we provide an uncomplicated
implementation of this argument.

Overall, zk2ElemComm convinces verifier that prover knows an unique representation of the element 𝑌 as a
weighted sum of the orthogonal generators 𝑋 and 𝐻 with weights known to the prover. We implement it as a
two-generator extension of the Schnorr identification scheme. Its size is one element in G and two scalars in Fp̄.

The element 𝑌 above can be regarded as a commitment that binds its opening (𝑥, ℎ). When ℎ is sampled
independently and uniformly, 𝑌 becomes hiding as Pedersen commitment. Notable, the zk2ElemComm protocol
itself remains sHVZK for any distribution of ℎ, including ℎ = 0.

3.1.2 BASIC VECTOR COMMITMENT
Vector commitment argument, which will be playing a pivotal role in our paper, is

zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼).

It proves knowledge of an unique witness for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 }, (5)

where all generators in the set X ∪ {𝐻} are orthogonal to each other.
Thus, zkVC𝑛 convinces verifier that prover knows 𝑛 + 1 weights, namely, a and 𝛼, in the decomposition of 𝑌

by the generators X ∪ {𝐻}. The genearator 𝐻 together with its corresponding weight 𝛼 is used here to turn the
protocol into zero-knowledge, as in [8].

Our implementation of zkVC𝑛 in Figure 3 is based on the inner product argument implementation from [6],
which is provided for the following relation there

R = {G,H ∈ G𝑛∗,𝑈, 𝑃 ∈ G; a, b ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ + ⟨b,H⟩ + ⟨a, b⟩𝑈 }. (6)

We modify this relation and the implementation from [6] the next way. First, since we do not actually need the
inner product argument, just only its vector commitment part, we zero out the vector b in the relation (6). Thus,
the inner product ⟨a, b⟩ becomes equal to zero everywhere. This leaves only the vector commitment argument, i.e.,
only the argument for the relation

R = {G ∈ G𝑛∗, 𝑃 ∈ G; a ∈ F𝑛p̄ | 𝑃 = ⟨a,G⟩ }. (7)

Second, we append the zero-knowledge property to this argument not the way it is done in [6], instead we
append it in a straighter way, as in [8]. Namely, we respectively add the blinding summands 𝛼𝐻, 𝛽𝐻, and 𝛾𝐻
to the vector commitment 𝑃 and to all the 𝐿 and 𝑅 elements transmitted during the reduction in [6]. The secret
blinding factors 𝛽, 𝛾 are sampled independently and uniformly from F∗p̄ by P, the blinding generator 𝐻 is chosen to
be orthogonal, hence all the transmitted 𝐿’s and 𝑅’s appear to be indistinguishable from random noise. We rename
the vector G and the commitment 𝑃 in the relation (7) as X and 𝑌 in the relation (5), respectively. The blinding
summand 𝛼𝐻 is taken into account in the relation (5).

Third, for the case 𝑛 = 1 we use our own Schnorr-like sHVZK and cWEE protocol, which is different from
sub-protocols used in [6] and [8]. Namely, we use zk2ElemComm instead, and this does not alter the properties of
the entire zkVC𝑛 protocol.

In sum, our implementation of zkVC𝑛 is shown in Figure 3. It has the same properties as the implementation
of the inner product argument in [6] with b = 0𝑛, plus it is sHVZK and, of course, it remains to be having cWEE.
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Compared to the implementations in [6, 8], our zkVC𝑛 contains no inner product proof. It provides only the proof
of knowledge of the opening (a, 𝛼) to the vector commitment 𝑌 .

This zkVC𝑛 has size of 2⌈log2 (𝑛)⌉ + 1 elements in G and 2 scalar in Fp̄. Here and elsewhere, when using this
implementation we consider 𝑛 is a power of 2. Although, as we have already mentioned, our protocols will not
be generally bound to a particular realization of zkVC𝑛 and, hence, when we use its optimized version defined in
Section 10 this requirement for 𝑛 changes.

3.1.3 RANDOM WEIGHTING FOR 3-TUPLES
Another auxiliary argument,

zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

shown in Figure 4, connects a triplet of orthogonal elements (𝑃,𝑄, 𝑅) with a triplet of arbitrary elements (𝑍, 𝐹, 𝐸).
One of the two elements 𝑄 and 𝑅 in the triplet (𝑃,𝑄, 𝑅) can be zero, in which case the other two elements of the
triplet must remain orthogonal to each other. So, the protocol zk3ElemRW is an argument for the following relation

R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 , (8)

where all the nonzero elements in the set {𝑃,𝑄, 𝑅, 𝐻} are required to be orthogonal to each other, which is denoted
as ort(nz(𝑃,𝑄, 𝑅, 𝐻)). Also, at least one of 𝑄 and 𝑅 must be nonzero, which is denoted as (𝑄 + 𝑅) ∈ G∗.

The implementation of zk3ElemRW is as follows. V samples two challenges 𝛿1 and 𝛿2, and both P andV build
the sums 𝑋 and 𝑌 using these challenges. Also, P builds the total blinding factor �̂�

𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅,

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 .

As the second step, P proves toV using an arbitrary external complete, sHVZK, and having cWEE argument that
𝑌 is a weighted sum of 𝑋 and 𝐻 with some known to the prover weights. In the proof of Theorem 3, we will show
that this suffices to extract witness for the relation (8).

Using the shorthands defined in [26] we can also say, that in the second step of zk3ElemRW a proof that
𝑌 = lin(𝑋, 𝐻) holds for P is somehow obtained. We will often omit everything connected with 𝐻 as a technical
blinding detail, so writting down this shortly as 𝑌 ∼ 𝑋 (to the accuracy of 𝐻).

The cWEE property of zk3ElemRW can be proved the same way as it is done for the RandomWeighting-WEE
lemma protocol in [26]. Also, in the proof of Theorem 3 we consider the extreme case, when one of the elements
𝑄 or 𝑅 is zero, an show it is not problematic.

3.1.4 SIMMETRIC VECTOR COMMITMENT
We also need an argument to convince verifier that several, e.g., two or three, vector commitments share the

same known to the prover weights, with the only exclusion for blinding factors which are not shared. That is, we
need an argument

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)

shown in Figure 5 for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 , (9)

where all nonzero elements from the set P ∪ Q ∪ R ∪ {𝐻} are orthogonal to each other, which is denoted as
ort(P∪ nz(Q) ∪ nz(R) ∪ {𝐻}), and where for any index 𝑖 ∈ [0 . . . 𝑛− 1] at least one of two elements Q[𝑖 ] and R[𝑖 ]
is nonzero, which is denoted as (Q + R) ∈ G∗.

The relation (9) asserts that the three different vector commitments 𝑍, 𝐹, 𝐸 are sort of ‘symmetrical’ to each
other due to their common weights a, which apply to the three different bases P,Q,R, respectively. Note, that we
require all elements in P to be nonzero, while vectors Q and R are allowed to contain zero elements, provided that
for each index there is at least one nonzero element at that index in them. This condition is similar to the restriction
(𝑄 + 𝑅) ∈ G∗ imposed by the relation (8) to (𝑃,𝑄, 𝑅) in Section 3.1.3.
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Using random weights similar to the way they are used in Section 3.1.3, we reduce the argument zkSVC3,𝑛 to
the vector commitment argument zkVC𝑛. Namely, for random 𝛿1 and 𝛿2 we construct

X = P + 𝛿1Q + 𝛿2R,
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸,

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 ,

and call
zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�).

After zkVC𝑛 successful completion, as a result, we see that by this 𝑛 instances of the protocol zk3ElemRW have
been successfully performed, for all the indices 𝑖 ∈ [0 . . . 𝑛 − 1]. This means that the relation (8) is fulfilled for
each triplet pair (𝑃𝑖 , 𝑄𝑖 , 𝑅𝑖) and (𝑍𝑃𝑖 , 𝐹𝑄𝑖

, 𝐸𝑅𝑖
) and, therefore, the relation in question (9) is fulfilled. We say that

a relation is fulfilled (or proved) as a synonym for the fact that witness of this relation is shown to be extractable in
polynomial time.

In the above, 𝑍𝑃𝑖 denotes 𝑃𝑖’s component in a decomposition of 𝑍 by the base P, the same for 𝐹𝑄𝑖
, 𝐸𝑅𝑖

.
We have implicitly assumed that 𝑍, 𝐹, 𝐸 are weighted direct sums of P,Q,R, respectively, with weights known
to prover. Of course, upon successful completion of zkSVC3,𝑛, verifier is also convinced of this. Otherwise the
protocol witness extractor would be able to break the DL relation assumption.

Finally, the witness in the relation (9) is unique, since the pair (a, 𝛼) is bound as opening of the Pedersen vector
commitment 𝑍 over P ∪ {𝐻}, and the same for ( [𝑎𝑖 |𝑄𝑖 ∈ nz(Q)], 𝛽) and ( [𝑎𝑖 | 𝑅𝑖 ∈ nz(R)], 𝛾) as openings of
𝐹, 𝐸 over nz(Q) ∪ {𝐻} and nz(R) ∪ {𝐻}, respectively.

3.2 FORMAL PRESENTATION
3.2.1 TWO ELEMENT COMMITMENT
Theorem 1:
For two nonzero elements 𝑋, 𝐻 ∈ G∗ such that they are orthogonal to each other, for an element 𝑌 ∈ G, the
protocol zk2ElemComm in Figure 2 is a complete, sHVZK argument having cWEE for the relation (4) with unique
witness.

Proof: Appendix A.
Overview: Section 3.1.1.

zk2ElemComm(𝑋, 𝐻,𝑌 ; 𝑥, ℎ)

Relation R = { 𝑋, 𝐻 ∈ G∗, 𝑌 ∈ G; 𝑥, ℎ ∈ Fp̄ | 𝑌 = 𝑥𝑋 + ℎ𝐻 } // (4)

// 𝑋, 𝐻 in R satisfy ort(𝑋, 𝐻 ) .

P’s input : (𝑋, 𝐻,𝑌 ; 𝑥, ℎ)
V’s input : (𝑋, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝜙, 𝜓 ←$ F∗p̄ and computes 𝑇 = 𝜙𝑋 + 𝜓𝐻

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝜏 = 𝜙 − 𝑐𝑥
𝜂 = 𝜓 − 𝑐ℎ

P → V : 𝜏, 𝜂

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇
?
= 𝜏𝑋 + 𝜂𝐻 + 𝑐𝑌

Figure 2: Zero-knowledge argument for two element commitment relation
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3.2.2 BASIC VECTOR COMMITMENT

Theorem 2:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of nonzero elements X ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗
such that there holds ort(X ∪ {𝐻}), for an element 𝑌 ∈ G, the protocol zkVC𝑛 in Figure 3 is a complete, sHVZK
argument having cWEE for the relation (5) with unique witness.

Proof: Appendix B.
Overview: Section 3.1.2.

zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (5)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 1 then

P : 𝛽, 𝛾 ←$ F∗p̄ and computes �̂� = 𝑛/2

𝐿 =
〈
a[:�̂�] ,X[�̂�:]

〉
+ 𝛽𝐻

𝑅 =
〈
a[�̂�:] ,X[:�̂�]

〉
+ 𝛾𝐻

P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes â = 𝑒a[:�̂�] + 𝑒−1a[�̂�:]

�̂� = 𝛼 + 𝑒2𝛽 + 𝑒−2𝛾

P andV : run zkVC�̂� (X̂, 𝐻,𝑌 ; â, �̂�) // run recursively until n=1

else // n=1

P andV : let 𝑋0 ← X[0]
and run zk2ElemComm(𝑋0, 𝐻,𝑌 ; 𝑎0, 𝛼)

endif

Figure 3: Zero-knowledge argument for vector commitment relation

3.2.3 RANDOM WEIGHTING FOR 3-TUPLES

Theorem 3:
For a nonzero element 𝑃 ∈ G∗, for a pair of elements 𝑄, 𝑅 ∈ G, for a nonzero element 𝐻 ∈ G∗ such that there
holds ort(nz(𝑃,𝑄, 𝑅, 𝐻)) and at least one of the two elements𝑄, 𝑅 is nonzero, the protocol zk3ElemRW in Figure 4
is a complete, sHVZK argument having cWEE for the relation (8) with unique witness.

Proof: Appendix C.
Overview: 3.1.3.
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zk3ElemRW(𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)

Relation R =

 𝑃 ∈ G∗, 𝑄, 𝑅 ∈ G, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
𝑎, 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
𝐹 = 𝑎𝑄 + 𝛽𝐻 ∧
𝐸 = 𝑎𝑅 + 𝛾𝐻

 // (8)

// 𝑃, 𝑄, 𝑅, 𝐻 in R satisfy ort(nz(𝑃, 𝑄, 𝑅, 𝐻 ) ) and (𝑄 + 𝑅) ∈ G∗

P’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸 ; 𝑎, 𝛼, 𝛽, 𝛾)
V’s input : (𝑃,𝑄, 𝑅, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute 𝑋 = 𝑃 + 𝛿1𝑄 + 𝛿2𝑅

𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run any complete, sHVZK, and cWEE protocol that convincesV that
the pair (𝑎, �̂�) is a known to P witness of the relation (4), that is,
that 𝑋 and 𝑌 are connected as 𝑌 = 𝑎𝑋 + �̂�𝐻

Figure 4: Zero-knowledge argument for two 3-tuples proportional to each other

3.2.4 SIMMETRIC VECTOR COMMITMENT
Theorem 4:
For 𝑛 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗, and for a pair of vectors of elements Q,R ∈ G𝑛 such that
(Q + R) ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that there holds ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}), for three
elements 𝑍, 𝐹, 𝐸 ∈ G, the protocol zkSVC3,𝑛 in Figure 5 is a complete, sHVZK argument having cWEE for the
relation (9) with unique witness.

Proof: Appendix D.
Overview: 3.1.4.

zkSVC3,𝑛 (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗, 𝑍, 𝐹, 𝐸 ∈ G;
a ∈ F𝑛p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

������ 𝑍 = ⟨a,P⟩ + 𝛼𝐻 ∧
𝐹 = ⟨a,Q⟩ + 𝛽𝐻 ∧
𝐸 = ⟨a,R⟩ + 𝛾𝐻

 // (9)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸 ; a, 𝛼, 𝛽, 𝛾)
V’s input : (P,Q,R, 𝐻, 𝑍, 𝐹, 𝐸)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾

P andV : compute X = P + 𝛿1Q + 𝛿2R
𝑌 = 𝑍 + 𝛿1𝐹 + 𝛿2𝐸

and run zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�) , or run any other complete, sHVZK, and cWEE
protocol for the relation (5)

Figure 5: Zero-knowledge argument for 3 vector commitments with shared weights
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As a subset case of the zkSVC3,𝑛 protocol in Figure 5, we define the zkSVC2,n protocol in Figure 6 for R = 0𝑛,
requiring for it that all elements in Q be nonzero.

zkSVC2,𝑛 (P,Q, 𝐻, 𝑃, 𝑄; a, 𝛼, 𝛽)

zkSVC2,𝑛 (P,Q, 𝐻, 𝑍, 𝐹; a, 𝛼, 𝛽) = zkSVC3,𝑛 (P,Q, 0𝑛, 𝐻, 𝑍, 𝐹, 0; a, 𝛼, 𝛽, 0)
// where P,Q ∈ G𝑛∗ , 𝐻 ∈ G∗ , 𝑍, 𝐹 ∈ G; a ∈ F𝑛

p̄ , 𝛼, 𝛽, 𝛾 ∈ Fp̄

Figure 6: Zero-knowledge argument for 2 vector commitments with shared weights

4 LIN2-CHOICE LEMMA
In this section we present the Lin2-Choice lemma featuring the zkLin2Choice𝑛 one-out-of-many proof of

membership, which we will use later to create the ring signatures.

4.1 OVERVIEW
In [26] we proved the Lin2-Xor lemma which, informally, allows one to select a pair of elements from two pairs

of elements, i.e., it provides an argument for the relation

R =
{

P,Q ∈ G2∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
, (10)

where all generators in P ∪Q are orthogonal to each other.
Also, in [26], by successive application of the Lin2-Xor lemma log2 (𝑛) times we proved the Lin2-Selector

lemma, which allows to select one pair of elements from 𝑛 pairs of elements. That is, it provides an argument for
the relation

R =
{

P,Q ∈ G𝑛∗, 𝑍 ∈ G∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑞 ∈ Fp̄
�� 𝑍 = 𝑝𝑃𝑠 + 𝑞𝑄𝑠

}
. (11)

However, after some consideration we concluded, that instead of proving the relation (11) with the Lin2-Selector
lemma protocol it would be better to prove it directly, as if the Lin2-Xor lemma were applied to 𝑛 pairs of elements
at once while making an auxiliary call to some external vector commitment argument. This way is more efficient
in size, and also leaves more room for verification complexity optimizations.

Intuition here is that in the first round of the Lin2-Xor lemma protocol both of the prover and verifier multiply
one element in each of the two original pairs (𝑃0, 𝑄0) and (𝑃1, 𝑄1) by a random challenge, so that each of these
two pairs becomes a compound element with its own random ’rotation’. Namely, they become

(𝑃0 + 𝑐0𝑄0) and (𝑃1 + 𝑐1𝑄1) . (12)

Here we use the notation and indexing from [26].
In the second round of the Lin2-Xor protocol, the prover and verifier play a sub-protocol convincing the verifier

that the element (𝑍 + 𝑟1𝐻1) in [26] is a linear combination of the two compound elements (12) which carry their
random ’rotations’ 𝑐0 and 𝑐1. It then turns out that this linear combination can be only one-hot, otherwise the DL
relation assumption would be broken.

In fact, since 𝑃0, 𝑄0, 𝑃1, 𝑄1, 𝑍, 𝐻1 are fixed from the beginning, and as they are orthogonal to each other, the
element (𝑍 + 𝑟1𝐻1) has at most one ‘degree of freedom’ parameterized by 𝑟1. At the same time, each of the
elements (12) has exactly one degree of freedom defined by the parameters 𝑐0 and 𝑐1, respectively. Hence, if both
of the coefficients 𝑎, 𝑏 in the linear combination

𝑍 + 𝑟1𝐻1 = 𝑎(𝑃0 + 𝑐0𝑄0) + 𝑏(𝑃1 + 𝑐1𝑄1) (13)

are not equal to zero, then the right-hand side of the equality (13), which has two ‘degrees of freedom’ with the
random parameters 𝑐0 and 𝑐1, is balanced by one ‘degree of freedom’ of the left-hand side with the controlled
parameter 𝑟1. This is impossible without breaking orthogonality of 𝑃0, 𝑄0, 𝑃1, 𝑄1, which proves that the vector of
two coefficients 𝑎, 𝑏 is one-hot. Although, we have missed the case 𝑎 = 𝑏 = 0 here, we will discuss it a bit later.

In line with this intuition, we can take 𝑛 pairs of elements and turn them into 𝑛 compound elements with random
‘rotations’ in the first round. After that, in the second round, we can prove that (𝑍 + 𝑟1𝐻1) is a linear combination
of these 𝑛 compound elements. As a result, exactly the same way as for the linear combination (13), we obtain
that the compound element (𝑍 + 𝑟1𝐻1) with one ‘degree of freedom’ controlled by 𝑟1 must balance out 𝑛 ‘degrees
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of freedom’ of a weighted sum comprising 𝑛 compound elements of the form 𝑃𝑖 + 𝑐𝑖𝑄𝑖 . That is, the following
equality must hold

𝑍 + 𝑟1𝐻1 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝑐𝑖𝑄𝑖). (14)

However, this is possible only if the vector of coefficients a = {𝑎𝑖}𝑛−1
𝑖=0 is one-hot. Beware, we have missed the edge

case of a = 0𝑛 here. Thus, we have obtained an argument for the relation (11) as the two-round game, where in the
first round 𝑟1 is chosen in response to 𝑛 challenges {𝑐𝑖}𝑛−1

𝑖=0 , and in the second round the protocol

zkVC𝑛 ( {𝑃𝑖 + 𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 , 𝐻, 𝑍 + 𝑟1𝐻1 ; a, 𝛼 )

is played. Here 𝐻1 is fixed as in [26], 𝐻 is an independent orthogonal blinding generator, 𝛼 is the blinding factor,
and a is one-hot.

Also, as the vector Q carries only a technical role in the relation (11), in [26] we get rid of𝑄𝑠 by adding a proof
of that 𝑞 = 0 everywhere in the signatures. Now we will include a proof of 𝑞 = 0 in our current argument. With all
this in mind, the Lin2-Choice lemma (Theorem 5) provides the protocol

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

shown in Figure 7, which is sHVZK, has cWEE, and is an argument for the following relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}
, (15)

where all elements in P,Q, 𝐻 are orthogonal, i.e., ort( P ∪Q ∪ {𝐻}) holds.
Thus, our Lin2-Choice lemma allows to choose exactly one element from the orthogonal element set P ∈ G𝑛∗.

Addressing the details, with a simultaneous proof of 𝑞 = 0, the Lin2-Choice lemma protocol zkLin2Choice𝑛 for
the relation (15) looks as follows

• The first P’s message is an element 𝐹 which plays the same role as 𝐻1 in [26]. Thus, after the first message,
both of P andV have the elements 𝑍 and 𝐹.

• All 𝑛 elements in Q are multiplied by the challenges {𝑐𝑖}𝑛−1
𝑖=0 , thus P andV obtain the vector Q̂ = {𝑐𝑖𝑄𝑖}𝑛−1

𝑖=0 .

• P replies with 𝑟 , which plays the same role as 𝑟1 in [26].

• P andV play zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝑟𝛽), where a is one-hot, 𝐻 is an orthogonal blinding generator,
𝛼 and 𝛽 are blinding factors of 𝑍 and 𝐹 respectively.

In this protocol, we can see that if a has more than one hot entry, then zkSVC2,𝑛 will not complete successfully
for the same reason as the equality (14) will not hold for such a. To be precise, the following equality is checked
inside zkSVC2,𝑛, and it guarantees a is one-hot

𝑍 + 𝛿1𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖). (16)

In addition to this, if zkSVC2,𝑛 completes successfully, then 𝑍’s decomposition by the input generators cannot
contain elements from Q, as zkSVC2,𝑛 guarantees 𝑍 = lin(P ∪ {𝐻}).

Now it is a time to discuss the missed edge cases that are about completely zero weights in the linear combina-
tions. The case 𝑎 = 𝑏 = 0 for the equality (13) is settled in [26] by some extra checks. Extra checks would also
resolve the edge case for the equality (14), however we do not use it at all. Our current Lin2-Choice lemma protocol
zkLin2Choice𝑛 resorts to the equality (16) instead, which has the additional random factor 𝛿1, making any extra
checks unnecessary. Actually, if a = 0𝑛 in the equality (16), then there holds

𝑍 + 𝛿1𝑟𝐹 = 0 ,

where 𝛿1 is sampled knowing 𝑍, 𝐹, 𝑟; this proves without any extra checks that 𝑍 is equal to zero. To be precise,
recalling all the above equalities are written to the accuracy of 𝐻 component, 𝑍 is proved having only the blinding
component in this case. Thus, the edge case a = 0𝑛 in the equality (16) naturally corresponds to the case 𝑝 = 0 in
the relation (15).
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4.2 FORMAL PRESENTATION

Theorem 5 (Lin2-Choice lemma):
For 𝑛 ∈ N∗, for two vectors of nonzero elements P,Q ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that there holds
ort(P∪Q∪ {𝐻}), for an element 𝑍 ∈ G, the protocol zkLin2Choice𝑛 in Figure 7 is a complete, sHVZK argument
having cWEE for the relation (15) with unique witness.

Proof: Appendix E.
Overview: Section 4.1.

For the protocol zkLin2Choice𝑛 in Figure 7, we consider (𝑝, 𝛼) as a witness, with the auxiliary index 𝑠 always
recoverable from (𝑝 ≠ 0, 𝛼) in a polynomial time. For 𝑝 = 0, the index 𝑠 is undefined.

zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑍 ∈ G ;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝛼𝐻
}

// (15)

// P,Q, 𝐻 in R satisfy ort( P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻, 𝑍; 𝑠, 𝑝, 𝛼)
V’s input : (P,Q, 𝐻, 𝑍)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻

P → V : 𝐹

V : c←$ F𝑛∗p̄

V → P : c

P andV : compute Q̂ = c ◦Q

P : takes scalar 𝑐𝑠 at index 𝑠 in c, that is, lets 𝑐𝑠 ← c[𝑠] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽 ,

and lets a =

{
𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in one-hot a (or, if 𝑝 = 0, then a = 0𝑛)
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 − 1], 𝑖 ≠ 𝑠

P → V : 𝑟

P andV : let �̂� ← 𝑟𝐹

and run zkSVC2,𝑛 (P, Q̂, 𝐻, 𝑍, �̂�; a, 𝛼, 𝛽)

Figure 7: Zero-knowledge argument for one element choice relation

5 LINKABLE RING SIGNATURE FOR ONE ACTUAL SIGNER
An immediate practical result of the Lin2-Choice lemma is the linkable ring signature for one signer described

in this section.

5.1 ADDITIONAL DEFINITIONS

To create the signature we extend the common information in Figure 1 with the information in Figure 8. It
supplies both of the prover and verifier with identical definitions of the scalar hash Hscalar and hash-to-group
Hpoint functions, as well as with a common set of orthogonal generators G.
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Additional common information

• Maximum number of elements in a ring n̄
• Definition of an ideal hash finction Hscalar : {0, 1}★→ F∗p̄

• Definition of an ideal hash finction Hpoint : {0, 1}★→ G∗

• A vector of generators G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺 n̄−1} ∈ Gn̄∗

such that for any set H of Hpoint images on different pre-images there holds ort(H ∪ {𝐺} ∪G)

Figure 8: Additional information available to each party

The random oracle is modeled with the scalar hash Hscalar. The hash-to-group (-to-curve) function Hpoint is
supposed to generate brand new orthogonal elements. The predefined set of orthogonal genarators G is used in all
signature instances, thus reducing verification time when they are verified in a batch.

All public keys used in the signatures can be known to all participants, and there are no additional restrictions
on them. That is, as shown in Figure 9, we do not impose any rules on public keys.

Public keys

• There is an unlimited amount of public keys generated in the system.
• Each public key is considered visible to all parties, although this is not required.
• Each public key 𝑃 is assumed to have the following relation to its private key 𝑥

𝑃 = 𝑥𝐺 ,

although this is not required, i.e., there can exist public keys without any known 𝑥 in this relation.
There can exist adversarial public keys generated with purpose of breaking the signatures.

Figure 9: Public keys seen to all parties

5.2 OVERVIEW
Using the argument zkLin2Choice𝑛 for the relation (15), we construct a ring signature, calling it EFLRS1

(Efficient linkable ring signature for 1 actual signer). Its interactive scheme is shown in Figure 10,

EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥).

By the ring we mean a set of 𝑛 ⩾ 1 public keys

P = {𝑃𝑖}𝑛−1
𝑖=0 . (17)

Our signature convinces verifier that signer knows a scalar 𝑥 such that the equality 𝑃𝑠 = 𝑥𝐺 holds for some
𝑠 ∈ [0 . . . 𝑛 − 1]. There is no assumption about the public keys in P, except for all they must be different and
nonzero which can be easily checked by verifier. Other than that, they can all be regarded as maliciously chosen.

By the decoy set, technically called so, we mean a set of 𝑛 pairs of the form

{ ( 𝑃𝑖 + 𝜁Hpoint (𝑃𝑖), 𝑄𝑖 ) }𝑛−1
𝑖=0 , (18)

where 𝜁 is a random weight. The set Q of size 𝑛 contains auxiliary orthogonal generators that can be prepared in
advance, provided that Hpoint always generates elements which are orthogonal to Q.

Prover publishes key image 𝐼 defined as

𝐼 = 𝑥−1
Hpoint (𝑃𝑠), (19)

where 𝑥 is a private key for the public key 𝑃𝑠 ∈ P such that there holds 𝑃𝑠 = 𝑥𝐺. Note, the random 𝜁 used in the
decoy set above and in 𝑍 below is sampled after 𝐼 is published.

Both of the prover and verifier define 𝑍 for the relation (15) as

𝑍 = 𝐺 + 𝜁 𝐼 (20)

and sample the blinding generator 𝐻 as to be orthogonal to all the other used generators. As follows from the
definition (20), 𝑍 necessarily contains nonzero value component which excludes the case 𝑝 = 0 in the relation (15).
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To obtain the signature, it remains to call the protocol of the Lin2-Choice lemma as follows

zkLin2Choice𝑛 ({𝑃𝑖 + 𝜁Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 ,Q, 𝐻, 𝐺 + 𝜁 𝐼; 𝑠, 𝑥

−1, 0). (21)

It results in the signature of size 2⌈log2 (𝑛)⌉ + 6. When calculating this size, we assume that bitwise representation
of an element fromG takes as much space as bitwise representation of a scalar from Fp̄. We count all elements and
scalars transmitted from prover to verifier, including the key image 𝐼 and ignoring the ring of public keys {𝑃𝑖}𝑛−1

𝑖=0 ,
which is assumed to be known beforehand to both of the prover and verifier.

Also, recalling that a signature is supposed to sign an input message M, we imply using the well-known method
of binding it to M, which is described, e.g., in [13]. Namely, we assume that our signature’s random oracle depends
on the input message, and thus the entire series of random values in each of our signatures is bound to M.

5.3 FORMAL PRESENTATION
Theorem 6:
For 𝑛 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗ which is considered as a ring of public keys, the protocol
EFLRS1 in Figure 10 is a linkable ring signature with the following properties

1. perfect correctness,
2. existential unforgeability against adaptive chosen message / public key attackers,
3. unforgeability w.r.t. insider corruption,
4. anonymity,
5. anonymity w.r.t. chosen public key attackers,
6. linkability,
7. non-frameability,
8. and non-frameability w.r.t. chosen public key attackers.

Proof: Appendix F.
Overview: Section 5.2.

EFLRS1.SignAndVerify1,𝑛 (M,P; 𝑠, 𝑥)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; 𝑠 ∈ [0 . . . 𝑛 − 1], 𝑥 ∈ F∗p̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : lets 𝑃𝑠 ← P[𝑠] ,
assert 𝑥 ≠ 0

lets 𝑝 ← 𝑥−1

lets 𝐼 ← 𝑝Hpoint (𝑃𝑠)

P → V : 𝐼

V : 𝜖, 𝜁 ←$ F∗p̄

V → P : 𝜖, 𝜁

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0 ,

𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, 𝑍, 𝐼 ) holds

compute P̂ = P + 𝜁U
𝑍 = 𝐺 + 𝜁 𝐼 ,

and run zkLin2Choice𝑛 (P̂,G[:𝑛] , 𝐻, 𝑍; 𝑠, 𝑝, 0)

Figure 10: EFLRS1 signing and verification

In the signature schemes we always imply presence of one more procedure, Link, although we do not specify
it explicitly. It is constructed trivially, as a comparison of key images 𝐼, just as in [20, 11, 26].
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5.4 SIZE AND VERIFICATION COMPLEXITY
When the protocol EFLRS1.SignAndVerify1,𝑛 in Figure 10 runs, the series of nested subprotocols is executed

up to calling zk2ElemComm, as shown in the top box in Figure 11. As a result, assuming that verifier postpones all
calculations on its side until the end of the message exchange, the verifier has only to check one expanded equality
shown in Figure 11.

SignAndVerify1,𝑛 ↩→ zkLin2Choice𝑛 ↩→ zkSVC2,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©­«𝐺 + 𝜁 𝐼 + 𝛿1𝑟𝐹 +

log2 (𝑛)−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + 𝜂𝐻 − 𝑇 + 𝜏
𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 11: Unfolded equality for EFLRS1, verifier checks it

Table 3 shows the size and verification complexity of a batch of 𝑙 EFLRS1 signatures that are created using a
common ring of 𝑛 public keys. We consider 𝑙 signatures in order to compare their summary size and complexity
against a threshold variant presented later on in this paper. To see the size and verification complexity of single
signature, simply let 𝑙 = 1.

To verify the batch, verifier combines 𝑙 instances of the equality in Figure 11 together using random weighting.
As in [6, 8, 26], the verifier computes all the scalar weights with scalar-scalar multiplications, which are assumed
consuming negligibly time, and then performs the single multi-exponentiation according to Figure 11.

Table 3: EFLRS1 signature size and verification complexity

Size Verification complexity
EFLRS1 𝑙

(
2⌈log2 (𝑛)⌉ + 6

)
mexp

(
3𝑛 + 2𝑙 log2 (𝑛) + 3𝑙 + 2

)
+ (𝑛 + 1)Hpt

6 LINKABLE THRESHOLD RING SIGNATURE
To create a threshold version of the EFLRS1 signature, we will define an auxiliary protocol zkMVC𝑙,𝑛 that

proves the same as 𝑙 instances of zkVC𝑛 prove. Then, by running in parallel 𝑙 instances of zkLin2Choice𝑛 and
by substituting one zkMVC𝑙,𝑛 call for 𝑙 nested in them calls of zkVC𝑛, we will get a many-out-of-many proof of
membership, from which we will create the linkable threshold ring signature, calling it EFLRSL.

6.1 OVERVIEW
6.1.1 MULTIPLE VECTOR COMMITMENTS

To obtain the many-out-of-many proof, we need one more helper zero-knowledge argument, namely, a proof of
multiple vector commitments

zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶),

that, for a given element vector Y ∈ G𝑙 , proves that every 𝑌𝑖 ∈ Y is a vector commitment over the vector of
orthogonal generators X∪ {𝐻} ∈ G𝑛∗ ×G∗ with weights known to prover. It is shown in Figure 12, zkMVC𝑙,𝑛 is an
argument for the relation

R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } . (22)

The relation (22) is a union of 𝑙 instances of the relation (5). The structure of the zkMVC𝑙,𝑛 protocol is quite
simple. All 𝑙 elements in the vector Y are combined into one element 𝑌 with random weights. Then, the argument
zkVC𝑛 proves that 𝑌 is a vector commitment over the generators X ∪ {𝐻}, thus convincing verifier that, due to the
random weights, every 𝑌𝑖 ∈ Y is a vector commitment over X ∪ {𝐻}.

This way we obtain a proof for a set of vector commitments at the price (space) of one vector commitment
proof. A similar construction can be found in [3]. This effect, where multiplication by random weights yields
multiple proofs for the price of one, propagates to the other relations, such as (23), (34). Although, of course, this
effect itself, as well as its propagation, must be formally proven, which we do onward.
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6.1.2 MANY-OUT-OF-MANY PROOF
According to the relation (22), the protocol zkMVC𝑙,𝑛 proves the same as 𝑙 zkVC𝑛 protocols prove. Using it, in

Figure 13 we construct an efficient many-out-of-many proof of membership

zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶),

which is an argument for the relation

R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
, (23)

where P,Q, 𝐻 satisfy ort( P ∪Q ∪ {𝐻}) .
The many-out-of-many proof of membership zkLin2mChoice𝑛,𝑙 in Figure 13 proves the same as 𝑙 concurrent

insances of the one-out-of-many proof of membership zkLin2Choice𝑛 in Figure 7 prove, at the price of one
instance.

All these 𝑙 concurrent instances of zkLin2Choice𝑛 are considered invoking all their nested sub-protocols
simultaneously. We depict this as the following invocation stack

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ 𝑙 × zkVC𝑛 . (24)

Since each of these 𝑙 running instances of zkLin2Choice𝑛 is completely independent of the others, we let all
the challenges be shared between them, provided that the random oracle which generates the challenges takes into
account all the filled in parts of the common transcript.

The final 𝑙 × zkVC𝑛 calls on the invocation stack (24) are made only for the sake of proving that each of 𝑙 vector
commitments, namely, each element of the set

{𝑍𝑘 + 𝛿1𝑟𝑘𝐹𝑘}𝑙−1
𝑘=0,

is constructed over the common set of orthogonal generators

{𝑃𝑖 + 𝛿1𝑐𝑖𝑄𝑖}𝑛−1
𝑖=0 .

Hence, we can replace all these 𝑙 × zkVC𝑛 calls, which altogether prove 𝑙 instances of the relation (5), with one call
to zkMVC𝑙,𝑛 which proves the relation (22). After that, the invocation stack (24) starts to look as

𝑙 × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 .

6.1.3 SIGNATURE EFLRSL
The EFLRS1 signature in Figure 10 boils down to the game in which prover builds a key image 𝐼 of type

(19), then publishes it, and then verifier sends the challenge 𝜁 . After that, using the one-out-of-many proof of
membership zkLin2Choice𝑛 the prover convinces the verifier that 𝑍 built by the formula (20) belongs to the decoy
set built by the formula (18), namely, to the set of pairs

( P + 𝜁U, Q ) , where U = {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 .

Now, suppose that prover publishes a vector of 𝑙 key images of type (19) each

I = {𝐼𝑘}𝑙−1
𝑘=0 ,

which correspond to 𝑙 different indices s = {𝑠𝑘}𝑙−1
𝑘=0. We call s actual signing indices or, equivalently, actual signers

in the ring. The corresponding signing private keys x = {𝑥𝑘}𝑙−1
𝑘=0 are assumed to be known to the prover. Taking a

randomly sampled 𝜁 both of the prover and verifier construct 𝑙 values of 𝑍 by the formula (20), i.e., they construct
the vector

Z = {𝑍𝑘}𝑙−1
𝑘=0 = {𝐺}𝑙 + 𝜁 I = {𝐺 + 𝜁 𝐼𝑘}𝑙−1

𝑘=0 .

And, also, they build a decoy set by the formula (18). After that, as the last step, they play the zkLin2Choice𝑛
one-out-of-many proof protocol 𝑙 times, for the same decoy set and for each 𝑍𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1]. We depict this as

𝑙 × zkLin2Choice𝑛 .

As shown in Section 6.1.2, instead of playing the one-out-of-many proof protocol 𝑙 times, they can play as well
the many-out-of-many proof protocol zkLin2mChoice𝑛,𝑙 once. By doing so, they obtain a threshold version of the
signature, which we call EFLRSL (Efficient linkable ring signature for 𝑙 actual signers). Its scheme

EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

is shown in Figure 14. Its size is 2⌈log2 (𝑛)⌉ + 3𝑙 + 3. The key image vector {𝐼𝑘}𝑙−1
𝑘=0 is counted in the calculation.

The ring P is, as usual, assumed to be known beforehand for both of the prover and verifier.
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6.2 FORMAL PRESENTATION

6.2.1 MULTIPLE VECTOR COMMITMENTS

Theorem 7:
For 𝑛, 𝑙 ∈ N∗, for a vector of nonzero elements X ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that there holds
ort(X∪ {𝐻}), for a vector of elements Y ∈ G𝑙 , the protocol zkMVC𝑙,𝑛 in Figure 12 is a complete, sHVZK argument
having cWEE for the relation (22) with unique witness.

Proof: Appendix H.
Overview: Section 6.1.1.

zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞,𝜶)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗,Y ∈ G𝑙 ; 𝔞 ∈ F𝑙×𝑛p̄ ,𝜶 ∈ F𝑙p̄ | Y = 𝔞 · X + 𝜶 · 𝐻 } // (22)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) .

P’s input : (X, 𝐻,Y; 𝔞,𝜶)
V’s input : (X, 𝐻,Y)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝝃 ←$ F𝑙∗p̄

V → P : 𝝃

P : computes a⊺ = 𝝃⊺ · 𝔞
𝛼 = ⟨𝝃,𝜶⟩

P andV : compute 𝑌 = ⟨𝝃,Y⟩
and run zkVC𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Figure 12: Zero-knowledge argument for multiple vector commitments

6.2.2 MANY-OUT-OF-MANY PROOF

Theorem 8:
For 𝑛 ∈ N∗, for two vectors of nonzero elements P,Q ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that there holds
ort(P ∪ Q ∪ {𝐻}), for a vector of elements Z ∈ G𝑙 , the protocol zkLin2mChoice𝑛,𝑙 in Figure 13 is a complete,
sHVZK argument having cWEE for the relation (23) with unique witness.

Proof: Appendix I.
Overview: Section 6.1.2.

By the same reason as for the protocol zkLin2Choice𝑛 in Figure 7, we consider (p,𝜶) as a witness for the
protocol zkLin2mChoice𝑛,𝑙 in Figure 13. The auxiliary indices s are recoverable from the witness in a polynomial
time.
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zkLin2mChoice𝑛,𝑙 (P,Q, 𝐻,Z; s, p,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝛼𝑘𝐻

}
// (23)

// P,Q, 𝐻 in R satisfy ort( P ∪Q ∪ {𝐻 }) .

P’s input : (P,Q, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : allocate X̂ ∈ G𝑛, Y ∈ G𝑙 , 𝔞 ∈ F𝑙×𝑛p̄ , �̂� ∈ F𝑙p̄ ,

and run the following block, depicted as foreach, in 𝑙 parallel threads (with shared challenges),

using common X̂,Y, 𝔞, �̂�
foreach 𝑘 ∈ [0 . . . 𝑙 − 1] // execute in parallel

let (𝑍𝑘 , 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) ← (Z[𝑘 ] , s[𝑘 ] , p[𝑘 ] ,𝜶[𝑘 ] ) ,
run zkLin2Choice𝑛 (P,Q, 𝐻, 𝑍𝑘 ; 𝑠𝑘 , 𝑝𝑘 , 𝛼𝑘) without calling nested zkVC𝑛 (X, 𝐻,𝑌 ; a, �̂�) in it,

instead assign X̂ = X // X is the same in all threads

Y[𝑘 ] = 𝑌
𝔞 [𝑘 ] = a
�̂�[𝑘 ] = �̂� .

endforeach
run zkMVC𝑙,𝑛 (X̂, 𝐻,Y; 𝔞, �̂�)

Figure 13: Zero-knowledge argument for multiple element choice relation

6.2.3 SIGNATURE EFLRSL

Theorem 9:
For 𝑛, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑛, for a vector of nonzero elements P ∈ G𝑛∗ which is considered as a ring of public
keys, the protocol EFLRSL in Figure 14 is a linkable threshold ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. non-frameability w.r.t. chosen public key attackers.

Proof: Appendix K.
Overview: Section 6.1.3.
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EFLRSL.SignAndVerify𝑙,𝑛 (M,P; s, x)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ )

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
I[𝑘 ] = 𝑝𝑘 U[𝑠𝑘 ] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are different // here V makes sure there is no actual signer signing twice

𝜖, 𝜁 ←$ F∗p̄

V → P : 𝜖, 𝜁

P andV : let 𝐻 ← Hpoint (𝜖) // thus, ort(𝐻,G, P,U, Z, I) holds

compute P̂ = P + 𝜁U ,
Z = {𝐺}𝑙 + 𝜁I

run zkLin2mChoice𝑛,𝑙 (P̂,G[:𝑛] , 𝐻,Z; s, p, {0}𝑙)

Figure 14: EFLRSL signing and verification

6.3 SIZE AND COMPLEXITY
The only equality, that verifier has to check in order to verify authenticity of the EFLRSL signature, is shown

in Figure 15. The signature size and verification complexity are provided in Table 4.

SignAndVerify𝑙,𝑛 ↩→ × zkLin2Choice𝑛 ↩→ 𝑙 × zkSVC2,𝑛 ↩→ zkMVC𝑙,𝑛 ↩→ zkVC𝑛 ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©­«
𝑙−1∑︁
𝑘=0

𝜉𝑘 (𝐺 + 𝜁 𝐼𝑘 + 𝛿1𝑟𝑘𝐹𝑘) +
log2 (𝑛)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + 𝜂𝐻 − 𝑇+
+ 𝜏

𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 + 𝛿1𝑐𝑖𝐺𝑖) = 0

Figure 15: Unfolded equality for EFLRSL, verifier checks it

Table 4: EFLRSL signature size and verification complexity

Size Verification complexity
EFLRSL* 2⌈log2 (𝑛)⌉ + 3𝑙 + 3 mexp

(
3𝑛 + 2 log2 (𝑛) + 2𝑙 + 3

)
+ (𝑛 + 1)Hpt

∗ Optimized size is shown in Table 7.

Comparing Table 4 and Table 3, we may observe that the treshold variant of the signature is asymptotically 𝑙
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times more compact. Also, the verification of the treshold variant is asymptotically slightly faster.

7 LIN2-2CHOICE LEMMA
The Lin2-Choice lemma protocol in Figure 7 made it possible to us to pick one element 𝑍 from the orthogonal

set P. Now, we are going to extend this protocol so that we can select two elements from P at a time, instead of
one. That is, now we want 𝑍 to be a weighted sum of two elements from P. We do not require the index of the
second chosen element to be anonymous, however we want its weight to remain securely hidden.

For this purpose, we need to extend the zkLin2Choice𝑛 protocol with a part that will be responsible for the
second element. We will introduce such an extension in Figure 16, and in the Simplified Lin2-2Choice lemma
(Theorem 10) will prove its properties as a one-out-of-many proof with an additional element. Next, like with the
transition from zkLin2Choice𝑛 to zkLin2mChoice𝑛,𝑙 in Section 6.1.2, we will proceed to the many-out-of-many
proof represented by the Lin2-2Choice lemma (Theorem 12) protocol in Figure 18.

7.1 OVERVIEW
7.1.1 SIMPLIFIED LIN2-2CHOICE LEMMA

By 1-out-of-many membership proof with an additional element we mean an argument about the element in
question 𝑍 being the sum of two elements 𝑍𝑃 and 𝑍𝑉 such that prover knows the scalar pair (𝑝, 𝑣) and there holds

𝑍 = 𝑍𝑃 + 𝑍𝑉
𝑍𝑃 = 𝑝𝑃𝑠 , where 𝑃𝑠 ∈ P
𝑍𝑉 = 𝑣𝑉𝑡 , where 𝑉𝑡 ∈ V

.

All elements in P ∪ V are assumed to be orthogonal.
The protocol zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼) in Figure 16 is such an argument. Formally,

it convinces verifier that prover knows witness (𝑠, 𝑝, 𝑣, 𝛼) for the relation{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1] ;
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}
. (25)

As usual, we account for blinding and for zero factors. Also, for 𝑉𝑡 ∈ V we hide only its factor 𝑣, not its index 𝑡.
The vectors P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗ in (25) are the common prover and verifier input. All 2(𝑛 + 𝑚) elements in
these four vectors are orthogonal to each other. The vectors Q and W are for technical purposes, while the vectors
P and V are used to compose the element 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 , where 𝑠, 𝑝, 𝑣 are secret, and 𝑡 is public.

Naturally, in the case 𝑚 = 0, V = W = ∅, 𝑍𝑉 = 0, the protocol zkLin22sChoice𝑛,𝑚 turns into the regular
1-out-of-many membership proof zkLin2Choice𝑛 provided by the Lin2-Choice lemma in Section 4.

The protocol zkLin22sChoice𝑛,𝑚 is constructed from zkLin2Choice𝑛 as follows.
• P hands over the following pair of elements toV, instead of the single element 𝐹 in zkLin2Choice𝑛

𝐹 and 𝐸 . (26)

• V generates a set of 𝑛 + 𝑚 challenges {𝑐𝑖}𝑛+𝑚−1
𝑖=0 .

• P and V construct a decoy set comprising two parts, of total size 𝑛 + 𝑚. The first part of the decoy set, of
size 𝑛, contains the following triplets

{(𝑃𝑖 , 𝑐𝑖𝑄𝑖 , 0)}𝑛−1
𝑖=0 , (27)

whereas the second one, which is new, of size 𝑚, contains the following triplets

{(𝑉𝑖 , 0, 𝑐𝑛+𝑖𝑊𝑖)}𝑚−1
𝑖=0 . (28)

• P replies with the scalar 𝑟 , as in zkLin2Choice𝑛, and then the following two elements are constructed

𝑟𝐹 , 𝑐𝑛+𝑡𝐸 . (29)

• As the last step, P andV play zkSVC3, (𝑛+𝑚) , instead of zkSVC2,𝑛, and thusV gets convinced that P knows
weights for the following decompositions 

𝑍 = lin(P,V)
𝐹 = lin(Q)
𝐸 = lin(W)

. (30)
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Here we omit mentioning blinding with 𝐻, which is always implied performed before transmitting elements from
prover to verifier.

An informal explanation of the zkLin22sChoice𝑛,𝑚 protocol is that considering the triplet of elements

(𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸) (31)

we prove with zkSVC3, (𝑛+𝑚) that the first, second, and third elements of the triplet (31) are linear combinations
with the same coefficients of 𝑛 + 𝑚 elements of, respectively, the first, second, and third dimensions of the decoy
set composed of the parts (27) and (28). We observe that thereby all the steps of the zkLin2Choice𝑛 and
zkLin2Choice𝑚 protocols are actually performed for 𝑍’s ‘projections’ on P and on V, respectively. That is, we
observe that

𝑍 = 𝑍𝑃 + 𝑍𝑉 , where 𝑍𝑃 = lin(P), 𝑍𝑉 = lin(V) . (32)

Thus, we come to the conclusion that all the steps of the Lin2-Choice lemma protocol have been performed for
◦ 𝑍𝑃 and the first part of the decoy set comprising 𝑛 triples (27). The actual index 𝑠 remains hidden because

the response 𝑟 is randomized, as in the Lin2-Choice lemma protocol.
◦ 𝑍𝑉 and the second part of the decoy set comprising 𝑚 triples (28). The actual index 𝑡 in this part is not

hidden because the implied ‘reply’ 𝑐𝑛+𝑡 clearly reveals it. Nevertheless, this does not wreck the Lin2-Choice
lemma argument, just makes it non-zero-knowledge by 𝑡.

Hence, by the Lin2-Choice lemma, verifier is convinced that the following holds for prover{
𝑍𝑃 ∼ 𝑃𝑠 , where 𝑠 is secret
𝑍𝑉 ∼ 𝑉𝑡 , where 𝑡 is public

, (33)

and therefore 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 for some 𝑝 and 𝑣 known to the prover.

7.1.2 MULTIPLE SIMMETRIC VECTOR COMMITMENTS
We need one more auxiliary zero-knowledge argument, it is shown in Figure 17,

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸) ,

which proves the same as 𝑙 simultaneously played instances of the zkSVC3,𝑛 argument (Figure 5) prove. Namely,
this is an argument for the following relation

R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 , (34)

where all generators P,Q,R, 𝐻 are orthogonal to each other. This relation is 𝑙 instances of the relation (9) merged
together. The other surrounding conditions for it are the same as for (9).

We implement the zkMSVC𝑙,3,𝑛 by merging 𝑙 instances of zkSVC3,𝑛 together using the shared random scalars 𝛿1
and 𝛿2. The following two vectors are built with these random scalars

X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E .

Then, instead of invoking zkVC𝑛 (X, 𝐻,𝑌 𝑗 ; 𝔞 [ 𝑗 ,:] , 𝛼 𝑗 +𝛿1𝛽 𝑗 +𝛿2𝛾 𝑗 ) for each 𝑗 ∈ [0 . . . 𝑙−1], we invoke the zkMVC𝑙,𝑛
protocol (Figure 12) for X,Y. Thus, we get a proof for the relation (34) at the price (i.e., size) of one protocol
zkMVC𝑙,𝑛 call and, therefore, at the price of one zkVC𝑛 call.

7.1.3 LIN2-2CHOICE LEMMA
Now we can construct the protocol in Figure 18,

zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶),

and prove the Lin2-2Choice lemma which states that zkLin22Choice𝑙,𝑛,𝑚 is an argument for the relation

R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
, (35)

where the generators P,Q,V,W, 𝐻 are orthogonal to each other and 𝑙 ⩽ 𝑚.
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The relation (35) is essentially the relation (25) repeated for the first 𝑙 elements of the decoy set’s second part
(28). Having such a correspondence between the relations (35) and (25), the zkLin22Choice𝑙,𝑛,𝑚 protocol is 𝑙
instances of the protocol zkLin22sChoice𝑛,𝑚 run in parallel, with the only one refinement which follows.

The refinement is that all the 𝑙 instances of the zkLin22sChoice𝑛,𝑚 protocol are played in sync and indepen-
dently of each other (except for the common challenges, as for EFLRSL in Section 6.1.3) up to the last step, where
𝑙 instances of zkSVC3,𝑛 are called. All these 𝑙 calls of zkSVC3,𝑛, are, in turn, replaced with one call to zkMSVC𝑙,3,𝑛,
which gives significant reduction in the transcript size.

7.2 FORMAL PRESENTATION
7.2.1 SIMPLIFIED LIN2-2CHOICE LEMMA
Theorem 10:
For 𝑛, 𝑚 ∈ N∗, for four vectors of nonzero elements P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗, for a nonzero element 𝐻 ∈ G∗ such
that there holds ort(P∪Q∪V∪W∪ {𝐻}), for an element 𝑍 ∈ G, the protocol zkLin22sChoice𝑛,𝑚 in Figure 16
is a complete, sHVZK argument having cWEE for the relation (25) with unique witness.

Proof: Appendix L.
Overview: Section 7.1.1.

zkLin22sChoice𝑛,𝑚 (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗, 𝑍 ∈ G, 𝑡 ∈ [0 . . . 𝑚 − 1];
𝑠 ∈ [0 . . . 𝑛 − 1], 𝑝, 𝑣, 𝛼 ∈ Fp̄

���� 𝑍 = 𝑝𝑃𝑠 + 𝑣𝑉𝑡 + 𝛼𝐻
}

// (25)

// P,Q,V,W, 𝐻 in R satisfy ort( P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡; 𝑠, 𝑝, 𝑣, 𝛼)
V’s input : (P,Q,V,W, 𝐻, 𝑍, 𝑡)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝑞, 𝛽, 𝛾 ←$ F∗p̄ and assigns if 𝑝 = 0 then 𝑞 = 0 endif
𝐹 = 𝑞𝑄𝑠 + 𝛽𝐻
𝐸 = 𝑣𝑊𝑡 + 𝛾𝐻

P → V : 𝐹, 𝐸

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : takes scalars 𝑐𝑠 , 𝑐𝑛+𝑡 at indices 𝑠 and 𝑛 + 𝑡 in c, that is, lets 𝑐𝑠 ← c[𝑠] , 𝑐𝑛+𝑡 ← c[𝑛+𝑡 ] ,
samples 𝑟 ←$ F∗p̄ ,

assigns if 𝑝 ≠ 0 then 𝑟 = 𝑐𝑠 𝑝/𝑞 endif
𝛽 = 𝑟𝛽

�̂� = 𝑐𝑛+𝑡𝛾 ,

and lets a =


𝑎𝑠 = 𝑝 // that is, 𝑝 is at 𝑠’th position in a
𝑎𝑛+𝑡 = 𝑣 // thus, a contains at most two hot entries
𝑎𝑖 = 0 for all 𝑖 ∈ [0 . . . 𝑛 + 𝑚 − 1], 𝑖 ≠ 𝑠 ∧ 𝑖 ≠ (𝑛 + 𝑡)

P → V : 𝑟

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let �̂� ← 𝑟𝐹

�̂� ← c[𝑛+𝑡 ]𝐸 ,

and run zkSVC3, (𝑛+𝑚) (P̂, Q̂, R̂, 𝐻, 𝑍, �̂�, �̂� ; a, 𝛼, 𝛽, �̂�)

Figure 16: Simplified Lin2-2Choice lemma protocol, zero-knowledge argument for two-element choice relation
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Similar to the protocol zkLin2Choice𝑛 in Figure 7 we consider (𝑝, 𝑣, 𝛼) as a witness for the protocol
zkLin22sChoice𝑛,𝑚 in Figure 16. The auxiliary index 𝑠 is recoverable from the witness in a polynomial time.

7.2.2 MULTIPLE SIMMETRIC VECTOR COMMITMENTS

To advance from the one-out-of-many proof to the many-out-of-many one, in Figure 17 we define a helper
protocol.

Theorem 11:
For 𝑛, 𝑙 ∈ N∗, for a vector of nonzero elements P ∈ G𝑛∗, and for a pair of vectors of elements Q,R ∈ G𝑛 such
that (Q +R) ∈ G𝑛∗, for a nonzero element 𝐻 ∈ G∗ such that there holds ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻}), for three
vectors of elements Z,F,E ∈ G𝑙 , the protocol zkMSVC𝑙,3,𝑛 in Figure 17 is a complete, sHVZK argument having
cWEE for the relation (34) with unique witness.

Proof: Appendix M.
Overview: Section 7.1.2.

zkMSVC𝑙,3,𝑛 (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)

Relation R =


P ∈ G𝑛∗,Q,R ∈ G𝑛, 𝐻 ∈ G∗,Z,F,E ∈ G𝑙 ;
𝔞 ∈ F𝑙×𝑛p̄ ,𝜶, 𝜷, 𝜸 ∈ F𝑙p̄

������ Z = 𝔞 · P + 𝜶 · 𝐻 ∧
F = 𝔞 ·Q + 𝜷 · 𝐻 ∧
E = 𝔞 · R + 𝜸 · 𝐻

 // (34)

// P,Q,R, 𝐻 in R satisfy ort(P ∪ nz(Q) ∪ nz(R) ∪ {𝐻 }) and (Q + R) ∈ G𝑛∗

P’s input : (P,Q,R, 𝐻,Z,F,E; 𝔞,𝜶, 𝜷, 𝜸)
V’s input : (P,Q,R, 𝐻,Z,F,E)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

V : 𝛿1, 𝛿2 ←$ F∗p̄

V → P : 𝛿1, 𝛿2

P : computes �̂� = 𝜶 + 𝛿1𝜷 + 𝛿2𝜸

P andV : compute X = P + 𝛿1Q + 𝛿2R
Y = Z + 𝛿1F + 𝛿2E

and run zkMVC𝑙,𝑛 (X, 𝐻,Y; 𝔞, �̂�)

Figure 17: Zero-knowledge argument for multiple 3-vector commitments with shared weights

7.2.3 LIN2-2CHOICE LEMMA. MULTIPLE TWO-ELEMENT CHOICES

Theorem 12 (Lin2-2Choice lemma):
For 𝑛, 𝑚, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑚, for four vectors of nonzero elements P,Q ∈ G𝑛∗, V,W ∈ G𝑚∗, for a nonzero
element 𝐻 ∈ G∗ such that there holds ort(P ∪ Q ∪ V ∪W ∪ {𝐻}), for a vector of elements Z ∈ G𝑙 , the protocol
zkLin22Choice𝑙,𝑛,𝑚 in Figure 18 is a complete, sHVZK argument having cWEE for the relation (35) with unique
witness.

Proof: Appendix N.
Overview: Section 7.1.3.

Like for the protocol zkLin2Choice𝑛 in Figure 7 we consider (p, v,𝜶) as a witness for the protocol
zkLin22Choice𝑙,𝑛,𝑚 in Figure 18. The auxiliary indices s are recoverable from the witness in a polynomial
time.
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zkLin22Choice𝑙,𝑛,𝑚 (P,Q,V,W, 𝐻,Z; s, p, v,𝜶)

Relation R =

{
P,Q ∈ G𝑛∗,V,W ∈ G𝑚∗, 𝐻 ∈ G∗,Z ∈ G𝑙 ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p, v,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝑍𝑘 = 𝑝𝑘𝑃𝑠𝑘 + 𝑣𝑘𝑉𝑘 + 𝛼𝑘𝐻

}
// (35)

// P,Q,V,W, 𝐻 in R satisfy ort( P ∪Q ∪ V ∪W ∪ {𝐻 }) .

P’s input : (P,Q,V,W, 𝐻,Z; s, p,𝜶)
V’s input : (P,Q,V,W, 𝐻,Z)
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : q, 𝜷, 𝜸 ←$ F𝑙∗p̄ , allocates F,E ∈ G𝑙∗ ,
initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]

let (𝑠𝑘 , 𝑝𝑘 , 𝑣𝑘 , 𝛽𝑘 , 𝛾𝑘) ← (s[𝑘 ] , p[𝑘 ] , v[𝑘 ] , 𝜷[𝑘 ] , 𝜸[𝑘 ] ) ,
if 𝑝𝑘 = 0 then q[𝑘 ] = 0 endif ,

let 𝑞𝑘 ← q[𝑘 ] ,
F[𝑘 ] = 𝑞𝑘𝑄𝑠𝑘 + 𝛽𝑘𝐻 // F is filled in, note random 𝑞𝑘 ’s are nullified when 𝑝𝑘 = 0

E[𝑘 ] = 𝑣𝑘𝑊𝑘 + 𝛾𝑘𝐻 // E is filled in

endforeach

P → V : F,E

V : c←$ F
(𝑛+𝑚)∗
p̄

V → P : c

P : allocates �̂�, �̂� ∈ F𝑙∗p̄ , 𝔞 ∈ F
𝑙×(𝑛+𝑚)
p̄ , samples r←$ F𝑙∗p̄ ,

and initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
let 𝑐𝑠𝑘 ← c[𝑠𝑘 ]

if 𝑝𝑘 ≠ 0 then r[𝑘 ] = 𝑐𝑠𝑘 𝑝𝑘/𝑞𝑘 endif // r is filled in here

endforeach ,

continues initialization �̂� = r ◦ 𝜷
�̂� = c[𝑛:(𝑛+𝑙) ] ◦ 𝜸 ,

lets 𝔞 = {𝑎𝑘∈[0...𝑙−1],𝑖∈[0...𝑛+𝑚−1] } =

𝑎𝑘,𝑠𝑘 = 𝑝𝑘 // that is, 𝑝𝑘 is at 𝑠𝑘 ’th position in 𝑘’th row
𝑎𝑘,𝑛+𝑘 = 𝑣𝑘 // that is, 𝑣𝑘 is at (𝑛 + 𝑘 )’th position in 𝑘’th row
𝑎𝑘,𝑖 = 0 if 𝑖 ≠ 𝑠𝑘 ∧ 𝑖 ≠ (𝑛 + 𝑘) // zeros for all the rest

P → V : r

P andV : allocate P̂ ∈ G(𝑛+𝑚)∗, Q̂, R̂ ∈ G(𝑛+𝑚) ,
assign P̂[:𝑛] = P, P̂[𝑛:] = V

Q̂[:𝑛] = c[:𝑛] ◦Q, Q̂[𝑛:] = 0𝑚

R̂[:𝑛] = 0𝑛, R̂[𝑛:] = c[𝑛:] ◦W ,

let F̂← r ◦ F
Ê← c[𝑛:(𝑛+𝑙) ] ◦ E ,

and run zkMSVC𝑙,3, (𝑛+𝑚) (P̂, Q̂, R̂, 𝐻,Z, F̂, Ê; 𝔞,𝜶, �̂�, �̂�)

Figure 18: Lin2-2Choice lemma protocol, zero-knowledge argument for multiple two-element choices relation

8 SIGNATURE EFLRSLWB WITH BALANCE PROOF
Now we are going to append a proof of the balance to the EFLRSL signature described in Section 6.2.3.

We assume that each public key in the signature ring has an associated hidden amount in the form of Pedersen
commitment [23]. When prover signs, it knows the signing indices and thus knows those commitments associated
with them. The sum of their openings, namely, the sum of the respective amounts, is to be equal to another amount,
which is hidden in another commitment known beforehand to both of the prover and verifier. We will make the
prover providing a zero-knowledge proof of this balance along with the signature.
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8.1 ADDITIONAL DEFINITIONS
Let there be two additional predefined group generators 𝐵, 𝐷, and let a ring be composed of 𝑛 pairs

{(𝑃𝑖 , 𝐴𝑖)}𝑛−1
𝑖=0 , where P = {𝑃𝑖}𝑛−1

𝑖=0 ∧ A = {𝐴𝑖}𝑛−1
𝑖=0 . (36)

In the honest case we assume the following two assertions hold, for each 𝑖 ∈ [0 . . . 𝑛 − 1], with the scalars
𝑝𝑖 , 𝑏𝑖 , 𝑑𝑖 known to at least one player in the system

𝑃𝑖 = 𝑔𝑖𝐺 , (37)
𝐴𝑖 = 𝑏𝑖𝐵 + 𝑑𝑖𝐷 . (38)

In general, as usual, we assume the case is dishonest, i.e., the equalities (38) and (37) may not hold and,
moreover, some or all 𝑃𝑖’s and 𝐴𝑖’s in the ring may be adversarially chosen. Nonetheless, hereinafter we will
assume that for all 𝐴𝑖’s in the ring there already exist some validated proofs of the decomposition (38) in the system.
These proofs can, for instance, be supplied along with other signatures that introduce these 𝐴𝑖’s into the system. In
the case of blockchain, this means that validators must verify them along with transaction signatures.

With the above precondition, in the worst case, the involved 𝑃𝑖’s may have adversarially chosen 𝑔𝑖’s or may
have an unknown relation to 𝐺, whereas 𝐴𝑖’s may have only adversarially chosen 𝑏𝑖’s and 𝑑𝑖’s, with the form (38)
kept unchanged.

In Figure 19 we summarize the above definition of how the hidden amounts are represented in the system.

Hidden amounts

• Each public key 𝑃 is accompanied by a hidden amount 𝐴 in the system. Each ring has the form (36).
• Each hidden amount 𝐴 in a ring is assumed having the decomposition (38) by the predefined generators 𝐵, 𝐷, i.e.,

𝐴 = 𝑏𝐵 + 𝑑𝐷 ,
where 𝑏 is the amount and 𝑑 is the amount’s blinding factor. That is, it is assumed that, as soon as 𝐴 is included in
the ring, there already exists an available valid proof of the decomposition (38) for it in the system.

Figure 19: Hidden amounts seen to all parties

We also need to supplement the common information available to all parties according to Figure 1 and Figure 8
with an extended set of predefined orthogonal generators, and to update the Hpoint function again as in Figure 20
so that it respects orthogonality of the additional generators.

Updated common information

• A couple of generators 𝐵, 𝐷 ∈ G∗ and the enlarged vector G = {𝐺0, 𝐺1, 𝐺2, . . . , 𝐺2n̄−1} ∈ G2n̄∗

such that, for any set H of Hpoint images on different pre-images, there holds ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G).
•Hpoint : {0, 1}★→ G∗ is updated in such a way, so that the above ort(H ∪ {𝐺, 𝐵, 𝐷} ∪G) holds.

Figure 20: Updated common information available to each party

8.2 OVERVIEW
8.2.1 SIGNATURE EFLRSLWB

Efficient linkable threshold ring signature EFLRSLWB (Efficient linkable ring signature for 𝑙 actual signers
with balance proof) is shown in Figure 21. Here is an informal introduction to how it works.

Having a ring of the form (36), prover publishes 𝑙 key images which correspond to the actually signing indices
s ∈ [0 . . . 𝑛 − 1]𝑙

I = {𝐼𝑘}𝑙−1
𝑘=0 = {𝑥−1

𝑘 Hpoint (𝑃𝑠𝑘 )}𝑙−1
𝑘=0. (39)

Also, it publishes an element 𝐴sum and declares that, to the accuracy of a summand which is proportional to the
hidden amount blinding generator 𝐷 (meaning a factor of 𝐷 is known to the prover), there holds

𝐴sum =
∑︁𝑙−1

𝑘=0
𝐴𝑠𝑘 . (40)
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Next, prover and verifier play the following game. They choose an orthogonal blinding generator 𝐻 as a hash
to group of everything they have in common, and the prover publishes vector Atmp of 𝑙 hidden amounts, which
correspond to the actual signing keys and are additionally blinded with 𝐻, i.e.,

Atmp = {𝐴𝑠𝑘 + 𝜇𝑘𝐻}𝑙−1
𝑘=0 , where 𝜇𝑘 ←$ F∗p̄ . (41)

Then, the prover publishes a set of 𝑙 what we call ‘pseudo key images’ J, which are constructed as follows

J = {𝑥−1
𝑘 Hpoint (𝐻, 𝐴tmp

𝑘
) + 𝜐𝑘𝐻}𝑙−1

𝑘=0, where 𝜐𝑘 ←$ F∗p̄ . (42)

The term ‘pseudo key image’ comes from the fact that each 𝐽𝑘 is structurally similar to 𝐼𝑘 , except for that 𝐼𝑘
takes Hpoint of 𝑃𝑠𝑘 , whereas 𝐽𝑘 takes Hpoint of (𝐻,Atmp

𝑘
) and is additionally blinded. Apparently, 𝐽𝑘 cannot be

used in the role of the real key image 𝐼𝑘 for linking actual signers, as 𝐽𝑘 is not unique due to the blinding. Note,
that all 𝐼𝑘’s are published before 𝐻 is generated, so they are orthogonal to 𝐻 even in the dishonest case.

In addition to this, prover and verifier generate one more orthogonal generator, 𝐾 , as a hash to group of
everything they have in common after J is published.

Now, using random weights 𝜁 , 𝜔, 𝜒 prover and verifier define the following three vectors

X = P − {𝐾}𝑛 + 𝜁 {Hpoint (𝑃𝑖)}𝑛−1
𝑖=0 − 𝜔A , (43)

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒 {Hpoint (𝐻, 𝐴tmp
𝑘
)}𝑙−1
𝑘=0 , (44)

Z = {𝐺}𝑙 + 𝜁I + 𝜒J , (45)

and make a call to the Lin2-2Choice lemma protocol for them, as follows

zkLin22Choice𝑙,𝑛,𝑙 (X,Q,V,W, 𝐻,Z; s, x−1, x−1, 𝜶𝐻 ) , (46)

where Q,W are auxiliary orthogonal generators prepared in advance. Here all elements in Q,W are also orthogonal
to the elements in X (43) and in V (44); this is because of Hpoint is defined in such a way that all its images
are orthogonal to the predefined Q,W. The vector 𝜶𝐻 comprises the summary weights accumulated by the
corresponding 𝐻 components within the protocol.

When the call (46) successfully completes, by Theorem 12 (Lin2-2Choice lemma) verifier is convinced that,
for each 𝑘 ∈ [0 . . . 𝑙 −1], prover knows a scalar pair (𝑝𝑘 , 𝑣𝑘) such that there holds, to the accuracy of 𝐻 component

𝑍𝑘 = 𝑝𝑘𝑋𝑠𝑘 + 𝑣𝑘𝑉𝑘 . (47)

Inserting (43), (44), (45) into (47) the verifier obtains

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 − 𝐾 + 𝜁Hpoint (𝑃𝑠𝑘 ) − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 ( 𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒Hpoint (𝐻, 𝐴tmp

𝑘
) ) , (48)

which immediately yields 𝑝𝑘 = 𝑣𝑘 , as otherwise the Hpoint image 𝐾 gets decomposed by the components of its
pre-image. By reducing (48), the verifier gets

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + 𝜁Hpoint (𝑃𝑠𝑘 ) + 𝜒Hpoint (𝐻, 𝐴tmp
𝑘
) ) + 𝑝𝑘 (𝜔𝐴tmp

𝑘
− 𝜔𝐴𝑠𝑘 ) . (49)

Since Hpoint (𝐻, 𝐴tmp
𝑘
) is orthogonal to everything else in the right-hand side of (49) and since at least 𝑃𝑠𝑘 in

it is nonzero, by Theorem 3 verifier gets convinced that the following hold for some known to the prover scalar 𝑝𝑘 ,
to the accuracy of 𝐻 component which is for blinding,


𝐺 = 𝑝𝑘𝑃𝑠𝑘

𝐼𝑘 = 𝑝𝑘Hpoint (𝑃𝑠𝑘 )
𝐽𝑘 = 𝑝𝑘Hpoint (𝐻, 𝐴tmp

𝑘
)

𝐴𝑠𝑘 = 𝐴
tmp
𝑘

.

(50a)
(50b)

(50c)

(50d)

The equalities (50a), (50b) are strict, as all elements in them are included into the pre-image of 𝐻. Thus, they
convince verifier that the signing is correct and the linking tag is valid. At the same time, (50d) convinces verifier
that 𝐴tmp

𝑘
is the hidden amount corresponding to the signing key, to the accuracy of 𝐻.

Keeping in mind there exist 𝑙 equalities (50d) for all actually signing keys in s, after the call to

zk2ElemComm(𝐷, 𝐻, 𝐴sum −
∑︁𝑙−1

𝑘=0
𝐴

tmp
𝑘

; . . . ), (51)
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the verifier is convinced that 𝐴sum is a sum of all the hidden amounts {𝐴𝑠𝑘 }𝑙−1
𝑘=0 corresponding to the signing keys,

to the accuracy of a linear by 𝐻 and 𝐷 component. Moreover, as 𝐴sum and A ⊇ {𝐴𝑠𝑘 }𝑙−1
𝑘=0 are in the pre-image

of 𝐻, the call (51) convinces the verifier in the stronger assertion, namely, that 𝐴sum is a sum of {𝐴𝑠𝑘 }𝑙−1
𝑘=0 to the

accuracy of only 𝐷 component.
Thus, the verifier is convinced that the signature is correct and also that there holds, to the accuracy of 𝐷, the

equality (40). This is all it gets from the signature.

8.2.2 IMMEDIATE IMPLICATION
The verifier then proceeds from the system properties in Figure 19, as follows. Recalling that, according to

Figure 19, there exists a proof of the decomposition (38) for each element in A, having checked that these proofs are
already verified in the system it makes sure that A contains some hidden amounts, and not anything else. Namely,
it gets convinced that there holds

{𝐴𝑠𝑘 }𝑙−1
𝑘=0 = {𝑏𝑠𝑘𝐵 + 𝑑𝑠𝑘𝐷}𝑙−1

𝑘=0 ⊆ A , where all 𝑏𝑠𝑘 ’s and 𝑑𝑠𝑘 ’s are known to someones in the system. (52)

From the decompositions (52) and from the proved equality (40), it gets convinced that

𝐴sum = 𝑏sum𝐵 + 𝑑sum𝐷 , where 𝑏sum and 𝑑sum can be reconstructed in the system. (53)

Finally, from (53), (52), (40) it gets convinced that

𝑏sum =

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 , (54)

Thus, by verifying the EFLRSLWB signature and by making sure that the corresponding proofs of the form
(38) for all the hidden amounts in the signature ring have already been checked, the verifier gets convinced that
prover knows signing private keys, and also that the sum of the corresponding hidden amounts is balanced with the
given hidden amount 𝐴sum, to the accuracy of blinding with 𝐷.

8.3 FORMAL PRESENTATION
Theorem 13:
For 𝑛, 𝑙 ∈ N∗ such that 𝑙 ⩽ 𝑛, for a vector of nonzero elements P ∈ G𝑛∗ together with a vector of elements A ∈ G𝑛
which are considered a ring of (public key, hidden amount) pairs, for an element 𝐴sum, for a nonzero element 𝐷
which is considered as a blinding generator for hidden amounts, the protocol in Figure 21 is a linkable threshold
ring signature with the following properties

1. perfect correctness,

2. existential unforgeability against adaptive chosen message / public key attackers,

3. unforgeability w.r.t. insider corruption,

4. anonymity,

5. anonymity w.r.t. chosen public key attackers,

6. linkability,

7. non-frameability,

8. non-frameability w.r.t. chosen public key attackers,

9. it is a proof of that 𝐴sum is a sum of 𝐴’s of the actual signing keys, to the accuracy of the blinding component
proportional to 𝐷.

Proof: Appendix P.
Overview: Section 8.2.1.

Note, Theorem 13 doesn’t impose any requirement on elements of the vector A and on 𝐴sum, i.e., there is no
assumption like (38) about their decompositions. At the same time, it’s easy to see that if the property 9) holds,
then the proof of balance (54) immediately follows from the proofs of the decomposition (38) for all 𝐴𝑘 ∈ A.

Therefore, if the proofs of the decomposition (38) for all 𝐴𝑘 ∈ A are obtained by any means prior or after
EFLRSLWB is created, and also if all of them are successfully verified, then the proof of the balance (54) is thus
obtained.
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EFLRSLWB.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ , 𝑑
𝚫sum ∈ Fp̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates I ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
I[𝑘 ] = 𝑝𝑘 U[𝑠𝑘 ] // vector I is filled in here

endforeach

P → V : I

V : assert all elements in I are nonzero and different // V makes sure there is no zero 𝐼 and no signer signing twice

𝜖 ←$ F∗p̄

V → P : 𝜖

P andV : let 𝐻 ← Hpoint (𝜖) // thus, 𝐻 is orthogonal to all known so far elements, i.e., ort(𝐻, 𝐺, P,A,U, I, 𝐴sum , 𝐷)

P : 𝝁, 𝝊 ←$ F𝑙∗p̄ , allocates Atmp ∈ G𝑙∗, 𝜶 ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
lets 𝜇𝑘 ← 𝝁[𝑘 ] ,

Atmp
[𝑘 ] = A[𝑠𝑘 ] + 𝜇𝑘𝐻 // Atmp is filled in, amounts get double blinded (with 𝐷 and with 𝐻)

𝜶[𝑘 ] = 𝑝𝑘 𝜇𝑘 // 𝜶 is initialized here, it contains reduced Atmp’s second blinding factors

endforeach

P → V : Atmp

P andV : let Û← {Hpoint (𝐻,A
tmp
[𝑘 ] )}

𝑙−1
𝑘=0

P : lets J← {𝑝𝑘Û[𝑘 ] + 𝜐𝑘𝐻}𝑙−1
𝑘=0 // vector J is initialized here, it contains ‘pseudo key images’ built using Û

P → V : J

V : assert all elements in Atmp, J are nonzero and different // V makes sure Û is orthogonal and there is no zero 𝐽

𝜖, 𝜁 , 𝜔, 𝜒 ←$ F∗p̄

V → P : 𝜖, 𝜁 , 𝜔, 𝜒

P andV : let 𝐾 ← Hpoint (𝜖) // thus, ort(𝐾, 𝐻, 𝐺, P,A,U, I, 𝐴sum ,Atmp , Û, J) holds

allocate X ∈ G𝑛∗, V,Z ∈ G𝑙∗, 𝑆 ∈ G ,
assign X = P − {𝐾}𝑛 + 𝜁U − 𝜔A , V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û ,

Z = {𝐺}𝑙 + 𝜁I + 𝜒J

assign 𝑆 = 𝐴sum −
∑︁𝑙−1

𝑘=0
Atmp
[𝑘 ]

run zk2ElemComm(𝐷, 𝐻, 𝑆; 𝑑𝚫sum,−
∑︁𝑙−1

𝑘=0
𝜇𝑘)

run zkLin22Choice𝑙,𝑛,𝑙 (X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; s, p, p, −𝜔𝜶 + 𝜒𝝊)

Figure 21: EFLRSLWB signing and verification
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8.4 SIZE AND COMPLEXITY
To verify the EFLRSLWB signature, V needs only to check the equalities (*) and (**) in Figure 22. By

combining the equalities (*) and (**) with random weights and then using the multi-exponetiation technique, V
performs the verifiacation in the time shown in Table 5, where signature size is also shown.

SignAndVerify𝑙,𝑛,𝑢 ↩→ zkLin22Choice𝑙,𝑛,𝑙 ↩→ zkMSVC𝑙,3, (𝑛+𝑙) ↩→ zkMVC𝑙, (𝑛+𝑙) ↩→ zkVC(𝑛+𝑙) ↩→ zk2ElemComm

// Function bitAtPos(𝑖, 𝑗 ) returns j-th bit of binary representation of i

𝑐
©­«
𝑙−1∑︁
𝑘=0

𝜉𝑘 (𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 + 𝛿1𝑟𝑘𝐹𝑘 + 𝛿2𝑐 (𝑛+𝑘 )𝐸𝑘) +
log2 (𝑛+𝑙)−1∑︁

𝑗=0
(𝑒2
𝑗𝐿 𝑗 + 𝑒

−2
𝑗 𝑅 𝑗 )

ª®¬ + 𝜂𝐻 − 𝑇 +
+ 𝜏 ©­«

𝑛−1∑︁
𝑖=0

©­«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝑃𝑖 + 𝜁𝑈𝑖 − 𝜔𝐴𝑖 + 𝐾 + 𝛿1𝑐𝑖𝐺𝑖) + (*)

+
𝑛+𝑙−1∑︁
𝑖=𝑛

©­«
log2 (𝑛+𝑙)−1∏

𝑗=0
𝑒

2·bitAtPos(𝑖, 𝑗 )−1
𝑗

ª®¬ (𝜔𝐴tmp
(𝑖−𝑛) + 𝜒�̂�(𝑖−𝑛) − 𝐾 + 𝛿2𝑐𝑖𝐺𝑖)

ª®¬ = 0

and
𝜏𝐷 + 𝜂𝐻 + 𝑐𝑆 − 𝑇 = 0 (**)

Figure 22: EFLRSLWB unfolded equality, verifier checks it

Table 5: EFLRSLWB signature size and verification complexity

Size Verification complexity
EFLRSLWB 2⌈log2 (𝑛 + 𝑙)⌉ + 6𝑙 + 6 mexp( 4𝑛 + 2 log2 (𝑛 + 𝑙) + 7𝑙 + 7 ) + (𝑛 + 𝑙 + 2)Hpt

9 SIGNATURE MULTRATUG
The signature EFLRSLWB has key image Hpoint (𝑃)/𝑥 with private key 𝑥 in the denominator. In some

applications it is desirable to have key image in a linear form by private key. This form, namely, the form
𝑥Hpoint (𝑃), is used in the LSAG [20], CLSAG [11], CryptoNote [28] schemes. Consequently, the multiparty
signing operations can be easily implemented for them.

Now we will move 𝑥 from the denominator to the numerator in the EFLRSLWB’s key image. Thus we will
obtain a version of the EFLRSLWB signature with key image 𝑥Hpoint (𝑃), called EFLRSLWBLI (Efficient linkable
ring signature with balance proof and linear key image) and aliased as Multratug.

Our idea of this 𝑥’s movement is quite simple and does not require any new steps in the protocol, just only a
few modifications to it, which are outlined below. Although, for the first, we will have to generalize Theorem 3,
which is about 3-element tuples, to element tuples of greater length to prove that this movement of 𝑥 is correct.

9.1 OVERVIEW
9.1.1 RANDOM WEIGHTING FOR T-S-TUPLES

Suppose, we have two tuples T,D, of (𝑡 + 𝑠 + 1) elements each, we call them as t-s-tuples, such that

T = (𝑃, 𝑄0, 𝑄1, . . . , 𝑄𝑡−1, 𝑆0, 𝑆1, . . . , 𝑆𝑠−1) , (55)
D = (𝑍, 𝐹0, 𝐹1, . . . , 𝐹𝑡−1, 0, 0, . . . ) , (56)

where 𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝑍 ∈ G, F ∈ G𝑡 , for some 𝑡 > 0, 𝑠 ⩾ 0. The structure of these tuples is as follows.
The element 𝑍 corresponds to the element 𝑃, the elements in F correspond to the elements with the same indices
in Q, and 𝑠 zeros correspond to the elements in S.

Now, we sample a random scalar vector 𝝃 of length (𝑡 + 𝑠 + 1) and build the inner products of our tuples with
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this scalar vector 𝝃. Namely, we build 𝑋,𝑌 such that

𝑋 = ⟨𝝃,T⟩ = 𝑃 + 𝜉1𝑄0 + 𝜉2𝑄1 + · · · + 𝜉𝑡+1𝑆0 + 𝜉𝑡+2𝑆1 + . . . , (57)
𝑌 = ⟨𝝃,D⟩ = 𝑍 + 𝜉1𝐹0 + 𝜉2𝐹1 + . . . , (58)
where 𝝃 = [1, 𝛿0, 𝛿1, . . . , 𝛿𝑡−1, 𝜎0, 𝜎1, . . . , 𝜎𝑠−1] . (59)

Without limiting generality, we let the first element of the random vector 𝝃 be equal to 1.
In addition to the above, suppose we have a complete, sHVZK, and having cWEE argument that convinces a

verifier that 𝑌 ∼ 𝑋 to the accuracy of 𝐻 component. Here 𝐻 is assumed as a blinding generator chosen in such a
way as to be orthogonal to all the elements in T, except for maybe those in its part S. The question is what we can
say about T and D under these conditions.

Theorem 14 answers this question so that as long as Q contains at least one nonzero element and 𝑃 is orthogonal
to T \ {𝑃}, there necessarily exists an unique factor 𝑎 known to prover that connects all the corresponding element
pairs in T and D. The following relation (60), protocol zkTElemRW𝑡 ,𝑠 (𝑃,Q, S, 𝐻, 𝑍,F; 𝑎, 𝛼, 𝜷, 𝜸) in Figure 23,
and Theorem 14, formalize the game and sufficient conditions for the existence of such an unique factor.


𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝐻 ∈ G∗, 𝑍 ∈ G, F ∈ G𝑡 ;
𝑎, 𝛼 ∈ Fp̄, 𝜷 ∈ F𝑡p̄, 𝜸 ∈ F

𝑠
p̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
F = 𝑎Q + 𝜷𝐻 ∧
{0}𝑠 = 𝑎S + 𝜸𝐻

 (60)

9.1.2 MULTRATUG: MOVING X TO THE NUMERATOR
Our idea of this 𝑥’s movement is about building X,V, and Z in Figure 21 a bit differently, as follows. So, instead

of the key image vector I = { 𝑥𝑘−1𝑈𝑠𝑘 }
𝑙−1
𝑘=0 in Figure 21, prover builds a vector of the linear key images Î as

Î = { 𝑥𝑘𝑈𝑠𝑘 }𝑙−1
𝑘=0 . (61)

Then, the prover builds a blinded copy of the corresponding subset of U as

Utmp = {𝑈𝑠𝑘 }𝑙−1
𝑘=0 + �̂�𝐻, where �̂�←$ F𝑙∗p̄ , (62)

and sends it to verifier together with Atmp. The vector Utmp (along with Atmp) gets into the pre-images of all the
hashes that are generated in the protocol from this moment on.

Finally, using the vectors Î,Utmp, and an additional random scalar 𝜃, both of the prover and verifier build X,V,Z
as

X = P − {𝐾}𝑛 + 𝜁U − 𝜔A , (63)

V = {𝐾}𝑙 + 𝜔Atmp − 𝜁Utmp + 𝜃Î + 𝜒Û , (64)

Z = {𝐺}𝑙 + 𝜃Utmp + 𝜒J . (65)

Then they proceed with executing the protocol to the completion. Of course, the prover adjusts the total blinding
factor at the private input of zkLin22Choice𝑙,𝑛,𝑙 with respect to the new �̂� sampled in (62).

Since X,V,Z are now defined by (63), (64), (65) instead of (43), (44), (45), by Theorem 12 (Lin2-2Choice
lemma) the verifier obtains 𝑙 following equalies, instead of 𝑙 equalities (49), for each 𝑘 ∈ [0 . . . 𝑙 − 1], to the
accuracy of 𝐻 component

𝐺 + 𝜃𝑈tmp
𝑘
+ 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜃𝐼𝑘 + 𝜒�̂�𝑘) + 𝑝𝑘 (𝜔𝐴

tmp
𝑘
− 𝜔𝐴𝑠𝑘 + 𝜁𝑈𝑠𝑘 − 𝜁𝑈

tmp
𝑘
) , where 𝑝𝑘 = 𝑥−1

𝑘 . (66)

By Theorem 14, from (66) the verifier gets convinced that the following system of equalities holds, for each 𝑘 , to
the accuracy of 𝐻 component, this is explained in detail in Appendix T

𝐺 = 𝑝𝑘𝑃𝑠𝑘

𝑈𝑠𝑘 = 𝑈
tmp
𝑘

𝑈𝑠𝑘 = 𝑝𝑘 𝐼𝑘

𝐽𝑘 = 𝑝𝑘�̂�𝑘

𝐴𝑠𝑘 = 𝐴
tmp
𝑘

.

(67a)

(67b)

(67c)

(67d)

(67e)

From (67a) and (67c), which are strict (have zero 𝐻 component, as 𝐻 is a hash image of all their elements),
the verifier gets convinced that the signing is correct and that the linear linking tags are valid, respectively. The
balance proof and all the other points of the Theorem 13 proof remain the same as for EFLRSLWB with the former
linking tag. Thus, the transition to the linear linking tag is performed, with all the EFLRSLWB properties moved
unaffected to Multratug.
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9.2 FORMAL PRESENTATION

9.2.1 RANDOM WEIGHTING FOR T-S-TUPLES

Theorem 14 (Random weighting for t-s-tuples):
For 𝑡 ∈ N∗, 𝑠 ∈ N, for two nonzero elements 𝑃, 𝐻 ∈ G∗, for two element vectors Q ∈ G𝑡 , S ∈ G𝑠 such that there
holds nz(Q) ≠ ∅ ∧ 𝑃 != lin(nz(Q) ∪ nz(S) ∪ {𝐻}) ∧ 𝐻 != lin(nz(Q) ∪ {𝑃}), the protocol zkTElemRW𝑡 ,𝑠 in
Figure 23 is a complete, sHVZK argument having cWEE for the relation (60) with unique witness.

Proof: is in Appendix Q.
Overview: Section 9.1.1.

zkTElemRW𝑡 ,𝑠 (𝑃,Q, S, 𝐻, 𝑍,F; 𝑎, 𝛼, 𝜷, 𝜸)

Relation R =


𝑃 ∈ G∗, Q ∈ G𝑡 , S ∈ G𝑠 , 𝐻 ∈ G∗, 𝑍 ∈ G, F ∈ G𝑡 ;
𝑎, 𝛼 ∈ Fp̄, 𝜷 ∈ F𝑡p̄, 𝜸 ∈ F

𝑠
p̄

������ 𝑍 = 𝑎𝑃 + 𝛼𝐻 ∧
F = 𝑎Q + 𝜷𝐻 ∧
{0}𝑠 = 𝑎S + 𝜸𝐻

 // (60)

// Precondition: 𝑃,Q, 𝐻 in R satisfy nz(Q) ≠ ∅ ∧ 𝑃 != lin(nz(Q) ∪ S ∪ {𝐻 }) ∧ 𝐻 != lin(nz(Q) ∪ {𝑃})

V : 𝜹←$ F𝑡∗p̄ ,𝝈 ←$ F𝑠∗p̄

V → P : 𝜹,𝝈

P : computes �̂� = 𝛼 + ⟨𝜹, 𝜷⟩ + ⟨𝝈, 𝜸⟩

P andV : compute 𝑋 = 𝑃 + ⟨𝜹,Q⟩ + ⟨𝝈, S⟩
𝑌 = 𝑍 + ⟨𝜹,F⟩

and run any complete, sHVZK, and cWEE protocol that convincesV
that P knows witness (𝑎, �̂�) for the relation (4), i.e.,
that 𝑋 and 𝑌 are connected as 𝑌 = 𝑎𝑋 + �̂�𝐻

Figure 23: Random weighting for two t-s-tuples

Note, the premise of Theorem 14 introduces a couple of preconditions in the form 𝐴 != lin(B) which easily
implements as 𝐴 = Hpoint (B). This form of precondition is weaker than ort({𝐴} ∪ B) which is a shorthand of the
DL relation assumption [6] for {𝐴} ∪ B. Thus, a theorem having the precondition 𝐴 != lin(B) is stronger than a
theorem with the precondition ort({𝐴} ∪ B).

Since we do not have a separate assumption for premises in the form 𝐴 != lin(B), only for those in the form
ort(C), here is a rule for how the first form translates to the second. If ort(B) holds, then 𝐴 != lin(B) is equivalent
to ort({𝐴} ∪ B) and thus the translation is done. Otherwise, if ort(B) does not hold, then there exists a set B̂ ⊂ B
together with some coefficients known to prover such that ort(B̂) ∧ ∀𝐵 ∈ B : 𝐵 = lin(B̂). Thus, 𝐴 != lin(B)
translates to ort({𝐴} ∪ B̂) in this case. Having defined such a translation, we have shown that the theorem holds
under the DL relation assumption.

9.2.2 SIGNATURE MULTRATUG

Theorem 15:
The scheme in Figure 24 obtained from the scheme in Figure 21 by appending the element vector Utmp and
substituting the new key image vector Î for the vector I in it, as shown in Figure 24, is a linkable threshold ring
signature retaining the properties 1. . . 9) of the scheme in Figure 21 listed in Theorem 13.

Proof: is in Appendix U.
Overview: Section 9.1.2.

Thus, we have created the Multratug signature scheme and proved that it has all the properties shown in Table 2.
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EFLRSLWBLI.SignAndVerify𝑙,𝑛 (M,P,A, 𝐴sum, 𝐷; s, x, 𝑑𝚫sum)

P’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗; s ∈ [0 . . . 𝑛 − 1]𝑙 , x ∈ F𝑙∗p̄ , 𝑑
𝚫sum ∈ Fp̄)

V’s input : (M ∈ {0, 1}★,P ∈ G𝑛∗,A ∈ G𝑛, 𝐴sum ∈ G, 𝐷 ∈ G∗)
P’s output : 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 // signature is a list of all P → V messages from this and nested protocols

V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : assert all elements in P are nonzero and different

let U← {Hpoint (P[𝑖 ] )}𝑛−1
𝑖=0

P : allocates Î ∈ G𝑙∗, p ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
assert x[𝑘 ] ≠ 0

p[𝑘 ] = x−1
[𝑘 ]

lets (𝑠𝑘 , 𝑝𝑘) ← (s[𝑘 ] , p[𝑘 ] ) ,
Î[𝑘 ] = 𝑥𝑘 U[𝑠𝑘 ] // vector Î is filled in here

endforeach

P → V : Î

V : assert all elements in Î are nonzero and different // V makes sure there is no zero 𝐼 and no signer signing twice

𝜖 ←$ F∗p̄

V → P : 𝜖

P andV : let 𝐻 ← Hpoint (𝜖) // thus, 𝐻 is orthogonal to all known so far elements, i.e., ort(𝐻, 𝐺, P,A,U, Î, 𝐴sum , 𝐷)

P : 𝝁, �̂�, 𝝊 ←$ F𝑙∗p̄ , allocates Atmp,Utmp ∈ G𝑙∗, 𝜶, �̂� ∈ F𝑙∗p̄ ,

initializes foreach 𝑘 ∈ [0 . . . 𝑙 − 1]
lets (𝜇𝑘 , �̂�𝑘) ← (𝝁[𝑘 ] , �̂�[𝑘 ] ) ,

Atmp
[𝑘 ] = A[𝑠𝑘 ] + 𝜇𝑘𝐻 // Atmp is filled in, amounts get double blinded (with 𝐷 and with 𝐻)

𝜶[𝑘 ] = 𝑝𝑘 𝜇𝑘 // 𝜶 is initialized here, it contains reduced Atmp’s second blinding factors

Utmp
[𝑘 ] = U[𝑠𝑘 ] + �̂�𝑘𝐻 // Utmp is filled in,𝑈’s get blinded with 𝐻

�̂�[𝑘 ] = 𝑝𝑘 �̂�𝑘 // �̂� is initialized here, it contains reduced Utmp’s blinding factors

endforeach

P → V : Atmp, Utmp

P andV : let Û← {Hpoint (𝐻, Utmp, Atmp
[𝑘 ] ) }

𝑙−1
𝑘=0

P : lets J← {𝑝𝑘Û[𝑘 ] + 𝜐𝑘𝐻}𝑙−1
𝑘=0 // vector J is initialized here, it contains ‘pseudo key images’ built using Û

P → V : J

V : assert all elements in Atmp, J are nonzero and different // V makes sure Û is orthogonal and there is no zero 𝐽

𝜖, 𝜁 , 𝜔, 𝜒, 𝜃 ←$ F∗p̄

V → P : 𝜖, 𝜁 , 𝜔, 𝜒, 𝜃

P andV : let 𝐾 ← Hpoint (𝜖) // thus, ort(𝐾, 𝐻, 𝐺, P,A,U, I, 𝐴sum ,Atmp , Û, J) holds

allocate X ∈ G𝑛∗, V,Z ∈ G𝑙∗, 𝑆 ∈ G ,
assign X = P − {𝐾}𝑛 + 𝜁U − 𝜔A , V = {𝐾}𝑙 + 𝜔Atmp − 𝜁Utmp + 𝜃Î + 𝜒Û ,

Z = {𝐺}𝑙 + 𝜃Utmp + 𝜒J

assign 𝑆 = 𝐴sum −
∑︁𝑙−1

𝑘=0
Atmp
[𝑘 ]

run zk2ElemComm(𝐷, 𝐻, 𝑆; 𝑑𝚫sum,−
∑︁𝑙−1

𝑘=0
𝜇𝑘)

run zkLin22Choice𝑙,𝑛,𝑙 (X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; s, p, p, −𝜔𝜶 + 𝜁 �̂� + 𝜃 �̂� + 𝜒𝝊)

Figure 24: Multratug with 𝐼 = 𝑥Hpoint (𝑃) signing and verification
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9.3 SIZE AND COMPLEXITY
The size of Multratug increases by 𝑙 compared to EFLRSLWB because of the appended vector Utmp. Also, for

the same reason, its verification complexity increases by 𝑙 under the multi-exponent. The substitution of Î for I
affects neither the size nor complexity. The totals are shown in Table 6.

Table 6: Multratug signature size and verification complexity

Size Verification complexity
Multratug* 2⌈log2 (𝑛 + 𝑙)⌉ + 7𝑙 + 6 mexp( 4𝑛 + 2 log2 (𝑛 + 𝑙) + 8𝑙 + 7 ) + (𝑛 + 𝑙 + 2)Hpt

∗ Optimized size is shown in Table 7.

10 BETTER ARGUMENT FOR VECTOR COMMITMENT
The implementation of our pivotal vector commitment argument zkVC𝑛 in Figure 3 is not decisive. We will

now present a shorter implementation of it, called zkVCopt
𝑛 , with the same properties of completeness, sHVZK, and

cWEE. This our implementation utilizes the same ideas as the compressed pivot implementation in [2].

10.1 OVERVIEW
The idea is that, for any 𝑛 ⩾ 1, it is always possible to construct an sHVZK and having cWEE custom Schnorr-

like protocol of size 𝑛+1, that proves a commitment𝑌 is a weighted sum of 𝑛 orthogonal generators X with weights
known to the prover.

In this protocol, prover sends an element 𝑇 as the first message. Then, verifier challenges with random scalar 𝑐,
and the prover replies with 𝑛 scalars 𝝉 by which the orthogonal generators X are then multiplied. The final check
is the same as for the Schnorr id protocol, the only difference is that now the inner product ⟨𝝉,X⟩ is taken instead
of the basic generator multiplied by the scalar replied in the Schnorr id scheme.

However, it is excessive to transmit all 𝑛 scalars in 𝝉; a proof of their knowledge would suffice. Moreover, this
proof does not have to be sHVZK, a complete argument having cWEE would be enough.

10.2 FORMAL PRESENTATION

zkNElemComm𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (68)

// 𝑋 in R satisfies ort(𝑋) .

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P : 𝝓←$ F𝑛∗p̄ and computes 𝑇 = ⟨𝝓,X⟩

P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x

P → V : 𝝉

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑇 − 𝑐𝑌 ?
= ⟨𝝉,X⟩

Figure 25: Zero-knowledge argument for n element commitment relation
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For the first, we define the protocol zkNElemComm𝑛 in Figure 25. Its design looks Schnorr-like. This protocol
is an argument for the relation

R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } . (68)

The relation (68) is actually the relation (7) with the items renamed and, at the same time, is the relation (5)
with the blinding generator 𝐻 moved to the vector X.

The zkNElemComm𝑛 protocol properties are specified in the next theorem. Note that, for 𝑛 = 2, zkNElemComm2
is equivalent to zk2ElemComm in Figure 2.

Theorem 16:
For 𝑛 ∈ N∗, for a vector of nonzero elements X ∈ G𝑛∗ such that there holds ort(X), for an element 𝑌 ∈ G, the
protocol zkNElemComm𝑛 in Figure 25 is a complete, sHVZK argument having cWEE for the relation (68) with
unique witness.

Proof: is in Appendix V.
For the second, in Figure 26 we define a log-size vector commitment argument argVC𝑛 for the same relation (68).

We do use the blinding generator 𝐻 neither in zkNElemComm𝑛 nor in argVC𝑛. Also, note that zkNElemComm𝑛 is
sHVZK, whereas argVC𝑛 is not. The properties of argVC𝑛 are specified in the following theorem.

Theorem 17:
For 𝑛 ∈ N∗ such that 𝑛 is a power of 2, for a vector of nonzero elements X ∈ G𝑛∗ such that there holds ort(X), for
an element 𝑌 ∈ G, the protocol argVC𝑛 in Figure 26 is a complete argument having cWEE for the relation (68)
with unique witness.

Proof: is in Appendix W.

argVC𝑛 (X, 𝑌 ; x)

Relation R = {X ∈ G𝑛∗, 𝑌 ∈ G; x ∈ F𝑛p̄ | 𝑌 = ⟨x,X⟩ } // (68)

// X in R satisfies ort(X) , 𝑛 is a power of 2 everytime.

P’s input : (X, 𝑌 ; x)
V’s input : (X, 𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

if 𝑛 > 4 then

P : lets �̂�← 𝑛/2 and computes 𝐿 =
〈
x[:�̂�] ,X[�̂�:]

〉
𝑅 =

〈
x[�̂�:] ,X[:�̂�]

〉
P → V : 𝐿, 𝑅

V : 𝑒 ←$ F∗p̄

V → P : 𝑒

P andV : compute X̂ = 𝑒−1X[:�̂�] + 𝑒X[�̂�:]

𝑌 = 𝑌 + 𝑒2𝐿 + 𝑒−2𝑅

P : computes x̂ = 𝑒x[:�̂�] + 𝑒−1x[�̂�:]

P andV : run argVC�̂� (X̂, 𝑌 ; x̂) // run recursively until n=4

else // n ⩽ 4

P → V : x

V : returns 𝐴𝑐𝑐𝑒𝑝𝑡 iff the following holds

𝑌
?
= ⟨x,X⟩

endif

Figure 26: Efficient argument for vector commitment

Third, we combine zkNElemComm𝑛 with argVC𝑛 into the single proof, as follows.
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zkVC
opt
𝑛 (X, 𝐻,𝑌 ; a, 𝛼)

Relation R = {X ∈ G𝑛∗, 𝐻 ∈ G∗, 𝑌 ∈ G; a ∈ F𝑛p̄ , 𝛼 ∈ Fp̄ | 𝑌 = ⟨a,X⟩ + 𝛼𝐻 } // (5)

// X, 𝐻 in R satisfy ort(X ∪ {𝐻 }) , and also (𝑛 + 1) is a power of 2 everytime.

P’s input : (X, 𝐻,𝑌 ; a, 𝛼)
V’s input : (X, 𝐻,𝑌 )
P’s output : none
V’s output: 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒 𝑗𝑒𝑐𝑡

P andV : let X̂← [X, 𝐻]

P : 𝝓←$ F
(𝑛+1)∗
p̄ , lets x̂← [x, 𝛼], and computes 𝑇 =

〈
𝝓, X̂

〉
P → V : 𝑇

V : 𝑐 ←$ F∗p̄

V → P : 𝑐

P : computes 𝝉 = 𝝓 − 𝑐x̂

P andV : run argVC𝑛+1 (X̂, 𝑇 − 𝑐𝑌 ; 𝝉)

Figure 27: Efficient zero-knowledge argument for vector commitment

Theorem 18:
For a nonzero element 𝐻 ∈ G∗, for 𝑛 ∈ N∗ such that (𝑛 + 1) is a power of 2, for a vector of nonzero elements
X ∈ G𝑛∗ such that there holds ort(X∪{𝐻}), for an element𝑌 ∈ G, the protocol zkVCopt

𝑛 in Figure 27 is a complete,
sHVZK argument having cWEE for the relation (5) with unique witness.

Proof: is in Appendix X.

10.3 SIZES AND COMPLEXITIES
As a result, we obtain the argument zkVCopt

𝑛 of size 2⌈log2 (𝑛 + 1)⌉ + 1.We replace zkVC𝑛 with zkVCopt
𝑛 in

Multratug and EFLRSL. After this replacement, new sizes of the signatures are shown in Table 7. Their verification
times do not change much, so we do not recalculate them. For comparison, the former sizes and times are in Table 4
and Table 6. Also, from now on we require (𝑛 + 𝑙 + 1) and (𝑛 + 1) to be powers of 2, respectively.

Table 7: Optimized characteristics of the Multratug and EFLRSL schemes

Size Verification complexity
Multratug 2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 7𝑙 + 4 mexp( 4𝑛 + 8𝑙 + . . . ) + (𝑛 + 𝑙 + 2)Hpt
EFLRSL 2⌈log2 (𝑛 + 1)⌉ + 3𝑙 + 1 mexp ( 3𝑛 + 2𝑙 + . . . ) + (𝑛 + 1)Hpt

. . . Insignificant summands are omitted.

11 APPLICATIONS
11.1 SIGNATURE IN BLOCKCHAIN

Suppose, Multratug is used to sign transactions in an UTXO blockchain like, e.g., [21, 28]. Suppose, the
blockchain public keys, hidden amounts, hash functions, and predefined generators follow the rules in Figures 1,
8, 19, 20. There is nothing unusual in these requirements for a blockchain. Besides this, the blockchain does not
have to follow the CryptoNote rules for stealth addresses [28], although it can.

For every transaction, its sender P performs as follows.
◦ Picks from the ledger 𝑛 pairs of the form (𝑃, 𝐴), which become transaction inputs, and makes the ring (36)

of them.

◦ Generates and places into the transaction 𝑚 pairs of the form (𝑃, 𝐴), which become the transaction outputs.
For convenience, it considers all 𝑚 hidden amounts 𝐴 of these outputs as the vector Aout. Note, knowing the
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actual signing ring keys and their corresponding hidden amounts, P distributes the value parts of elements
in Aout in such a way as to be in balance with the signing amounts in the ring.

◦ Lets 𝐴sum =
∑𝑚−1
𝑘=0 𝐴out

𝑘
.

◦ Knowing the actual signing ring keys, let their indices be in the vector s, it signs the transaction with the
Multratug signature.

◦ P proves ranges of all elements in Aout, for example, using the aggregate range proof from [8] which is
combinable with Multratug, as shown in Section 12.3.

◦ Proves that each 𝐴out
𝑘
∈ Aout has the decomposition (38) with known to P coefficients. Notably, if the

ranges of elements in Aout are already proved by the protocols from [6, 8], then for all 𝐴out
𝑘
∈ Aout their

decompositions (38) are proved by this.
Thus, the transaction contains the proofs of the form (38) for all of the output hidden amounts in Aout. Also, the
transaction contains Multratug which provides the proof of that

∑𝑚−1
𝑘=0 𝐴out

𝑘
is equal to the sum

∑𝑙−1
𝑘=0 𝐴𝑠𝑘 of all

hidden amounts related to the signing indices s, to the accuracy of 𝐷.
Taking into account that all 𝐴𝑠𝑘 ’s are a subset of all hidden amounts A in the ring, and the latter are assumed

already verified having the form (38), it follows that the sum of amounts corresponding to the actual signing keys
is equal to the sum of the output amounts, i.e.,

𝑙−1∑︁
𝑘=0

𝑏𝑠𝑘 =

𝑚−1∑︁
𝑘=0

𝑏out
𝑘 .

At the same time, the same Multratug proves that P knows private keys for the actual signing public keys at
the ring indices in s. Multratug also provides key images I’s, thus blocking reuse of those public keys that actually
have signed the signature.

11.2 REGULAR RING SIGNATURE
EFLRSL is a simple linkable threshold ring signature which, in terms of Table 2, has Log-sz, Regular, Linkable,

Thresh., General properties check-marked. Consequently, EFLRSL can be used in a wide range of cryptographic
systems and scenarios, including electronic voting or whistleblowing described, e.g., in [20].

As for an not-linkable version of EFLRSL, it can be easily constructed by blinding the EFLRSL key images.
To blind the key images it suffices to exclude them from the arguments of Hpoint call that creates the blinding
generator 𝐻, and to add random 𝐻 components to them.

12 IMPROVEMENTS
12.1 USING RING OF SIZE N·L

It is possible to slightly reduce the size of the Multratug scheme by not using the Lin2-2Choice lemma and
instead by growing the ring 𝑙 times as to comprise 𝑙 replicas of itself, each for its hidden amount 𝐴tmp

𝑘
. In this case,

after the appropriate optimizations, the signature size would be

2 log2 (𝑛𝑙) + 5𝑙 + O(1).

However, we still prefer the version with the Lin2-2Choice lemma, since not using it implies that the ring grows
to 𝑛𝑙 size. This would require to add more generators to keep all the ring elements linearly independent of each
other and, hence, will correspondingly increase 𝑙 times the verification time.

12.2 BATCH VERIFICATION
Multratug signature batch verification can be performed by checking only one equality, by combining the

equalities (*) and (**) in Figure 22 of all signatures in a batch using random weighting. Of course, the equality (*)
slightly changes when zkVCopt

𝑛 is used in place of zkVC𝑛, this is a minor detail and we do not show the change here.
In any case, for batches, the asymptotic verification complexity by ring size 𝑛 decreases from 4𝑛 to 3𝑛 under the

multi-exponent. This happens due to the fact that all the Multratug signature batch instances use the same vector
of predefined generators G. The same can be stated about EFLRSL, referring to Figure 15 and finding there a
reduction from 3𝑛 to 2𝑛 under the multi-exponent.
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12.3 COMBINING WITH OTHER PROOFS
Multratug relies on the pivotal vector commitment argument and is independent of implementation of the pivot.

Consequently, Multratug can be combined with any other proof which uses the vector commitment argument. For
instance, it can be combined with the inner product argument implemented according to [6] or [8].

In this way, Multratug can be combined with the single or aggregate range proofs from [8], and they will share
the component responsible for the sum

log2 (𝑛+𝑙+𝑛rangeproof )−1∑︁
𝑗=0

(𝑒2
𝑗𝐿 𝑗 + 𝑒−2

𝑗 𝑅 𝑗 ),

where 𝑛rangeproof is equal to bitsize of the range times number of proofs aggregated.

12.4 DOWNGRADING TO U/X KEY IMAGE
In the case of using the signature in a blockchain confined to the stealth address format of CryptoNote [28], it

is possible to replace the key image form 𝑥−1Hpoint (𝑥𝐺) with the form 𝑥−1𝑈, where𝑈 is a predefined orthogonal
generator. This is to be performed for the EFLRSLWB version of the signature defined in Section 8.

Of course, such a replacement would require expanding the vector G of predefined orthogonal generators so as
to use them instead of Hpoint (𝑃𝑖)’s in the ring. The size of the signature will not change after that. However, the
batch verification time will be significantly reduced.

12.5 MULTIPLE HIDDEN AMOUNTS PER ACCOUNT
In the context of a blockchain, particularly in the scenario described in Section 11.1, as well as in other cases,

we can consider a setup where several hidden amounts are associated with a public key, instead of one. To be
precise, we can assume that for each 𝑖-th address (37) in the ring, 𝑖 ∈ [0 . . . 𝑛 − 1], instead of the hidden amount 𝐴𝑖
defined by the formula (38) there are 𝑢 hidden amounts {𝐴𝑖 𝑗 }𝑢−1

𝑗=0 defined by the following formula

𝐴𝑖 𝑗 = 𝑏𝑖 𝑗𝐵 𝑗 + 𝑑𝑖 𝑗𝐷 . (69)

According to this new formula (69) which replaces (38), now, for each signing index 𝑠𝑘 , 𝑘 ∈ [0 . . . 𝑙 − 1],
prover P is required to know 𝑢 amounts {𝑏𝑠𝑘 , 𝑗 }𝑢−1

𝑗=0 along with 𝑢 blinding factors {𝑑𝑠𝑘 , 𝑗 }𝑢−1
𝑗=0 . Also, according

to (69), now there are 𝑢 orthogonal generators {𝐵 𝑗 }𝑢−1
𝑗=0 instead of the single generator 𝐵 in the system, so the

common information in Figure 20 is assumed extended with them. Each 𝑗-th hidden amount is encoded with the
corresponding generator 𝐵 𝑗 . The blinding generator 𝐷 remains intact and is used for all of the amounts.

To conclude the setup, each of the output hidden amounts 𝐴 ∈ Aout is replaced with 𝑢 new hidden amounts of
the form (69), with 𝑖 ∈ [0 . . . 𝑚 − 1], 𝑗 ∈ [0 . . . 𝑢 − 1] for them. It is assumed that some external range proofs are
provided for all of the output hidden amounts as well.

With this setup, the signature Multratug needs no modification to convinceV that 𝑢 balances are kept. Just all
𝑢 hidden amounts of each address are convolved back into single element 𝐴𝑖 , as follows,

𝐴𝑖 =

𝑢−1∑︁
𝑗=0

𝑏𝑖 𝑗𝐵 𝑗 +
𝑢−1∑︁
𝑗=0

𝑑𝑖 𝑗𝐷 ,

and the same is for the output hidden amounts. After that, the signature Multratug is released for them. It is easy to
see that, since for each 𝑗 the amount 𝑏𝑖 𝑗 is encoded with the corresponding orthogonal generator 𝐵 𝑗 , the amounts
for different 𝑗’s do not intermix. Thus, all 𝑢 balances get proved at the price of one, as in Table 7.

13 COMPARISON
We compare our optimized Multratug and EFLRSL signatures (Table 7) with the best performing ones listed in

Table 1, namely, with Lelantus Spark [14], Omniring [18], RingCT3.0 [29], Triptych [22], and DualRing-EC [30],
taking linear-size CLSAG [11] for the base.

We distinguish two gradations of scheme anonymity inherently bound to the two key image (linking tag) forms
used. In general, if a scheme has a key image or another public element in the form 𝑥−1𝑈, then it has lower
anonymity unless a compensatory restriction is imposed on the keys. Key images in the forms 𝑥−1Hpoint (𝑃) and
𝑥Hpoint (𝑃) are stronger and entail no key restrictions, however, it is still required that the scheme has no other
public elements in the form 𝑥−1𝑈. More on this in Appendix Z.
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13.1 FOR MULTRATUG
The signatures with balance proofs are compared in Table 8. Notation is as follows. Hsc is the time of taking

a scalar hash, it is omitted when its multiplier is logarithmic or less. Hpt is the time of taking a hash to curve,
mexp(𝑁) is the time of multi-exponentiation of 𝑁 summands.

The schemes with ‘Any keys=Yes’ operate with arbitrary keys; those with ‘Any keys=No’ require special key
format, e.g., as in [28]. Our signature receives ‘Any keys=Yes’, as according to Theorem 15 and, hence, according
to Theorem 6 it has the EU_CMA/CPA, anonymity w.r.t. CPA, non-frameability w.r.t. CPA properties.

Lelantus Spark [14] has key image 𝑥−1𝑈, nevertheless, according to the original paper it has a subsystem that
facilitates multiparty signing, so we set ‘MP=Yes’ for it. The other schemes receive ‘MP=Yes’ only if their key
images are linear by 𝑥. Also, for Lelantus Spark, we only count the size of its parallel 1-out-of-many proof from
the section ‘7 Efficiency’ in [14], so its actual size may have a few extra bytes.

For this comparison, we exclude key images together with input/output accounts which occupy the same space
for all schemes. Also, we do not include the output range proofs assuming they are separated into distinct units,
although according to Section 12.3 our scheme effectively integrates with them, as does Omniring [18].

Batch verification time, which is explained for our scheme in Section 12.2, is generally 25%. . . 50% less for all
log-size schemes due to common generators merging, we do not show it. Verification complexities of the schemes
with the key images 𝑥−1Hpoint (𝑃) or 𝑥Hpoint (𝑃) have an additional summand of roughly 𝑛Hpt, which reflects the
fact that Hpoint must be called at least once for every public key in the ring.

Multratug is represented by its version with optimized vector commitment argument, with characteristics taken
from Table 7; we have subtracted 𝑙 from its size, since the key images are not counted. The CLSAG, Triptych,
and Lelantus Spark schemes have no threshold versions, hence, to compare them with those having threshold ones,
their sizes in Table 8 are to be multiplied by 𝑙. RingCT3.0 size is taken from the corresponding paper [29]. The
same is for Omniring, its size is taken from the section ‘6.3 Performance Comparison’ of [18]. Note, according
to its paper, Omniring has O log2 (𝑛𝑙 + . . . ) size, whereas in the section ‘D Comparison with Omniring’ in [29] it
reads as O log2 (𝑛 + . . . ), we hold to the first one.

According to Table 8, if the ring size is, say, 𝑛 = 25 . . . 210 and the number of inputs is limited to, say, 𝑙 ⩽ 5,
which is [29, 18, 22], Multratug looks performing on par with the best schemes.

Table 8: Comparison of LRS schemes that simultaneously prove the balance

Size Verification complexity Key image Any keys MP
CLSAG* 𝑛 + 2 (𝑛 + 2)Hsc + 2𝑛mexp(3) + 𝑛Hpt 𝑥Hpoint (𝑃) Yes Yes
Triptych* 3⌈log2 (𝑛)⌉ + 8 mexp( 2𝑛 + . . . ) 𝑥−1𝑈 No No
Lelantus Spark* 3⌈log2 (𝑛)⌉ + 5 mexp( 2𝑛 + . . . ) 𝑥−1𝑈 No Yes
RingCT3.0 2⌈log2 (𝑛 𝑙)⌉ + 𝑙 + 17 mexp( 2 𝑛 𝑙 + . . . ) +mexp(𝑙 + 1) + . . . 𝑥−1𝑈 No No
Omniring 2⌈log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3)⌉ + 9 mexp( 2 𝑛 𝑙 + . . . ) 𝑥−1𝑈 No No
Omniring 2⌈log2 (𝑛 𝑙 + 𝑛 + 3𝑙 + 3)⌉ + 9 *** 𝑥Hpoint (𝑃) No Yes
Multratug** 2⌈log2 (𝑛 + 𝑙 + 1)⌉ + 6𝑙 + 4 mexp( 4𝑛 + 8𝑙 + . . . ) + (𝑛 + 𝑙 + 2)Hpt 𝑥Hpoint (𝑃) Yes Yes

∗ Authors did not specify any optimized threshold version, assuming it takes up 𝑙 times the size.
∗∗ Scheme version with linear linking tag, Section 9, and optimized vector commitment argument, Section 10.3 .
∗∗∗ Authors did not specify formula, we assume the quantity is average in its class, about the same as for the version with 𝑥−1𝑈.
. . . Insignificant summands are omitted.

As for applicability in blockchains, we should probably only consider signatures that allow for easy signing by
multiple parties, since this seems to be a must-have attribute for a modern blockchain. Therefore, only Lelantus
Spark, Omniring version with 𝑥Hpoint (𝑃), and our signature are to be compared. Table 9 shows their sizes
(excluding key images and range proofs) in bytes computed in the mentioned above region of interest. We assume
an element in G and a scalar in Fp̄ take 32 bytes each.

Table 9: Comparison of LRS schemes with balance that are suitable for blockchain

𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5
𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210 𝑛 = 25 𝑛 = 210

Lelantus Spark 640 1120 1120 2080 1600 3040 2080 4000 2560 4960
Omniring 704 1024 736 1056 768 1088 768 1088 800 1120
Multratug 672 992 864 1184 1056 1376 1248 1568 1440 1760

Notably, Multratug is the only log-size signature with balance proof of all the listed, which is applicable in
blockchains as well as in other environments where keys do not stick to the [28] rules, are allowed to be generated
ad-hoc and malformed as, e.g., in [20, 21, 11].
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13.2 FOR EFLRSL
In Table 10 we compare the simplest versions, which are the ring signatures with one actual signer. So, we take

our EFLRSL signature for 𝑙 = 1 with the optimized vector commitment argument (Table 7). We also include in the
comparison the DualRing-EC [30] signature which, according to the survey in [30], is the shortest known so far.
For this comparison, we don’t distinguish between the regular ring signatures and the linkable ones. When both
versions are available, we take the regular one, in this case the linkable version usually takes up one more element
of space. The sizes of DualRing-EC and streamlined versions of RingCT3.0, Omniring are taken from ‘Table 1:
O(log n)-size DL-based ring signature schemes for n public keys . . . ’ in [30].

According to Table 10, for large rings such that ⌈log2 (𝑛+1)⌉ = ⌈log2 (𝑛)⌉ almost everytime, both the DualRing-
EC and EFLRSL signatures have the shortest size. However, EFLRSL has a stronger security model, which is
explained in Appendix Y. Thus, it turns out that the EFLRSL signature for 𝑙 = 1 is the shortest known to date of
signatures for environments in which malformed keys are allowed.

Table 10: Comparison of DL-based ring signatures

Size Verification complexity
CLSAG 𝑛 + 1 𝑛Hsc + 𝑛mexp(2)
RingCT3.0 2⌈log2 (𝑛)⌉ + 14 mexp( 2𝑛 + . . . ) + . . .

Omniring 2⌈log2 (𝑛 + 2)⌉ + 9 mexp( 2 𝑛 𝑙 + . . . )
EFLRSL* 2⌈log2 (𝑛 + 1)⌉ + 4 mexp( 3𝑛 + . . . ) + (𝑛 + 1)Hpt
DualRing-EC** 2⌈log2 (𝑛)⌉ + 4 mexp( 𝑛 + . . . )

∗ Only linkable version of the ring signature is available.
∗∗ See comments in Appendix Y.
. . . Insignificant summands are omitted.

14 CONCLUSION
In this paper we presented two novel efficient membership proofs in a prime-order group without bilinear

pairings, under the DDH assumption. In the lemmas called Lin2-Choice and Lin2-2Choice we proved these
membership proofs are complete, special honest verifier zero-knowledge, and have computational witness-extended
emulation.

Using these membership proofs we created a trusted-setup-free, pairings-free, DDH-based log-size linkable
threshold ring signature with balance proof called Multratug. To illustrate, for a ring of 210 addresses with associated
hidden amounts, and for 5 actually signing keys in it, Multratug occupies less than 2KBytes of space, as shown in
Table 9.

In addition to quite a moderate size and built-in balance proof, our signature makes it easy to implement
multi-party signing operations with it. Thus, it can be used for signing confidential transactions in a modern
blockchain.

Multratug can operate securely with any addresses, not only with those which follow the CryptoNote stealth
address paradigm. This trait along with the above properties makes Multratug applicable to various cryptographic
systems, including and not limited to blockchains. Therefore, Multratug may serve as a log-size drop-in replacement
for the well-known linear-size LSAG scheme and its extensions.

Our survey has shown that among the existing log-size schemes, for large rings and medium thresholds, only
a version of the Omniring scheme comprises almost the same wide set of useful features (Table 1, Table 2) at the
minimal size (Table 8). However, the Multratug scheme is better secured against malformed keys.

Apart from blockchains, for the case if a cryptographic system requires neither a balance proof nor the other
additional properties from a signature, just the minimal possible size and a security model strong enough to accept
ad hoc generated and malformed keys, we provide a streamlined version of our signature called EFLRSL. It is the
most compact signature with a strong security model to date (Table 10), as far as we can find.

It should be noted that since our membership proofs, and hence our signatures, rely on the simplest vector
commitment argument (using the definition in Section 1.2), they effectively combine with other arguments, such
as range proofs, to further reduce the overall size of the proof.

The design of our membership proofs and signatures is modular. We compose them from elementary protocols,
and for each one we prove that it is special honest verifier zero-knowledge and has computational witness-extended
emulation. We represent in full detail the crucial parts of our proofs, for the other parts we provide the sketches
and refer to the appropriate works where the necessary details can be found.
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Because of the modular design, it is sufficient to check all the blocks individually in order to understand and
verify our schemes. Along the way, some of these elementary protocols, such as the random weighting for t-s-tuples
argument that we provide here, are far from trivial and may have an independent value.

Although signatures and other cryptographic solutions using additional or more complex assumptions such as
bilinear pairings may give better performance, we think that the efficient signatures constructed for the simplest
prime-order group herein may be interesting in two aspects. First, they show in purely theoretical terms how much
can be achieved on the simplest foundation. Second, just as the Bulletproofs protocol originally formulated for a
prime-order group was later instantiated in a post-quantum setup using lattice hardness assumptions, we have some
hope that something similar can be done for our protocols in the future.
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A PROOF OF 2-ELEMENT COMMITMENT
Proof: [Theorem 1] Completeness of the protocol can easily be seen from its code. Also, in the case if 𝑇 is a direct
weighted sum of {𝑋, 𝐻}, then the protocol splits into two independent Schnorr identification schemes [24] with
the same challenge. Thus, if this is the case, then the sHVZK and cWEE properties of the protocol in Figure 2 are
proved the same way as for the Schnorr id scheme.

Suppose this is not the case, i.e., prover sends 𝑇 without knowing its relation to {𝑋, 𝐻} or, in other words,
having𝑇 != lin(𝑋, 𝐻). Then, for the prover, if it has𝑌 = lin(𝑋, 𝐻), then after successful completion of the protocol
it has 𝑇 = lin(𝑋, 𝐻), which contradicts to the supposition. Otherwise, if there holds 𝑌 = != lin(𝑋, 𝐻), then by
rewinding the protocol and excluding 𝑇 it obtains 𝑌 = lin(𝑋, 𝐻), which is a contradiction again.

Thus, the sHVZK and cWEE properies of the protocol are proved. They also can be proved the same way as
for the other Schnorr-like protocols in [2, 5, 8, 26].

Uniqueness of the witness (𝑥, ℎ) follows from the fact that 𝑌 is a Pedersen commitment, which is binding [6].

47

https://eprint.iacr.org/2021/1406
https://eprint.iacr.org/2021/1406
https://doi.org/10.1145/3319535.3354262
https://doi.org/10.1145/3319535.3354262
https://eprint.iacr.org/2019/969
https://bitcoin.org/bitcoin.pdf
https://ia.cr/2020/018
https://doi.org/10.1145/322217.322225
https://ia.cr/2020/688
https://ia.cr/2004/267
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2019/508
https://eprint.iacr.org/2021/1213


B PROOF OF VECTOR COMMITMENT
Proof: [Theorem 2] The zkVC𝑛 protocol in Figure 3 is a modified subset version of the Bulletproofs logarithmic
inner product argument from [6]. There are following three modifications to it

• The inner product argument described in [6] has no sHVZK property, we append this property to it the same
way as this is done in [8], namely, by adding a blinding component to all transmitted elements. We omit
providing a proof of sHVZK for our zkVC𝑛 protocol here; it is identical to the sHVZK proof in [8].

• With the above modification, the zkVC𝑛 protocol in Figure 3 is a subset case, namely b = 0𝑛, of the inner
product argument from [6] for the relation (6). Thus, our protocol is an argument for the relation (5).

• For the case 𝑛 = 1 in zkVC𝑛 we use the custom zero-knowledge zk2ElemComm protocol, which is complete,
sHVZK, and has cWEE by Theorem 1.

Each of the above three modifications clearly does not override the completeness and cWEE properties of the
Bulletproofs logarithmic inner product argument. Also, the first modification adds the sHVZK property. Thus, our
protocol zkVC𝑛 in Figure 3 is a complete, sHVZK argument having cWEE for the relation (5).

Uniqueness of the witness (a, 𝛼) follows from the fact that 𝑌 is a Pedersen vector commitment, which is
binding.

C PROOF OF 3-TUPLE RANDOM WEIGHTING
Proof: [Theorem 3] The completeness and sHVZK properties of the zk3ElemRW protocol in Figure 4 follow from
the fact that zk3ElemRW adds nothing to transcript of a protocol called in the last step, which in its turn is complete
and sHVZK by the premise.

cWEE property of the zk3ElemRW protocol is also easy to establish, we do not provide a detailed proof here to
save space, only the following sketch.

First, as the blinding generator 𝐻 is orthogonal to all other generators by the premise, components proportional
to 𝐻 of all participating elements can be considered separately and be omitted in the main consideration. For the
related to 𝐻 part of witness of the sub-protocol called in the last step, it is enough to calculate the factor �̂� as

�̂� = 𝛼 + 𝛿1𝛽 + 𝛿2𝛾 .

Second, witness extraction can be accomplished in the well-known way, e.g., as in the proof of the RandomWeighting-
WEE lemma in [26].

Third, to ascertain that the witness 𝑎 has only one possible value in this protocol, we can write 𝑍, 𝐹, 𝐸 as
𝑍 = 𝑧𝑃𝑃 + 𝑧𝑄𝑄 + 𝑧𝑅𝑅
𝐹 = 𝑓𝑃𝑃 + 𝑓𝑄𝑄 + 𝑓𝑅𝑅
𝐸 = 𝑒𝑃𝑃 + 𝑒𝑄𝑄 + 𝑒𝑅𝑅

, (70)

since it is clear that, when 𝐻 is already excluded from the consideration, the elements 𝑍, 𝐹, 𝐸 cannot have
components beyond the linear span of 𝑃,𝑄, 𝑅 without breaking the DL assumption. Inserting the decomposition
(70) into the equality 𝑌 = 𝑎𝑋 , we obtain

rank
( [

1 𝛿1 or 0, if 𝑄 = 0 𝛿2 or 0, if 𝑅 = 0
𝑧𝑃 + 𝛿1 𝑓𝑃 + 𝛿2𝑒𝑃 𝑧𝑄 + 𝛿1 𝑓𝑄 + 𝛿2𝑒𝑄 𝑧𝑅 + 𝛿1 𝑓𝑅 + 𝛿2𝑒𝑅

] )
< 2 , (71)

which immediately yields the sought relation, namely, that for some unique witness 𝑎 there holds, to the accuracy
of H components, 

𝑍 = 𝑎𝑃

𝐹 = 𝑎𝑄

𝐸 = 𝑎𝑅

.

Also, from the condition (71) it can be understood why we are demanding 𝑃 ≠ 0 ∧ (𝑄 ≠ 0 ∨ 𝑅 ≠ 0).

D PROOF OF SIMMETRIC VECTOR COMMITMENT
Proof: [Theorem 4] The protocol zkSVC3,𝑛 in Figure 5 adds nothing to transcript of a complete, sHVZK, and
cWEE protocol called in the last step of it (it can be, say, zkVC𝑛), thus inheriting the sHVZK property from the
latter. Completeness of the protocol zkSVC3,𝑛 is trivial. cWEE property of the protocol is easy to establish, the
sketch follows.
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First of all, we exclude 𝐻 from all considerations for the same reason as in Appendix C. Then, because of
orthogonality of all nonzero elements in P ∪Q ∪R, each of the elements 𝑍, 𝐹, and 𝐸 decomposes into a weighted
direct sum of P,Q,R, respectively. Therefore, to prove the cWEE property of zkSVC3,𝑛 it suffices to prove cWEE
for zkSVC3,1.

In its turn, zkSVC3,1 is equivalent to the protocol zk3ElemRW in Figure 4, hence zkSVC3,1 has cWEE by
Theorem 3. Thus we obtain cWEE for zkSVC3,𝑛.

Uniqueness of the witness (a, 𝛼, 𝛽, 𝛾) follows from the fact that each of 𝑍, 𝐹, 𝐸 is a Pedersen vector commitment,
which is binding.

E PROOF OF LIN2-CHOICE LEMMA
Proof: [Theorem 5] Completeness and sHVZK of the zkLin2Choice𝑛 protocol in Figure 7 are trivial. We exclude
𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the cWEE property of the protocol. In the last step of zkLin2Choice𝑛 there is a call to

zkSVC2,𝑛 (P, c ◦Q, 𝐻, 𝑍, 𝑟𝐹; a, 𝛼, 𝛽),

and hence by Theorem 4 there holds the relation{
𝑍 = ⟨a, P⟩
𝑟𝐹 = ⟨a, c ◦Q⟩

, (72)

where a ∈ F𝑛p̄ is extracted by the zkSVC2,𝑛 protocol extractor.
Thus, if a contains only one nonzero scalar, say, under index 𝑗 , then the sought witness 𝑝 is extracted together

with the index 𝑠, namely, 𝑝 = 𝑎 𝑗 , 𝑠 = 𝑗 . If a = {0}𝑛 is the case, then the witness 𝑝 is extracted as zero, the index 𝑠
has no meaning.

Let’s show that a cannot contain more than one nonzero scalar, otherwise the zkLin2Choice𝑛 protocol extractor
is able to break the DL assumption. Suppose that a contains at least two nonzeros, 𝑎 𝑗 and 𝑎𝑘 , under the indices
𝑗 and 𝑘 such that 𝑗 ≠ 𝑘 . Writing out 𝑍 and 𝑟𝐹 as weighted direct sums of P and Q, respectively, according to
the equalities (72) we see that by unwinding the zkSVC2,𝑛 call the extractor obtains a such that the following two
equalities hold for known 𝑍, 𝐹, c, 𝑟, a

𝑍 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑃𝑖 , (73)

𝑟𝐹 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑐𝑖𝑄𝑖 , (74)

where 𝑟 ≠ 0, otherwise the equality (74) would immediately produce a contradiction with ort(Q).
Let the extractor unwinds to the point where the challenges c were generated, and resumes obtaining new

c′, 𝑟 ′, a′. Thus, there holds 𝑟 ′ ≠ 0 due to the equality (74). Also, recalling ort(P), there holds a′ = a due to the
equality (73). By excluding 𝐹 from the equality (74) the extractor obtains

0 =

𝑛−1∑︁
𝑖=0

𝑎𝑖 (
𝑐𝑖

𝑟
−
𝑐′
𝑖

𝑟 ′
)𝑄𝑖 . (75)

Since ort(Q) holds, all weights of 𝑄𝑖’s in the equality (75) must be zero, otherwise the extractor breaks the DL
assumption.

According to our supposition, 𝑎 𝑗 ≠ 0 and 𝑎𝑘 ≠ 0, so we write out two equations for the weights of 𝑄 𝑗 and 𝑄𝑘{
0 =

𝑐 𝑗

𝑟
− 𝑐′

𝑗

𝑟 ′

0 =
𝑐𝑘
𝑟
− 𝑐′

𝑘

𝑟 ′

, (76)

where we have already performed division by nonzero 𝑎 𝑗 and 𝑎𝑘 . As 𝑟 ≠ 0 and 𝑟 ′ ≠ 0, the system (76) reduces to

𝑐𝑘

𝑐′
𝑘

=
𝑐 𝑗

𝑐′
𝑗

, (77)

which holds only with negligible probability. Therefore, if there is more than one nonzero element in a, then the
extractor with overwhelming probability obtains one or more nonzero weights of 𝑄𝑖’s in the equality (75). Thus,
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under our supposition, the extractor breaks the DL assumption by expressing𝑄 𝑗 through the elements of Q \ {𝑄 𝑗 },
hence our supposition is incorrect.

By this we have proved that the PPT extractor with overwhelming probability finds witness for the relation (15)
and, thus, the protocol zkLin2Choice𝑛 has cWEE.

As for uniqueness of witness (𝑝, 𝛼), it trivially follows from subtracting two different decompositions of 𝑍
from each other and, thus, breaking the DL relation assumption.

F SIGNATURE EFLRS1
Proof: [Theorem 6] As follows from Figure 10, EFLRS1 is a linkable ring signature by definition (we assume the
EFLRS1.Link method is defined the usual way by matching key images, e.g., as in [20]).

All the listed properties 1. . . 8) of the EFLRS1 signature are proved by well-known methods, such as in [20,
11, 13, 26], which rely on the key image of the form of 𝑥±1Hpoint (𝑃) and on completeness, sHVZK, and cWEE
of the underlying proving system. We do not describe these proofs here due to their volume; instead, we refer the
interested reader to the referenced papers.

Anyway, as an example, here is a proof sketch of the property 2). Definition of the existential unforgeability
against adaptive chosen message / public key attackers is provided in [20], it is also can be taken from [26]. In this
sketch, for the sake of simplicity we combine the approaches introduced in [20, 13]. We will build a PPT master
algorithmM that breaks the DL assumption by calling a PPT adversary A that forges EFLRS1.

LetL be a list of public keys of which each key is generated according to the description in [20] or, equivalently,
according to the definition in [26]. NeitherM nor A knows any of private keys for L. First of all,M substitutes
a new implementation for Hpoint, which for an input element 𝐿 samples a random 𝑟 and returns 𝑟𝐿. This new
Hpoint implementation memorizes the sampled 𝑟’s and, thus, remains deterministic and indistinguishable from the
original Hpoint outsideM.

Second,M simulates the signing oracle SO the following way. For an input ring L ⊂ L, it uniformly picks
an index 𝜋 and simulates signing with 𝐿 𝜋 . Without knowing private key 𝑥𝜋 such that 𝐿 𝜋 = 𝑥𝜋𝐺, it constructs
key image as 𝐼 = 𝑟𝐺 using 𝑟 memorized by Hpoint for 𝐿 𝜋 . Thus, the zkLin2Choice𝑛 call (21) at the end of the
simulated EFLRS1 takes the form

zkLin2Choice𝑛 ({𝐿𝑖 + 𝜁Hpoint (𝐿𝑖)}𝑛−1
𝑖=0 ,G[:𝑛] , 𝐻, 𝐺 + 𝜁𝑟𝐺; 𝜋, . . . , 0) .

Since zkLin2Choice𝑛 is sHVZK by Theorem 5,M builds a simulated transcript of it with back patching Hscalar.
Namely, without knowing 𝑥𝜋 , M uniformly samples the random oracle replies to be used as known-in-advance
challenges in the signature simulation and feeds them toSO. The latter builds corresponding random oracle queries
using the fed replies and patches Hscalar so that it returns these replies in response to the built queries. As a result,
the simulated signature gets indistinguishable from a real one.

Then, M feeds L, SO, Hpoint, and Hscalar to A, letting the latter produce forgeries whose rings are not
spotted in calls to SO. Finally, starting with an arbitrary successfully forged transcript,M unwinds and forks it the
necessary amount of times, thus building a transcript tree with successful forgeries as leaves. Since zkLin2Choice𝑛
has cWEE by Theorem 5, from this transcript treeM restores witness 𝑥𝜋 that breaks the DL assumption for one of
the public keys in L.

That’s the sketch. It misses the non-trivial part a full proof should posess that is about the implication fromA’s
non-negligible probability of generating successful forgeries toM’s non-negligible ability of building the forged
transcript tree or a dynamic equivalent of it. Formal methods of proving this implication can be found, e.g., in [20,
13]. Besides, here is the following brief intuition for this in Appendix G.

G MASTER CAPABLE OF BUILDING FORGED TREE
Suppose, A produces forgeries with a non-negligible probability and, nevertheless, M has only a negligible

probability of successfully building the forged tree. ThenM is always able to start a new tree with a new forgery
generated by A, however it never succeeds in obtaining the necessary amount of successful leaves from A. This
means that since M rewinds, forks, and resumes A, at some point of this process M always gets stuck in the
situation that it has a successfully built subtree with forged leaves for the first fork with some challenges generated
at that point, yet for one of its subsequent forks with other challenges from the same point M cannot complete
building a forged subtree anymore.

This situation would not be possible if these forks were identical and completely independent, only reading
different random tapes. Indeed, if they were, they would be indistinguishable from each other and, therefore, would
have equal probabilities of success. However they are not, as being identical they still share the same instances
of SO and simulated Hpoint, Hscalar. Now we will demonstrate how to convert SO, Hpoint, Hscalar to such a
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form that the forks become identical to each other. Thus we will informally prove thatM does not fall into the
above situation, and hence our assumption is not true, which means that M has a non-negligible probability of
constructing the complete forged tree.

Apparently, the simulated Hpoint is not a problem, as it is indistinguishable from the stateless deterministic
function, and hence it can be kept as is. The only problem is Hscalar, which is back patched for some queries
occured in SO. To make Hscalar look stateless deterministic, let it crash when an attempt is made to back patch
it for a query it has already been called with before. This makes Hscalar indistinguishable from a deterministic
stateless function, unless it crashes. With this modification, the first executed fork of A always has a greater or
equal chance of success than the subsequent forks, as the latter may crash when trying to patch queries made by
the first one; if they do not crash, then all of them succeed in building their forged subtrees.

So, to avoid these crashes, let’s make the following change to SO. Let SO check each time before applying
back patch to Hscalar for a query to see if it will crash. If so, let SO uniformly resample the challenges and build
the query again. The queries are linearly challenge-dependent, so the uniform challenge resampling changes the
query as if the latter were resampled uniformly. Therefore, it would take no more than a polynomial number of
resamplings to avoid the crashes at all. Thus, we have shown thatM is capable of constructing a complete forged
tree as soon as A produces forgeries with non-negligible probability.

H PROOF OF MULTIPLE VECTOR COMMITMENTS
Proof: [Theorem 7] As can be seen from Figure 12, the protocol zkMVC𝑙,𝑛 adds nothing to the transcript of the
protocol zkVC𝑛, thus inheriting the sHVZK property. Completeness of the protocol zkMVC𝑙,𝑛 is clear. Let’s prove
the cWEE property of the protocol.

This time, to show an example, we will not exclude the generator 𝐻 from our consideration. We append 𝐻 to
X, obtaining the expanded vector X̄ ∈ G𝑛+1

X̄ =

[
X
𝐻

]
.

At the same time, we attach the vector of blinding factors 𝜶 ∈ F𝑙p̄ to the witness matrix 𝔞 ∈ F𝑙×𝑛p̄ , and thus define
the expanded witness matrix �̄� ∈ F𝑙×(𝑛+1)p̄ as

�̄� = [𝔞 𝜶] .
Also, we combine a ∈ F𝑛p̄ with 𝛼 ∈ Fp̄, and thus define ā ∈ F𝑛+1p̄

ā =

[
a
𝛼

]
.

Extractor obtains ā by unwinding the zkVC𝑛 call. As a result, for each 𝑖-th column 𝔞 [:,𝑖 ] of the matrix 𝔞, there
holds the equality

ā[𝑖 ] = 𝝃⊺ · �̄� [:,𝑖 ] . (78)
The extractor repeats the unwinding 𝑙 times with re-sampled challenges 𝝃. This way the equality (78) repeated 𝑙
times turns into a matrix equation with random matrix of size 𝑙 × 𝑙, from which the extractor recovers each 𝑖’th
column �̄� [:,𝑖 ] , 𝑖 ∈ [0 . . . 𝑛] of the matrix �̄�. Thus, the extractor recovers the sought witness �̄�.

As for uniqueness of the witness (𝔞,𝜶), it trivially follows from subtracting two different decompositions of Y
from each other and, thus, breaking the DL relation assumption.

I PROOF OF THE PROPERTIES OF MANY-OUT-OF-MANY PROOF
Proof: [Theorem 8] Completeness and sHVZK of the zkLin2mChoice𝑛,𝑙 protocol in Figure 13 are clear from its
design. Let’s prove the cWEE property of the protocol. We will consider 𝐻 this time.

First, extractor uses the zkMVC𝑙,𝑛 protocol extractor, which exists by Theorem 7, and restores witness (𝔞, �̂�)
from the zkMVC𝑙,𝑛 call in the last step of zkLin2mChoice𝑛,𝑙 . After that, for every 𝑘 ∈ [0 . . . 𝑙 − 1], it assigns

(a, �̂�) ← (𝔞 [𝑘 ] , �̂�[𝑘 ]) ,

and proceeds with the extraction using the zkLin2Choice𝑛 protocol extractor, which exists by Theorem 5, as
though the values of a, �̂� were obtained from zkVC𝑛 in the last step of zkLin2Choice𝑛. This way the extractor
obtains witness (𝑝, 𝛼), and maps it to 𝑘-th positions in p and 𝜶, respectively.

We have shown how the extractor restores witness (p,𝜶) for the relation (23) and, hence, the zkLin2mChoice𝑛,𝑙
protocol has cWEE.

Uniqueness of the witness (p,𝜶) immediately follows from uniqueness of the witness (𝑝, 𝛼) for the protocol
zkLin2Choice𝑛 in Figure 7, which is by Theorem 5.
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J SIGNATURE EFLRSL FOR L=1
As can be seen from Figure 14, for 𝑙 = 1, the EFLRSL protocol is equivalent to the EFLRS1 protocol in

Figure 10, with the variables and calls renamed. The overwhelmingly nonzero multiplier 𝜉0, which is applied
simultaneously to the commitment and witness in the nested zkVC𝑛 call, doesn’t distort the equivalence. Thus, by
Theorem 6, for 𝑙 = 1, all the properties listed in Theorem 9 hold.

K SIGNATURE EFLRSL FOR L ⩾ 1
Proof: [Theorem 9] A proof for the case 𝑙 = 1 is provided in Appendix J.

The EFLRSL protocol is a linkable threshold ring signature by-design, this can be seen from Figure 14. We
assume the EFLRSL.Link method is defined the usual way, i.e., by matching key images.

All of the listed in Theorem 9 properties of the EFLRSL signature can be proved by assuming that any of them
does not hold and reducing to the case of 𝑙 = 1, that is, by inferring a contradiction to what has already been proved
in Appendix J. The key image form 𝑥±1Hpoint (𝑃) along with the completeness, sHVZK, and cWEE properties of
the underlying proving system make the reduction to the 𝑙 = 1 case possible.

As an alternative method, it is also possible to prove the listed properties with the notion of non-slanderability
using the techniques provided in [27, 11, 15], which we do not describe here due to their volume.

L PROOF OF SIMPLIFIED LIN2-2CHOICE LEMMA
Proof: [Theorem 10] Completeness and sHVZK properties of the zkLin22sChoice𝑛,𝑚 protocol in Figure 16 are
clear. We exclude 𝐻 from the consideration for the same reason as in Appendix C.

Let’s prove the protocol cWEE property. In the last step of zkLin22sChoice𝑛,𝑚 there is a call to

zkSVC3,𝑛

( [
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻, 𝑍, 𝑟𝐹, 𝑐𝑛+𝑡𝐸 ; a, 𝛼, 𝛽, �̂�

)
,

and hence by Theorem 4 there holds the relation
𝑍 =

〈
a[:𝑛] , P

〉
+

〈
a[𝑛:] , V

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 , (79)

with the witness a ∈ F𝑛+𝑚p̄ restored by witness extractor of the zkSVC3,𝑛 protocol.
Due to ort(P,V,Q,W), having 𝑍 = 𝑍𝑃 + 𝑍𝑉 according to the formula (32), the system (79) splits into two

subsystems {
𝑍𝑃 =

〈
a[:𝑛] , P

〉
𝑟𝐹 =

〈
a[:𝑛] , c[:𝑛] ◦Q

〉 , (80){
𝑍𝑉 =

〈
a[𝑛:] , V

〉
𝑐𝑛+𝑡𝐸 =

〈
a[𝑛:] , c[𝑛:] ◦W

〉 . (81)

Each of the systems (80), (81) is similar to the system (72) and, therefore, by applying to each of them the same
reasoning as in the proof of the cWEE property of the Lin2-Choice lemma in Appendix E, we obtain the following
two equalities, respectively

𝑍𝑃 = 𝑝𝑃𝑠 , (82)
𝑍𝑉 = 𝑣𝑉𝑛+𝑠 , (83)

where 𝑝 and 𝑣 are scalars known to prover, and 𝑠, 𝑠 are indices also known to it. (If 𝑝 = 0 or 𝑣 = 0, then respectively
𝑠 or 𝑠 is undefined.)

One more detail, when obtaining the equality (82) from the subsystem (80), we take 𝑟 as a response to the
challenges c[:𝑛] , whereas obtaining the equality (83) from the subsystem (81), we take 𝑐𝑛+𝑡 as the response to the
challenges c[𝑛:] .

If 𝑣 ≠ 0 and 𝑠 ≠ 𝑡, then the extractor breaks the DL assumption by establishing a linear relationship between at
least two different elements from the orthogonal set R, hence we let 𝑠 = 𝑡 for 𝑣 ≠ 0 and write the equality (83) as

𝑍𝑉 = 𝑣𝑉𝑛+𝑡 . (84)

52



Now, recalling that 𝑍 decomposes into the sum 𝑍 = 𝑍𝑃 + 𝑍𝑉 by the formula (32) which is discussed in
Section 7.1.1, the extractor comes to the conclusion that the restored by the formulas (82), (84) values of (𝑝, 𝑣, 𝑠)
are the sought witnesses for the relation (25). Thus, we have proved the cWEE property of zkLin22sChoice𝑛,𝑚.

As for uniqueness of witness (𝑝, 𝑣, 𝛼), it trivially follows from subtracting two different decompositions of 𝑍
from each other and, thus, breaking the DL relation assumption.

M PROOF OF MULTIPLE SIMMETRIC VECTOR COMMITMENTS
Proof: [Theorem 11] As can be seen from Figure 17, the zkMSVC𝑙,3,𝑛 protocol adds nothing to the transcript of the
zkMVC𝑙,𝑛 protocol, thus inheriting the sHVZK property. Completeness of the zkMSVC𝑙,3,𝑛 protocol is clear from
Figure 17. We exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the cWEE property of the protocol. Having unwound the zkMVC𝑙,𝑛 call, extractor obtains a matrix
𝔞 ∈ F𝑙×𝑛p̄ such that according to the relation (22)

Y = 𝔞 · X . (85)

Thus, for each element 𝑌 𝑗 = Y[ 𝑗 ] , 𝑗 ∈ [0 . . . 𝑙 − 1], and for the corresponding row 𝔞 [ 𝑗 ,:] of the matrix 𝔞, there holds

𝑌 𝑗 = 𝔞 [ 𝑗 ,:] · X . (86)

At the same time, due to the equalities (86), the zkMVC𝑙,𝑛 protocol can be viewed as 𝑙 independent, except for
the common challenges (𝛿1, 𝛿2), instances of the zkSVC3,𝑛 protocol. Therefore, by Theorem 4, the restored by the
extractor matrix 𝔞 is the sought witness.

Uniqueness of the witness is due to the same reasons as in Appendix H.

N PROOF OF LIN2-2CHOICE LEMMA
Proof: [Theorem 12] Completeness and sHVZK of the protocol zkLin22Choice𝑙,𝑛,𝑚 in Figure 18 are clear.
Particularly, note that the vectors F and E do not reveal any information since their elements are blinded with 𝐻.
We further exclude 𝐻 from all considerations for the same reason as in Appendix C.

Let’s prove the protocol cWEE property. In the last step of zkLin22Choice𝑙,𝑛,𝑚 there is a call to

zkMSVC𝑙,3, (𝑛+𝑚)

( [
P
V

]
,

[
c[:𝑛] ◦Q

0𝑚
]
,

[
0𝑛

c[𝑛:] ◦W

]
, 𝐻,Z, r ◦ F, c[𝑛:(𝑛+𝑙) ] ◦ E; 𝔞,𝜶, �̂�, �̂�

)
,

and hence, by Theorem 11, there holds the following system of equalities

Z = 𝔞 ·
[
P
V

]
r ◦ F = 𝔞 ·

[
c[:𝑛] ◦Q

0𝑚

]
c[𝑛:(𝑛+𝑙) ] ◦ E = 𝔞 ·

[
0𝑛

c[𝑛:] ◦W

] , (87)

where the matrix 𝔞 ∈ F𝑙×(𝑛+𝑚)p̄ is the witness restored by the zkMSVC𝑙,3, (𝑛+𝑚) protocol extractor.
Furthermore, the system (87) is 𝑙 systems of the form (79), with proper renaming, for each row 𝔞 [𝑡 ,:] , 𝑡 ∈

[0 . . . 𝑙 − 1] of the matrix 𝔞. Namely, the system (87) is the following 𝑙 systems
𝑍𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , P

〉
+

〈
𝔞 [𝑡 ,𝑛:] , V

〉
𝑟𝑡𝐹𝑡 =

〈
𝔞 [𝑡 ,:𝑛] , c[:𝑛] ◦Q

〉
𝑐𝑛+𝑡𝐸𝑡 =

〈
𝔞 [𝑡 ,𝑛:] , c[𝑛:] ◦W

〉 , (88)

for each 𝑡 ∈ [0 . . . 𝑙 − 1].
The zkLin22Choice𝑙,𝑛,𝑚 protocol in Figure 18 comprises, up to the point of calling zkMSVC𝑙,3, (𝑛+𝑚) and with

the appropriate renaming, 𝑙 parallel instances of the protocol zkLin22sChoice𝑛,𝑚 from Figure 16. Hence, given
𝑙 parallel systems (88) for 𝑡 ∈ [0 . . . 𝑙 − 1], the extractor performs 𝑙 times, for each 𝑡, the same calculations as in
Appendix L. This way it obtains 𝑙 witnesses (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡 ), 𝑡 ∈ [0 . . . 𝑙 − 1] for 𝑙 instances of the relation (25). That
is, for each extracted tuple (𝑝𝑡 , 𝑣𝑡 , 𝑠𝑡 ) there holds

𝑍𝑡 = 𝑝𝑡𝑃𝑠𝑡 + 𝑣𝑡𝑉𝑡 , (89)
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that means witnesses for the relation (35) are found and, hence, cWEE property of the zkLin22Choice𝑙,𝑛,𝑚
protocol is proven.

Uniqueness of the witness is due to the same reasons as in Appendix L.

O PROOF OF CLAIM ABOUT LIN2-2CHOICE PROTOCOL CALL
Proof: [Claim 1] By Theorem 12, the call

zkLin22Choice𝑙,𝑛,𝑙 ((X,G[:𝑛] ,V,G[𝑛:(𝑛+𝑙) ] , 𝐻,Z; . . . )

in the last step of the EFLRSLWB scheme in Figure 21 proves the relation (35). That is, it has an extractor that
restores unique witness for the relation.

Let’s demonsrate that this call also proves that v = p in the relation (35), where X,V,Z are defined according
to the EFLRSLWB scheme. Copying their definitions from Figure 21 here

X = P − {𝐾}𝑛 + 𝜁U − 𝜔A ,

V = {𝐾}𝑙 + 𝜔Atmp + 𝜒Û ,

Z = {𝐺}𝑙 + 𝜁I + 𝜒J .

Suppose the opposite, i.e., that for some 𝑘 ∈ [0 . . . 𝑙 − 1] there holds 𝑣𝑘 ≠ 𝑝𝑘 . Then the zkLin22Choice𝑙,𝑛,𝑚
protocol witness extractor extracts v, p and, for some index 𝑠𝑘 , according to the relation (35) there holds

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 − 𝐾 + 𝜁𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝐾 + 𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) . (90)

Note that we omit showing the 𝐻 component for the same reason as in Appendix C. However, it is always implied
present, and the factor of 𝐻 is implied extracted by the extractor for this and for the following equalities. Method
of this extraction is straightforward.

By moving the 𝐾 component to the left-hand side of the (90) equality, the extractor gets

(𝑝𝑘 − 𝑣𝑘)𝐾 = −𝐺 − 𝜁 𝐼𝑘 − 𝜒𝐽𝑘 + 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝜔𝐴
tmp
𝑘
+ 𝜒�̂�𝑘) , (91)

that is, it expresses 𝐾 as a linear combination (91) of 𝐺, 𝐼𝑘 , 𝐽𝑘 , 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴𝑠𝑘 , 𝐴
tmp
𝑘
, �̂�𝑘 , 𝐻. However, according to

the EFLRSLWB scheme, all these elements are a part of the pre-image of 𝐾 and, hence, 𝐾 is orthogonal to all of
them. Thus, under the supposition v ≠ p the extractor breaks the DL assumption, which is impossible. Therefore,
the supposition is incorrect and there holds

v = p . (92)

Using the equality (92), the equality (90) rewrites as

𝐺 + 𝜁 𝐼𝑘 + 𝜒𝐽𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜒�̂�𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) . (93)

Note that in the equality (93) the following holds for 𝑝𝑘’s

𝑝𝑘 ≠ 0 for each 𝑘 ∈ [0 . . . 𝑙 − 1] . (94)

In fact, 𝑝𝑘 = 0 for some 𝑘 requires that the left-hand side of the equality (93) be equal to zero, however the left-hand
side contains nonzero element 𝐺 alongside with the randomly weighted elements 𝐼𝑘 , 𝐽𝑘 , and, hence, there is only
negligible probability for it to be equal to zero. The implicit presence of 𝐻 component in the equality (93) does
not change the case; if the assertion (94) does not hold then the extractor breaks the DL assumption.

All elements in the right-hand part of the relation (93), namely, 𝑃𝑠𝑘 ,𝑈𝑠𝑘 , 𝐴
tmp
𝑘
, 𝐴𝑠𝑘 , 𝐻, are in the pre-image of

�̂�𝑘 . Thus, �̂�𝑘 is orthogonal to all of them and, hence, due to the random weighting by 𝜒, to the accuracy of 𝐻, the
following equality holds

𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 ( 𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) . (95)

In other words, the equality (95) follows from the equality (93) by Theorem 3, where the triplets are taken as

( 𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ), �̂�𝑘 , 0 ) and (𝐺 + 𝜁 𝐼𝑘 , 𝐽𝑘 , 0 ) .

Suppose that (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) ≠ 0. By unwinding and resuming the zkLin22Choice𝑙,𝑛,𝑙 call with different 𝜔′ the

extractor obtains different 𝑝′
𝑘

and, by subtracting two instances of the equality (95) from each other, obtains

0 = 𝑝𝑘 ( 𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔(𝐴
tmp
𝑘
− 𝐴𝑠𝑘 ) ) − 𝑝′𝑘 ( 𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 + 𝜔

′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) ) ,
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which rewrites as
(𝑝′𝑘 − 𝑝𝑘) (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 ) = (𝑝𝑘𝜔 − 𝑝

′
𝑘𝜔
′) (𝐴tmp

𝑘
− 𝐴𝑠𝑘 ) . (96)

Due to the orthogonality of 𝑃𝑠𝑘 and𝑈𝑠𝑘 in the EFLRSLWB scheme, there holds

(𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 ) ≠ 0.

If 𝑝′
𝑘
= 𝑝𝑘 , then the left-hand side of the equality (96) is zero and, hence, 𝜔′ = 𝜔 that holds only with negligible

probability. So, with overwhelming probability 𝑝′
𝑘
≠ 𝑝𝑘 and the extractor divides the equality (96) by (𝑝′

𝑘
− 𝑝𝑘),

calculating scalar factor 𝑎 as follows

𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 = 𝑎 (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) , where 𝑎 =

𝑝𝑘𝜔 − 𝑝′𝑘𝜔
′

𝑝′
𝑘
− 𝑝𝑘

. (97)

Unwinding and resuming thezkLin22Choice𝑙,𝑛,𝑙 call with different 𝜁 ′ a couple of times, the extractor calculates
factor 𝑎′ such that

𝑃𝑠𝑘 + 𝜁 ′𝑈𝑠𝑘 = 𝑎′ (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) . (98)

By subtracting the equality (97) from the equality (98) and dividing by (𝜁 ′−𝜁), which is nonzero with overwhelming
probability, the extractor obtains

𝑈𝑠𝑘 =
𝑎′ − 𝑎
𝜁 ′ − 𝜁 (𝐴

tmp
𝑘
− 𝐴𝑠𝑘 ) . (99)

Also, it obtains from the equalities (97) and (99)

𝑃𝑠𝑘 =

(
𝑎 − 𝜁 𝑎

′ − 𝑎
𝜁 ′ − 𝜁

)
(𝐴tmp

𝑘
− 𝐴𝑠𝑘 ) . (100)

After that, as 𝑈𝑠𝑘 ≠ 0 and, hence, (𝑎′ − 𝑎) ≠ 0 in the equality (99), the extractor expresses (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) through

𝑃𝑠𝑘 in (99) and inserts (𝐴tmp
𝑘
− 𝐴𝑠𝑘 ) into the equality (100), thus obtaining

𝑃𝑠𝑘 =

(
𝑎 − 𝜁 𝑎

′ − 𝑎
𝜁 ′ − 𝜁

)
𝜁 ′ − 𝜁
𝑎′ − 𝑎 𝑈𝑠𝑘 . (101)

Recalling 𝑃𝑠𝑘 and𝑈𝑠𝑘 are orthogonal to each other, the extractor breaks the DL assumption with the equality (101);
thus the supposition is wrong and there holds

𝐴
tmp
𝑘

= 𝐴𝑠𝑘 . (102)
In accordance with the equality (102), the equality (95) which is obtained by the extractor after unwinding the

zkLin22Choice𝑙,𝑛,𝑙 call, rewrites as
𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 ) , (103)

where 𝑝𝑘 is known to the extractor. Thus, the zkLin22Choice𝑙,𝑛,𝑙 call is an argument having cWEE property
for the relation (104). The witness 𝑝𝑘 is unique, as the opposite breaks the DL assumption between 𝑃𝑠𝑘 and
𝑈𝑠𝑘 = Hpoint (𝑃𝑠𝑘 ) in the equality (103).

At the same time, according to the obtained by the extractor equality (102), the same zkLin22Choice𝑙,𝑛,𝑙 call
is an argument having cWEE for the relation (105) for the same 𝑠𝑘 , which implies the same s for the both relations.
Completeness and sHVZK of the zkLin22Choice𝑙,𝑛,𝑙 call follow from Theorem 12.

Uniqueness of 𝜶 and 𝜷 is trivially seen, as the opposite breaks the DL relation assumption. Claim 1 is proven.

P SIGNATURE EFLRSLWB FOR L ⩾ 1
Proof: [Theorem 13] We first make the following claim.

Claim 1:
The call to zkLin22Choice𝑙,𝑛,𝑙 in the last step of the EFLRSLWB scheme in Figure 21 is a complete, sHVZK
argument having cWEE for the relation (23) with appropriate input renaming, i.e., for the relation

R =

{
(P + 𝜁U), G[:𝑛] ∈ G𝑛∗, 𝐻 ∈ G∗, ({𝐺}𝑙 + 𝜁I) ∈ G𝑙;
s ∈ [0 . . . 𝑛 − 1]𝑙 , p,𝜶 ∈ F𝑙p̄

����� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐺 + 𝜁 𝐼𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 + 𝜁𝑈𝑠𝑘 ) + 𝛼𝑘𝐻

}
(104)

with unique witness (p,𝜶), and is also a complete, sHVZK argument having cWEE for the relation

R′ =
{

A ∈ G𝑛, Atmp ∈ G𝑙 , 𝐻 ∈ G∗ ;
s ∈ [0 . . . 𝑛 − 1]𝑙 , 𝜷 ∈ F𝑙p̄

���� ∀𝑘 ∈ [0 . . . 𝑙 − 1] :
𝐴

tmp
𝑘

= 𝐴𝑠𝑘 + 𝛽𝑘𝐻

}
(105)

with unique witness 𝜷, such that the private input s is common for both relations (104) and (105).
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Proof: is in Appendix O.
Note that the vectors Atmp and J in Figure 21 are indistinguishable from white noise, because all their elements

contain independent blinding components with randomized factors from, respectively, 𝝁 and 𝝊.
The Claim 1 asserts that in the last step of the EFLRSLWB scheme there is a call to the complete, sHVZK, and

having cWEE proving system zkLin22Choice𝑙,𝑛,𝑙 that produces a proof of the relation (104), which is actually the
relation (23) with proper renaming. Also, as we can see in Figure 21, all previous steps of the EFLRSLWB scheme
do all the play of the EFLRSL scheme from Figure 14 up to the proof of the relation (23). As for the vectors Atmp

and J which are all indistinguishable from white noise, they can be discarded as uninfluential when considering the
relation (104). Thus, we see that the EFLRSLWB scheme is the EFLRSL scheme with the substituted underlying
proving system, which is also complete, sHVZK, and having cWEE.

Therefore, the EFLRSLWB scheme is a linkable threshold ring signature with the properties 1. . . 8), which
hold due to exactly the same reasons as the properties 1. . . 8) of the EFRLSL scheme in Theorem 9.

The property 9) comes as a result of calling zk2ElemComm in the last step of the EFLRSLWB scheme. By
Theorem 1 there holds

𝐴sum =

𝑙−1∑︁
𝑘=0

Atmp
[𝑘 ] + 𝑓𝐻𝐻 + 𝑓𝐷𝐷 , (106)

where 𝑓𝐻 , 𝑓𝐷 are scalars known to prover. At the same time, by Claim 1 according to the relation (105), the equality
(106) unfolds as

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 +
(
𝑓𝐻 +

𝑙−1∑︁
𝑘=0

𝛽𝑘

)
𝐻 + 𝑓𝐷𝐷 . (107)

Recalling that according to the EFLRSLWB scheme the generator 𝐻 is an Hpoint image of the 𝐴sum,A, 𝐷 elements,
the equality (107) reduces to

𝐴sum =

𝑙−1∑︁
𝑘=0

𝐴𝑠𝑘 + 𝑓𝐷𝐷 ,

which is exactly what the property 9) is. Theorem 13 is proven.

Q PROOF OF RANDOM WEIGHTING FOR T-S-TUPLES
Proof: [Theorem 14] Completeness and sHVZK properties of the zkTElemRW𝑡 ,𝑠 protocol are trivially seen from
Figure 23. Turning to the cWEE property, we start with the following claim.

Claim 2:
Under the conditions of Theorem 14, if a PPT witness extractor for the protocol zkTElemRW𝑡 ,𝑠 in Figure 23 extracts
two different values of the factor 𝑎 in the relation 𝑌 = 𝑎𝑋 + �̂�𝐻 for two different random challenge sets (𝜹,𝝈) in
the last step of the protocol, then a PPT algorithm that breaks the DL relation assumption can be constructed.

Proof: is in Appendix R.
Having the Claim 2 proved, let’s construct a witness extractor for zkTElemRW𝑡 ,𝑠 . The extractor restores the

factors (𝑎, �̂�) in the equality
𝑌 = 𝑎𝑋 + �̂�𝐻 in Figure 23. (108)

According to Figure 23, the equality (108) itself represents the relation (4) with the renamed entries. To accomplish
the extraction, the extractor uses the cWEE property of the protocol that proves the relation (4) in the last step of
zkTElemRW𝑡 ,𝑠 . Namely, it uses another witness extractor which extracts witness for (4).

By inserting into the equality (108) 𝑋,𝑌 defined a step above in Figure 23 and moving 𝑎𝑋 to the left-hand side,
the extractor obtains

(𝑍 − 𝑎𝑃) + ⟨𝜹,F − 𝑎Q⟩ − ⟨𝝈, 𝑎S⟩ = �̂�𝐻 . (109)

By unwinding and running the zkTElemRW𝑡 ,𝑠 protocol (𝑡 + 𝑠) more times with different 𝜹,𝝈, the extractor gets, in
sum, (𝑡 + 𝑠 + 1) equalities of type (109), which have common 𝑍, 𝑃,F,Q, S, 𝐻, 𝑎 and different 𝜹,𝝈, �̂�. The factor
𝑎 is common to all of them, as the opposite breaks the DL relation assumption by Claim 2. The extractor writes
down all these (𝑡 + 𝑠 + 1) equalities in a matrix form, as follows,

𝔞 · B = �̂�𝐻, (110)
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where

𝔞 =



1 𝛿0,0 . . . 𝛿 (𝑡−1) ,0 𝜎0,0 . . . 𝜎(𝑠−1) ,0
1 𝛿0,1 . . . 𝛿 (𝑡−1) ,1 𝜎0,1 . . . 𝜎(𝑠−1) ,1
1 𝛿0,2 . . . 𝛿 (𝑡−1) ,2 𝜎0,2 . . . 𝜎(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿0, (𝑡+𝑠) . . . 𝛿 (𝑡−1) , (𝑡+𝑠) 𝜎0, (𝑡+𝑠) . . . 𝜎(𝑠−1) , (𝑡+𝑠)


, B =



𝑍 − 𝑎𝑃
𝐹0 − 𝑎𝑄0

...

𝐹𝑡−1 − 𝑎𝑄𝑡−1
−𝑎𝑆0
...

−𝑎𝑆𝑠−1


, �̂� =



�̂�0
�̂�1
�̂�2
...

�̂�𝑡+𝑠


. (111)

Then, it solves the matrix equation (110) for B. Taking into account that 𝔞 is composed of uniformly random
scalars together with the first column of 1’s and, hence, with overwhelming probability det(𝔞) ≠ 0, it expresses
each element of B as 𝐻 multiplied by a corresponding scalar from the vector 𝔞−1 · �̂�

B = 𝔞−1 · �̂�𝐻 . (112)

Now, let us show that the witness 𝑎 in the relation (60), which is fed at P’s private input, is equal to the factor 𝑎
restored for the equality (108), which is just found by the extractor and used in the definition of B in (111). Suppose
the opposite, then here is an algorithm that breaks the DL relation assumption, it looks as follows.

It honestly runs zkTElemRW𝑡 ,𝑠 knowing the input 𝑎, 𝛼, 𝜷, 𝜸, which is the witness for the relation (60). Then, it
extracts a different 𝑎 for the equality (108). Then, the breaker algorithm takes the equality for the first element of
B in (112) and the equality for 𝑍 in (60). Eliminating 𝑍 from the both, keeping in mind the multipliers of 𝑃 are
different in them, the breaker expresses 𝑃 through 𝐻 and, thus, breaks the premise 𝑃 != lin(nz(Q) ∪ nz(S) ∪ {𝐻}).

Thus, we have proved the witness 𝑎 found by the extractor is the sought witness part 𝑎 for the relation (60).
Finally, it is easy to see how the extractor can restore the blinding factor 𝛼, 𝜷, 𝜸 component of the witness in (60).
That is, it puts the (𝑡 + 𝑠 + 1) blinding factors 𝛼, 𝜷, 𝜸 together into a vector and calculates them from (112), (111),
(60) as 

𝛼

𝛽0
...

𝛽𝑡−1
𝛾0
...

𝛾𝑠−1


= 𝔞−1 · �̂� .

We have built an extractor that finds the witness (𝑎, 𝛼, 𝜷, 𝜸) for the relation (60). Uniqueness of 𝑎 is already
proved by Claim 2. Uniqueness of 𝛼, 𝜷, 𝜸 is trivial, as the opposite breaks the DL assumption. Thus, Theorem 14
is proved.

R PROOF OF CLAIM ABOUT THE SAME FACTOR
Proof: [Claim 2] This proof is going to be a bit nontrivial, so, for the first, let’s understand how the witness 𝑎 in
the equality (108) extracted in the last step of the protocol zkTElemRW𝑡 ,𝑠 in Figure 23 depends on the challanges.
We keep in mind 𝑎 is a witness for the relation (4) which is represented by the equality (108).

For convenience, we rewrite the equality (108) in the matrix form, as follows, using the formulas (55), (56),
(57), (58), (59), assuming 𝝃 is a row vector, and T, D are column vectors

𝝃 · D = 𝑎𝝃 · T + �̂�𝐻 . Note, this equality represents the relation (4). (113)

Let the extractor perform (𝑡 + 𝑠 + 1) rewindings and, thus, let it have (𝑡 + 𝑠 + 1) instances of the relation (113)
for (𝑡 + 𝑠 + 1) instances of the challange vector 𝝃. The extractor puts these (𝑡 + 𝑠 + 1) instances of 𝝃 into the matrix

𝔞 =



𝝃0
𝝃1
𝝃2
...

𝝃 (𝑡+𝑠)


=



1 𝛿0,0 . . . 𝛿 (𝑡−1) ,0 𝜎0,0 . . . 𝜎(𝑠−1) ,0
1 𝛿0,1 . . . 𝛿 (𝑡−1) ,1 𝜎0,1 . . . 𝜎(𝑠−1) ,1
1 𝛿0,2 . . . 𝛿 (𝑡−1) ,2 𝜎0,2 . . . 𝜎(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿0, (𝑡+𝑠) . . . 𝛿 (𝑡−1) , (𝑡+𝑠) 𝜎0, (𝑡+𝑠) . . . 𝜎(𝑠−1) , (𝑡+𝑠)


. (114)
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Since 𝔞 is a random matrix, with overwhelming probability there holds det(𝔞) ≠ 0 and, thus, 𝔞 is a basis in the
(𝑡 + 𝑠 + 1)-dimensional scalar vector challenge space. Also, let the extractor map the corresponding (𝑡 + 𝑠 + 1)
witness pairs (𝑎, �̂�) extracted in the last step of the protocol into the following two vectors

a =



𝑎0
𝑎1
𝑎2
...

𝑎𝑡+𝑠


, �̂� =



�̂�0
�̂�1
�̂�2
...

�̂�𝑡+𝑠


, (115)

and rewrite (𝑡 + 𝑠 + 1) instances of the equality (113) for these vectors in the matrix form, as follows,

𝔞 · D = diag(a) · 𝔞 · T + �̂�𝐻 , where diag(a) =

𝑎0 0

. . .

0 𝑎𝑡+𝑠

 . (116)

Let the extractor rewind one more time and obtain (𝑎′, �̂�′) for a new challenge vector 𝝃′. The matrix 𝔞 is a basis
in the challenge space, so 𝝃′ decomposes by it. Denote the corresponding row vector of weights as b such that

𝝃′ = b · 𝔞 . (117)

Next, multiplying the decomposition (117) by D and unfolding both sides of it using the formulas (113) and (116),
respectively, the extractor obtains the following equality

(𝑎′𝝃′ − b · diag(a) · 𝔞) · T = (b · �̂� − �̂�′) 𝐻 . (118)

Recalling that by the definition (55) T is a column vector of {𝑃} ∪ Q ∪ S, the equality (118) takes on the
meaning of a decomposition of 0 into a weighted sum of {𝑃} ∪ Q ∪ S ∪ {𝐻} with known to the extractor
weights. In the case if the weight of 𝑃 in (118) is nonzero, the extractor obtains weights for the decomposition
𝑃 = lin(nz(Q) ∪ nz(S) ∪ {𝐻}), which contradicts to the premise of the Theorem 14.

Namely, if the weight of 𝑃 in (118) is nonzero, then the extractor has a known decomposition of 𝑃 by
Q ∪ S ∪ {𝐻} and thus breaks the DL relation assumption. Therefore, the weight of 𝑃 in (118) must be zero. The
extractor calculates it from (118) using (114), (59), (115) as

0 = 𝑎′ − ⟨b, a⟩ .

This way, the extractor obtains the following transformation rule for the witness 𝑎 depending on the challenge
vector 𝝃′

𝑎′ = ⟨b, a⟩ , where b = 𝝃′ · 𝔞−1. (119)

Note, the vector b in the rule (119), as well as in the formulas (117), (118), meets the condition
〈
b, {1}𝑡+𝑠+1

〉
= 1,

which guarantees that 1 is always at the first position in 𝝃′.
To sum up, the rule (119) states the following. If the extractor already has a challenge space base defined by

matrix 𝔞, and if it also has the corresponding witnesses collected in vector a, then, for any new random vector
𝝃′, value of the newly extracted witness 𝑎′ is equal to the value defined by the formula (119). Otherwise, if the
extractor gets a value for 𝑎′ other than (119), then it breaks the DL relation assumption.

Now, let the extractor perform (𝑡 + 𝑠 + 1) more rewindings and, thus, let it obtain another challenge space base

𝔠 =



𝝃′0
𝝃′1
𝝃′2
...

𝝃′(𝑡+𝑠)


=



1 𝛿′0,0 . . . 𝛿′(𝑡−1) ,0 𝜎′0,0 . . . 𝜎′(𝑠−1) ,0
1 𝛿′0,1 . . . 𝛿′(𝑡−1) ,1 𝜎′0,1 . . . 𝜎′(𝑠−1) ,1
1 𝛿′0,2 . . . 𝛿′(𝑡−1) ,2 𝜎′0,2 . . . 𝜎′(𝑠−1) ,2
...

...
...

...
...

...
...

1 𝛿′0, (𝑡+𝑠) . . . 𝛿′(𝑡−1) , (𝑡+𝑠) 𝜎′0, (𝑡+𝑠) . . . 𝜎′(𝑠−1) , (𝑡+𝑠)


. (120)

Note, the equality (113) holds as well for the new (𝑡 + 𝑠 + 1) instances of the challange vector 𝝃′ written as rows of
the matrix 𝔠. By this, the transition matrix between the bases 𝔞 and 𝔠 is

𝔟 =



b0
b1
b2
...

b(𝑡+𝑠)


= 𝔠 · 𝔞−1 , where each row b𝑖 is a weight vector of 𝝃′𝑖 ’s decomposition by 𝝃𝑖’s. (121)
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Note that for 𝔟 there always holds {1}𝑡+𝑠+1 = 𝔟 · {1}𝑡+𝑠+1, as the first columns in 𝔞 and 𝔠 are equal to {1}𝑡+𝑠+1.
Apparently, as 𝔠 is a random matrix, with overwhelming probability there holds det(𝔠) ≠ 0 and, hence,

det(𝔟) ≠ 0. And, by the definition (121), there holds 𝔠 = 𝔟 · 𝔞. The witness transformation rule (119) written in the
matrix form for the base vectors in 𝔠 becomes

a′ = 𝔟 · a , where 𝔟 = 𝔠 · 𝔞−1. (122)

Looking closer at 𝔟 and a we make the following three simple claims about their items distributions. Hereinafter,
for any two scalar sets x and y, we say x is considered in isolation of y if neither direct nor indirect dependencies
or correlates of y, except for maybe x itself, are involved in the consideration of x.

Claim 3:
For any two random bases 𝔞 and 𝔠 defined by the formulas (114) and (120), respectively, with all their items picked
independently and uniformly at random, except for the items in the first columns which are 1’s, the transition matrix
𝔟 defined by (121) and considered in isolation of 𝔠 has the following two properties for its items

a) all items in 𝔟 are distributed uniformly

b) for each row b𝑖 ∈ 𝔟, there are (𝑡 + 𝑠) independent items and one dependent item in it. The dependency is
determined by the equality 〈

b𝑖 , {1}𝑡+𝑠+1
〉
= 1 . (123)

Proof: is in Appendix S.1.

Claim 4:
If the extractor knows two randomly sampled challenge vectors ¤𝝃, ¥𝝃 along with the corresponding witnesses ¤𝑎, ¥𝑎
such that ¤𝝃 ≠ ¥𝝃, ¤𝑎 ≠ ¥𝑎, and the equality (113) holds for them, then, for any new random base 𝔞 constructed by the
formula (114), the corresponding witness vector a built by (115) and considered in isolation of 𝔞 has all witnesses
in it distributed independently and uniformly.

Proof: is in Appendix S.2.

Claim 5:
For any arithmetic expression which contains only a built by (115) and 𝔟 built by (121), all the scalars in a and 𝔟

can be viewed as distributed independently and uniformly, except for the scalars in the first column of 𝔟 which are
completely dependent and are determined by the equality (123).

Proof: is in Appendix S.3.
Now, by reverting to the equality (118) and rewriting it for each 𝝃𝑖 ∈ 𝔠, the extractor obtains the following

matrix equation
( diag(a′) · 𝔠 − 𝔟 · diag(a) · 𝔞 ) · T = ( 𝔟 · �̂� − �̂�′ ) 𝐻 . (124)

Using the definitions of 𝔟 (121) and a′ (122), the extractor rewrites (124) as

( diag(𝔟 · a) · 𝔟 − 𝔟 · diag(a) ) · 𝔞 · T = ( 𝔟 · �̂� − �̂�′ ) 𝐻 . (125)

All the entries on both sides of the matrix equation (125) are known to the extractor, so it may wish to express
the vector column T (55) through 𝐻 by solving (125) as a linear system. However, all the weights of 𝑃 ∈ T are
equal to zero in the linear system (125) due to the same reason as for the transformation rule (119). In fact, the
matrix within the brackets on the left-hand side of (125), let’s call it 𝔰,

𝔰 = diag(𝔟 · a) · 𝔟 − 𝔟 · diag(a) , (126)

has the non-empty kernel. Namely, there exsists at least one nonzero vector, {1}𝑡+𝑠+1, such that

𝔰 · {1}𝑡+𝑠+1 = {0}𝑡+𝑠+1 .

Thus, det(𝔰) = 0 and, hence, det(𝔰 · 𝔞) = 0, which means the matrix equation (125) cannot be resolved for T by
taking (𝔰 · 𝔞)−1. Anyway, the matrix 𝔰 (126) contains 𝔟 and a only, which makes Claim 5 applicable to it; so the
extractor is going to use 𝔰 in a different way, as follows.

Since finding 𝑃 from (125) is not possible due to det(𝔰 · 𝔞) = 0 (the underlying reason is that this would mean
𝑃 ∼ 𝐻, which would break the DL relation assumption), the extractor constructs the following truncated version of
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(125). It removes 𝑃 from T which is at the first position there, thus leaving the truncated vector column

T̃ =



𝑄0
...

𝑄𝑡−1
𝑆0
...

𝑆𝑠−1


. (127)

Also, it removes the first column of the matrix (𝔰 · 𝔞) which is of zeros (it contains the weights of 𝑃, all of which
are zeros), denoting the resulting (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix as 𝔪. The extractor calculates the column vector of
(𝑡 + 𝑠 + 1) scalars on the right-hand side of (125) as

h =


ℎ0
ℎ1
...

ℎ𝑡+𝑠


= ( 𝔟 · �̂� − �̂�′ ) . (128)

Finally, the truncated version of (125) takes the form of

𝔪 · T̃ = h𝐻 . (129)

We make the following claim about 𝔪.

Claim 6:
The (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix 𝔪, which is constructed by removal of the first column from the matrix (𝔰 · 𝔞) where
𝔞 is defined by (114) and 𝔰 is defined by (126), with overwhelming probability has rank (𝑡 + 𝑠).

Proof: is in Appendix S.4.
Once 𝔪 has rank (𝑡 + 𝑠), according to Claim 6, it has at least one submatrix of rank (𝑡 + 𝑠). As there are only

(𝑡 + 𝑠 + 1) submatrices of size (𝑡 + 𝑠) × (𝑡 + 𝑠) in 𝔪, the extractor finds the one with rank (𝑡 + 𝑠) among them, denote
it as 𝔯, by simply iterating and checking that the determinant is nonzero.

Let the found (𝑡 + 𝑠) × (𝑡 + 𝑠) submatrix 𝔯 of rank (𝑡 + 𝑠) be 𝔪 with 𝑟’th row removed, with 𝑟 ∈ [0 . . . 𝑡 + 𝑠]
found by the extractor. The extractor removes 𝑟’th item from h (128) as well, denoting the reduced vector as h́.
Thus, it obtains the equation

𝔯 · T̃ = h́𝐻 , (130)

where det(𝔯) ≠ 0.
The extractor solves (130) for T̃

T̃ = 𝔯−1 · h́𝐻 (131)

and, hence, it has every 𝑄 𝑗 ∈ T̃, 𝑗 ∈ [0 . . . 𝑡 − 1], expressed as 𝐻 multiplied by a known scalar, which breaks the
DL relation assumption. Namely, according to Theorem 14 premise, there is at least one nonzero 𝑄 𝑗 for some
𝑗 ∈ [0 . . . 𝑡 − 1], and also there holds 𝐻 != lin(nz(Q) ∪ {𝑃}), however, according to (131), the extractor has found
a scalar such that 𝑄 𝑗 ∼ 𝐻.

Thus, under the premise of Claim 2, we have built an algorithm that breaks the DL relation assumption. The
Claim 2 is proved.

S SAME FACTOR SUBCLAIM PROOFS
S.1 SCALAR DISTRIBUTIONS IN THE TRANSITION MATRIX B
Proof: [Claim 3] The property a) is trivial. The property b) follows from the fact that det(𝔞−1) ≠ 0, both of 𝔞 and
𝔞−1 are completely independent of 𝔠, and, hence, (𝑡 + 𝑠) independent randomnesses in 𝝃′

𝑖
∈ 𝔠 map one-to-one to

(𝑡 + 𝑠 + 1) randomnesses in b𝑖 by the formula b𝑖 = 𝝃′
𝑖
· 𝔞−1, with the additional constraint

〈
b𝑖 , {1}𝑡+𝑠+1

〉
= 1 which

follows from the equality to 1 of all items in the first columns of 𝔞 and 𝔠.
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S.2 SCALAR DISTRIBUTIONS IN THE WITNESS VECTOR A
Proof: [Claim 4] Before sampling the base 𝔞, let the extractor construct the random base 𝔢 that includes ¤𝝃, ¥𝝃 and
has all the other its base vectors sampled independently and uniformly, as in (114). Also, let the extractor perform
(𝑡 + 𝑠 + 1) rewindings and obtain the witnesses 𝑎 in (113) for the base 𝔢, collecting them into the vector e. As
¤𝝃, ¥𝝃 ∈ 𝔢, the vector e ∋ ¤𝑎, ¥𝑎 contains at least two different scalars. Note, since ¤𝝃, ¥𝝃 ∈ 𝔢 are not collinear and the
other base vectors in 𝔢 are random, there holds det(𝔢) ≠ 0.

For the newly sampled random base 𝔞, let the extractor obtain the witness vector a by making (𝑡 + 𝑠 + 1) more
rewindings. According to the transformation rule (122), the vectors e and a are connected as

a = 𝔡 · e , where 𝔡 = 𝔞 · 𝔢−1. (132)

For an isolated of 𝔞 consideration of 𝔡, according to the Claim 3, each row d𝑖 ∈ 𝔡 has all its items distributed
uniformly at random, with (𝑡 + 𝑠) of them independent and one of them, say, 𝑑𝑖0, completely determined by the
equality

〈
d𝑖 , {1}𝑡+𝑠+1

〉
= 1. At the same time, for this consideration, as the vector e is defined before 𝔞 is sampled,

and hence e is independent of 𝔞, the vector e is independent of 𝔡. Thus, in this consideration, each item 𝑎𝑖 ∈ a
calculated by the formula (132) as

𝑎𝑖 = ⟨d𝑖 , e⟩ (133)

is the inner product of the uniformly distributed vector d𝑖 , which has (𝑡 + 𝑠) independent items 𝑑𝑖 𝑗 ∈ d𝑖 \ {𝑑𝑖0} and
one dependent item 𝑑𝑖0 calculated as

𝑑𝑖0 = 1 −
𝑡+𝑠∑︁
𝑗=1

𝑑𝑖 𝑗 , (134)

with the independent and not necessarily uniformly distributed vector e which has at least two different items.
Inserting (134) into (133), 𝑎𝑖 gets the form

𝑎𝑖 = 𝑒0 +
𝑡+𝑠∑︁
𝑗=1
(𝑒 𝑗 − 𝑒0)𝑑𝑖 𝑗 , (135)

which makes 𝑎𝑖 look uniformly random in an isolated of 𝔞 consideration of it, namely, in isolation of 𝔞 and, hence,
without 𝔞’s dependency 𝔡, and with at least two different 𝑒𝑘’s ∈ e.

For each index 𝑖 ∈ [0 . . . 𝑡 + 𝑠], the scalar 𝑎𝑖 ∈ a is independent of the other scalars in a since, according to
(135), they are built using different and completely independent sources of randomness d𝑖 .

S.3 INDEPENDENCE OF SCALARS IN AN EXPRESSION CONTAINING ONLY B AND A
Proof: [Claim 5] According to the Claim 3, since neither the matrix 𝔠 nor its dependencies participate in the
expression in question, all scalars in the matrix 𝔟 can be considered as independent and uniformly random, except
for the ones in the first column which can be found from the equality (123).

As for the vector a, its items are independent of the items in 𝔟 by the above, according to the Claim 3. In
addition to this, by the Claim 4, the items in a are distributed uniformly at random and independently of each other.

S.4 RANK OF M
Proof: [Claim 6] Rank of the (𝑡 + 𝑠) × (𝑡 + 𝑠 + 1) matrix 𝔪 is equal to rank of the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) matrix
(𝔰 · 𝔞), as the former is obtained from the latter by removing a column which contains only zeros (the first column).

Rank of the square matrix (𝔰 · 𝔞) is equal to rank of the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) square matrix 𝔰 (126), as the
former is built as a product of the latter with an invertible matrix, namely, with the (𝑡 + 𝑠 + 1) × (𝑡 + 𝑠 + 1) square
matrix 𝔞 (114) which has det(𝔞) ≠ 0 as a random one. Thus,

rank(𝔪) = rank(𝔰) . (136)

Let us consider a submatrix of 𝔰 which is obtained by removing both the first column and row from 𝔰. We
denote it as �̃� below. According to (126), each item 𝑠𝑖 𝑗 ∈ �̃�, where 𝑖, 𝑗 ∈ [1 . . . 𝑡 + 𝑠], has the form

𝑠𝑖 𝑗 = ⟨b𝑖 , a⟩ 𝑏𝑖 𝑗 − 𝑎 𝑗𝑏𝑖 𝑗 . (137)

Recalling (123), the equality (137) rewrites as

𝑠𝑖 𝑗 =

(
𝑎0

(
1 −

𝑡+𝑠∑︁
𝑘=1

𝑏𝑖𝑘

)
+
𝑡+𝑠∑︁
𝑘=1

𝑎𝑘𝑏𝑖𝑘 − 𝑎 𝑗

)
𝑏𝑖 𝑗 =

(
𝑎0 +

𝑡+𝑠∑︁
𝑘=1
(𝑎𝑘 − 𝑎0)𝑏𝑖𝑘 − 𝑎 𝑗

)
𝑏𝑖 𝑗 . (138)
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The matrix 𝔰 comprises 𝔟 and a only, so Claim 5 applies to it. The same is true for �̃� ⊂ 𝔰. Moreover, according
to (138), each item 𝑠𝑖 𝑗 ∈ �̃� is represented by a multivariate polynomial of total degree 3 of the set of variables
(b𝑖 \ {𝑏𝑖0}) ∪ a, each of which can be regarded, according to Claim 5, as distributed independently and uniformly.

Let us consider det(�̃�) constructed by Leibniz’s formula as a sum of signed products of 𝑠𝑖 𝑗 ’s. This way, by (138),
det(�̃�) is a multivariate polynomial of the independent and uniformly distributed random variables (b𝑖 \ {𝑏𝑖0}) ∪ a.
We rewrite (138) as follows, separating the 𝑎 𝑗𝑏2

𝑖 𝑗
summand in it,

𝑠𝑖 𝑗 =
©­«𝑎0 +

∑︁
𝑘=1...(𝑡+𝑠) , 𝑘≠ 𝑗

(𝑎𝑘 − 𝑎0)𝑏𝑖𝑘 − 𝑎 𝑗ª®¬ 𝑏𝑖 𝑗 − 𝑎0𝑏
2
𝑖 𝑗 + 𝑎 𝑗𝑏2

𝑖 𝑗 . (139)

Consider the
∏𝑡+𝑠
𝑖=1 𝑠𝑖𝑖 signed product component of det(�̃�). According to (139), it contributes the

∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

summand to det(�̃�). As follows from (139), there is no other signed product in det(�̃�) which contributes any other
summand containing

∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

. Thus, the multivariate polynomial representing det(�̃�) contains the uncompensated∏𝑡+𝑠
𝑖=1 𝑎𝑖𝑏

2
𝑖𝑖

and, therefore, det(�̃�) has total degree not less than 3(𝑡 + 𝑠).
By the Schwartz–Zippel lemma [9, 31, 25], having total degree greater than zero, det(�̃�) has only negligible

probability to be zero and, thus, with overwhelming probability there holds

rank(𝔰) = (𝑡 + 𝑠) , (140)

which implies, by (136), that with overwhelming probability

rank(𝔪) = (𝑡 + 𝑠) .

The claim is proved.

T RANDOMLY WEIGHTED SUMS IMPLY THE SYSTEM IN MULTRATUG
When moving from the equality (49) to the system (50) in EFLRSLWB, we implicitly used Theorem 3. More

details about this are proveded in the proof of Theorem 13, particularly in Appendix O, where the equality (49)
corresponds to the equality (93).

However, in Multratug, verifier has the equality (66) instead of (49). The transition from (66) to the system (67)
in Multratug may not seem apparent. Newertheless, with Theorem 14, which is a generalization of Theorem 3 to
(𝑡 + 𝑠 + 1)-element tuples, the transition from (66) to (67) becomes easy, details are in the proof of the following
claim.

Claim 7:
If the Multratug protocol in Figure 24 completes successfully, then verifier is convinced that the equality (66)
implies the system (67) in it.

Proof: Let

𝑃 = �̂�𝑘 ,

Q = {𝑃𝑠𝑘 , 𝐼𝑘},
S = {𝐴tmp

𝑘
− 𝐴𝑠𝑘 , 𝑈𝑠𝑘 −𝑈

tmp
𝑘
},

𝐻 = 𝐻,

𝑍 = 𝐽𝑘 ,

F = {𝐺, 𝑈tmp
𝑘
}.

The right-hand sides of these equalities contain the elements from the Multratug scheme in Figure 24, whereas
the left-hand sides contain ones from the protocol of Theorem 14 in Figure 23. By the formulas (55) and (56),
respectively, the t-s-tuples become

T = ( �̂�𝑘 , 𝑃𝑠𝑘 , 𝐼𝑘 , 𝐴
tmp
𝑘
− 𝐴𝑠𝑘 , 𝑈𝑠𝑘 −𝑈

tmp
𝑘
) , (141)

D = ( 𝐽𝑘 , 𝐺, 𝑈
tmp
𝑘
, 0, 0 ) . (142)

Also, in accordance to Figure 24, the random scalar vector 𝝃 in the formula (59) becomes

𝝃 = [1, 𝜒−1, 𝜒−1𝜃, 𝜒−1𝜔, 𝜒−1𝜁] . (143)
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By Theorem 12, due to the zkLin22Choice𝑙,𝑛,𝑙 call in Figure 24, verifier is convinced that prover knows 𝑝𝑘 , 𝑣𝑘
such that there holds the equality, for each 𝑘 ∈ [0 . . . 𝑙 − 1], to the accuracy of 𝐻 component

𝐺 + 𝜃𝑈tmp
𝑘
+ 𝜒𝐽𝑘 = 𝑝𝑘 (𝑃𝑠𝑘 − 𝐾 + 𝜁𝑈𝑠𝑘 − 𝜔𝐴𝑠𝑘 ) + 𝑣𝑘 (𝐾 + 𝜔𝐴

tmp
𝑘
− 𝜁𝑈tmp

𝑘
+ 𝜃𝐼𝑘 + 𝜒�̂�𝑘) , (144)

which becomes the equality (66) after elimianing the hash to group 𝐾 . The elimination is performed the same way
as for (90) in Appendix O. Namely, since 𝐾 is orthogonal to everything else, it collapses guaranteeing 𝑝𝑘 = 𝑣𝑘 .

As a result, for 𝑋,𝑌 calculated by the formulas (57), (58) using (141), (142), (143), the equality (66) rewrites as

𝜒𝑌 = 𝜒𝑝𝑘𝑋 . (145)

Everything to the accuracy of 𝐻. Since 𝜒 is a nonzero scalar known to both of the prover and verifier prior to
applying the Theorem 12 protocol, both sides of (145) can be divided by it, and (145) rewrites as

𝑌 = 𝑝𝑘𝑋 , (146)

which means verifier is convinced that prover knows some 𝑎, namely, 𝑎 = 𝑝𝑘 , and �̂� such that 𝑌 = 𝑎𝑋 + 𝛼𝐻 holds.
Moreover, by the above this connection between𝑌 and 𝑋 is established by a complete, sHVZK, and cWEE protocol
of Theorem 12 (Lin2-2Choice lemma), which proves the relation (35).

Also, according to Figure 24 the following holds. The element �̂�𝑘 in the tuple T (141) is nonzero and is orthog-
onal to all the other nonzero elements of T and to the blinding generator 𝐻, i.e., �̂�𝑘 != lin( nz(𝑃𝑠𝑘 , 𝐼𝑘), nz(𝐴tmp

𝑘
−

𝐴𝑠𝑘 ,𝑈𝑠𝑘 −𝑈
tmp
𝑘
), 𝐻 ). The nonzero element 𝐻 is ortogonal to all nonzero elements of the set {𝑃𝑠𝑘 , 𝐼𝑘 , �̂�𝑘}, i.e.,

𝐻 != lin( nz(𝑃𝑠𝑘 , 𝐼𝑘), �̂�𝑘 ). The element 𝑃𝑠𝑘 is guaranteed nonzero.
Thus, all steps of the zkTElemRW2,2 protocol in Figure 23 have been performed and the premise of Theorem 14

is met. Therefore, by Theorem 14 the verifier is convinced that the relation (60) holds, and, hence, the tuples (141),
(142) are elementwise proportional to each other, to the acccuracy of 𝐻, which is equivalent to the system (67).

U SIGNATURE MULTRATUG
Proof: [Theorem 15] According to Figure 24, as the new vectors Utmp, Î are defined by the formulas (62), (61), all
proofs of Theorem 13 for the EFLRSLWB scheme in Figure 21 transfer to the Multratug scheme in Figure 24.

In fact, Utmp is indistinguishable from the independent uniform randomness due to the blinding components
�̂�𝐻 in it (62), hence Utmp does not change anything. The same is for Î (61), which is indistinguishable from
the independent uniform randomness and from the former I (39). This is proved in [26], and also can be proved
using the method of [11]. Also, the new vectors Î and Utmp get into Û’s pre-image, however this does not change
anything, only depricates any linear dependency of Û’s with Î’s and Utmp’s. The same is for the blinding generator
𝐻, which gets the new vectors into its pre-image.

Note, Theorem 14, which we use for Multratug instead of Theorem 3 for EFLRSLWB, does not require in the
premise Î’s and Utmp’s to be proved linearly independent of each other, only Û’s and 𝐻 are required to be proved
linearly independent of Î’s and Utmp’s.

With the former I, EFLRSLWB has (49) and gets (50) from it. With the new Utmp, Î, Multratug has (66)
instead of (49), and gets (67) from it by Claim 7 in Appendix T, instead of (50). As (50) is a subset of (67), with Î
substituted for I, all the subsequent EFRLSLWB proofs use Î instead of I and thus translate to Multratug proofs.

This way, Multratug appears to be proved a linkable threshold ring signature, provided that EFLRSLWB is
proved to be such. And, all the properties listed in Theorem 13 for the linkable threshold ring signature EFLRSLWB
in Figure 21 transfer to the linkable threshold ring signature Multratug in Figure 24.

V VECTOR SCHNORR ARGUMENT
Proof: [Theorem 16] Design of the protocol in Figure 25 is clearly Schnorr-like. Hence, its completeness, sHVZK,
and cWEE can be proved in the standard way, so we do not include a detailed proof here, clarifications are the same
as for zk2ElemComm in Appendix A.

In addition to this, all the explanatory details can be found in [2], where the sHVZK and cWEE properties are
proved for quite a similar protocol.

W NON-ZK LOG-SIZE VECTOR COMMITMENT ARGUMENT
Proof: [Theorem 17] For 𝑛 > 4, the protocol in Figure 26 comprises the reductions used in the inner product
argument [6] with b = {0}𝑛 and, hence, it is complete and has cWEE for these reductions. For 𝑛 ⩽ 4, P simply
opens the witness toV and the latter checks the relation. Thus, for 𝑛 ⩾ 1, the protocol is complete and has cWEE.

Also, in [2] the sHVZK and cWEE properties are proved for a similar protocol.

63



X OPTIMIZED ZK LOG-SIZE VECTOR COMMITMENT ARGUMENT
Proof: [Theorem 18] Completeness is by-design. The argVC𝑛+1 call in the last step of zkVCopt

𝑛 has cWEE by
Theorem 17. Having extracted the witness 𝝉 from it, the protocol turns out to be zkNElemComm𝑛+1, which has cWEE
by Theorem 16. Thus, zkVCopt

𝑛 has cWEE. Even with the opened 𝝉 the protocol remains sHVZK by Theorem 16,
so partially hiding it inside argVC𝑛+1 doesn’t make zkVCopt

𝑛 less zero-knowledge. Thus, zkVCopt
𝑛 is sHVZK.

Also, in [2] such a composition is proved to be having sHVZK and cWEE properties.

Y NOTES ABOUT DUALRING-EC
The DualRing-EC signature, according to its security model in [30], requires all keys in the ring to be honestly

generated, i.e., it does not work with malformed ones. In contrast, our security model defined by Theorem 9 allows
malformed keys to appear in the rings. We have tried to assess, whether an environment in which EFLRSL remains
secure can be used for DualRing-EC, and discovered the following attack to DualRing-EC, of course, with reference
to our security model.

Let a dishonest P want to sign with DualRing-EC using a ring of four malformed public keys, none of which it
knows secret key for. Knowing no secret keys for 𝑄, 𝑅, 𝐾 and knowing secret key for 𝑃, it creates the four-element
ring as {𝑄, 𝑅, 𝑃 +𝐾, 𝑃 −𝐾}. Then P performs as though it signs honestly with 𝑃’s secret key using three-element
ring {𝑄, 𝑅, 𝑃}. However, it still hashes the four-element ring to create the challenge. Instead of creating the
Sum Argument [30] for three challenges 𝑐0, 𝑐1, 𝑐2, which correspond to 𝑄, 𝑅, 𝑃, it splits 𝑐2 into two halves and
includes the Sum Argument for four challenges 𝑐0, 𝑐1, 𝑐2/2, 𝑐2/2 into the forgery. After that, honestV accepts this
signature.

Z LOW ANONYMITY OF U/X
Let us show some anonymity implications of having an element of the form 𝑥−1𝑈 in a public transcript such

that 𝑈 is a fixed generator and 𝑥 is a private key. The element may not be necessarily a linking tag, such element
may appear, for instance, in a part of the scheme proving the balance.

Consider a rather possible case of non-uniform distribution of 𝑥’s. Let the distribution have a probability peak
for pairs of private keys (𝑥1, 𝑥2) such that 𝑥2 = 2𝑥1. Consequently, there will be non-negligible probability to
randomly pick two signatures which were signed with keys from the same pair. These two signatures will be linked
together by simply checking whether the element 𝑥−1

2 𝑈 multiplyed by 2 is equal to its counterpart.
The obvious objection to this case is that the system may by-design forbid such the non-uniform distributions

or other tightly coupled keys. This is, for example, the case in [28], where private keys behind the public keys in
the rings have the form 𝑥 = 𝑏 + 𝑟 with hidden 𝑏 and with independently and uniformly distributed 𝑟 which may
even be known to adversary. Thus, the element in question takes the form

(𝑏 + 𝑟)−1𝑈 , where 𝑟 is known to the adversary, and always is independently and uniformly distributed.

According to [18, 29, 22], this form makes it impossible to break anonymity, even if the adversary is diligently
observing 𝑟 .

Takeaway from this is that if a scheme conatains an element of the form 𝑥−1𝑈, then it is not anonymous w.r.t.
chosen public key attackers. Also, in this case it seems not possible to follow the usual methods for proving
existential unforgeability against adaptive chosen message / public key attackers, even if the scheme possesses this
property.
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