
POST-QUANTUM PUBLIC KEY CRYPTOSYSTEM FROM SUBSET PRODUCT
WITH ERRORS

TREY LI

ABSTRACT. We give a new post-quantum public key cryptosystem from the multiple modular
subset product with errors problem.

1. INTRODUCTION

In [Li22e] we proposed a new post-quantum key exchange. In this paper we give a new
post-quantum public key cryptosystem (PKC).

2. HARD PROBLEM

Our PKC is based on the multiple modular subset product with errors problem (M-MSPE)
defined in [Li22e] with the change that the error prime in each MSPE instance is sampled
from either the first half or the second half of the error set L depending on whether the
message bit is 0 or 1. We repeat the settings in [Li22e] with this change.
Setup

Let ℓ1, . . . ,ℓ2n be the first 2n primes1; and p1, . . . , pn be the next n primes. Denote L =
{ℓ1, . . . ,ℓ2n} and P = {p1, . . . , pn}.2

Choose a safe/Mersenne prime q in [ℓ2n+1
2n , pn2/8

1] (e.g., the smallest safe/Mersenne prime
greater than ℓ2n+1

2n).3

Let Da be the distribution that samples a vector v = (v1, . . . ,vn) ← {0,1}n uniformly at
random and outputs the integer a :=∏n

i=1 pvi
i .

Let De be the distribution that keeps sampling vectors v = (v0, . . . ,vn−1) ← {0,1}⌈log(ℓ2n)⌉

until finding one such that the integer e := ∑⌈log(ℓ2n)⌉−1
i=0

(
vi ·2i) is a prime in L (i.e. a prime

≤ ℓ2n) and outputs e.
Let De(b) be the distribution that takes as input a bit b ∈ {0,1} and keeps sampling vectors

v = (v0, . . . ,vn−2) ← {0,1}⌈log(ℓ2n)⌉ until finding one such that the integer e := b ·2⌈log(ℓ2n)⌉−1 +∑⌈log(ℓ2n)⌉−2
i=0

(
vi ·2i) is a prime in L and outputs e.

Let Dn
e (v) be the distribution that takes as input a vector v = (v1, . . . ,vn) ∈ {0,1}n, samples

a vector of primes e = (e1, . . . , en) ∈ L with e i ← De(vi) for i ∈ [n], and outputs e.4

This is the 6th paper of the series. Previously: [Li22a; Li22b; Li22c; Li22d; Li22e].
Date: October 6, 2022.
Email: treyquantum@gmail.com

1Potential improvement of efficiency of the PKC may be achieved by replacing the parameter 2n by a smaller
super-polynomial function. This can help reducing the size of q. The tradeoff is a slight dropping of the
correctness probability of the PKC.

2The two sets of primes can be chosen more randomly as long as L∩P =∅.
3See [Li22e] for the reason and recommended parameter.
4This notation is not necessary for the definition of M-MSPE but will be used in the PKC.

1

Let Dx(b) with respect to some x = (x1, . . . , xn) ∈ {0,1}n be the distribution that takes as
input a bit b ∈ {0,1}, samples a1, . . . ,an ← Da and e ← De(b), computes X = ∏n

i=1 axi
i · e±1

(mod q), and outputs (a1, . . . ,an, X), where the exponent ±1 of e is arbitrary.
Let Ox with respect to some x ∈ {0,1}n be the oracle that outputs instances (a1, . . . ,an, X)

sampled from Dx(b), where b ∈ {0,1} is arbitrary for each instance.
Problems

Search M-MSPE (or M-MSPE) is given access to Ox, find x.
Decision M-MSPE is given access to either Ox for some x ∈ {0,1}n, or Oran which outputs

MSPE instances (a1, . . . ,an, X) with X = ∏n
i=1 axi

i · e±1 (mod q) replaced by X ← Z×
q , decide

which is the oracle given.
Hardness

To inherit hardness from the original M-MSPE in [Li22e], one thing to notice is that the
hardness of the problem does not seem to be effected by tuning the forms of the error terms,
including changing the exponents of the error primes in an error term, changing the number
of error primes in an error term, or even changing the distribution of the error primes —
as long as the entropy of the distribution is sufficiently high so that one cannot brute force
it. This gives us opportunity to store information in the error terms. In particular, we go
with the third way for our PKC, i.e., we use error primes that belong to the first or second
half of L to represent 0 or 1. One could also use one or two error primes for an error term
to represent 0 or 1. But that requires a larger modulus q which reduces the efficiency of the
PKC.

3. IDEA

The goal of PKC is to encrypt a plaintext into a cyphertext using a public key such that
only having the corresponding private key one can recover the plaintext from the ciphertext.

Our PKC idea is illustrated by the following figure.
a1,1 · · · a1,n e1

...
...

...
an,1 . . . an,n en
f1 . . . fn 1

x−→ A1
...
x−→ An

↓ y · · · ↓ y
B1 · · · Bn

The public key is an M-MSPE (M, A), where M = {ai, j}i, j∈[n] ← Dn×n
a is the base matrix, and

A = (A1, . . . , An) ∈ (Z×
q)n is the M-MSPE product sequence. The private key is the correspond-

ing secret (x, e) ∈ {0,1}n ×Ln.
To encode an n-bit message m ∈ {0,1}n, we sample a random vector y= (y1, . . . , yn)← {0,1}n

and compute an M-MSPE product sequence B = (B1, . . . ,Bn) with the error term f i of Bi
sampled from De(mi). Compute a composite MSPE C = A y1

1 · · ·A yn
n · fn+1 (mod q). The output

is c = (B,C).
To decode, use x to compute a composite product D = Bx1

1 · · ·Bxn
n (mod q). Then compute

E = C/D (mod q), which contains only error primes. Then use the private errors e1, . . . , en to
recover y by testing if e i|E. Then recover the error terms f i which tell the plaintext m.

2

4. SCHEME

Public parameters are (n, q,L), where L is represented by the 2n-th prime ℓ2n . Plaintext
is m ∈ {0,1}n.

KeyGen(n, q,L):
Sample a base matrix M = {ai, j}i, j∈[n] ← Dn×n

a . Sample (x, e)← {0,1}n ×Dn
e . Com-

pute A = (A1, . . . , An), where A i = ax1
i,1 · · ·a

xn
i,n · e i (mod q) for i ∈ [n]. Public key is

pk := (M, A); private key is sk := (x, e).
Encrypt(n, q,L, pk,m):

Sample (y, f)← {0,1}n×Dn
e (m). Compute B = (B1, . . . ,Bn), where Bi = ay1

1,i · · ·a
yn
n,i ·

1/ f i (mod q) for i ∈ [n]. Sample fn+1 ← De. Compute C = A y1
1 · · ·A yn

n · fn+1 (mod q).
Output cyphertext c = (B,C).

Decrypt(n, q, M, x, e, c):
Compute D = Bx1

1 · · ·Bxn
n (mod q). Compute E = C/D (mod q). Compute y′ ∈

{0,1}n such that y′i = 1 if and only if e i|E, for i ∈ [n]. Compute f ′i = a
y′1
1,i · · ·a

y′n
n,i/Bi

(mod q) and set m′
i =MSB(f ′i)

5, for i ∈ [n]. Output m′ = (m′
1, . . . ,m′

n).

5. CORRECTNESS

THEOREM 1. m′ = m with overwhelming probability.

Proof. Note that L is exponentially large and there are 4n+ 2 (i.e. linearly many) error
primes (they are the e i ’s and f i ’s in the scheme) sampled either from (roughly) the first half
of L or the second half of L. Hence the error primes are all different with overwhelming
probability p.

Again recall that q is greater than the product of any 2n+1 primes in L. Hence

E = (
ey1

1 · · · eyn
n

) · (f1
x1 · · · fn

xn
) · fn+1 (mod q)

= (
ey1

1 · · · eyn
n

) · (f1
x1 · · · fn

xn
) · fn+1.

Suppose all error primes in the scheme are different. Then yi = 1 if and only if e i|E. Then
y′ = y and thus f ′i = f i for all i ∈ [n]. Then m′ = m. Therefore m′ = m with overwhelming
probability p. □

6. EFFICIENCY

Due to the underlining operation being multiplication instead of addition, the modulus
q and thus the size of the encoding is inevitably large. However the time complexity is
actually not very high due to the logarithmic complexity of modular multiplication.

THEOREM 2. The time complexities of key generation, encryption and decryption are O(n5),
O(n4) and O(n3) respectively.

Proof. The complexities mainly come from modular multiplications. Note that q ⪆ ℓ2n+1
2n ≳

(n2n)2n+1 = 2O(n2). Hence the complexity of a single modular multiplication is O(log2 q) =
O(n2). There are O(n3) modular multiplications in key generation (O(n3) to create the base

5That is, the most significant bit of f ′i in its length-⌈log(ℓ2n)⌉ binary representation.
3

matrix M and O(n2) to compute the M-MSPE product sequence A), O(n2) modular multi-
plications in encryption, and O(n) modular multiplications in decryption. Hence the time
complexities of the three algorithms are O(n5), O(n4) and O(n3). □

7. SECURITY

The differences between the problem that we use to construct our PKC and the M-MSPE
in Section 2 are: (1) instead of giving unlimited access to the oracle Ox, the PKC only gives
n+1 MSPE instances; (2) one of the instances is a special one whose bases A1, . . . , An are
themselves MSPE products rather than regular bases sampled from Da; and (3) the base
matrix (M, A) (i.e. the public key) is reused in different implementations of encryption. We
denote this M-MSPE as M-MSPEPKC.

Decision M-MSPEPKC is defined similar to Decision M-MSPE in Section 2 with the above
changes from M-MSPE to M-MSPEPKC; and it asks to distinguish the MSPEPKC product
sequence (X1, . . . , Xn+1) from uniform, with the bases (M, A) fixed.

Assume the hardness of Decision MSPEPKC, we prove that our PKC is semantically se-
cure against chosen plaintext attack. The key point of the following theorem is the hardness
of Decision M-MSPEPKC with an arbitrary vector v ∈ {0,1}n in Dn

e (v), where the vector v in
the problem is actually the message m in the PKC. In other words, letting the error primes
in each MSPE instance be chosen freely from the first half of L or the second half of L does
make the resulting product sequence of the M-MSPEPKC less random.

THEOREM 3. If Decision M-MSPEPKC is hard, then the PKC is semantically secure against
chosen plaintext attack.

Proof. Let (B,C) and (B′,C′) be two ciphertexts of two messages m and m′ respectively. Let
d1 be the distinguishable distance between (B,C) and uniform; d2 be the distinguishable
distance between (B′,C′) and uniform; and d3 be the distinguishable distance between (B,C)
and (B′,C′). Now suppose for contradiction that there is a probabilistic polynomial time
adversary A who is given the public key (M, A) and distinguishes (B,C) and (B′,C′) with
noticeable probability. Then d3 is noticeable. By the triangle inequality we have that d1 +
d2 > d3. Hence d1+d2 is noticeable. This means that at least one of d1 and d2 is noticeable.
This contradicts the hardness of Decision M-MSPEPKC, which says that both (B,C) and
(B′,C′) are indistinguishable from uniform for any vectors m and m′. □

8. ACKNOWLEDGEMENT

The author would like to thank Libin Wang for several discussions about efficiency.

REFERENCES

[Li22a] Trey Li. “Subset Product with Errors over Unique Factorization Domains and Ideal
Class Groups of Dedekind Domains”. 1st paper of the series. 2022, October 1.

[Li22b] Trey Li. “Jacobi Symbol Parity Checking Algorithm for Subset Product”. 2nd paper
of the series. 2022, October 2.

[Li22c] Trey Li. “Power Residue Symbol Order Detecting Algorithm for Subset Product
over Algebraic Integers”. 3rd paper of the series. 2022, October 3.

4

[Li22d] Trey Li. “Multiple Modular Unique Factorization Domain Subset Product with Er-
rors”. 4th paper of the series. 2022, October 4.

[Li22e] Trey Li. “Post-Quantum Key Exchange from Subset Product with Errors”. 5th pa-
per of the series. 2022, October 5.

5

	1. Introduction
	2. Hard problem
	3. Idea
	4. Scheme
	5. Correctness
	6. Efficiency
	7. Security
	8. Acknowledgement
	References

