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Abstract. The higher-order differential-linear (HDL) attack was stud-
ied for the first time by Biham, Dunkelman, and Keller at FSE 2005,
where a linear approximation is appended to a higher-order differential
(HD) transition. It is a natural generalization of the differential-linear
(DL) attack. Due to some restrictions in practical usage, unfortunately,
the HDL cryptanalysis has attracted much less attention compared to its
DL counterpart since its proposal. Inspired by the algebraic perspective
on DL attacks recently proposed at CRYPTO 2021, in this paper we
show that the HDL attack can be made much more practical with an
algebraic treatment, turning this 17-year-old attack into another go-to
tool for cryptanalysts.
Unsurprisingly, HD/HDL attacks have the potential to be more effective
than their simpler differential/DL counterpart. We provide three novel
methods to detect possible HD/HDL distinguishers, including: (a) an
estimation of the algebraic degree of the differential supporting func-
tion (DSF); (b) the higher-order algebraic transitional form (HATF); (c)
experimental methods based on cube testers. With these methods, we
greatly improve the distinguishing attacks on the 8-round Ascon per-
mutation under the black-box model from 2130 to 246. Also, we give a
new zero-sum distinguisher for a full 12-round Ascon permutation with
only 255 time/data complexity, improving over the previous best one
that requires 2130 calls (we make clear that this does not impact the full
Ascon AEAD scheme). For the 4-round Ascon initialization, a deter-
ministic 2nd order HDL distinguisher is proposed with only four nonces.
Besides the distinguishers, the HATF technique allows us to handle the
probabilistic HD/HDL properties of cryptographic primitives. This leads
to a conditional HDL attack on 5-round Ascon initialization that can
recover all the key bits, performing 8 times faster than the conditional
DL attack. To the best of our knowledge, this is the first theoretical work
to propose a probabilistic HDL attack since it was first published. All
our attacks in this paper apply to both Ascon-128 and Ascon-128a.
We also give a conditional HD approximation for 130-round Grain v1
(reaching 5 more rounds than the previous best conditional differential
approximation) and new 4-round deterministic HDL distinguishers for
the Xoodoo permutation with only four chosen plaintexts. Finally, we
applied our strategy to the ARX-based cipher ChaCha, obtaining 3.5-,



4- and 4.5-round distinguishers and again improving over the state-of-
the-art. Our cryptanalyses do not threaten the security of the ciphers
mentioned in this paper.

Keywords: Higher-Order Differential, Higher-Order Differential-Linear,
Ascon, Xoodoo, Grain v1, ChaCha

1 Introduction

1.1 Differential and Linear Cryptanalysis

Differential cryptanalysis was proposed in [BS90] as an approach to analyzing
the security of DES-like cryptosystems. In a differential attack, the attacker seeks
a fixed input difference ∆I that propagates through the target cipher to a fixed
output difference ∆O with a high probability. The so-called differential is denoted
by ∆I

p−→ ∆O, where p is the probability Pr[C ⊕ C ′ = ∆O|P ⊕ P ′ = ∆I ] and
C/C ′ being the ciphertexts corresponding to the plaintexts P/P ′ respectively.
If p is significantly larger than 21−n, where n is the block size of the cipher, the
differential can be used for distinguishing it from a random permutation.

Linear cryptanalysis [Mat93] was also originally proposed to attack the DES
cipher. In linear cryptanalysis, the attacker studies the bias of the approximation
between the parity of some plaintext and ciphertext bits. The bias q with the
input and output masks (λI , λO) can be computed with Pr[P · λI = C · λO] =
1
2 + q, where a · b =

⊕n−1
i=0 a[i]b[i] for a, b ∈ Fn

2 . Such a linear approximation
is denoted by λI

q−→ λO. If |q| is significantly larger than 0, it is possible to
distinguish the cipher from a random permutation.

1.2 Differential-Linear Cryptanalysis

Differential and linear cryptanalysis have been the fundamental methods for
evaluating the security of a cipher. Nowadays, all new schemes are requested to
claim resistance against these two attacks, e.g., [DR02,BJK+16]. However, resis-
tance against the plain differential and linear cryptanalysis does not necessarily
lead to a resistance against variants of these two attacks. For example, despite its
security proof against differential attacks, the cipher Coconut98 [Vau98] is vul-
nerable to boomerang and differential-linear (DL) cryptanalysis [Wag99,BDK02]
which are two variants of the differential and linear attacks, leveraging a com-
bined strategy.

Differential-Linear cryptanalysis was proposed by Langford and Hellman in
1994 [LH94] and it remains the best-known attack on many ciphers, e.g., AES
competition finalist Serpent [BAK98]. For a difference-mask pair (∆I , λO), the
bias q′ of a DL approximation can be derived from the following equation

Pr[λO · (C ⊕ C ′) = 0|P ⊕ P ′ = ∆I ] =
1

2
+ q′.

Similar to the case of linear cryptanalysis, if |q′| is significantly larger than 0, we
can distinguish the cipher from a random permutation.
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Fig. 1: The differential-linear cryptanalysis on a cipher E = E1 ◦ E0, with a
differential ∆I

E0−−→ ∆O whose probability is p and a linear approximation λI
E1−−→

λO whose bias is q.

There are mainly two types of methods to estimate q′ in the literature. In
the classical DL cryptanalysis [LH94,BDK02], a cipher E is decomposed into two
sub-ciphers as E = E1 ◦E0, where there is a differential ∆I

p−→ ∆O for E0 and a
linear approximation λI

q−→ λO for E1. The DL bias q′ can be analyzed as follows
(see Figure 1 for the illustration). Let (P, P ′) be the chosen plaintext pair with
difference ∆I , (X,X ′) and (C,C ′) be the corresponding intermediate state pair
(between E0 and E1) and ciphertext pair. The DL approximation for E then
combines three approximations: the values of λO ·C and λO ·C ′ are correlated to
λI ·X and λI ·X ′, respectively, by λI

q−→ λO for E1; the values λI ·X and λI ·X ′

are correlated, as consequences of ∆I
p−→ ∆O for E0. Under two assumptions:

(a) E0 and E1 are independent; (b) When X ⊕ X ′ ̸= ∆O, λO · C and λO · C ′

are correlated to λI ·X and λI ·X ′ with probability 1
2 respectively, the overall

bias q′ can be computed with q′ = (−1)∆O·λI2pq2 with the well-known piling-up
lemma [Mat93].

As pointed out in [BDK02], these two assumptions may fail sometimes, so
experiments are required to verify the estimated bias when possible. There are
two main refined methods to avoid the assumptions issue. One is from Blondeau
et al. [BLN17], where an accurate formula for q′ is given under only the first
assumption. The other, proposed by Bar-On et al. [BDKW19] at EUROCRYPT
2019, is called the differential-linear connectivity table (DLCT) technique which
overcomes the independence problem between E0 and E1. The drawback of the
first method is that it is computationally impossible to apply the formula for
practical use-cases, while the second method only works when a large-enough
DLCT can be built efficiently.

A new method to estimate q′ from an algebraic perspective has been proposed
by Liu et al. [LLL21] at CRYPTO 2021. If we define a Boolean function according
to λO as fλO

: Fn
2 → F2, fλO

(u) = λO · u and let f = fλO
◦ E, the bias of

λO · (C ⊕ C ′) is equivalent to the bias of the following Boolean function

D∆I
f(P ) = f(P )⊕ f(P ⊕∆I). (1)
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Then, they introduced another function with an auxiliary variable x ∈ F2 as

f∆I
(P, x) = f(P ⊕ x∆I), (2)

where x∆I ∈ Fn
2 means that x is multiplied with each coordinate of ∆I , i.e.,

x∆I = (∆I [0] ·x, . . . ,∆I [n−1] ·x). Given a Boolean function g(a0, a1, . . . , an−1)
with n variables and for a certain variable ai (aj for j ̸= i are viewed as param-
eters), we can write g as g = g′′ai ⊕ g′ with g′ and g′′ being independent of ai,
where the partial derivative of g with respect to ai is the polynomial g′′, denoted
by Dai

g. Liu et al. gave the following intuitive observation linking Equation (1)
and (2),

f ′′ = Dxf∆I
= D∆I

f. (3)
That is to say, considering Equations (1,2,3), in order to evaluate the bias of
λO · (C ⊕C ′), we only need to evaluate the bias of the Boolean function Dxf∆I

.
This estimation from the algebraic perspective does not require any assumption
in theory. However, it is extremely difficult to derive Dxf∆I

or evaluate its
bias. To overcome this obstacle, Liu et al. introduced the so-called algebraic
transitional forms (ATF)1 technique to construct a transitional expression of
Dxf∆I

. Then, the bias is estimated from this transitional expression.

1.3 Higher-Order Differential(-Linear) Cryptanalysis

Inspired by the boomerang and DL cryptanalysis, other combined attacks were
studied by Biham et al. [BDK05]. These combined attacks include the differential-
bilinear, higher-order differential-linear (HDL), boomerang-linear attack, etc.

The higher-order differential (HD) was for the first time introduced by Lai in
1994 [Lai94] and later studied by Knudsen [Knu94]. It is a natural generalization
of the differential attack that takes advantage of having access to more plaintexts.
Given an ℓ-th order difference ∆I = (∆0,∆1, . . . , ∆ℓ−1) where ∆0,∆1, . . . , ∆ℓ−1

are linearly independent, the ℓ-th derivative of a (partial) cipher E with respect
to ∆I studies the probability

p = Pr

 ⊕
x∈X⊕L(∆I)

E(x) = ∆O

 ,

where L(∆I) is the linear span of (∆0,∆1, . . . , ∆ℓ−1), the ℓ dimensional affine
space X ⊕L(∆) is called the input set with respect to ∆, and ∆O is called the
output difference. In [Tie17], Tiessen pointed that a HD is a cluster of so-called
d-differentials from polytopic cryptanalysis [Tie16]. However, since the number
of d-differentials is exponential and every single d-difference has an extremely low
probability, it is computationally impossible to calculate the probability of an
HD or even some useful lower bounds in a differential-like way. Therefore, usually
1 In [LLL21], there is another terminology DATF when ATF is used to construct

transitional expressions for f∆. In this paper, we directly use ATF for all kinds of
Boolean functions no matter whether we target f or f∆.
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only the deterministic property from the algebraic degree of a cipher [BCD11],
or the integral attack [KW02] are considered in previous HD cryptanalysis.

As the name higher-order differential-linear suggests, HDL cryptanalysis [BDK05]
studies the bias concerning an ℓ-th order input difference ∆I and an output
mask λO. The bias ε of an HDL approximation is derived from the following
formulation:

Pr

λO ·

 ⊕
x∈X⊕L(∆I)

E(x)

 = 0

 =
1

2
+ ε.

Akin to the first kind of method to evaluate the bias in DL cryptanalysis, Biham
et al. [BDK05] gave an analysis based on viewing E as two sub-ciphers E =
E1 ◦E0. Suppose that we know an ℓ-th derivative with probability p for E0 and
that E1 has a linear approximation with bias equal to q, then the overall bias ε

is estimated as ε = 22
ℓ−1pq2

ℓ

. However, as we mentioned, there is no effective
method to trace the propagation of an HD or calculate its probability yet. Thus,
Biham et al. had to restrain themselves to the integral property for E0, which
leads to p = 1. The integral property usually requires a large ℓ to attack an
interesting number of rounds, but if |q| ̸= 1

2 , ε will become extremely close to
zero. As a result, we can only get an interesting HDL distinguisher when there
is a linear approximation with bias ± 1

2 for E1. In practice, some ciphers such as
IDEA [LM90] allow weak-key linear approximations with bias 1

2 , which makes
them vulnerable to HDL attacks [BDK05,BDK07].

The ideas of HDL were also ever used in the context of cryptanalysis of
Salsa [Ber08b] and ChaCha [Ber08a] although no one explicitly called it HDL
cryptanalysis. In [SZFW12], Shi et al. provided several highly-biased 2nd deriva-
tives with one active output bit for 4-round Salsa and 3-round ChaCha based
on experiments. As pointed in [BLN17,LLL21], differentials with one active out-
put bit are DL distinguishers with unit output masks, the observation works for
the HD as well. Thus, Shi et al.’s distinguishers are also HDL distinguishers.
In [CM16], Choudhuri and Maitra extended Shi et al.’s HD by appending a lin-
ear approximation, which is the typical case of HDL (note that they did not call
it HDL nor gave many discussions on this topic).

1.4 Motivation and Contributions

Considering that DL attacks have been found to be efficient for many important
primitives, such as Ascon [DEMS21] and Salsa/ChaCha [Ber08b,Ber08a], we
are naturally interested in whether the HDL attack could achieve even better
performance. However, as we mentioned, we do not have many tools to study
the general form of the HD properties of a cipher, especially the probabilistic
ones. Consequently, the HDL cryptanalysis is currently far less practical than
its differential counterpart, i.e., the DL cryptanalysis.

Recently, the algebraic perspective on DL attacks [LLL21] opened up a new
road to study the differential/DL attacks and achieved better precision for some
important ciphers such as Ascon [DEMS21]. We note that their method is based
on some intuitive observations and is limited to the first-order case. In this paper,
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we study the underlying algebraic structure of this new perspective and finally
we manage to generalize it to the more general higher-order cases, i.e., HDL
cryptanalysis.
Our contributions. Our results range from theory to application, so our con-
tributions are generally two-fold. In the theoretical part, we revisit the HD/HDL
cryptanalysis of a Boolean function from the algebraic perspective, which pro-
vides a novel method to study HD and HDL cryptanalysis. Especially, as far as
we know, our method is the first theoretical tool for studying the probabilistic
HD and HDL distinguishers. On the applications side, we give three methods for
HD/HDL cryptanalysis based on the study of the so-called differential support-
ing function (DSF). Improvements over the state-of-the-art for several primitives
are thus obtained. We are confident that with the techniques we propose in this
paper, HDL cryptanalysis is now another handy weapon in the cryptanalyst’s
toolbox.

1. By twisting the input set of a Boolean function f from an ℓ dimensional affine
space to an ℓ dimensional linear space, we succeed in transforming an HD of
f to a standard integral/cube attack. Thus, any HD attack on f is equivalent
to the cube or integral attack on this Boolean function’s DSF. This gives us
a unified viewpoint for differential, HD, cube, and integral attacks. Based on
the DSF, we can analyze the algebraic properties of a cryptographic primitive
in a more general and systematic way, while previous methods seem more
intuitive and empirical. This greatly deepens our general understanding of
the relationship between these algebraic attacks.

2. We provide three methods to mount HD attacks on a Boolean function f by
analyzing its DSF (which can be used to mount HDL attacks on concrete
instances as well). All HD/HDL approximations for various primitives we
obtained in this paper (as well as their previous DL approximations) are
summarized in Table 1.
(a) Instead of using the degree evaluation on f to derive HD distinguishers,

we can evaluate the algebraic degree or find integral distinguishers for
its DSF. As we will see, the DSF is parameterized by the input value
and the (higher-order) difference. Thus, a proper choice of the parame-
ters could significantly reduce its algebraic degree, leading to a greater
chance of detecting an integral distinguisher for the DSF. After that, we
can conveniently transform it into an HD distinguisher for f . With this
technique, we significantly improve the best-known distinguishing at-
tacks on round-reduced Ascon permutation [DEMS21]. A 46th HD will
lead to a zero output difference (in 64 bits) for 8 rounds, i.e., 246 plain-
texts are enough to distinguish an 8-round Ascon permutation from a
random permutation (the previous best distinguisher requires 2130 com-
putations [Tod15]). This is the first distinguisher with complexity being
lower than 264 for 8-round Ascon permutation. With a similar method
applied to the inverse Ascon permutation, we constructed a zero-sum
distinguisher for a full 12-round Ascon permutation requiring only 255

calls while the previous best zero-sum distinguisher costs 2130 calls. We
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also give a 2nd order HDL distinguisher for 4 rounds of the Ascon
initialization with bias equal to 1

2 , which means we can use 4 nonces
to distinguish it from a random permutation. These distinguishers are
demonstrated in the distinguisher part of Table 2. We emphasize that
our results do not threaten the security of the Ascon AEAD scheme.

(b) We propose the higher-order algebraic transitional form (HATF) to es-
timate the bias of a probabilistic HDL approximation, which is the first
systematic method to handle this long-standing problem. With HATF,
we can construct efficiently a transitional expression of the DSF and then
evaluate its bias. We detected four conditional HDL approximations with
a bias of only 2−2 for 5-round Ascon initialization. By analyzing the con-
ditions in this distinguisher, we could obtain the best key-recovery at-
tack on 5-round Ascon with time/data complexity 223, which is 8 times
faster than its DL counterpart. We also found an HDL approximation
with 2−30 bias for 6-round Ascon initialization that is outside the scope
of DL cryptanalysis. With some reasonable assumptions, we could mount
a key-recovery attack on 6-round Ascon initialization. This is the first
time that DL-like attacks succeed for more than 5 rounds besides the
cube-like attacks [LDW17,RHSS21]. A summary of these key-recovery
attacks is given in the key-recovery part of Table 2. Note that these at-
tacks apply to both Ascon-128 and Ascon-128a. To further illustrate
the powerfulness of the HATF, we applied it to Grain v1 [HJM07] to
get a conditional HD approximation for 130 rounds, which is 5 rounds
longer than the previous best conditional DL approximation [LLL21].
We remark that since the HATF technique is a heuristic method based
on some new assumptions, we provide experimental data to back our
theoretical results when possible.

(c) Finally, we applied the cube tester to the DSF. This is an experimental
method that was used in the scope of DL cryptanalysis in many previous
works. This method works for all kinds of primitives. We first applied
cube testers to the initialization of the Ascon AEAD and found more
highly-biased HDL approximations. For example, we detected an 8th
order HDL with bias equal to only 2−2.46 for 5 rounds, and thus we
can use about 213 data/time complexity to distinguish 5 rounds of the
Ascon initialization (the previous best one requires 216 [RHSS21]). If
we impose 16 conditions on the key, the bias can even improve to 1

2 ,
i.e., for 2112 keys, 5-round Ascon initialization could be distinguished
with 28 data/time complexities. By analyzing the nonlinear operations
of Xoodoo [DHAK18], we choose some specific forms of the input values
and differences. An exhaustive search within a small space returned a
deterministic HDL distinguisher for 4-round Xoodoo (the bias is 1

2 ). For
ChaCha [Ber08a], we first searched for some efficient HDL distinguishers
for 2-, 2.5, and 3-round ChaCha permutation, then appended a 1.5-round
linear approximation with bias equal to 1

2 to extend the distinguishers
to 3.5, 4 and 4.5 rounds. The biases of these three HDL approximations
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Table 1: Approximation Biases of the differential, DL and HDL for ciphers con-
sidered in this paper. Cond. is short for Conditional and means that we impose
some conditions on the key bits.

Primitive Round Bias (− log) Type Reference

Ascon Init.

4 2 DL [DEMS15]
1 2nd order HDL Section 4.4

5

9 DL [DEMS15]
4.54 Con. DL [LLL21]
2.46 8th order HDL Section I.1

2 Con. 2nd order HDL Section 5.3
1.04 11th order HDL Section I.1

1 Con. 8th order HDL Section I.1
6 30 Con. 2nd order HDL Sup.Mat. I.1

Grain v1
120 12.8 Cond. diff. [LG19]
125 17.4 Cond. diff. [LLL21]
130 30.18 Cond. 2nd order diff. Sup.Mat. H

Xoodoo 4 1 Rotational DL [LSL21]
1 2nd order HDL Sup.Mat. I.2

ChaCha

3.5 1.00 2nd order HDL Sup.Mat. I.3

4
3.33 DL [CM16]
2.21 2nd order HDL [CM16]
1.19 2nd order HDL Sup.Mat. I.3

4.5 6.14 DL [CM16]
4.81 2nd order HDL Sup.Mat. I.3

are significantly higher than DL approximations. A summary of these
results is provided in Table 1.

The source codes of this work are provided in the anonymous git repository
https://anonymous.4open.science/r/HDL-CC85. This can be seen as an extra
practical contribution, as the team of [LLL21] did not make their code public.

Outline. In Section 2, we briefly recall the main concepts of the HD and the
algebraic perspective on the differential attack. In Section 3, we provide the al-
gebraic perspective on the HD/HDL and give a simple and direct formula for
the transformation between HD/HDL and cube/integral cryptanalysis. The def-
inition of the DSF is also introduced in this section. In the following Sections 4,
5 and Section I of Supplementary Material, three novel techniques are provided
to detect possible HD/HDL distinguishers based on analyzing the DSF. In Sec-
tion 6, we do some discussions and conclude this paper.
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Table 2: Summary of results on the permutation (black-box mode) (labelled by
), permutation (non-black-box mode) (labelled by ), initialization (labelled

by ), encryption (labelled by ) and initialization under the weak-key model
(labelled by ) of reduced-round Ascon. Time complexities are expressed in
number of primitive calls while the data complexities are measured by the num-
ber of 128-bit blocks, i.e., 128-bit blocks. Our distinguishers up to 7 rounds have
been verified experimentally.
Type Rnd Data(log) Time (log) Method Reference

Distinguisher‡

4

16 16 Rectangle [GPT21]
8 8 Limited-birthday [GPT21]
5 5 Integral [RHSS21]
5 5 DL [DEMS15]
3 3 HD Section 4.2

5

18 18 Integral [Tod15]
18 18 DL [DEMS15]
16 16 Integral [RHSS21]
13 13 HDL Section I.1
9 9 Degree [RS21]
6 6 HD Section 4.2

6
35 35 Integral [Tod15]
31 31 Integral [RHSS21]
17 17 Degree [RS21]
12 12 HD Section 4.2

7
65 65 Integral [Tod15]
60 60 Integral [RHSS21]
33 33 Degree [RS21]
23 23 HD Section 4.2

8 130 130 Integral [Tod15]
46 46 HD Section 4.2

12 130 130 Zero-sum (partition)† [DEMS15]
55 55 Zero-Sum Section 4.3

Key-Recovery

5

36 36 DL [DEMS15]
26 26 Cond. DL [LLL21]
24 24 Cond. Cube [LDW17]
23 23 Cond. HDL Section 5.3

6 40 40 Cond. Cube [LDW17]
74 74 Cond. HDL Section 5.3

7 77 103 Cond. Cube [LDW17]
64 123 Cube [RHSS21]

‡ Due to space limitations, we did not list all existing distinguishers for 4 round
5 rounds of Ascon primitives. Please refer to [DEMS21,GPT21,Tez16] for more
details on them.

† The zero-sum distinguisher in [DEMS15] can be further extended to a zero-sum
partition distinguisher.
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2 Preliminaries
2.1 Notations
We use italic lower-case letters such as x to represent elements in Fn

2 , n ≥ 1.
The j-th bit of x is denoted by x[j], 0 ≤ j < n, where x[0] is the most sig-
nificant (the leftmost) bit. The vectors of ℓ elements in Fn

2 are denoted by
x = (x0, x1, . . . , xℓ−1) ∈ (Fn

2 )
ℓ, the i-th element of x is denoted by xi (the

j-th bit of xi is then denoted by xi[j]). Given x ∈ F2 and ∆ ∈ Fn
2 , x∆ =

(∆[0]x,∆[1]x, . . . ,∆[n− 1]x)2. For a, b ∈ Fn
2 , a||b ∈ F2n

2 represents the concate-
nation of a and b, a · b stands for the product as a · b =

⊕
0≤i<n a[i]b[i].

2.2 Boolean Function

An n-variable Boolean function is a mapping from Fn
2 to F2, which can be

uniquely written as its algebraic normal form (ANF) as a multivariate poly-
nomial over F2 as (note the input x ∈ Fn

2 of this Boolean function is written as
x ∈ (F2)

n to stress that the input can be seen as n bit variables)

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn

2

auπu(x) =
⊕
u∈Fn

2

au

n−1∏
i=0

x
u[i]
i , au ∈ F2

The algebraic degree of f , denoted by deg(f) is defined as maxau ̸=0{wt(u)}
for all u ∈ Fn

2 in the above formula. The monomial x0x1 · · ·xn−1 is called the
maxterm of f , denoted by π(x). The coefficient of a monomial πu(x) of f is
denoted by Coe (f, πu(x)). Each output bit of a cryptographic primitive can be
written as a Boolean function of its public variables (such as plaintexts, initial
values (IV), or nonces) and secret variables such as the key bits. Therefore, in
this paper, we usually explain our theories with Boolean functions rather than
concrete primitive instances.

The bias and correlation are two ways of measuring the unbalancedness of an
n-variable Boolean function f . The bias ε is defined as ε = 1

2n |{f(x) = 0}|− 1
2 =

Pr[f = 0] − 1
2 while the correlation c = 1

2n

∑
x∈Fn

2
(−1)f(x). Actually, c = 2ε.

In some papers such as [LLL21], the bias is taken while in other papers such
as [AFK+08] the correlation is used. In this paper, we will only use the bias ε
to measure the unbalancedness.

2.3 The Algebraic Perspective on DL

In [LLL21], Liu et al. introduced a new method to deal with the differential
and DL cryptanalysis as we have already mentioned in Section 1. Recalling
Equation (1), the bias of a DL approximation is related to the differential bias
of the Boolean function f = fλO

◦E. Thus, to study the DL attack it is enough
2 Example 1 in Section 3 is helpful for a better understanding to this notation of x∆.
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to focus on the differential property of a sole Boolean function. As explained in
Section 1, Liu et al. proposed Equation (3)

f ′′ = Dxf∆I
= D∆I

f

based on some intuitive observations, but no proof nor clear motivation was
given in their article. In the next section, we will make it clearer by introducing
the algebraic perspective on the ℓ-th order HD.

3 HD/HDL Cryptanalysis from an Algebraic Perspective
In this section, we show how to treat the ℓ-th derivative of a Boolean function
f with respect to an ℓ-th order difference from an algebraic perspective by es-
tablishing a bijective mapping to twist the input set of f . Liu et al.’s algebraic
perspective on DL is then a special case of our theory when the order ℓ = 1.
Interestingly, from our algebraic treatment, the underlying rationale of Equa-
tion (3) including the reason for introducing the auxiliary variable x becomes
natural and clear.

3.1 HD/HDL Cryptanalysis from an Algebraic Perspective

Given a Boolean function f : Fn
2 → F2 and an input ℓ-th order difference ∆ =

(∆0,∆1, . . . , ∆ℓ−1) ∈ (Fn
2 )

ℓ, the input set is X ⊕ L(∆) for a certain input of f
X ∈ Fn

2 . The ℓ-th derivative of f is calculated as

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a).

Note that we are operating an ℓ-dimensional affine space Aℓ = X ⊕ L(∆). An
important observation is that we can link Aℓ to any another ℓ-dimensional affine
space (Aℓ)′ by a bijective mappingMℓ that sends (Aℓ)′ to Aℓ. Not surprisingly,
we tend to choose the simplest ℓ-dimensional affine space, i.e., the ℓ-dimensional
linear space Fℓ

2. With a method of undetermined coefficients, one choice of Mℓ

can be

Mℓ : Fℓ
2 → Aℓ

(x0, x1, . . . , xℓ−1) 7→ X ⊕ x0∆0 ⊕ x1∆1 ⊕ · · · ⊕ xℓ−1∆ℓ−1 ≜ X ⊕ x∆
(4)

We define a new function f∆ from f with the twisted input set as f∆ ≜ f(X ⊕
x∆):

f∆ : Fn
2 → F2

X 7→ f(X ⊕ x∆)

If we let Dxf∆ represent the coefficient of the maxterm in f∆, i.e., Dxf∆ =
Coe (f(X ⊕ x∆), π(x)), we have the following proposition,

Proposition 1 (Algebraic-Perspective on HD/HDL). Given f : Fn
2 → F2

and an ℓ-th order difference ∆ ∈ (Fn
2 )

ℓ, D∆f = Dxf∆.

11



Proof. With Mℓ as given in Equation (4), for any X we have

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a) =
⊕
x∈Fℓ

2

f(M(x)) =
⊕
x∈Fℓ

2

f(X ⊕ x∆).

From the perspective of cube attacks,⊕
x∈Fℓ

2

f(X ⊕ x∆) = Coe (f(X ⊕ x∆), π(x)) = Dxf∆.

⊓⊔

When the information of the order ℓ is clear in the context, we will useM to
represent the mappings defined in Equation (4). According to Proposition 1, we
know that the ℓ-th derivative of f is equivalent to the coefficient of the maxterm
of f ◦M. Obviously, f ◦M plays an important role in (higher-order) differential
cryptanalysis, thus we give it a formal definition:

Definition 1 (Differential Supporting Function). Given a Boolean func-
tion f : Fn

2 → F2 and an ℓ-th order difference ∆ = (∆0,∆1, . . . , ∆ℓ−1) ∈ (Fn
2 )

ℓ,
the composite Boolean function

DSFℓ
f,X,∆(x) = f ◦M(x) = f(X ⊕ x∆),x = (x0, x1, . . . , xℓ−1)

is called the ℓ-th order differential supporting function (DSF) of f with respect
to (X,∆). When the order ℓ is clear in context, we will ignore it in the notation,
i.e., DSFf,X,∆(x).

We provide an example to illustrate the usage of the DSF in differential
cryptanalysis.

Example 1. Let f : F3
2 → F2 be f(a0, a1, a2) = a0a1a2 ⊕ a0a1 ⊕ a0a2 ⊕ a1a2,

∆ = (∆0,∆1) where ∆0 = (1, 0, 1) and ∆1 = (1, 1, 1), we consider the 2nd
derivative of f at a point X = (X0, X1, X2) ∈ (F2)

3. According to Equation (4),
M(x0, x1) = X ⊕ x0∆0 ⊕ x1∆1 = (X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1). The
composition of f and M is then

DSFf,X,∆(x0, x1) = f ◦M(x0, x1) = f(X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1)

= x0x1(X0 ⊕X2 ⊕ 1)⊕ x0X0X1 ⊕ x0X0 ⊕ x0X1X2 ⊕ x0X1

⊕ x0X2 ⊕ x0 ⊕ x1X0X1 ⊕ x1X0X2 ⊕ x1X0 ⊕ x1X1X2

⊕ x1X1 ⊕ x1X2 ⊕X0X1X2 ⊕X0X1 ⊕X0X2 ⊕X1X2

We can see that D∆f(X) = Coe (DSFf,X,∆, x0x1) = X0 ⊕X2 ⊕ 1.

With the establishment of the DSF, a HD property of f is transformed into an
integral/cube property for a related Boolean function f∆. Such transformations
bring nice convenience to our study on the HD attacks, as will be shown in the
following sections. Before we introduce our applications, we first make it clearer
about the differences between the conceptions of HD and HDL in this paper.
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The terminology of HD and HDL cryptanalysis in this paper. One nice
aspect of this work is that HD and HDL can be treated almost similarly. Indeed,
for a Boolean function, the HD and HDL are the same. For a cryptographic
primitive with multiple output bits, however, there are slight differences between
the two terminologies. Assume a cryptographic primitive E with n output bits
(n > 1), which can be seen as a set of n Boolean functions (f0, f1, . . . , fn−1). In
this paper, HDL cryptanalysis will refer to the HD properties of only one fi or
the sum of several fi, while HD cryptanalysis will refer to at least two different
fi simultaneously. Typically, HDL will consider the bias of a single Boolean
expression equal to one fi or to the sum of several fi, while HD will consider the
probability that a certain set of fi will each be equal to a certain Boolean value.

4 HD/HDL Cryptanalysis Based on Degree Estimation
of the DSF

In this section, we show how to obtain HD distinguishers for a Boolean func-
tion by analyzing the algebraic degree of its DSF. Our first application is to
Ascon [DEMS21]. Ascon is the first choice for lightweight applications recom-
mended by the CAESAR competition3 and now one of the NIST LWC4 finalists.
Thus, it has already attracted a lot of attention in cryptographic community and
undergone repeated cryptanalysis. In this section, we present new and improved
distinguishers for its permutation and initialization, which essentially reduce
the complexities. Due to page limits, the description of the Ascon AEAD and
its permutation is provided in Section B of Supplementary Material, we also
recommend that readers refer to [DEMS21] for the whole specification.
Notations used for describing the Ascon permutation. For the As-
con permutation, the 320-bit output state after r rounds is denoted by Sr =
Sr[0]∥Sr[1]∥Sr[2]∥Sr[3]∥Sr[4], where Sr[i] is the i-th word (the i-th row) of Sr

and S0 is the input of the whole permutation. The j-th bit of Sr[i] is denoted
by Sr[i][j] where 0 ≤ i < 5, 0 ≤ j < 64. Sr[0][0] is the leftmost bit of the
first row of the state matrix Sr. Let pC , pS , pL represent the operations of ad-
dition of constants, substitution layer, linear diffusion layer, respectively. Then
Sr = (pL ◦ pS ◦ pC)r(S0). We use Sr.5 to represent the state pS ◦ pC(Sr). For
example, S3.5 represents the state after pS of the round 3, i.e., 4 rounds without
the last pL.

4.1 Degree Matrix Transition of the Ascon Permutation

Before we introduce our core theory about the degree estimation of the DSF, we
first introduce an efficient way to trace the update of algebraic degrees of the
Ascon permutation state, i.e., given the degrees or the upper bounds of bits
in Sr, we can quickly calculate the degree upper bounds of bits in Sr+1. This
will be useful in our HD and HDL cryptanalysis of the Ascon permutation in
the remaining part of this section. To easily describe the degrees or their upper
3 https://competitions.cr.yp.to/caesar-submissions.html
4 https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced
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bounds of the Ascon permutation state bits, we introduce the definition of the
degree matrix.

Definition 2 (Degree Matrix of Sr). The algebraic degrees of the bits in the
state Sr are called a degree matrix of Sr, denoted by

DM(Sr) = (deg(Sr[i][j]), 0 ≤ i < 5, 0 ≤ j < 64) .

Proposition 2 (Degree Matrix Transition over pS ). With the knowledge
of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pS(S)) = (d′i,j , 0 ≤ i <
5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d1,j , d3,j , d2,j + d1,j , d2,j , d2,j + d0,j , d1,j , d0,j)

d′1,j = max(d4,j , d3,j + d2,j , d3,j + d1,j , d3,j , d2,j + d1,j , d2,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j , d4,j , d2,j , d1,j , 0)

d′3,j = max(d4,j + d0,j , d4,j , d3,j + d0,j , d3,j , d2,j , d1,j , d0,j)

d′4,j = max(d4,j + d1,j , d4,j , d3,j , d1,j + d0,j , d1,j)

, 0 ≤ j < 64

Proposition 3 (Degree Matrix Transition over pL). With the knowledge
of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pL(S)) = (d′′i,j , 0 ≤ i <
5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max(d′0,j+0, d
′
0,j−19 mod 64, d

′
0,j−28 mod 64)

d′′1,j = max(d′1,j+0, d
′
1,j−61 mod 64, d

′
1,j−39 mod 64)

d′′2,j = max(d′2,j+0, d
′
2,j− 1 mod 64, d

′
2,j− 6 mod 64)

d′′3,j = max(d′3,j+0, d
′
3,j−10 mod 64, d

′
3,j−17 mod 64)

d′′4,j = max(d′4,j+0, d
′
4,j− 7 mod 64, d

′
4,j−41 mod 64)

, 0 ≤ j < 64

Proof (for Propositions 2 and 3). It is clear that if y = x0 ⊕ x1, deg(y) ≤
max(deg(x0),deg(x1)); if y = x0x1, deg(y) ≤ deg(x0) + deg(x1). Then from
the ANFs of pS (Equation (7)) and pL (Equation (9)), we directly derive the
formulas in Proposition 2 and Proposition 3.

Although Propositions 2 and 3 are very simple, they achieve a quite precise
estimation of the upper bounds on algebraic degrees of the state bits when deal-
ing with the Ascon permutation (which is sometimes even as good as division
properties [Tod15,TM16] according to our experiments).

4.2 HD Distinguishers for the Ascon Permutation

The cryptographic permutation plays an important role in the permutation-
based ciphers, so analyzing the security strength of these permutations is cur-
rently an important topic. For example, in the specification of Ascon [DEMS21],
only analyses of the Ascon permutation are given including the differential/lin-
ear cryptanalysis and degree estimation (see Table 2). The target of this subsec-
tion is the Ascon permutation under the black-box model, i.e., we can access
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the whole 320-bit input and observe the 320-bit output. Until now, all attacks on
the Ascon permutation with complexity less than 264 can only reach 7 rounds.
The only integral distinguishers given by Todo [Tod15] require more than 2130

calls to attack 8 and more rounds, already higher than Ascon’s claimed security
level (2128 calls). In this subsection, based on analyzing the degree evoluation
of the DSF, we present a new HD distinguisher for 8 rounds requiring only 246

complexity.
Basic Idea. Note that in the Definition 1, x are variables while X and ∆ are
parameters. Hence, different X and ∆ will lead to different DSF. Some combina-
tions of (X,∆) may make DSFf,X,∆ simpler. More specifically, deg(DSFf,X,∆)
may be reduced to some values smaller than the order ℓ. In this case, we derive
an integral property for DSFf,X,∆. Applying the inverse of M, we immediately
derive an ℓ-th order difference yielding the following property with probability 1

D∆f(X) =
⊕
x∈Fℓ

2

DSFf,X,∆(x) = 0.

To estimate the degree upper bound of a DSF, we cut the function into two
phases as follows,

DSFf,X,∆(x) = f(X ⊕ x∆) = f1 ◦ f0(X ⊕ x∆).

We let f0 be simple so that we can compute out its exact ANFs as well as the
exact degrees of the output of f0(X⊕x∆). Next, we update the obtained degrees
by f1 to obtain the degree upper bounds of the whole DSFf,X,∆.

Regarding the r-round Ascon permutation, we choose its first r0 = 2.5
rounds as f0 for it achieves a balance between efficiency and precision5. The
remaining (r−2.5)-round permutation is seen as f1, and the method introduced
in Section 4.1 is a suitable method for f1 to update the degrees of the output of
f0. The only challenge now is to find a desirable combination of (X,∆).
Heuristic Method of Choosing (X,∆). To find a proper (X,∆), a naive
idea is to exhaust all possible values of (X,∆), but the search space is clearly
too large. Considering the first operation of the Ascon permutation without pC
(we can safely ignore the first pC operation since we target the permutation) is
pS which consists of 64 parallel small Sboxes. If we consider independent ℓ′-th
order differences for each Sbox S, in total we are considering an (ℓ = 64ℓ′)-
th order differences for the whole permutation. Our experiments show ℓ′ = 1
will achieve the best performance. This is not surprising, since ℓ′ = 1 means
that we put one variable in each Sbox to linearize all Sboxes, similar ideas were
already mentioned in some previous works such as [BLNS21]. With ℓ′ = 1, our
64th input difference is then denoted by ∆ = (∆0,∆1, . . . , ∆63). Thus, we write
pS(X ⊕ x∆) as follows:

pS(X ⊕ x∆) = S(X0 ⊕ x0∆
′
0)||S(X1 ⊕ x1∆

′
1)|| · · · ||S(X63 ⊕ x63∆

′
63),

5 A larger r0 will make the estimation of deg(DSFf,X,∆) more precise but more time-
consuming to compute the ANFs, while a smaller r0 may undermine the precision.

15



Algorithm 1 Detect HD Distinguishers (up to 64th order) for the Ascon per-
mutation
Input: r-round Ascon permutation, r ≥ 4
Output: (X̄, ∆̄) leading to HD distinguishers (up to 64th order) for r-round Ascon

permutation, the order of the HD
1: degree = 64
2: for X̄ from 0 to 31 do
3: for ∆̄ from 1 to 31 do
4: for i from 0 to 63 do
5: for j from 0 to 4 do
6: S0[j][i] = X[j]⊕ xi∆[j]

7: Compute the exact ANF of S2.5 and compute DM(S2.5)
8: Compute the degree matrix of Sr from S2.5 using Propositions 2 and 3
9: if min(DM(Sr)) < degree then

10: degree = min(DM(Sr)) ▷ To find the best distinguisher
11: return (X̄, ∆̄,DM(Sr))

where X = X0||X1|| · · · ||X63 and ∆i = 0|| · · · ||∆′
i|| · · · ||0 for 0 ≤ i < 64.

To further reduce the search space, we restrict the 64 Xi’s and 64 ∆′
i’s to

be equal respectively, i.e., (Xi,∆
′
i) = (X̄, ∆̄) for 0 ≤ i < 64. Therefore, we only

need to consider 25 possibilities for X̄ and 31 possibilities for ∆̄ (excluding the
trivial case ∆̄ = 0). The total search space is reduced to 32× 31 = 992 different
cases.

For each (X̄, ∆̄) ∈ F5
2×F5

2\{0}, we calculate the ANFs of f0(X ⊕x∆), then
derive the degree matrix of its output. After that we use Propositions 2 and 3
to update the degree matrix to calculate the degree matrix of Sr (for r ≥ 4)
which is the degree upper bound of the corresponding DSF. If the degree of a
certain DSF is smaller than 64, we find useful 64th HD distinguishers for r-round
Ascon permutation. The process is illustrated by Algorithm 1.

Algorithm 1 is practical. We found dozens of useful HD distinguishers with
orders lower than 64 for up to 8 rounds. Among them, there are 8 optimal
combinations of (X̄, ∆̄) that make the algebraic degree of the third word of S8

be only 45. They are

(X̄, ∆̄) ∈

{
(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),

(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}
. (5)

In Table 3, we list all the upper bounds on degrees of the DSF up to 8-round
Ascon permutation with respect to (X,∆) in Equation (5). As is seen, for 7
rounds, the degree upper bound of S7[4] is only 22, so 223 chosen texts are enough
to enforce the zero output difference in this word. We practically verified the
algebraic degrees in Table 3 for (X,∆) = (0x6, 0x13) up to 7 rounds. According
to Propositions 2 and 3, the degree upper bounds in Table 3 for 8 rounds is also
verified.

Therefore, if we choose 246 plaintexts in any 46-dimensional affine space
defined by values in Equation 5, the summation of all ciphertexts will be zero
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Table 3: Upper bounds on the algebraic degree of the DSF of the Ascon per-
mutation with (X,∆) in Equation (5). We experimentally verified all algebraic
degrees up to 7 rounds.

Round r
Upper bounds on the algebraic degree

Sr[0] Sr[1] Sr[2] Sr[3] Sr[4]

4 3 3 2 2 3
5 6 5 5 6 6
6 11 11 12 12 11
7 23 24 23 23 22
8 47 47 45 46 47

with probability of 1. Given a random permutation, the probability that the
summation of such 246 ciphertexts will be zero is only 2−64. Thus, 246 chosen
plaintexts are enough to distinguish the 8-round Ascon permutation from a
random permutation.

4.3 Zero-Sum Distinguishers for Full Ascon Permutation

The zero-sum distinguisher was first proposed to study the non-ideal property
of the Keccak-f permutation [AM09,BC10,YLW+19], which was also used to
distinguish the (12-round) Ascon permutation by its designers [DEMS15]. It
studies the following question. Given a permutation P : Fn

2 → Fn
2 , can we create

a set of inputs, I, such that
⊕

x∈I x =
⊕

x∈I P (x) = 0? Currently, the best
result of the zero-sum distinguisher for the 12-round Ascon permutation costs
2130 calls [DEMS21]. In this subsection, we show how to use our HD distinguisher
to build a zero-sum distinguisher for a 12-round Ascon permutation with only
255 calls.

Note that the idea of the degree matrix transition method introduced in
Section 4.1 is also applicable to the inverse operations of the Ascon permutation.
The basic process is very similar to that stated in Section 4.2, so we provide the
details in Section C of Supplementary Material. Here we only give the results,
which have been abstracted into Table 46.

According to Tables 3 and 4, we choose 55 positions from {0, 1, . . . , 63},
traverse the variables, and keep the remaining 64−55 = 9 positions as constants
for the state after pC of the fifth round of the 12-round Ascon permutation.
The corresponding plaintext and ciphertext sets are zero-sum. Thus we obtain a
zero-sum distinguisher for a 12-round Ascon permutation, with a complexity of
255. Similarly, with 8 forward rounds and 3 backward rounds, we can construct
a zero-sum distinguisher for 11 rounds with 248 complexity; with 7 forward
rounds and 3 backward rounds, we can construct a zero-sum distinguisher for 10
6 Recalling Section 4.2, we ignore the first pC for the forward direction. Here we include

this pC in the backward direction.
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Table 4: Upper bounds on the algebraic degree of the DSF of the inverse As-
con permutation with (X,∆) ∈ {(0xf, 0x18), (0x17, 0x18)}. We experimentally
verified the upper bounds on degrees up to 3 inverse rounds.

Round r
Upper bounds on the algebraic degree

S[0] S[1] S[2] S[3] S[4]

1 2 1 2 0 2
2 4 6 6 6 6
3 18 16 18 18 18
4 54 54 54 54 54

rounds with 225 complexity; We experimentally verified the 10-round zero-sum
distinguisher.
The impact of the zero-sum distinguisher. In [DEMS15], the designers
gave a zero-sum distinguisher for 12 rounds with complexity 2130 and noted:
“The non-ideal properties of the permutation do not seem to affect the security
of Ascon. In particular, the complexity of 2130 is above the cipher’s claimed
security level.” Yet, we show that our 12-round distinguisher requires a much
lower complexity than the cipher’s claimed security level (2128).

However, although these zero-sum distinguishers require low complexities,
their actual impact on the security of the Ascon AEAD and Hash are very
likely non-existent or at best not clear. As discussed in [WGR18,GPT21,Kec], the
advantage of the zero-sum distinguisher for Ascon permutation and a perfect
permutation is very small, usually falling under a factor of 2 (our zero-sum
approach follows the same philosophy).

Yet, zero-sum distinguishers still represent some non-ideal property of the
target permutation. We can mention that the Keccak team decided to increase
the number of rounds of Keccak-f (e.g., for Keccak-f [1600] from 18 to 24
rounds) in round 2 of the SHA-3 competition, even though they judged as very
unlikely that the zero-sum distinguishers on the full Keccak-f permutation
can result in actual attacks against the global Keccak scheme. It is also worth
mentioning that in [BDP+18], the Keccak team presented the fast hash scheme
KangarooTwelve that is based on the 12-round Keccak-f [1600].
Comparison with the zero-sum distinguisher in [DEMS15]. The zero-
sum distinguisher in [DEMS15] that needs 2130 calls can be further adapted
into a zero-sum partition distinguisher of the full Ascon permutation. That
is, by enumerating the constant bits in the middle, we can divide the whole
input-output space into 2320−130 subspaces, and the plaintexts/ciphertexts in
each subspace present a zero-sum distinguisher. Differently, our zero-sum distin-
guisher chose a specific initial structure of size 264 in the middle, which means
it cannot be adapted into a zero-sum partition distinguisher. The strength of a
zero-sum partition distinguisher is that it has a larger advantage from the generic
attack when compared to simple zero-sum distinguishers. However, a noticeable
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disadvantage is that building or verifying such a zero-sum partition requires an
extremely huge computational cost (2n calls for an n-bit cryptographic primi-
tive) which is actually impossible to perform [GPT21]. Besides, the cost of the
best zero-sum partition generic algorithm remains only conjectured. We believe
that our distinguishers provide some new insights into the structural properties
of the Ascon permutation.
4.4 HDL Distinguisher for Ascon Initialization and Encryption
Algorithm 1 can be easily adapted to detect HDL distinguishers for the initializa-
tion of Ascon. When targeting the initialization, we are only allowed to access
the fourth and fifth words of the state and observe the first word of the output.
The first word of input is filled with real IV values according to the Ascon
specification, the second and third words are represented by 128 free variables
for the 128-bit keys. The first pC should also be included in the computation.
This means that X is limited to {0, 1, 2, 3} while ∆ is limited to {1, 2, 3} in
Algorithm 1, for the bottom two bits of each Sbox.

In this part, we focus on the 2nd order HDL. In other words, in line 4 of
Algorithm 1, we do not fill all 64 positions, instead, we only choose 2 different
positions (i0, i1) to impose differences and let the other positions be filled with
free variables. We found many different index pairs (i0, i1) and (X̄, ∆̄) that
make the algebraic degrees of some bits after 3.5-round initialization to only
1. For example, when (i0, i1) = (0, 60) and (X̄, ∆̄) = (0, 3), deg(S3.5[50]) ≤
1. Thus, we obtain a deterministic 2nd order HDL approximation for 4-round
Ascon. One sample is enough to distinguish 4-round Ascon initialization from a
random permutation (the Ascon initialization will never be judged as a random
permutation). One sample contains 4 texts, so the data and time complexity is
4.

We would like to mention that one can also adapt Algorithm 1 to check the
encryption phase of Ascon where we can access the first word of the input (the
other four words are filled with free variables) and observe the first word of the
output. For 4 rounds of encryption, when we impose differences into positions
of (0, 22) and (X̄, ∆̄) = (0x0, 0x10), the degree of S3.5[0][22] is 1. All the HD
or HDL distinguishers obtained in this section have been listed in Table 2 in
Section 1.
Relationship with the previous structural algebraic distinguishers. In
this section, we provided a systematic method to construct an algebraic dis-
tinguisher based on analyzing the DSF. Since the DSF is parameterized by
the input values and differences, a proper choice of (X,∆) can reduce the
degree of the output bits. Before our work, some similar ideas were proposed
to analyze the permutation-based primitives. Usually, by analyzing the alge-
braic properties of the round functions, an “initial structure” is set as the
input values of the target permutation. With this initial structure, the alge-
braic degree would increase more slowly since some intermediate variables will
become linear or quadratic. An example of these attacks is the conditional
cube attack [LDW17,CHK22,CKT+22,BCP22], where the influences of the se-
cret keys on the algebraic degrees are captured to perform key recovery attacks.
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Such a technique is also called the linearization technique in some papers such
as [BLNS21]. In terms of the DSF, a good (X,∆) will also reduce the degrees
of intermediate variables (in our case, the degree of f0 is reduced), thus our
method searches for a good initial structure and implicitly uses the lineariza-
tion technique to slow the degree increase. However, previous methods usually
require careful manual analyses of the round functions, which are sometimes te-
dious, or even impossible for complicated cases. Instead, our method is universal
and can consistently analyze their algebraic properties by the DSF. The DSF is
an explicit formula of an output HD/HDL, i.e., a Boolean function of both the
input difference (∆) and input value (X), which gives us a unified viewpoint for
algebraic attacks on cryptographic primitives.

5 Probabilistic HDL Cryptanalysis Based on HATF
In Section 4, we exhibited a method for deterministic HD/HDL distinguishers.
In this section, we give a strategy to measure the bias of an probabilistic HDL
approximation, which is the first time we have a theoretical and systematic
method to handle it. In [LLL21], Liu et al. invented a method called algebraic
transitional form (ATF) to handle the probabilistic DL approximation. Thanks
to the new insights into the HD/HDL cryptanalysis we introduced in Section 3,
we can extend the ATF technique to a higher-order case, which is named as the
higher-order algebraic transitional form (HATF).

5.1 Algebraic Transitional Form

In this subsection, we briefly recall the basic ideas of the ATF including how
to construct the ATF of an output bit of a cipher and how to estimate the DL
bias from the ATF. We remind that since our HATF technique is a general form
of the ATF, readers are safe not to understand all details of the ATF in this
subsection. Indeed, when the order ℓ = 1, the HATF is just the same as the
ATF.
Basic idea of algebraic transitional forms. Equation (3) tells us that if we
can (a) calculate out the ANF of Dxf∆, (b) evaluate the bias of Dxf∆, then we
can directly know the bias of the output difference. Unfortunately, both tasks
are computationally infeasible for modern cryptographic primitives. To overcome
these two obstacles, Liu et al. introduced the ATF as a transitional expression
of the exact ANF of f∆, for which it is easier to compute the bias. The ATF of a
Boolean function f is denoted by A(f). From A(f∆), we hope to obtain a simple
transitional expression of Dxf∆, say DxA(f∆). Finally, the bias of DxA(f∆) will
be regarded as an estimation of the real bias.
Construction of algebraic transitional forms. The core of the ATF tech-
nique is to substitute some parts of a Boolean function with new variables to
simplify its form. Since almost all symmetric-key primitives are iterated designs,
each of their output bits can be represented as a composite Boolean function
such as

f = fr−1 ◦ fr−2 ◦ · · · ◦ f0,
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where f i : Fn
2 → Fn

2 for 0 ≤ i < r − 1 and fr−1 : Fn
2 → F2. Since we want to

construct a transitional expression for Dxf∆, we need to be careful not to bury
the variable x during the substitution operations. Therefore, we only substitute
the expressions in f which are independent of x. Following this principle, we
introduce the transitional variables αi, βi ∈ Fn

2 for F i = f i ◦ · · · ◦ f0(X ⊕ x∆)
for 0 ≤ i < r. For the j-th bit of the output of F i, which can be written as
F i[j] = (F i[j])′′x+ (F i[j])′, we let{

αi[j]
s
=Q (F i[j])′′

βi[j]
s
=Q (F i[j])′

, 0 ≤ j < n

where “ s
=Q” means that we substitute (F i[j])′′ and (F i[j])′ with new variables

αi[j] and βi[j], respectively, and store the key-value pairs {αi[j] : (F i[j])′′} and
{βi[j] : (F i[j])′} into a substitution dictionary Q, for all j. Since the goal of
the substitution is to simplify the ANF of f , we apply it only when (F i[j])′′ or
(F i[j])′ contains at least two different variables (no need to enforce substitutions
if the expressions are simple enough).

After the substitution, the ANF of each coordinate of F i is simplified to
F i[j] = αi[j]x ⊕ βi[j]. For readability, we ignore their indexes and write them
as F i = αix⊕βi, for all 0 ≤ j < n, and this is called the ATF of F i, denoted by
A(F i). From A(F i), we calculate A(F i+1) similarly. Finally, A(f) can be com-
puted from A(F r−2) as f = fr−1(αr−2x⊕βr−2). The algorithm for constructing
A(f∆) is given in [LLL21, Algorithm 1].
Evaluating the bias of A(f∆). Since we have obtained A(f∆), we can calculate
DxA(f∆) (we can do this because we do substitutions for expressions indepen-
dent of x) as an transitional expression of Dxf∆. In [LLL21], the bias of Dxf∆
is estimated from DxA(f∆). Suppose DxA(f∆) = pn ⊕ pl where pl is the XOR
of linearly isolated monomials of DxA(f∆) and pn is the remaining part. The
bias of pn, denoted by Bias(pn), is calculated directly from the definition of the
bias by counting the number of inputs leading to a zero output although there
may be transitional variables in pn. If pl contains any transitional variables, we
expand it with the corresponding expressions in Q. We repeat the estimation
for this new expression until there are no transitional variables in the linearly
isolated part. The biases obtained along the way are used with the piling-up
lemma to calculate the bias of DxA(f∆). The algorithm for computing this bias
is given in [LLL21, Algorithm 2]. Since part of our work directly utilizes this
method to estimate the bias of the HDL approximation, to make this paper self-
contained we borrow this algorithm and present it in Algorithm 4 in Section A
of Supplementary Material.
Precision of the ATF. The ATF technique has achieved better performances
for Ascon, Serpent and Grain v1 than previous methods. However, the ATF
technique is actually a heuristic technique that relies on some assumptions such
as the independence of transitional variables. The validity of these assumptions
will need time to be tested on more primitives. To alleviate the worries about
the precision of the ATF, Liu et al. have performed experiments to verify the
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biases they obtained, up to computational feasibility. Our HATF technique is a
generalization of the ATF to the higher-order case, so it suffers similar problems
of precision. Thus we also need to provide experimental verifications for our
theoretical results as long as it is possible.

5.2 Higher-Order ATF Technique
According to Definition 1, to evaluate the bias of a HDL approximation of a
Boolean function f , we need to evaluate the bias of the coefficient of the max-
term of its DSF. Recall that the ATF technique [LLL21] gives a transitional
expression of Coe (f∆, x) for the 1st order DL. We can adapt the ATF technique
to the ℓ-th order situation, i.e., we try to construct a transitional expression for
Coe (DSFf,X,∆(x), π(x)). After that, we can estimate the bias of the transitional
expression using Algorithm 4.
Constructing the HATF of a composite Boolean function. Consider a
composite Boolean function f : Fn

2 → F2 represented as

f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, f i : Fn
2 → Fn

2 , 0 ≤ i < r − 1, fr−1 : Fn
2 → F2.

Since we need a transitional expression of Coe (f, π(x)), we need to retain the
variables in x. Therefore, we introduce 2ℓ transitional variables, i.e., αi =

(αi
0, α

i
1, . . . , α

i
2l−1) ∈ (Fn

2 )
2ℓ , to substitute all the coefficients of monomials πu(x) =∏

0≤i<l x
u[i]
i for u ∈ Fℓ

2 in F i = f i ◦ f i−1 ◦ · · · ◦ f0(x) as follows:
The ANF of the j-th bit of the output of F i can be written as

F i[j] =
⊕
u∈Fl

2

Coe
(
F i[j], πu(x)

)
πu(x),

We use the transitional variable aiu to substitute the coefficient of the monomial
πu(x) as follows,

αi
u[j]

s
=Q Coe

(
F i[j], πu(x)

)
, 1 ≤ j ≤ n

Again, “ s
=Q” means we use a new variable to substitute an expression, and store

the key-value pair into a dictionary Q. After that, the HATF of F i[j] is

F i[j] =
⊕
u∈Fl

2

αi
u[j] πu(x).

Similarly to the ATF, we do the variable substitution only when the number
of variables in Coe

(
F i[j], πu(x)

)
is at least 2 (when Coe

(
F i[j], πu(x)

)
contains

only one variable, it is simple enough and there is no need to introduce new
transitional variables to simplify it). For readability, we ignore their indexes and
write them as F i =

⊕
u∈Fl

2
αi
uπu(x), for all 0 ≤ j < n, and this is called the

higher-order ATF (HATF) of F i. We also denote the HATF of f by A(f) since
the ATF [LLL21] is only a special case of the HATF when ℓ = 1. From A(F i),
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Algorithm 2 Higher-Order Algebraic Transitional From (HATF)
Input: An ℓ-variable composite Boolean function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0

Output: Expression of A(f) and the variable-substitution dictionary Q
1: Initialize the variable-substitution dictionary Q = ∅
2: Compute Y 1 = f0(x) according to the ANF of f0

3: for i from 1 to r − 1 do
4: αi−1

u
s
=Q Coe

(
Y i, πu(x)

)
, for u ∈ Fl

2 ▷ Substitution and add the key-value pair
{αi−1

u : Coe
(
Y i, πu(x)

)
} into Q

5: Compute the HATF of the next round, Y i+1 = f i
(⊕

u∈Fn2
αi−1
u πu(x)

)
6: return A(f) = Y r, Q

we calculate A(F i+1) similarly. Finally, A(f) can be computed from A(F r−2)
as

f = fr−1

⊕
u∈Fl

2

αr−2
u πu(x)

 .

The process of evaluating A(f) is illustrated in Algorithm 2, which can be seen
as a generalized version of [LLL21, Algorithm 1] to the case of higher-order.

In HDL cryptanalysis, we apply Algorithm 2 to DSFf,X,∆ to get A(f(X ⊕
x∆)). After that, we compute DxA(f(X ⊕x∆)) as a transitional expression of
the HDL expression of f with respect to ∆. The bias of DxA(f(X ⊕ x∆)) is
evaluated by Algorithm 4 which is the same as the ATF technique.

5.3 Application to 5-Round Ascon Initialization
The first of our applications of the HATF is to the 5-round initialization of
Ascon. The DL attack based on the ATF technique costs 226 data and time
complexities [LLL21]. In this subsection, we show that the HAFT technique can
recover the keys 8 times faster than the DL attack.

To apply Algorithm 2, we need to decompose the 5-round Ascon initializa-
tion into several small parts. In theory, the more functions are contained in each
decomposition part, the higher will be the precision gain. However, this also
means heavier or even infeasible computations since the number of transitional
variables would increase sharply. In this paper, we take the same method to cut
the Ascon functions as the ATF [LLL21].

We divide the Sbox of Ascon into two parts, pSL
and pSN

, as done in [LLL21].
The first part of the Sbox, pSL

, is a linear operation

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

where (x0, x1, x2, x3, x4) is the input of pSL
. The round function of the Ascon

permutation is then divided into two parts, pA = pSL
◦ pPC

and pB = pL ◦ pSN
.

In Algorithm 2, we let f0 = pA, and f i = pA ◦ pB for 1 ≤ i < r − 1, and
fr−1 = pSN

. Thus r-round Ascon (note that we ignore the last diffusion layer)
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Algorithm 3 Evaluate the Bias of Conditional HDL Approximations for A
Boolean Function
Input: An ℓ-variable composite Boolean function f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, a round

r0 before which we impose conditions
Output: Expression of A(f), the variable-substitution dictionary Q and a set condi-

tions QI

1: Initialize the variable-substitution dictionary Q = ∅
2: Compute Y 1 = f0(x) according to the ANF of f0

3: for i from 1 to r − 1 do
4: if i ≤ r0 then
5: for u ∈ Fl

2 do ▷ For coefficient of any πu(x), u ̸= 0
6: if Coe

(
Y i, πu(x)

)
/∈ {0, 1} then

7: Add Coe
(
Y i, πu(x)

)
to I

8: Y i = Y i mod I
9: αi−1

u
s
=Q Coe

(
Y i, πu(x)

)
, for u ∈ Fl

2 ▷ Substitution and add the key-value pair
{αi−1

u : Coe
(
Y i−1, πu(x)

)
} into Q

10: Compute the HATF of the next round, Y i+1 = f i
(⊕

u∈Fn2
αi−1
u πu(x)

)
11: Dealing with I and obtain a set of expressions in input bits, denoted by QI

12: return A(f) = Y i+1, Q,QI

is represented as

pSN
◦ (pA ◦ pB)r−2 ◦ pA = fr−1 ◦ fr−1 ◦ fr−2 ◦ · · · ◦ f1 ◦ f0

The 128-bit key and 128-bit nonce are set to 256 binary variables, the IV is set
to the constant specified in [DEMS21].

To improve the bias of the HDL approximation, we could impose some con-
ditions I to the first r0 rounds. The basic principle is to delay the appearance
of the maxterm π(x) in the DSF or reduce the degree of Coe (DSFf,X,∆, π(x)).
Thus, in each computation of the ANFs or ATFs in the first r0 rounds we will
extract the coefficients of Coe (DSFf,X,∆, πu(x)) , u ≻ 0 (when the coefficients
are not constants) and put them into a set I as ideal generators. Next, we reduce
the polynomials over the ideal generated from I, denoted by “mod I”. With the
conditions in I, we obtain a set of expressions QI by substituting the transitional
variables with the original expressions with the help of the dictionary Q. After
that, a system of equations S = {f = 0|f ∈ QI} is derived7, i.e., we will get a
HDL distinguisher with a specific bias ε when the equations in S are satisfied.
A similar technique has also been used in [LLL21]. The procedure is illustrated
in Algorithm 3.
Conditional 2nd order HDL distinguishers. Considering the efficiency, we
only search for 2nd order input differences like ∆ = (∆0,∆1) and unit output
mask λ in this section. The previous DL attacks [DEMS15,LLL21] have shown
that when the input difference is active simultaneously in both the third and
7 A more detailed discussion of how to handle these conditions can be found in Sec-

tion D of Supplementary Material.
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fourth words, the bias of the output difference tends to be higher. Therefore, we
restrict ∆0 and ∆1 to be active in the third and fourth words of different Sboxes.

With an exhaustive search using Algorithm 3 with r0 = 2 (we choose r0 = 2
for a balance of the high bias and simple conditions) for all the possible positions
(i0, i1) for input and positions for output bits, there are many combinations of
the input difference and output mask (∆0,∆1, λ) leading to high biases. When
i0 = 0, we found four combinations whose biases are 2−2:

1. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][7], S0[4][7]) and λ is
active in S4.5[0][25];

2. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][14], S0[4][14]) and λ
is active in S4.5[0][51];

3. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][51], S0[4][51]) and λ
is active in S4.5[0][18];

4. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][57], S0[4][57]) and λ
is active in S4.5[0][18];

We used 226 random data to test each of these biases and the experimental re-
sults are respectively 2−2.0, 2−2.0, 2−2.0 and 2−2.0, which shows the effectiveness
and precision of the HATF technique. The concrete conditions and experimen-
tal verifications are provided in Section E of Supplementary Material and Ta-
bles 6,7,8, and 9. The verification algorithms are also provided in our anonymous
git repository.
Recovering key bits from the conditions. We take the first case above as
an example to describe our key-recovery attack on 5-round Ascon AEAD. From
Algorithm 3 and our experiments, the bias is 2−2.0 when 18 conditions in QI are
satisfied. Since some conditions are related to secret key bits, we could observe
the bias of the HDL distinguisher to guess some key bits. These conditions
can be categorized into three types as introduced in [LM12] (for simplicity, we
use u0, . . . , u127 to represent the 128 bits of nonce S0[3][0], . . . , S0[4][63] and
k0, . . . , k127 to represent the 128 bits of key S0[1][0], . . . , S0[2][63]):

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u7 = u71.
– 12 Type-1 conditions involving bits of nonce and key. We performed some

measurements for all 212 cases of the 12 conditions with 222 samples each,
and found that 9 conditions seem to be largely redundant: whether they
hold or not does not affect the bias significantly. To optimize the data and
time complexity, we remove these conditions and retain only the three most
significant ones.

u16 = u19 ⊕ u49 ⊕ u80 ⊕ u83k19 ⊕ u83 ⊕ u90k26 ⊕ u113k49 ⊕ u113 ⊕ k9 ⊕ k16

⊕ k19 ⊕ k49 ⊕ k73 ⊕ k80 ⊕ k90

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u74 = u10k10 ⊕ u10k74 ⊕ u10 ⊕ u32k32 ⊕ u32k96 ⊕ u32 ⊕ u96 ⊕ k10k74 ⊕ k10

⊕ k32k96 ⊕ k32 ⊕ k74 ⊕ k96
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– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k7 = 0, k71 =
0.

Considering the removal of the 9 conditions, the overall bias changes a bit. By
experimenting with 226 data, we observe that when all 9 above conditions are
satisfied the bias would be 2−3.19. When at least one does not hold, the bias is
at most 2−4.47.

The 2 Type-0 conditions can be satisfied for free. However, we cannot control
the type-2 conditions. To continue, let’s first assume the Type-2 conditions have
been satisfied, we then only need to distinguish the right case where all these 3
Type-1 conditions are satisfied from the other 7 wrong cases when (u16, u67, u74)
varies over all possible values.

To distinguish the right case from the wrong cases, we perform a statistical
test. Suppose we encrypt N samples, the frequency of the parity bit being 0,
denoted by T , obeys the binary distribution B(N, 1

2 + ε), where ε is the bias
of the parity. According to the law of large numbers, T obeys approximately a
normal distribution

T ∼ N
(
N(

1

2
+ ε), N(

1

4
− ε2)

)
(6)

Since the right and wrong cases lead to different biases, T of the right and
wrong cases follow different normal distributions. Distinguishing the right case
from wrong cases is related to distinguishing two different normal distributions.
This question has actually been studied extensively in linear-like attacks. We
adapt it for the DL or HDL cases, finally, 29.94 samples are enough to identify
the right case. The theory and concrete calculation are provided in Section J of
Supplementary Material.

Recover more key bits. Once we find the right case, we can know more infor-
mation from the conditions by flipping some nonce bits. We take an example to
demonstrate how to get these equations. Note that in the first Type-1 condition,
the coefficient of u83 is k19⊕ 1. Then, if know a set of nonce values that already
satisfies all Type-1 conditions, we can flip u83 to see whether the conditions are
still satisfied by the aforementioned statistical testing. If the conditions still hold,
we know k19⊕1 = 0 since the flipping of u83 does not change anything, otherwise
k19 ⊕ 1 = 1. With this strategy, we can get several key equations, that is, k19 =
c0, k26 = c1, k49 = c2, k3⊕k67 = c3, k25⊕k89 = c4, k10⊕k74 = c5, k32⊕k96 = c6,
after knowing these key values, the value of the following three key equations
are naturally known: k9 ⊕ k16 ⊕ k19 ⊕ k49 ⊕ k73 ⊕ k80 ⊕ k90 = c7, k3k67 ⊕ k3 ⊕
k25k89 ⊕ k25 ⊕ k67 ⊕ k89 = c8, k10k74 ⊕ k10 ⊕ k32k96 ⊕ k32 ⊕ k74 ⊕ k96 = c9. Note
that the two quadratic equations above can be easily linearized, e.g., since we
already know k25 ⊕ k89 = c5, k25k89 = k25(c5 ⊕ k89). As a result, we can recover
10 key bits from Type-1 conditions and 4 from Type-2 conditions, respectively.
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Until now our cryptanalysis assumes that the four Type-2 conditions have
been satisfied. Practically, due to the rotation-variance property8 of the Ascon
state, we actually have 64 opportunities to find the satisfied Type-2 conditions.
To calculate the number of key bits that might be recovered, we randomly gen-
erate 220 keys and find on average 4 opportunities with the Type-2 conditions
holding. However, due to some overlap of different positions, the average key bits
we can recover from Type-2 conditions are expected as 8 when we try 64 posi-
tions. Thus, the expectation is that we can gain 10×4(Type-1)+8(Type-2) = 48
equations of key bits if we only use the first HDL approximation.

The example we exhibited above requires 23 times of statistical test to identify
the right case, each statistical needs encrypting 29.94 samples. After identifying
out the right case, we flip 7 nonce bits to recover the 10-bit key information.
Thus the above example costs 4(each sample contains 4 texts)×(64(positions)×
(23+9.94 + 4(opportunities)× 7(flips)× 29.94) = 221.0 encryptions.

Note that we have another 3 HDL approximations with bias equal to 2−2.
Similar analyses for the remaining 3 cases are provided in Section F of Sup-
plementary Material. Together with a strategy to utilize all Type-1 conditions
that is provided in Section F.4 of Supplementary Material, we can gain more
equations about the key bits without increasing the complexities. Finally, we
can gain significantly more than 105 linearly independent equations of key bits.
Thus, 4×221 data and encryptions are enough to recover all 128 key bits, which
is 8 times faster than the DL attack [LLL21].
HDL cryptanalysis of the 6-round Ascon initialization. With the HATF,
we detected two HDL approximations with bias equal to −2−30 and two −2−37

for 6-round Ascon. In [LLL21], Liu et al. remarked that they made a lot of efforts
but could not find any DL approximation with bias larger than 2−64, which
demonstrate well the advantage of the HDL cryptanalysis. Based on these four
HDL approximations, we can mount a key-recovery attack on 6-round Ascon
and we provide the details of this attack in Section G of Supplementary Material.
Conditional HD approximation of 130-round Grain v1. In [LLL21], Liu
et al. found a 125-round conditional differential with bias 2−20.77 (experimentally
2−17.4) on Grain v1. To further compare the effects of differential and HD, we
used HATF and detected a conditional HD with bias equal to 2−30.18 for 130-
round Grain v1, which is five rounds longer than the conditional differential
counterpart. More details are presented in Section H of Supplementary Material.

6 Conclusion

In this paper, we revisited the HD/HDL cryptanalysis from an algebraic per-
spective: the HD/HDL approximation is equivalent to that of the superpoly of
the maxterm in the DSF. Our work provides better insights on the HD and
HDL cryptanalysis, which makes this attack proposed at 2015 much easier to
8 Strictly speaking, Ascon is not rotation-variant because of the IV and pC , how-

ever, our experiments showed that the IV and pC have little influence to the HDL
properties in our cases.
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use now. By analyzing the DSF, we provided three methods to detect possible
HD/HDL distinguishers. The first one is to estimate an upper bound on the
algebraic degree of the DSF. Since the DSF is parameterized by the input value
and difference, we can choose some specific values to simplify it and obtain useful
HDL distinguishers more easily. The second method is called HATF by which
we construct a transitional expression of the DSF and then use it to estimate the
bias of the HDL approximation. The third method is based on the cube tester to
experimentally obtain some useful practical HDL distinguishers. By these new
methods, we greatly improved the best distinguishing attacks on the Ascon
permutation and key-recovery attacks on 5 rounds of the Ascon initialization.
We also obtained better approximations for some other high-profile primitives
such as Grain v1, Xoodoo and ChaCha. We believe that the HDL cryptanal-
ysis has more potential than expected, and deserves more attention from the
cryptographic community.
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ments that improved the quality of this article.
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A Algorithm for Evaluating the Bias of an ATF

Algorithm 4 Estimation of the Differential-Linear Bias [LLL21]
Input: The ATF A(f) of a Boolean function f , and the substitution dictionary Q
Output: A bias ε
1: Calculate e = DxA(f), set ε = 1

2

2: while e ̸= 0 do
3: Selected the isolated variables in e, and sum them to el
4: Compute the bias of e⋆ = e− el by ε⋆ = Bias(e⋆), and calculate ε = 2 · ε⋆ · ε
5: Substitute the expressions Q into el, and update e with this new polynomial

▷ For some complicated case such as Grain v1, we will substitute only
one monomial in el every time. Then, the final bias of el will be estimated by the
piling lemma with bias of all monomials in el

6: return ε
7: procedure Bias (f)
8: (f1, f2, . . . , fm−1)← Separate(f)
9: ε← 1

2

10: for i from 1 to m do
11: if the number of variables in the expression of fi is small then
12: Compute the bias εi of fi according to its Hamming weight
13: else
14: Select a variable v minimizing the maximum cardinality of the variable

sets of the polynomial in Separate(fi|v=0) and Separate(fi|v=1)
15: Compute the bias of fi by εi =

1
2
Bias(fi|v=0) +

1
2
Bias(fi|v=1)

16: ε← 2 · ε · εi
17: if ε = 0 then
18: break
19: return ε
20: procedure Separate(f)
21: Separate the Boolean polynomial f as a sum of m polynomials fi whose variable

sets are mutually disjoint, and sort f1, f2, . . . , fm in ascending order according to
the number of terms in their ANFs

22: return (f1, f1, . . . , fm)

B Brief Specification of ASCON

Ascon, designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family of
AEAD and hash algorithms. At a high level, the Ascon AEAD takes as input
a nonce N , a secret key K, an associated data A and a plaintext or message M ,
and produces a ciphertext C and a tag T . The authenticity of the associated
data and message can be verified against the tag T . Table 5 lists the variants of
Ascon AEAD along with the recommended parameter sets.
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Table 5: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6
Ascon-128a 320 128 128 128 128 12 8

Ascon adopts a MonkeyDuplex mode with a stronger keyed initialization
and keyed finalization phases as illustrated in Figure 2. The underlying permu-
tations pa and pb are iterative designs, whose round function p is based on the
substitution permutation network design paradigm and consists of three simple
steps pC , pS , and pL. We now describe the round function p and each step in
detail.

The round function p = pL ◦ pS ◦ pC operates on a 320-bit state arranged
into five 64-bit words. The input state to the round function at r-th round is
denoted by Sr = Sr[0]∥Sr[1]∥Sr[2]∥Sr[3]∥Sr[4], the j-th bit of Sr[i] is denoted
by Sr[i][j] where 0 ≤ i < 5, 0 ≤ j < 64. We use Sr.5 to represent the state after
pS of the r-th round, r ≥ 0.

IV‖K0‖K1‖N0‖N1
320

pa

⊕

0∗‖K

c
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pb
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K

k
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Initialization Associated Data Plaintext Finalization

Fig. 2: The encryption algorithm of Ascon

Addition of constants (pC). An 8-bit constant is XORed to the bit positions
56, · · · , 63 of the 64-bit word Sr[2] at each round.
Substitution layer (pS). Update each slice of the 320-bit state by applying the
5-bit Sbox S : F5

2 → F5
2 defined by the following algebraic normal forms:



y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(7)
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The ANF of the inverse of the Sbox is as follows,

y0 = x4x3x2 + x4x3x1 + x4x3x0 + x3x2x0 + x3x2 + x3 + x2 + x1x0 + x1 + 1

y1 = x4x2x0 + x4 + x3x2 + x2x0 + x1 + x0

y2 = x4x3x1 + x4x3 + x4x2x1 + x4x2x0 + x4x2 + x4 + x3x2 + x3x1x0

+x3x1 + x2x1x0 + x2x1 + x2x0 + x2 + x1 + x0 + 1

y3 = x4x2x1 + x4x2x0 + x4x2 + x4x1 + x4 + x3 + x2x1 + x2x0 + x1

y4 = x4x3x2 + x4x2x1 + x4x2x0 + x4x2 + x3x2x0 + x3x2 + x3 + x2x1 + x2x0 + x1x0

(8)
Linear diffusion layer (pL). Apply a linear transformation Σi to each 64-bit word
Sr.5[i] with 0 ≤ i < 5, where Σi is defined as

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)

y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)

y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)

y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)

y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

(9)

In this paper, when we attack r rounds of the Ascon permutation, we can
operate all 320 input bits S0 and observe all 320 output bits of Sr or Sr.5. When
we attack r rounds of the Ascon initialization, we can operate only S0[3] and
S0[4] and observe Sr[0].

B.1 Proofs for Proposition 2 and 3

C Zero-Sum Distinguishers

We deduce the transitional rules for the inverse operations of the Ascon permu-
tation. Thereby we can give two corollaries of Propositions 2 and 3. According
to the ANFs of the inverse Sbox of Ascon as follows,

y0 = x4x3x2 + x4x3x1 + x4x3x0 + x3x2x0 + x3x2 + x3 + x2 + x1x0 + x1 + 1

y1 = x4x2x0 + x4 + x3x2 + x2x0 + x1 + x0

y2 = x4x3x1 + x4x3 + x4x2x1 + x4x2x0 + x4x2 + x4 + x3x2 + x3x1x0

+x3x1 + x2x1x0 + x2x1 + x2x0 + x2 + x1 + x0 + 1

y3 = x4x2x1 + x4x2x0 + x4x2 + x4x1 + x4 + x3 + x2x1 + x2x0 + x1

y4 = x4x3x2 + x4x2x1 + x4x2x0 + x4x2 + x3x2x0 + x3x2 + x3 + x2x1 + x2x0 + x1x0

(10)
we deduce the following corollary,

Corollary 1 (Degree Matrix Transition over p−1
S ). With the knowledge

of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
S (S)) = (d′i,j , 0 ≤ i <
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5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d3,j + d2,j , d4,j + d3,j + d1,j , d4,j + d3,j + d0,j , d3,j + d2,j + d0,j ,

d3,j + d2,j , d3,j , d2,j , d1,j + d0,j , d1,j , 0)

d′1,j = max(d4,j + d2,j + d0,j , d4,j , d3,j + d2,j , d2,j + d0,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j + d1,j , d4,j + d3,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j ,

d4,j + d2,j , d4,j , d3,j + d2,j , d3,j + d1,j + d0,j , d3,j + d1,j , d2,j + d1,j + d0,j ,

d2,j + d1,j , d2,j + d0,j , d1,j , d0,j , 0)

d′3,j = max(d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j , d4,j + d1,j , d4,j , d3,j ,

d2,j + d1,j , d2,j + d0,j , d1,j)

d′4,j = max(d4,j + d3,j + d2,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j ,

d3,j + d2,j + d0,j , d3,j + d2,j , d3,j , d2,j + d1,j , d2,j + d0,j , d1,j + d0,j)

The ANF of p−1
L is a little complicated, so we introduce a simpler version of

the degree matrix transition for p−1
L .

Corollary 2 (Simplified Degree Matrix Transition over p−1
L ). With the

knowledge of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
L (S)) =

(d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max
0≤k<64

(d′0,k)

d′′1,j = max
0≤k<64

(d′1,k)

d′′2,j = max
0≤k<64

(d′2,k)

d′′3,j = max
0≤k<64

(d′3,k)

d′′4,j = max
0≤k<64

(d′4,k)

, 0 ≤ j < 64

It is easy to verify that Corollary 1 and 2 give an upper bound on the degree of
output bits of p−1

S and p−1
L . Thus, we can replay the calculation of Section 4.2

to the inverse Ascon permutation.
Considering that with (X,∆) in Equation (5), the upper bounds on the

degree of the five words of the output after 8 rounds are (47, 47, 45, 47, 47),
we only test the (X,∆) for the 4-round inverse Ascon permutation. Note that
in the forward direction, we did not include the first pC , thus we add it to
the backward calculation. In other words, the four rounds of inverse Ascon
permutation is

Pb = (pC ◦ p−1
S ◦ p

−1
L )4 ◦ pC .

We first calculate the exact ANFs of the output of p−1
L ◦ pC ◦ p

−1
S ◦ p

−1
L ◦ pC(X ⊕

x∆T ), then apply Corollary 1 and 2 to calculate the degree upper bounds
for 4 rounds of inverse Ascon permutation, i.e., Pb. Finally, with (X,∆) ∈
{(0xf, 0x18), (0x17, 0x18)}, the degree upper bounds are shown in Table 4.
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Thus, we choose 55 positions from {0, 1, . . . , 63}, traverse the variables, and
keep the remaining 64 − 55 = 9 positions as constants for the state after pC of
the fifth round of the 12-round Ascon permutation. The corresponding plaintext
and ciphertext sets are zero-sum. Thus we obtain a zero-sum distinguisher for
12-round Ascon permutation, with complexity of 255. Similarly, with 7 forward
rounds and 3 backward rounds, we can construct a zero-sum distinguisher for 10
rounds with 225 complexity; with 8 forward rounds and 3 backward rounds, we
can construct a zero-sum distinguisher for 11 rounds with 248 complexity. We
experimentally verified the 7-round zero-sum distinguisher.

D Handling the Conditions from An Ideal and Similar
Ideals

In this section, we discuss more about the conditions we extracted from the co-
efficients during the computations of the ATFs. The basic ideas behind imposing
the conditions are to force the coefficients to be zero to delay the appearance of
the maxterm in the ANFs. When we push all related coefficients (excluding con-
stant coefficients) into I, I can be used to calculate the ideal of all the Boolean
functions we are dealing with. Thus, heuristically if we force the polynomials in I
to zero, we expect that all the coefficients can be reduced to zero and meanwhile
all the non-constant monomials will be eliminated. However, since coefficients of
some monomials are possible to be constant 1, we cannot eliminate all monomi-
als.

At the same time, given an ideal generated from I, we can change the gen-
erators in I by adding a constant 1 to certain generators to derive some similar
ideals, which is denoted by S(I) = {p + cp : p ∈ I, cp ∈ F2}. Considering that
the calculations for the ATFs are very complicated, it is possible for the ANFs
to be simplified by any ideal in S(I) and even achieve better performances, i.e.,
sometimes we gain higher bias when we choose a proper ideal from S(I) than
the original I. We exhibit a small example to show this intuition.

Example 2. Given a composite Boolean function z = f1 ◦ f0(x0, x1, x2, x3, x4)
as follows,

z = (y0 ⊕ y1)x0

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

We extract the coefficients of x1 in y0 and y1, i.e., Coe (y0, x1) = x4+x2+x0+1
and Coe (y1, x1) = 1, respectively. Since Coe (y1, x1) is constant 1, Coe (y0, x1) is
the only ideal generator, we push it to I. Then we reduce y0 and y1 by the ideal
of I, we will get

y0 mod I = x3 ⊕ x2 ⊕ x0

y1 mod I = x1 + x2x3 + x2x4 + x3x4 + 1
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Thus, when we set the only generator as zero, i.e., x4 + x2 + x0 + 1 = 0, y0 and
y1 will be reduced actually to

y0|x4=x2+x0+1 = x3 ⊕ x2 ⊕ x0

y1|x4=x2+x0+1 = x0x2 + x0x3 + x1 + x3 + 1

So, Coe (z, x1) = x0. However, if we use its similar ideal, i.e., x4 + x2 + x0, we
will obtain

y0|x4=x2+x0
= x0 ⊕ x1 ⊕ x2 ⊕ x3

y1|x4=x2+x0
= x0x2 ⊕ x0x3 ⊕ x0 ⊕ x1 ⊕ x3

Thus, Coe (z, x1) = 0. The bias of Coe (z, x1) increases.

In our application, it is not easy to test the similar ideals in calculations of
ATFs. However, when we obtain an ideal from the computations, we will test all
possible similar ideals when we experimentally verify the results. This will be
clearer in the next subsection.

E Conditions and Verifications for 5-Round Ascon in
Section 5

In Section 5.3, we provided four highly biased HDL approximations as follows,

1. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][7], S0[4][7]) and λ is
active in S4.5[0][25], the bias is equal to 2−2;

2. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][14], S0[4][14]) and λ
is active in S4.5[0][51], the bias is equal to 2−2;

3. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][51], S0[4][51]) and λ
is active in S4.5[0][18], the bias is equal to 2−2;

4. ∆0 is active in (S0[3][0], S0[4][0]), ∆1 is active in (S0[3][57], S0[4][57]) and λ
is active in S4.5[0][18], the bias is equal to 2−2.

In the remaining part of this section, we provide their conditions and experi-
mental verification results.

E.1 HDL Approximation 1

Conditions. The Type-0, Type-1 and Type-2 conditions for Case 1 are as fol-
lows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u7 = u71

– 12 Type-1 conditions involving bits of nonce and key.

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117

u16 = u19 ⊕ u49 ⊕ u80 ⊕ u83k19 ⊕ u83 ⊕ u90k26 ⊕ u113k49 ⊕ u113 ⊕ k9 ⊕ k16
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⊕ k19 ⊕ k49 ⊕ k73 ⊕ k80 ⊕ k90

u11 = u18 ⊕ u21 ⊕ u51 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51

⊕ u115 ⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u74 = u10k10 ⊕ u10k74 ⊕ u10 ⊕ u32k32 ⊕ u32k96 ⊕ u32 ⊕ u96 ⊕ k10k74 ⊕ k10

⊕ k32k96 ⊕ k32 ⊕ k74 ⊕ k96

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u93 = u26k26 ⊕ u26k90 ⊕ u26 ⊕ u29k29 ⊕ u29k93 ⊕ u29 ⊕ u51k51 ⊕ u51k115

⊕ u51 ⊕ u90 ⊕ u115 ⊕ k26k90 ⊕ k26 ⊕ k29k93 ⊕ k29 ⊕ k51k115 ⊕ k51

⊕ k90 ⊕ k93 ⊕ k115 ⊕ 1

u102 = u35k35 ⊕ u35k99 ⊕ u35 ⊕ u38k38 ⊕ u38k102 ⊕ u38 ⊕ u60k60 ⊕ u60k124

⊕ u60 ⊕ u99 ⊕ u124 ⊕ k35k99 ⊕ k35 ⊕ k38k102 ⊕ k38 ⊕ k60k124 ⊕ k60

⊕ k99 ⊕ k102 ⊕ k124

u58 = u18 ⊕ u25 ⊕ u28 ⊕ u82 ⊕ u89 ⊕ u92k28 ⊕ u92 ⊕ u99k35 ⊕ u122k58

⊕ u122 ⊕ k18 ⊕ k25 ⊕ k28 ⊕ k58 ⊕ k82 ⊕ k89 ⊕ k99 ⊕ 1

u23 = u47 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

u30 = u54 ⊕ u61 ⊕ u94k30 ⊕ u94 ⊕ u118 ⊕ u125 ⊕ k54 ⊕ k61 ⊕ k118 ⊕ k125 ⊕ 1

u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108

⊕ u44 ⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44

⊕ k83 ⊕ k86 ⊕ k108

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k7 = 0, k71 =
0.

Our HATF technique shows that when the above 18 conditions are satisfied,
the bias of the HDL approximation will be 2−2. We use 226 randomly chosen
data to test the bias and find the actual bias is 22.0, which is very precise. What’s
more, we use the HATF to compute the biases of all the 64 output bits. The
theoretical and experimental results are provided in Table 6. From the values in
this table, we can conclude that for most cases, the HDL technique is reliable and
useful to detect the highly biased approximations. However, for the 36th output
bit, the theoretical bias is 2−6 while the experimental bias is smaller than 2−13.
Thus, the theoretical results from the HATF technique are not always reliable,
when it is possible, we should use experiments to verify them.

E.2 HDL Approximation 2
Conditions. The Type-0, Type-1 and Type-2 conditions for Case 1 are as fol-
lows,
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Table 6: Theoretical and experimental biases with input difference ∆0,∆1 which
are active in (S0[3][0], S0[4][0]) and (S0[3][7], S0[4][7]). Note since our experi-
ments are done with 226 samples, only those experimental biases that are sig-
nificantly greater than 2−13 are reliable. Those gray values in this table are
unreliable.

Bit 0 1 2 3 4 5 6 7 8 9
Theory 2−7.0 2−7.0 0 2−6.0 0 2−4.0 0 0 2−6.0 0

Expr. 2−7.0 2−6.4 2−14.1 2−5.0 2−14.1 2−4.0 2−8.9 2−8.0 2−5.0 2−13.2

Bit 10 11 12 13 14 15 16 17 18 19
Theory 2−11.0 2−8.0 0 2−7.0 0 0 2−8.0 2−11.0 2−4.0 2−6.0

Expr. 2−10.0 2−8.0 2−13.8 2−7.0 2−6.4 2−12.9 2−8.0 2−9.0 2−4.0 2−15.2

Bit 20 21 22 23 24 25 26 27 28 29
Theory 0 2−7.0 0 2−7.0 2−7.0 2−2.0 0 2−7.0 2−5.0 0

Expr. 2−13.6 2−5.4 2−7.0 2−5.4 2−6.0 2−2.0 2−13.4 2−5.0 2−4.4 2−13.4

Bit 30 31 32 33 34 35 36 37 38 39
Theory 0 0 2−7.0 2−9.0 2−4.0 0 2−6.0 0 0 0

Expr. 2−14.7 2−14.6 2−7.0 2−8.0 2−3.0 2−7.0 2−14.5 2−14.0 2−13.5 2−13.4

Bit 40 41 42 43 44 45 46 47 48 49
Theory 0 2−6.0 0 2−6.0 2−5.0 0 0 2−4.0 2−8.0 2−8.0

Expr. 2−15.3 2−6.0 2−9.0 2−5.0 2−5.0 2−15.5 2−15.7 2−4.0 2−7.0 2−7.0

Bit 50 51 52 53 54 55 56 57 58 59
Theory 0 2−4.0 0 2−7.0 2−4.0 2−8.0 0 2−4.0 2−4.0 0

Expr. 2−16.2 2−4.0 2−13.9 2−5.4 2−4.0 2−7.7 2−13.9 2−4.0 2−2.4 2−13.9

Bit 60 61 62 63
Theory 0 2−5.0 2−6.0 2−9.0

Expr. 2−6.0 2−4.4 2−6.0 2−9.0
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– 2 Type-0 conditions involving only nonce bits: x0 = x64, x14 = x78

– 12 Type-1 conditions involving bits of nonce and key.

u81 = u17k17 ⊕ u17k81 ⊕ u17 ⊕ u39k39 ⊕ u39k103 ⊕ u39 ⊕ u103 ⊕ k17k81

⊕ k17 ⊕ k39k103 ⊕ k39 ⊕ k81 ⊕ k103

u100 = u33k33 ⊕ u33k97 ⊕ u33 ⊕ u36k36 ⊕ u36k100 ⊕ u36 ⊕ u58k58 ⊕ u58k122

⊕ u97 ⊕ u122 ⊕ k33k97 ⊕ k33 ⊕ k36k100 ⊕ k36 ⊕ k58k122 ⊕ k97 ⊕ k100

⊕ k122 ⊕ 1

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117

u11 = u18 ⊕ u21 ⊕ u51 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51

⊕ u115 ⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u4 = u7 ⊕ u37 ⊕ u61 ⊕ u68 ⊕ u71k7 ⊕ u71 ⊕ u101k37 ⊕ u101 ⊕ u125 ⊕ k4

⊕ k7 ⊕ k37 ⊕ k61 ⊕ k68 ⊕ k125 ⊕ 1

u1 = u25 ⊕ u32 ⊕ u35 ⊕ u65k1 ⊕ u65 ⊕ u89 ⊕ u96 ⊕ u99k35 ⊕ u99 ⊕ u106k42

⊕ k1 ⊕ k25 ⊕ k32 ⊕ k35 ⊕ k89 ⊕ k96 ⊕ k106 ⊕ 1

u47 = u23 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

u16 = u23 ⊕ u26 ⊕ u56 ⊕ u80 ⊕ u87 ⊕ u90k26 ⊕ u90 ⊕ u97k33 ⊕ u120k56

⊕ u120 ⊕ k16 ⊕ k23 ⊕ k26 ⊕ k56 ⊕ k80 ⊕ k87 ⊕ k97 ⊕ 1

u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108

⊕ u44 ⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44

⊕ k83 ⊕ k86 ⊕ k108

u109 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u42k42 ⊕ u42k106 ⊕ u42 ⊕ u45k45 ⊕ u45k109

⊕ u45 ⊕ u67 ⊕ u106 ⊕ k3k67 ⊕ k3 ⊕ k42k106 ⊕ k42 ⊕ k45k109 ⊕ k45

⊕ k67 ⊕ k106 ⊕ k109 ⊕ 1

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k14 = 0, k78 =
0.

Our HATF technique shows that when the above 18 conditions are satisfied,
the bias of the HDL approximation will be 2−2. We use 226 randomly chosen
data to test the bias and find the actual bias is also 22.0. What’s more, we use
the HATF to compute the biases of all the 64 output bits. We also provide
theoretical and experimental results in Table 7.
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Table 7: Theoretical and experimental biases with input difference ∆0,∆1 which
are active in (S0[3][0], S0[4][0]) and (S0[3][14], S0[4][14]). Note since our exper-
iments are done with 226 samples, only those experimental biases that are sig-
nificantly greater than 2−13 are reliable. Those gray values in this table are
unreliable.

Bit 0 1 2 3 4 5 6 7 8 9
Theory 0 2−6.0 0 0 0 2−6.0 0 0 2−6.0 2−5.0

Expr. 2−14.1 2−5.0 2−15.0 2−13.9 2−14.5 2−5.0 2−16.0 2−14.2 2−5.0 2−5.0

Bit 10 11 12 13 14 15 16 17 18 19
Theory 2−8.0 0 2−7.0 0 0 0 0 2−8.0 2−4.0 0

Expr. 2−7.0 2−15.9 2−14.1 2−13.6 2−14.0 2−13.2 2−14.8 2−7.0 2−3.0 2−14.1

Bit 20 21 22 23 24 25 26 27 28 29
Theory 2−8.0 0 2−5.0 0 0 0 0 2−5.0 0 0

Expr. 2−7.0 2−19.7 2−6.0 2−15.0 2−13.4 2−13.0 2−13.3 2−4.0 2−14.7 2−13.9

Bit 30 31 32 33 34 35 36 37 38 39
Theory 0 0 0 0 2−6.0 0 0 0 0 0

Expr. 2−14.3 2−22.8 2−7.0 2−16.0 2−6.0 2−14.3 2−14.6 2−5.0 2−14.0 2−7.0

Bit 40 41 42 43 44 45 46 47 48 49
Theory 0 2−5.0 0 0 0 0 0 0 0 0

Expr. 2−13.8 2−3.8 2−13.9 2−15.0 2−16.0 2−13.0 2−14.8 2−17.2 2−12.7 2−18.2

Bit 50 51 52 53 54 55 56 57 58 59
Theory 2−6.0 2−2.0 0 0 0 0 2−8.0 0 2−7.0 0

Expr. 2−6.0 2−2.0 2−13.4 2−16.3 2−13.8 2−15.2 2−8.4 2−18.3 2−6.4 2−13.9

Bit 60 61 62 63
Theory 0 0 2−7.0 0

Expr. 2−15.1 2−13.4 2−7.0 2−16.5
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E.3 HDL Approximation 3

Conditions. The Type-0, Type-1 and Type-2 conditions for Case 1 are as fol-
lows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u51 = u115

– 12 Type-1 conditions involving bits of nonce and key.

u76 = u12k12 ⊕ u12k76 ⊕ u12 ⊕ u54k54 ⊕ u54k118 ⊕ u54 ⊕ u118 ⊕ k12k76

⊕ k12 ⊕ k54k118 ⊕ k54 ⊕ k76 ⊕ k118 ⊕ 1

u41 = u48 ⊕ u58 ⊕ u105 ⊕ u112 ⊕ u122 ⊕ k41 ⊕ k48 ⊕ k58 ⊕ k105 ⊕ k112

⊕ k122

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u34 = u41 ⊕ u98 ⊕ u105 ⊕ k34 ⊕ k41 ⊕ k98 ⊕ k105♠
u30 = u39 ⊕ u41 ⊕ u48 ⊕ u94k30 ⊕ u103k39 ⊕ u105 ⊕ u112 ⊕ u122k58 ⊕ u122

⊕ k30k94 ⊕ k39k103 ⊕ k39 ⊕ k41 ⊕ k48 ⊕ k58k122 ⊕ k58 ⊕ k94 ⊕ k103

⊕ k105 ⊕ k112 ⊕ 1

u23 = u47 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

u32 = u23 ⊕ u30 ⊕ u34 ⊕ u39 ⊕ u48 ⊕ u51 ⊕ u87k23 ⊕ u94k30 ⊕ u96k32 ⊕ u98

⊕ u103k39 ⊕ u112 ⊕ u115 ⊕ u122k58 ⊕ u122 ⊕ k23k87 ⊕ k23 ⊕ k30k94

⊕ k32k96 ⊕ k32 ⊕ k34 ⊕ k39k103 ⊕ k39 ⊕ k48 ⊕ k58k122 ⊕ k58 ⊕ k87

⊕ k94 ⊕ k96 ⊕ k98 ⊕ k103 ⊕ k112 ⊕ 1♠
u125 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u58k58 ⊕ u58k122 ⊕ u61k61 ⊕ u61k125 ⊕ u61

⊕ u83 ⊕ u122 ⊕ k19k83 ⊕ k19 ⊕ k58k122 ⊕ k61k125 ⊕ k61 ⊕ k83 ⊕ k122

⊕ k125

u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108

⊕ u44 ⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44

⊕ k83 ⊕ k86 ⊕ k108

u11 = u18 ⊕ u21 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115 ⊕ k11 ⊕ k18

⊕ k75 ⊕ k82 ⊕ k92 ⊕ x1

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k51 =
1, k115 = 1.
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Our HATF technique shows that when the above 18 conditions are satisfied,
the bias of the HDL approximation will be 2−2. We use 226 randomly chosen
data to test the bias and find the actual bias is also 22.0. What’s more, when
we use a similar ideal to do the experiments, we find the bias would increase to
2−1, i.e., a deterministic approximation. The similar ideal we choose is to add a
constant 1 to the two Type-1 conditions labeled by ♠.

Additionally, we use the HATF to compute the biases of all the 64 output
bits. We provide theoretical and experimental results in Table 8.

Table 8: Theoretical and experimental biases with input difference ∆0,∆1 which
are active in (S0[3][0], S0[4][0]) and (S0[3][51], S0[4][51]). Note since our exper-
iments are done with 226 samples, only those experimental biases that are sig-
nificantly greater than 2−13 are reliable. Those gray values in this table are
unreliable.

Bit 0 1 2 3 4 5 6 7 8 9
Theory 2−10.0 2−9.0 2−10.0 0 0 2−6.0 2−4.0 2−9.0 2−7.0 2−8.0

Expr. 2−19.8 2−9.6 2−13.9 2−16.6 2−16.1 2−13.0 2−4.7 2−13.6 2−10.9 2−14.8

Bit 10 11 12 13 14 15 16 17 18 19
Theory 0 0 0 0 2−7.0 2−4.0 2−7.0 0 2−2.0 0

Expr. 2−13.7 2−8.4 2−13.6 2−16.5 2−6.4 2−14.0 2−14.1 2−14.1 2−2.0 2−13.9

Bit 20 21 22 23 24 25 26 27 28 29
Theory 0 0 2−8.0 0 0 0 0 2−5.0 0 2−8.0

Expr. 2−15.2 2−15.5 2−14.1 2−15.2 2−7.0 2−15.3 2−14.0 2−14.9 2−16.7 2−12.9

Bit 30 31 32 33 34 35 36 37 38 39
Theory 0 2−5.0 0 0 2−5.0 2−13.0 2−6.0 0 0 2−8.0

Expr. 2−12.6 2−7.0 2−13.4 2−15.6 2−13.9 2−15.5 2−6.0 2−14.7 2−16.2 2−14.2

Bit 40 41 42 43 44 45 46 47 48 49
Theory 2−7.0 2−6.0 0 2−6.0 0 0 2−5.0 2−5.0 2−8.0 2−7.0

Expr. 2−7.0 2−14.2 2−13.4 2−15.3 2−15.5 2−14.0 2−13.2 2−5.0 2−13.8 2−15.2

Bit 50 51 52 53 54 55 56 57 58 59
Theory 0 0 2−8.0 2−5.0 0 2−10.0 2−8.0 2−8.0 0 2−4.0

Expr. 2−18.3 2−13.8 2−17.9 2−14.5 2−12.9 2−14.2 2−14.5 2−13.7 2−13.3 2−17.5

Bit 60 61 62 63
Theory 0 2−9.0 2−7.0 2−7.0

Expr. 2−5.0 2−13.5 2−16.6 2−14.6

E.4 HDL Approximation 4
Conditions. The Type-0, Type-1 and Type-2 conditions for Case 1 are as fol-
lows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u57 = u121
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– 12 Type-1 conditions involving bits of nonce and key.

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117

u23 = u47 ⊕ u54 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ k23 ⊕ k47 ⊕ k54 ⊕ k111

⊕ k118

u51 = u11 ⊕ u18 ⊕ u21 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51

⊕ u115 ⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u42 = u2 ⊕ u12 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u88 = u21k21 ⊕ u21k85 ⊕ u21 ⊕ u24k24 ⊕ u24k88 ⊕ u24 ⊕ u46k46 ⊕ u46k110

⊕ u46 ⊕ u85 ⊕ u110 ⊕ k21k85 ⊕ k21 ⊕ k24k88 ⊕ k24 ⊕ k46k110 ⊕ k46

⊕ k85 ⊕ k88 ⊕ k110 ⊕ 1

u4 = u11 ⊕ u14 ⊕ u21 ⊕ u44 ⊕ u68 ⊕ u75 ⊕ u78k14 ⊕ u78 ⊕ u85k21 ⊕ u85

⊕ u108k44 ⊕ u108 ⊕ k4 ⊕ k11 ⊕ k14 ⊕ k21 ⊕ k44 ⊕ k68 ⊕ k75 ⊕ k85

u16 = u40 ⊕ u47 ⊕ u50 ⊕ u80k16 ⊕ u80 ⊕ u104 ⊕ u111 ⊕ u114k50 ⊕ u114 ⊕ k16

⊕ k40 ⊕ k47 ⊕ k50 ⊕ k104 ⊕ k111 ⊕ 1

u124 = u18k18 ⊕ u18k82 ⊕ u18 ⊕ u60k60 ⊕ u60k124 ⊕ u60 ⊕ u82 ⊕ k18k82 ⊕ k18

⊕ k60k124 ⊕ k60 ⊕ k82 ⊕ k124

u5 = u2 ⊕ u35 ⊕ u59 ⊕ u66 ⊕ u69k5 ⊕ u69 ⊕ u76k12 ⊕ u99k35 ⊕ u99 ⊕ u123

⊕ k2 ⊕ k5 ⊕ k35 ⊕ k59 ⊕ k66 ⊕ k76 ⊕ k123

u79 = u12k12 ⊕ u12k76 ⊕ u12 ⊕ u15k15 ⊕ u15k79 ⊕ u15 ⊕ u37k37 ⊕ u37k101

⊕ u37 ⊕ u76 ⊕ u101 ⊕ k12k76 ⊕ k12 ⊕ k15k79 ⊕ k15 ⊕ k37k101 ⊕ k37

⊕ k76 ⊕ k79 ⊕ k101

u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108

⊕ u44 ⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44

⊕ k83 ⊕ k86 ⊕ k108

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k57 =
0, k121 = 1.

Our HATF technique shows that when the above 18 conditions are satisfied,
the bias of the HDL approximation will be 2−2. We use 226 randomly chosen
data to test the bias and find the actual bias is also 22.0. Additionally, we use the
HATF to compute the biases of all the 64 output bits. We provide theoretical
and experimental results in Table 9.
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Table 9: Theoretical and experimental biases with input difference ∆0,∆1 which
are active in (S0[3][0], S0[4][0]) and (S0[3][57], S0[4][57]). Note since our exper-
iments are done with 226 samples, only those experimental biases that are sig-
nificantly greater than 2−13 are reliable. Those gray values in this table are
unreliable.

Bit 0 1 2 3 4 5 6 7 8 9
Theory 0 2−6.0 0 2−11.0 2−8.0 0 2−7.0 0 0 2−8.0

Expr. 2−8.0 2−5.0 2−13.1 2−10.0 2−8.0 2−18.2 2−7.0 2−6.4 2−18.4 2−8.0

Bit 10 11 12 13 14 15 16 17 18 19
Theory 2−11.0 2−4.0 2−6.0 0 2−7.0 0 2−7.0 2−7.0 2−2.0 0

Expr. 2−9.0 2−4.0 2−17.2 2−13.4 2−5.4 2−7.0 2−5.4 2−6.0 2−2.0 2−13.7

Bit 20 21 22 23 24 25 26 27 28 29
Theory 2−7.0 2−5.0 0 0 0 2−7.0 2−9.0 2−4.0 0 2−6.0

Expr. 2−5.0 2−4.4 2−15.2 2−13.1 2−13.8 2−7.0 2−8.0 2−3.0 2−7.0 2−16.1

Bit 30 31 32 33 34 35 36 37 38 39
Theory 0 0 0 0 2−6.0 0 2−6.0 2−5.0 0 0

Expr. 2−13.2 2−13.3 2−14.4 2−14.2 2−6.0 2−9.1 2−5.0 2−5.0 2−15.1 2−14.6

Bit 40 41 42 43 44 45 46 47 48 49
Theory 2−4.0 2−8.0 2−8.0 0 2−4.0 0 2−7.0 2−4.0 2−8.0 0

Expr. 2−4.0 2−7.0 2−7.0 2−13.9 2−4.0 2−14.6 2−5.4 2−4.0 2−7.7 2−14.0

Bit 50 51 52 53 54 55 56 57 58 59
Theory 2−4.0 2−4.0 0 0 2−5.0 2−6.0 2−9.0 2−7.0 2−7.0 0

Expr. 2−4.0 2−2.4 2−16.9 2−6.0 2−4.4 2−6.0 2−9.1 2−7.0 2−6.4 2−12.9

Bit 60 61 62 63
Theory 2−6.0 0 2−4.0 0

Expr. 2−5.0 2−15.4 2−4.0 2−9.1
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F Conditional HDL Key Recovery from Another HDL
Approximations

The key recovery phases based on the second, the third and the fourth HDL
approximations in Section 5.3 are very similar to the first one. In this section,
we provide these details.

F.1 Conditional HDL Key Recovery From HDL Approximation 2

With experiments, we choose 3 Type-1 conditions that affect the HDL bias most
significantly as follows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u14 = u78

– 12 Type-1 conditions involving bits of nonce and key.

u100 = u33k33 ⊕ u33k97 ⊕ u33 ⊕ u36k36 ⊕ u36k100 ⊕ u36 ⊕ u58k58 ⊕ u58k122

⊕ u97 ⊕ u122 ⊕ k33k97 ⊕ k33 ⊕ k36k100 ⊕ k36 ⊕ k58k122 ⊕ k97 ⊕ k100

⊕ k122 ⊕ 1

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117

u47 = u23 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k14 = 0, k78 =
0.

With 226 random samples, we find when all the above conditions hold, the
bias is approximately 2−3.19. While when all but the fourth Type-2 conditions
hold (i.e., k78 = 1), the bias would be 2−3.79. The biases for all the remaining
cases are at most 2−4.74. Thus the statistical test requires about 29.61 samples
according to Equation (12) and the threshold is 455, if we give up to recover the
exact value of k78 (Or we can keep the two possibilities of k78, and determine
its exact value by exhaustive search after we recovered all remaining key bits).

From these 3 Type-1 conditions, we can know the following values about keys:
k33 ⊕ k97 = c0, k36 ⊕ k100 = c1, k58 ⊕ k122 = c2, k33k97 ⊕ k33 ⊕ k36k100 ⊕ k36 ⊕
k58k122 ⊕ k97 ⊕ k100 ⊕ k122 ⊕ 1 = c3, k28 ⊕ k92 = c4, k31 ⊕ k95 = c5, k53 ⊕ k117 =
c6, k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53 ⊕ k92 ⊕ k95 ⊕ k117 = c7, k23 =
c8, k57 = c9, k23 ⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118 = c10. Together with the four
Type-2 conditions, we can recover another 3 bits of key information (we give
up recovering the exact value of k78). Totally, we can recover 14 bits of key
information. Since we have 64 opportunities to use this HDL approximation to
do the key recovery, and averagely we have 4 opportunities, the key bits we can
recover are about 60. The complexity is then 4× (64× 23+9.61 +4× 8× 29.61) ≈
220.61.
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F.2 Conditional HDL Key Recovery From HDL Approximation 3

With experiments, we choose 3 Type-1 conditions that affect the HDL bias most
significantly as follows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u51 = u115

– 12 Type-1 conditions involving bits of nonce and key.

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u76 = u12k12 ⊕ u12k76 ⊕ u12 ⊕ u54k54 ⊕ u54k118 ⊕ u54 ⊕ u118 ⊕ k12k76 ⊕ k12

⊕ k54k118 ⊕ k54 ⊕ k76 ⊕ k118

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

– 4 Type-2 conditions involving only bits of key: k0 = 0, k51 = 0, k64 =
0, k115 = 0.

Note the above conditions are not the same with those we provide in Sec-
tion E.3 of Supplementary Material because we use a similar ideal to achieve
better performance. With 226 random samples, we find when all the above condi-
tions hold, the bias is approximately 2−3.16. If only the second Type-1 condition,
the second Type-2 condition and the fourth Type-2 condition do not hold simul-
taneously, the bias would be 2−3.43. The biases for all the remaining cases are at
most 2−5.21. Thus the statistical test requires about 29.14 samples according to
Equation (12) and the threshold is 327, if we give up to recover the exact value
of k78 (Or we can keep the two possibilities of k78, and determine its exact value
by exhaustive search after we recovered all remaining key bits).

From these 3 Type-1 conditions, we can know the following values about keys:
k3⊕k67 = c0, k25⊕k89 = c1, k58⊕k122 = c2, k3k67⊕k3⊕k25k89⊕k25⊕k67⊕k89 =
c3, k12 ⊕ k76 = c4, k54 ⊕ k118 = c5, k12k76 ⊕ k12 ⊕ k54k118 ⊕ k54 ⊕ k76 ⊕ k118 =
c6, k12 = c7, k19 = c8, k42 = c9, k2 ⊕ k9 ⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83 = c10.
Together with the four Type-2 conditions, we can recover another 4 bits of key
information (we give up recovering the exact value of (k51, k115, k12k76 ⊕ k12 ⊕
k54k118 ⊕ k54 ⊕ k76 ⊕ k118)). Totally, we can recover 15 bits of key information.
Since we have 64 opportunities to use this HDL approximation to do the key
recovery, and averagely we have 4 opportunities, the key bits we can recover are
about 60. The complexity is then 4× (64× 23+9.14 + 4× 8× 29.14) ≈ 220.14.

F.3 Conditional HDL Key Recovery From HDL Approximation 4

With experiments, we choose 3 Type-1 conditions that affect the HDL bias most
significantly as follows,

– 2 Type-0 conditions involving only nonce bits: u0 = u64, u57 = u121
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– 12 Type-1 conditions involving bits of nonce and key.

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u42 = u2 ⊕ u12 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9

⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u124 = u18k18 ⊕ u18k82 ⊕ u18 ⊕ u60k60 ⊕ u60k124 ⊕ u60 ⊕ u82 ⊕ k18k82 ⊕ k18

⊕ k60k124 ⊕ k60 ⊕ k82 ⊕ k124

– 4 Type-2 conditions involving only bits of key: k0 = 0, k64 = 0, k57 =
0, k121 = 0.

With 226 random samples, we find when all the above conditions hold, the
bias is approximately 2−3.19. Otherwise, the bias will be at most 2−4.46. Thus
the statistical test requires about 29.94 samples according to Equation (12) and
the threshold is 327.

From these 3 Type-1 conditions, we can know the following values about keys:
k3⊕k67 = c0, k25⊕k89 = c1, k58⊕k122 = c2, k3k67⊕k3⊕k25k89⊕k25⊕k67⊕k89 =
c3k12 = c4, k19 = c5, k42 = c6, k2⊕k9⊕k12⊕k42⊕k66⊕k73⊕k83 = c7, k18⊕k82 =
c8, k60⊕ k124 = c9, k18k82⊕ k18⊕ k60k124⊕ k60⊕ k82⊕ k124 = c10 Together with
the four Type-2 conditions, we can recover another 4 bits of key information,
Totally, we can recover 15 bits of key information. Since we have 64 opportunities
to use this HDL approximation to do the key recovery, and averagely we have 4
opportunities, the key bits we can recover are about 60. The complexity is then
4× (64× 23+9.14 + 4× 8× 29.94) ≈ 221.00.

F.4 Strategy to Utilize All Equations
In order to reduce the complexities, we choose only Type-1 conditions to do the
key recovery. However, once we succeed in detecting the positions that satisfy the
four Type-2 conditions, we can continue to take the remaining conditions into
consideration. To do it, based on the 7 Type-1 and Type-2 conditions that are
already satisfied, we choose another one Type-1 condition among the remaining
ones. Whether this new condition holds will lead to different bias, we can use
this property to recover key information based this new condition. Since we
do not need to exhaust all 64 positions to find the correct positions to do it,
the complexities for these additional steps are neglected. Finally, we can take
advantage of all conditions without increasing the complexities.

G Application to 6-Round Ascon Initialization

We perform here a 2nd order HDL cryptanalysis of 6-round of the initialization
of Ascon. With an exhaustive search using Algorithm 3 for all the possible posi-
tions (0, i1 > 0) for input and positions for output, there are four combinations
of the input difference and output mask (∆0,∆1, λ) leading to a significantly
high bias:
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1. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][5], S0[4][5]), λ is
active in S5.5[0][37]. The bias is −2−30.

2. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][59], S0[4][59]), λ
is active in S5.5[0][32]. The bias is −2−30.

3. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][28], S0[4][28]), λ
is active in S5.5[0][4]. The bias is −2−37.

4. ∆0 is active in (S0[3][0], S0[4][0]) and ∆1 is active in (S0[3][51], S0[4][51]), λ
is active in S5.5[0][55]. The bias is −2−37.

We take the first two 2nd order HDL approximations to mount the key re-
covery attacks. Since we obtain conditions from the first two rounds, which is
the same as the 5-round case, we expect a similar situation except that we will
need more samples for the statistical testing to distinguish the right case. Sup-
pose that there are also three Type-1 conditions after removing some redundant
conditions, the sample amount is approximately calculated as N ≈ 262.06. Af-
ter exhausting all 64 positions, we have 2 opportunities to do the key recovery
attacks, thus the approximate data and time complexities are

4× 2× 64× 262.06+3 + 4× 2× 2× 8× 262.06 ≈ 274.10.

Note that because of the extremely small bias, we cannot perform a more de-
tailed analysis based on experiments as we did for the 5 rounds, thus the above
complexities are rough estimations. However, there is no doubt that the HDL
attacks on 6-round Ascon are possible since the biases are much greater than
2−64. We emphasize that in [LLL21] Liu et al. remarked that they made a lot
of efforts but could not find any DL approximation with bias larger than 2−64.
This demonstrates well the advantage of the HDL cryptanalysis. We note that
this is the second type of attack applicable to 6 rounds of Ascon initialization
besides the cube-like attacks [LDW17,DEMS15,RHSS21,LZWW17].

H HD Cryptanalysis of Grain v1

Grain v1 is a stream cipher proposed by Hell et al. [HJM07] which has been
selected in the eSTREAM hardware profile. Grain v1 uses an 80-bit secret key
K = (k0, k1, . . . , k79) and a 64-bit initial value V = (v0, v1, . . . , v63). It consists of
three main building blocks: an 80-bit linear feedback shift register (LFSR), an 80-
bit non-linear feedback shift register (NFSR) and a non-linear output function.
In [LLL21], Liu et al. proposed the conditional differential attacks (for stream
ciphers whose output is one bit, the DL and differential attacks are identical) on
the 125-round Grain v1 initialization with a theoretical bias 2−20.77.

To give a comparison between the effects of the 2nd and 1st order differential
attacks, we tested the 2nd order differential on Grain v1 based on HATF to
see whether we could reach more rounds. In [LLL21], the authors used an input
difference ∆0 which is active in the 21th and 46th bits of the IV. We set it as
one component of our 2nd order difference, say ∆0, and use another component
∆1 which is active in the 19th and 44th bits of the IV. Therefore, our 2nd order
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difference is ∆ = (∆0,∆1). We apply Algorithm 3 with ∆ as input to 130-round
Grain v1, and set r1 as 50 (conditions are imposed for the first 50 rounds, the
same setting as [LLL21]). The HATF of the first output bit is calculated and
the bias is estimated by Algorithm 4. Since the difference expression is very
complicated, to make the computation feasible, we substitute only one linearly
isolated term using Q every time, and finally use the piling lemma to estimate
the overall bias with all the biases we get from all terms in el (see Line 5 in
Algorithm 4). Finally, our experiment shows that the output 2nd order differ-
ence of 130-round Grain v1 has a bias approximately equal to 2−30.18. This
conditional HD is 5 rounds longer than the previous best conditional differential
distinguisher. Unfortunately, the bias is too small to verify it experimentally, as
we would need about 260.36 data. Considering that some freedom degrees of the
IV bits are used to meet the conditions that we impose in the first 50 rounds, this
HD approximation cannot be used in key-recovery attacks. Therefore, this ap-
proximation shows some non-randomness property of Grain v1 and we present
it for a comparison with its 1st order conditional differential counterpart.

I Practical HDL Distinguishers Based on Cube Testers

In this section, we show how to construct practical HDL distinguishers based
on cube testers. The cube tester technique was originally proposed at FSE 2009
as a general method to test the non-randomness of the superpoly for stream
ciphers [ADMS09]. We have seen that the HDL attack on a Boolean function
is equivalent to the cube attack on its DSF, so we can also apply cube testers
to its DSF function then convert them back to HDL attacks on the original
Boolean function. Actually, the experimental methods which have been exten-
sively used in previous DL works, e.g., [DEMS15,AFK+08], can also be viewed
as cube testers. When applied to the DSF, an advantage is that we can take
different X and ∆ to simplify the DSFX,∆,f . In this section, we use the cube
tester to construct practical HDL distinguishers for the reduced-round Ascon
permutation, Xoodoo [DHAK18] and ChaCha [Ber08a].

I.1 5-Round HDL Distinguishers for Ascon

In [DEMS15], the designers experimentally found a DL distinguisher with bias
equal to 2−9 for 5 rounds of the Ascon initialization. In this subsection, we
provide more HDL distinguishers for this variant. From the previous study, when
elements in an ℓ-th order difference ∆ = (∆0,∆1, . . . , ∆ℓ−1) are active both in
the third and fourth words and the output bit is active in a single bit, the bias
could be higher. Naturally, in our experiments, we always let the difference to be
active in these two words and consider only one bit of output. Therefore, we need
to choose l positions from 0, 1, . . . , 63 to incorporate the differences. Recall that
in the key-recovery attack on 5-round Ascon, we could impose some conditions
to enhance the bias. For simplicity, we only consider the Type-0 and Type-2
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Table 10: Some HDL approximations obtained using experiments for 5-round
Ascon initialization. Type-0 means we impose Type-0 conditions into the cube
while Type-0/2 means both Type-0 and Type-2 conditions are imposed. Since
Type-2 conditions are related to the key, the corresponding HDL are considered
as conditional HDL.

Order Input Diff. /
Output Mask

Bias(− log)
Type-0

Bias(− log)
Type-0/2

3 (0,24,33)/51 6.52 3.56
4 (0,9,15,41)/27 6.44 2.14
5 (0,9,24,51,55)/18 5.31 2.02
6 (1,12,18,22,21,52)/49 4.88 1.89
7 (10,13,21,31,49,55,61)/28 4.03 1
8 (0,3,10,11,26,28,31,55)/60 2.46 1
9 (8,13,14,16,21,25,39,42,46)/12 1.76 1
10 (4,14,23,27,35,39,41,49,51,55)/0 1.09 1
11 (19,24,33,35,36,48,54,57,59,62,63)/27 1.04 1

conditions. Note if some type-2 conditions are imposed, the corresponding HDL
approximation is conditional on the key, which we cannot access. When ℓ is not
large, e.g., ℓ ≤ 4, we can exhaust all combinations of input differences and output
masks in the aforementioned form. When ℓ is large, e.g., ℓ ≥ 5, it is costly to
exhaust all possibilities of the ℓ-th order differences. Thus, we choose randomly
the positions of ℓ-th order differences and the output bit. For each combination
of the differences and masks, we compute their bias with 215 samples. After we
detect some biases that are significantly larger than 2−7, we use 226 samples
to confirm these biases. Some ℓ-th order HDL approximations are shown in
Table 10. If we take the 8th order HDL with bias equal to 2−2.46 (with Type-0
conditions being imposed) to distinguish 5-round Ascon initialization, we need
about 24.92 samples, i.e., 24.92+8 = 212.92 data/time complexity. The previous
best distinguisher for 5 rounds is the integral distinguisher proposed in [RHSS21]
requiring 216 data/time complexity.

I.2 4-Round Deterministic HDL Distinguisher for Xoodoo

Xoodoo [DHAK18] is an efficient 384-bit permutation designed by the Keccak
Team9. The state of Xoodoo is arranged into a 4 × 3 × 32 cube and a state
bit is denoted by S[x][y][z]. One round of Xoodoo consists of the following

9 https://keccak.team
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operations.

S[x][y][z] = S[x][y][z]⊕
⊕
y

S[x− 1][y][z − 5]⊕
⊕
y

S[x− 1][y][z − 14]

S[x][1][z] = S[x− 1][1][z], S[x][2][z] = S[x][2][z − 11]

S[0][0] = S[0][0]⊕RCi

S[x][y][z] = S[x][y][z]⊕ ((S[x][y + 1][z]⊕ 1) · S[x][y + 2][z])

S[x][1][z] = S[x][1][z − 1], S[x][2][z] = S[x− 2][2][z − 8]

The total number of rounds in Xoodoo is 12, but in some modes the core
permutation calls a 6-round Xoodoo permutation. More details of Xoodoo
including the constants RCi can be found in its specification [DHAK18].

In our cryptanalysis of Xoodoo, we do not consider the linear layers before
and after the nonlinear operations in the first and last round. Since Xoodoo is a
permutation, such an assumption is reasonable. Before applying the cube tester
to Xoodoo, we first analyze its nonlinear operation S[x][y][z] = S[x][y][z] ⊕
((S[x][y + 1][z] ⊕ 1) · S[x][y + 2][z]). Intuitively, if we let S[x][y + 1][z] = 0 and
S[x][y][z] = a[x][y + 2][z] and set the difference active in both S[x][y][z] and
S[x][y+2][z], the nonlinear operation will be simplified. This way, the difference
in S[x][y][z] after the nonlinear operation will be canceled. We apply this setting
to the 96 bits represented by S[0] as follows:

1. Let S[0][0][z] = S[0][2][z] and S[0][1][z] = 0,
2. Exhaust all 2nd order differences ∆ = (∆0,∆1) where ∆0 and ∆1 are both

active in S[0][0][z] and S[0][2][z] but ∆0 ̸= ∆1.

We observe that with these settings many output bits after 4 rounds are highly
biased. For example, if ∆0 is active in S[0][0][0] and S[0][2][0], ∆1 is active in
S[0][0][20] and S[0][2][20], the bias of S[0][0][0] after 4 rounds would be 1

2 , i.e., we
found a deterministic 2nd DL distinguisher for 4-round Xoodoo. We note that
before our work there was another deterministic rotational-differential-linear dis-
tinguisher found for 4-round Xoodoo [LSL21]. However, no DL distinguisher
has been reported for 4-round Xoodoo until now. Unfortunately, with the same
method, we did not find useful 2nd order HDL for 5 rounds of Xoodoo.

I.3 3-, 4- and 4.5-Round HDL Distinguisher for ChaCha

ChaCha is a variant of Salsa which are both designed by Bernstein [Ber08a,Ber08b].
Because of its high software efficiency, ChaCha has been adopted by the TLS
protocol [LCM+16].

The state of ChaCha is of size 64 bytes or 512 bits, which is divided into 16
words, each of 32 bits. These words are framed of a 4× 4 matrix. In the initial
matrix denoted by X0, the 1st row consists of 4 constants c0 = 0x61707865,
c1 = 0x3320646e, c2 = 0x79622d32 and c3 = 0x6b206574. The second and
third row consist of 8 key words k0, k1, . . . , k7 and the fourth row consists of the
two 32-bit nonces v0, v1 and two 32-bit counters t0, t1. The nonces and counters
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are usually considered as IVs, which we can control. The state X0 is illustrated
as follows,

X0 =


X0

0 X0
1 X0

2 X0
3

X0
4 X0

5 X0
6 X0

7

X0
8 X0

9 X0
10 X0

11

X0
12 X0

13 X0
14 X0

15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 .

The round function of ChaCha is based on an operation called quarter-round
(QR) which operates on a 4 tuple (a, b, c, d) and updates it as follows,

a′ = a+ b, d′ = (d⊕ a′) ≫ 16, c′ = c+ d′, b′ = (b⊕ c′) ≫ 12,

a′′ = a′ + b′, d′′ = (d′ ⊕ a′′) ≫ 8, c′′ = c′ + d′′, b′′ = (b′ ⊕ c′′) ≫ 7.

i.e., QR(a, b, c, d) (a′,b′,c′,d′)−−−−−−−→ (a′′, b′′, c′′, d′′).
QR is applied on the 4 words of each column in the odd rounds and each

diagonal in the even rounds. The state after r rounds is denoted by

X0 =


Xr

0 Xr
1 Xr

2 Xr
3

Xr
4 Xr

5 Xr
6 Xr

7

Xr
8 Xr

9 Xr
10 Xr

11

Xr
12 Xr

13 Xr
14 Xr

15


The output key-stream block Z is executed as Z = X0 +XR for ChaCha/R. A
half-round represents the update of (a, b, c, d) to (a′, b′, c′, d′) in the QR opera-
tion. Thus, ChaCha/R.5 means a R full and a half round function. We continue
to use X[i] to represent the i-th bit of the word X, but only within this sub-
section, X[0] stands for the least significant bit. This is for consistency with
previous work related to ChaCha.

Currently, the most efficient methods for analyzing ChaCha have been differential-
linear cryptanalysis [AFK+08,SZFW12,CM16,BLT20]. Interestingly, we notice
that the HDL idea has been partially used in the previous cryptanalysis on
ChaCha but the terminology higher-order differential-linear attack was not used.
In [SZFW12], Shi et al. proposed some higher biased truncated 2nd order dif-
ferentials whose outputs are one bit for ChaCha/3, which had been better than
the 1st order truncated differentials. In the appendix of [CM16], Choudhuri et
al. gave several truncated 2nd order differentials whose outputs are multiple
bits for 4-round ChaCha by appending one-round linear approximations to the
distinguishers from [SZFW12]. However, in general the HDL cryptanalysis has
not considered extensively for ChaCha. In this subsection, we give the best dis-
tinguishers based on HDL for ChaCha/3.5, ChaCha/4 and ChaCha/4.5, which
shows that the HDL cryptanalysis has a larger potential than expected and
probably deserves more attention from the cryptography community.

To establish these distinguishers, we first use experiments to find high bi-
ased 2nd order HDL whose output is active in one bit, and secondly append
it with a 1.5-round deterministic linear approximation. Since the round func-
tions of ChaCha are different for odd and even rounds, these 1.5-round linear
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approximations we use are also different. Yet, all of them are similar to the 1.5-
round linear approximation proposed in [CM16, Section 3.1.3] and can be built
similarly.
3.5-round 2nd order HDL with bias close to 1

2 . The input is the 2nd
order difference (∆0,∆1) where ∆0 is active in X0

12[0] and ∆1 is active in X0
14[0],

the output is the difference active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 1
2 since among 230 samples, only 131 led to a nonzero difference.

The 1.5-round linear approximation with bias 1
2 is

X2
8 [0] = X3.5

0 [0]⊕X3.5
0 [8]⊕X3.5

3 [0]⊕X3.5
4 [12]⊕X3.5

9 [0]⊕X3.5
11 [0]⊕X3.5

12 [0]⊕X3.5
15 [16]⊕X3.5

15 [24].

We connect the first 2-round 2nd order HDL approximation with the 1.5-round linear
approximation to get a 3.5-round 2nd order HDL distinguisher whose bias is almost
1
2
.

4-round 2nd order HDL with bias approximately 2−1.19. The input is
the 2nd order difference (∆0,∆1) where ∆0 is active in X0

13[16] and ∆1 is active
in X0

14[0], the output is active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 0.4386 ≈ 2−1.19, which is close to a deterministic distinguisher.
The 1.5-round linear approximation with bias 1

2 is

X2.5
8 [0] = X4

1 [0]⊕X4
1 [16]⊕X4

2 [0]⊕X4
6 [7]⊕X4

8 [0]⊕X4
11[0]⊕X4

12[24]⊕X4
13[0]⊕X4

13[8].

We connect the first 2.5-round 2nd order HDL approximation with the 1.5-round
linear approximation to get a 4-round 2nd order HDL distinguisher whose bias
is about 2−1.19.
4.5-round 2nd order HDL with bias approximately 2−4.81. The input is
the 2nd order difference (∆0,∆1) where ∆0 is active in X0

14[12] and ∆1 is active
in X0

15[15], the output is active in X2
8 [0]. The bias of this 2nd order HDL is

approximately 0.0357 ≈ 2−4.81. The 1.5-round linear approximation with bias 1
2

is

X3
8 [0] = X4.5

0 [0]⊕X4.5
0 [8]⊕X4.5

1 [0]⊕X4.5
5 [12]⊕X4.5

9 [0]⊕X4.5
11 [0]⊕X4.5

12 [16]⊕X4.5
12 [24]⊕X4.5

15 [0].

We connect the first 3-round 2nd order HDL approximation with the 1.5-round linear
approximation to get the 4-round 2nd order HDL distinguisher whose bias is about
2−4.81.

The biases of these three 2nd order HDL distinguishers are significantly
higher than all previous DL distinguishers, a detailed comparison has been given
in Table 1. With these higher biased approximations, the distinguishing attacks
on ChaCha/3.5, ChaCha/4 and ChaCha/4.5 can be improved. With a conven-
tional method where we need ε−2 samples to distinguish the cipher from a ran-
dom permutation, we need about 22, 22.38 ≈ 11 and 29.62 ≈ 787 samples for the
three variants of ChaCha. Considering that each sample contains 4 texts, the
complexity is then 24 = 16, 24.38 ≈ 44 and 211.61 ≈ 3184 respectively. On the
same scale, the previous best DL distinguishers for 4 and 4.5 rounds required
2× 26.66 ≈ 202 and 2 × 212.28 ≈ 9947 chosen texts. The HDL achieves a better
performance.
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We also tried to construct 2nd order HDL for ChaCha/5. However, we did not
find advantageous approximations compared to the existing DL approximations.
Firstly, no 2nd order HDL for the first 3.5-round ChaCha was found in our
experiments, so we have to construct a 5-round approximation with a 3-round
2nd order HDL and a 2-round linear approximation. We reuse the 2nd order
HDL which has been introduced for ChaCha/4.5, i.e., the input is the 2nd order
difference (∆0,∆1) where ∆0 is active in X0

14[12] and ∆1 is active in X0
15[15], the

output is active in X2
8 [0]. The probability of this 2nd order HDL is approximately

2−4.81. In this case, the bias for the optimal linear approximation with the input
mask being active in X2[8][0] is 2−2, one of such approximations can also be
constructed by the method in [CM16] as follows,

X3
8 [0] =X4.5

0 [0]⊕X4.5
0 [8]⊕X4.5

1 [0]⊕X4.5
5 [12]⊕X4.5

9 [0]⊕X4.5
11 [0]⊕X4.5

12 [16]

⊕X4.5
12 [24]⊕X4.5

15 [0]

Thus, the overall bias of the approximation for ChaCha/5 is 2−1×2−3.81×2−4 ≈
2−8.81. While the previous best DL has a bias equal to 2−8.2. Therefore, for
ChaCha/5 we found that 2nd order HDL is not better than DL. It implies that
when we need to append linear approximations to a higher-order HDL to extend
the rounds, the overall bias of the approximations would decrease faster than its
DL counterpart.

J Distinguishing Two Normal Distributions with
Statistical Testing

Suppose that we have known a statistics T obeys either N (µ0, σ
2
0) or N (µ1, σ

2
1)

and w.l.o.g. u0 < u1, we want to judge which one T really follows. The method is
to find a threshold µ0 < τ < u1 such that when T < τ we judge T ∼ N (µ0, σ

2
0),

otherwise T ∼ N (µ1, σ
2
1), enduring the risks of two types of errors:

1. α0: the probability that T ∼ N (µ0, σ
2
0) but we judge it as T ∼ N (µ1, σ

2
1);

2. α1: the probability that T ∼ N (µ1, σ
2
1) but we judge it as T ∼ N (µ0, σ

2
0);

The relationship between µ0, µ1, τ, α0 and α1 is illustrated in Figure 3. Let Φ
be the cumulative distribution functions of the standard normal distribution.
According to Figure 3 we have{

τ = µ0 + Φ−1(1− α0)σ0 = µ1 − Φ−1(1− α1)σ1

µ1 − µ0 = Φ−1(1− α0)σ0 + Φ−1(1− α1)σ1

(11)

In Equation (6), the number of samples is the only parameter influencing the
mean µ and variance σ2 of the normal distribution (with known bias). Let ε0
and ε1 represent the bias of wrong and right cases, respectively. Substituting
the µ0, µ1, σ

2
0 , σ

2
1 with N × ( 12 + ε0), N × ( 12 + ε1), N × ( 14 − ε20), N × ( 14 − ε21),
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N (u0, σ
2
0) N (u1, σ

2
1)

Φ−1(1− α0)σ0

Φ−1(1− α1)σ1

µ0 τ µ1

α0α1

Fig. 3: The relationship among u0, u1, τ, α0 and α1

respectively, we can get the formula to compute the necessary simple amount
with predefined probabilities of errors α0 and α1 as

N =


√

1
4 − ε20 Φ−1(1− α0) +

√
1
4 − ε21 Φ−1(1− α1)

ε1 − ε0

2

. (12)

We set α1 = 0.05, that is the right case would be judged as wrong cases
with probability 0.05 at worst. We set α0 to make sure that the probability
that at least one wrong case among m wrong cases is identified as the right
case is no larger than 0.05, therefore from 1 − (1 − α0)

m = 0.05, we derive
α0 = 1− 2

log(1−0.05)
m . In terms of our case, we have 7 wrong cases, so m = 7. The

bias of the right case is ε1 = 2−3.19 while the bias for wrong cases is at most
ε0 = 2−4.47. Thus, 29.94 samples are enough to identify the right case according
to Equation (12) and the threshold is τ = 572 according to Equation (11).
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