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Abstract

The classic MPC protocol for Schnorr Signatures [17, 20, 23] (Classic Schnorr) consists of a simple
three-round process for the signing operation, and the protocol is essentially as efficient as the underlying
non-MPC scheme (modulo the round-complexity). In particular, Classic Schnorr does not contain any
ZK proofs, not even for key-generation, and the only cryptographic “machinery” it uses is the underlying
hash function. In this paper, we show that Classic Schnorr UC-realizes the ideal threshold-signature
functionality of Canetti, Makriyannis, and Peled (Manuscript’20) against adaptive adversaries for any
number of corrupted parties. Furthermore, (1) the protocol does not impose any restrictions on the
number of concurrent signings, (2) the protocol naturally supports identifiable abort, and (3) the protocol
can be extended to achieve proactive security, almost for free. So, the main novelty of our work is showing
that Classic Schnorr achieves the utmost security as a threshold-signatures protocol. We hold that the
achieved security is truly surprising given how simple the protocol is.

On a technical level, we show the above by extending the proof technique of Canetti, Makriyannis,
and Peled, recently generalized by Blokh, Makriyannis, and Peled (Manuscript’22) for arbitrary threshold-
signature schemes, whereby the indistinguishability of the UC simulation is reduced to the unforgeability of
the underlying signature scheme. Our results hold in the random oracle model under the discrete logarithm
assumption.
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1 Introduction
The Schnorr signature scheme (Schnorr [22]) is the simplest discrete-log based signature scheme. In recent
years, along with its NIST-sponsored competitor, (EC)DSA, Schnorr signatures have received a lot of atten-
tion from industry and academia alike, mostly due to their new-found applications in the Blockchain space,
e.g. for verifying the validity and integrity of cryptocurrency transactions. In this paper, we focus on Schnorr
signatures in the context of Multi-Party Computation Signing (MPC signing), defined next.

In MPC signing, mutually distrusting parties interact by means of an MPC protocol to produce a joint
signature on a common document, and the resulting signature is indistinguishable from a standard, non-MPC,
signature. Such signatures offer a number of advantages over standard signatures. For instance, they eliminate
the single-point-of-failure problem because the signing capability is distributed among many parties, and thus
the secret material of any given party becomes less sensitive. Furthermore, MPC signatures are more efficient
than standard signatures because a single datum suffices to certify that a document was authorized by many
parties.

MPC Schnorr. MPC protocols for Schnorr are truly abundant in the literature.1 The earliest protocols
[17, 20, 23] are more than 20 years old. For the signing operation, all early protocols follow the same simple
three-round template by which (1) the signatories reach consensus on a common random datum, i.e. the
nonce, and (2) they locally calculate and release their respective signature shares. Interestingly, thanks to
the inherent “MPC friendliness” of Schnorr,2 the earliest protocols already achieve very good performance,
i.e. they are almost as efficient as the underlying non-MPC scheme.

Recent protocols improve over the above either by reducing the number of rounds from three to two, or
by realizing a deterministic variant of the signing operation where the nonce is pseudorandom. However, the
recent protocols either sacrifice on efficiency, because, compared to the underlying scheme, the signing process
is much more expensive, or, they sacrifice on so-called conservative design, because they rely on cryptographic
assumptions that are new, interactive, non-falsifiable, or some combination thereof.

In terms of security, most works in the literature follow one of two definitional paradigms (we discuss these
later in Section 1.1) and they offer various security guarantees depending on the adversarial model; Passive vs
Malicious, i.e. the adversary has eavesdropping capabilities vs full control over the corrupted parties, Static
vs Adaptive, i.e. the adversary corrupts parties statically at the beginning of the protocol vs adaptively as the
protocol progresses, Standalone vs Composable, i.e. the adversary operates within the confines of the protocol
environment vs no such restriction is imposed on the adversary. As far as we know, no protocol achieves the
highest level of security, i.e. malicious and adaptive security, with composability.

Motivation. In the spirit of Lindell [15], we strive to design and/or identify an MPC-Schnorr protocol that
strikes the best balance between efficiency, security and conservative design for many applications of interest.
Namely, we are motivated by applications to the “threshold flavour” of MPC-signing paradigm, i.e. where the
signatories agree on a common public key ahead of time (we elaborate on the different “flavours” in Section 1.1).
So, for this purpose, we formulate the following desiderata for our optimal protocol.

Efficiency. The protocol is as costly as standard Schnorr and it supports concurrent signings.

Security. The protocol is composable (e.g. in the UC framework) with adaptive & malicious security.

Conservative Design. The protocol is simple and the security reduces to standard Schnorr.

Our Results. We revisit the basic three-round signing protocol for Schnorr (dubbed Classic Schnorr hence-
forth, c.f. Figure 1). Our main contribution is showing that Classic Schnorr essentially “checks all the boxes”
in terms of efficiency, security, and conservative design. As far as we know, no protocol was previously known
to satisfy all our desiderata (in fact most works do not even consider adaptive adversaries). Finally, we hold
that the achieved level of security is truly surprising given how simple the protocol is.

On a technical level, we show that Classic Schnorr UC-realizes the ideal threshold-signature functionality
Ftsig of Canetti et al. [9] against adaptive and malicious adversaries. At a high-level, Ftsig captures the “essence”

1Non-exhaustively, we mention [1, 2, 10, 12, 14, 15, 16, 17, 18, 19, 20, 23].
2Viewed as an arithmetic circuit, the functionality for Schnorr does not contain any multiplication gates, which makes it far

easier/cheaper to realize in a distributed way than, say, (EC)DSA.
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of a secure threshold-signatures scheme; i.e. authorized sets of parties can generate signatures vs unauthorized
sets of parties cannot generate signatures. Furthermore, by instructing the parties to essentially re-execute
the key-generation (with appropriate checks), we show that Classic Schnorr achieves full proactive security.3
Before we present the technical merits of our results (c.f. Section 1.2), we discuss the necessary background.

FIGURE 1 (Classic Schnorr)

Parameters. Group-generator-order tuple (G, g, q), hash function H.

Key Generation.

1. Sample xi ← [q], set Xi = gxi and broadcast Vi = H(Pi, Xi).

2. When obtaining (Vj)j ̸=i, broadcast Xi.

When obtaining (Xj)j ̸=i, verify (Vj)j ̸=i and output (X1, . . . , Xn;xi).

Signing. On input msg ∈ {0, 1}∗, do:

1. Sample ki ← [q], set Ri = gki and broadcast Wi = H(Pi, Ri).

2. When obtaining (Wj)j ̸=i, broadcast Ri.

When obtaining (Rj)j ̸=i, verify (Wj)j ̸=i.

3. Calculate R =
∏n

ℓ=1 Rℓ and e = H(X,R,msg) and broadcast σi = ki + exi mod q.

When obtaining (σj)j ̸=i, verify (gσj = Rj ·Xe
j )j ̸=i and output (R, σ =

∑n
ℓ=1 σℓ).

Figure 1: n-out-of-n Classic Schnorr from Pi’s perspective. G denotes a prime-order group of size q generated by
g ∈ G and H denotes the hash function. We recall that Schnorr signatures verify as follows: for public key X ∈ G and
message msg ∈ {0, 1}∗, accept signature (R, σ) ∈ G × [q] iff gσ = R · Xe where e = H(X,R,msg). In the technical
sections, we generalize the above to the t-out-of-n threshold setting, where any set of t ≤ n parties may sign. Note
that, to avoid clutter, we have suppressed the use of identifiers (sid, pid, ssid, . . .) in the above.

1.1 Background
In this section we discuss the different “flavours” of MPC signatures, the two definitional paradigms for security,
and our choice of ideal functionality.

Threshold vs Multi-Signatures. MPC Signing can be broadly distinguished into threshold signatures
(e.g. [9, 11, 12, 14, 15, 20, 23]) and multi-signatures (e.g. [1, 2, 16, 17, 18, 19]). As mentioned earlier, in the
threshold case, the parties jointly agree on a common public key ahead of time. In contrast, in multi-signatures,
each party has its own public key and there is minimal coordination prior to signing, if any. There is a lot
of overlap between the two notions, both in techniques as well as results, and, for some applications, either
notion may suffice. Interestingly, the two flavours of MPC signatures are further characterized by the security
methodology they typical follow; most papers in the multi-signatures space use the historical paradigm, while
most papers in the threshold space use the “Real vs Ideal” paradigm, defined next.

Simulation-Based vs Game-Based Security. The historical aka game-based paradigm for provable se-
curity can be summarized as follows: To prove that a given scheme/protocol is secure, the security analyst
formulates an ad-hoc definition, typically a security game, and they show that the scheme satisfies the defini-
tion, e.g. via reduction where a hypothetical adversary that wins the security game can also be use to break
some widely held cryptographic assumption. The scheme is then deemed secure assuming the security game
captures certain desiderata.

In recent decades, with the advent of MPC, a new definitional paradigm emerged; the so-called “Real vs
Ideal” aka simulation-based paradigm where security is defined as follows. The cryptographer (or security
analyst) formulates an ideal experiment where all computation is performed by a trusted and incorruptible
entity, and the real protocol is deemed secure if it emulates the ideal experiment, i.e. no distinguisher can

3A t-out-of-n threshold signing protocol achieves proactive security if the scheme remains unforgeable against any adaptive
adversary that corrupts at most t−1 signatories in any given epoch, where the epochs are delineated by a key-refresh mechanism.
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differentiate between the real protocol and the ideal experiment. In the MPC jargon, the ideal experiment
is parameterized by some ideal functionality, and the protocol is said to realize the ideal functionality if it is
secure.

Comparing the two notions, it is worth noting that the simulation-based paradigm is more expressive. For
instance, it can capture notions that are external to the protocol environment, like composability; e.g. in the
UC framework, the ideal experiment is augmented to account for such external threats and the protocol is
said to UC-realize the ideal functionality if no distinguisher can differentiate between the real protocol and the
(augmented) ideal experiment. In addition, the simulation-based paradigm is arguably more intuitive because
security, i.e. the ideal experiment, is defined in terms of “trusted parties” instead of technical security games.

On the other hand, if the ideal experiment exceeds the security requirements of the targeted application,
then the real protocol may incur unnecessary complexity costs; i.e., the simulation paradigm can “overdeliver”
in a wasteful way. Therefore, it is preferable to design tailor-made solutions, in the spirit of the game-based
approach, within the simulation-based paradigm. The discussion below illustrates this point.

Ftsig vs Schnorr SFE. In [15], Lindell presents a three-round protocol4 which UC-realizes the signing
operation of Schnorr, i.e. the Schnorr functionality Fschnorr. By contrast, in this paper, we show that Classic
Schnorr UC-realizes Ftsig, that is, a generic threshold-signatures functionality. Opting for Ftsig is very rewarding
for our targeted application; we achieve adaptive security compared to static security in [15], and our protocol
is simpler and more competitive complexity-wise.

We note, however, that Ftsig and Fschnorr are not interchangeable. For one, Fschnorr implies Ftsig only if
non-MPC Schnorr is a good signature scheme.5 Conversely, Ftsig is not always the right abstraction for the
Schnorr signature operation,6 because it is agnostic to the signature-generation process (c.f. Section 1.2). By
extension, protocols that realize Ftsig, e.g. Classic Schnorr, are not good substitutes for Fschnorr in general.
Rather, protocols that realize Ftsig are good threshold-signatures protocols, and Classic Schnorr achieves the
utmost security for this purpose; this is the main contribution of our work.

1.2 Our Techniques
The present section assumes some familiarity with the UC framework.

Ideal Threshold-Signatures Functionality. Our main security claim is that Classic Schnorr UC-realizes
the ideal ideal threshold-signatures functionality Ftsig from [9]7. As mentioned earlier, the purpose of Ftsig is
to capture the “essence” of a secure threshold-signatures scheme. In more detail, letting P denote the set of
signatories, Ftsig provides the functionality/security for the t-out-of-n case:

1. Key Generation. Upon activation, the functionality requests a verification algorithm V from the ideal
adversary; for us, V is simply the verification algorithm for Schnorr that depends on the public key.

2. Signing. When obtaining input msg ∈ {0, 1}∗ from a subset Q ⊆ P of size at least t, the functionality
records the message msg as “signed”.

3. Verification. When prompted on a message msg and a signature σ for verification, the functionality
returns V(msg, σ) ∈ {true, false} if it has record of this message. If there is no record of msg, the
functionality returns false regardless of V(·).

Notice that the functionality will accept a pair (msg, σ) only if msg was authorized by a suitable a set of
parties in Item 2 above and V(msg, σ) = true. In any other case, i.e. either msg was not authorized or σ does
not conform to V, the functionality will reject the pair. Furthermore, we stress that Ftsig does not hold any
internal secrets so it does not know the secret key associated with the verification algorithm V (because V was
supplied from the outside by the ideal adversary).

4The core protocol in [15] essentially corresponds to Classic Schnorr with ZK proofs.
5e.g. in a world where discrete log is easy, a protocol that realises Fschnorr is a poor threshold-signatures protocol.
6For instance, Fschnorr can be used to realize a distributed ZKPoK of discrete log, but Ftsig is not useful for this purpose.
7The results of [9] were published in [8] (CCS’20) as part of a combined work with Gennaro and Goldfeder [13].
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Simulatability & Unforgeability imply UC Security. We use the key technique from [9] to show that
Classic Schnorr UC-realizes Ftsig by way of reduction to the assumed unforgeability of the underlying non-
threshold scheme. This technique was recently generalized in [3] for general threshold-signature protocols. In
a nutshell, starting from a signature scheme Sig and a threshold protocol Σ for computing Sig, Blokh et al. [3]
show that if (1) Sig is unforgeable according to the usual game-based definition and (2) Σ can be standalone-
simulated8 using an oracle to Sig (the same oracle from the unforgeability game), then Σ UC-realizes the ideal
threshold-signature functionality Ftsig.

In this paper, we model the internal hash functionH of Schnorr as a random oracle (it is an interesting open
problem to see if this can be avoided). In doing so, however, the theorem from [3] is no longer applicable.9,10 To
overcome this issue, we generalize the result of [3] to so-called oracle-aided signatures where the signing and/or
verification process of Sig depends on message-dependent query-answer pairs to some oracle O (c.f. Section 2.3,
Theorem 2.6). In conclusion, since Schnorr signatures are unforgeable in the random oracle model (assuming
discrete log [21]), and Classic Schnorr can be simulated against adaptive adversaries using a suitable signature
oracle, it follows that Classic Schnorr UC-realizes Ftsig against adaptive adversaries in the random oracle model
under the discrete log assumption.

No ZK? No Problem! A surprising aspect of Classic Schnorr is the total absence of ZK proofs, especially
given the advertised security. To explain in one sentence, Classic Schnorr does not contain ZK proofs because
the security analysis does not require extraction of the adversary’s secrets. To elaborate further, typically
the simulator extracts the adversary’s secrets in order to calculate the honest party’s simulated messages,
e.g. for a Schnorr signature (R, σ) with e = H(X,R,msg), the simulator calculates the adversary’s share
(RA, σA) = (gkA , kA + exA) using the extracted secrets kA and xA, and then it sets the (simulated) honest
party’s share as (R̂, σ̂) = (R · R−1

A , σ − σA). In this work, we completely circumvent extraction (and any
penalties it may induce) because we simulate the honest party’s share directly by suitably programming the
random oracle, i.e. the simulator is instructed to sample σ̂ and e at random and set R̂ = gσ̂ · X̂−e, where X̂
is the public-key share of the honest party. So, by programming the oracle accordingly, i.e. return e to the
adversary when queried on (X,R,msg) for R = R̂ · RA, the honest party’s simulated share σ̂ is identically
distributed with the real one.11

Remark 1.1 (Conservative Design & Random Oracles). It may seem odd to use random oracles in the context
of conservative design and the “cryptography purist” will proclaim that random oracles are not compatible with
conservative design. To counter this obvious criticism, we offer the following arguments. First, random oracles
are ubiquitous in practical real-world cryptography, e.g. there is no NIZK deployed in the real world that does
not assume a random oracle, as far as we know. Thus, many Schnorr protocols in the wild implicitly assume
random oracles (because many Schnorr protocols use NIZKs). Second, conservative design is also concerned
with the simplicity of the protocol itself, i.e. a simple protocol with not-so-minimal assumptions may compare
favorably to a complicated protocol with minimal assumptions. In this regard, Classic Schnorr has no match.
Finally, our security analysis uses the random oracle in the same fashion as the seminal work of Pointcheval
and Stern [21], or, as mentioned in Footnote 11, the standard ZKPoK for discrete log. Thus, our use of the
oracle is not innovative or sophisticated, and so the principle of conservative design is once again upheld.

1.3 Extensions and Open Problems
Identifiable abort. We point out that every failure can be attributed to one of the participants if the
protocol aborts prematurely, verifiably so. Namely, the protocol fails either because one of the decommitments
does not verify, or, the signature share σj of Pj doe not verify according to the formula gσj = Rj · Xe

j . In
either case, the exposed party may be identified as corrupted.

Non-Interactive Signing. Many recent protocols (for Schnorr and ECDSA) admit a preprocessing mode
of operation where the message-independent parts of the protocol are executed before the message to be

8i.e., the simulator has access to the adversary’s code and it can provide simulated answers to random-oracle queries.
9Because the simulator may inadvertently create a non-suitable forgery when tinkering with the oracle in the reduction.

10[9] and [3] use a random oracle to show that the simulation is indistinguishable and they make no assumptions on the internal
hash function of ECDSA.

11The astute reader will notice that we are simply running the simulator for the standard ZK Proof of Knowledge (ZKPoK)
for Discrete Log.
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signed is presented, e.g. calculating the nonce. While Classic Schnorr also admits a non-interactive variant (by
executing the first two rounds of signing ahead of time), the analysis herein does not extend to this variant
and we speculate that achieving the same security guarantees requires either changes to the protocol or the
underlying security assumptions, or both.

Removing the RO. In the protocol, the random oracle is used for two different purposes: (1) for the
internal hash function of non-MPC Schnorr, and (2) for calculating commitments/decommitments during the
computation of the nonce during signing. While the first item seems crucial for our security analysis, we note
that the second item is merely a matter of choice; i.e. we could have opted to use a generic (non-malleable &
extractable) commitment instead.12 We leave it as an interesting open problem to see whether the ROM can
be completely avoided, e.g. using correlation intractability.

Some perspective on the scope of our results. Our analysis assumes that the identity of the signatories
is known in advance; therefore, our results do not extend to settings where the group of signatories (for the
same public key) is massive and it evolves as the protocol progresses. Furthermore, we assume synchronous
communication (where parties’ messages are delivered with an a priori fixed maximum time delay), so our
model is not realistic for such systems in any case.

Finally, we point out that the quality of adaptive security depends on the size of t or n − t, because the
reduction is required to guess which (simulated) parties are corrupted as the experiment progresses. As such,
the reduction gives rise to a non-trivial security loss when both t and n− t are large, perhaps severe in some
cases. It is stressed that there is no security loss for the static case, for any t and n.

2 Preliminaries
Notation. Throughout the paper (G, g, q) will denote the group-generator-order tuple for Schnorr. It is
assumed that the description of G is efficiently generated by an algorithm group in input 1κ. We let Z,N denote
the set of integer and natural numbers, respectively. We use sans-serif letters (enc,dec, . . .) or calligraphic
(S,A, . . .) to denote algorithms. Secret values are always denoted with lower case letters (x, α, . . .) and
public values are usually denoted with upper case letters (A,X, . . .). Furthermore, for a tuple of both public
and secret values, e.g. an RSA modulus and its factors (N, p, q), we use a semi-colon to differentiate public
from secret values (so we write (N ; p, q) instead of (N, p, q)). Bold letters X, s, . . . denote sets and we write
2X = {A s.t. A ⊆X} for the power set of X. Bold letters may also denote random variables.

We write x← E for sampling x uniformly from a set E, and x← A or x← gen for sampling x according
to (probabilistic) algorithms A or gen. A distribution ensemble {vκ}κ∈N is a sequence of random variables
indexed by the natural numbers. We say two ensembles {vκ} and {uκ} are indistingushable and we write
{vκ} ≡ {uκ} if Pr[D(1κ,uκ) = 1]−Pr[D(1κ,vκ) = 1] is negligible for every efficient distinguisher D. We write
SD(u,v) for the statistical distance of u and v. Finally, we also define oracles and oracle-aided algorithms.
An oracle O is a (not-necessarily-efficient) Turing machine and we say that AO is an oracle-aided algorithm
(OA-algorithm) for oracle O if it can make queries and receive answers from O; formally the PPTM A(·) has
an additional oracle tape for this purpose.

2.1 Oracle-Aided Signatures and Unforgeability
Definition 2.1 (OA-Signatures). SigO = (gen, sign, vrfy) is a tuple of OA-algorithms for oracle O s.t.

1. (pk, sk)← gen(1κ), where κ is the security parameter.

2. For msg ∈ {0, 1}∗, σ ← signsk(msg).

3. For msg, σ ∈ {0, 1}∗, vrfypk(σ,msg) = b ∈ {0, 1}.

Correctness. For σ ← signsk(msg), it holds that vrfypk(σ,msg) = 1.
12Using the RO for commitments conforms with standard practices and it makes the protocol description simpler.
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Existential Unforgeability. Next, we define security for OA-signature schemes. In Figure 2, we define a
generic oracle for defining the security game in Figure 3 (and thus the security definition below, Definition 2.2, is
parameterized by the oracle G). Later, in Figure 5, we will define a specific oracle for Schnorr and unforgeability
will be defined with respect to that specific oracle.

FIGURE 2 (Augmented Signature Oracle G)

Parameters. OA-Signature scheme SigO and randomized OA-functionality FO.

Operation.

1. On input (gen, 1κ), generate a key pair (pk, sk)← gen(1κ), initialize state = (sk, pk), and return pk.

Ignore future calls to gen.

2. On input (FO, x), sample r ← $ and return τ = FO(x, state; r).

Update state := state ∪ {(x, τ ; r)}.

Figure 2: Augmented Signature Oracle G

FIGURE 3 (G-Existential Unforgeability Experiment G-EU(A, 1κ))
1. Call G on (gen, 1κ) and hand pk to A.

2. The adversary A makes n(κ) adaptive calls to G and O.

3. A outputs (m,σ) given its view (randomness and query-answer pairs to G and O)

• Output: G-EU(A, 1κ) = 1 if vrfypk(m,σ) = 1 and m was not queried by A when calling G.

Figure 3: G-Existential Unforgeability Experiment G-EU(A, 1κ)

Definition 2.2 (G-Existential Unforgeability.). We say that SigO satisfies G-Existential unforgeability if there
exists ν ∈ negl(κ) such that for all A, it holds that Pr[G-EU(A, 1κ) = 1] ≤ ν(κ), where G-EU(·) denotes the
security game from Figure 3.

2.2 MPC and Universal Composability
We use the simplified variant of the UC framework (which is sufficient for our purposes because the identities of
all parties are assumed to be fixed in advance). In this section we provide a quick reminder of the framework.

The model for n-party protocol Π. For the purpose of modeling the protocols in this work, we consider
a system that consists of the following n + 2 machines, where each machine is a computing element (say,
an interactive Turing machine) with a specified program and and identity. First, we have n machines with
program Π and identities P1, . . . ,Pn. Next, we have a machine A representing the adversary an a machine Z
representing the environment. All machines are initialized on a security parameter κ and are polynomial in
κ. The environment Z is activated first, with an external input z. Z activates the parties, chooses their input
and reads their output. A can corrupt parties and instruct them to leak information to A and to perform
arbitrary instructions. Z and A communicate freely throughout the computation. The real process terminates
when the environment terminates. Let EXECZ

Π,A(1
κ, z) denote the environment’s output in the above process.

In this work we assume for simplicity that the parties are connected via an authenticated, synchronous
broadcast channel. That is, the computation proceeds in rounds, and each message sent by any of of the parties
at some round is made available to all parties at the next round. Formally, synchronous communication is
modeled within the UC framework by way of Fsyn, the ideal synchronous communication functionality from
[5, Section 7.3.3]. The broadcast property is modeled by having Fsyn require that all messages are addressed
at all parties.
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Ideal Process. the ideal process is identical to the real process, with the exception that now the machines
P1, . . . ,Pn do not run Π, Instead, they all forward all their inputs to a subroutine machine, called the ideal
functionality F . Functionality F then processes all the inputs locally and returns outputs to P1, . . . ,Pn. Let
EXECZ

F,S(1
κ, z) denote the environment’s output in the above process.

Definition 2.3. We say that Π UC-realizes F if for every adversary A there exists a simulator S such that
for every environment Z it holds that

{EXECZ
Π,A(1

κ, z)}z∈{0,1}∗ ≡ {EXECZ
F,S(1

κ, z)}z∈{0,1}∗

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once
corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions
of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes
executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption. Finally, the real adversary is
assumed to be rushing, i.e. it receives the honest parties messages before it sends messages on behalf of the
corrupted parties.

Global Functionalities. It is possible to capture UC with global functionalities within the plain UC frame-
work. Specifically, having Π UC-realize ideal functionality F in the presence of global functionality G is represented
by having the protocol [Π,G] UC-realize the protocol [F ,G] within the plain UC framework. Here [Π,G] is the
n + 1-party protocol where machines P1, . . . ,Pn run Π, and the remaining machine runs G. Protocol [F ,G]
is defined analogously, namely it is the n+ 2-party protocol where the first n+ 1 machines execute the ideal
protocol for F , and the remaining machine runs G.

Secret Channels. We assume that the parties are connected with point-to-point secret channels. Formally,
it is assumed that all pairs of parties admit a pairwise secret key for communicating secretly over the broadcast
channel.

2.2.1 Proactive Threshold Signatures

The definition below is a restricted version of [3] because the protocol herein does not support presigning (we
refer the reader to [3] for the definition of presigning).

Definition 2.4 (Threshold Signatures). Let Σ = (Σkgen,Σrefr,Σsign) denote a protocol for parties in P =
{P0,P1, . . . ,Pn} parametrized by Q ⊆ 2P . We say that Σ is a proactive threshold signatures scheme for
SigO = (. . . , vrfy) if it provides the following functionality.

1. Σkgen takes input 1κ from Pi ∈ P and returns (pk, si) to each Pi ∈ P .

2. Σrefr takes input (pk, si) from each Pi ∈ P and returns (a fresh) value si to each Pi ∈ P .

3. Σsign takes input msg ∈ {0, 1}∗ and (pk, si,Q) from Pi ∈ Q ∈ Q and returns σ to (at least one) Pi.

Correctness. It holds that vrfypk(σ,msg) = 1 in an honest execution.

Sets Q ∈ Q are called quorums. The span between two consecutive executions of Σrefr is referred to as an
epoch. By convention, the span before the first execution of Σrefr is the first epoch.

A protocol Σ is said to be secure if it UC-realizes functionality Ftsig, defined below.

2.2.2 Ideal Threshold-Signatures Functionality

We use the ideal functionality Ftsig of [9], which generalizes the non-threshold signature functionality of Canetti
[6]. We briefly outline Ftsig next and we refer the reader to the appendix (p. 17) for the full description.

For each signing request for a message msg, the functionality requests a signature string σ from the
adversary, which is submitted from the outside, i.e. the signature string σ is not calculated internally from the
ideal functionality. Once σ is submitted by the adversary, the functionality keeps record of (msg, σ). When
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a party submits a pair (msg′, σ′) for verification, the functionality simply returns true if it has record of that
pair and false otherwise.

For proactive security, the functionality admits an additional interface for recording corrupted and decor-
rupted parties. When a party is decorrupted, the functionality records that party as quarantined until it
is instructed to purge that record (via a special key-refresh interface). If all parties are corrupted and/or
quarantined at any given time, then the functionality enters a pathological mode of operation and it ignores
the message-signature repository it holds internally.

2.2.3 Global Random Oracle

We follow formalism of [4, 7] for incorporating the random oracle into the UC framework. In particular, we
use the strict global random oracle paradigm which is the most restrictive way of defining a random oracle,
defined in Figure 4.

FIGURE 4 (The Global Random Oracle Functionality H)

Parameter: Output length h.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .

– Else sample a← {0, 1}h and store (m, a).

Output (answer, a) to X .

Figure 4: The Global Random Oracle Functionality H

2.3 Unforgeability & Simulatability imply UC Security
For OA-signature scheme SigO and associated threshold-protocol Σ, for adversary A, write RealA for the
adversary’s view in an execution of Σ in the presence of an adaptive PPTM adversary A. Without loss of
generality assume that RealA = (pkΣ, . . .), where pkΣ denotes the public key resulting from the execution of
Σ. Next, for an oracle-aided algorithm S with black-box access to A and oracle access to G and H, write
IdealS = (pkG ,OutS) for the pair of random variables consisting of the public key generated by G and the
simulator’s, S, output.

Definition 2.5 (Simulatability). Using the notation above, we say that Σ is G-simulatable with O-consistency
if the following holds for every adversary A. There exists S with oracle access to G and O and black-box access
to A such that (1) G is queried by S only on messages intended for signing as prescribed by Σ, (2) if A does
not corrupt all parties in some Q ∈ Q simultaneously in any given epoch, then {RealA} ≡ {IdealS}, and, (3)
unless msg ∈ {0, 1}∗ was queried to G, it holds that the oracle queries for vrfy(·)(msg) are consistent with O,
i.e. they are “real” oracle queries, or they are undefined by the simulation.

The theorem below is a generalization of [3] for OA-signatures.

Theorem 2.6. Let SigO denote an OA-signature scheme and let Σ denote a threshold protocol for SigO. Let
G denote an augmented signature oracle such that

• SigO is G-existentially unforgeable.

• Σ is G-simulatable with O-consistency.

Then, Σ UC-realizes Ftsig in the presence of global functionality O.

Proof. Like in [3], the UC simulation is trivial; the simulator simply runs the code of the honest parties.
Furthermore, every time the honest parties output a signature, then the simulator submits the resulting
signature-string to the functionality, and, depending on the adversary’s corruption pattern and the protocol’s
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key-refresh schedule, the simulator registers parties as corrupted and/or quarantined. It is not hard to see
that the environment Z can distinguish real from ideal execution only if it can forge signatures in the protocol
(i.e. in the real world). However, since Σ is G-simulatable with O-consistency, it follows by Definition 2.5 that
the interaction between Z and the honest parties can be simulated using G and O, and the simulation yields
a “true” forgery because it is O-consistent. In turn, this implies that G is useful for forging signatures of SigO,
in contradiction with the hypothesis of the theorem.

In other words, if there exists a PPTM Z0 that can forge signatures in the real protocol (so that the
environment can distinguish between real and ideal), then, by G-simulatability, we can construct (using the
simulator from the G-simulatability experiment) a PPTM B with black-box access to Z0 that breaks the
unforgeability of the underlying non-threshold scheme SigO, which yields a contradiction. Therefore, no such
Z0 exists, and it holds that our UC simulator yields indeed a perfect simulation.

2.4 Schnorr Signatures & Discrete Log
Definition 2.7 (Schnorr). Let (G, g, q) denote the group-generator-order tuple.

Parameters: (G, q, g) and (random) oracle H : {0, 1}∗ → Fq.

1. (X;x)← gen(G, q, g) such that x← Fq and X = gx.

2. For msg ∈M , let signx(msg; k) = (R, σ) ∈ G× Fq, for R = gk, m = H(X,R,msg), σ = k +mx mod q.

3. For (R, σ) ∈ F2
q, define vrfyX(msg, σ) = 1 iff gσ = R ·Xm and m = H(X,R,msg).

FIGURE 5 (Oracle G∗ for Schnorr)

Parameters. Random Oracle H : {0, 1}∗ → Fq.

Operation.

1. On input (gen, (G, g, q)), sample sk = x← Fq and return pk = X = gx.

Store (sk, pk) in memory and ignore future calls to gen.

2. Ignore all other prompts.

Figure 5: Oracle G∗ for Schnorr

Notice that Schnorr signatures are G∗-existentially unforgeable if no adversary can forge signatures only
given the public key; in particular, the adversary is not allowed to query the oracle for additional signa-
tures. Thus, by the seminal result of Pointcheval and Stern (Theorem 2.9 below), Schnorr signatures are
G∗-existentially unforgeable under the discrete logarithm assumption. For completeness, we also give the
definition for DLOG.

Definition 2.8. DLOG holds true if there exists a negligible function ν(·) such that for every PPTM A

Pr[(G, g, q)← group(1κ) ∧ X ← G ∧ α← A(1κ, X) ∧ gα = X] ≤ ν(κ)

Theorem 2.9 (Pointcheval and Stern [21]). Assuming DLOG, letting G∗ denote the oracle from Figure 5, it
holds that Schnorr signatures are G∗-existentially unforgeable.

3 Protocol
In this section we define our proactive threshold-Schnorr protocol Σschnorr = (Σkgen,Σrefr,Σsign), c.f. Figure 6
for the key-generation Σkgen and Figure 7 for the signing phase Σsign. The key-refresh phase Σrefr is described
in Section 3.1 by pointing out the difference with Σkgen (the key-generation and the key-refresh phase are
essentially the same protocol).
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Party Pi Party Pj

On input aux = ssid, do:

Sample αi(z) =
∑t−1

k=0 αi,kz
k and set Ai,k = gαi,k

Set Vi = H(aux,Pi, Ai,0, . . . , Ai,t−1)

For all j ∈ [n], calculate βi,j = αi(j) mod q

Vi

Vj

Ai,0, . . . , Ai,t−1, encj(βi,j)

Aj,0, . . . , Aj,t−1, enci(βj,i)

Verify Vi and gβj,i =
∏t−1

k=0 A
ik

j,k, and set:

X =
∏n

ℓ=1 Aℓ,0 and ∀j, Xj =
∏t−1

k=0(
∏n

ℓ=1 Aℓ,k)
jk

Output (X, (Xℓ)
n
ℓ=1;xi) for xi =

∑n
ℓ=1 βℓ,i mod q

Figure 6: Threshold Schnorr: Key Generation (Σkgen)

Party Pi Party Pj

On input aux = (sid,msg), (Xℓ)ℓ∈Q and xi, do:

Set yi = λi(Q) · xi and Yj = X
λj(Q)

j for j ∈ Q

Sample ki ← Fq and set Ri = gki and Vi = H(aux,Pi, Ri)

Vi

Vj

Ri

Rj

Verify Vj and set R =
∏

ℓ∈Q Rℓ,

Calculate e = H(X,R,msg) and σi = [ki + eyi]q

σi

σj

Verify gσj = Rj · Y e
j

Output (R, σ) for σ = [
∑

ℓ∈Q σℓ]q

Figure 7: Threshold Schnorr: Signing (Σsign)
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Notation and Conventions. Prior to key-generation, the parties hold a common input that specifies the
supper-session identifier (ssid) which, in particular, specifies the parties’ identities (pid’s in P ) and the access
structure Q. Similarly, during signing, it is assumed that the parties start with the same message to be
signed as the session identifier (sid) for that signing request; i.e., in this paper, we are agnostic about how
the parties reach consensus on the relevant identifiers, or the message to be signed in each signature request.
In the protocol description below, all the aforementioned data is in the common input aux ∈ {0, 1}∗ which
is appropriately updated for each phase of the protocol. Finally, it is assumed that the parties store their
respective output of each phase of the protocol and they erase all other data.

In the second round of the key-generation, we write enc(·)(β) to signify that β is sent over the secret channel
(or it is encrypted using the appropriate key and sent over the broadcast channel). Finally, let λi(Q) denote
the Lagrange coefficient for Pi with respect to set Q, i.e. λi(Q) =

∏
j∈Q(−j)/

∏
j∈Q\{i}(i− j).

3.1 Key-Refresh
Next we describe the key-refresh phase Σrefr. On input (Xℓ)ℓ∈P and xi, execute the Key-Generation (Figure 6)
with the following changes:

Round 1. Sample αi(z) s.t. αi(0) = λi(P ) · xi mod q.

Round 2. Check that Aj,0 = X
λj(P )
j , for every j ∈ [n].

At the end of the execution, if no error was detected, reassign (Xℓ)ℓ∈P and xi as prescribed by the protocol.

4 Security
Theorem 4.1. Assuming DLOG, it holds that Σschnorr UC-realizes functionality Ftsig in the presence of a
global random oracle functionality H.

The above theorem is a corollary of Theorems 2.6, 2.9 and 4.2. In more detail, in Section 4.1 we show that
Σschnorr is G∗-simulatable with H-consistency according to Definition 2.5 against adaptive adversaries. Thus,
since Schnorr signatures are G∗-existentially unforgeable (Pointcheval and Stern [21]), it follows that Σschnorr

UC-realizes Ftsig against adaptive adversaries in the random oracle model.

4.1 Simulatability of Σschnorr

Theorem 4.2. It holds that Σschnorr is G∗-simulatable with H-consistency.

Proof. At the beginning of the simulation (The simulator is described in Figure 8), our simulator chooses n− t
honest parties randomly which are called the special parties and all other parties are simulated by running their
code as prescribed. To deal with adaptive corruptions, we assume that the special parties are chosen afresh
every time Σrefr is simulated (the simulation is reset, via rewinding, to the last key refresh if the adversary
decides to corrupt any of the special parties). Furthermore, S simulates the random oracle as well and thus A
“queries” S when it needs to query H and we point out that S returns answers according to the “real” oracle H
unless these were programmed by the simulator itself; namely, the V ’s in Item 1 of key-generation and Item 1
of signing respectively, or the e’s in Item 2a of signing. Thus, the simulation is consistent with the oracle. The
reader is referred to Figure 8 for the full description of the simulation.

It is not hard to see that the simulation is statistically close to the real distribution. To conclude, we note
that the simulation concludes with overwhelming probability in time τ · nτ log(n) · timeΣ for τ = min(t, n− t)
and timeΣ is the running time of Σ (because the simulator is required to guess the correct identities of the
simulated honest parties).
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FIGURE 8 (G∗-simulation for Σschnorr)

Parameters. Adversary A, RO H.

Operation.

init. Call G∗ on input (G, g, q). Obtain pk = X.

– (Σkgen) Choose B ⊆H = P \C of size n− t+ 1 and do:

1. For b ∈ B, hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j /∈B , retrieve (Aj,0, . . . , Aj,t−1)j /∈B and (βj,b)j /∈B,b∈B and do:

(a) Set XB = X · (
∏

j /∈B Aj,0)
−1

(b) Sample {Ab,0}b∈B subject to
∏

b∈B Ab,0 = XB .

(c) Sample {βb,j ← Fq}b∈B,j /∈B and set {Ab,1, . . . , Ab,t−1}b∈B s.t.
∏t−1

k=1 A
jk

b,k = A−1
b,0 · g

βb,j .
Use the Vandermonde matrix for the above.

(d) Calculate all other values as prescribed.
Hand over (Ab,0, . . . , Ab,t−1)b∈B and (βb,j)b∈B,j∈C to A.

– (Σrefr) Reasign B ⊆H = P \C of size n− t+ 1 and do

Run simulator for Σkgen using {Ab,0 = X
λb(P )
b }b∈B in Item 2b and verify {Aj,0 = X

λj(P )

j }j /∈B .

– (Σsign) If |Q| ≥ t, do: Letting {Yi = X
λi(Q)
i }i∈Q,

1. For b ∈ Q ∩B, hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j /∈B , retrieve (Rj)j /∈B and do:

(a) Sample e← Fq.
(b) For b ∈ Q ∩B, sample σb ← Fq and set Rb = gσb · Y −e

b .
(c) Calculate all other values as prescribed and hand over (Rb)b∈Q∩B to A.

3. When obtaining (Rj)j∈Q\B , do:
Hand over (σb)b∈Q∩B

Figure 8: G∗-simulation for Σschnorr. In the above, every time S “retrieves” a value, we mean that it obtains
the relevant value from A’s queries. Furthermore, it assumed S’s messages are consistent with the simulated
oracle (by programming the simulated random oracle accordingly whenever needed). So, e.g., for Ri chosen
by S for special party Pi during signing, if the adversary queries H on input (aux,Pi, Ri), then the simulator
provides “answer” that leads to an error-free execution, namely Vi chosen by the simulator in the first round.
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FIGURE 9 (Ideal Threshold Signature Functionality Ftsig)

Key-generation:

1. Upon receiving (keygen, ssid) from some party Pi, interpret ssid = (. . . ,P ,Q), where P = (P1, . . . ,Pn).

– If Pi ∈ P , send to S and record (keygen, ssid,Pi).

– Otherwise ignore the message.

2. Once (keygen, ssid, j) is recorded for all Pj ∈ P , send (pubkey, ssid) to the adversary S and do:

(a) Upon receiving (pubkey, ssid,X,V) from S, record (ssid,X,V).
(b) Upon receiving (pubkey, ssid) from Pi ∈ P , output (pubkey, ssid,X) if it is recorded.

Else ignore the message.

Signing:

1. Upon receiving (sign, sid = (ssid, . . .),m) from Pi, send to S and record (sign, sid,m, i).

2. Upon receiving (sign, sid = (ssid, . . .),m, j) from S, record (sign, sid,m, j) if Pj is corrupted.
Else ignore the message.

3. Once (sign, sid,m, i) is recorded for all Pi ∈ Q ⊆ P and Q ∈ Q, send (sign, sid,m) to S and do:

(a) Upon receiving (signature, sid,m, σ) from S,

– If the tuple (sid,m, σ, 0) is recorded, output an error.
– Else, record (sid,m, σ, 1).

(b) Upon receiving (signature, sid,m) from Pi ∈ Q:

– If (sid,m, σ, 1) is recorded, output (signature, sid,m, σ) to Pi.
– Else ignore the message.

Verification:

Upon receiving (sig-vrfy, sid,m, σ,X) from a party X , do:

– If a tuple (m,σ, β′) is recorded, then set β = β′.

– Else, if m was never signed and not all parties in some Q ∈ Q are corrupted/quarantined, set β = 0.

“Unforgeability”

– Else, set β = V(m,σ,X).

Record (m,σ, β) and output (istrue, sid,m, σ, β) to X .

Key-Refresh:

Upon receiving key-refresh from all Pi ∈ P , send key-refresh to S, and do:

– If not all parties in some Q ∈ Q are corrupted/quarantined, erase all records of (quarantine, . . .).

Corruption/Decorruption:

1. Upon receiving (corrupt,Pj) from S, record Pj is corrupted.

2. Upon receiving (decorrupt,Pj) from S:

– If not all parties in some Q ∈ Q are corrupted/quarantined do:

If there is record that Pj is corrupted, erase it and record (quarantine,Pj).

– Else do nothing.

Figure 9: Ideal Threshold Signature Functionality Ftsig
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