
Revisiting Higher-Order Differential-Linear
Attacks from an Algebraic Perspective⋆

Abstract. The Higher-order Differential-Linear (HDL) attack was in-
troduced by Biham et al. at FSE 2005, where a linear approximation was
appended to a Higher-order Differential (HD) transition. It is a natural
generalization of the Differential-Linear (DL) attack. Due to some prac-
tical restrictions, HDL cryptanalysis has unfortunately attracted much
less attention compared to its DL counterpart since its proposal.
In this paper, we revisit HD/HDL cryptanalysis from an algebraic per-
spective, and provide two novel tools for detecting possible HD/HDL
distinguishers, including: (a) Higher-order Algebraic Transitional Form
(HATF) for probabilistic HD/HDL attacks; (b) Differential Supporting
Function (DSF) for deterministic HD attacks. In general, the HATF can
estimate the biases of ℓth-order HDL approximations with complexity
O(2ℓ+d2ℓ) where d is the algebraic degree of the function studied. If the
function is quadratic, the complexity can be further reduced to O(23.8ℓ).
HATF is therefore very useful in HDL cryptanalysis for ciphers with
quadratic round functions, such as Ascon and Xoodyak. DSF provides
a convenient way to find good linearizations on the input of a permuta-
tion, which facilitates the search for HD distinguishers.
Unsurprisingly, HD/HDL attacks have the potential to be more effective
than their simpler differential/DL counterparts. Using HATF, we found
many HDL approximations for round-reduced Ascon and Xoodyak ini-
tializations, with significantly larger biases than DL ones. For instance,
there are deterministic 2nd-order/4th-order HDL approximations for As-
con/Xoodyak initializations, respectively (which is believed to be im-
possible in the simple DL case). We derived highly biased HDL approx-
imations for 5-round Ascon up to 8th order, which improves the com-
plexity of the distinguishing attack on 5-round Ascon from 216 to 212.
We also proposed HDL approximations for 6-round Ascon and 5-round
Xoodyak (under the single-key model), which couldn’t be reached with
simple DL so far. For key recovery, HDL attacks are also more efficient
than DL attacks, thanks to the larger biases of HDL approximations. Ad-
ditionally, HATF works well for DL (1st-order HDL) attacks and some
well-known DL biases of Ascon and Xoodyak that could only be ob-
tained experimentally before can now be predicted theoretically.
With DSF, we improved the distinguishing attacks on 8-round Ascon
permutation, with a complexity reduced from 2130 to 246. Also, we pro-
vide a new zero-sum distinguisher for the full 12-round Ascon permu-
tation with 255 time/data complexity, improving over the previous best
one that required 2130 calls. We highlight that our cryptanalyses do not
threaten the security of Ascon or Xoodyak.

Keywords: Higher-Order Differential, Higher-Order Differential-Linear,
Ascon, Xoodyak

⋆ This is essentially a revised version considering the comments from EUROCRYPT
2023 reviews. In Section A of Supp. Material, we answer the reviewers comments.



1 Introduction

1.1 Differential-Linear Cryptanalysis

Differential and linear cryptanalysis have been the fundamental methods for
evaluating the security of a cipher [BS90,Mat93]. Nowadays, all new schemes
are requested to claim resistance against these two attacks. However, resistance
against the plain differential and linear cryptanalysis does not necessarily lead to
resistance against their variants. For example, despite its security proof against
differential attacks, the cipher Coconut98 [Vau98] is vulnerable to boomerang
and Differential-Linear (DL) cryptanalysis [Wag99,BDK02] which are two vari-
ants of the differential and linear attacks, leveraging a combined strategy.

Differential-linear cryptanalysis was proposed by Langford and Hellman in
1994 [LH94] and it remains the best-known attack on many ciphers, e.g., AES
competition finalist Serpent [BAK98,LLL21]. For a difference-mask pair (∆I , λO),
the bias q′ of a DL approximation can be derived from the following equation

Pr[λO · (C ⊕ C ′) = 0|P ⊕ P ′ = ∆I ] =
1

2
+ q′.

Similar to the case of linear cryptanalysis, if the bias |q′| is significantly larger
than 0, we can distinguish the cipher from a random permutation.

There are mainly two types of methods to estimate q′ in the literature. In
the classical DL cryptanalysis [LH94,BDK02], a cipher E is decomposed into
two sub-ciphers as E = E1 ◦ E0, where a differential ∆I

p−→ ∆O for E0 and a
linear approximation λI

q−→ λO for E1 are considered. The DL bias q′ can be
estimated by q′ = (−1)∆O·λI2pq2 under some indepedence assumptions.

As pointed out in [BDK02], experiments are required to verify the esti-
mated bias when possible because the underlying assumptions may fail. There
are two main refined methods of classical DL attacks. One is from Blondeau
et al. [BLN17], where an accurate formula for q′ is given under the sole as-
sumption that E0 and E1 are independent. The other, proposed by Bar-On et
al. [BDKW19] at EUROCRYPT 2019, is called the Differential-Linear Connec-
tivity Table (DLCT) which overcomes the independence problem between E0

and E1. The drawback of the first method is that it is computationally impos-
sible to apply the formula for practical use-cases, while the second method only
works when a large-enough DLCT can be built efficiently.

A new method to estimate q′ from an algebraic perspective has been proposed
by Liu et al. [LLL21] at CRYPTO 2021. If we define a Boolean function according
to λO as fλO

: Fn
2 → F2, fλO

(u) = λO · u and let f = fλO
◦ E, the bias of

λO · (C ⊕ C ′) is equivalent to the bias of the following Boolean function

D∆I
f(P ) = f(P )⊕ f(P ⊕∆I). (1)

Then, they introduced another function with an auxiliary variable x ∈ F2 as

f∆I
(P, x) = f(P ⊕ x∆I), (2)
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where x∆I ∈ Fn
2 means that x is multiplied with each coordinate of ∆I , i.e.,

x∆I = (∆I [0] ·x, . . . ,∆I [n−1] ·x). Given a Boolean function g(a0, a1, . . . , an−1)
with n variables and for a certain variable ai (aj for j ̸= i are viewed as pa-
rameters), we can write g as g = g′′ai ⊕ g′ with g′ and g′′ being independent
of ai and where the partial derivative of g with respect to ai is the polynomial
g′′, denoted by Dai

g. Liu et al. gave the following intuitive observation linking
Equation 1 and 2,

f ′′ = Dxf∆I
= D∆I

f, (3)
where Dxf∆I

is the partial derivative of f∆I
with respect to x. That is to say,

considering Equations 1,2,3, in order to evaluate the bias of λO ·(C⊕C ′), we only
need to evaluate the bias of the Boolean function Dxf∆I

. This estimation from
the algebraic perspective does not require any assumption in theory. However,
it is extremely difficult to derive Dxf∆I

or evaluate its bias. To overcome this
obstacle, Liu et al. introduced the so-called Algebraic Transitional Forms (ATF)1

technique to construct a transitional expression of Dxf∆I
. Then, the bias is

estimated from this transitional expression.

1.2 Higher-Order Differential(-Linear) Cryptanalysis
Inspired by the boomerang and DL cryptanalysis, other combined attacks were
studied by Biham, Dunkelman, and Keller [BDK05]. These combined attacks in-
clude the differential-bilinear, Higher-order Differential-Linear (HDL), boomerang-
linear attack, etc.

The Higher-order Differential (HD) was for the first time introduced by Lai in
1994 [Lai94] and later studied by Knudsen [Knu94]. It is a natural generalization
of the differential attack that takes advantage of having access to more plaintexts.
Given an ℓth-order difference ∆I = (∆0,∆1, . . . , ∆ℓ−1) where ∆0,∆1, . . . , ∆ℓ−1

are linearly independent, the ℓth derivative of a (partial) cipher E with respect
to ∆I studies the probability

p = Pr

 ⊕
x∈X⊕L(∆I)

E(x) = ∆O

 ,

where L(∆I) is the linear span of (∆0,∆1, . . . , ∆ℓ−1), the ℓ dimensional affine
space X ⊕L(∆) is called the input set with respect to ∆, and ∆O is called the
output difference.

As the name higher-order differential-linear suggests, HDL cryptanalysis [BDK05]
studies the bias concerning an ℓth-order input difference ∆I and an output mask
λO. The bias ε of an HDL approximation is derived from the following formula-
tion:

Pr

λO ·

 ⊕
x∈X⊕L(∆I)

E(x)

 = 0

 =
1

2
+ ε.

1 In [LLL21], there is another terminology DATF when ATF is used to construct
transitional expressions for f∆. In this paper, we directly use ATF for all kinds of
Boolean functions no matter whether we target f or f∆.
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Akin to the first kind of method to evaluate the bias in DL cryptanalysis, Biham
et al. [BDK05] gave an analysis based on viewing E as two sub-ciphers E =
E1 ◦ E0. Suppose that we know an ℓth derivative with probability p for E0

and that E1 has a linear approximation with bias equal to q, then the overall
bias ε is estimated as ε = 22

ℓ−1pq2
ℓ

. However, currently there is no effective
method to trace the propagation of an HD or calculate its probability yet. Thus,
Biham et al. had to restrain themselves to the integral property for E0, which
leads to p = 1. The integral property usually requires a large ℓ to attack an
interesting number of rounds, but if |q| ̸= 1

2 , ε will become extremely close to
zero. As a result, we can only get an interesting HDL distinguisher when there
is a linear approximation with bias ± 1

2 for E1. In practice, some ciphers such as
IDEA [LM90] allow weak-key linear approximations with bias 1

2 , which makes
them vulnerable to HDL attacks [BDK05,BDK07].
1.3 Motivation and Contributions
Considering that DL attacks are efficient for many important primitives, such
as Ascon [DEMS21] (recent winner of the NIST lightweight competition) and
Xoodyak [DHP+20], we are naturally interested in whether the HDL attack
could achieve even better performance. However, as we mentioned, we did not
have any tool to study the probabilistic HD distinguishers and they were far less
practical than their DL counterparts. How to handle the probabilistic HD/HDL
cryptanalysis remains an open problem.

Recently, the algebraic perspective on DL attacks [LLL21] opened up a new
road to study the differential/DL attacks and achieved better precision for
some important ciphers such as Ascon [DEMS21]. However, we note that their
method is based on some intuitive observations and is limited to the first-order
case. In this paper, we generalize and refine this algebraic method to higher-order
cases.
Our contributions. In this paper, we revisit the HD/HDL cryptanalysis of
a Boolean function from the algebraic perspective, which provides novel meth-
ods to study HD and HDL cryptanalysis. Two tools for HD/HDL cryptanalysis
are proposed based on this new perspective, one is the Higher-order Algebraic
Transitional Form (HATF), which is used to detect probabilistic HDL approxi-
mations, and the other one is the Differential Supporting Function (DSF), which
is useful to find deterministic HD distinguishers.
Higher-order Algebraic Transitional Form (HATF). By transforming the
input set of a Boolean function f from an ℓ dimensional affine space to an ℓ
dimensional linear space, we can transform a general HD attack to a standard
integral/cube attack. The HD/HDL approximations are then the biases of the
coefficient of the maxterm in f with the transformed inputs. Since almost all
modern ciphers are built in a composite way, we can obtain the HD/HDL ex-
pressions in the form of a composite vectorial Boolean function, which is easier
to study.

HATF is a way to estimate the biases of HDL approximations of ciphers. It
is a two-step process: (a) constructing the composite formula of an HD/HDL
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Table 1: Approximation Biases of the DL and HDL approximations for Ascon,
Xoodyak and Xoodoo.
Primitive Round Order Bias Method Reference

Experiment Theory

Ascon Init.

4 1st 2−2

2−20 Classical [DEMS15]
2−5 DLCT [BDKW19]
2−2.365 ATF [LLL21]
2−2.09 HATF Section 5.1

2nd 2−1 2−1 HATF Section 5.1

5

1st 2−9 – Experimental [DEMS15]
2−10 HATF Section 5.1

2nd 2−6.60 2−7.05 HATF Section 5.1
8th 2−3.35 2−4.73 HATF Section 5.1

6 3rd 2−22† 2−25.97† HATF Section 5.1

Xoodyak Init. 4
1st

2−9.7 – Experimental [DW22]
2−9.67 HATF Section 6.1

−2−5.36‡ – Experimental [DW22]
−2−6.0 HATF Section 6.1

2nd 2−5.72 2−5.72 HATF Section 6.1
4th 2−1 2−1 HATF Section 6.1

5 2nd – 2−45 HATF Section 6.1

Xoodoo 4 - 2−1 2−1 Rot. DL [LSL21]
4th 2−1 2−1 HATF Section 6.1

5 3rd 2−8.79 2−8.96 HATF Section 6.1
† This bias holds when 24 conditions are satisfied.
‡ In [DW22], this 4-round DL distinguisher was extended to 5 rounds in a natural way,
with an additional cost of 2−4.

expression for a cipher; (b) calculating the biases of state bits iteratively. The
complexity of HATF is O(2ℓ+d2ℓ) in general cases where ℓ is the HD/HDL order
and d is the algebraic degree of the round function. However, for ciphers with
quadratic round functions, the complexity is O(23.8ℓ). Thus, HATF is a very
useful tool to study the HDL approximations of some permutation-based ciphers
such as Ascon and Xoodyak.

Using HATF, we detected many highly biased HDL approximations for round-
reduced Ascon, Xoodyak and Xoodoo. For example, we propose determin-
istic HDL approximations for both Ascon and Xoodyak on 4 rounds. For
5-round Ascon, we give HDL approximations up to the 8th order. Based on
these, we have improved the distinguishing attacks for 4- and 5-round Ascon
and Xoodyak (see Table 2).
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Table 2: Summary of DL-like attacks on the Ascon and Xoodyak initializa-
tions. Cond. is short for conditional.

Type Rnd Data(− log) Time (− log) Method Reference
Ascon Initialization

Distinguisher
4 5 5 DL [DEMS15]

2 2 2nd HDL Section 5.1

5 18 18 DL [DEMS15]
12 12 8th HDL Section 5.1

Key-Recovery 5
36 36 DL [DEMS15]
26 26 Cond. DL [LLL21]
24 24 Cond. Cube [LDW17]
22 22 Cond. HDL Section 5.2

Best 7 77 103 Cond. Cube [LDW17]

Xoodyak Initialization

Key-Recovery
4 23 23 DL [DW22]

21 21 Cond. HDL Section 6.2

5 22 22 DL† [DW22]
70 70 Cond. HDL Section 6.2

Best 6 43.8 43.8 Cond. Cube [ZLD+20]
† This attack is under the related-key model because they obtained the 5-round DL
approximation by extending a 4-round one. Our attack is a single-key one, which
means we have to choose the input differences from the beginning of 5 rounds.

We can improve the precision of HATF with a so-called partitioning technique
as compared to all previous detection tools for DL (first-order HDL) attacks.
For instance, HATF estimates the bias of the well-studied 4-round Ascon’s
DL approximation as 2−2.09, which is better than previous tools such as the
DLCT [BDKW19] (2−5) or the ATF [LLL21] (2−2.36). Also, for the first time we
give the theoretical bias for the 5-round Ascon’s DL approximation: the bias
is estimated as 2−10 while the experimental value is 2−9, no previous tool could
predict this bias. For Xoodyak, HATF also gives precise theoretical predictions
for two DL approximations found by experiments [DW22]. These results are
shown in Table 1.

In addition, by injecting some conditions into HATF, we obtained the best
key-recovery attack on 5-round Ascon with time/data complexity of 222, which
is 16 times faster than the DL attacks [LLL21] and 4 times faster than the
conditional cube attacks [LDW17]. For 4-round Xoodyak, the HDL attack is
4 times more efficient than the DL attack [DW22]. A summary of these key-
recovery attacks is given in Table 2.

Finally, we make clear that HATF cannot give any lower or upper bounds
for HDL approximations in theory. However, it is precise to predict biased bits,
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Table 3: Summary of zero-sum attacks on Ascon permutation. We verified them
up to 7 rounds by experiments.

Type Rnd Data(− log) Time (− log) Method Reference

From Start 8 130 130 Integral [Tod15]
46 46 HD Section 7

Best 11 315 315 Integral [Tod15]

Inside out 12 130 130 Zero-Sum [Tod15]
55 55 Zero-Sum Section J

which has been well supported by our experiments. In cases where the reported
bias is high, it was always true that the experimental bias was observed also
as high (we have not seen any counterexample for this). We provide data and
discuss the precision of HATF in Section K of Supplementary Material based on
HDL cryptanalysis of Ascon.

Differential Supporting Function (DSF). Instead of using the degree eval-
uation of a cipher to derive deterministic HD distinguishers, we can evaluate
the algebraic degree of its DSF. As we will see, the DSF is parameterized by
the input value and the (higher-order) difference. Thus, a proper choice of the
parameters could significantly reduce its algebraic degree, leading to a greater
chance of detecting a deterministic HD distinguisher for the DSF. After that,
we can conveniently transform it into an HD distinguisher for the original ci-
pher. With this technique, we improve the best-known distinguishing attacks on
round-reduced Ascon permutation [DEMS21]. A 46th-order HD will lead to a
zero output difference (in 64 bits) for 8 rounds, i.e., 246 plaintexts are enough
to distinguish an 8-round Ascon permutation from a random permutation (the
previous best known distinguisher requires 2130 computations [Tod15]). With
a similar method applied to the inverse Ascon permutation, we constructed a
zero-sum distinguisher for a full 12-round Ascon permutation requiring only
255 calls while the previous best zero-sum distinguisher costs 2130 calls. These
distinguishers are demonstrated in Table 3.

We emphasize that these results do not threaten the security of the Ascon
and Xoodyak AEAD schemes.

Source Code. We implemented the HATF algorithms in C++ and DSF in Python,
the source codes are provided in the anonymous git repository https://anonymous.
4open.science/r/HDL-CC85.

Outline. In Section 2, we briefly recall the main concepts of the HD and the
algebraic perspective on the differential attack, and other useful background
knowledge used in this paper. In Section 3, we provide the algebraic perspective
on the HD/HDL. The HATF technique is introduced in Section 4. In the follow-
ing sections, we describe the HDL attacks on Ascon and Xoodyak. In Section 7
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and Section J of Supplementary Material, we give the theory and results of DSF.
In Section 8 and Section K, we have some discussions on the precision of HATF
and conclude this paper.

2 Preliminaries

2.1 Notations

We use italic lower-case letters such as x to represent elements in Fn
2 , n ≥ 1.

The jth bit of x is denoted by x[j], 0 ≤ j < n, where x[0] is the most sig-
nificant (the leftmost) bit. The vectors of ℓ elements in Fn

2 are denoted by
x = (x0, x1, . . . , xℓ−1) ∈ (Fn

2 )
ℓ, the ith element of x is denoted by xi (the

jth bit of xi is then denoted by xi[j]). Given x ∈ F2 and ∆ ∈ Fn
2 , x∆ =

(∆[0]x,∆[1]x, . . . ,∆[n− 1]x)2. For a, b ∈ Fn
2 , a||b ∈ F2n

2 represents the concate-
nation of a and b, a · b stands for the product as a · b =

⊕
0≤i<n a[i]b[i].

In this paper, x = (x0, x1, . . . , xn−1) ∈ Fn
2 is usually used as symbolic vari-

ables. Given u ∈ Fn
2 , xu is a monomial of x as xu =

∏
i x

u[i]
i . For a vectorial

Boolean function E : Fn
2 → Fn

2 , we use the E[0], E[1], . . . , E[n − 1] to represent
the Boolean functions of its bits.

2.2 Boolean Function

An n-variable Boolean function is a mapping from Fn
2 to F2, which can be

uniquely written as its Algebraic Normal Form (ANF) as a multivariate poly-
nomial over F2 as (note the input x ∈ Fn

2 of this Boolean function is written as
x ∈ (F2)

n to stress that the input can be seen as n bit variables)

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn

2

aux
u =

⊕
u∈Fn

2

au

n−1∏
i=0

x
u[i]
i , au ∈ F2

The algebraic degree of f , denoted by deg(f) is defined as maxau ̸=0{wt(u)}
for all u ∈ Fn

2 in the above formula. The monomial x0x1 · · ·xn−1 is called the
maxterm of f , denoted by π(x). The coefficient of a monomial xu of f is denoted
by Coe (f,xu). Each output bit of a cryptographic primitive can be written as
a Boolean function of its public variables (such as plaintexts, initial values (IV),
or nonces) and secret variables such as the key bits.

The bias and correlation are two ways of measuring the unbalancedness of an
n-variable Boolean function f . The bias ε is defined as ε = 1

2n |{f(x) = 0}|− 1
2 =

Pr[f = 0] − 1
2 while the correlation c = 1

2n

∑
x∈Fn

2
(−1)f(x). Actually, c = 2ε.

In some papers such as [LLL21], the bias is taken while in other papers such
as [AFK+08] the correlation is used. In this paper, we will only use the bias ε
to measure the unbalancedness.
2 Example 1 in Section 3 is helpful for a better understanding to this notation of x∆.
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2.3 The Algebraic Perspective on DL

In [LLL21], Liu et al. introduced a new algebraic method for the differential
and DL cryptanalysis as we have already mentioned in Section 1. Recalling
Equation 1, the bias of a DL approximation is related to the differential bias of
the Boolean function f = fλO

◦ E. Thus, to study the DL attack it is enough
to focus on the differential property of a sole Boolean function. As explained
in Section 1, Liu et al. proposed Equation 3 (f ′′ = Dxf∆I

= D∆I
f) based on

some intuitive observations, but no formal proof nor clear motivation was given
in their article. In the next section, we will make it clearer when introducing the
algebraic perspective on the ℓth-order HD.

Basic idea of Algebraic Transitional Forms. Equation 3 tells us that if we
can (a) calculate the ANF of Dxf∆, (b) evaluate the bias of Dxf∆, then we can
directly know the bias of the output difference. Unfortunately, both tasks are
computationally infeasible for modern cryptographic primitives. To overcome
these two obstacles, Liu et al. introduced the ATF of the exact ANF of f∆. ATF
of a Boolean function f , denoted by A(f), is a composite representation of f
constructed iteratively. From A(f∆), we obtain a simple expression of Dxf∆, say
DxA(f∆), whose bias will be regarded as an estimation of the real bias.

The core of ATF technique is to substitute some parts of a Boolean function
with new variables to simplify its form. Finally, DxA(f∆) will be a simple formula
of intermediate variables (some are variables introduced for substitution). The
bias of DxA(f∆) is relatively easier to calculate.

In [LLL21], Liu et al. proposed two methods to estimate the bias of DxA(f∆).
Both methods are based on the following Lemma,

Lemma 1 ([LLL21]). Given a Boolean function f : Fn
2 → Fn

2 and n input bits
x0, x1, . . . , xn−1 with biases ε0, ε1, . . . , εn−1 respectively. Under the assumption
that all inputs are independent, the bias of f is

Bias(f) =
∑

x0,x1,...,xn−1

s.t.f(x0,...,xn−1)=0

n−1∑
i=0

(
1

2
+ (−1)xiεi

)
− 1

2
(4)

Equation 4 is derived from such an idea: the event of f = 0 happens means
any of the input that makes f = 0 happens. The bias of xi is εi, so it happens
with probability of 1

2 +εi when xi = 0 or 1
2 −εi when xi = 1. Equation 4 follows.

When using Equation 4, we need to find out all inputs that make f = 0. Thus
the complexity to calculate the bias of f is about O(2n).

In the basic method, Liu et al. assume that all inputs of DxA(f∆) are uni-
formly random (i.e., the biases of all inputs are exactly 0), the bias of DxA(f∆)
is computed according to Lemma 1. If there is one so-called isolate term in
DxA(f∆), this term would be expanded with deeper variables and its bias would
be calculated according to the expanded expression. The improved method is
similar to the basic one, but the bias of the intermediate variables will be calcu-
lated in advance. Thus, the precision can be improved.
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N (u0, σ
2
0) N (u1, σ

2
1)

Φ−1(1− α0)σ0

Φ−1(1− α1)σ1

µ0 τ µ1

α0α1

Fig. 1: The relationship among u0, u1, τ, α0 and α1

2.4 Distinguishing Two Normal Distributions

Suppose that we have known a statistics T obeys either N (µ0, σ
2
0) or N (µ1, σ

2
1)

and w.l.o.g. u0 < u1, we want to judge which one T really follows. The method is
to find a threshold µ0 < τ < u1 such that when T < τ we judge T ∼ N (µ0, σ

2
0),

otherwise T ∼ N (µ1, σ
2
1), enduring the risks of two types of errors:

1. α0: the probability that T ∼ N (µ0, σ
2
0) but we judge it as T ∼ N (µ1, σ

2
1);

2. α1: the probability that T ∼ N (µ1, σ
2
1) but we judge it as T ∼ N (µ0, σ

2
0);

The relationship between µ0, µ1, τ, α0 and α1 is illustrated in Figure 1. Let Φ
be the cumulative distribution functions of the standard normal distribution.
According to Figure 1 we have{

τ = µ0 + Φ−1(1− α0)σ0 = µ1 − Φ−1(1− α1)σ1

µ1 − µ0 = Φ−1(1− α0)σ0 + Φ−1(1− α1)σ1

(5)

In practice, the normal distribution is usually derived from the binary distribu-
tion, so µ0, µ1, σ0, σ1 are related to the number of tests. According to Equation 5,
it is easy to calculate the proper number of tests satisfying the desiring α0, α1.

3 HD/HDL Cryptanalysis from an Algebraic Perspective

In this section, we give the theory about the ℓth derivative of a Boolean function f
from an algebraic perspective. This is a general case of the algebraic perspective
on DL [LLL21]. It is well known that the cube/integral attacks are special cases
of HD attacks with all ℓ linearly-independent differences being unit vectors. The
expression of the HD derivative of f in this case is the coefficient of the so-called
cube term [DS09]. The theory in this section answers such a question: given any
ℓ linear-independent differences, what is the expression of the HD derivative of
f?
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Given a Boolean function f : Fn
2 → F2 and an ℓth-order input difference

∆ = (∆0,∆1, . . . , ∆ℓ−1) ∈ (Fn
2 )

ℓ, the input set is X ⊕ L(∆) for a certain input
X ∈ Fn

2 . The ℓth derivative of f is calculated as

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a).

Note that Aℓ = X ⊕ L(∆) is an ℓ-dimensional affine space, so we can link Aℓ

to any another ℓ-dimensional affine space (Aℓ)′ by a bijective mappingMℓ that
sends (Aℓ)′ to Aℓ. Not surprisingly, we tend to choose the simplest ℓ-dimensional
affine space, i.e., the ℓ-dimensional linear space Fℓ

2. One choice of Mℓ can be

Mℓ : Fℓ
2 → Aℓ

(x0, x1, . . . , xℓ−1) 7→ X ⊕ x0∆0 ⊕ x1∆1 ⊕ · · · ⊕ xℓ−1∆ℓ−1 ≜ X ⊕ x∆
(6)

We define a new function f∆ from f with the transformed input set as3:
f∆ : Fn

2 → F2

X 7→ f(X ⊕ x∆)

If we let Dxf∆ represent the coefficient of the maxterm in f∆, i.e., Dxf∆ =
Coe (f (X ⊕ x∆), π(x)) (recall that the maxterm is π(x) =

∏ℓ−1
i=0 xi), we have

the following proposition,
Proposition 1 (Algebraic-Perspective on HD/HDL). Given f : Fn

2 → F2

and an ℓth-order difference ∆ ∈ (Fn
2 )

ℓ, D∆f = Dxf∆.
Proof. With Mℓ as given in Equation 6, for any X we have

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a) =
⊕
x∈Fℓ

2

f(M(x)) =
⊕
x∈Fℓ

2

f(X ⊕ x∆).

From the perspective of cube attacks,⊕
x∈Fℓ

2

f(X ⊕ x∆) = Coe (f(X ⊕ x∆), π(x)) = Dxf∆.

⊓⊔
Example 1. Let f : F3

2 → F2 be f(a0, a1, a2) = a0a1a2 ⊕ a0a1 ⊕ a0a2 ⊕ a1a2,
∆ = (∆0,∆1) where ∆0 = (1, 0, 1) and ∆1 = (1, 1, 1), we consider the 2nd

derivative of f at a point X = (X0, X1, X2) ∈ (F2)
3. According to Equation 6,

M(x0, x1) = X ⊕ x0∆0 ⊕ x1∆1 = (X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1). The
composition of f and M is then

f ◦M(x0, x1) = f(X0 ⊕ x0 ⊕ x1, X1 ⊕ x1, X2 ⊕ x0 ⊕ x1)

= x0x1(X0 ⊕X2 ⊕ 1)⊕ x0X0X1 ⊕ x0X0 ⊕ x0X1X2 ⊕ x0X1

⊕ x0X2 ⊕ x0 ⊕ x1X0X1 ⊕ x1X0X2 ⊕ x1X0 ⊕ x1X1X2

⊕ x1X1 ⊕ x1X2 ⊕X0X1X2 ⊕X0X1 ⊕X0X2 ⊕X1X2

3 Note that f∆ is a Boolean function of x = (x0, x1, . . . , xℓ−1), X and ∆ are regarded
as parameters.
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We can see that D∆f(X) = Coe (f ◦M(x0, x1), x0x1) = X0 ⊕X2 ⊕ 1.

4 Estimating HDL Approximation Biases Using HATF
On the basis of Section 3, we propose a technique to measure the bias of a
probabilistic HDL approximation. The basic idea is inspired by the ATF tech-
nique introduced by Liu et al. for the DL cryptanalysis [LLL21]: we construct a
composite representation of the HDL approximation, then estimate the bias ac-
cording to the composite representation. In Section 4.1, we construct the HATF
for a cipher E, which is a composite representation of the ℓth derivative of E.
In Section 4.2, we estimate the bias of the ℓth-order HDL based on HATF un-
der some reasonable assumptions. In Section 4.4, the partitioning technique is
introduced to further improve the precision of the HATF method.

4.1 Construction of the HATF
According to Proposition 1, if for a Boolean function f , we have the ability to
calculate the bias of Dxf∆ = Coe (f(X ⊕ x∆), π(x)), then we will also have the
bias of D∆f . However, Dxf∆ is too complicated to derive, let alone calculate
its bias. Considering that almost all modern ciphers are constructed as a com-
position of small functions whose ANFs are available, we can represent Dxf∆ in
a composite way. Based on the composite representation, it becomes possible to
estimate its bias under some assumptions.

Suppose that an R-round cipher E : Fn
2 → Fn

2 is represented as the following
composition,

E = ER−1 ◦ ER−2 ◦ · · · ◦ E0, Er : Fn
2 → Fn

2 (7)
then, according to Proposition 1, to calculate the ℓth-order differential of E with
the input difference ∆ = (∆0,∆1, . . . , ∆ℓ−1), we can calculate DxE (X ⊕ x∆) .
Here E is a vectorial Boolean function as E = (E[0], E[1], . . . , E[n − 1]), so
DxE (X ⊕ x∆) = (DxE[0] (X ⊕ x∆) , . . . , DxE[n− 1] (X ⊕ x∆)).

In the following, we will write X ⊕x∆ in a more general form. Let ei be the
unit vector with only the ith bit being 1, then

αu =


X, if u = 0

∆i, else if u = ei

0, otherwise
then X⊕x∆ = X⊕x0∆0⊕x1∆1⊕· · ·⊕xℓ−1∆ℓ−1 can be written in an equivalent
form as

X ⊕ x∆ =
⊕
u∈Fℓ

2

αux
u, αu ∈ Fn

2 .

x = (x0, x1, . . . , xℓ−1) are ℓ symbolic variables in this representation. Hence, the
input and output of Er are both polynomials of x as follows,

⊕
u∈Fℓ

2

α(r+1)
u xu = Er

⊕
u∈Fℓ

2

α(r)
u xu

 , α(r+1)
u , α(r)

u ∈ Fn
2

12



Algorithm 1 Construction of the HATF Eℓ from a cipher E

Input: 1. the ANFs of components of E = ER−1 ◦ · · ·E0,
2. the order ℓ,
3. the block size n,
4. an ℓth-order difference (∆0, . . . ,∆ℓ−1),
5. an input value X

Output: the ℓth-order HATF Eℓ = Eℓr−1 ◦ · · · ◦ Eℓ0
1: Let α(0)

0 = X, α(0)
ei = ∆i, ∆(0)

u = 0 for all wt(u) ≥ 2
2: for 1 ≤ r < R do
3: for 0 ≤ i < n do
4: Calculate f = Er[i]

(⊕
u∈Fn2

αux
u
)

5: for 0 ≤ u < 2ℓ do
6: Calculate α

(r+1)
u [i] = Coe (f,xu)

7: end for
8: end for
9: end for
10: return α

(r)
u for all 1 ≤ r ≤ R and u ∈ Fn

2 , which are actually Eℓ

Since α
(r+1)
u is a vectorial Boolean function with all α(r)

u as input, we derive a
new vectorial Boolean function from Er:

Eℓi : (Fn
2 )

2ℓ → (Fn
2 )

2ℓ
,

(
α(r)
u , u ∈ Fℓ

2

)
7→

(
α(r+1)
u , u ∈ Fℓ

2

)
where

α(r+1)
u = fu

(
α(r)
u , u ∈ Fn

2

)
= Coe

Er

⊕
u∈Fn

2

α(r)
u xu

,xu

 .

Connecting all Eℓr , 0 ≤ r < R, we derive from E a composite function Eℓ:

Eℓ = EℓR−1 ◦ EℓR−2 ◦ · · · ◦ Eℓ0, Eℓi : (Fn
2 )

2ℓ → (Fn
2 )

2ℓ (8)

Definition 1 (ℓth Higher-order Algebraic Transitional Form (ℓth HATF)).
The composite function in Equation 8 above is called the ℓth Higher-order Al-
gebraic Transitional Form (ℓth HATF) of E. If the order information is clear
from the context, we will omit the superscript ℓ for convenience.

Algorithm 1 shows the detailed process of constructing a HATF. The time
complexity of Algorithm 1 is dominated by line 4, i.e., calculating Er[i]

(⊕
u∈Fn

2
αux

u
)

.
If deg(Er) = d, then the complexity of calculating Er[i] is dominated by the cal-
culation of all the d-degree monomials in Er[i]. For each d-degree monomial,
we need to multiply d bits of

⊕
u∈Fn

2
αux

u. The complexity of computing a d-
degree monomial is about 2dℓ multiplications and 2dℓ additions. Suppose there
are t d-degree monomials in Er[i], the time complexity of computing all d-degree

13



monomials is about C1 = 2·t·2dℓ. Then the complexity of computing an R-round
cipher is approximately Ch = 2 · R · n · t · 2dℓ multiplications or additions. For
a specific cipher, the round R, block size n, algebraic degree d and the number
of d-degree monomials are all constants, thus the complexity of constructing the
HATF is O(2dℓ).

The main part of memory complexity is to store α
(r)
u [i] for every round (line 6

in Algorithm 1). In each α
(r)
u [i], there are at most 2ℓ terms, so the memory cost

is bounded by O(22ℓ).
Next, we introduce a useful property of HATF as Proposition 2.

Proposition 2. Let Eℓ in Equation 8 be the HATF of E in Equation 7. For
each 0 ≤ r < R, the algebraic degree of Eℓr is equal to the algebraic degree of Er.

Proof. Let deg(Er) = d and consider the output of Eℓr . Since

α(r+1)
u = Coe

Ei

⊕
u∈Fn

2

α(r)
u xu

,xu

 ,

each bit of α
(r+1)
u xu is obtained by multiplying at most d different bits of⊕

u∈Fℓ
2
α
(r)
u xu. Therefore, the algebraic degree of α

(r+1)
u is at most d. Finally,

when u = 0, α(r+1)
0 is just the output of Er(α

(r)
0 ), so deg(Eℓr) = deg(Er). ⊓⊔

4.2 Estimation of the HDL Bias based on HATF

Suppose we have obtained the ℓth HATF of a cipher E = ER−1◦· · ·◦E0 according
to Algorithm 1. The biases of the ℓth-order HD/HDL approximations of all the
output bits of E are biases of α(R)

1 (where 1 is the ℓ-bit vector with all elements
being 1). From the HATF of E, we know the composite form of α(R)

1 is as follows,(
α(0)
u , u ∈ Fn

2

)
E0−→

(
α(1)
u , u ∈ Fn

2

)
E1−→ · · · ER−2−−−→

(
α(R−1)
u , u ∈ Fn

2

) ER−1−−−→ α
(R)
1 .

Besides, the bias of a(0)u , u ∈ Fn
2 is available since they are the input values and

differences chosen by adversaries (under a chosen-plaintext attack).
Under the assumption that all the bits of α(r)

u , u ∈ Fn
2 are independent, the

bias of α
(r+1)
u , u ∈ Fn

2 can be estimated according to Lemma 1. Therefore, we
can calculate the bias of α(r)

1 from α
(0)
u , u ∈ Fn

2 iteratively.
The detailed process is shown in Algorithm 2 with blue words. According to

Lemma 1, the time complexity of computing the bias of a Boolean function is
exponentially related to the number of variables. For a fixed round r and index
i, α(r+1)

1 [i] has the most number of variables as compared to α
(r+1)
u , u ̸= 1. If

the algebraic degree of α
(r+1)
1 [i] is d, then the number of variables in it is at

most d× 2ℓ, and the numbers of variables in other α(r)
u [i], u ̸= 1 are significantly

smaller. Therefore the time complexity of line 5 in Algorithm 2 is about 2d×2ℓ .
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Algorithm 2 Estimate the bias of α(r)
1

Input: 1. the HATF Eℓ = Eℓr−1 ◦ · · · ◦ Eℓ0,
2. the bias of α(0)

u [i] for all 0 ≤ i < n and u ∈ Fn
2

Output: the ℓth-order HATF Eℓ = Eℓr−1 ◦ · · · ◦ Eℓ0
1: for 1 ≤ r < R do
2: for 0 ≤ i < n do
3: for 0 ≤ u < 2ℓ do
4: /* For general cases */
5: Compute the bias of α(r)

u [i] using Lemma 1
6: /* For quadratic cases */
7: Find M so that α(r)

u [i] = g ◦M−1 (Lemma 2)
8: Compute the bias of M−1

(
α
(r)
u , u ∈ Fn

2

)
(Piling-up lemma)

9: Compute the bias of α(r)
u [i] with g ◦M−1 (Lemma 3)

10: end for
11: end for
12: end for
13: return the bias of α(R)

1 [i] for 0 ≤ i < n

The whole complexity is then approximately R · n · 2ℓ · 2d×2ℓ , which can be
bounded by O(2ℓ+d×2ℓ). The memory complexity is negligible.

Reducing the Complexity for Quadratic Boolean Functions. Since the
complexity of estimating the bias from HATF is O(2ℓ+d×2ℓ), even a small order
will result in high complexity. In the following, we show that for ciphers whose
round functions are quadratic, the complexity can be reduced from O(2ℓ+d×2ℓ)
to O(23.8ℓ).

Note that a Boolean function is quadratic if its algebraic degree is 2. A
disjoint quadratic Boolean function is defined as follows,

Definition 2 (Disjoint quadratic Boolean function [SSS+19]). A quadratic
Boolean function is disjoint if all its quadratic monomials do not share any com-
mon variables.

In [SSS+19], Shi et al. introduced a method of converting any quadratic Boolean
function to a disjoint form with polynomial time complexity. The detailed algo-
rithm can be found in [SSS+19] and will be omitted here. We only give a small
example to show its core idea.

Example 2. Let f = x0x1 ⊕ x0x2 ⊕ x1x2. It is not disjoint, but we can convert
it to a disjoint Boolean function with the following steps:

1. f = x0x1 ⊕ x0x2 ⊕ x1x2 = x0(x1 ⊕ x2) ⊕ x1x2, we first let x′
1 = x1 ⊕ x2 to

obtain g = x0x
′
1 + (x′

1 ⊕ x2)x2 = x0x
′
1 ⊕ x′

1x2 ⊕ x2.
2. g = x′

1(x0 ⊕ x2) + x2, we then let x′
0 = x0 ⊕ x2 and obtain g = x′

1x
′
0 ⊕ x2,

then g is a disjoint quadratic Boolean function.
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During the process, we do linear variable substitutions with x′
1 = x1 ⊕ x2 and

x′
0 = x0 ⊕ x2. For sake of convenience, we let x′

2 = x2, so g = f(M t[x0, x1, x2]
t)

where M =

1 0 0
0 1 0
1 1 1

. Equivalently, f = g ◦ (M t)−1.

We write this method as a Lemma for convenient citation.

Lemma 2 ([SSS+19]). A quadratic Boolean function f : Fn
2 → Fn

2 can be
converted into a disjoint Boolean function g : Fn

2 → Fn
2 with g = f ◦M where

M ∈ Fn×n
2 is an invertible matrix. The time complexity is O(n3.8) and the

memory complexity is Ω(n2).

The bias of a disjoint quadratic Boolean function can be computed with ease,
as shown in Lemma 3.

Lemma 3. Let g : Fn
2 → F2 is a disjoint quadratic Boolean function as

g = g0 ⊕ g1 ⊕ · · · ⊕ gT−1

where all gi, 0 ≤ i < T do not share common variables, and the biases of all
input variables of g are available. Then we can compute the bias of each gi using
Lemma 1 with small complexities. Finally, the bias of g can be computed with
the piling-up lemma with biases of all gi.

According to Proposition 2, when a cipher uses quadratic round functions,
the round functions of its HATF is also quadratic. For calculating the bias of
α
(r+1)
u [i] (line 5 of Algorithm 2) from α

(r)
u , we first find an invertible matrix

M such that g = α
(r+1)
u [i] ◦M is disjoint according to Lemma 2. Equivalently,

α
(r+1)
u [i] = g ◦ M−1(α

(r)
u , u ∈ Fn

2 )
4. Based on the biases of α

(r)
u , the bias of

M−1
(
α
(r)
u , u ∈ Fn

2

)
can be calculated using the piling-up lemma. Applying the

disjoint Boolean function g to the output of M−1
(
α
(r)
u , u ∈ Fn

2

)
, the bias of

α
(r+1)
u [i] can be obtained according to Lemma 3.

The process is also given in Algorithm 2, but with red words. The complexity
is dominated by line 7, i.e., converting α

(r+1)
u [i] to a disjoint quadratic form.

Since the number of variables in α
(r+1)
u [i] is at most 2 × 2ℓ (we are working on

quadratic functions), the time complexity of line 7 is O(23.8ℓ), and the memory
complexity is Ω(22ℓ).

Considering both Algorithms 1 and 2, the time complexity of computing the
biases of the ℓth HDL approximations is O(2ℓ+d×2ℓ) in general case, and O(23.8ℓ)
for ciphers with quadratic round functions. The memory complexity is Ω(22ℓ).

4 Note that not all bits in α
(r)
u , u ∈ Fn

2 are input of g ◦M−1. We write it in this way
for convenience.
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4.3 Discussion on the Assumption of Independence and Precision

HATF works on the assumption that all bits of α
(r)
u , 0 ≤ r < R, u ∈ Fn

2 are
independent. If we directly use Algorithm 1 to construct the HATF, many related
α
(r+1)
u [i] will be regarded as independent variables (line 6 of Algorithm 1), which

makes our assumption less valid. Thus, we need to avoid such cases as much as
possible. Methods that we use to avoid these related variables are introduced as
follows, both of which are only concerned about line 6 only

1. When deg(α
(r+1)
u [i]) ≤ 1, we do not introduce new variable α

(r+1)
u [i] to

substitute Coe (f,xu), because variables in linear expressions are easier to
be related with other variables. In this case, the following computation will
depend on Coe (f,xu) directly rather than α

(r+1)
u [i].

2. We use a dictionary Q to store each variable substitution as

Q[Coe (f,xu)] = α(r+1)
u [i],

then if Coe (f,xu) or Coe (f,xu) ⊕ 1 has been in Q, we do not need to
introduce new variables, α(r+1)

u [i] or α
(r+1)
u [i]⊕ 1 can be reused.

By these two methods, we can avoid most simple related-bit cases. Other
kinds of relations are relatively more complicated and are not considered in this
paper. We hope that those bits with complicated relationships can be approxi-
mately treated as independent bits.

In terms of the time/memory complexities, the first method increases the
number of variables linearly but does not affect its order of magnitude; the sec-
ond method saves the number of new variables, so it actually reduces the com-
plexity of Algorithm 2. Hence, the time/memory complexities of HATF remain
unchanged up to the O/Ω notations.

According to our experiments, HATF provides good precision in predicting
biased HDL approximations for some ciphers. Taking HDL cryptanalysis of the
Ascon initialization as an example, we give the curves of theoretical and ex-
perimental results of the HDL approximations for 4- and 5-round Ascon in
Section K of Supplementary Material. It can be seen that HATF is truly useful
in predicting highly biased bits.

4.4 Improving the Precision with Partitioning Technique

As the order and rounds increase, the HATF systems become more and more
complicated. The precision of HATF for complicated Boolean functions accord-
ing to Lemma 1 or Lemma 3 drops accordingly. To mitigate the imprecision,
we can partition the whole input space into several subspaces. For each of these
small spaces, we apply our HATF technique to evaluate the biases. The parti-
tion of space can significantly simplify the ANFs of Eℓ, so for each subspace, the
precision can be improved. The methods of partitioning the space are chosen in
different ways for different ciphers, which will be described in our applications.
Here we only give a general idea of the usage of this technique.
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Given an R-round cipher E, suppose we have partitioned the whole input
space S into κ subspaces as S = (S0, S1, . . . , Sκ−1) where all subspaces have the
same size. then for each subspace Si, we will derive a variant of E with Si as
input, denoted by ESi . The ℓth-order HDL bias can be computed as

Bias (Coe (E ,π(x))) = 2−κBias (Coe (ESi ,π(x))) (9)

In other words, the bias of an HDL is computed as the average value of E over
all subspaces.

The partitioning technique is very important to improve the precision, es-
pecially for a large order. For example, in our 8th-order HDL distinguishing
attacks on 5-round Ascon, if we do not partition the input space, the ANFs in
our HATF system will be so complicated that we cannot get the desired biases.

4.5 Conditional HDL Cryptanalysis by Injecting Conditions

In [LLL21], to improve the biases of DL approximations, Liu et al. imposed some
conditions to the first R0 rounds in the ATF. The basic principle is to zero the
differences in the first R0 rounds as much as possible. In our HDL attacks based
on HATF, we can also use this method to obtain a set of conditions to improve
the HDL biases.

In the construction of the first R0-round HATF, we put the first non-constant
α
(r)
u , r ≤ r0, u > 0 into a set I as ideal generators. Next, we reduce all the α

(r)
u

over the ideal generated from I, denoted by “mod I”. If a certain α
(r)
u cannot

be reduced to a constant, we will add this α
(r)
u into I and use the updated I

to reduce the remaining non-constant α
(r)
u . Finally, all α(r)

u , u > 0, r ≤ r0 are
usually reduced to constants, and a system of equations S = {f = 0|f ∈ I}
is obtained. When the conditions in I are satisfied, the HDL distinguisher will
have a significantly higher bias. By checking these conditions, we can recover the
secret keys. These conditions are also used for partitioning the input space. The
algorithm for injecting these conditions is provided in Algorithm 3 in Section C
of Supplementary Material.

5 Applications to Ascon Initialization

Ascon, designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family
of AEAD and hash algorithms [DEMS21]. It has been selected as the winner
in the NIST Lightweight Cryptography competition. Due to page limits, the
description of the Ascon AEAD and its permutation is provided in Section B
of Supplementary Material, we also recommend that readers refer to [DEMS21]
for the whole specification.
Notations used for describing the Ascon initialization. For the Ascon
initialization, the 320-bit output state after r rounds is denoted by

S(r) = S(r)[0]∥S(r)[1]∥S(r)[2]∥S(r)[3]∥S(r)[4],
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where S(r)[i] is the ith word (the ith row) of S(r); S(0) is the input of the whole
permutation. The jth bit of S(r)[i] is denoted by S(r)[i][j] where 0 ≤ i < 5, 0 ≤
j < 64. S(r)[0][0] is the leftmost bit of the first row of the state matrix S(r).
Let pC , pS , pL represent the operations of addition of constants, substitution
layer, linear diffusion layer, respectively. Then S(r) = (pL ◦ pS ◦ pC)r(S(0)).
The adversary can only access the first word of the output state for Ascon-128,
and the first two words for Ascon-128a (our cryptanalysis focuses on Ascon-
128, so it is also applicable to Ascon-128a). Since the linear layer is applied to
each row, we do not consider the linear layer of the last round.

Since pS is quadratic, the time complexity for an ℓth-order HDL cryptanalysis
of Ascon is O(23.8ℓ). To apply the HATF technique, we need to decompose the
R-round Ascon initialization into several small parts. In this paper, we take
the same method to cut the Ascon functions as [LLL21]5. Firstly, we divide the
Sbox of Ascon into two parts, pSL

and pSN
. The first part of the Sbox, pSL

, is
a linear operation

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

where (x0, x1, x2, x3, x4) is the input of pSL
. The round function of the Ascon

permutation is then divided into two parts, pA = pSL
◦ pPC

and pB = pL ◦ pSN
.

In Algorithm 1, we let E(0) = pA, and E(r) = pA ◦ pB for 1 ≤ r < R, and
E(R) = pSN

. Thus R-round Ascon is represented as

E = pSN
◦ (pA ◦ pB)R−1 ◦ pA

The 128-bit key and 128-bit nonce are set to 256 binary variables, the IV is set
to the constant specified in [DEMS21].

When applying the ℓth-order HDL distinguishing attack on the Ascon ini-
tialization, we choose ∆j , 0 ≤ j < ℓ as the ℓ linearly-independent differences,
where ∆j is active in the two nonce bits of the same Sbox, i.e., S(0)[3][ij ] and
S(0)[4][ij ] (0 ≤ ij < 64). Then the input difference can be denoted by an ℓ-tuple,
denoted by ∆(i0, i1, . . . , iℓ−1). To simplify the ANFs, we by default always set
S(0)[3][ij ] = S(0)[4][ij ] = 0. For R-round outputs, we consider the single-bit bias
of the first word, i.e., S(R)[0][i], 0 ≤ i < 64. We choose such input differences
because the input of Ascon comes into Sboxes directly and our choices of input
can simplify the ANFs.

5.1 HDL Distinguishers for Ascon

Application 1: Revisiting the first-order DL distinguishers for 4- and
5-round Ascon. Our first application is to revisit two DL distinguishers on
the 4- and 5-round initialization of Ascon. These two DL distinguishers were
first found by the designers in [DEMS15] with experiments. The input difference
was set as ∆(0). Although the classical DL attack theory predicted that the
5 Our experiments show such cutting can lead to slightly better results compared to
the cutting method according to the rounds, in the case of HATF.
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4-round distinguisher has a bias of 2−20, experiments showed that its real bias is
about 2−2 which is significantly higher. Later, at EUROCRYPT 2019, Bar-On
et al. [BDKW19] revisited this distinguisher and used the Differential-Linear
Connectivity Table (DLCT) technique to give a higher theoretical estimation
of 2−5. Recently, at CRYPTO 2021, Liu et al. used the ATF to improve the
theoretical bias to 2−2.36, which is the most precise value before this paper.
However, none of the three methods can find any 5-round DL distinguisher.

Our HATF technique is a higher-order extension of the ATF technique, so it
is also applicable to the first-order DL attack. With the partitioning technique,
we achieved better estimation. Setting the input difference as ∆(0), the two key
bits in the same Sbox, i.e., S(0)[1][0] and S(0)[2][0], are chosen to partition the
input space. Let S(0)[1][0]||S(0)[2][0] be 00, 01, 10 and 10, we partition the input
subspace to 4 equal-size subspaces. The bias of S(4)[0][54] is then

Bias(S(4)[0][54]) =


2−2.678, when (S(0)[1][0], S(0)[2][0]) = 00
2−2.678, when (S(0)[1][0], S(0)[2][0]) = 01
2−1.678, when (S(0)[1][0], S(0)[2][0]) = 10
2−1.678, when (S(0)[1][0], S(0)[2][0]) = 11

According to the partitioning technique and Equation 9,

Bias(S(4)[0][54]) = 2−2(2−2.678 + 2−2.678 + 2−1.678 + 2−1.678) ≈ 2−2.09.

This theoretical bias is again closer to the experimental bias 2−2.
For 5-round Ascon, the known DL distinguisher is also with the input dif-

ference ∆(0), the bias of S(5)[0][47] is about 2−9 6. With the above partition,
the bias from the HATF is always 0, hence we need to partition the space into
smaller ones to detect the bias. According to Section 4.5, we can derive a set
of 7 conditions that affect the bias significantly. The 7 conditions are provided
in Section D of Supplementary Material. Since the 7 conditions are all balanced
Boolean functions, by assigning all possible values to them (every Boolean func-
tion then has two statuses: true or false), we can partition the whole space into
128 subspaces. Computing HATF for every individual subspace, we obtain the
average bias of approximately 2−10. This is the first theoretical method that can
predict this 5-round DL bias.

Application 2: 2nd-order HDL distinguisher for 4-round Ascon. Our
second application is the 2nd-order DL distinguisher for 4-round Ascon initial-
ization. We exhaustively search through all possible ∆(0, i), 1 ≤ i < 64 as our
2nd-order differences, all such differences lead to highly biased 4-round output
bits. Especially, when (i, j) = (0, 60), the bias of S(4)[0][50] is 1

2 , i.e., this is a de-
terministic 2nd-order DL bias. With 226 randomly chosen bias, this determinant
distinguisher is fully verified. We plot the theoretical and experimental biases of
6 Under the default setting that S(0)[3][0] = S(0)[4][0], see [DEMS15] for more infor-
mation about this DL distinguisher.
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Fig. 2: Theoretical and experimental biases for 4-round and 5-round Ascon

the 64 bits of S(4)[0] as shown in Figure 2a, and the concrete data is provided in
Table 6 in Section E of Supplementary Material. The theoretical biases are very
close to the experimental ones. According to these 2nd-order HDL biases, one
sample, i.e., 22 chosen nonces is enough to distinguish the 4-round initialization.

Application 3: 2nd-order HDL distinguisher for 5-round Ascon. In our
2nd-order HDL distinguishing attack on the 5-round Ascon initialization, we
also exhausted all possible ∆(0, i), 1 ≤ i < 64 differences and checked every single
bit output of S(5)[0], the most significant bias is S(5)[0][50] when (i, j) = (0, 3)
which is predicted to be 2−7.05 by HATF. We use 226 samples to check this bias
and find that it should be 2−6.60 approximately, which is slightly larger but still
considerably close to our prediction.

Application 4: 8th-order HDL distinguisher for 5-round Ascon. Gener-
ally speaking, as the order increases, the biases become more and more signifi-
cant according to HATF. Here we give the results of the 8th-order HDL distin-
guishing attack on the 5-round Ascon initialization. We randomly select 8 in-
dexes (i0, i1, . . . , i7) = (0, 8, 9, 13, 14, 26, 43, 60) as the 8th-order input differences
∆(0, 8, 9, 13, 14, 26, 43, 60). The 16 key bits in the same Sboxes with the input dif-
ferences are used to partition the input space into 216 subspaces. Applying HATF
to each of the subspaces, and calculating the average bias, we find all single bits
are highly biased. For example, HATF predicts that Bias(S(5)[0][50]) = 2−4.73.
With 222 samples, experiments show that this bias is about 2−3.35. The average
bias over the 64 output bits is predicted as 2−6.34, and the experimental result
is 2−4.11. The theoretical and experimental biases of all 64 bits of S(5)[0] are
shown in Figure 2b, the concrete biases are provided in Table 7 in Section E of
Supplementary Material.
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We use this 8th-order HDL approximation to mount the best distinguishing
attack on 5-round Ascon. Suppose that we encrypt N samples, we can observe
64N output bits in total. Regarding each bit of S(5)[0] as a Bernoulli experi-
ment with expectation of 1

2 + 2−4.11, The number of occurrences of 0 conforms
to the binomial distribution B(64N, 1

2 + 2−4.11), which can be approximated by
a normal distribution N (35.71N, 15.79N) for convenient analysis. In a random
case, the number of occurrences of 0 conforms to another binomial distribution
B(64N, 1

2 ), which can be approximated by N (32N, 16N). The method to dis-
tinguish two normal distributions has been introduced in Section 2.4. Setting
that α0 = α1 = 0.05, i.e., we require 95% success rate, according to the second
equation of Equation 5,

35.71N − 32N = Φ−1(0.95) ·
√
16N + Φ−1(0.95) ·

√
15.79N,

thus N ≈ 33.65, i.e., we need to check about 801 output bits. According to the
first equation of Equation 5, the threshold is τ = 35.71N−Φ−1(0.95)·

√
15.79N ≈

424. The time complexity is about 211.65.
We can mount a distinguishing attack as follows,

1. Encrypt a total of 13 samples, for the previous 12 samples, we count the
number of occurrences of 0 in all 64 bits of S(5)[0]; for the 13th sample, we
only count the number of occurrences of 0 in S(5)[0][j], 0 ≤ j < 33. As a
whole, we count 801 bits. Denote the number of occurrences of 0 by T ,

2. If T ≥ 423, the target is the 5-round Ascon initialization; otherwise, the
target is a random function.

We did 1000 times of experiments, and about 900 experiments were successful.
The reason for the gap between the theoretical and experimental success rates
might be that the independent assumptions are not always true.

In Section K of Supplementary Material, we provide the figures of the theo-
retical and experimental results of all 2nd-order HDL approximations for 4- and
5-round Ascon with ∆(0, i), 1 ≤ i < 64, as well as the figures from 3rd to 8th-
order HDL approximations for 5-round Ascon. Based on these data, we have a
detailed discussion on the precision of HATF and the impact of the partitioning
technique. We hope that readers can have a better knowledge of the precision of
HATF from these figures.

5.2 Conditional HDL Attack for Ascon

Application 5: 2nd-order HDL key-recovery attack on 5-round Ascon.
Thanks to the higher bias of the HDL approximations, generally speaking, we
can mount key-recovery attacks more efficiently than DL attacks. In this paper,
we use several 2nd-order HDL approximations to recover the secret keys from
5-round Ascon, which is the most efficient attack for 5-round Ascon thus far.
The idea of this key-recovery attack is similar to the conditional DL attacks
introduced in [LLL21]. When applying the HATF, we inject the conditions for
the first two rounds according to Section 4.5. By exhausting all possible 2nd-order
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differences ∆(i, j), all of them lead to at least one highly biased bit. The two
most significant ones are listed as follows (readers can use our code to generate
all of them),

1. When ∆(i, j) = ∆(i′, i′+9), 0 ≤ i′ < 64, under 14 conditions, Bias(S(5)[0][27+
i′]) = 0.375,

2. When ∆(i, j) = ∆(i′, i′+24), 0 ≤ i′ < 64, under 16 conditions, Bias(S(5)[0][51+
i′]) = 0.313.

Experiments with 226 samples have fully verified these biased bits. With these
two 2nd-order approximations, we can do the key-recovery attack with about
222 computations. Since this attack is similar to the key-recovery attack on
Xoodyak, we provide all the details in Section F of Supplementary Material.

Application 6: 3rd-order HDL approximation for 6-round Ascon. At
the end of this section, we present a conditional 3rd-order HDL approximation
for 6-round Ascon initialization. In [LLL21], Liu et al. showed that there are no
conditional DL approximations for 6-round Ascon initialization. As the order
increases, it is not surprising that there are truly some HDL approximations
for 6 (or even more) rounds. However, from the 5-round to the 6-round, the
complexity required to find a highly biased approximation become significantly
larger. In our conditional 3rd-order HDL approximation, we inject 24 conditions
into the first two rounds of the HATF. The conditions are provided in Section G
of Supplementary Material. The input difference is ∆(0, 30, 61), the bias occurs
in S(6)[0][34] and is predicted as 2−25.97. It is difficult to verify this bias with
experiments directly. However, since S(6)[0][34] is the output bit of the Sbox
in the 6th round, we can verify the bias of bits in S(5). According to the linear
approximation table (LAT) of Ascon’s Sbox, there is a mask propagation 0x3→
0x10 with a bias of −2−2. Thus, S(5)[3][34]⊕S(5)[4][34] (the two bits are inputs of
the Sbox related to S(6)[0][34]) may have a high bias. We use 230 samples to test
it, the bias of S(5)[3][34] ⊕ S(5)[4][34] is about 2−14. Considering the pilling-up
lemma and we have 8 approximations, the bias of S(6)[0][34] should be around
2−22. It means that the 6-round conditional 3rd HDL approximation is true.

6 Applications to Xoodyak Initialization and Xoodoo

Xoodyak is a cryptographic primitive for hashing, authenticated encryption,
and MAC computation, and is one of the ten finalists of the NIST LWC compe-
tition [DHP+20]. Xoodyak uses Xoodoo as its underlying cryptographic per-
mutation, which is a family of 384-bit to 384-bit permutations [DHAK18b]. The
384-bit state of Xoodoo is arranged into a 4 × 3 × 32 cube and a state bit is
denoted by S[x][y][z]. When x and z are fixed, the three bits of S[x][·][z] are
called a column; when y is fixed, the 128 bits of S[·][y][·] are called a plane.
The input and output states of the rth round are denoted by S(r−1) and S(r),
respectively. The initial state is then denoted by S(0). One round of Xoodoo
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consists of five operations as ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ.

θ : S[x][y][z] = S[x][y][z]⊕
⊕
y

S[x− 1][y][z − 5]⊕
⊕
y

S[x− 1][y][z − 14]

ρwest : S[x][1][z] = S[x− 1][1][z], S[x][2][z] = S[x][2][z − 11]

ι : S[0][0] = S[0][0]⊕RCi

χ : S[x][y][z] = S[x][y][z]⊕ ((S[x][y + 1][z]⊕ 1) · S[x][y + 2][z])

ρeast : S[x][1][z] = S[x][1][z − 1], S[x][2][z] = S[x− 2][2][z − 8]

RCi in the ι operation is the i-round constant, which can be found in [DHAK18b].
Note that χ is a quadratic function. Xoodyak AEAD supports three methods
to handle the nonces. This paper focuses on the third method’s initialization. In
this mode, the 128-bit state of S(0)[x][0][z], 0 ≤ x < 4, 0 ≤ z < 32 are initialized
by an 128-bit key, denoted by ki where i = z+32x, and the remaining 256 bits of
S(0)[x][y][z], 0 ≤ x < 4, 1 ≤ y < 3, 0 ≤ z < 32 by a 256-bit nonce, denoted by ui

where i = z+32(x+4(y−1)). Then, Xoodoo is applied to the initialized state,
and the first 192 bits are visible and XORed to the first block of the plaintext.

6.1 HDL Distinguishers for Xoodyak and Xoodoo

Application 1: Revisiting the DL Distinguishers for 4-round Xoodyak.
In [DW22], Dunkelman and Weizman gave the first DL attacks on 4-round
Xoodyak under the single-key model and on 5-round Xoodyak under the
related-key model. The two distinguishers used in the attacks are detected by ex-
periments. HATF with the partitioning technique can easily give the theoretical
biases for the two distinguishers.

For the 4 rounds, the input difference is in (u0, u128) (i.e., S(0)[0][1][0] and
S(0)[0][2][0]), and the output bit of S(4)[0][1][15] has a bias of about 2−9.7. Ap-
plying our HATF technique to the 4-round Xoodyak, we first obtain a set of 4
conditions that are injected into the first round to zero all the differences after
the first round according to Section 4.5. These 4 conditions are listed as follows,

u102 = k11 ⊕ k102 ⊕ k125 ⊕ u125 ⊕ u230 ⊕ u253

u70 = k70 ⊕ k93 ⊕ u93 ⊕ u107 ⊕ u198 ⊕ u221 ⊕ 1

u7 = k7 ⊕ k16 ⊕ u16 ⊕ u135 ⊕ u144 ⊕ u181

u18 = k18 ⊕ k27 ⊕ k32 ⊕ u27 ⊕ u146 ⊕ u155 ⊕ 1

Since these 4 conditions are all linear and independent, they can partition the
whole input space into 16 subspaces by assigning all possible values to them.
After applying the first-order HATF technique, the bias of S(4)[0][1][15] is

Bias(S(4)[0][1][15]) = 2−9.67,

which is very close to the experimental results.
In the related-key DL attack on the 5-round Xoodyak, Dunkelman and

Weizman used another 4-round DL distinguisher where the input difference is in
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(k0, u128) (i.e., S(0)[0][0][0] and S(0)[0][2][0]) and the output bias of S(4)[0][0][0]
is about −2−5.36 [DW22]. Again, this distinguisher was obtained by experiments.
To apply HATF to it, we also obtain 4 equations by injecting conditions into the
first round,

u103 = k103 ⊕ k112 ⊕ u112 ⊕ u149 ⊕ u231 ⊕ u240 ⊕ 1

u70 = k70 ⊕ k93 ⊕ u93 ⊕ u107 ⊕ u198 ⊕ u221 ⊕ 1

u102 = k11 ⊕ k102 ⊕ k125 ⊕ u125 ⊕ u230 ⊕ u253

u82 = k82 ⊕ k91 ⊕ u91 ⊕ u96 ⊕ u210 ⊕ u219

Another time, we obtain 16 subspaces. After applying the first-order HATF
technique to each subspace, the bias of S(4)[0][0][0] is

Bias(S(4)[0][0][0]) = −2−6,

which is very close to the experimental results.

Application 2: 2nd-order HDL distinguisher for 4-round Xoodyak. In
our 2nd-order distinguisher, we choose the two differences as ∆0 that is active in
(u0, u128), ∆1 that is active in (u47, u175). After 4-round Xoodyak initialization,
our HATF technique shows that the bias of S(4)[0][0][12] is about 0.019 ≈ 2−5.72.
Experiments with 226 randomly-selected samples show the real bias is also ap-
proximately 2−5.72.

Application 3: 4th-order HDL distinguisher for 4-round Xoodyak. Un-
like Ascon, the nonlinear function of Xoodoo (χ) is after the linear opera-
tion. Hence if we select low-weight input differences before θ, the input dif-
ferences into χ are complicated. Thus, we also tried selecting low-weight dif-
ferences before χ, then we can compute the actual differences back through
(θ◦ρwest ◦ ι)−1. In our 4th-order distinguisher, we choose four differences such as
(Let S be the input state): ∆0 is active in (S[0][0][0], S[0][2][0]), ∆1 is active in
(S[2][0][7], S[2][2][7]), ∆2 is active in (S[2][0][15], S[2][2][15]), and ∆3 is active in
(S[3][0][27], S[3][2][27]). After 3.5 rounds of Xoodyak initialization (ρeast ◦χ of
the first round and the remaining three full rounds), our HATF technique shows
that the bias of S(4)[0][1][1] is 2−1. Thus, when the input difference of the 4-
round Xoodyak is then (θ ◦ρwest ◦ ι)−1(∆0,∆1,∆2,∆3), the bias of S(4)[0][1][1]
is 2−1. Note that (θ ◦ ρwest ◦ ι)−1(∆0,∆1,∆2,∆3) will be active in all three
planes, so this HDL distinguisher is under the related-key model.

Application 4: 2nd-order HDL distinguisher for 5-round Xoodyak. It be-
comes very difficult to detect useful HDL approximations for 5-round Xoodyak
under the single-key model, we exhaust all possible 2nd-order differences that
are active in (u0, u128) and (uj , uj+128). If we do not inject any conditions, the
biases of all output bits from HATF are all 0. Hence, we first inject 8 conditions
according to Section 4.5. When the input difference is active in (u0, u128) and
(u34, u162), the highest bias occurs in S(5)[0][0][20] which is 2−37. We then tried
all 256 possibilities of the 8 conditions and found the average bias to be 2−45.
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Application 5: 2nd- and 3rd-order HDL distinguishers for 4- and 5-
round Xoodoo. Besides Xoodyak, Xoodoo also plays an important role in
other schemes such as Xoofff [DHAK18a]. Thus, it is also interesting to see
if there are some HDL distinguishers for Xoodoo. Since Xoodoo is a public
permutation, we do not need to consider the linear layers before the first non-
linear operations in the first round. Let S be the input state of the first χ. First,
we let the 288 bits in S[x], 1 ≤ x < 4 be zero. Next, for the remaining 96 bits
in S[0], we set S[0][0][z] = S[0][2][z] and S[0][1][z] = 0 for 0 ≤ z < 32. For the
ℓth-order HDL attack, we choose the input differences ∆(i0, i1, . . . , iℓ−1) that
have 2ℓ active bits of S[0][0][ij ] and S[0][2][ij ].

For 4-round Xoodoo, we choose the input difference as ∆(0, 20), the bias of
S[0][0][0] after 4 rounds would be 1

2 . For 5-round Xoodoo, we choose the input
difference as ∆(0, 13, 14), and the bias of S[1][1][28] is 2−8.96. We experimentally
verified these two approximations, and found the 4-round distinguisher is truly
deterministic and the 5-round 3rd-order HDL approximation has a bias of about
2−8.79 which is very close to our prediction. The big gap of biases between
Xoodyak and Xoodoo implies the Xoodyak gains some strength against HDL
attacks by arranging χ after θ and ρwest.

6.2 HDL Key-Recovery Attacks for Xoodyak

Application 6: 2nd-order HDL key-recovery attack on 4-round Xoodyak.
In our 2nd-order key-recovery attack, we choose the two differences as ∆0 is
active in (u0, u128), ∆1 is active in (u72, u200). We inject 8 conditions in the
first round to cancel the differences. After 4-round Xoodyak initialization, our
HATF technique shows that the bias of S(4)[0][0][14] is about 0.141 when all the
conditions are satisfied. Experiments with 226 randomly-selected samples show
that the real bias is also 0.141 (up to 3 digits precision). The 8 conditions are
listed as follows,

x7 = k7 ⊕ k16 ⊕ x16 ⊕ x135 ⊕ x144 ⊕ x181, x70 = k70 ⊕ k93 ⊕ x93 ⊕ x107 ⊕ x198 ⊕ x221 ⊕ 1

x5 = k5 ⊕ k14 ⊕ x14 ⊕ x51 ⊕ x133 ⊕ x142 ⊕ 1, x67 = k67 ⊕ k90 ⊕ k104 ⊕ x90 ⊕ x195 ⊕ x218 ⊕ 1

x18 = k18 ⊕ k27 ⊕ k32 ⊕ x27 ⊕ x146 ⊕ x155 ⊕ 1, x102 = k11 ⊕ k102 ⊕ k125 ⊕ x125 ⊕ x230 ⊕ x253

x37 = k37 ⊕ k46 ⊕ k83 ⊕ x46 ⊕ x165 ⊕ x174, x88 = k79 ⊕ k88 ⊕ x79 ⊕ x207 ⊕ x216 ⊕ x253

If not all the 8 conditions hold, the bias of S(4)[0][0][14] is at most 0.07. Thus,
doing statistical tests can find the correct assignment of the 8 variables on the left
side, and then 8 bits of key information. Firstly, we fixed all the nonce variables
on the right side as 0, then we try all possible 28 values of the nonce bits on
the left. The values making S(4)[0][0][14] most biased is the values of the key
expressions in each condition. According to Section 2.4, the complexity is about
29. Thus, the time/data complexity for recovering 8 bits of key information in
the above conditions is about 28+9 = 217. We experimentally tested this attack,
and among 100 experiments, we can recover the correct key 96 times. Due to the
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rotational-variance property of Xoodoo, recovering all 128-bit keys needs about
221 computations. This is about 4 times faster than the DL attacks in [DW22].
Application 7: Theoretical 3rd-order HDL key-recovery attack on 5-
round Xoodyak under the single-key model. In [DW22], a related-key DL
attack on 5-round Ascon was given by Dunkelman and Weizman. The authors
built this related-key DL approximation from a 4-round one (the second DL
approximation in Application 1 of this section). Until now, the conditional cube
attack is still the only attack that can reach 5 rounds under the single-key
model [ZLD+20]. In this section, we give a 3rd-order HDL attack on 5-round
Xoodyak under the single-key model.

We choose the 3rd-order difference as (∆0,∆1,∆2) where ∆0 is active in
(u0, u128), ∆1 is active in (u9, u137), and ∆2 is active in (u36, u164). We inject 12
conditions into the first round, then after 5 full rounds, the bias of S(5)[0][0][29]
is predicted as 2−30.72. The 12 conditions are all linear and provided in Section H
of Supplementary Material. We assume that if not all 12 conditions are true, the
bias of S(5)[0][29] is close to 0. Thus, a statistical test with approximately 264

samples is enough to distinguish them according to Section 2.4. Then we can use
a similar strategy as the 4-round attack to recover 12 bits of key information.
The complexity is about 12× 264 ≈ 268. We can repeat this process for 5 other
positions by rotation to recover 60 more bits of key information, the remaining
keys can be searched by force. The whole time/data complex of recovering all
key bits is about 270.2.

7 HD Cryptanalysis Based on DSF Degree Estimation
According to Section 3, f ◦M plays an important role in (higher-order) differ-
ential cryptanalysis, thus we call it differential supporting function and give it a
formal definition.
Definition 3 (Differential Supporting Function (DSF)). Given a Boolean
function f : Fn

2 → F2 and an ℓth-order difference ∆ = (∆0,∆1, . . . , ∆ℓ−1) ∈
(Fn

2 )
ℓ, the composite Boolean function

DSFℓ
f,X,∆(x) = f ◦M(x) = f(X ⊕ x∆),x = (x0, x1, . . . , xℓ−1)

is called the ℓth-order differential supporting function (DSF) of f with respect to
(X,∆). When the order ℓ is clear from context, we will ignore it in the notation,
i.e., DSFf,X,∆(x).

In this paper, we take the Ascon permutation as an example to show the
usage of the DSF. Until now, all attacks on the Ascon permutation with com-
plexity less than 264 can only reach 7 rounds. The only integral distinguishers
given by Todo [Tod15] require more than 2130 calls to attack 8 and more rounds,
already higher than Ascon’s claimed security level (2128 calls). By analyzing the
degree evolution of the DSF, we present a new HD distinguisher for 8 rounds
requiring only 246 complexity.
Basic Idea. Note that in the Definition 3, x are variables while X and ∆
are parameters. Hence, different X and ∆ will lead to different DSF. So it is
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possible to find some proper (X,∆) that reduce the algebraic degree of the DSF.
More specifically, deg(DSFf,X,∆) may be reduced to some values smaller than
the order ℓ. In this case, we derive an integral property for DSFf,X,∆. Applying
the inverse of M, we immediately derive an ℓth-order difference yielding the
following property with probability 1, i.e.,

D∆f(X) =
⊕
x∈Fℓ

2

DSFf,X,∆(x) = 0.

To estimate the degree upper bound of a DSF, we cut a Boolean function
into two phases as follows,

DSFf,X,∆(x) = f(X ⊕ x∆) = f1 ◦ f0(X ⊕ x∆).

We let f0 be simple so that we can compute out its exact ANFs as well as the
exact degrees of the output of f0(X⊕x∆). Next, we update the obtained degrees
by f1 to obtain the degree upper bounds of the whole DSFf,X,∆.

In terms of the r-round Ascon permutation, we choose its first r0 = 2.5
rounds as f0 for it achieves a balance between efficiency and precision7. The
remaining (r − 2.5)-round permutation is seen as f1, the degree update of f1

can be done by methods such as the division properties [Tod15,TM16] or any
other suitable methods. In this paper, we use the method of the degree matrix
to update the algebraic degree of f1:

Definition 4 (Degree Matrix of S(r)). The algebraic degrees or their upper
bounds of the bits in the state S(r) are called a degree matrix of S(r), denoted by

DM(S(r)) =
(
deg(S(r)[i][j]), 0 ≤ i < 5, 0 ≤ j < 64

)
.

Given the degree matrix of S(r), we can quickly calculate the degree matrix
of S(r+1) considering the ANFs of the pS and pL according to Propositions 3 and
4 given in Section I of Supplementary Material. Our experiments show that the
degree matrix method is not worse than the division property to calculate the
upper bound on the algebraic degree of DSFf,X,∆ for the case of Ascon per-
mutation8. The only challenge now is to find a desirable combination of (X,∆).
Heuristic Method of Choosing (X,∆). To find a proper (X,∆), a naive idea
is to exhaust all possible values of (X,∆), but the search space is clearly too
large. For Ascon, we use the same notations as we do in Section 5. Considering
the first operation of the Ascon permutation without pC (we can safely ignore
the first pC operation since we target the permutation) is pS which consists of 64
7 A larger r0 will make the estimation of deg(DSFf,X,∆) more precise but more time-
consuming to compute the ANFs, while a smaller r0 may undermine the precision.

8 Note that the degree matrix method only happens to be as good as the division
property in this specific case. We choose the degree matrix method simply because
it can be more easily integrated into our algorithm. In general case, the division
property has overwhelming advantages in accuracy and versatility.
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parallel small Sboxes. If we consider independent ℓ′th-order differences for each
Sbox S, in total we are considering an (ℓ = 64ℓ′)th-order differences for the whole
permutation. Our experiments show ℓ′ = 1 will achieve the best performance.
This is not surprising, since ℓ′ = 1 means that we put one variable in each Sbox
to linearize all Sboxes, similar ideas were already mentioned in some previous
works such as [BLNS21]. With ℓ′ = 1, our 64th input difference is then denoted
by ∆ = (∆0,∆1, . . . , ∆63). Thus, we write pS(X ⊕ x∆) as follows:

pS(X ⊕ x∆) = S(X0 ⊕ x0∆
′
0)||S(X1 ⊕ x1∆

′
1)|| · · · ||S(X63 ⊕ x63∆

′
63),

where X = X0||X1|| · · · ||X63 and ∆i = 0|| · · · ||∆′
i|| · · · ||0 for 0 ≤ i < 64.

To further reduce the search space, we restrict the 64 Xi’s and 64 ∆′
i’s to

be equal respectively, i.e., (Xi,∆
′
i) = (X̄, ∆̄) for 0 ≤ i < 64. Therefore, we only

need to consider 25 possibilities for X̄ and 31 possibilities for ∆̄ (excluding the
trivial case ∆̄ = 0). The total search space is reduced to 32× 31 = 992 different
cases.

For each (X̄, ∆̄) ∈ F5
2×F5

2\{0}, we calculate the ANFs of f0(X ⊕x∆), then
derive the degree matrix of its output. After that we use Propositions 3 and 4
to update the degree matrix to calculate the degree matrix of S(r) (for r ≥ 4)
which is the degree upper bound of the corresponding DSF. If the degree of a
certain DSF is smaller than 64, we find useful 64th HD distinguishers for r-round
Ascon permutation. The process is illustrated by Algorithm 5 in Section I of
Supplementary Material.

We found dozens of useful HD distinguishers with orders lower than 64 for
up to 8 rounds. Among them, there are 8 optimal combinations of (X̄, ∆̄) that
make the algebraic degree of the third word of S(8) be only 45. They are

(X̄, ∆̄) ∈

{
(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),

(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}
. (10)

In Table 4, we list all the upper bounds on degrees of the DSF up to 8-round
Ascon permutation with respect to (X,∆) in Equation 10. As is seen, for 7
rounds, the degree upper bound of S(7)[4] is only 22, so 223 chosen texts are
enough to enforce the zero output difference in this word. We practically veri-
fied the algebraic degrees in Table 4 for (X,∆) = (0x6, 0x13) up to 7 rounds.
According to Propositions 3 and 4, the degree upper bounds in Table 4 for 8
rounds is also verified.

Therefore, if we choose 246 plaintexts in any 46-dimensional affine space
defined by values in Equation 10, the summation of all ciphertexts will be zero
with probability of 1. Given a random permutation, the probability that the
summation of such 246 ciphertexts will be zero is only 2−64. Thus, 246 chosen
plaintexts are enough to distinguish the 8-round Ascon permutation from a
random permutation.

Applying a similar method to the inverse of Ascon permutation, we can ob-
tain a zero-sum distinguisher for full-round Ascon permutation with 255 time/-
data complexities. Due to the page limit, we provide this part in Section J of
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Table 4: Upper bounds on the algebraic degree of the DSF of the Ascon per-
mutation with (X,∆) in Equation 10. We experimentally verified all algebraic
degrees up to 7 rounds.

Round r
Upper bounds on the algebraic degree

S(r)[0] S(r)[1] S(r)[2] S(r)[3] S(r)[4]

4 3 3 2 2 3
5 6 5 5 6 6
6 11 11 12 12 11
7 23 24 23 23 22
8 47 47 45 46 47

Supplementary Material. We stress that these two distinguishers work for the
Ascon permutation rather than the keyed mode, so it does not threaten the
security of Ascon-AEAD or Ascon-Hash.

8 Conclusion and Discussion

In this paper, we revisited the HD/HDL cryptanalysis from an algebraic perspec-
tive. HATF and DSF are two tools for probabilistic and deterministic HDL/HD
cryptanalysis, respectively. Improved results for Ascon and Xoodyak, as well
as Xoodoo are obtained from the two tools. We believe that the HDL crypt-
analysis has more potential than expected, and deserves more attention.

In terms of HATF, it is the first theoretical tool for nondeterministic HDL
cryptanalysis. It can predict the biases of an ℓth-order HDL approximations with
a time complexity of O(2ℓ+d2ℓ) for ciphers with d-degree round functions. For
ciphers with quadratic round functions, the time complexity can be reduced to
O(23.8ℓ). Thus, HATF is very useful for HDL cryptanalysis of permutation-based
ciphers such as Ascon and Xoodyak. The precision of HATF is supported by
experiments (see Section K). When HATF predicts a biased bit, it is of a great
probability that it is biased as far as our experiments show. Finally, we make it
clear again that HATF does not guarantee any lower or upper bounds on the
bias of a HDL approximation. Whenever possible, the theoretical results should
be verified with experiments.

For DSF, it provides an intuitive method for detecting HD distinguishers
for permutations. With proper choices of (X,∆), the algebraic degree of a DSF
might drop drastically. Therefore, we have a greater opportunity to find better
HD distinguishers rather than to analyze the original Boolean function.

We have shown that a proper partitioning of the input space can improve the
precision of HATF, how to find better or even optimal partitioning methods?
Can we use the HDL cryptanalysis to propose best key-recovery attacks on some
ciphers in terms of rounds? For DSF, our method to choose (X,∆) is intuitive
and actually considers only a small percentage of candidates, can we find better
(X,∆) leading to better HD distinguishers for Ascon permutation? These are
interesting questions worth exploring that we leave as future work.
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A Answers to Eurocrypt 2023 Reviewers’ Final
Consensus

Comment 1: The reviewers also wondered whether a different focus in the main
part might be helpful (e.g., less focus on the inside-out zero-sum distinguishers,
which are not useful for attacks and in a very weak model - see rebuttal -, and
more focus on the other ciphers currently covered in the appendix).

Answer: In the previous version, we focused more on the DSF rather than
HATF. In this version, we pay more attention to HATF. HATF can be used
for estimating biased HDL approximations, which is more interesting than the
zero-sum distinguishers.
Comment 2: The theoretical models build strongly on previous work, such
as [LLL21]. There is some room for further optimization of the approach, e.g.,
by considering a larger search space for the combination of initial structures or
by using a more precise propagation model, such as the division property. This
is reflected in the lack of competitive key-recovery attacks.
Answer: Since we have turned our attention to HATF, we propose more tech-
niques to enhance it and give more details to show its precision. HATF is truly a
generalization of ATF [LLL21]. However, (in this version) the generalization from
ATF to HATF is not trivial. On the theoretical side, the method of calculating
biases is refined to a new framework with clear assumptions (Section 4.2). We use
the disjoint quadratic Boolean functions to handle ciphers with quadratic round
functions. The time complexity of computing the ℓth-order HDL approximations
for a cipher with quadratic round functions is O(23.8ℓ). On the application side,
not only can HATF find biased HDL approximations, but in the DL (first-order
HDL) case it can also give preciser predictions of biases (Section 5) as compared
to the ATF.

In terms of key-recovery attacks, HDL attacks are still weaker than condi-
tional cube attacks considering the number of attacked rounds. However, in the
field where both HDL attacks and conditional cube attacks are applicable, the
HDL attack can be more efficient than the conditional cube attack.

Finally, we highlight that the most interesting thing is that HATF is the
first theoretical tool for calculating the nondeterministic HDL biases, and the
precision is good (see Section K).
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B Brief Specification of ASCON

Ascon, designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family of
AEAD and hash algorithms. At a high level, the Ascon AEAD takes as input
a nonce N , a secret key K, an associated data A and a plaintext or message M ,
and produces a ciphertext C and a tag T . The authenticity of the associated
data and message can be verified against the tag T . Table 5 lists the variants of
Ascon AEAD along with the recommended parameter sets.

Table 5: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6
Ascon-128a 320 128 128 128 128 12 8

Ascon adopts a MonkeyDuplex mode with a stronger keyed initialization
and keyed finalization phases as illustrated in Figure 3. The underlying permu-
tations pa and pb are iterative designs, whose round function p is based on the
substitution permutation network design paradigm and consists of three simple
steps pC , pS , and pL. We now describe the round function p and each step in
detail.

The round function p = pL ◦pS ◦pC operates on a 320-bit state arranged into
five 64-bit words. The input state to the round function at rth round is denoted
by S(r) = S(r)[0]∥S(r)[1]∥S(r)[2]∥S(r)[3]∥S(r)[4], the jth bit of S(r)[i] is denoted
by S(r)[i][j] where 0 ≤ i < 5, 0 ≤ j < 64. We use S(r.5) to represent the state
after pS of the rth round, r ≥ 0.

IV‖K0‖K1‖N0‖N1
320

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 3: The encryption algorithm of Ascon

Addition of constants (pC). An 8-bit constant is XORed to the bit positions
56, · · · , 63 of the 64-bit word S(r)[2] at each round.
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Substitution layer (pS). Update each slice of the 320-bit state by applying the
5-bit Sbox S : F5

2 → F5
2 defined by the following algebraic normal forms:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(11)

The ANF of the inverse of the Sbox is as follows,

y0 = x4x3x2 + x4x3x1 + x4x3x0 + x3x2x0 + x3x2 + x3 + x2 + x1x0 + x1 + 1

y1 = x4x2x0 + x4 + x3x2 + x2x0 + x1 + x0

y2 = x4x3x1 + x4x3 + x4x2x1 + x4x2x0 + x4x2 + x4 + x3x2 + x3x1x0

+x3x1 + x2x1x0 + x2x1 + x2x0 + x2 + x1 + x0 + 1

y3 = x4x2x1 + x4x2x0 + x4x2 + x4x1 + x4 + x3 + x2x1 + x2x0 + x1

y4 = x4x3x2 + x4x2x1 + x4x2x0 + x4x2 + x3x2x0 + x3x2 + x3 + x2x1 + x2x0 + x1x0

(12)
Linear diffusion layer (pL). Apply a linear transformation Σi to each 64-bit word
Sr.5[i] with 0 ≤ i < 5, where Σi is defined as

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)

y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)

y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)

y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)

y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

(13)

In this paper, when we attack r rounds of the Ascon permutation, we can
operate all 320 input bits S0 and observe all 320 output bits of S(r) or S(r.5).
When we attack r rounds of the Ascon initialization, we can operate only S(0)[3]
and S(0)[4] and observe Sr[0].
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C Algorithm for Injecting Conditions into HATF

Algorithm 3 Injecting conditions into the first R0 rounds of the HATF of Eℓ
from a cipher E

Input: 1. the ANFs of components of E = ER−1 ◦ · · ·E0,
2. the order ℓ,
3. the block size n,
4. an ℓth-order difference (∆0, . . . ,∆ℓ−1),
5. an input value X
6. the round R0

Output: a set of conditions I
1: Let α(0)

0 = X, α(0)
ei = ∆i, ∆(0)

u = 0 for all wt(u) ≥ 2
2: I ← ∅
3: for 1 ≤ r ≤ R0 do
4: Calculate Er

(⊕
u∈Fn2

α
(r)
u xu

)
5: for 0 ≤ i < n do
6: for 0 ≤ u < 2ℓ do
7: if Coe

(
Er

(⊕
u∈Fn2

α
(r)
u xu

)
,xu

)
/∈ {0, 1} then

8: I ← Coe
(
Er

(⊕
u∈Fn2

α
(r)
u xu

)
,xu

)
9: for 0 ≤ i < n do ▷ Reduce all the coefficients
10: Er

(⊕
u∈Fn2

α
(r)
u xu

)
= Er

(⊕
u∈Fn2

α
(r)
u xu

)
xu mod I

11: end for
12: end if
13: end for
14: end for
15: end for
16: return I
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D 7 Conditions Used for Partitioning in the DL
Distinguisher for 5-round Ascon. Ascon Initialization

k64 = 0

k0 = 0

u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108 ⊕ u44

⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44 ⊕ k83 ⊕ k86

⊕ k108

u23 = u47 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117 ⊕ u53

⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53 ⊕ k92 ⊕ k95

⊕ k117

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3 ⊕ k25k89

⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9 ⊕ k12

⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83
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E Tables of Biases in Second-Order and 8th-Order HDL
Distinguishers for Ascon

Table 6: Theoretical and experimental biases of 4-round Ascon initialization
with the input difference ∆(0, 60). Note since our experiments are done with 226

samples, only those experimental biases that are significantly greater than 2−13

are reliable.
Bit 0 1 2 3 4 5 6 7 8 9

Theory 2−5.45 2−3.48 2−3.48 2−7.49 2−2.22 2−2.42 2−4.87 2−3.97 2−1.19 2−2.68

Expr. 2−5.60 2−3.39 2−3.71 2−5.73 2−2.19 2−2.42 2−4.03 2−3.63 2−1.19 2−2.68

Bit 10 11 12 13 14 15 16 17 18 19
Theory 2−5.27 2−2.99 2−3.19 2−5.90 2−2.30 2−3.68 2−3.46 2−2.66 2−2.07 2−3.71

Expr. 2−4.17 2−2.86 2−2.68 2−5.34 2−2.14 2−3.61 2−3.22 2−2.45 2−2.07 2−3.71

Bit 20 21 22 23 24 25 26 27 28 29
Theory 2−2.52 2−2.57 2−3.81 2−1.68 2−4.08 2−3.50 2−1.42 2−1.30 2−3.71 2−2.02

Expr. 2−2.44 2−2.43 2−3.57 2−1.54 2−3.36 2−3.07 2−1.42 2−1.30 2−3.72 2−2.02

Bit 30 31 32 33 34 35 36 37 38 39
Theory 2−1.09 2−3.09 2−3.19 2−2.51 2−2.30 2−6.00 2−4.95 2−3.62 2−3.69 2−3.00

Expr. 2−1.09 2−3.09 2−3.19 2−2.45 2−2.30 2−6.67 2−5.91 2−2.91 2−3.25 2−3.00

Bit 40 41 42 43 44 45 46 47 48 49
Theory 2−3.54 2−5.38 2−6.61 2−2.71 2−3.09 2−3.31 2−1.42 2−2.70 2−1.61 2−2.93

Expr. 2−4.00 2−4.76 2−4.84 2−2.62 2−2.98 2−2.60 2−1.42 2−2.29 2−1.61 2−2.29

Bit 50 51 52 53 54 55 56 57 58 59
Theory 2−1.00 2−2.36 2−2.79 2−4.00 2−2.40 2−3.92 2−2.90 2−4.68 2−5.14 2−1.61

Expr. 2−1.00 2−2.34 2−2.45 2−4.00 2−2.19 2−3.54 2−2.61 2−4.68 2−6.20 2−1.56

Bit 60 61 62 63
Theory 2−4.81 2−4.48 2−3.96 2−2.95

Expr. 2−3.54 2−4.48 2−4.42 2−2.59
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Table 7: Theoretical and experimental biases of 5-round Ascon initialization
with the input difference ∆(0, 8, 9, 13, 14, 26, 43, 60). Note since our experiments
are done with 226 samples, only those experimental biases that are significantly
greater than 2−13 are reliable.

Bit 0 1 2 3 4 5 6 7 8 9
Theory 2−6.68 2−7.17 2−7.05 2−5.57 2−7.10 2−6.13 2−6.67 2−7.42 2−6.06 2−4.88

Expr. 2−4.19 2−4.34 2−4.34 2−3.74 2−4.81 2−3.64 2−4.11 2−4.42 2−3.94 2−3.36

Bit 10 11 12 13 14 15 16 17 18 19
Theory 2−9.12 2−7.74 2−5.50 2−7.95 2−8.44 2−7.14 2−5.32 2−8.87 2−7.32 2−7.48

Expr. 2−5.09 2−4.52 2−3.51 2−4.25 2−4.90 2−4.24 2−3.47 2−5.05 2−4.48 2−4.27

Bit 20 21 22 23 24 25 26 27 28 29
Theory 2−6.39 2−6.82 2−6.69 2−5.17 2−11.49 2−7.17 2−8.69 2−6.00 2−6.30 2−5.26

Expr. 2−3.78 2−4.30 2−4.16 2−3.45 2−5.51 2−4.80 2−5.12 2−3.32 2−4.45 2−3.97

Bit 30 31 32 33 34 35 36 37 38 39
Theory 2−7.94 2−6.78 2−6.67 2−5.35 2−6.29 2−10.32 2−5.50 2−4.52 2−4.75 2−6.88

Expr. 2−4.45 2−4.69 2−4.32 2−3.64 2−4.10 2−5.09 2−3.53 2−2.92 2−3.47 2−4.25

Bit 40 41 42 43 44 45 46 47 48 49
Theory 2−7.18 2−5.47 2−6.98 2−7.78 2−7.87 2−5.39 2−6.74 2−7.83 2−7.53 2−7.34

Expr. 2−4.29 2−3.51 2−4.00 2−4.55 2−4.56 2−3.75 2−4.34 2−4.34 2−4.70 2−4.57

Bit 50 51 52 53 54 55 56 57 58 59
Theory 2−4.73 2−6.52 2−9.17 2−9.35 2−8.56 2−5.53 2−7.90 2−8.69 2−5.25 2−4.69

Expr. 2−3.35 2−4.21 2−5.44 2−5.28 2−5.29 2−3.77 2−4.42 2−4.77 2−3.45 2−3.14

Bit 60 61 62 63
Theory 2−8.80 2−9.87 2−5.90 2−5.90

Expr. 2−4.30 2−5.34 2−3.90 2−3.94

41



F Details of HDL Key-Recovery attack on the 5-Round
Ascon Initialization

Although Ascon initialization is not strictly rotation-invariant due to the con-
stant additions and IV, the biases truly follow some rotation-invariant properties
according to our experiments. Thus, in the following we only discuss the ∆(0, 9)
case as an example. It can be easily adapted to other cases.

Key-recovery process. From the condition injection, we obtain 14 conditions,
3 among them are found a bit redundant so we remove them without affecting
the bias significantly. The 11 conditions are given as follows,

k0 = 0 (14)
k64 = 0 (15)
k9 = 0 (16)
k73 = 0 (17)
u86 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108 ⊕ u44

⊕ u83 ⊕ u108 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44 ⊕ k83 ⊕ k86

⊕ k108 (18)
u23 = u47 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118 (19)
u98 = u12k12 ⊕ u12k76 ⊕ u12 ⊕ u34k34 ⊕ u34k98 ⊕ u34 ⊕ u76 ⊕ k12k76 ⊕ k12

⊕ k34k98 ⊕ k34 ⊕ k76 ⊕ k98 ⊕ 1 (20)
u42 = u2 ⊕ u12 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k12 ⊕ k42

⊕ k66 ⊕ k83 (21)
u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117 ⊕ u53

⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53 ⊕ k92 ⊕ k95

⊕ k117 (22)
u11 = u18 ⊕ u21 ⊕ u51 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51 ⊕ u115

⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1 (23)
u32 = u2 ⊕ u56 ⊕ u63 ⊕ u66k2 ⊕ u66 ⊕ u96k32 ⊕ u96 ⊕ u120 ⊕ u127 ⊕ k2 ⊕ k32

⊕ k56 ⊕ k63 ⊕ k120 ⊕ k127 ⊕ 1 (24)

When all these 11 conditions hold, the bias is about 0.373. When the Condi-
tion 22 or Condition 24 doesn’t hold, the bias is about 0.287. In other cases,
the biases are significantly smaller. Especially, if any of Conditions 14–17 does
not hold, the bias is close to zero. Based on these conditions and biases, the
key-recovery attack is performed as follows,

1. Note that we do not have means to control Conditions 14–17, so that we have
to check if k0 = k64 = k9 = k73 = 0 in the first step. For Conditions 18–24,
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we first fix all the nonce variables in the right parts as 0, i.e., variables in

Vr =


u120, u19, u127, u118, u121, u12, u56, u87, u85, u76, u44, u82, u22, u54,

u34, u57, u117, u31, u92, u53, u51, u18, u111, u66, u47, u2, u21, u83,

u106, u28, u96, u108, u115, u75, u63


will be fixed as 0. Next we traverse all possible assignments for the left
variables, i.e., variables in

Vl =
{
u86, u23, u98, u42, u95, u11, u32

}
.

There must be one assignment of Vl making Conditions 18–24 hold. If Con-
ditions 14–17 also hold (k0 = k9 = k64 = k73 = 0), we will see a high bias
in S(5)[0][27], i.e., 0.373. Otherwise, for all assignments of Vl, the bias of
S(5)[0][27] will be close to 0.
To detect this bias, we do a statistical test. Suppose that we use N samples
and denote the times of S(5)[0][27] = 0 by T .
When k0 = k64 = k9 = k73 = 0, for at least one assignment of Vl,

T ∼ N0(N × 0.373, N × 0.373× (1− 0.373)).

If k0 = k64 = k9 = k73 = 0 is not true, for all assignments,

T ∼ N1(N × 0.5, N × 0.25).

We use the theory of Section 2.4 to distinguish the two normal distributions
N0 and N1. Let α0, α1 be the probability of the Type-1 and Type-2 errors,
respectively. We set the Type-2 error as α1 = 0.05 (with 95% probability, the
right assignment can be identified). To make sure that all wrong assignments
are identified with probability 95%, α0 needs to satisfy 1−(1−α0)

128 = 0.05,
thus α0 ≈ 2−11.285. According to Equation 5, we need N = 25.15 samples,
the threshold is τ = 28. In other words, for each of the 27 assignments, we
encrypt 25.15 samples. If there is one assignment such that the number of
S(5)[0][27] = 0 is larger than 28, we determine k0 = k64 = k9 = k73 = 0.
Otherwise, k0 = k64 = k9 = k73 = 0 is not true.

2. If k0 = k64 = k9 = k73 = 0 is not true, we cannot proceed with key-
recovery attack. We have to check other input differences ∆(i, i + 9) until
we find one satisfying ki = ki+64 = ki+9 = ki+73 = 0. Due to the rotation-
invariant property of Ascon (in terms of HDL attacks), we can try at most
64 possible ∆(i, i + 9) for 0 ≤ i < 64. Since the probability of ki = ki+64 =
ki+9 = ki+73 = 0 is 2−4, so on average, we will detect 4 input differences
that satisfy our requirements. Our experiments with 226 randomly-generated
keys show that with about 54% probability, there will be 4 input differences
satisfying ki = ki+64 = ki+9 = ki+73 = 0 (we can improve this probability
by using more HDL approximations later). In the following, we assume k0 =
k64 = k9 = k73 = 0 to discuss the key recovery attack.
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3. When we have known k0 = k64 = k9 = k73 = 0, we need to find out the
exact one right assignment making Conditions 18–24 hold. We again do the
statistical test as above step. In Step 2, only those assignments of Vl that
surpass the threshold will be examined in this step. If not all conditions are
satisfied, the bias of S(5)[0][27] is at most 0.287. Thus, for a wrong assign-
ment, T ∼ N2(N × 0.287, N × 0.287 × (1 − 0.287)). To distinguish N0 and
N2, we need 28.96 samples with the threshold being 423.
Once we obtain the right assignment of Vl, we simultaneously obtain 11 bits
of key information (including k0 = k64 = k9 = k73 = 0).

4. Furthermore, we can obtain more key information. Note that among the 35
variables in Vr, 18 variables are multiplied with certain key bits in Condi-
tions 18–24 (these variables have been labeled by red). By flipping each of
the 18 variables (recall they are set as 0 in the first step) and observing
whether the bias is still 0.373, we can obtain 18 more key equations. For
example, in the Step 2, we have known proper u86 satisfying Condition 18
with all nonce bits in the right side being 0, i.e.,

u86 = k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44 ⊕ k83 ⊕ k86 ⊕ k108

Next, we flip u19 from 0 to 1, then the equation becomes to

u86 = u19k19 ⊕ u19k83 ⊕ u19⊕k19k83⊕k19⊕k22k86⊕k22⊕k44k108⊕k44⊕k83⊕k86⊕k108

If k19⊕ k83⊕ 1 = 0, u19 will not affect Condition 18, so the bias is still high.
However, if k19 ⊕ k83 ⊕ 1 = 1, u19 = 1 will break the conditions, then the
bias is reduced significantly.
Finally, we can recover 29 bits of key information in total. The whole process
is given in Algorithm 4. The complexities occur in the statistical tests in the
Step 1, 3, 4. In Step 1, we need to encrypt 64×27×25.15 ≈ 218.15 samples. In
Step 3, we need to test fewer assignments of Vl that passed the filters of Step
2. The complexity of this step is significantly smaller. In Step 4, we need to
encrypt 18 × 28.96 ≈ 213.13 samples. Since each sample contains 4 nonces,
the whole complexity is about 218.15+2 = 220.15. We have implemented this
attack, for 1000 random keys, we can recover the correct 29 bits of key in
more than 950 experiments, which meets our expectations.

5. Given 4 opportunities satisfying ki = ki+64 = ki+9 = ki+73 = 0, we expect to
recover 29×4 = 116 bits of key information at most. However, the probability
that we have 4 opportunities is only 54%, and it is possible that some key
expressions are related. So we need to use more HDL approximations to
make sure we can recover all the keys. As we mentioned, when ∆(i, j) =
∆(i′, i′ +24), 0 < i′ < 64, Bias(S(5)[0][51]) = 0.313 under 16 conditions. We
can apply the similar process as ∆(i′, i′ +9). Firstly, we select 12 conditions
from the 16 including the 4 conditions of ki = ki+24 = ki+64 = ki+88 = 0
that still keep the bias as 0.313. When not all the 12 conditions are satisfied,
the bias is at most 0.236. When ki = ki+24 = ki+64 = ki+88 = 0 is not true,
the bias is close to zero. The 12 conditions are listed as follows,

k0 = 0
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Algorithm 4 Recover 29 bits of key information for 5-round Ascon
Input: Ascon initialization oracle
Output: 29 bits of key information
1: Assign 0 to all variables in Vr

2: for 0 ≤ i < 63 do
3: Allocate C = ∅
4: for Each of the 27 assignments of Vl, denoted by v do
5: Encrypt 25.15 samples with the input difference ∆(i, i+ 9)
6: if There is more than 28 times that the output difference of S(5)[0][27] is

zero then
7: C ← vr
8: end if
9: end for
10: if C is not ∅ then
11: Test each of assignment in C with 28.96 samples, find the one that makes

S(5)[0][27] is zero for more than 423 times. Denote this assignment as v⋆
12: for Each variable labeled by red in Vr do
13: Flip this variable from 0 to 1, see if the bias of S(5)[0][27] is still 28.96

with v⋆. Derive the corresponding key expressions
14: end for
15: end if
16: end for
17: return 29 key expressions derived

k64 = 0

k24 = 0

k88 = 0

u77 = u13k13 ⊕ u13k77 ⊕ u13 ⊕ u52k52 ⊕ u52k116 ⊕ u52 ⊕ u55k55 ⊕ u55k119

⊕ u55 ⊕ u116 ⊕ u119 ⊕ k13k77 ⊕ k13 ⊕ k52k116 ⊕ k52 ⊕ k55k119 ⊕ k55

⊕ k77 ⊕ k116 ⊕ k119 ⊕ 1;

u108 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108

⊕ u44 ⊕ u83 ⊕ u86 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44

⊕ k83 ⊕ k86 ⊕ k108;

u118 = u23 ⊕ u47 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118;

u117 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117

⊕ u53 ⊕ u92 ⊕ u95 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53

⊕ k92 ⊕ k95 ⊕ k117;

u89 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u67 ⊕ k3k67 ⊕ k3

⊕ k25k89 ⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1;

u78 = u7 ⊕ u14 ⊕ u17 ⊕ u47 ⊕ u71 ⊕ u81k17 ⊕ u81 ⊕ u111k47 ⊕ u111 ⊕ k7
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⊕ k14 ⊕ k17 ⊕ k47 ⊕ k71 ⊕ k78 ⊕ 1;

u82 = u11 ⊕ u18 ⊕ u21 ⊕ u51 ⊕ u75 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51

⊕ u115 ⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1;

u99 = u11 ⊕ u35 ⊕ u42 ⊕ u45 ⊕ u75k11 ⊕ u75 ⊕ u106 ⊕ u109k45 ⊕ u109

⊕ u116k52 ⊕ k11 ⊕ k35 ⊕ k42 ⊕ k45 ⊕ k99 ⊕ k106 ⊕ k116 ⊕ 1;

Thus, in Step 1, to detect the possible positions satisfying ki = ki+24 =
ki+64 = ki+88 = 0 requires the statistical test with 25.90 samples. So the
complexity of Step 1 is about 64×25.90×28 = 219.90 samples. The complexity
of Step 3 is significantly smaller. In Step 4, since there are 21 nonce variables
that are multiplied with keys, the complexity is about 21 × 28.30 ≈ 212.69

samples. Thus, the whole complexity is about 219.90 samples, which is 221.90

nonces. we can obtain in total 33 bits of key information. Together with the
case of ∆(0, 9), we can expect to obtain enough key expressions, then all
keys can be recovered. The whole complexity is estimated as about 222.28.

G Conditions used in Conditional HDL Approximation
on 6-Round Ascon

k64 = 0

k94 = 0

k0 = 0

k30 = 0

k125 = 0

k61 = 0

u86 = u22k22 ⊕ u22k86 ⊕ u22 ⊕ k22k86 ⊕ k22 ⊕ k86 ⊕ 1

u80 = u16k16 ⊕ u16k80 ⊕ u16 ⊕ u19k19 ⊕ u19k83 ⊕ u19 ⊕ u41k41 ⊕ u41k105 ⊕ u41

⊕ u83 ⊕ u105 ⊕ k16k80 ⊕ k16 ⊕ k19k83 ⊕ k19 ⊕ k41k105 ⊕ k41 ⊕ k80 ⊕ k83

⊕ k105 ⊕ 1

u122 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u58k58 ⊕ u58k122 ⊕ u83 ⊕ k19k83 ⊕ k19 ⊕ k58k122

⊕ k83 ⊕ k122 ⊕ 1

u108 = u19k19 ⊕ u19k83 ⊕ u19 ⊕ u22k22 ⊕ u22k86 ⊕ u22 ⊕ u44k44 ⊕ u44k108 ⊕ u44

⊕ u83 ⊕ u86 ⊕ k19k83 ⊕ k19 ⊕ k22k86 ⊕ k22 ⊕ k44k108 ⊕ k44 ⊕ k83 ⊕ k86

⊕ k108 ⊕ 1

u47 = u23 ⊕ u54 ⊕ u57 ⊕ u87k23 ⊕ u87 ⊕ u111 ⊕ u118 ⊕ u121k57 ⊕ u121 ⊕ k23

⊕ k47 ⊕ k54 ⊕ k57 ⊕ k111 ⊕ k118

u17 = u41 ⊕ u48 ⊕ u51 ⊕ u81k17 ⊕ u81 ⊕ u105 ⊕ u112 ⊕ u115k51 ⊕ u115 ⊕ u122k58

⊕ k17 ⊕ k41 ⊕ k48 ⊕ k51 ⊕ k105 ⊕ k112 ⊕ k122

u2 = u12 ⊕ u42 ⊕ u66 ⊕ u76k12 ⊕ u76 ⊕ u83k19 ⊕ u106k42 ⊕ u106 ⊕ k2 ⊕ k9
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⊕ k12 ⊕ k42 ⊕ k66 ⊕ k73 ⊕ k83

u97 = u33k33 ⊕ u33k97 ⊕ u33 ⊕ u55k55 ⊕ u55k119 ⊕ u55 ⊕ u119 ⊕ k33k97 ⊕ k33

⊕ k55k119 ⊕ k55 ⊕ k97 ⊕ k119 ⊕ 1

u32 = u8 ⊕ u39 ⊕ u42 ⊕ u72k8 ⊕ u72 ⊕ u96 ⊕ u103 ⊕ u106k42 ⊕ u106 ⊕ u113k49

⊕ k8 ⊕ k32 ⊕ k39 ⊕ k42 ⊕ k96 ⊕ k103 ⊕ k113 ⊕ 1

u20 = u44 ⊕ u51 ⊕ u54 ⊕ u84k20 ⊕ u84 ⊕ u108 ⊕ u115 ⊕ u118k54 ⊕ u118 ⊕ k44

⊕ k51 ⊕ k54 ⊕ k108 ⊕ k115 ⊕ 1

u15 = u8 ⊕ u18 ⊕ u48 ⊕ u72 ⊕ u79 ⊕ u82k18 ⊕ u82 ⊕ u89k25 ⊕ u112k48 ⊕ u112

⊕ k8 ⊕ k15 ⊕ k18 ⊕ k48 ⊕ k72 ⊕ k79 ⊕ k89 ⊕ 1

u74 = u10k10 ⊕ u10k74 ⊕ u10 ⊕ u49k49 ⊕ u49k113 ⊕ u49 ⊕ u52k52 ⊕ u52k116 ⊕ u52

⊕ u113 ⊕ u116 ⊕ k10k74 ⊕ k10 ⊕ k49k113 ⊕ k49 ⊕ k52k116 ⊕ k52 ⊕ k74

⊕ k113 ⊕ k116

u67 = u3k3 ⊕ u3k67 ⊕ u3 ⊕ u25k25 ⊕ u25k89 ⊕ u25 ⊕ u89 ⊕ k3k67 ⊕ k3 ⊕ k25k89

⊕ k25 ⊕ k67 ⊕ k89 ⊕ 1

u11 = u18 ⊕ u21 ⊕ u51 ⊕ u75 ⊕ u82 ⊕ u85k21 ⊕ u85 ⊕ u92k28 ⊕ u115k51 ⊕ u115

⊕ k11 ⊕ k18 ⊕ k51 ⊕ k75 ⊕ k82 ⊕ k92 ⊕ 1

u114 = u25k25 ⊕ u25k89 ⊕ u25 ⊕ u28k28 ⊕ u28k92 ⊕ u28 ⊕ u50k50 ⊕ u50k114 ⊕ u50

⊕ u89 ⊕ u92 ⊕ k25k89 ⊕ k25 ⊕ k28k92 ⊕ k28 ⊕ k50k114 ⊕ k50 ⊕ k89 ⊕ k92

⊕ k114

u95 = u28k28 ⊕ u28k92 ⊕ u28 ⊕ u31k31 ⊕ u31k95 ⊕ u31 ⊕ u53k53 ⊕ u53k117 ⊕ u53

⊕ u92 ⊕ u117 ⊕ k28k92 ⊕ k28 ⊕ k31k95 ⊕ k31 ⊕ k53k117 ⊕ k53 ⊕ k92 ⊕ k95

⊕ k117

u6 = u9 ⊕ u39 ⊕ u63 ⊕ u70 ⊕ u73k9 ⊕ u73 ⊕ u80k16 ⊕ u103k39 ⊕ u103 ⊕ u127

⊕ k6 ⊕ k39 ⊕ k63 ⊕ k70 ⊕ k80 ⊕ k127 ⊕ 1

u13 = u23 ⊕ u53 ⊕ u77 ⊕ u87k23 ⊕ u87 ⊕ u117k53 ⊕ u117 ⊕ k13 ⊕ k20 ⊕ k23 ⊕ k53

⊕ k77 ⊕ k84 ⊕ 1

H Conditions used in Condition HDL Approximation on
5-Round Xoodyak

u93 = k79 ⊕ k93 ⊕ u79 ⊕ u107 ⊕ u116 ⊕ u207 ⊕ u221

u70 = k93 ⊕ k70 ⊕ u93 ⊕ u107 ⊕ u198 ⊕ u221 ⊕ 1

u7 = k16 ⊕ k7 ⊕ u16 ⊕ u135 ⊕ u144 ⊕ u181

u4 = k27 ⊕ k41 ⊕ k4 ⊕ u27 ⊕ u132 ⊕ u155 ⊕ 1

u54 = k63 ⊕ k68 ⊕ k54 ⊕ u63 ⊕ u182 ⊕ u191 ⊕ 1

u97 = k106 ⊕ u15 ⊕ k97 ⊕ u106 ⊕ u225 ⊕ u234 ⊕ 1
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u43 = k52 ⊕ k43 ⊕ u52 ⊕ u171 ⊕ u180 ⊕ u217

u25 = k25 ⊕ k16 ⊕ u16 ⊕ u144 ⊕ u153 ⊕ u190

u111 = k20 ⊕ k102 ⊕ k111 ⊕ u102 ⊕ u230 ⊕ u239

u18 = k18 ⊕ k27 ⊕ k32 ⊕ u27 ⊕ u146 ⊕ u155 ⊕ 1

u125 = k11 ⊕ k102 ⊕ k125 ⊕ u102 ⊕ u230 ⊕ u253

u1 = k1 ⊕ k10 ⊕ k47 ⊕ u10 ⊕ u129 ⊕ u138
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I Updating Degree Matrix Transition of the Ascon
Permutation

Proposition 3 (Degree Matrix Transition over pS ). With the knowledge
of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pS(S)) = (d′i,j , 0 ≤ i <
5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d1,j , d3,j , d2,j + d1,j , d2,j , d0,j + d1,j , d1,j , d0,j)

d′1,j = max(d4,j , d3,j + d2,j , d3,j + d1,j , d3,j , d2,j + d1,j , d2,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j , d4,j , d2,j , d1,j , 0)

d′3,j = max(d4,j + d0,j , d4,j , d3,j + d0,j , d3,j , d2,j , d1,j , d0,j)

d′4,j = max(d4,j + d1,j , d4,j , d3,j , d1,j + d0,j , d1,j)

, 0 ≤ j < 64

Proposition 4 (Degree Matrix Transition over pL). With the knowledge
of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(pL(S)) = (d′′i,j , 0 ≤ i <
5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max(d′0,j+0, d
′
0,j−19 mod 64, d

′
0,j−28 mod 64)

d′′1,j = max(d′1,j+0, d
′
1,j−61 mod 64, d

′
1,j−39 mod 64)

d′′2,j = max(d′2,j+0, d
′
2,j− 1 mod 64, d

′
2,j− 6 mod 64)

d′′3,j = max(d′3,j+0, d
′
3,j−10 mod 64, d

′
3,j−17 mod 64)

d′′4,j = max(d′4,j+0, d
′
4,j− 7 mod 64, d

′
4,j−41 mod 64)

, 0 ≤ j < 64

Proof (for Propositions 3 and 4). It is clear that if y = x0 ⊕ x1, deg(y) ≤
max(deg(x0),deg(x1)); if y = x0x1, deg(y) ≤ deg(x0) + deg(x1). Then from the
ANFs of pS (Equation 11) and pL (Equation 13), we directly derive the formulas
in Proposition 3 and Proposition 4.

J Zero-Sum Distinguishers for Full Ascon Permutation
The zero-sum distinguisher was first proposed to study the non-ideal property
of the Keccak-f permutation [AM09,BC10,YLW+19], which was also used to
distinguish the (12-round) Ascon permutation by its designers [DEMS15]. It
studies the following question. Given a permutation P : Fn

2 → Fn
2 , can we create

a set of inputs, I, such that
⊕

x∈I x =
⊕

x∈I P (x) = 0? Currently, the best
result of the zero-sum distinguisher for the 12-round Ascon permutation costs
2130 calls [DEMS21]. In this subsection, we show how to use our HD distinguisher
to build a zero-sum distinguisher for a 12-round Ascon permutation with only
255 calls.

Note that the idea of the degree matrix transition method introduced in Sec-
tion 7 is also applicable to the inverse operations of the Ascon permutation. We
deduce the transitional rules for the inverse operations of the Ascon permuta-
tion. Thereby we can give two corollaries of Propositions 3 and 4. According to
the ANFs of the inverse Sbox of Ascon in Equation 12, we deduce the following
corollary,
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Algorithm 5 Detect HD Distinguishers (up to 64th-order) for the Ascon per-
mutation
Input: r-round Ascon permutation, r ≥ 4
Output: (X̄, ∆̄) leading to HD distinguishers (up to 64th-order) for r-round Ascon

permutation, the order of the HD
1: degree = 64
2: for X̄ from 0 to 31 do
3: for ∆̄ from 1 to 31 do
4: for i from 0 to 63 do
5: for j from 0 to 4 do
6: S0[j][i] = X[j]⊕ xi∆[j]
7: end for
8: end for
9: Compute the exact ANF of S2.5 and compute DM(S2.5)
10: Compute the degree matrix of Sr from S2.5 using Propositions 3 and 4
11: if min(DM(Sr)) < degree then
12: degree = min(DM(Sr)) ▷ To find the best distinguisher
13: end if
14: end for
15: end for
16: return (X̄, ∆̄,DM(Sr))

Corollary 1 (Degree Matrix Transition over p−1
S ). With the knowledge

of DM(S) = (di,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
S (S)) = (d′i,j , 0 ≤ i <

5, 0 ≤ j < 64), where d′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′0,j = max(d4,j + d3,j + d2,j , d4,j + d3,j + d1,j , d4,j + d3,j + d0,j , d3,j + d2,j + d0,j ,

d3,j + d2,j , d3,j , d2,j , d1,j + d0,j , d1,j , 0)

d′1,j = max(d4,j + d2,j + d0,j , d4,j , d3,j + d2,j , d2,j + d0,j , d1,j , d0,j)

d′2,j = max(d4,j + d3,j + d1,j , d4,j + d3,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j ,

d4,j + d2,j , d4,j , d3,j + d2,j , d3,j + d1,j + d0,j , d3,j + d1,j , d2,j + d1,j + d0,j ,

d2,j + d1,j , d2,j + d0,j , d1,j , d0,j , 0)

d′3,j = max(d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j , d4,j + d1,j , d4,j , d3,j ,

d2,j + d1,j , d2,j + d0,j , d1,j)

d′4,j = max(d4,j + d3,j + d2,j , d4,j + d2,j + d1,j , d4,j + d2,j + d0,j , d4,j + d2,j ,

d3,j + d2,j + d0,j , d3,j + d2,j , d3,j , d2,j + d1,j , d2,j + d0,j , d1,j + d0,j)

The ANF of p−1
L is a little complicated, so we introduce a simpler version of

the degree matrix transition for p−1
L .

Corollary 2 (Simplified Degree Matrix Transition over p−1
L ). With the

knowledge of DM(S) = (d′i,j , 0 ≤ i < 5, 0 ≤ j < 64), we have DM(p−1
L (S)) =
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(d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64), where d′′i,j , 0 ≤ i < 5, 0 ≤ j < 64 are computed as

d′′0,j = max
0≤k<64

(d′0,k)

d′′1,j = max
0≤k<64

(d′1,k)

d′′2,j = max
0≤k<64

(d′2,k)

d′′3,j = max
0≤k<64

(d′3,k)

d′′4,j = max
0≤k<64

(d′4,k)

, 0 ≤ j < 64

It is easy to verify that Corollary 1 and 2 give an upper bound on the degree of
output bits of p−1

S and p−1
L . Thus, we can replay the calculation of Section 7 to

the inverse Ascon permutation.
Considering that with (X,∆) in Equation 10, the upper bounds on the degree

of the five words of the output after 8 rounds are (47, 47, 45, 47, 47), we only
test the (X,∆) for the 4-round inverse Ascon permutation. Note that in the
forward direction, we did not include the first pC , thus we add it to the backward
calculation. In other words, the four rounds of inverse Ascon permutation is

Pb = (pC ◦ p−1
S ◦ p

−1
L )4 ◦ pC .

We first calculate the exact ANFs of the output of p−1
L ◦ pC ◦ p−1

S ◦ p−1
L ◦

pC(X⊕x∆), then apply Corollary 1 and 2 to calculate the degree upper bounds
for 4 rounds of inverse Ascon permutation, i.e., Pb. Finally, with (X,∆) ∈
{(0xf, 0x18), (0x17, 0x18)}, the degree upper bounds are shown in Table 8.

Thus, we choose 55 positions from {0, 1, . . . , 63}, traverse the variables, and
keep the remaining 64 − 55 = 9 positions as constants for the state after pC of
the fifth round of the 12-round Ascon permutation. The corresponding plaintext
and ciphertext sets are zero-sum. Thus we obtain a zero-sum distinguisher for
12-round Ascon permutation, with complexity of 255. Similarly, with 7 forward
rounds and 3 backward rounds, we can construct a zero-sum distinguisher for 10
rounds with 225 complexity; with 8 forward rounds and 3 backward rounds, we
can construct a zero-sum distinguisher for 11 rounds with 248 complexity. We
experimentally verified the 7-round zero-sum distinguisher.

Here we only give the results, which have been abstracted into Table 89.
According to Tables 4 and 8, we choose 55 positions from {0, 1, . . . , 63},

traverse the variables, and keep the remaining 64−55 = 9 positions as constants
for the state after pC of the fifth round of the 12-round Ascon permutation.
The corresponding plaintext and ciphertext sets are zero-sum. Thus we obtain a
zero-sum distinguisher for a 12-round Ascon permutation, with a complexity of
255. Similarly, with 8 forward rounds and 3 backward rounds, we can construct
a zero-sum distinguisher for 11 rounds with 248 complexity; with 7 forward
rounds and 3 backward rounds, we can construct a zero-sum distinguisher for 10
9 Recalling Section 7, we ignore the first pC for the forward direction. Here we include
this pC in the backward direction.
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Table 8: Upper bounds on the algebraic degree of the DSF of the inverse As-
con permutation with (X,∆) ∈ {(0xf, 0x18), (0x17, 0x18)}. We experimentally
verified the upper bounds on degrees up to 3 inverse rounds.

Round r
Upper bounds on the algebraic degree

S[0] S[1] S[2] S[3] S[4]

1 2 1 2 0 2
2 4 6 6 6 6
3 18 16 18 18 18
4 54 54 54 54 54

rounds with 225 complexity; We experimentally verified the 10-round zero-sum
distinguisher.

The impact of the zero-sum distinguisher. In [DEMS15], the designers gave a
zero-sum distinguisher for 12 rounds with complexity 2130 and noted: “The non-
ideal properties of the permutation do not seem to affect the security of Ascon.
In particular, the complexity of 2130 is above the cipher’s claimed security level.”
Yet, we show that our 12-round distinguisher requires a much lower complexity
than the cipher’s claimed security level (2128).

However, although these zero-sum distinguishers require low complexities,
their actual impact on the security of the Ascon AEAD and Hash are very
likely non-existent or at best not clear. As discussed in [WGR18,GPT21,Kec], the
advantage of the zero-sum distinguisher for Ascon permutation and a perfect
permutation is very small, usually falling under a factor of 2 (our zero-sum
approach follows the same philosophy).

Yet, zero-sum distinguishers still represent some non-ideal property of the
target permutation. We can mention that the Keccak team decided to increase
the number of rounds of Keccak-f (e.g., for Keccak-f [1600] from 18 to 24
rounds) in round 2 of the SHA-3 competition, even though they judged as very
unlikely that the zero-sum distinguishers on the full Keccak-f permutation
can result in actual attacks against the global Keccak scheme. It is also worth
mentioning that in [BDP+18], the Keccak team presented the fast hash scheme
KangarooTwelve that is based on the 12-round Keccak-f [1600].

Comparison with the zero-sum distinguisher in [DEMS15]. The zero-
sum distinguisher in [DEMS15] that needs 2130 calls can be further adapted
into a zero-sum partition distinguisher of the full Ascon permutation. That
is, by enumerating the constant bits in the middle, we can divide the whole
input-output space into 2320−130 subspaces, and the plaintexts/ciphertexts in
each subspace present a zero-sum distinguisher. Differently, our zero-sum distin-
guisher chose a specific initial structure of size 264 in the middle, which means
it cannot be adapted into a zero-sum partition distinguisher. The strength of a
zero-sum partition distinguisher is that it has a larger advantage from the generic
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attack when compared to simple zero-sum distinguishers. However, a noticeable
disadvantage is that building or verifying such a zero-sum partition requires an
extremely huge computational cost (2n calls for an n-bit cryptographic primi-
tive) which is actually impossible to perform [GPT21]. Besides, the cost of the
best zero-sum partition generic algorithm remains only conjectured. We believe
that our distinguishers provide some new insights into the structural properties
of the Ascon permutation.

Relationship with the previous structural algebraic distinguishers. In
this section, we provided a systematic method to construct an algebraic dis-
tinguisher based on analyzing the DSF. Since the DSF is parameterized by
the input values and differences, a proper choice of (X,∆) can reduce the
degree of the output bits. Before our work, some similar ideas were proposed
to analyze the permutation-based primitives. Usually, by analyzing the alge-
braic properties of the round functions, an “initial structure” is set as the
input values of the target permutation. With this initial structure, the alge-
braic degree would increase more slowly since some intermediate variables will
become linear or quadratic. An example of these attacks is the conditional
cube attack [LDW17,CHK22,CKT+22,BCP22], where the influences of the se-
cret keys on the algebraic degrees are captured to perform key recovery attacks.
Such a technique is also called the linearization technique in some papers such
as [BLNS21]. In terms of the DSF, a good (X,∆) will also reduce the degrees
of intermediate variables (in our case, the degree of f0 is reduced), thus our
method searches for a good initial structure and implicitly uses the lineariza-
tion technique to slow the degree increase. However, previous methods usually
require careful manual analyses of the round functions, which are sometimes te-
dious, or even impossible for complicated cases. Instead, our method is universal
and can consistently analyze their algebraic properties by the DSF. The DSF is
an explicit formula of an output HD/HDL, i.e., a Boolean function of both the
input difference (∆) and input value (X), which gives us a unified viewpoint for
algebraic attacks on cryptographic primitives.
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K Discussion of the Precision of HATF
In this section, we provide three kinds of figures to show the precision of the
HATF:

1. In Section K.1, we show the figures of theoretical and experimental biases of
the second-order HDL for 4-round Ascon initialization. The second-order
differences denoted by ∆(0, i), 1 ≤ i < 64 are the captions of each figure.

2. In Section K.2, we show the figures of theoretical and experimental biases of
the second-order HDL for 5-round Ascon initialization. The second-order
differences denoted by ∆(0, i), 1 ≤ i < 64 are the captions of each figure.

3. In Section K.3, we show the figures of theoretical and experimental biases of
ℓth-order (3 ≤ ℓ ≤ 8) HDL for 5-round Ascon initialization. The ℓth-order
differences denoted by ∆(i0, i1, . . . , iℓ−1), 0 ≤ i0 < i1 < · · · < iℓ−1 < 64 are
the captions of each figure.

The theoretical biases obtained in Sections K.1,K.2 and K.3 are obtained
with the partition technique: When the input difference is ∆(i0, i1, . . . , iℓ−1) for
an ℓth HDL cryptanalysis, the 2ℓ bits of keys

S(0)[1][i0], S
(0)[2][i0], . . . , S

(0)[1][iℓ−1], S
(0)[2][iℓ−1] (25)

are used to partition the whole input space into 22ℓ subspaces. For the experi-
ments, we use 226 samples to obtain the data.

Next, based on these figures, we discuss the precision of HATF and the impact
of the partitioning technique.
1. From the second-order HDL distinguishers for 4-round Ascon in Section K.1,

we can find that the curves of theoretical and experimental results coincide
almost exactly. That is to say, HATF predicts the second-order HDL biases
almost perfectly for 4-round Ascon.

2. From the second-order HDL distinguishers for 5-round Ascon in Section K.2,
we can see that the precision of HATF drops. Not all biased bits and their
biases are predicted correctly. However, there are two important points:
(a) The shapes of the curve of theoretical results are related to those of the

experimental results: one peak of the theoretical curve is always related
to one experimental peak, although the former ones might be weaker
than the latter ones.

(b) The absolute values of the biases in most cases are smaller than the ex-
perimental ones, except for the ∆(0, 26) (the leftmost peak) and ∆(0, 38)
(the peak at index 40). Note that even for the two exceptions, HATF
correctly predicts that the bits are significantly biased, only the biases
are overestimated. Later, with an advanced partitioning technique, we
can overcome the overestimations.

Considering the two points, we are confident that HATF is very useful to
find second-order distinguishers for the 5-round Ascon. If HATF predicts
that a bit is biased, then there is a high probability that the bit is truly
biased. And there is a high probability that the value of the bias is greater
than the prediction.
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3. From the ℓth-order HDL distinguishers for 5-round Ascon, 3 ≤ ℓ ≤ 8 in
Section K.3, Firstly, we can also observe the similar two points with the
second-order HDL distinguishers for 5-round Ascon. Secondly, as the num-
ber of orders increases, the real biases of output bits become higher. HATF
performs better for larger biases than smaller ones.

Comparing the precision of the second-order HATF for 4-round and 5-round
Ascon, we guess that the reduction of the precision of HATF is mainly caused
by the more complicated HATF. More complicated HATF assumes more inde-
pendent intermediate state bits and fail more easily.

Recall that all theoretical results in Sections K.1,K.2 and K.3 are obtained
with partitioning the input subspaces based on the 2ℓ key bits in Equation 25. A
better partition of the input space can simplify the HATF drastically in each sub-
space. For example, for the second-order HDL cryptanalysis on 5-round Ascon
with the input difference ∆(0, 9), we can use the 10 Equations 14–24 to parti-
tion the input space, which is obtained by injecting conditions into the first two
rounds of the HATF. The improved theoretical result with ∆(0, 9) for 5-round
Ascon is given in Figure 4a. With the improved partition, it can be seen the
precision increases significantly. Similarly, we can obtain 16 conditions into the
first two rounds of the HATF concerning ∆(0, 26), which are used to partition
the whole input space into 216 subspaces. With the improved partition, the the-
oretical curve of ∆(0, 26) is shown in Figure 4b. It can be seen, the precision also
increases significantly, and the leftmost peak is also predicted correctly. Thus,
we can conclude that a better partition can improve the precision significantly.

0 20 40 60

0

2

4

·10−3

Index of S(5)[0]

B
ia
s

Theoretical
Experimental

(a) Second-order HDL biases for 5-R
Ascon with improved partition with
∆(0, 9)

0 20 40 60

0

1

2

3

4

·10−3

Index of S(5)[0]

B
ia
s

Theoretical
Experimental

(b) Second-order HDL biases for 5-R
Ascon with improved partition with
∆(0, 26)

Fig. 4: The theoretical and experimental biases curves for 5-round Ascon with
improved partition.
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K.1 Figures of Second-Order HDL Biases for 4-Round Ascon
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K.2 Figures of Second-Order HDL Biases for 5-Round Ascon
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K.3 Figures of HDL Biases for 5-Round Ascon for 3rd to 8th Order
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