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Abstract. As a quantum analogue of one-way function, the notion of
one-way quantum state generator is recently proposed by Morimae and
Yamakawa (CRYPTO’22), which is proved to be implied by the pseudo-
random state, and can be used to devise a construction of one-time se-
cure digital signature. Due to Kretschmer’s result (TQC’20), it’s believed
that pseudorandom state generator requires less than post-quantum se-
cure one-way function. Unfortunately, it remains to be unknown how to
achieve the one-way quantum state generator without the existence of
post-quantum secure one-way function. In this paper, we mainly study
that problem and obtain the following results:

– We propose two variants of one-way quantum state generator, which
we call them the weak one-way quantum state generator and distri-
butionally one-way quantum state generator, and show the equiva-
lence among these three primitives.

– The distributionally one-way quantum state generator from average-
case hardness assumption of a promise problem belongs to QSZK is
obtained, and hence a construction of one-way quantum state gen-
erator.

– A direct construction of quantum bit commitment with statistical
binding (sum-binding) and computational hiding from the average-
case hardness of a complete problem of QSZK.

– To show the non-triviality of the constructions above, a quantum
oracle U is devised relative to which such promise problem in QSZK
doesn’t belong to QMAU .

Our results present the first non-trivial construction of one-way quantum
state generator from the hardness assumption of complexity class, and
give another evidence that one-way quantum state generator probably
requires less than post-quantum secure one-way function.

1 Introduction

As the most fundamental primitive, one-way function (OWF) plays a crucial role
in cryptography. Plenty of cryptographic primitives have been shown equivalent
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to OWF, including the pseudorandom generator (PRG), pseudorandom func-
tions (PRFs), pseudorandom permutations (PRPs), digital signature, symmet-
ric encryption, message authentication code (MAC). bit commitment and more
([20,18,26,43,19,36,23,32]). It is called the MiniCrypt that the world one-way
functions exist by Impagliazzo’s famous “five worlds”[25].

As a quantum analogue to MiniCrypt, the MiniQCrypt means the world that
post-quantum secure one-way function (pqOWF) exists [21]. Many relations be-
tween the pqOWF and other quantum analogues of primitives in Minicrypt have
been shown to be consistent with the classical setting, such as the post-quantum
pseudorandom generators, quantum pseudorandom functions, quantum pseudo-
random permutations, and quantum message authentication codes [47,10,48].
However, the world MiniQCrypt may contain some primitives that contrast to
its classical counterpart, when allowing quantum communication, the celebrated
result by Bennett and Brassard showed that the security of key exchange pro-
tocol doesn’t need to rely on any cryptographic assumption in quantum world
[7]. Then, two independent works both showed the feasibility for constructing
oblivious transfer (OT) protocol, secure multi-party computation (MPC) proto-
cols from pqOWFs within a non-black box and black-box manner respectively
[21,6]. That is because, in classical world, no construction has been found for
implementing OT protocol from OWFs, and OT is believed to be a “higher-level”
primitive than OWFs due to the existing black-box barrier [27,33].

Therefore, it seems that the existence of pqOWFs is probably not necessary
for some quantum primitives whose classical counterparts are equivalent to (or
evern “stronger” than) OWFs in classical world. When considering a quantum
state instead of a string as output, Ji, Liu and Song proposed a quantum ana-
logue of PRGs which is called the pseudorandom states (PRSs) [28]. Its security
is characterized by the hardness for distinguishing a real random state (sampled
from the Haar measure) from the output state of PRSs with a random seed as
input. It is shown that PRSs can be constructed by quantum pseudorandom
functions which indicates that PRSs belongs to MiniQCrypt. But the other di-
rection seems to be infeasible, by constructing a quantum oracle O relative to
which QMAO = BQPO while PRS (and even pseudorandom unitary) still ex-
ists, the result by Kretschmer gave negative evidence for constructing pqOWF
from PRS [31]. And by exploiting the nature of PRSs, two recently results by
Morimae et al. and Ananth et al. devised constructions of quantum commit-
ment from PRSs [35,5], which further showed that quantum bit commitment
may be also “weaker” than pqOWFs. Besides, by considering quantum state as
output, Morimae et al. defined a new quantum analogue of pqOWF, which they
called the one-way quantum state generator (OWSG), and proved the implica-
tion from OWS to one-time secure digital signatures with quantum public keys
[35]. And Ananth et al. also proposed the notion of pseudorandom function-like
quantum states (PRFSs) and obtained several applications such as the pseudo
one-time encryption schemes [5]. However, no known construction of these quan-
tum primitives has been found from something “below” pqOWF. That motivates
us to study this problem:
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Can we achieve these quantum primitives by some computational hardness
assumptions which are not sufficient for pqOWF?

One-Way Quantum State Generators Motivated by that problem, we here
focus on the notion of OWSGs by Morimae and Yamakawa [35]. Informally, a
quantum polynomial-time (QPT) algorithm f is called OWSGs, if it takes a n-bit
string x as input, and output a state |ϕx⟩ which guarantees the computational in-
feasibility of finding a “plausible” preimage x′ for any QPT adversary even given
polynomial many copies of the challenge state |ϕx⟩. Here “plausible” means the
state output by x′ is not far from the challenge state |ϕx⟩, which is characterized
by the inner product of these two states. It is obvious that pqOWFs meets the
requirement of OWSGs. And it has been further proved that PRS is also OWSG.

We can treat OWSGs as the quantum version of OWFs, not only because
of the similarity between these two security definitions, but also due to the
potential relations to other primitives (e.g. the implication from PRS to OWSG
can be treated as the quantum version of the implication from PRG to OWF,
and the construction of one-time secure digital signatures with quantum public
keys from OWSG can be regarded as the quantum version of Lamport’s one-time
signature scheme from OWF). According to Kretschmer’s result, we know that
pqOWFs are probably not necessary to OWFs [31]. But unfortunately, it remains
to be unknown that how to devise a non-trivial construction of OWSG which
can not achieve the requirement of pqOWFs simultaneously.

1.1 Overview of Our Results and Techniques

In a nutshell, we explore the nature of OWSGs, and study how to construct it
with some complexity assumptions which are not known to imply the OWFs.
The main results is summarized as the follows.

The Equivalence Among Variants of OWSGs In order to construct OWSG,
we consider the weak version of quantum one-wayness. Note that for a PQT al-
gorithm f which takes a string x as input and outputs a state |ϕx⟩, the quantum
one-wayness of f is defined by the computational infeasibility of any PQT ad-
versary A for finding a similar preimage x′ [35]. That similarity is characterized
by the the inner product |⟨ϕx|ϕx′⟩| of the fake state |ϕx′⟩ and the real challenge
state |ϕx⟩ which is a negligible function when f is OWSG. Note that OWSG
(which we call it the strong OWSG sometimes to make it clear) can be regarded
as the quantum analogue of (strong) one-way function. We hence accordingly
define the notions of weak one-way state generator (weak OWSGs) and distri-
butionally one-way quantum state generators (distributionally OWSGs), which
can be regarded as the quantum analogues of the weak one-way functions (weak
OWFs) and distributionally one-way functions (distributionally OWFs) [26,17].

These three notions share the same functionality. The only difference is their
security definitions. Similar as the weak OWF, the weak OWSG only requires
relaxed version of the one-wayness, which only bound the success probability
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to be at most 1− 1/p(n) for any PQT adversary A 3, where p(·) denotes some
positive polynomial. Note that the distributionally OWF requires the hardness
for generates for generates a nearly random preimage for a challenge value, which
is characterized by the statistical distance between the real distribution of the
input/output and the forged distribution by the adversary. Hence in quantum
case, we describe that property by the trace distance between the real (mixed)
state |input string⟩⊗ |output state⟩ and the faked (mixed) state generated by a

QPT adversary. More specifically, if we denote by ρ
|ϕx⟩
A,t the (mixed) state with

the form
∑
px|x⟩⟨x| which is output by an adversary A with |ϕx⟩⊗t as its input

state. Then the distributionally one-wayness is characterized by the existence of
some polynomial nc

F
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
≤ 1− 1

nc

for any QPT adversary A when n is sufficiently large. The expected value Ex is
taken over the distribution of D(1n).

By the definitions of these variants of OWSGs, it’s obvious that OWSG is
immediately the weak OWSG, and weak OWSG is distributionally OWSG. As
for the other direction, assuming f is weak OWSG which takes x as input, and
outputs |ϕxi

⟩ we firstly show that Yao’s construction from weak OWF to OWF is
also capable in quantum setting with only minor modification. Namely, it’s not
hard to prove

f′(x1, . . . , xm)→ ⊗mi=1|ϕxi
⟩⊗poly(n)

is OWSG by a similar strategy. Where poly(n) is some positive polynomial de-
cided by f. That is consistent with the classical counterpart [17].

Theorem 1. The existence of weak OWSG and strong OWSG are equivalent.

Then to illustrate the implication from the distributionally OWSG to weak
OWSG, we still consider construction of its classical counterpart by Impagliazzo
and Luby [26]. That is, let f be distributionally OWSG which takes x as input,
and outputs |ϕxi

⟩, then we consider

f′(x, hk, k)→ |ϕx, k, hk, hk(x)⟩

where hk : {0, 1}n → {0, 1}k is a universal hash function, and k ≤ n+O(log n).
The original proof by Impagliazzo and Luby [26] is like that, assuming A can

break the weak one-wayness of f ′(x) = (f(x), k, hk, hk(x)) for some distribu-
tionally one-way function f , then almost all the outputs f ′(x) can be inverted.
However, when we choose some suitable k (since there are at most polynomial
many of k) such that the following conditions hold with non-negligible prob-
ability: (1) hk is injective on the preimage space of the challenge value (i.e.

3 A succeeds iff it measures |ϕx⟩ with {|ϕx′⟩⟨ϕx′ |, I − |ϕx′⟩⟨ϕx′ |} and gets |ϕx′⟩ in
result.
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f−1(f(x))); (2) The size of the image space of hk (i.e. 2k) is at most the size
|f−1(f(x))| · nC for some polynomial nC . In that case, for some random value
r ∈ {0, 1}k, it holds that r ∈ hk(f−1(f(x))) with non-negligible probability, and
since hk is a universal hash and injective on f−1(f(x)), the adversary A would
return some x′ randomly in f−1(f(x)). That induces an adversary B for breaking
the distributionally one-wayness by invoking A(f(x), k, hk, r) with some random
r (and k goes through n + O(log n) to O(log n) until a valid output has been
found).

However, a subtle problem would appear when we adopt the strategy by
Impagliazzo and Luby. That is because the preimage space {x | f(x)→ |ϕx⟩} of
the challenge state |ϕx⟩ doesn’t contains all valid forgeries. For example, for let
x′ be a forged preimage such that corresponding output state |ϕx′⟩ is very close
to the real challenge state |ϕx⟩ (i.e. |⟨ϕx′ |ϕx⟩| > negl(n)), such an x′ should also
be considered since it’s obviously a valid forgery. But it’s a little intractable to
decide which kinds of x′ is “close” to the challenge state and which are not since
|⟨ϕx′ |ϕx⟩| can be any value in [0, 1] (and that problem doesn’t bother the result
of its classical counterpart, since the output of a one-way function f is a string,
either ⟨f(x)|f(x′)⟩ = 1 or ⟨f(x)|f(x′)⟩ = 0).

Fortunately, this problem can be tackled by a potential nature of a quan-
tum state generator which doesn’t satisfies the weak one-wayness. We find that,
assuming the quantum state generator f is not weak one-way, there exists a
subspace I of the domain which takes in an overwhelming proportion, such that
for any x, x′ ∈ I, the the output states |ϕx⟩ and |ϕx′⟩ are either very close, or
far enough. We call that property the polarization of a quantum state gener-
ator. More specifically, f is (k, p) − polarized if for any x, x′ ∈ {0, 1}n, either
|⟨ϕx′ |ϕx⟩|k ≥ 1− p(n) or |⟨ϕx′ |ϕx⟩|k ≤ p(n).

Lemma 1 (informal). If f is not weak OWSG, then for any positive polynomial
poly(·), there exists a positive polynomial t(·) and subspace In of the domain,
such that In takes overwhelming part of the domain, and f is (2t(n), 1/poly(n))−
polarized on In.

Assuming f is not weak OWSG, by the lemma above, we can hence divide In
into several equivalent classes according to their trace distance. Then replacing
the collection f−1(f(x)) by the the collection of x′ whose output state |ϕx′⟩ is
close to the challenge state |ϕx⟩. Then by a similar strategy (but different tech-
nique) as the result by Impagliazzo and Luby [26], we hence show the implication
from the distributionally OWSG to weak OWSG.

Theorem 2. The existence of distributionally OWSG and weak OWSG are equiv-
alent.

Therefore we show the equivalence among these three primitives, which agrees
with its classical counterpart.

Constructing OWSGs from Hard Problem in QSZK Since it’s possible
to construct (distributionally) OWF from an average-case hard problem in sta-
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tistical zero-knowledge [40] 4. Therefore, to construct OWSGs, we consider the
average-case hardness of the quantum statistical zero-knowledge (QSZK). Since
the quantum state distinguishability (QSD) problem is complete for QSZK (even
in average-case) [45], therefore it’s sufficient to consider the average hardness of
the QSD problem.

Informally, the QSD problem is a promise problem, that given a pair of
quantum circuit Q0 and Q1, which is promised the distance of output (mixed)
states (which we denote by ρ0 and ρ1 respectively) by these two circuits is either
close enough or pretty far 5, the problem is to decide which case it is. The QSD
problem can be regarded as the quantum analogue of the statistical difference
(SD) problem. The SD problem is a complete promise problem for statistical
zero-knowledge which is given a pair of classical circuits C0 and C1, promised
that the output distributions of these two circuit is either close or far from each
other for a random input.

It’s easy to realize the distributionally OWF from the average-case hardness
of SD problem. If we denote by S(r)→ (Cr0 , C

r
1) the procedure that the sampler

S generates a hard-on-average instance (Cr0 , C
r
1) of the SD problem with r as

the internal random number, then f(r, b, x) := (Cr0 , C
r
1 , C

r
b (x)) is naturally a

distributionally OWF 6. Since if there is a probabilisti polynomial time (PPT)
adversary generates preimages of f(b, x) randomly, it’s nearly impossible to gen-
erates a valid preimage with b ⊕ 1 when the distributions of Cr0 and Cr1 are far
enough whereas a preimage with b⊕ 1 would appear more often when these two
distributions are close. That hence induces a distinguisher for that SD problem.

However, it’s more challenging to construct distributionally OWSG from a
hard-on-average QSD problem. The output states by the instance Q0, Q1 are
mixed with unknown distribution, which makes the purification procedure is
hard to handle. Therefore, to settle this problem, we consider a purified version
of the QSD problem, which we call it the semi-classical quantum state distin-
guishability (semi-classical QSD or scQSD) problem. Given a pair of unitary
operators (U0, U1) along with two samplers (S0, S1), it is promised that these
two states

∑
x p0,x|ϕ0,x⟩⟨ϕ0,x| and

∑
x p1,x|ϕ1,x⟩⟨ϕ1,x| are either very close, or

far enough, where we denote by Ub|0, x⟩ = |ϕx, x⟩ and Pr[Sb(1
n) → x] = pb,x,

and the problem is to decide which case it is. It is easy to see that the semi-
classical QSD problem is a special case of the QSD problem which specifies the
purification progress and the distributions.

Then assuming the semi-classical QSD problem is hard-on-average for a sam-
pler S(r) → (Qr0, Q

r
1) here we still adopt the notion (Qr0, Q

r
1) to represent the

instance of scQSD problem, but in that case Qrb := (Ur0 , S
r
b) represents the set of

unitary circuit along sampler under the random index r, and Urb |0, x⟩ = |ϕ
Ur

b
x , x⟩.

4 Actually, the existence of OWF can further rely on the non-triviality (i.e. average-
case hardness) of the computational zero-knowledge (CZK) [41].

5 It is usually characterized by whether the trace distance is larger than 2/3, or smaller
than 1/3, but it’s equivalent to replace by 1− 2−n and 2−n respectively.

6 Detailed description and other applications of the average-case hardness of the SD
problem may refer to [30,9].
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We hence can ensure the existence of (distributionally) OWSGs by the following
construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x ⟩ = |Qr0, Qr1⟩ ⊗ |ϕ
Ur

b
x ⟩.

That is because, assuming there exists an adversary A breaking the distri-
butionally one-wayness of f, when the mixed states by Qr0, Q

r
1 are pretty far, it’s

infeasible for A to generate a valid preimage (r∗, b⊕1, x∗) for Ex|ϕ
Ur

b
x ⟩⟨ϕU

r
b

x |⊗t as
input state 7. Because in that case, the trace distance between Ex|ϕ

Ur
b

x ⟩⟨ϕU
r
b

x | and
Ex|ϕ

Ur
b⊕1

x ⟩⟨ϕU
r
b⊕1

x | is also very far, by the definition of the distributionally OWSG,
it’s impossible for a successful adversary A for finding another case’s preimage.
And on the other hand, when the mixed states by Qr0, Q

r
1 are close enough, then

the trace distance between Ex|ϕ
Ur

b
x ⟩⟨ϕU

r
b

x |⊗t and Ex|ϕ
Ur

b⊕1
x ⟩⟨ϕU

r
b⊕1

x |⊗t is negligibly
small. Therefore the output of A should only change slightly when replacing

Ex|ϕ
Ur

b
x ⟩⟨ϕU

r
b

x |⊗t by Ex|ϕ
Ur

b⊕1
x ⟩⟨ϕU

r
b⊕1

x |⊗t as a part of input state. That indicates
A would output another bit b⊕ 1 with noticeable probability, and hence we can
devise a distinguisher of the semi-classical QSD problem by A.

Theorem 3. Assuming the semi-classical QSD problem is hard-on-average in
quantum case, then there exists a distributionally one-way state generator.

Besides, since semi-classical QSD problem is a special case of the QSD prob-
lem, we can prove that scQSD problem is also a promise problem of QSZK. And
hence we can derive a construction of distributionally OWSG from a hard-on-
average problem in QSZK, and therefore achieve the OWSG according to the
constructions from weak OWSG to OWSG, and distributionally OWSG to weak
OWSG.

Constructing Quantum Commitment from Hardness of QSZK Although
we face the problem of handling the progress of purification when constructing
the distributionally OWSG from the standard QSD problem, but as a by-product
and another cryptographic application of the hardness of QSZK, we can derive
a direct construction of quantum bit commitment with statistical binding (sum-
binding) and computational hiding from the average-case hardness of the QSD
problem.

Informally, note that the hardness of the QSD problem ensures that any QPT
adversary can not distinguish whether the mixed states by a given instance of the
QSD problemQ0, Q1 are close enough or pretty far. That implies if we send one of
the mixed state ofQ0, Q1 as a commitment and reveal it by sending the entangled
part of this state. Then the verification can be achieved by checking whether
this state is output by the purification circuit of Qb (here we fix the progress
of purification as a deterministic algorithm). The computational hiding holds
because of the hardness of the QSD problem, it’s infeasible to tell which one it
comes from. And the binding is supported by the following fact: when the mixed
states by Qr0, Q

r
1 are far enough, it is impossible for any malicious commiter to

7 here the expectation of x is taken over the distribution of Sb(1
n).
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convince the receiver with opening 0 and 1 as the message simultaneously. More
specifically, we let A,B registers of the following state send in the commit phase,
and C,D the send in the opening phase

|Ψb⟩ABCD :=
∑
r

|Qr0, Qr1⟩A ⊗ PQrb |0⟩BC ⊗ |r⟩D
2l/2

where PQrb is the purified circuit of Qb, and PQ
r
b |0⟩BC is the purified state such

that TrBPQ
r
b |0⟩BC is the mixed state generated by Qb. Then we can derive the

implication from the average-case hardness of the QSD problem to the quantum
commitment.

Theorem 4. Assuming QSD problem is hard-on-average in quantum case, then
there exists a statistical binding (sum-binding) and computational hiding quan-
tum commitment.

Since it is easy to see that the average-case QSD is also complete for average-
case QSZK, our result actually gives a construction of quantum bit commitment
from the average-case hardness of QSZK.

Oracle Separation To show the non-triviality of our constructions above, we
want to show the the semi-classical QSD problem is probably not contained in
QMA relative to some quantum oracle.

To show that, we adopt Aaronson’s result for separating the SZK and QMA,
the strategy is like that, we construct the quantum oracle U which can be treated
as the quantum version of the oracle corresponding to the permutation testing
problem (PTP) in [2]. Then we reduce the hardness for deciding that oracle
to the quantum lower bounded of the permutation testing problem, which is
q · w = Ω(2n/3) for the query number q and the length of witness w.

More specifically, the oracle U := {Un}n∈N is defined as follows, we let Un :=

(UFn(1)
n , . . . ,UFn(2

n+1)
n ) for each n ∈ N, where each UFn(i)

n is chosen from the
Haar measure over U(2n) independently for all i ∈ [2n+1]. And Fn is either (1)
a random permutation on {0, 1}n+1 or (2) a random function that differs from
every permutation on at least 2n+1 ·2/3 coordinates with probability 1/2 of each
case (here the factor 2/3 can change by other constant). Then the semi-classical

QSD relative to U can be construct as UUb |0, x⟩ := U
Fn(b∥x)
n |0⟩ ⊗ |x⟩, and the

sampler Sb is trivially the uniform distribution on {0, 1}. It’s not hard to see
that we can reduce that problem to the permutation testing problem. And by
the property of Haar measure and the randomness of Fn(·), we can deduce that
construction is scQSD with probably 1.

Theorem 5. There exists a quantum oracle U such that scQSDU /∈ QMAU .

Since OWSGs and quantum bit commitment can both be implemented by
the average-case hardness of the scQSD problem, and the existence of pqOWFs
at least requires QMA ̸= BQP, we thus achieve these two quantum primitives
with complexity assumptions probably below the world MiniQCrypt.
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1.2 Related Work

Concurrent Work Few days before our paper was published online, a impor-
tant work by Brakerski, Canetti and Qian also considered to establish crypto-
graphic primitives from complexity assumption [11]. More specifically, building
on the efficiently samplable, statistically far but computationally indistinguish-
able pairs of distributions (EFI pairs) which has been shown to be equivalent
to the quantum commitment by Yan [46]. They showed that EFI pairs are nec-
essary and sufficient for a large class of quantum-cryptographic applications
including the quantum commitments schemes, oblivious transfer, and general
secure multiparty computation. The also constructed EFI pairs from essentially
any non-trivial quantum computationally zero-knowledge (QCZK), which over-
laps with (and also stronger than) our construction of quantum commitment
because QSZK ⊆ QCZK and the equivalence between EFI pairs and quantum
commitments schemes immediately imply the existence of quantum commitment
from non-trivial QSZK by their results. However we believe our construction of
quantum commitment still be of interesting because it gives a direct construc-
tion. Besides, comparing with [11], more different part is that we mainly focus
on constructing the OWSGs from some specific non-trivial problem in QCZK.
That is not included in [11] because it’s unknown that whether EFI pairs can be
used to construct the OWSGs.

Quantum Primitives below MiniQCrypt The initiated work by Ji, Liu
and Song proposed the notions of PRSs and pseudorandom unitary (PRUs) [28].
They showed the implication of PRSs from the pqOWFs, and gave application
on quantum money. Then Brakerski and Shmueli showed that random binary
phase suffices for the indistinguishability from a Haar random state [12]. They
also gave construction of scalable pseudorandom quantum states from pqOWFs
in their following work [13]. Then Morimae et al. and Ananth et al. gave construc-
tions of statistically binding and computationally hiding quantum commitment
from PRSs concurrently independently [35,5], which also imply the constructions
of OT and MPC according to [21,6]. Besides, Morimae and Yamakawa defined
the notion of OWSGs and gave construction of one-time secure signature from
it [35], and Ananth, Qian and Yuen also gave the notion of PRFSs and obtained
several applications [5].

Cryptographic Primitives from Non-Triviality of (Q)SZK Ostrovsky
showed that if SZK contains any hard-on-average problem, then one-way func-
tions exist by giving a construction of distributionally OWF from it [40]. Then,
Ostrovsky and Wigderson further proved the existence of a hard-on-average
problem in CZK implies the existence of OWFs in infinitely-often case [41]. Ong
and Vadhan studied the equivalence between CZK and instance-dependent com-
mitments [44,39]. And a recent work by Komargodski and Yogev implemented
the distributional collision resistant hashes from the average-case hardness of
SZK [30]. In quantum case, Kashefi and Kerenidis gave pqOWFs from the circuit
quantum sampling (CQS) problem [29]. That induces a construction of pqOWFs
from the average-case hardness of SZK because any SZK language can be reduced
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to the CQS problem [4]. Then Chailloux and Kerenidis devised computationally
hiding and statistically binding auxiliary-input quantum commitment schemes
by the worst-case complexity assumptions such as QSZK ⊈ QMA [14] and even
much weaker assumption QIP ⊈ QMA (with quantum advice in the commitment
scheme).

Oracle Separations There are lots of works about the oracle separations re-
lated to this work, we only refer those are highly related. Aaronson and Chen
defined the oracle O relative to which BQPO ⊈ BPPOpath and BQPO ⊈ SZKO

[1,15]. Then Aaronson showed that SZKO ⊈ QMAO by giving a quantum lower
bounded for PTP [2]. And Chailloux and Kerenidis devised computationally hid-
ing and statistically binding auxiliary-input quantum commitment schemes by
the worst-case complexity assumptions such as also separates the QSZK and
QMA by a quantum oracle [14]. Menda and Watrous showed an oracle sep-
aration between QSZK and UP ∩ coUP [34], which the hardness of the later
one yields the existence of one-way permutation in worst case [24]. As the re-
lations between cryptographic primitives, Fischlin extended the Simon’s result
[42] and devised an oracle relative to which injective trapdoor functions and
one-way permutations exist, while the SZK collapses to P [16]. And due to a
series of works [41,39,22], the black-box reduction from hard-on-average prob-
lems in SZK to OWPs has also been ruled out. Subsequently, Bitansky et al.
showed that even the OWPs along with the indistinguishability obfuscators (and
the collision-resistant hash functions) do not imply hard problems in SZK via
black-box reductions [8,9]. Recently, by taking advantage of the concentration of
Haar measure, Kretschmer gave a quantum oracle O relative to QMAO = BQPO

while PRS (and even pseudorandom unitary) still exists which gives negative
evidence for reducing pqOWF from PRS [31].

2 Preliminary

2.1 Notations

Here are some basic notations used later. N and R denote the set of positive
integers and real numbers respectively. [n] denotes the set of integers {1, 2 . . . , n}.
Let |x| denote the bit length when x is a string, or denote its size when x is a
set. The mathematical expectation of a random variable X is E[X]. A function
negl(·) is negligible if for any c > 0, negl(n) < 1/nc for all sufficiently large n.
We sometimes let negl(·) be arbitrary negligible function.

We let S(N) denote the N -dimensional pure quantum states, and U(N) be
the group of N × N unitary operators. For U ∈ U(N), U† is the adjoint of U ,
and In ∈ U(2n) is the identity map. And we let Tr(ρ) be the trace of ρ, and
TrA(ρ) is the partial trace over A.

2.2 Quantum Computation

This part includes some background information on quantum computation, we
assume the familiarity with basic notions, the detail may refer to [38].
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For two n qubits mixed states (density matrices) ρ0, ρ1, we let TD(ρ0, ρ1)
and F(ρ0, ρ1) be trace distance and the fidelity respectively, which are defined
by TD(ρ0, ρ1) := Tr

√
(ρ0 − ρ1)†(ρ0 − ρ1)/2 and F(ρ0, ρ1) := Tr

√√
ρ0ρ1
√
ρ0.

For pure states |ϕ0⟩, |ϕ0⟩, we denote by TD(|ϕ0⟩, |ϕ1⟩) and F(|ϕ0⟩, |ϕ1⟩) the
trace distance and fidelity of |ϕ0⟩⟨ϕ0|, |ϕ1⟩⟨ϕ1| for simplicity. Then the following
two lemmas are used widely in this paper.

Lemma 2 (Uhlmann’s theorem). For any pair of states ρ0 and ρ1, let |ϕ0⟩
and |ϕ1⟩ denote the purifications of ρ0 and ρ1 respectively. The fidelity F(·) be-
tween ρ0 and ρ1 can be given by

F(ρ0, ρ1) = max
|ϕ0⟩,|ϕ1⟩

∣∣∣⟨ϕ0|ϕ1⟩∣∣∣. (1)

Where the maximization is taken over all purifications |ϕ0⟩, |ϕ1⟩.

Lemma 3 (Fuchs-van de Graaf inequalities). For any pair of states ρ0 and
ρ1, we have

1− F(ρ0, ρ1) ≤ TD(ρ0, ρ1) ≤
√

1− F(ρ0, ρ1)2. (2)

Where TD(·) is the trace distance.

A quantum algorithm quantum algorithm A is a collection of quantum cir-
cuits {An}n>0, and it’s quantum polynomial-time (QPT) if it’s running time
is bounded by some polynomial. And we say A is uniform QPT algorithm if
{An}n>0 is polynomial-time uniform family of quantum circuits, which means
there a polynomial time deterministic Turing machine M(1n) outputs An for
each n ∈ N. Without specific mention, the situations we considered in this work
are all uniform.

Moreover, we denote by PQ a purification of the corresponding general quan-
tum circuit Q which simulates the functionality of Q and satisfies the unitary
property simultaneously. The existence of such simulation has been justified in
[3], by allowing PQ to add some additional ancillary qubits (which can be ini-
tialized as |0⟩) as its input and tracing-out the residual (or garbage) qubits. This
simulation of circuit purification can always be done efficiently.

2.3 Average-Case Hardness of QSZK

The hardness of QSZK can be captured by its complete problem, the quantum
state distinguishability (QSD) problem. Let ρ0 and ρ0 denote the mixed state
obtained by running Q0 and Q1 on state |0⟩ and discarding (tracing out) the non-
output qubits. Then the quantum state distinguishability is defined as follows.

Definition 1 (Quantum State Distinguishability (QSD)). Given a pair
of quantum circuits Q0, Q1 ∈ {0, 1}n, and ρ0, ρ0 denote the states produced by
Q0, Q1 respectively, which are promised either TD(ρ0, ρ1) > 2/3 or TD(ρ0, ρ1) <
1/3, the problem is to decide which is the case.
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Note that the parameters 1/3 and 2/3 are optional, we can be replaced by
2−n and 1− 2−n according to the technique for manipulating the trace distance
[45]. Therefore we usually adopt the parameters of the QSD problem as 2−n

and 1 − 2−n in the following text. For the sake of simplicity, we introduce the
following notations

QSD1 := {(Q0, Q1) | TD(ρ0, ρ1) > 1− 2−n},

QSD0 := {(Q0, Q1) | TD(ρ0, ρ1) < 2−n}.

Then let QSD := (QSD1,QSD0).
Similar as the notion of average-case hardness of statistical distance problem

in [30,9], which is known as a SZK complete promise problem, we formalize the
average-case hardness of QSD problem as follows.

Definition 2 (Average-Case Hardness of QSD). For a promise problem
QSD := (QSD1,QSD0), it is quantum hard-on-average if there exists an efficient
sampler S(1n) of QSD such that any QPT adversary A can not distinguish an
instance generated from S(1n) with non-negligible advantage, namely it holds that

Pr[A(Q0, Q1) = b, (Q0, Q1) ∈ QSDb : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl(n) (3)

for some negligble function negl(·).
Note that, when we assume the average-case hardness of QSD, it holds that

1

2
− negl(n) ≤ Pr[(Q0, Q1) ∈ QSD0 : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl(n)

for some negligible function negl(·) (otherwise there is a trivial distinguisher
breaks the average-case hardness for infinitely many n ∈ N). Therefore an equiv-
alent definition of the average-case hardness of QSD can be defined as the non-
existence of QPT adversary A such that∣∣Pr[A(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0] (4)

− Pr[A(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1]
∣∣ ≤ negl(n)

for some negligible function negl(·). Sometimes, we denote by S(r) = (Qr0, Q
r
1)

the progress of S(1n) when we specify the internal random number r ← {0, 1}l(n).
Moreover, due to the reduction by Watrous [45], it is easy to see that the

average-case QSD is also complete for average-case QSZK, which means any
construction from the average-case hardness of QSD could be changed into a
construction from any hard-on-average language in QSZK.

2.4 One-Way Quantum State Generator and Its Variants

In this part, we will introduce the notion of one-way quantum state generator
(OWSG) by Morimae and Yamakawa [35], and gives it’s variants. To describe the
strong (weak) one-way quantum state generator, we firstly gives a generalized
version of OWSG which we call it ε(n)-OWSG.
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Definition 3 (ε(n)-OWSG). Let f be a QPT algorithm that takes a string x ∈
{0, 1}n as its input, and outputs a state |ϕx⟩Y ⊗ |ηx⟩Z where the registers Y
stores the output state and Z stores the ancilla state 8. For any QPT adversary
A, we consider the following experiment ExpowsgA (n):

– The challenger generates x ← D(1n) by some sampleable D(1n), then runs
f(x)→ |ϕx⟩⊗|ηx⟩ about t(n) times and sends the resulting state to A, where
t(n) is a polynomial of n, and we denote by t for simplicity when there is no
confusion.

– A receives the state |ϕx⟩⊗t and outputs a guess x′.
– The challenger measures the state |ϕx′⟩ by {|ϕx⟩⟨ϕx|, I − |ϕx⟩⟨ϕx|} and re-

turns 1 if the measurement is |ϕx⟩, and returns 0 otherwise 9.

Let Expowsgf,A (n) = 1 when the measurement is |ϕx⟩, and Exp
owsg
f,A (n) = 0 other-

wise. f is called ε(n)-one-way state generator (ε(n)-OWSG) on D(1n) if

Pr
x←D(1n)

[Expowsgf,A (n) = 1] ≤ ε(n) (5)

for some function ε(·). And sometimes we denote the event as Exp
owsg
A (n) for

convenience when there is an explicit f.

When ε(·) is a negligible function, the definition of ε(n)-OWSG is exactly the
OWSG defined in [35], and we call it the strong one-way quantum state generator
(strong OWSG) sometimes for clarity. On the other hand, when ε(n) = 1− 1/nc

for some constant c > 0, we call it the weak one-way quantum state generator
(weak OWSG).

Note that the original notion of strong (weak) OWSG is hard to capture,

so here we give an equivalent definition by the trace distance. We let ρ
|ϕx⟩
A,t =

TrNA(|ϕx⟩⊗t) be the mixed state after tracing out all the non-output registers
by A with |ϕx⟩⊗t as input 10. Then it holds that

E
x

[
TD

(
|ϕx⟩⟨ϕx|, Tr

X,Z
f(ρ
|ϕx⟩
A,t )

)]
≤ E

x

[√
1− F

(
|ϕx⟩⟨ϕx|, Tr

X,Z
f(ρ
|ϕx⟩
A,t )

)2]
≤

√
E
x

[
1− F

(
|ϕx⟩⟨ϕx|, Tr

X,Z
f(ρ
|ϕx⟩
A,t )

)2]
≤

√
1− E

x

[
⟨ϕx| Tr

X,Z
f(ρ
|ϕx⟩
A,t )|ϕx⟩

]
=

√
1− Pr

x
[ExpowsgA (n) = 1].

8 In this general definition, |ηx⟩ is the garbage part which is not non-entangled with
|ϕx⟩, the reason for that is explained in [35].

9 If we consider f(x) as a unitary operator that takes |0⟩ as input, and outputs |ϕx⟩⊗
|ηx⟩, then this process can be achieved by invoking the f(x)† to |ϕx′⟩.

10 Without loss of generality, we can assume Trz A(|ϕx⟩⟨ϕx|⊗t) has the form
∑

pz|x⟩⟨x|
because we can “measure” these x by performing the CNOT on those x to an ad-
ditional auxiliary part before tracing out. And f(ρ

|ϕx⟩
A,t ) denotes the unitary process

from ρ
|ϕx⟩
A,t |0⟩⟨0| to

∑
pz|x⟩⟨x| ⊗ |ϕx, ηx⟩⟨ϕx, ηx|.
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On the other hand,

E
x

[
TD

(
|ϕx⟩⟨ϕx|, Tr

X,Z
f(ρ
|ϕx⟩
A,t )

)]
≥ E

x

[
1− F

(
|ϕx⟩⟨ϕx|, Tr

X,Z
f(ρ
|ϕx⟩
A,t )

)]
≥ 1−

√
E
x

[
⟨ϕx| Tr

X,Z
f(ρ
|ϕx⟩
A,t )|ϕx⟩

]
= 1−

√
Pr
x
[ExpowsgA (n) = 1].

Therefore ε(·) is negligible (or 1 − 1/nc for some c > 0), iff the trace distance

between |ϕx⟩⟨ϕx| and TrZ f(ρ
|ϕx⟩
A,t ) is negligible (or 1 − 1/nc

′
for some c′ > 0)

that hence derive the equivalent definition of strong (weak) OWSG. We call the
strong OWSG the OWSG for convenience when there is no confusion. Then we
give the definition of distributionally one-way quantum state generator which is
also characterized by the trace distance as follows.

Definition 4 (Distributionally OWSG). Let f be a QPT algorithm that takes
a string x ∈ {0, 1}n as its input, and outputs a state |ϕx⟩Y ⊗ |ηx⟩Z . Then f is
called distributionally one-way quantum state generator (OWSG) on sampleable
D(1n), if for any QPT adversary A in the experiment ExpowsgA (n) (which is de-
fined in Definition 3) it holds that

TD
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
≥ 1

nc

for some constant c > 0. The expected value Ex is taken over the distribution

of D(1n), and ρ
|ϕx⟩
A,t = TrNA(|ϕx⟩⊗t) be the mixed state after tracing out all the

non-output registers by A with |ϕx⟩⊗t as input.

3 The Equivalence between Variants of OWSGs

In this section, we show the equivalence among these three kinds of OWSGs.
Firstly, we show the equivalence between weak OWSG and strong OWSG.

Theorem 6. The existence of weak OWSG and strong OWSG are equivalent.

Proof. Note that the strong OWSG implies the weak OWSG trivially. Therefore
the rest of this proof aims to show the other direction. Here we adopt Yao’s
original construction. Let f be a weak OWSG on distribution D(1n), satisfying
the event ExpowsgB (n) = 1 occurs with probability at most 1 − 1/q(n) for some
positive polynomial q(·) and any QPT adversary B. Then for some suitable
polynomial m(n) (which is determined by q(n)), the following construction of f′

is strong OWSG:

f′(x1, . . . , xm) = ⊗mi=1|ϕxi
⟩⊗nq(n)Y ⊗mi=1 |ηxi

⟩⊗nq(n)Z (6)

The strategy of proof is very similar to it’s classical counterpart [17]. So here
we only give a sketch to note the different part, and leave the detailed proof in
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supplementary materials A.1. Assuming A breaks the strong one-wayness of f′

then for a random challenge state ⊗mi=1|ϕxi
⟩⊗nq(n), the probability that A would

output (x′1, . . . x
′
m) satisfying

∏m
i=1 |⟨ϕxi

|ϕx′
i
⟩|2nq(n) ≥ 1/2mp(n) is noticeble.

Therefore, for a challenge state |ϕx∗⟩ of f, we just embed it into ⊗mi=1|ϕxi⟩⊗nq(n)
for some random position j ∈ [m]. Then give this state to A and repeat it for
polynomial many times. We can hence prove that A would output x′j satisfying

|⟨ϕx∗ |ϕx′
j0
⟩|2 ≥ (1/2mp(n))1/nq(n) with overwhelming probability. By Chernoff

bound, such x′i can be detected with overwhelming probability by measuring
|ϕx⟩ with {|ϕx′

j
⟩⟨ϕx′

i
|, I − |ϕx′

i
⟩⟨ϕx′

i
|} for polynomial many times.

Then we give the equivalence between distributionally OWSG and weak
OWSG by the following theorem.

Theorem 7. The existence of distributionally OWSG and weak OWSG are equiv-
alent.

Proof. It is easy to derive the distributionally one-wayness from the weak one-
wayness, since the distance is invariant under unitary operator, it holds that

TD
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
= TD

(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx| ⊗ |ϕx⟩⟨ϕx|,E

x
Tr
Z
f(ρ
|ϕx⟩
A,t )⊗ |ϕx⟩⟨ϕx|

)

Where f(|x⟩) denotes the operator that outputs |x⟩⊗|ϕx⟩. Since f is weak OWSG
such that

E
x

[
⟨ϕx| Tr

X,Z
(f(ρ

|ϕx⟩
A,t ))|ϕx⟩

]
= Pr

x
[ExpowsgA (n) = 1] ≤ 1− 1

nc
(7)

for some constant c > 0. Note that without loss of generality, we can assume ρ
|ϕx⟩
A,t

has the form
∑
x px|x⟩⟨x| (because we can “measure” these x by performing the

CNOT on those x then tracing out it). Then if we denote by G the collection of

“good” x such that G := {x | ⟨ϕx|TrX,Z(f(ρ|ϕx⟩
A,t ))|ϕx⟩ ≤ 1−1/2 · nc}. According
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to (7) we have
∑x∈G
x px ≥ 1

2·nc . That hence implies

TD
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx| ⊗ |ϕx⟩⟨ϕx|,E

x
Tr
Z
f(ρ
|ϕx⟩
A,t )⊗ |ϕx⟩⟨ϕx|

)
≥ TD

(
E
x
|ϕx⟩⟨ϕx| ⊗ |ϕx⟩⟨ϕx|,E

x
Tr
X,Z

f(ρ
|ϕx⟩
A,t )⊗ |ϕx⟩⟨ϕx|

)
= TD

(
E
x
SWAP

(
|ϕx⟩⟨ϕx| ⊗ |ϕx⟩⟨ϕx| ⊗ |0⟩⟨0|

)
,E
x
SWAP

(
Tr
X,Z

f(ρ
|ϕx⟩
A,t )⊗ |ϕx⟩⟨ϕx| ⊗ |0⟩⟨0|

))
≥ Tr(E

x
(
1− ⟨ϕx|TrX,Z f(ρ

|ϕx⟩
A,t )|ϕx⟩

2
))

≥ Tr(

x∈G∑
x

px(
1− ⟨ϕx|TrX,Z f(ρ

|ϕx⟩
A,t )|ϕx⟩

2
))

≥ 1

2 · nc
· ( 1

4 · nc
) =

1

8 · n2c
.

Where SWAP is the swap test for the first two parts, and stores the result in the
additional qubit |0⟩. That hence justify the implication from weak OWSGs to
distributionally OWSGs.

Therefore the remaining part of this proof is to construct weak OWSG from
distributionally OWSG. Here we adopt the construction by Impagliazzo and
Luby. Assuming f(x)→ |ϕx⟩ ⊗ |ηx⟩ is distributionally OWSG such that for any
efficient quantum adversary A, it holds that

E
x

[
F
(
ρx ⊗ |ϕx⟩⟨ϕx|, ρ|ϕx⟩

A,t ⊗ |ϕx⟩⟨ϕx|
)]
≤ 1− 1

p(n)

for some positive polynomial p(·) when n ∈ N is sufficiently large. Then we
construct f′ as follows:

f′(x, hk, k)→ |ψx,hk,k⟩ ⊗ |ηx⟩ := |ϕx, hk(x), hk, k⟩ ⊗ |ηx⟩ (8)

where hk : {0, 1}n → {0, 1}k is a universal hash function, and k ≤ n+O(log n).
Before we give the proof, we firstly introduce a notion of polarization, we

say f is (k, p)− polarized if for any x, x′ ∈ {0, 1}n, either |⟨ϕx′ |ϕx⟩|k ≥ 1− p(n)
or |⟨ϕx′ |ϕx⟩|k ≤ p(n). Then we the following lemma shows that the polarization
property for any f which is not weak OWSG.

Lemma 4. If f is not a weak one-way state generator, and assuming A is the
corresponding adversary using t(n) copies (denoted as t in brief sometimes). Let
In(δ) be the collection of x such that A accepst with probability at least 1− δ

In(δ) := {x′ | Pr
x
[Expowsgf,A (n) = 1 | x = x′] > 1− δ}.

Then for any positive polynomial poly(·), f is (2t, 1/poly(n)) − polarized on
In(1/(4poly(n)t(n))

2).
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Due to the limitation of space, we remove the proof of Lemma 4 to the supple-
mentary materials A.2.

Note that Lemma 4 indicates that for any polynomial poly(·), and x0, x1 ∈
In(1/16poly(n)

2t(n)2), either

TD(|ϕx0
⟩, |ϕx1

⟩) ≤

√
1− (1− 1

poly(n)
)

1
t , or TD(|ϕx0

⟩, |ϕx1
⟩) ≥

√
1− (

1

poly(n)
)

1
t .

Hence we can construct a family of pairwise disjointed collections {N2t
x (1/p(n))}x∈X

covering all elements in In(1/16poly(n)
2t(n)2), where

N2t
x (1/p(n)) := {x′ | |⟨ϕx′ |ϕx⟩|2t ≥ 1− 1/p(n)}.

The strategy for generating that collection is simple, we just find an x
which are not contained in the former union ∪x∈XN2t

x (1/p(n)) and add those
x in X recursively, until any element of In(1/16poly(n)

2t(n)2) has been in-
cluded. Therefore the collections in {N2t

x (1/p(n))}x∈X cover all elements in
In(1/16poly(n)

2t(n)2). To prove it’s pairwise disjointed, assuming there exist
x, x′ ∈ X such that

N2t
x (1/poly(n)) ∩N2t

x′(1/poly(n)) ̸= ∅

Then it holds that√
1− (1− 1

poly(n)
)

1
t ≤ TD(|ϕxj

⟩, |ϕxj
⟩) ≤ 2

√
1− (1− 1

poly(n)
)

1
t

<

√
1− (

1

poly(n)
)

1
t

which is contradictory to that lemma 4.
Then we back to the proof of Theorem 7. We show f′ satisfies the weak one-

wayness by making a contradiction. Assuming there is an adversary A breaks
the weak one-wayness of f′ (with t copies input states), namely

Pr
x,hk,k

[Expowsgf′,A (n) = 1] > 1− negl(n) (9)

for infinitely many n ∈ N with some negligible function negl(·). Then we con-
struct an adversary B breaks the distributionally one-wayness of f as follows:

– B takes as input a challenge state |ϕx∗⟩⊗t′ where t′ = (n3 +n) ·m · t, it then
repeats the follow steps from k = n+ C · log n to k = C · log n (here C > 1
is a constant that will be determined later):
• B generates hk and then chooses rk ← {0, 1}k uniformly at random.
• B invokes A with input |ϕx, rk, hk, k⟩⊗t and get x′ as measurement, then
checks if f†(x′)|ϕx∗⟩|ηx′⟩ equals to 0 for n2 · t times 11, if all the n2 · t

11 Here f(x′) denotes the unitary operator that takes |0⟩ as input state and outputs
|ϕx′ , ηx′⟩, it is equivalent to measure it with {|ϕx′⟩⟨ϕx′ |, I − |ϕx′⟩⟨ϕx′ |}.
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measurements are 0, B would accept that output x′ and stop. Otherwise,
it repeats that step with a new generated random hk, rk about m times
until finds some x′, if it still fails to find such x′, it would continue to
the round k − 1.

– If B doesn’t find an acceptable output in the iterations above until k =
C · log n, it would output ⊥.

Note that some part of B is described in classical setting, but it’s equivalent to
analyze it as a unitary one (such as replacing |ϕx, rk, hk, k⟩ for a random rk by

the state
∑
rk
|rk⟩⊗|ϕx, rk, hk, k⟩/2−l/2). So here we still use ρ

|ϕx⟩
B,t′ to denote the

corresponding output (mixed) state by B after tracing out the non-output part.
Then the strategy for proving this part is as follows. Since f is distributional

one-way, there should exist a positive polynomial q(·) such that

F
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
≤ 1− 1

q(n)

for any QPT adversary B. Then, we are going to show that, if f′ is not weak
one-way, then the adversary B constructed above should satisfy

1− 1

q(n)
< F

(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
,

which will lead a contradiction.
For that purpose, before estimating the output distribution for each challenge

state each challenge state |ϕx⟩, we firstly introduce a classification of the input
space according to the polarization.

Since A breaks the weak one-wayness of f′, it’s not hard to see that A also
breaks the weak one-wayness of f, which indicates f is (2t, 1/p(n))− polarized
on In(1/16p(n)

2t(n)2) for any positive polynomial p(·). Then according to the
discussion before, we can derive a family of disjointed collections {N2t

x (1/p(n))}x
that covering the In(1/16p(n)

2t(n)2).
Then we choose a subset of those {N2t

x (1/p(n))}x (and to denote it by
{Gx1

, . . . ,Gxl
} for convenience), such that

(1 + 1/p(n))|Gxi
| > |{x | TD(|ϕxi

⟩, |ϕx⟩) ≤

√
1− (

1

p(n)
)

1
t /2}|,

for each i = 1, . . . , l. It’s easy to see that those sets {x | TD(|ϕx1
⟩, |ϕx⟩) ≤√

1− (1/p(n))
1
t /2}, . . . , {x | TD(|ϕxl

⟩, |ϕx⟩) ≤
√
1− (1/p(n))

1
t /2} are pairwise

disjointed.
Moreover, since we assume A breaks the weak one-wayness of f, it’s easy to

see that |In(1/16p(n)2t(n)2)| ≥ 2n · (1 − negl(n)) for some negligible function
negl(·). Therefore some suitable {Gx1

, . . . ,Gxl
} can be chosen such that the

union of those Gxi
are also overwhelming to the domain, namely, if we let

I ′n :=
⋃
i

Gxi
,
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then |I ′n| > 2n · (1 − negl′(n)) for some negligible function negl′(·) (otherwise,
since p(·) is a positive polynomial, it would also be contradictory to the assump-
tion that f is not weak OWSG.

According to that classification, we divide the input space into these dis-
jointed collections Gx1

, . . . ,Gxl
. By the convexity of the fidelity, we have 12

F
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
≥ (1− negl(n)) · F

(
E

x∈I′n
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E

x∈I′n
ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
≥ (1− negl(n)) ·

l∑
i=1

|Gxi
|

2n
· F

(
E

x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
.

Then it’s sufficient to consider the lower bound for each Gxi
. For each Gxi

, we
can further derive that.

F
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
≥ 1− TD

(
E

x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
.

Due to the Triangle inequality of the trace distance, it holds that

TD
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
≤ TD

(
E

x∈Gxi

|x⟩⟨x| ⊗ |ϕxi⟩⟨ϕxi |, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕxi⟩⟨ϕxi |

)
(10)

+ TD
(

E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|, E

x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕxi

⟩⟨ϕxi
|
)

+TD
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕxi
⟩⟨ϕxi

|, E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|
)
.

Then we can estimate the unwanted two parts of (10) as follows

TD
(

E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|, E

x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕxi

⟩⟨ϕxi
|
)

≤
√
1− F

(
E

x∈Gxi

|x⟩⟨x| ⊗ |ϕxi
⟩⟨ϕxi

|, E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|
)2

≤
√
1−

(
E

x∈Gxi

F(|x⟩⟨x| ⊗ |ϕxi
⟩⟨ϕxi

|, |x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|)
)2

≤
√
1−

(
E

x∈Gxi

F(|ϕxi
⟩⟨ϕxi

|, |ϕx⟩⟨ϕx|)
)2 ≤√

1− (1− 1

p(n)
)

1
t ≤

√
1

p(n)
.

12 Here for simplicity, we assume the distribution of x is the uniform distribution on
{0, 1}n, it’s easy to extend that result to a general distribution.
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Similar, we have

TD
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕxi
⟩⟨ϕxi

|, E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|
)
≤

√
1

p(n)
.

Therefore, the inequality (10) becomes

F
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕx⟩⟨ϕx|

)
(11)

≥ 1− TD
(

E
x∈Gxi

|x⟩⟨x| ⊗ |ϕxi
⟩⟨ϕxi

|, E
x∈Gxi

ρ
|ϕx⟩
B,t′ ⊗ |ϕxi

⟩⟨ϕxi
|
)
− 2 ·

√
1

p(n)

≥ 1− TD
(

E
x∈Gxi

|x⟩⟨x|, E
x∈Gxi

ρ
|ϕx⟩
B,t′

)
− 2 ·

√
1

p(n)
.

That implies it’s sufficient to consider the trace distance between Ex∈Gxi
|x⟩⟨x|

and Ex∈Gxi
ρ
|ϕx⟩
B,t′ . We now estimate the trace distance above that by showing

the probability that B outputs x is not far from 1/|Gxi
| for any x ∈ Gxi

, and
for other x /∈ Gxi

the that B accepts and outputs those x only with small
probability. We divide these into two claims. The first one gives a lower bound
of the success probability of B in each repetition, and says that B would succeed
with overwhelming probability.

Claim 1. For a given challenge state |ϕx∗⟩, where x∗ ∈ Gxi , let pk be the prob-
ability that B accepts at one repetition of k-th round, then for k ∈ [n + C ·
log n, log |Gxi

|+ C · log n], it holds that

pk ≥ (1− n2 · t(n)
p(n)

− 5

4 · p(n)
) · |Gxi

|
2k

(12)

We have

Pr[B accepts ∧ k ≥ log |Gxi
|+ C · log n] ≥ 1− exp(−n), (13)

namely, the probability that B accepts for some k ≥ log |Gxi
| + C · log n is at

least 1− exp(−n) when m ≥ 2nC+1.

Then the Claim 2 indicates that when B accept, the output would follow a
“nearly uniform” distribution on Gxi

.

Claim 2. For a given challenge state |ϕx∗⟩, where x∗ ∈ Gxi
, pk,x denotes the

probability that B accepts with the measurement x from A at one repetition,
then the following three facts hold.

1. For any x ∈ In \Gxi
, the probability that B accepts with the measurement

x it is at most pk,x < p(n)−n
2

.
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2. For any x ∈ Gxi , and k ≥ log |Gxi | + C · log n for some suitable C > 0, it
holds that

(1− n−2C − (2 + t(n) · n2)/p(n))
2k

≤ pk,x ≤ 1/2k

3. For any x ∈ {x | TD(|ϕxi⟩, |ϕx⟩) >
√
1− (1/p(n))1/t(n)/2} \ In., the proba-

bility that A output it is at most pk,x < exp(−n2/16)

The proof of Claim 1 and Claim 2 may refer to the supplementary materials
A.3 and A.4.

Let Bxi denote the collection of “bad” x which are not “highly invertible”
but “close” to xi, namely

Bxi
:=

{
x | TD(|ϕxi

⟩, |ϕx⟩) ≤

√
1− (

1

p(n)
)

1
t(n) /2

}
\Gxi

.

Then by the definition of Gi, we have |Bxi
| ≤ |Gxi

|p(n)−1 the probability that
B accepts conditioned on the measurement by A belongs to Bxi

at one repetition
is at most |Gxi

|p(n)−1 · 2−k.
Combine the three facts in Claim 2, we can get an upper bounded of pk,

which is

pk ≤
∑
x

Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t)→ x] =
∑
x

pk,x (14)

< p(n)−n · 2n + |Gxi
|p(n)−1 · 2−k + |Gxi

| · 2−k + exp(−n2/16) · 2n

< 2−2n + |Gxi
|(p(n)−1 + 1) · 2−k

for all sufficiently large n ∈ N.
Therefore, for a challenge state |ϕx∗⟩ if we denote by px the probability that

B accepts with a measurement x, then it holds that

px =

C logn∑
k=n+C logn

qkpk,x, (15)

where qk−1 :=
∏k+1
j=n+C logn(1− pj).

Then by (14) and Claim 1 and Claim 2, for any x ∈ Gxi
, and k ≥ log |Gxi

|+
C · log n for some suitable C > 0, we have

(1− n2

p(n)
− 5

4 · p(n)
− 1

(2 · n2C)
) · |Gxi

| < pk
pk,x

<
2k−2n + |Gxi |(p(n)−1 + 1)

(1− 2n−2C − 5/4 · p(n)− n2/p(n))

Namely, if we let C = (deg p(n))/2, then

p(n)2

(1 + p(n))(p(n)− 3n2) · |Gxi
|
<
pk,x
pk

<
p(n)

(p(n)− 3n2) · |Gxi
|

(16)
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for any k ≥ log |Gxi |+ C log n.
Then still by Claim 1 (inequality (13)), we have∑

k<log |Gxi
|+C·logn

qkpk ≤ exp(−n)

Combining it with (16), we get

log |Gxi
|+C·logn∑

k=n+C logn

qkpk
p(n)2

(1 + p(n))(p(n)− 3n2) · |Gxi |
− exp(−n) < px,

and

px <

log |Gxi
|+C·logn∑

k=n+C logn

qkpk
p(n)

(p(n)− 3n2) · |Gxi
|
+ exp(−n)

hence implies

p(n)2

(1 + p(n))(p(n)− 3n2) · |Gxi
|
− exp(−n) < px <

p(n)

(p(n)− 3n2) · |Gxi
|
+ exp(−n)

for any x ∈ Gxi . Then for any x ∈ Gxi , we have∣∣px − 1/|Gxi
|
∣∣

< max{ 3n2

(p(n)− 3n2) · |Gxi
|
+ exp(−n), 3n2 + 3n2p(n)− p(n)

(1 + p(n))(p(n)− 3n2) · |Gxi
|
− exp(−n)}

=
3n2

(p(n)− 3n2) · |Gxi
|
+ exp(−n)

Therefore

TD
(

E
x∈Gxi

|x⟩⟨x|, E
x∈Gxi

ρ
|ϕx⟩
A,t

)
= max

0≤P≤I
Tr

[
P ( E

x∈Gxi

|x⟩⟨x| − E
x∈Gxi

ρ
|ϕx⟩
A,t )

]
<

∑
x

∣∣px − 1

|Gxi |
· δx

∣∣
<

3n2

(p(n)− 3n2)
+ 2 exp(−n) · |Gxi |+ 2−2n · 2n +

∑
x∈Bxi

px

∗
<

3n2

(p(n)− 3n2)
+

1

p(n)
+ negl(n)

for some negligible function negl(·), where δx = 1 if x ∈ Gxi , and δx = 0
otherwise. Here (∗) holds due to the fact that pk,x ≤ 2−k and |Bxi | ≤ |Gi|/p(n).
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Therefore, if we let p(n) > 16q(n)2 · n3 + 3n2, we can derive that

F
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
≥ (1− negl(n)) ·

l∑
i=1

|Gxi
|

2n
· F

(
E

x∈Gxi

|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|, E
x∈Gxi

ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
≥ (1− negl(n)) ·

l∑
i=1

|Gxi
|

2n
·
(
1− TD

(
E

x∈Gxi

|x⟩⟨x|, E
x∈Gxi

ρ
|ϕx⟩
A,t

)
− 2 ·

√
1

p(n)

)
≥ (1− negl(n)) · (1− 1

2 · q(n)
).

for infinitely many n ∈ N. It is contradictory to the fact that

F
(
E
x
|x⟩⟨x| ⊗ |ϕx⟩⟨ϕx|,E

x
ρ
|ϕx⟩
A,t ⊗ |ϕx⟩⟨ϕx|

)
< (1− 1

q(n)
),

which hence means that f′ is a weak one-way state generator. □

4 The Cryptographic Applications of Average-Case
Hardness of QSZK

4.1 OWSG from Variant QSD Problem

In this part, we show how to construct distributionally one-way state generator
from the average-case hardness of a variant QSD problem which we call the
semi-classical quantum state distinguishability problem.

Definition 5 (Semi-Classical QSD). Given a pair of quantum unitary cir-
cuits (U0, U1) along with two samplers (S0, S1) such that Ub|0, x⟩ = |ϕb,x, x⟩AB
and Pr[Sb(1

n)→ x] = pb,x for b ∈ {0, 1}. It is promised that either

TD(
∑
x

p0,x|ϕ0,x⟩⟨ϕ0,x|,
∑
x

p1,x|ϕ1,x⟩⟨ϕ1,x|) > 1− 2−n,

or

TD(
∑
x

p0,x|ϕ0,x⟩⟨ϕ0,x|,
∑
x

p1,x|ϕ1,x⟩⟨ϕ1,x|) > 2−n.

The semi-classical quantum state distinguishability problem (semi-classical QSD
or scQSD for short) is to decide which is the case.

It is easy to see that scQSD is also a promise problem for QSZK because when
we let Qb be the quantum circuit that outputs Ex Ub|0, x⟩⟨0, x|U†b , the scQSD
problem can be treated as a special case of QSD. So in this part, we denote by
Qb the pair (Sb, Ub) for convenience, and scQSD1 (scQSD0 resp.) the collection
of (U0, U1) such that the trace distance is at least 1− 2−n (at most 2−n resp).
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The average-case hardness of semi-classical QSD problem is defined similarly
as the original QSD problem which characterized the hardness for any QPT
distinguisher to distinguish (Q0, Q1) ∈ scQSD0 from (Q0, Q1) ∈ scQSD1 for a
hard instance sampler S(1n)→ (Q0, Q1). Then then the distributionally OWSG
can be ensured by the average-case hardness semi-classical QSD problem which
is demonstrated as follows.

Theorem 8. Assuming semi-classical QSD problem is hard-on-average in quan-
tum case, then there exists a distributionally OWSG.

We justify this theorem by giving the construction as follows:

The construction of distributionally OWSG: Assuming there exists a effi-
cient sampler ((Sr0 , U

r
0 ), (S

r
1 , U

r
1 )) = (Qr0, Q

r
1)← S(r) such that the semi-classical

QSD problem is hard on average on distribution of S(1n) 13, then the following
construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x ⟩ = |Qr0, Qr1⟩ ⊗ |ϕ
Ur

b
x ⟩ (17)

is a distributionally one-way state generator on the distribution over (r, b, x).

Where |ϕU
r
b

x ⟩ is the state for Urb |0, x⟩ = |ϕU
r
b

x , x⟩, and ((Sr0 , U
r
0 ), (S

r
1 , U

r
1 )) =

(Qr0, Q
r
1) ← S(r). It is apparently a correct implementation of distributionally

OWSG. Therefore we aim to show it meets the distributionally one-wayness. Due
to the limitation of space, here we give a sketch of it and remove the detailed
proof to the supplementary materials A.5.

Assuming a QPT adversary A breaks the distributionally one-wayness of f,
that implies for a random hard instance Qr0, Q

r
1 along with a random challenge

state |ϕU
r
b

x ⟩, A would return the preimage with almost the same distribution as
the real case (which is characterized by the trace distance). Then for a given hard

instanceQr0, Q
r
1, we generate Ex |ϕ

Ur
b

x , x⟩⟨ϕU
r
b

x , x|, let Ex |Qr0, Qr1, ϕ
Ur

b
x ⟩⟨Qr0, Qr1, ϕ

Ur
b

x |
be the challenge state of A for a random coin b ∈ {0, 1}. Then in the case that

(Qr0, Q
r
1) ∈ scQSD0, the state Ex |Qr0, Qr1, ϕ

Ur
0

x ⟩⟨Qr0, Qr1, ϕ
Ur

0
x | is very close to

Ex |Qr0, Qr1, ϕ
Ur

1
x ⟩⟨Qr0, Qr1, ϕ

Ur
1

x |, so by the definition of distributionally OWSG, A
would output b ⊕ 1 with probability nearly equals to 1/2. On the other side,
when (Qr0, Q

r
1) ∈ scQSD1, these two states are pretty far, which indicates that

A returns b with overwhelming probability, that hence induces a distinguisher
for the scQSD problem.

4.2 A Direct Construction of Quantum Bit Commitment from QSD

To show the application of the average-case hardness of QSZK, we construct
a quantum commitment scheme directly from the average-case hardness of the
QSD problem.

Theorem 9. The construction above is a computational hiding, sum-binding
quanutm commitment assuming the QSD problem is quantum hard-on-average.
13 Here r ∈ {0, 1}l(n) denote the internal randomness of S where we assume the length

of the random number of S is same as Srb since we can choose the longest l(n) and it
is also a polynomial of n.
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The construction of quantum bit commitment: Assuming there exists a
efficient sampler (Qr0, Q

r
1)← S(r) such that the QSD problem is hard on average

on distribution of S(1n) (here r ∈ {0, 1}l(n) denotes the internal randomness of S,
and we denote l(n) by l for short when there is no confusion), then the quantum
bit commitment scheme is as follows:

– Commit phase: The commiter generates |0⟩ →H⊗l·n ⊗n
i=1

∑
ri
|ri⟩/2l/2,

then gets n copies of the superposition state of these circuits from S

n⊗
i=1

∑
ri

|ri, 0⟩
2l/2

S⊗n

→
n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 ⟩

2l/2
.

Then let b← {0, 1} be the message that the commiter intents to commit, it
then generates

n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 , 0⟩

2l/2
U⊗n

→ |Ψb⟩⊗nABCD.

Where

|Ψb⟩ABCD :=
∑
r

|Qr0, Qr1⟩A ⊗ PQrb |0⟩BC ⊗ |r⟩D
2l/2

PQrb denotes a purified circuit of Qrb (here we choose a deterministic pro-
cedure of the purification in this commit algorithm). Then the commiter
sends the registers A,B of |Ψb⟩⊗nABCD to the receiver as the commitment,
where A stores the Qr0, Q

r
1, the registers B,C store the output/ancilla parts

of PQrb |0⟩, and D stores the random number r.
– Reveal phase: The commiter sends the register C,D and the message b to

the receiver. The receiver invokes the operator (H⊗l ⊗ S†⊗ I ◦U†)⊗n to the
whole system, then measures the resulting state in the computational basis.
The receiver accepts iff the measurement is 0.

It is not hard to derive the correctness of this construction. The remaining
aims to discuss the hiding and binding properties, and we give a sketch here and
leave the detailed version to the supplementary materials A.6.

Firstly, we show the computationally hiding property by making a contra-
diction, assuming there exist a QPT adversary A breaks it. That implies A can
distinguish one state from another of these commitment with non-negligible ad-
vantage. However when (Q0, Q1) ∈ QSD0, no adversary can distinguish one from
another with advantage larger than O(2−n), that hence indicates a QPT distin-
guisher of these QSD problem. On the other hand, the sum-binding property is
guaranteed by the fact that the trace distance between these two states returned
by (Q0, Q1) ∈ QSD1 is pretty far. That indicates the trace distance of these two
commit states is pretty far, therefore no (computational unbounded) cheating
commiter can both open 0 and 1 with one commit state with non-negligible
probability which ensures the sum-binding of this construction.
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Remark 1. Note that, the hard-core predicate of OWSGs can be realized by the
same way as OWFs. Therefore for a one-way state generator f, when there exist
some positive polynomial p(·) such that |⟨ϕx′ |ϕx⟩| ≤ 1− 1/p(n) for any x ̸= x′,
we can just send the p(n) ·n copies of |ϕx⟩ along with its hard-core predicate (or
a random bit) as the commitment, which can also achieve the sum-binding and
computationally hiding quantum commitment. Since the proof is very similar
to the classical counterpart from OWPs to the commitment via the hard-core
predicate, so we omit the proof here.

5 Oracle Separation

In this section, we want to show an evidence for the non-triviality of our con-
structions in the last section. Note that, the existence of pqOWF at least requires
that QMA ̸= BQP, and by Kretschmer’s result [31], there is a quantum oracle
relative to which QMAO = BQPO while PRS exists. Therefore, to give evidence
indicating our result is meaningful, we show scQSD doesn’t belong to QMA rel-
ative to a quantum oracle.

Theorem 10. There exists a quantum oracle U such that scQSDO /∈ QMAU .

Proof. We Firstly construct the oracle U as follows:

The description of U : The oracle U := {Un}n∈N, where we let Un :=

(UFn(1)
n , . . . ,UFn(2

n+1)
n ) for each n ∈ N, and UFn(i)

n is chosen from the Haar
measure over U(2n) independently for all i ∈ [2n+1]. And Fn is either (1) a ran-
dom permutation on {0, 1}n+1 or (2) a random function that differs from every
permutation on at least 2n+2/3 coordinates with probability 1/2 respectively.

For convenience, we denote by Un,0 and Un,1 the collections of these two
types of Un respectively.

The construction of the hard instance (Q0, Q1) = ((UU0 , S
U
U ), (U

U
1 , S

U
1 )) of the

semi-classical QSD is given directly by

UUb |0, x⟩ := UFn(b∥x)
n |0⟩ ⊗ |x⟩,

and the Sb is simply the uniform distribution of {0, 1}n. It’s easy to see the
correctness of this construction, because when Fn is a random permutation.

Since UFn(i)
n is chosen from the Haar measure over U(2n) independently, then

E
U
F(E

x
UFn(0∥x)
n |0⟩⟨0|(UFn(0∥x)

n )†,E
x
UFn(1∥x)
n |0⟩⟨0|(UFn(1∥x)

n )†)

∗
≤E
U
max
V

∣∣(∑x⟨0|(U
Fn(0∥x)
n )† ⊗ ⟨x|)(UFn(1∥x)

n |0⟩ ⊗ V |x⟩)
∣∣

2n
∗∗
≤O(1/2n)

for any such Fn. Where (∗) holds due to the Uhlmann’s theorem, and (∗∗) follows
the property of Haar measure.

When Fn is a differs from every permutation on at least 2n+2/3 coordinates,
then |X| := |{0∥x0 | ∃Fn(0∥x0) = Fn(1∥x1)}| > c · 2n with probability nearly
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1− negl(n) over the randomness of Fn, where 0 < c < 1 is a constant. Then for
those Fn satisfying that condition, we have

E
U
TD(E

x
UFn(0∥x)
n |0⟩⟨0|(UFn(0∥x)

n )†,E
x
UFn(1∥x)
n |0⟩⟨0|(UFn(1∥x)

n )†)

∗
≤

∑
x0 /∈X

max
P

TrPUFn(0∥x0)
n |0⟩⟨0|(UFn(0∥x0)

n )† ≤ 1− c.

It’s obvious that (1 − c)2 > O(1/2n) for all sufficiently large n, and by Borel-
Cantelli lemma we can see that it’s a correct implementation of scQSD for all
but finite n ∈ N with probability 1 under the randomness of U .

Then we show that the semi-classical QSD problem doesn’t belong to QMAU

by Aaronson’s result [2].

Proposition 1. For any q-query oracle-aided QMA verifier V with w qubits wit-
ness that decides the scQSDU problem, it holds that q · w = Ω(2n/3).

Proof (of Proposition 1). We let V be the quantum verifier of scQSD problem
relative to U , Note that the choice of Um is irrelevant for distinguishing U1,n

from U2,n when m ̸= n, therefore∣∣∣Pr
U
[VU (1n) = 1 | Un ∈ Un,0]− Pr

U
[VU (1n) = 1 | Un ∈ Un,1]

∣∣∣ (18)

=
∣∣∣Pr
Un

[VUn(1n) = 1 | Un ∈ Un,0]− Pr
Un

[VUn(1n) = 1 | Un ∈ Un,1]
∣∣∣.

However, that induces a quantum distinguisher B for the permutation testing
problem (PTP) in [2]. That is, for a give oracle Fn, which is either (1) a ran-
dom permutation on {0, 1}n+1, or (2) a random function that differs from every
permutation on at least 2n+2/3 coordinates. We can then establish B as follows:

– B is quanutm accessible to oracle Fn, it then simulates Ū (Fn(i))
n ← U(2n)

locally for all i ∈ [2n+1].

– B simulates UUb by taking |b, x⟩ as input and outputs Ū (Fn(b∥x))
n |0⟩ ⊗ |x⟩.

– B invokes V with Ūn, then outputs V’s decision as result.

We then have

Pr[BFn(1n) = 1 | Fn is case(b)] = Pr[AUn0 (1n) = 1 | Un ∈ Un,b] (19)

However, according to the quantum query lower bound of permutation testing
problem (Theorem 8 in [2]), the number of queries for such B is bounded by
q · w = Ω(2n/3), which hence justifies the Proposition 1. □

Therefore, by Proposition 1, any verifier V can not distinguish Un,0 from
Un,1 with at most polynomial many queries and witness, which hence completes
the proof of Theorem 10. □
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A.1 Proof of Theorem 6

We firstly recall Theorem 6 as follows:

Theorem 6. The existence of weak OWSG and strong OWSG are equivalent.

In this part, let f be a weak one-way state generator on distribution D(1n),
satisfying

Pr
x←D(1n)

[Expowsgf,B (n) = 1] ≤ 1− 1

q(n)
(20)

for some positive polynomial q(·). For some suitable polynomial m(n) (which is
determined by q(n)), the construction f′

f′(x1, . . . , xm) = ⊗mi=1|ϕxi
⟩⊗nq(n)Y ⊗mi=1 |ηxi

⟩⊗nq(n)Z (21)
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is a strong OWSGs. Then we prove that f′ is strong one-way state generator on
distribution D(1n)m by making a contradiction. Assuming A breaks the strong
one-wayness of f′ with t copies, namely

Pr
(x1,...,xm)←D(1n)m

[ExpowsgA (n) = 1] ≥ 1

p(n)
(22)

for infinitely many n ∈ N. Then we construct B breaks the weak one-wayness as
follows:

– B takes as input the state |ϕx∗⟩⊗4n3·m·p(n)q2(n)·(t+1), it sets |ϕxj
⟩ = |ϕx∗⟩ for

a random j ∈ [m].

– For i ∈ [m]/{j}, B generates xi ← D(1n), and gets |ϕxi
⟩.

– B invokes A with input state |Φ⟩⊗t := ⊗mi=1|ϕxi⟩⊗nq(n)·t, and gets outputs
(x′1, . . . , x

′
m). Then it repeats that step for a new generated |ϕxi

⟩ as input
for i ∈ [m]/{j} about 2n ·m · p(n) times.

– B generates a new random j and sets |ϕxj ⟩ = |ϕx∗⟩, repeats the steps above
for 2nq(n) times.

– B checks all these 4n2mp(n)q(n) outputs by measuring |ϕx∗⟩ with {|ϕx′
j
⟩⟨ϕx′

j
|, I−

|ϕx′
j
⟩⟨ϕx′

j
|} about n ·q(n) times for each x′j and returns the most possible an-

swer (one of the x′j that gets |ϕx′
j
⟩ as measurement with at least (n−1) ·q(n)

times).

To estimate the probability that B wins, for each j ∈ [m], let BadXj be the
collection of x∗ such that

BadXj := {x∗ | Pr[
m∏
i=1

|⟨ϕxi
|ϕx′

i
⟩|2nq(n) ≥ 1

2mp(n)
, |ϕx∗⟩ = |ϕxj

⟩] ≤ 1

2mp(n)
}

Where the probability inside is taken over of the randomness ofA and xi ← D(1n)
for i ∈ [m]/{j}. Then there is at least one j ∈ [m] satisfies that

Pr
x
[x ∈ BadXj ] ≤

1

2 · q(n)
(23)
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for those n satisfying (22). If not, since A wins with probability at least 1/p(n)
for those n, Therefore when we let m = 2 · q(n) · n

1

p(n)
≤ Pr

(x1,...,xm)←D(1n)m
[Expowsgf,A (n) = 1]

= Pr
(x1,...,xm)←D(1n)m

[Expowsgf,A (n) = 1 ∧mi=1 xi /∈ BadXi]

+ Pr
(x1,...,xm)←D(1n)m

[Expowsgf,A (n) = 1 ∧ (∨mi=1xi ∈ BadXi)]

≤ Pr
(x1,...,xm)←D(1n)m

[∧mi=1xi /∈ BadXi]

+m ·max
i

Pr
(x1,...,xm)←D(1n)m

[Expowsgf,A (n) = 1 ∧ xi ∈ BadXi]

≤ (1− 1

2 · q(n)
)m

+m ·max
i

Pr
(x1,...,xm)←D(1n)m

[Expowsgf,A (n) = 1 | xi ∈ BadXi]

≤ (1− 1

2 · q(n)
)m +m · 1

2 ·m · p(n)
<

1

p(n)

which is a contradiction. Then we denote by j0 one set that BadXj0 satisfies the
(23). Then there are at least 1−1/2q(n) of x∗ such that, when B chooses j = j0,
the probability that A outputs some (x′1, . . . , x

′
m) satisfying the probability that∏m

i=1 |⟨ϕxi |ϕx′
i
⟩|2nq(n) ≥ 1/2mp(n) is at least 1/2mp(n).

Therefore when we repeat to choose j randomly for more than 2nq(n) times,
we could get that j = j0 with probability at least 1−O(exp(−n)).

Conditioned on x∗ ∈ BadX and j = j0, A would output some (x′1, . . . , x
′
m)

satisfying the probability that
∏m
i=1 |⟨ϕxi

|ϕx′
i
⟩|2nq(n) ≥ 1/2mp(n) is at least

1/2mp(n) where |ϕx∗⟩ is embeded as |ϕxj0
⟩. Since B repeats each round j for

2nmp(n) times, the probability that
∏m
i=1 |⟨ϕxi |ϕx′

i
⟩|2nq(n) ≥ 1/2mp(n) occurs

is at least 1−O(exp(−n)).
That implies B would outputs some (x′1, . . . , x

′
m) satisfying

∏m
i=1 |⟨ϕxi

|ϕx′
i
⟩|2n ≥

1/2mp(n) with probability at least 1 − O(exp(−n)). And in that case, it holds
that

|⟨ϕx∗ |ϕx′
j0
⟩|2 = |⟨ϕxj0

|ϕx′
j0
⟩|2 ≥ (1/2mp(n))1/nq(n) > 1− 1

2q(n)
.

That implies B finds some returns such that |⟨ϕx∗ |ϕx′
i0
⟩|2 > 1 − 1/2q(n)

with probability at least 1−O(exp(−n)). Therefore the remaining problem is to
find it among the polynomial many (4n2mp(n)q(n) outputs) outputs. That can
be settled by measuring |ϕx∗⟩ with {|ϕx′

j0
⟩⟨ϕx′

j0
|, I − |ϕx′

j0
⟩⟨ϕx′

j0
|} polynomial

times for each output x′j0 . Since each measurement is independent, by Chernoff
bound, the result is close to the expected value (for some polynomial amount)
with probability at least 1 − O(exp(−n)), since there are at most polynomial
many outputs, all results would follows that rules with probability 1− negl(n),
which implies that B would output x′ such that |⟨ϕx∗ |ϕx′⟩|2 > 1− 1/2q(n) with
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probability at least 1− negl(n)−O(exp(−n))− 1/2q(n). Namely

Pr
x←D(1n)

[Expowsgf,B (n) = 1] ≥ 1− negl(n)−O(exp(−n))− 1/2q(n)

That is contradictory to the weak one-wayness of f (namely the inequality (20))
which hence completes the proof of Theorem 6. □

A.2 Proof of Lemma 4

We firstly recall Lemma 4 as follows:

Lemma 4. If f is not a weak one-way state generator, and assuming A is the
corresponding adversary using t(n) copies (denoted as t in brief sometimes). Let
In(δ) be the collection of x such that A accepst with probability at least 1− δ

In(δ) := {x′ | Pr
x
[Expowsgf,A (n) = 1 | x = x′] > 1− δ}.

Then for any positive polynomial poly(·), f is (2t, 1/poly(n)) − polarized on
In(1/(4poly(n)t(n))

2).

Proof (of Lemma 4). Apparently, when 1/δ is some positive polynomial, it holds
that |In(δ)| = (1− negl(n)) · 2n for some negligible function negl(·) (assuming
the domain is {0, 1}n).

We let Nk
x(ε) be the set of the “k-degree neighbor” of x such that

Nk
x(ε) := {x′ | |⟨ϕx′ |ϕx⟩|k ≥ 1− ε}. (24)

Then we show that, for any positive polynomial poly(n), the collection
N2t
x (1/poly(n)) defines an equivalent classification of In(δ) for some polyno-

mial 1/δ (which will defined later). More specifically, we can prove that, for any
pair x, x′ ∈ In(δ), either x0, x1 belong to a same neighbor N2t

x (1/poly(n)) or
they are a little “far” from each other (i.e. |⟨ϕx1

|ϕx0
⟩|2t ≤ 1/poly(n)).

We show that by making a contraction, assuming there are x0, x1 ∈ In(δ),
such that

1

poly(n)
< |⟨ϕx0 |ϕx1⟩|2t < 1− 1

poly(n)
.

On the other hand, since x0, x1 ∈ In(δ), by the definition of In(δ), it holds
that

⟨ϕxb
| Tr
X,Z

(f(ρ
|ϕxb
⟩

A,t ))|ϕxb
⟩ ≥ 1− δ,

for b = 0, 1. If we denote by
∑
αbx,z|x, z⟩ the purification of ρ

|ϕxb
⟩

A,t for b = 0, 1,
that hence implies that ∑

x∈N2
xb

(
√
δ)

|αbx,z|2 ≥ 1−
√
δ (25)



On Constructing One-Way Quantum State Generators 35

On the other hand, for any x′, it holds that∑
b

√
1− |⟨ϕx′ |ϕxb

⟩|2 =
∑
b

TD(|ϕx′⟩⟨ϕx′ |, |ϕxb
⟩⟨ϕxb

|)

≥ TD(|ϕx0⟩⟨ϕx0 |, |ϕx1⟩⟨ϕx1 |)

≥

√
1− (1− 1

poly(n)
)

1
t >

√
1

poly(n) · t(n)
.

Therefore, if x′ ∈ N2
x0
(
√
δ) ∩N2

x1
(
√
δ), we should have

2 · δ1/4 ≥
∑
b

√
1− |⟨ϕx′ |ϕxb

⟩|2 >

√
1

poly(n) · t(n)
.

That meansN2
x0
(
√
δ)∩N2

x1
(
√
δ) = ∅ when

√
δ ≤ 1/(4poly(n)t(n)). Therefore

if we denote by ΠN2
xb

(
√
δ) the projection map of the space generated by the

{|x⟩ | x ∈ N2
xb
(
√
δ)}, the trace distance between this two cases can be estimated

as follows

TD(ρ
|ϕx0 ⟩
A,t , ρ

|ϕx1 ⟩
A,t )

= TD( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t ) + gx0 , Π
N2

x1
(
√
δ)

(ρ
|ϕx1
⟩

A,t ) + gx1)

≥TD( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )/Tr( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )), Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )/Tr( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )))

− TD( Π
N2

x1
(
√
δ)

(ρ
|ϕx1 ⟩
A,t ) + gx1

, Π
N2

x1
(
√
δ)

(ρ
|ϕx1 ⟩
A,t )/Tr( Π

N2
x1

(
√
δ)

(ρ
|ϕx1 ⟩
A,t )))

− TD( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t ) + gx0
, Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )/Tr( Π
N2

x0
(
√
δ)

(ρ
|ϕx0
⟩

A,t )))

∗
≥ 1− 2 ·

√
δ ≥ 1− 1

2 · poly(n) · t(n)

where gxb
is the “garbage” part such that ρ

|ϕxb
⟩

A,t = ΠN2
xb

(
√
δ)(ρ

|ϕxb
⟩

A,t ) + gxb
(here

we denote by Π(ρ) := ΠρΠ† for convenience). And (∗) hold due to the fact that
Tr(gxb

) ≤
√
δ (the inequality (25)).

However, since we assume 1/poly(n) < |⟨ϕx0
|ϕx1
⟩|2t, we can also derive an

upper bound of that trace distance

TD(ρ
|ϕx0
⟩

A,t , ρ
|ϕx1
⟩

A,t )

= TD(TrZA(|ϕx0
⟩⊗t ⊗ |0⟩),TrZA(|ϕx1

⟩⊗t ⊗ |0⟩))
≤ TD(A(|ϕx0

⟩⊗t ⊗ |0⟩),A(|ϕx1
⟩⊗t ⊗ |0⟩))

= TD(|ϕx0⟩⊗t, |ϕx1⟩⊗t)

≤
√

1− 1/poly(n)

which leads to a contradiction. That completes the proof of Lemma 4. □
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A.3 Proof of Claim 1

We recall Claim 1 as follows:

Claim 1. For a given challenge state |ϕx∗⟩, where x∗ ∈ Gxi
, we denote by pk

the probability that B accepts at one repetition of k-th round, then for k ∈
[n+ C · log n, log |Gxi

|+ C · log n], it holds that

pk ≥ (1− n2 · t(n)
p(n)

− 5

4 · p(n)
) · |Gxi

|
2k

(26)

Then it holds that

Pr[B accepts ∧ k ≥ log |Gxi
|+ C · log n] ≥ 1− exp(−n), (27)

namely, the probability that B accepts for some k ≥ log |Gxi | + C · log n is at
least 1− exp(−n) when m ≥ 2nC+1.

Proof (of Claim 1). For each k ∈ [n+C ·log n, log |Gxi
|+C ·log n], the probability

that B accepts in one repetition at the k-th round is at least the probability that
B accepts with some measurement in Gxi , namely

pk ≥ Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t) ∈ Gxi
)] (28)

∗
≥ Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t) ∈ Gxi
) ∧ rk ∈ hk(Gxi

))].

Here (∗) holds because any measurement x ∈ Gxi returned by A accepted by B
only if rk = hk(x), otherwise, it would reject by B with probability 1.

We now estimate the probabilities above. Since hk : {0, 1}n → {0, 1}k is a
universal hash, and rk ← {0, 1}k is chosen uniformly at random, we thus have

Pr
rk,hk

[rk ∈ hk(Gxi
))] ≤

∑
x∈Gxi

Pr
rk,hk

[rk = hk(x)] =
|Gxi |
2k

.

On the other hand, by the Bonferroni’s inequality, conditioned on the fact that
hk : {0, 1}n → {0, 1}k is a universal hash, it holds that

Pr
rk,hk

[rk ∈ hk(Gxi
))] (29)

≥
∑
x∈Gxi

Pr
rk,hk

[rk = hk(x)]−
∑

x,x′∈Gxi

Pr
rk,hk

[rk = hk(x) = hk(x
′)]

≥ |Gxi
|

2k
− |Gxi

| · (|Gxi
| − 1)

22k+1
.

Consider any x ∈ I ′n ∩Gxi
, due to the definition of I ′n, it holds that

Pr
hk

[A(|ϕx, hk(x), hk, k⟩⊗t) ∈ N2
xi
(1/4p(n)t(n))] ≥ 1− 1/4p(n)t(n).
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Since N2
xi
(1/4p(n)t(n)) ⊆ Gxi , we further have

Pr
hk

[A(|ϕx, hk(x), hk, k⟩⊗t) ∈ Gxi
] ≥ 1− 1/4p(n)t(n).

Namey, for those x ∈ I ′n as input, A would return a preimage in Gxi Since

|
(
A(|ϕx, rk, hk, k⟩⊗t)

)†A(|ϕx∗ , rk, hk, k⟩⊗t)|2 = |⟨ϕx|ϕx∗⟩|2t ≥ 1− 1/p(n),

for any x ∈ Gxi
, therefore if we change the input state |ϕx∗⟩ by some state

|ϕx⟩ satisfying hk(x) = rk the output is similar as the former one except with
O(1/p(n)) probability. More specifically

Pr
hk

[A(|ϕx∗ , hk(x), hk, k⟩⊗t) ∈ Gxi ] ≥ 1− 5

4 · p(n)
.

And note that for any measurement x ∈ Gxi , B accepts with probability at least
(1− n2/p(n)), therefore

Pr
hk

[B accepts ∧ A(|ϕx∗ , hk(x), hk, k⟩⊗t) ∈ Gxi
] (30)

≥ (1− n2

p(n)
)(1− 5

4 · p(n)
).

Then we back to estimate the inequality (28) as follows. Since conditioned on
rk ∈ hk(x) for some x ∈ Gxi

, the distribution of (rk, hk) is identical to the
real distribution (hk(x), hk), therefore according to inequalities (29) and (30), it
holds that

Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t) ∈ Gxi
∧ rk ∈ hk(Gxi

)]

≥ Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t) ∈ Gxi
| rk ∈ hk(Gxi

)]

· Pr
rk,hk

[rk ∈ hk(Gxi))]

≥ (1− n2 · t(n)
p(n)

)(1− 5

4 · p(n)
) · |Gxi |

2k
− |Gxi | · (|Gxi | − 1)

22k+1

> (1− n2 · t(n)
p(n)

− 5

4 · p(n)
) · |Gxi

|
2k
− |Gxi | · (|Gxi | − 1)

22k+1

That hence finish the first part of this claim. To show the other part, we let
a(n) := 1 − n2 · t(n)/p(n) − 5/(4 · p(n)), and g be the integer such that 2g ≤
|Gxi

)| < 2g+1. Then pk ≥ a(n) ·
(

1
2k−g − 1

22k−2g+1

)
, therefore the probability that

B rejects for all the k ∈ [log |Gxi
|+ C · log n, n+ C · log n] is at least

log |Gxi
)|+C·logn∏

k=n+C·logn

(1− pk)m ≤
g+1+C·logn∏
k=n+C·logn

(1− a(n) ·
( 1

2k−g
− 1

22k−2g+1

)
)m

≤
g+1+C·logn∏
k=n+C·logn

(1− b(n) ·
( 1

2k−g
)
)m
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where b(n) := a(n) · (1− 1/(2 · n2C)). Since the fact that

(1− b(n) ·
( 1

2k−g
)
)2 > 1− b(n) ·

( 1

2k−g−1
)
,

we can further estimate the inequality as

g+1+C·logn∏
k=n+C·logn

(1− b(n) ·
( 1

2k−g
)
)m

≤
n−g−1∏
i=0

(1− b(n) ·
( 1

2n−i+C logn−g

)
)m

≤
n−g−1∏
i=0

(1− b(n) ·
( 1

2n+C logn−g

)
)2

i·m

= (1− b(n) ·
( 1

2n+C logn−g

)
)
∑n−g−1

i=0 2i·m

< (1− b(n) ·
( 1

2n+C logn−g

)
)2

n−g·m

< (1− b(n) ·
( 1

2n+C logn−g

)
)

2n−g+C log n

b(n)
·m·2−C log n·b(n)

<
1

e

m·2C log n·b(n)
=

1

e

m·n−C ·b(n)

That shows, if B repeats m > nC+1/b(n) times for each k ∈ [log |Gxi | + C ·
log n, n + C · log n], it would accept with probability at least 1 − exp(−n) for
those given state |ϕx∗⟩ (which satisfies x∗ ∈ Gxi

). It’s easy to see that when
n2t(n)/p(n) = o(1), then m can be 2 ·nC+1 for all sufficiently large n ∈ N. That
completes the proof of Claim 1. □

A.4 Proof of Claim 2

We firstly recall Claim 2 as follows:

Claim 2. For a given challenge state |ϕx∗⟩, where x∗ ∈ Gxi
, pk,x denotes the

probability that B accepts with the measurement x from A at one repetition,
then we can prove the following three facts.

1. For any x ∈ In \Gxi
, the probability that B accepts with the measurement

x it is at most pk,x < p(n)−n
2

.
2. For any x ∈ Gxi , and k ≥ log |Gxi | + C · log n for some suitable C > 0, it

holds that

(1− n−2C − (2 + t(n) · n2)/p(n))
2k

≤ pk,x ≤ 1/2k
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3. For any x ∈ {x | TD(|ϕxi⟩, |ϕx⟩) >
√
1− (1/p(n))1/t(n)/2} \ In, the proba-

bility that A output it is at most pk,x < exp(−n2/16)

Proof (of Claim 2). It’s easy to derive the Fact 1, since f is “polarized” when
it’s not weak one-way, Lemma 4 implies that |⟨ϕx|ϕx∗⟩|2t ≤ 1/p(n) for any
x ∈ In \Gxi

. That implies if B gets an x ∈ In \Gxi
as a measurement returned

by A, it would accept with probability at most |⟨ϕx|ϕx∗⟩|2t·n2 ≤ 1/p(n)n
2

. That
immediately justifies the Fact 1.

The Fact 2 is the most important part, to prove that, we first show that hk
is injective on Gxi

with high probability when k ≥ log |Gxi
|+C · log n for some

suitable C > 0. Since hk is universal hash, it holds that

Pr
rk,hk

[|h−1k (rk) ∩Gxi | ≥ 2]

≤
∑

x0,x1∈Gxi

Pr
rk,hk

[hk(x0) = hk(x1) = rk]

≤ |Gxi | · (|Gxi | − 1)

22k+1
≤ n−2C

Therefore hk is injective on Gxi with probability at least 1−n−2C . Note that
conditioned on hk is injective onGxi

, the probability thatA(|ϕx∗ , hk(x), hk, k⟩⊗t)
outputs x ∈ Gxi

is at least 1 − 5/(4 · p(n))− n−2C (since for a random hk,
A(|ϕx∗ , hk(x), hk, k⟩⊗t) outputs x ∈ Gxi

with probability at least 1−5/(4 · p(n)),
and there are at most 1/n2C of hk is not injective). That hence implies

pk,x = Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t)→ x ∧ rk = hk(x)] (31)

≥ Pr
rk,hk

[B accepts ∧ A(|ϕx∗ , rk, hk, k⟩⊗t)→ x ∧ rk = hk(x) ∧ hk is injective on Gxi ]

≥ (1− n2/p(n))(1− 5/4 · p(n)− n−2C)(1− n−2C)
2k

>
(1− 2n−2C − 5/4 · p(n)− n2/p(n))

2k
.

On the other hand, since when A returns x as a measurement, it’s necessary to
have rk ∈ hk(x) for B to accept, that implies

pk,x ≤ Pr
rk,hk

[rk = hk(x)] = 1/2k (32)

Combining the (32) with (32), we thus have

(1− n−2C − 2/p(n)− t(n)n/p(n))
2k

≤ pk,x ≤ 1/2k,

which completes the proof of the Fact 2.
Then we turn to the final part, since

x ∈ {x | TD(|ϕxi
⟩, |ϕx⟩) >

√
1− (

1

p(n)
)

1
t(n) /2} \ In,
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then in the case that B gets such an x as a measurement, the probability that
B accepts it is at most

|⟨ϕx|ϕx∗⟩|2t(n)·n
2

≤
(
1− (TD(|ϕxi

⟩, |ϕx⟩)− TD(|ϕx∗⟩, |ϕx⟩))2
)t(n)·n2

≤
(
1−

(√1− (1/p(n))
1

t(n) −
√
1− (1− 1/p(n))

1
t(n)

2

)2)t(n)·n2

≤
(
1−

(√1− (1/p(n))
1

t(n)

4

)2)t(n)·n2

≤
(
1− 1− (1/p(n))

1
t(n)

16

)t(n)·n2

≤
(15
16

+
(1/p(n))

1
t(n)

16

)t(n)·n2 ∗
≤
(
1− 1

16 · t(n)

)t(n)·n2

≤ exp(−n2/16)

where (∗) holds because 1/p(n) < (1−1/t(n))t(n) for all sufficiently large n ∈ N.
That hence completes the proof of Fact 3. That finishes the proof of Claim 2 □

A.5 Proof of Theorem 8

We firstly recall the construction of Theorem 8 as follows:

The construction of distributionally OWSG: Assuming there exists a effi-
cient sampler ((Sr0 , U

r
0 ), (S

r
1 , U

r
1 )) = (Qr0, Q

r
1)← S(r) such that the semi-classical

QSD problem is hard on average on distribution of S(1n) 14, then the following
construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x ⟩ = |Qr0, Qr1⟩ ⊗ |ϕ
Ur

b
x ⟩ (33)

is a distributionally one-way state generator on the distribution over (r, b, x).
We justify the quantum distributionally one-wayness of that construction by

making a contradiction. Assuming there exist an adversary A that takes t(n)
copies of a challenge state as input, and breaks the distributional one-wayness of
f(r, b, x) efficiently. Namely, there exists a negligible function negl(·) such that

F
(

E
r,b,x
|r, b, x⟩⟨r, b, x| ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x | (34)

, E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)
≥ 1− negl(n).

Where ρ
|ψQr

0,Qr
1

b,x ⟩
A,t is the (mixed) state output by A with |ψQ

r
0,Q

r
1

b,x ⟩⊗t as input, after
tracing out all irrelevant part except the input register of f (which contains only
r, b, x).

14 Here r ∈ {0, 1}l(n) denote the internal randomness of S where we assume the length
of the random number of S is same as Srb since we can choose the longest l(n) and it
is also a polynomial of n.
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We now give a QPT algorithm B decides the instance (Qr0, Q
r
1) = S(r) as

follows:

– B is given (Qr0, Q
r
1) ← S(1n) as its input, it firstly generates the state

Ex |ψ
Qr

0,Q
r
1

b,x ⟩⊗t+1 for a random b ∈ {0, 1} and x ∈ {0, 1}k.
– B invokes A with the input state |ψQ

r
0,Q

r
1

b,x ⟩⊗t and gets output (r∗, b∗, x∗) in
result.

– B returns 1 if b ̸= b∗, otherwise, B outputs a random decision d ∈ {0, 1}.

Note that some part of B is described in classical setting, but it’s equivalent to
consider it as a mixed state of x. Then in order to estimate the success probability
of B, we firstly consider the inequality (34) by Lemma 3 and the definition of
trace distance

2 · negl(n) ≥ TD
(

E
r,b,x
|r, b, x⟩⟨r, b, x| ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x | (35)

, E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)

= max
P

TrP
(

E
r,b,x

(|r, b, x⟩⟨r, b, x| − ρ
|ψQr

0,Qr
1

b,x ⟩
A,t )⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)

Then we let P0 and P1 be some projections on the space spaned by Qr0, Q
r
1 ∈

scQSD0 and Qr0, Q
r
1 ∈ scQSD1 respectively 15, then by average-case hardness of

scQSD, we have

2 · negl(n) ≥ |TrPd
(

E
r,b,x

(|r, b, x⟩⟨r, b, x| − ρ
|ψQr

0,Qr
1

b,x ⟩
A,t )⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)
|

≥ (
1

2
− negl0(n))

∣∣TrPd Qr
0,Q

r
1∈scQSDd

E
r,b,x

(|r, b, x⟩⟨r, b, x| − ρ
|ψQr

0,Qr
1

b,x ⟩
A,t )

⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
∣∣

for any possible projections space spaned by Qr0, Q
r
1 ∈ scQSDd. That hence

implies

TD
(Qr

0,Q
r
1∈scQSDd

E
r,b,x

|r, b, x⟩⟨r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x | (36)

,
Qr

0,Q
r
1∈scQSDd

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)
≤ negl′(n)

for both d = 0, 1, and some negligible function negl′(·).
Then we consider the Qr0, Q

r
1 ∈ scQSD0 and Qr0, Q

r
1 ∈ scQSD1 separately.

When Qr0, Q
r
1 ∈ scQSD0, since it holds that

TD(|ψQ
r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |⊗t+1, |ψQ
r
0,Q

r
1

1,x ⟩⟨ψQ
r
0,Q

r
1

1,x |⊗t+1) ≤ (t+ 1)/2−n (37)

15 Namely, Pd is the projection on the space that generated by {|r, b, x,Q0, Q1, ϕ⟩ |
(Q0, Q1) ∈ scQSD0, r ∈ {0, 1}l, b ∈ {0, 1}, x ∈ {0, 1}k, ϕ ∈ {0, 1}m}
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for anyQr0, Q
r
1 ∈ scQSD0, hence when we replace the challenge state |ψQ

r
0,Q

r
1

1,x ⟩⟨ψQ
r
0,Q

r
1

1,x |⊗t+1

by the |ψQ
r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |⊗t+1 the output of A would only change slightly, more
specifically, according to (35) and (37), it holds that

TD
(Qr

0,Q
r
1∈scQSD0

E
r,b,x

|r, b, x⟩⟨r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |

,
Qr

0,Q
r
1∈scQSD0

E
r,x

ρ
|ψQr

0,Qr
1

0,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |
)
≤ negl′(n) + (t+ 1)/2−n.

That implies, when tracing out the all the register except the b (we denote by

these register the W0) output by ρ
|ψQr

0,Qr
1

0,x ⟩
A,t , we can get

∣∣⟨1| Tr
W0

Qr
0,Q

r
1∈scQSD0

E
r,x

ρ
|ψQr

0,Qr
1

0,x ⟩
A,t |1⟩ − 1

2

∣∣ ≤ negl1(n)

for some negligible function. That implies whenA takes E
Qr

0,Q
r
1∈scQSD0

x |ψQ
r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |
as input state, it would output b∗ = 1 with probability nearly equals to 1/2 over
the randomness of r and the internal randomness ofA. By a similar argument, we

can get the same conclusion for the case thatA takes E
Qr

0,Q
r
1∈scQSD0

r,x |ψQ
r
0,Q

r
1

1,x ⟩⟨ψQ
r
0,Q

r
1

1,x |
as input. Therefore we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0] ≤
1

2
+ negl1(n) (38)

On the other hand, when Qr0, Q
r
1 ∈ scQSD1, since

TD
(Qr

0,Q
r
1∈scQSD1

E
r,b,x

|r, b, x⟩⟨r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |

,
Qr

0,Q
r
1∈scQSD1

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)
≤ negl′(n).

By the definition of scQSD1, it holds that

TD(E
x
|ψQ

r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |⊗t+1,E
x
|ψQ

r
0,Q

r
1

1,x ⟩⟨ψQ
r
0,Q

r
1

1,x |⊗t+1) ≥ 1− 2−(n+1)t/2

We then denote by PQr
0,Q

r
1
the projection that maximizes the trace distance

between Ex |ϕ
Ur

0
x ⟩⟨ϕU

r
0

x | and Ex |ϕ
Ur

1
x ⟩⟨ϕU

r
1

x |, namely

TrPQr
0,Q

r
1
E
x
(|ϕU

r
0

x ⟩⟨ϕU
r
0

x | − |ϕU
r
1

x ⟩⟨ϕU
r
1

x |)

= TD(E
x
|ϕU

r
0

x ⟩⟨ϕU
r
0

x |,E
x
|ϕU

r
1

x ⟩⟨ϕU
r
1

x |) ≥ 1− 2−n.

That indicates TrPQr
0,Q

r
1
Ex(|ϕ

Ur
1

x ⟩⟨ϕU
r
1

x |) ≤ 2−n and TrPQr
0,Q

r
1
Ex(|ϕ

Ur
0

x ⟩⟨ϕU
r
0

x |) ≥
1− 2−n. Then we denote by P the projection as follows

P :=
∑

Qr
0,Q

r
1∈scQSD1

|0⟩⟨0| ⊗ |Qr0, Qr1⟩⟨Qr0, Qr1| ⊗ PQr
0,Q

r
1
.
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After tracing out the register that contains the r and x (we denote by the
registers R,X), the trace distance can be further estimated as

TD
(Qr

0,Q
r
1∈scQSD1

E
r,b,x

|r, b, x⟩⟨r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x | (39)

,
Qr

0,Q
r
1∈scQSD1

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)

≥ TD
(
Tr
R,X

Qr
0,Q

r
1∈scQSD1

E
r,b,x

|r, b, x⟩⟨r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |

, Tr
R,X

Qr
0,Q

r
1∈scQSD1

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t ⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)

≥ TrP
(Qr

0,Q
r
1∈scQSD1

E
r,b,x

(|b⟩⟨b| − Tr
R,X

ρ
|ψQr

0,Qr
1

b,x ⟩
A,t )⊗ |ψQ

r
0,Q

r
1

b,x ⟩⟨ψQ
r
0,Q

r
1

b,x |
)

≥ 1

2
· TrP

(Qr
0,Q

r
1∈scQSD1

E
r,x

(|0⟩⟨0| − Tr
R,X

ρ
|ψQr

0,Qr
1

0,x ⟩
A,t )⊗ |ψQ

r
0,Q

r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |
)
− 2−n

≥ 1

2
(1− 2−n)(1−

Qr
0,Q

r
1∈scQSD1

E
r,x

⟨0| Tr
R,X

ρ
|ψQr

0,Qr
1

0,x ⟩
A,t |0⟩).

According to (35) and (39), we have

Qr
0,Q

r
1∈scQSD1

E
r,x

⟨0| Tr
R,X

ρ
|ψQr

0,Qr
1

0,x ⟩
A,t |0⟩ ≥ 1− negl2(n) (40)

for some negligible function negl2(·). That implies, when taking Ex |ψ
Qr

0,Q
r
1

0,x ⟩⟨ψQ
r
0,Q

r
1

0,x |⊗t
as input for some Qr0, Q

r
1 ∈ scQSD1, the output b∗ by A would equal to the real

b with overwhelming probability over the randomness of r and the internal ran-
domness of A. By a similar argument, we can get the same conclusion for the

case that A takes E
Qr

0,Q
r
1∈scQSD0

r,x |ψQ
r
0,Q

r
1

1,x ⟩⟨ψQ
r
0,Q

r
1

1,x | as input. Therefore we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD1] ≥ 1− negl2(n) (41)

Combining the inequalities (38) and (41), we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0] (42)

− Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0]

≥ 1

2
− negl3(n)

for some negligible function negl3(·). That hence contradict the average-case
hardness of the scQSD problem, which justify our result. □

A.6 Proof of Theorem 9

We firstly recall the construction of Theorem 9 as follows:
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The construction of quantum bit commitment: Assuming there exists a
efficient sampler (Qr0, Q

r
1)← S(r) such that the QSD problem is hard on average

on distribution of S(1n) (here r ∈ {0, 1}l(n) denote the internal randomness of
S, and we denote it by l for short when there is no confusion), then we give a
quantum bit commitment scheme as follows:

– Commit phase: The commiter generates |0⟩ →H⊗l·n ⊗n
i=1

∑
ri
|ri⟩/2l/2,

then gets n copies of the superposition state of these circuits from S

n⊗
i=1

∑
ri

|ri, 0⟩
2l/2

S⊗n

→
n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 ⟩

2l/2
.

Then the commiter randomly chooses b← {0, 1} and generates

n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 , 0⟩

2l/2
U⊗n

→ |Ψb⟩⊗nABCD.

Where

|Ψb⟩ABCD :=
∑
r

|Qr0, Qr1⟩A ⊗ PQrb |0⟩BC ⊗ |r⟩D
2l/2

PQrb denotes a purified circuit of Qrb (here we choose a deterministic proce-
dure of the purification in this commit algorithm). Then the commiter sends
the registers A,B of |Ψb⟩⊗nABCD to the receiver, where A stores the Qr0, Q

r
1,

the registers B,C store the output/ancilla part of PQrb |0⟩, and D stores the
copied Qr0, Q

r
1 and the random number r.

– Reveal phase: The commiter sends the register C,D and the message b to
the receiver. The receiver invokes the operator (H⊗l ⊗ S†⊗ I ◦U†)⊗n to the
whole system, then measures the resulting state in the computational basis.
The receiver accepts iff the measurement is 0.

It is not hard to derive the correctness of this construction. The remaining
aims to discuss the hiding and binding properties. We firstly show that any effi-
cient adversary can’t break the computational hiding property unless it breaks
the average-case hardness of the QSD problem. We prove it by making a con-
tradiction, let A be the adversary that breaks the computational hiding, instead
of considering it as a unitary operator, without loss of generality, we assume
A is a linear trace-preserving CP maps which takes TrC,D|Ψ0⟩⟨Ψ0|⊗n) as input,
outputs one qubit (mixed) state u0|0⟩⟨0| + u1|1⟩⟨1| as its decision, and when
refer to A(ρ) → b, we denote the event that A gets a measurement b with ρ as
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its input. It then holds that∣∣Pr[ExphidingA (0) = 1]− Pr[ExphidingA (1) = 1]
∣∣

≤ TD(A(TrC,D|Ψ0⟩⟨Ψ0|⊗n),A(TrC,D|Ψ1⟩⟨Ψ1|⊗n))

≤
(
1−

(
F
[
A( E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 )

,A( E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 )

])2) 1
2

Where ρrb denotes the (mixed) state produced by the quantum circuit Qrb . And if
we denote by PAb,b′ the probability thatA takes Er1,...,rn

⊗n
i=1 |Q

ri
0 , Q

ri
1 ⟩⟨Q

ri
0 , Q

ri
1 |⊗

ρrib as input, and outputs b′. Then it holds that

1−
(
F
[
A( E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 )

,A( E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 )

])2

≤ 1− (
√
PA0,0 · PA1,0 +

√
PA0,1 · PA1,1)2

= 1− PA0,0 + PA0,0 · PA1,1 − PA0,1 + PA0,1 · PA1,0 − 2
√
PA0,0 · PA1,0 · PA0,1 · PA1,1

= (
√
PA0,0 · PA1,1 −

√
PA0,1 · PA1,0)2

∗
≤(

√
PA1,1 −

√
PA0,1)

2
∗∗
≤ 2 · |PA1,1 − PA0,1|.

Here (∗) and (∗∗) holds because PAb,b′ ≤ 1 and PAb,b′ = 1− PAb,b′⊕1 for any b, b′ ∈
{0, 1}. Note that

PAb,b′ = Pr
r1,...,rn

[A(
n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
b ) = b′].

Therefore, if A breaks the computational hiding property with non-negligible
advantage, we can derive that there exist c > 0 such that

|PA1,1 − PA0,1| ≥
1

nc
(43)

for infinitely n ∈ N.
Then for j ∈ {0, . . . , n}, we denote by Hybj = b the following event:

– Choose r1, . . . , rn uniformly at random and generate S(ri) = (Qri0 , Q
ri
1 ).

– A is given ⊗n−ji=1 |Q
ri
0 , Q

ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 ⊗ni=n−j+1 |Q

ri
0 , Q

ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

as input state, and output b as the measurement.
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Note that the Hyb0 and Hybn represent the two cases of in the inequality (43),
therefore

E
j

∣∣Pr[Hybj = 1]− Pr[Hybj+1 = 1]
∣∣

≥
∣∣ n−1∑
j=0

(Pr[Hybj = 1]− Pr[Hybj+1 = 1])
∣∣/n (44)

= |PA1,1 − PA0,1| ≥
1

nc+1

We denote jmax that maximizes the |Pr[Hybj = 1]−Pr[Hybj+1 = 1]|. And without
loss of generality, we assume Pr[Hybjmax+1 = 1] > Pr[Hybjmax

= 1]. Based the
inequality above, we construct an adversary B for the QSD as follows:

– B receives a Q0, Q1 as its input, its task is to determine whether (Q0, Q1) ∈
QSD1 or not.

– B choose j ← {1, . . . , n} randomly, then generates r1, . . . , rj−1, rj+1, . . . , rn
uniformly at random and invokes S(1n, ri) = (Qri0 , Q

ri
1 ) for those ri, and sets

(Q
rj
0 , Q

rj
1 ) = (Q0, Q1).

– B tosses t← {0, 1}, if t = 0, it runs A with input state

n−j⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

n⊗
i=n−j+1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

if t = 1, it runs A with input state

n−j−1⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

n⊗
i=n−j

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 .

– B returns 1 if A outputs t, otherwise, it returns 0.

Therefore, we can deduce that

|Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]− 1

2
|

=
1

2
·
∣∣E
j

(
Pr[Hybj = 0 | t = 0] + Pr[Hybj+1 = 1 | t = 1]

)
− 1

∣∣ (45)

=
1

2
·
∣∣E
j
(Pr[Hybj = 1]− Pr[Hybj+1 = 1])

∣∣ ≥ 1

nc+1

Therefore, either Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≥ 1/2 + 1/nc+1, or
Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≤ 1/2− 1/nc+1, and here we assume the
first case, the conclusion of other case can be derived accordingly.
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Since TD(ρ
rj
0 , ρ

rj
1 ) ≤ 2−n when (Q0, Q1) ∈ QSD0, that hence implies the

difference is negligible if we replace the ρ
rj
1 by ρ

rj
0 , namely

Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]

=
1

2
· E
j

(
Pr[Hybj = 0 | (Q0, Q1) ∈ QSD0 ∧ t = 0]

+ Pr[Hybj+1 = 1 | (Q0, Q1) ∈ QSD0 ∧ t = 1]
)

(46)

≤ 1

2
· E
j

(
Pr[Hybj = 0 | (Q0, Q1) ∈ QSD0 ∧ t = 0]]

+ Pr[Hybj = 1 | (Q0, Q1) ∈ QSD0 ∧ t = 1] + negl1(n)
)

≤ 1

2
· (1 + negl1(n))

for some negligible function negl1(·). Since it probability that (Q0, Q1) ∈ QSD0

from (Q0, Q1)← S(1n) is nearly equal to 1/2, namely

1

2
− negl0(n) ≤ Pr[(Q0, Q1) ∈ QSD0 : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl0(n)

Therefore, we have

Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] · (
1

2
+ negl0(0))

≥ Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] · Pr[(Q0, Q1) ∈ QSD1]

≥ Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]

− (
1

2
+ negl0(n)) · Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]

∗
≥Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]− 1

2
· (1 + negl1(n)) · (

1

2
+ negl0(n))

∗∗
≥ 1

4
+

1

nc+1
− negl2(n)

for infinitely many n, where (∗) comes from the inequality (46), and (∗∗) holds
because the we assume the case that Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≥
1/2 + 1/nc+1 of the inequality (45)16. That inequality indicates there is a negli-
gible function negl(·) such that

Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] (47)

≥ 1

2
+

2

nc+1
− negl(n).

for infinitely many n.

16 In the other case that Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≤ 1/2 − 1/nc+1,
we can estimate the lower bound of that probability, which is 1/2 − negl1(n), and
the upper bound of Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n) | (Q0, Q1) ∈ QSD1] is
1/2− 2/nc+1 + negl(n).
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Therefore, combine the inequality (46) with (47), we thus have∣∣Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1]

− Pr[B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]
∣∣

≥ 2

nc+1
− negl′(n)

for some negligible function negl′(·), which breaks the average-case hardness of
QSD problem. That hence prove the computational hiding of this construction.

Then we discuss the sum-binding, we denote by pb the probability that the
receiver accepts with the message b, and we let a cheating commiter sends
TrC,D,E |Ψ⟩⟨Ψ | as the commitment where |Ψ⟩⟨Ψ | is some “fake” state generated
by a cheating commiter. Then the cheating commiter invokes the operator U bCDE
when he want to open with b where E stores the auxiliary qubits of a cheat-
ing commiter. Since the monotonicity of the fidelity under trace-preserving CP
maps, it holds that

p0 + p1 =
∑
b

⟨Ψb|⊗nI ⊗ Tr
E
(U bCDE |Ψ⟩⟨Ψ |I ⊗ U bCDE)|Ψb⟩⊗n (48)

=
∑
b

F(|Ψb⟩⟨Ψb|⊗n, I ⊗ Tr
E
(U bCDE |Ψ⟩⟨Ψ |I ⊗ U bCDE))2

≤
∑
b

F( Tr
C,D
|Ψb⟩⟨Ψb|⊗n, I ⊗ Tr

C,D,E
(U bCDE |Ψ⟩⟨Ψ |I ⊗ U bCDE))2

≤
∑
b

F( Tr
C,D
|Ψb⟩⟨Ψb|⊗n, Tr

C,D,E
(|Ψ⟩⟨Ψ |))2

∗
≤ 1 + F( Tr

C,D
|Ψ0⟩⟨Ψ0|⊗n, Tr

C,D
|Ψ1⟩⟨Ψ1|⊗n)

≤ 1 +
(
1− TD( E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

, E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 )2

) 1
2 .

Where (∗) holds because F(η0, η1)
2 + F(η0, η2)

2 ≤ 1 + F(η1, η2) for any state
η0, η1, η2 [37,35].

Then we further estimate the trace distance above. Since it holds that

TD( E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 , E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 )

≥ Tr(P E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ (

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 ))
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for any 0 ≤ P ≤ I. We hence let

P :=

∃ i:Qri
0 ,Q

ri
1 ∈QSD1∑

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ Pr1,...,rn ,

where Pr1,...,rn is the projection that maximizes the trace of (
⊗n

i=1 ρ
ri
0 −

⊗n
i=1 ρ

ri
1 ),

namely

TD(

n⊗
i=1

ρri0 ,

n⊗
i=1

ρri1 ) = Pr1,...,rn(

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 ).

And in the case that there exists i such that Qri0 , Q
ri
1 ∈ QSD1, we have

Pr1,...,rn(

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 ) = TD(

n⊗
i=1

ρri0 ,

n⊗
i=1

ρri1 ) ≥ 1− 2−n.

Since the event that ∃ i : Qri0 , Q
ri
1 ∈ QSD1 occurs with overwhelming probability

Pr
r1,...,rn

[∃ i : Qri0 , Q
ri
1 ∈ QSD1] ≥ 1− (

1

2
+ negl0(n))

n > 1− (
2

3
)n

for all sufficiently large n ∈ N. We further have

Tr(P E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ (

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 )) (49)

≥ Tr
( ∃ i:Qri

0 ,Q
ri
1 ∈QSD1∑

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 ⟩⟨Q

ri
0 , Q

ri
1 | ⊗ Pr1,...,rn(

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 )/2l
)

≥ (1− (
2

3
)n) · (1− 2−n).

Combining the inequality (49) with (48), we thus have

p0 + p1 = 1− (1−
[
(1− (

2

3
)n) · (1− 2−n)

]2
)

1
2

≤ 1 + negl(n)

for some negligible function, that hence completes the proof of the sum-binding
property. □


	On Constructing One-Way Quantum State Generators, and More

