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Abstract. We define a stronger confidentiality notion for the ciphertext-
dependent updatable encryption. The new notion captures the adap-
tive security that was not covered in prior works (CRYPTO2017, ASI-
ACRYPT 2020), but also supports both deterministic and randomized
constructions. We revise the public key encryption introduced by Mic-
ciancio et al. (EUROCRYPT 2012) to a simpler scheme using the lattice
trapdoor techniques. Based on the resulting scheme, we further propose
a new updatable encryption construction that achieves the new notion
under the Learning with Errors assumption.
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1 Introduction

Updatable encryption (UE) enables a cloud server to update ciphertext via only
an update token received from a client so that the updated ciphertext is decrypt-
able by a new key. The ciphertexts are previously encrypted by an old key and
outsourced to the cloud server by the client, who prefers to switch the key regu-
larly to reduce the risk of key compromise. The client can randomly generate a
new key and a token, and further sends the token to the server for the ciphertext
updates. Depending on if the client needs to download some part of ciphertexts in
the token generation, there are two types of UE schemes: ciphertext-independent
[6,11,13,14,16,18] and ciphertext-dependent schemes [4,5,7,8]. In this paper, we
focus on ciphertext-dependent UE.

Security Notions. The confidentiality of UE requires ciphertexts should not
leak any information to the adversary under the condition that the adversary
may corrupt some keys, update tokens, and ciphertexts. Like the standard se-
mantic security for public key encryption (PKE) schemes, the message confiden-
tiality [5,8] have been proposed to guarantee that the adversary cannot reveal
anything about the underlying plaintext for a given ciphertext. In UE schemes,
ciphertexts can be further generated by the update algorithm. This triggers the
definition for the re-encryption indistinguishability [8] that aims to prevent the
adversary distinguishing from which ciphertext the challenge ciphertext is up-
dated. To avoid leaking the “age” of the ciphertext, the Confidentiality [4] is
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defined, requiring that any ciphertext generated by the encryption algorithm
should be indistinguishable from the ciphertext generated by the updated algo-
rithm. It has been proved to be stronger than the previous two security notions
(i.e., message confidentiality and re-encryption indistinguishability).

A crucial consideration, which should be covered in security notions, is to
avoid “trivial” wins. In order to capture the real-world security requirements
of UE, the adversary in each of the above notions is provided with a number
of oracles, enabling it to corrupt keys, update tokens, and ciphertexts. Some
combinations of oracles may easily lead to a trivial win and thus, the conditions
should be checked carefully at the end of a security game. We point out two
shortcomings in the confidentiality notion from prior works [5,8,4].

• Various oracles provided to the adversary may make the definition overly
complex.

• Previous works unfortunately only capture selective security, that is, the ad-
versary are given compromised keys in the beginning of the security game,
instead of adaptive corruption. Furthermore, none of the prior notions en-
ables the adversary to access to a decryption oracle; and meanwhile, all of
them are only applied to randomized update encryption.

In this paper, we define a new confidentiality notion for the ciphertext-
dependent UE that is simpler than Confidentiality [4] by reducing the number of
oracles given to the adversary. We also prove the equivalence of these two no-
tions with no-directional key updates. We further present a confidentiality notion
that is stronger than any existing definitions since we maximize the ability of
the adversary by providing a decryption oracle and the ability to corrupt keys
adaptively. We follow the trivial condition analysis in [14,6,11], which deal with
ciphertext-independent UE, but greatly simplify the process of checking trivial
win conditions by recording look-up tables which track the information leaked to
the adversary in the game. A remarkable improvement is that the challenger is
able to instantly know if a trivial win condition is triggered, and there is no extra
computation incurred by the extended leakage sets as compared to [14,6,11]. A
brief comparison of the proposed notions with prior works is presented in Fig.
1.
A New UE Construction. We design a new UE scheme based on the Learn-
ing With Errors (LWE) problem [17] that meets the new stronger confidentiality.
The proposed scheme therefore is more secure than the prior ones. The under-
lying PKE scheme is inspired by [15], which we will point out a potential risk in
their decryption algorithm. We revise the scheme to yield a new and simple PKE.
At a high level, we adopt the re-encryption key generation technique from [12],
which constructs a proxy re-encryption (PRE) scheme from lattices, to switch
ciphertexts. PRE techniques have similar processes of re-encryption key gener-
ation and re-encryption, which correspond to token generation and ciphertext
update in UE. The power of PRE is to enable a ciphertext to be re-encrypted,
in which it is encrypted under a key, decryptable by another key. But PRE does
not require the re-encrypted ciphertext independent from the ciphertext it was
updated from, let along meeting the IND-UE-atk security. A subtle risk in the
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Confidentiality Oracles Compromised Challenge Update
Notion To the Adversary Key Input Procedure

UP-IND [8] OEnc,OTokenGen,OUpdate Selective (m̄0, m̄1) rand
UP-REENC [8] OEnc,OTokenGen,OUpdate Selective (c̄0, c̄1) rand

Confidentiality [4] OEnc,OTokenGen,OUpdate Selective (m̄0, c̄1) rand
sConfidentiality Sect. 3.2 OEnc,OsUpdate Selective (m̄0, c̄1) rand
xxIND-UE-CPA Sect. 3.3 OEnc,OsUpdate,OCorr, Adaptive (m̄0, c̄1) xx
xxIND-UE-CCA Sect. 3.3 OEnc,OsUpdate,OCorr,ODec Adaptive (m̄0, c̄1) xx

Fig. 1. A summary of confidentiality notions, where xx ∈ {rand, det} represents the
update procedure can be either randomized or deterministic. The adversary in each
confidentiality game provides two challenge inputs based on the oracles it has access to
and tries to distinguish the challenge outputs. Confidentiality is proven stronger than
both UP-IND and UP-REENC given in [4].

proof of [12] was identified by [9] which further proposed a new construction to
address the risk. But their solution could be problematic. We clear all the risks
by carefully designing our UE. We also provide a detailed proof by introduc-
ing firewall techniques from ciphertext-independent to ciphertext-dependent UE
schemes.

1.1 Related Work

Ciphertext-Independent UE. The security notions for ciphertext-independent
UE have been well studied, which might be known as the same as those for
ciphertext-dependent UE, at first glance. Lehmann and Tackmann [14] defined
two practical notions: IND-Enc that requests the adversary to distinguish two
ciphertexts generated by the encryption algorithm, and IND-Upd that requires
to distinguish two ciphertexts generated by the update algorithm. Boyd et al. [6]
later introduced a new notion IND-UE to identify a ciphertext generated by the
encryption algorithm from an updated ciphertext. The challenge input in the
definition of IND-Enc, IND-Upd and IND-UE3 are the same as that in the defini-
tion of UP-IND, UP-REENC, and Confidentiality, respectively.

However, there are noticeable difference between the security notions for
two types of UE schemes, reflecting in the ways of recording leakage sets. For
ciphertext-independent UE, a single update token can be used to update all ci-
phertexts; therefore, the bookkeeping techniques developed in [14] and [13] only
track the list of epochs, in which the adversary knows an update token, cipher-
text, or key, and the later two can be extended via known and inferred update
tokens. But for ciphertext-dependent UE, each token is correlated to a cipher-
text; only the adversary knows the token related to the ciphertext can update
the ciphertext. The definition in [8,4] and this paper records look-up tables to

3 We also name the new notion IND-UE in Sect. 3.3, aiming to unify the confidentiality
notion for ciphertext-independent and ciphertext-dependent UE schemes.
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keep track of the leaked ciphertexts, which map key index and ciphertext header
(needed to download for token generation) pairs to ciphertext bodies. The tables
will be updated automatically, if the adversary queries update tokens related to
the known ciphertexts, Furthermore, we will show in Sect. 3.3 that the challenger
can check immediately if trivial win conditions are triggered during the game by
the recorded table, without an extra computation of the extended sets as that
in the security definition for ciphertext-independent UE schemes.

Proxy Re-Encryption. The ciphertext of the PRE scheme [12], which has
a re-encryption process similar to the ciphertext update in UE, is of the form
c = (Hu,b), where Hu is an invertible matrix and

bt =2
(
stAµ mod q

)
+ et + (0,0, enc(m))t mod 2q

=2
(
st [A0 |A1 +HG|A2 +HuG] mod q

)
+ et + (0,0, encode(m))t mod 2q,

in which the matrices A0,A1,A2 are the public key, and e represents the error
item. The re-encrypted ciphertext is c′ = (Hu,b

′) where

b′t =2
(
stA′µ mod q

)
+ e′t + (0,0, enc(m))t mod 2q,

so that c′ has the same form of c and can be decrypted by the trapdoor for A′µ,
i.e., the new secret key. The re-encryption proceeds by generating the transition
matrix from Au to A′u whose last nk rows is [0 0 I] as the re-encryption key,
i.e., Au ·M = A′u, and re-encrypting c by multiplying bt and M, that is

btM =2
(
stAµ ·M mod q

)
+ et ·M+ (0,0, enc(m))t ·M mod 2q

=2
(
stA′µ mod q

)
+ et ·M+ (0,0, enc(m))t mod 2q.

1.2 Our Approach

In general, we first build a new PKE scheme inspired by [15] using trapdoor tech-
niques for lattices, but we tackle the potential risk in the decryption algorithm.
This PKE scheme serves as the underlying encryption for our UE construction.
We leverage the “re-encryption key generation” technique from [12] to generate
one part of the update token. The other part is carefully designed to make sure
that the UE scheme achieves the stronger IND-UE-CCA-1 notion.

Risk in [15]. The ciphertext in the PKE scheme proposed in [15] is c = (Hµ,b)
where

bt = 2(stAµ mod q) + (e0, e1)
t + (0, encode(m))t mod 2q,

and Aµ = [A0 | A1] ∈ Zm̄+nk can be calculated from the public key and the
invertible matrix Hµ. The secret key R ∈ Zm̄×nk is a trapdoor for Au, with
which it can be efficient to recover s′ and (e′0, e

′
1) from

bt = (s′)tAµ + (e′0, e
′
1)

t mod q.
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Then the decryption procedure works by regarding (e0, e1) = (e′0, e
′
1) and out-

puts the plaintext by a encode−1 mapping. We show in Lemma 5 that the case
(e0, e1) = (e′0, e

′
1) contradicts the key generation algorithm and therefore cipher-

texts cannot be decrypted correctly. The problem results from (0, encode(m))t mod
q cannot be expressed by (s′)tAµ for some s.

A New PKE Scheme. Our main idea is to avoid the plaintext being involved
in the computation of error items. We constructs a 1 × 3 block matrix as the
encryption matrix Aµ = [A0 | A0R+HµG | A1] ∈ Zm̄+2nk and the secret key
R is the trapdoor for the first two block matrices. The ciphertext is c = (Hµ,b)
where

bt = stAµ + (e0, e1, e2)
t + (0, 0, encode(m))t mod q. (1)

The decryption proceeds by first recovering (e0, e1) and s with the trapdoor R
from the first m̄+ nk coordinates of b, and then recovering m and e3 from the
last nk coordinates of b with the recovered parameter s.

A New UE Scheme. We state that there are two technical challenges on
directly using the re-encryption technique in [12] to construct a secure UE scheme
satisfying the IND-UE-notion (recall the notion requires the indistinguishability
between “fresh” and updated ciphertexts). The first observation is that Hµ, as
part of the ciphertext, is never changed in the update process. The adversary
can distinguish the challenge ciphertexts by comparing the invertible matrices
extracted from the challenge output and input, and win the game easily. Beyond
that, s is also unchanged during update process. If the adversary is able to
corrupt an old key, then it can invert s from the ciphertext. Using s and the new
public key, the adversary can recover the plaintext from the new ciphertext.

We have to change the invertible matrix Hµ in next epoch. One may replace
Hµ in the re-encryption process by a random invertible matrix H′µ to construct
the encryption matrix A′u. But we notice that the token (re-encryption key) is
generated before the update (re-encryption) process and a single token is used
to update all ciphertexts. It is hard to generate a transition matrix in advance
before the update process such that Au ·M = A′u works for all random Au

and A′u. Our approach is to generate such a random invertible matrix in the
token (re-encryption key) generation algorithm, that is, all ciphertexts (refresh or
updated) in one epoch have the same encryption matrix Aµ (randomly changed
in the next epoch), so that we can correctly generate the transition matrix from
one epoch to the next, and also ensure the randomness of Hµ in each epoch. To
improve the randomness of s, we add b0 the encryption of 0 under the new key
to the updated ciphertext. In summary, the update token is ∆ = (M,b0,H

′
µ)

and the updated ciphertext of c = (Hµ,b) is c
′ = (H′u,b

′), where

(b′)t = bt ·M+ bt
0

=
[
stAµ + et + (0, 0, encode(m))t

]
M+ (s′)tA′µ + (e′)t

= (s+ s′)tA′µ +
(
etM+ (e′)t

)
+ (0, 0, encode(m))t mod q. (2)
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The updated ciphertext has the same form of c with new independent invert-
ible matrix and new random factor s+ s′. Thus, we solve the two challenges and
maintain the security when adopting the re-encryption technique [12] to UE and
meanwhile, ensure that the token (especially, M) does not leak any information
about secret keys.

2 Preliminaries

We use upper-case and lower-case bold letters to denote matrices and column
vectors, respectively. The real numbers and the integers are denoted by R and
Z. For a vector x ∈ Rn, let ∥x∥ and ∥x∥∞ denote the 2-norm and infinity
norm of x. For any B ∈ Rn×k, the largest singular value of B is defined by
s1(B) := max

u
∥Btu∥, where the maxima is taken over all unit vectors u ∈ Rk

and Bt is the transposition of B. For two matrices A ∈ Rm×n1 and B ∈ Rm×n2 ,
[A | B] ∈ Rm×(n1+n2) denotes the concatenation of the columns of A and B.

2.1 Lattices, Trapdoors, and Algorithms

Definition 1. For integer numbers q, n and m, and an arbitrary matrix A ∈
Zn×m, define the full-rank m-dimensional integer lattices

Λ(At) = {y ∈ Zm : ∃ x ∈ Zn
q s.t. y = Atx mod q}.

Throughout this paper, q ≥ 2 is an integer modulus and k = ⌈log2 q⌉.
For an integer n ≥ 1, G is defined as G := In ⊗ gt ∈ Zn×nk

q , where gt =

[1 2 4 · · · 2k−1] ∈ Z1×k
q , i.e.G = diag(gt, · · · ,gt). The following theorem enables

two efficient algorithms to solve SIS and LWE problems (please see Appendix A
for details) relative to G.

Theorem 1 ([15], Theorem 4.1). For any integer q ≥ 2, n ≥ 1, k = ⌈log2 q⌉
and m = nk, G has the following properties:

– Inverting gG(s, e) := stG+ et mod q can be performed in quasilinear time
for any s ∈ Zn

q and ∥e∥∞ ≤ q/4.
– Preimage sampling for fG(x) = Gx mod q can be performed in quasilinear

time.

Let A ∈ Zn×m
q for some m ≥ nk ≥ n. A G-trapdoor for A is a matrix

R ∈ Z(m−nk)×nk
q such thatA [RI ] = HG for some invertible matrixH ∈ Znk×nk

q .
As an example, in [15], one can generate a randomA = [A0|−A0R+HG] where
A0 is a uniform matrix in Zn×m̄

q , H ∈ Zn×n
q is an invertible matrix and R is

chosen from a distribution D over Zm̄×nk
q . Clearly, R is a G-trapdoor for A

for any m̄ and distribution D, which will be also used in our construction. The
following two properties ensure to solve LWE and SIS relative to A by using a
trapdoor for A.
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Lemma 1 ([15], Theorem 5.4). For a G-trapdoor R for A ∈ Zn×m
q and an

LWE instance bt = stA+ et, if ∥[Rt I] · e∥∞ ≤ q/4 , then there is an efficient

algorithm called InvertO(R,A,H,b) that recovers s and e from the function
gA(s, e) = stA+ et.

Lemma 2 ([15], Theorem 5.5). For a G-trapdoor R for A ∈ Zn×m
q and

any u ∈ Zn
q , there is an efficient algorithm called SampleDO(R,A,H,u, s) that

samples a Gaussian vector x from Dm
Z,s such that Ax = u, where s can be as

small as
√

s1(R)2 + 1 ·
√
s1(
∑

G) + 1 ·ω(
√
log n) and s1(

∑
G) is a constant for

given G(equal to 4 if q is a power of 2, and 5 otherwise.).

Remark 1. More generally, the algorithm SampleDO can be extended from vec-
tors to matrices. Specifically, for a matrix U ∈ Zn×l

q , we call SampleDO on each

column of U and then obtain l m-dimensional columns {xi}l1 from Dm
Z,s. Let

X = [x1 | · · · | xl], then AX = U and X ∈ Dm×l
Z,s , where s can be as small as√

s1(R)2 + 1 ·
√
s1(
∑

G) + 1 · ω(
√
log n).

2.2 Updatable Encryption

We briefly review the syntax of ciphertext-dependent UE and the prior notions
of confidentiality.

Definition 2 ([5,8,4]). A ciphertext-dependent UE scheme includes a tuple of
PPT algorithms {UE.KG, UE.Enc, UE.Dec, UE.TokenGen, UE.Update} that op-
erate in epochs starting from 0.

– UE.KG(1λ): the key generation algorithm outputs an epoch key ke.
– UE.Enc(ke,m): the encryption algorithm takes as input an epoch key ke and

a message m and outputs a ciphertext header ĉte and a ciphertext body cte,
i.e., (ĉte, cte).

– UE.Dec(ke, (ĉte, cte)): the decryption algorithms takes as input an epoch key
ke and a ciphertext (ĉte, cte) and outputs a message m′ or ⊥.

– UE.TokenGen(ke, ke+1, ĉte): the token generation algorithm takes as input two
epoch keys ke and ke+1 and a ciphertext header ĉte, and outputs an update
token ∆e+1,ĉte or ⊥.

– UE.Update(∆e+1,ĉte , (ĉte, cte)): the update algorithm takes as input a token

∆e+1,ĉt with related to the ciphertext (ĉte, cte), and outputs an updated ci-

phertext (ĉte+1, cte+1) or ⊥.

In an updatable encryption scheme, there are two ways to generate a cipher-
text: either via the encryption algorithm to produce the fresh ciphertext, or the
update algorithm to produce the updated ciphertext. The correctness of a UE
requires these two types of ciphertexts to decrypt correctly to the underlying
message except with a low failure probability.
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Prior Notions of Confidentiality. Boneh et al. [4] defined a stronger no-
tion of confidentiality than any previous works [5,8], called Confidentiality, for
ciphertext-dependent UE schemes, which captures the indistinguishability of the
fresh and the updated ciphertexts.

Their notion shows the selective security, where the adversary in the secu-
rity game is given some epoch keys in the setup phase, but it is not allowed
to commit adaptive corruption. During the query phase, the adversary is given
{O.Enc,O.TokenGen,O.Update} to obtain ciphertexts. Then it submits two chal-
lenge inputs (m, (ĉt, ct)) in the challenge phase based on the information it has
acquired and receives the challenge output from the challenger. The goal of the
adversary is to guess that if the challenge output is encrypted from m or updated
from (ĉt, ct). The adversary can continue querying those oracles and eventually
give a guessing bit. A look-up table is maintained during the game to prevent the
adversary from obtaining the challenge-equal ciphertexts (which are encrypted
or updated from the challenge input) and the epoch key in a same epoch; other-
wise, the adversary can trivially win the game by decrypting the challenge-equal
ciphertexts with the epoch key and comparing the received underlying message
with the challenge input. Note we will present the formal definition in Sect. 3.2.

3 New Confidentiality Notions for Updatable Encryption

To simplify the security notion given in [4], we define a new confidentiality notion
called sConfidentiality, where we replace O.ReKeyGen and O.ReEncrypt in the
security game with a single O.sReEncrypt that returns both the update token
and updated ciphertext to the adversary simultaneously. We prove in Theorem
2 that sConfidentiality and Confidentiality are equal for UE schemes with no-
directional key updates.

Meanwhile, to give as much power to the adversary as possible, we define
a new confidentiality notion called xxIND-UE-atk4, where the adversary is given
extra access to O.Dec and O.Corr that allows it to corrupt epoch keys at any time
during the game. We also fully address the trivial win conditions for ciphertext-
dependent UE schemes and provide simplified approaches to check if trivial win
conditions are triggered in the security game.

Note that we present the notion of sConfidentiality in a way that tokens are
generated between two nodes (which are more often used in PRE representing
different clients) to make it consistent and easy to have comparisons with the
work proposed in [4]; whilst we define the notion of xxIND-UE-atk in a commonly
used way in UE schemes that tokens are computed by two consecutive epoch
keys as we defined in Sect. 2.2, which in practical means ciphertexts are updated
periodically.

4 The same notion for ciphertext-independent UE scheme was proposed in [6]. We try
to unify the notions. As we have shown in the comparison table in the introduction,
there are intrinsic differences between ciphertext-independent UE and ciphertext-
dependent UE.
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3.1 UE Schemes with No-Directional Key Updates

In ciphertext-independent UE schemes, update tokens are generated by two suc-
cessive epoch keys through the token generation algorithm∆ = TokenGen(ke, ke+1);
therefore, one key may be derived by the other if the token is known by the adver-
sary. However, in ciphertext-dependent UE schemes, tokens are also determined
by the ciphertext header: ∆ = UE.TokenGen(ke, ke+1, ĉte), so that keys may not
be derived via corrupted tokens. We generalise the definition of no-directional
key updates from ciphertext-independent UE to ciphertext-dependent UE as
follows.

Definition 3. A UE scheme, either ciphertext-independent or ciphertext-dependent,
is said to have no-directional key updates if epoch keys cannot be inferred from
known tokens.

Constructing ciphertext-independent UE schemes with no-directional keys
updates was an interesting open problem left by Jiang [11], and the difficulty
relies on the requirement that the update token should be able to update all
ciphertexts, without leaking information about either the old key or the new
key. There are currently only two ciphertext-independent UE schemes with no-
directional key updates [16,18].

But constructing ciphertext-dependent UE schemes with the same feature is
relatively easy, since an update token is only required to update a correspond-
ing ciphertext. In fact, this is the case for all known ciphertext-dependent UE
schemes in [5,8,4], where the token generation procedure is actually a Dec-then-
Enc process: decrypting the ciphertext header under the old key and generating
new random variants which are then encrypted by the new key. The confidential-
ity of the underlying encryption ensures the information of keys is not leaked by
the token. Our construction in this paper also provides no-directional keys up-
dates, but we develop a new approach that is totally different from the previous
Dec-then-Enc process, to generate the update token.

3.2 A Simplified Confidentiality Notion

We now define a new simplified confidentiality notion (Definition 4) by sub-
stituting the oracles OEnc and OUpd that the adversary has assess to in the
Confidentiality game with a single OsUpd. In the challenge phase, the adversary
submits the challenge inputs (m, (ĉt, ct)) to the challenger according to the keys
(by which it is given, those dishonest keys) and the oracles (with which it in-
teracts), and its goal is to distinguish either the challenge ciphertext is a fresh
encryption of the message m or it is a updated ciphertext of (ĉt, ct). Before
submitting a guessing bit, the adversary can keep querying those given oracles.

To track the challenge-equal ciphertexts that are obtained by the adversary
in the game, we record a look-up table TC that maps a key index and challenge-
equal ciphertext header pair to the corresponding challenge-equal ciphertext
body. The adversary is prohibited from learning challenge-equal ciphertexts un-
der any of the dishonest keys. This knowledge will lead to a trivial win since the
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adversary can use the dishonest key to decrypt the challenge-equal ciphertext
and compare the its underlying message with the challenge message.

Definition 4 (sConfientiality). Let UE = (KG,Enc,TokenGen,Update,Decrypt)
be an updatable encryption scheme. For a security parameter λ, positive integers
h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality
experiment ExptsConfUE (λ, h, d,A, b) and oracles O = (OEnc,OsUpd,OChall) in Fig.
2. The experiment maintains a look-up table TC as defined above.

We say that an updatable encryption scheme UE satisfies sConfidentiality if
there exists a negligible function negl(λ) such that for all h, d ≤ poly(λ) and
efficient adversaries A, we have∣∣∣Pr [ExptsConfUE (λ, h, d,A, 0) = 1

]
− Pr

[
ExptsConfUE (λ, h, d,A, 1) = 1

]∣∣∣ ≤ negl(λ).

ExptsConf
UE (λ, h, d,A, b) :

k1, . . . , kh+d ← KG(1λ)

b′ ← AO(kh+1, . . . , kh+d)

return b′ = b

OEnc(i,m) :

return Enc (ki,m)

OsUpd(i, j, (ĉt, ct)) :

if j > h and TC[i, ĉt] ̸=⊥ then

return ⊥
∆i,j,ĉt ← TokenGen(ki, kj , ĉt)

(ĉt
′
, ct′)← Update(∆i,j,ĉt, (ĉt, ct))

if j ≤ h and TC[i, ĉt] ̸=⊥ then

TC[j, ĉt
′
]← ct′

return (∆i,j,ĉt, (ĉt
′
, ct′))

OChall(i, j,m, (ĉt, ct)) :

if j > h then

return ⊥

(ĉt
′
0, ct

′
0)← Enc (kj ,m)

∆i,j,ĉt ← TokenGen
(
ki, kj , ĉt

)
(ĉt

′
1, ct

′
1)← Update(∆i,j,ĉt, (ĉt, ct))

if (ĉt
′
0, ct

′
0) =⊥ or (ĉt

′
1, ct

′
1) =⊥ then

return ⊥

if |ĉt′0| ̸= |ĉt
′
1| or

∣∣ct′0∣∣ ̸= ∣∣ct′1∣∣ then

return ⊥

TC[j, ĉt
′
b]← ct′b

return (ĉt
′
b, ct

′
b)

Fig. 2. Security game for sConfidentiality. The dishonest keys kh+1, · · · , kh+d are pro-
vided to the adversary in the startup, while the honest keys k1, · · · , kh are kept private
from the adversary. Both the judgements in O.sUpd and O.Chall are set to avoid the
adversary knowing the key and valid challenge-equal ciphertexts in the same node.

Remark 2. The definition of Confidentiality is the same as sConfidentiality but
the adversary is given more oracles O = (OEnc,OChall,OTokenGen,OUpd), in which
the first two oracles are the same as those in Fig. 2 and the rest are defined in
Fig. 3.
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OTokenGen(i, j, ĉt) :

if j > h and TC[i, ĉt] ̸=⊥ then

return ⊥
∆i,j,ĉt ← TokenGen(ki, kj , ĉt)

(ĉt
′
, ct′)← Update(∆i,j,ĉt, (ĉt, ct))

if j ≤ h and TC[i, ĉt] ̸=⊥ then

TC[j, ĉt
′
]← ct′

return ∆i,j,ĉt

OUpd(i, j, (ĉt, ct)) :

∆i,j,ĉt ← TokenGen(ki, kj , ĉt)

(ĉt
′
, ct′)← Update(∆i,j,ĉt, (ĉt, ct))

if j > h and TC[i, ĉt] ̸=⊥ then

return ⊥
if j ≤ h and TC[i, ĉt] ̸=⊥ then

TC[j, ĉt
′
]← ct′

return ((ĉt
′
, ct′))

Fig. 3. Different Oracles in Confidentiality.

Remark 3. Both Confidentiality and sConfidentiality only capture the confiden-
tiality security on UE schemes with randomized ciphertext updates5. For a de-
terministic Confidentiality-secure UE scheme, the adversary is able to obtain the
challenge output before the challenge phrase by querying O.Update on the chal-
lenge ciphertext input, which makes it trivially win the game. We will provide a
more secure confidentiality notion in the next section to consider both random-
ized and deterministic UE schemes.

As we discussed above, there cannot exist a dishonest key index in which
the adversary knows a challenge-equal ciphertext, as this will lead to a trivial
win. In the query phase, the adversary can obtain challenge-equal ciphertexts
via querying the oracles OChall or OsUpd. In addition, the adversary may infer
more challenge-equal ciphertexts via its known update tokens, and this behavior
cannot be tracked. We have the following lemma to consider these two cases.

Lemma 3. For UE schemes with no-directional key updates, the adversary can-
not learn a challenge-equal ciphertext under a dishonest key in the confidentiality
game for sConfidentiality as defined in Fig. 2, if the invalid symbol ⊥ is not re-
turned during the game.

Proof. In the confidentiality game of no-directional keys updates UE schemes,
all keys that are known to the adversary are the dishonest keys given in the
setup, and cannot be extended. However, apart from the obtained challenge-
equal ciphertexts during the query phase, the adversary can infer more challenge-
equal ciphertexts via its known tokens. For the former case, we avoid the trivial
win by disallowing the adversary to query the challenge oracle on a dishonest key
index and to update the challenge-equal ciphertext to any of the dishonest key.
For the latter case, the adversary can update challenge-equal ciphertext from a
honest key ki to a dishonest key kj by its known token ∆i,j,ĉt. Since the key kj

5 In this paper, we assume the update algorithm is deterministic; when we refer to a
randomized UE schemes, we mean the token generation algorithm is randomized.
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is dishonest, the adversary cannot learn the token ∆i,j,ĉt from the challenger, so
it must be inferred by ki and kj , which contradicts with the condition that ki is
honest.

Theorem 2. Let UE = (KeyGen,Encrypt,ToenGen,Update,Decrypt) be an up-
datable encryption scheme. For any sConfidentiality adversary A against UE,
there is a Confidentiality adversary B against UE ([BEKS20], Def. 3.4) such that

AdvsConfUE,A(1
λ) ≤ AdvConfUE,B(1

λ) (3)

In addition, if UE is a UE scheme with no-directional key updates, then for any
Confidentiality adversary B against UE, there is a sConfidentiality adversary A
against UE such that

AdvConfUE,B(1
λ) = AdvsConfUE,A(1

λ)

Proof. We construct a reduction B that runs the Confidentiality game and sim-
ulates all responses to the queries of A. The reduction sends all its known keys
to A, all A’s queries except OsUpd to its challenger, and returns the challenger’s
responses to A. When A queries the orcale OsUpd on some input, the reduction
B submits the same input to OUpd. If the response of the challenger is ⊥, B also
sends ⊥ to A; otherwise, B calculates the updated ciphertext by the received
update token and forwards the update token, together with the updated cipher-
text, to the adversary A. At last, B forward A’s guess to its challenger. Since
the reduction has an extra access to OUpdate, we have the Inequality (3). 6

If UE is a UE scheme with no-directional key updates, we construct a reduc-
tion A that runs the sConfidentiality game and simulates all the responses to the
queries of the given B. The reduction A sends all its known keys to B and all
B’s queries except those on OTokenGen and OUpd to its challenger, and returns its
challenger’s responses to B. When B queries the oracle OTokenGen (or OUpd) on
some input, the reduction A submits the same input to the OsUpd oracle, and
returns the update token (or updated ciphertext, respectively) received from its
challenger to B if the response is not ⊥; otherwise, A returns ⊥ to B.

Therefore, the reduction A simulates all response to B’s queries. The only
difference between A and B happens when B queries OUpd in a honest key index:
the reduction A receives the updated ciphertext, together with the update token
from its challenger, but it only returns the updated ciphertext to the adversary
B. Since updating ciphertexts to a honest key is permitted, the reduction A does
not trigger the trivial win condition by Lemma 3. Thus, we have

AdvConfUE,B(1
λ) ≤ AdvsConfUE,A(1

λ)

In combination with (3), we conclude the advantage of A is equal to that of B.

6 OsUpd is actually equal to OUpd.
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3.3 A Stronger Confidentiality Notion

We provide a new confidentiality notion for ciphertext-dependent schemes in
the Definition 5 to give much more power to the adversary than the notion of
sConfidentiality. All available oracles that the adversary has access to are de-
scribed in Fig. 4. The stronger notion captures the adaptive security by allowing
the adversary to adaptively corrupt keys via OCorr, and considers UE schemes in
both cases: deterministic and randomized ciphertext update.

To track non-challenge and challenge-equal ciphertexts known to the adver-
sary, we record two look-up tables: TCnon that maps an epoch and non-challenge
ciphertext header pair to the corresponding non-challenge ciphertext body, and
TCchall that maps an epoch and challenge-equal ciphertext header pair to the cor-
responding challenge-equal ciphertext body, e.g. TCnon[i, ĉt] = ct indicating the
adversary knows non-challenge ciphertext (ĉt, ct) in epoch i. We denote T[0],T[1]
as the column and row index set of the table T, respectively. Therefore, TCchall[0]
is the set of epochs, in which the adversary learns a challenge-equal ciphertext.
We also record an epoch set K that contains the set of epochs in which the
adversary corrupts an epoch key. All of the above are used to check if trivial win
conditions are triggered in the experiment, which will be discussed below7.

Comparison with sConfidentiality. The adversary is provided with an extra
ability to query the decryption oracle, and it can also corrupt keys at any time
during the game by querying OCorr, instead of selecting the compromised keys in
the setup phrase. Moreover, these oracles also consider deterministic UE schemes:
the challenge ciphertext input should not be such ciphertexts whose updates are
already known to the adversary before the challenge, otherwise the adversary
can easily win the game by comparing the challenge output with the update
of the challenge ciphertext input. If a UE scheme is deterministic, the previous
behaviors can be checked on the table TCnon in the challenge phase, as all the
ciphertexts known to the adversary before the challenge are recorded in TCnon.

Lemma 4. For UE schemes with no-directional key updates, if K∩TCchall[0] =
∅, then within all the epochs in which the adversary knows a challenge-equal
ciphertext is TCchall[0], even if it is given access to all the oracles in Fig 4.

Proof. The proof is similar to that of Lemma 3. Suppose TCchall[0] = ∪{estart, · · · , eend}.
We prove that the adversary cannot know a challenge-equal ciphertext in epoch
eend+1. Since eend is the last epoch in the epoch continuum, the adversary cannot
know a challenge-equal ciphertext in epoch eend+1 via querying OsUpd, since the
received update ciphertext will be recorded in the table TCchall, which conflicts
with the condition that eend is the last epoch in the epoch continuum. Alterna-
tively, it can update challenge-equal ciphertext in epoch eend with its inferred

7 We follow the analysis of trivial win conditions of ciphertext-independent UE
schemes [14,13,6,11], while providing much simpler approaches to check the con-
ditions by look-up tables. This also indicates the differences between ciphertext-
independent and ciphertext-dependent UE schemes
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OEnc(e,m) :

(ĉt, ct)← Enc(ke,m)

TCnon[e, ĉt]← ct

return (ĉt, ct)

OsUpd(e, (ĉt, ct)) :

if TCchall[e− 1, ĉt] =⊥ and

TCnon[e− 1, ĉt] =⊥ then

return ⊥
∆e,ĉt ← TokenGen(ke−1, ke, ĉt)

(ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

if TCchall[e− 1, ĉt] ̸=⊥ then

TCchall[e, ĉt
′
]← ct′

else TCnon[e, ĉt
′
]← ct′

return (∆e,ĉt, (ĉt
′
, ct′))

OCorr(e) :

K = K ∪ {e}
return ke

ODec(e, (ĉt, ct)) :

m′ or ⊥ ← Dec(ke, (ĉt, ct))

if (xx = det and TCchall[i, ĉt] = ct) or

((xx = rand and e ∈ TCchall[0]) and

(m′ = m or m1)
)
then

return ⊥
return Dec

(
ke, (ĉt, ct)

)
OChall(e,m, (ĉt, ct)) :

(ĉt
′
0, ct

′
0)← Enc (ke,m)

if (ĉt
′
0, ct

′
0) =⊥ or TCnon[e− 1, ĉt] ̸= ct then

return ⊥
∆e,ĉt ← TokenGen

(
ke−1, ke, ĉt

)
(ĉt

′
1, ct

′
1)← Update(∆e,ĉt, (ĉt, ct))

if |ĉt′0| ̸= |ĉt
′
1| or

∣∣ct′0∣∣ ̸= ∣∣ct′1∣∣ then

return ⊥

if (xx = det and TCnon[e, ĉt
′
1] = ct′1) then

return ⊥

TCchall[e, ĉt
′
b]← ct′b

return (ĉt
′
b, ct

′
b)

Fig. 4. An overview of the oracles that are access to the adversary in the Definition 5.

token. But from K ∩ TCchall[0] = ∅, we know the epoch key kend is unknown
to the adversary, which is needed to infer the token in eend+1. The proof is the
same for the challenge-equal ciphertext in the epoch estart.

Remark 4. Lemma 4 shows that the adversary cannot infer a challenge-equal ci-
phertext in an epoch that it does not obtain a challenge-equal ciphertext during
the query phase. But that does not mean all the ciphertexts known to the adver-
sary are stored in the table TCchall. For randomized UE schemes, the adversary
can create arbitrary number of valid challenge-equal ciphertexts in any epoch
in TCchall[0] by performing the update with its known ciphertexts and tokens.
However, for the deterministic context, all the challenge-equal ciphertexts that
the adversary knows are completely stored in the table TCchall.

Trivial Wins via Keys and Ciphertexts. If there exists an epoch such
that the adversary knows the epoch key and a valid challenge-equal ciphertext
in the epoch, it leads to a trivial win as we discussed about the prior confi-
dentiality work of [4] in Sect. 2.2. More specifically, this condition is equal to
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K∩TCchall[0] = ∅ for UE schemes with no-directional key updates by Lemma 4.

Trivial Wins via Updates. We consider UE schemes with deterministic cipher-
text updates. The adversary can query the oracle OsUpd to know the updated
ciphertexts of the challenge input (ĉt, ct) before the challenge phrase, which
are recorded in the table TCnon, and win the game by comparing the updated
ciphertext in challenge epoch with the challenge ciphertext. Furthermore, the
adversary may also infer the updated ciphertext of (ĉt, ct) in challenge epoch
via inferred token ∆e,ĉt. But that is impossible since the key ke in the challenge
epoch is unknown to the adversary by K∩TCchall[0] = ∅ and the challenge epoch
e ∈ TCchall[0]. We track the above behaviors via the table TCnon, which are fur-
ther checked in the challenge oracle OChall.

8

Trivial Wins via Decryptions. We now also consider UE schemes with de-
terministic ciphertext updates. The table TCchall records all the challenge-equal
ciphertexts known to the adversary in the game. The adversary can trivially win
the game by querying the decryption oracle on the challenge-equal ciphertexts
recorded on the table TCchall.

For UE schemes with randomized ciphertext updates, the epoch set TCchall[0]
records all the epochs in which the adversary can generate a valid challenge-equal
ciphertext. The adversary can trivially win the game if the returned message of
the decryption oracle in epochs in TCchall[0] is the challenge message or the
plaintext of the challenge input ciphertext. These two trivial win conditions are
checked in the oracle ODec.

Definition 5 (xxIND-UE-atk). Let UE = (KG,Enc,TokenGen,Update,Decrypt)
be a ciphertext-dependent updatable encryption scheme with no-directional key
updates. For an adversary A and b ∈ {0, 1}, we define the confidentiality experi-
ment ExpxxIND-UE-atk-b

UE,A in Fig. 5 for xx ∈ {det, rand} and atk ∈ {CPA,CCA-1,CCA}.
We say UE meets the xxIND-UE-atk confidentiality if there is a negligible

function negl(λ) such that AdvxxIND-UE-atk
UE,A (λ) ≤ negl(λ), where

AdvxxIND-UE-atk
UE,A (λ) =

∣∣∣Pr[ExpxxIND-UE-atk-1
UE,A = 1

]
− Pr

[
ExpxxIND-UE-atk-1

UE,A = 0
]∣∣∣ .

3.4 Firewall Techniques in Ciphertext-Dependent UE Schemes

Firewall Technique. In ciphertext-independent UE schemes, firewall technique
was developed in [14,13] to facilitate the security proof by separating epochs
into different regions. Inside an insulated regions (defined below), the simulation
in the proof should appropriately respond the queries of the adversary, since it
corrupts all tokens within this region. While outside, the simulation can generate
tokens and epoch keys freely.

8 These conditions are checked immediately in the confidentiality game to avoid the
trivial wins. After the query phase, there is only one check left K ∩ TCchall[0] ̸= ∅,
without extra calculations and further checks of the extended leakages sets of keys,
tokens and ciphertext in [6,11].
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ExpxxIND-UE-atk-b
UE,A :

1 : (m, (ĉt, ct))← AO1(1λ) // setup phase

2 : A queries Ochall on (m, (ĉt, ct)) // challenge phase

3 : b′ ← AO2(1λ) // response phase

4 : if (K ∩ TCchall[0] ̸= ∅) then

5 : b′ $← {0, 1}
6 : return b′

Fig. 5. The confidentiality game ExpxxIND-UE-atk-b
UE,A for xx ∈ {det, rand} and atk ∈

{CPA,CCA-1,CCA}. The adversary generates a challenge plaintext and a challenge
ciphertext in the setup phase according to the oracles set O1 it has access to, which
are then submitted to the challenger in the challenge phase. The adversary can con-
tinue to querying the oracle set O2 and eventually provides a guessing bit. The oracle
sets O1 and O2 are shown in Table 1 and Fig. 4. The adversary loses the game if
K ∩ TCchall[0] ̸= ∅.

atk O1 O2

CPA OEnc,OsUpd,OCorr OEnc,OsUpd,OCorr

CCA-1 OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd,OCorr

CCA OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd, ODec ,OCorr

Table 1. Oracles that the adversary has access to before and after the challenge phase
in the confidentiality game for different attacks. It can corrupt keys at any time during
the game in all attacks via querying OCorr, but is not allowed to query the decryption
oracle in the CPA attack, limited to query the decryption oracle before the challenge
in the CCA-1 attack, and free to query the decryption oracle in the CCA attack.

Definition 6 (Firewall, [14,13]). An insulated region with firewalls fwl and
fwr, denoted by FW, is consecutive sequence of epochs (fwl, · · · , fwr) for which:

– no key in the sequence of epochs {fwl, · · · , fwr} is corrupted;
– the tokens ∆fwl and ∆fwr+1 are not corrupted;
– all tokens {∆fwl+1, · · · ,∆fwr} are corrupted.

In ciphertext-dependent UE schemes, however, there are two kinds of to-
kens: challenge-equal tokens and non-challenge tokens, which are used to update
challenge-equal and non-challenge ciphertexts respectively. We similarly define
the insulated region, inside which all challenge-equal tokens are corrupted but
no epoch key is corrupted.

Definition 7 (Firewall). In ciphertext-dependent UE schemes, an insulated
region with firewalls fwl and fwr, denoted by FW, is consecutive sequence of
epochs (fwl, · · · , fwr) for which:
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– no key in the sequence of epochs {fwl, · · · , fwr} is corrupted;
– no challenge-equal token in epoch fwl and fwr + 1 is corrupted;
– all challenge-equal tokens in epochs {fwl+ 1, · · · , fwr} are corrupted.

For an adversary A in the xxIND-UE-atk game, suppose it asks for the chal-
lenge in epoch ẽ and does not trigger the trivial win conditions. From the proof
of Lemma 4, we know A cannot update a ciphertext from the epoch eend to
the start epoch e′start of the next continuum. Therefore, we have TCchall[0] =
{estart, · · · , eend}, i.e. the epoch set in which A knows a challenge-equal cipher-
text is a consecutive continuum, which starts from the challenge epoch (that
is estart = ẽ), and ends in the epoch eend - the last epoch that the adversary
queries the update oracle OsUpd on the challenge-equal ciphertext.

The epoch keys and tokens in the epoch in TCchall[0] have the following prop-
erties.

– A does not know the challenge-equal token in epoch eend + 1, which follows
from the proof of Lemma 4;

– A knows all challenge-equal tokens in epochs in {estart+1, · · · , eend}, which
is obtained when A queries the updates of challenge-equal ciphertexts via
OsUpd;

– A does not know any key in epochs in {estart, · · · , eend}, since K∩TCchall[0] =
∅,

– A does not know the challenge-equal token in epoch estart from querying or
inferring. Since the key in estart is unknown to A, it cannot infer any token
in epoch estart. For deterministic UE schemes, the adversary is prohibited
to query the oracle OsUpd, which will lead to TCnon[ẽ, ĉt

′
1] = ct′1 (see the

challenge oracleOchall in Fig. 4). For randomized UE schemes, the probability
that two random tokens are equal is negligible.

We have the following lemma that follows from the discussion above, and
Lemma 6 is a corollary of Lemma 5.

Lemma 5. Let UE = (KG,Enc,TokenGen,Update,Decrypt) be a ciphertext-dependent
updatable encryption scheme with no-directional key updates, and xx ∈ {det, rand}
and atk ∈ {CPA,CCA-1,CCA}. For an xxIND-UE-atk adversary A against UE,
the set of epoch in which A knows a challenge-equal ciphertext is one insulated
region, starting from the challenge epoch and ending at the last epoch in which
the adversary queries the OsUpd.

Lemma 6. In ciphertext-dependent UE schemes, if the xxIND-UE-atk adversary
knows a challenge-equal ciphertext in epoch e, then e must be in an insulated
region.

4 A CCA-1 Secure PKE Scheme

In this section, we first investigate a potential risk in the decryption algorithm
of the PKE [15] and further propose a new simpler PKE scheme TDP, which will
be used in Sect. 5 as the underlying primitive to build our updatable encryption.
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Lemma 7. The decryption algorithm in the PKE scheme [15] cannot decrypt
ciphertexts correctly.

Proof. Let c = (µ,b) be a valid ciphertext generated by the encryption algo-
rithm, that is

bt = 2(stAµ mod q) + et + (0, encode(m))t mod 2q, (4)

for some vectors s and e, and Aµ = [A0 | − A0R + HµG]. The decryption

algorithm proceeds by calling InvertO(R, Aµ, Hµ, b mod q), which returns z
and e′ = (e0, e1) such that

bt = ztAµ + (e′)t mod q. (5)

This step is feasible since the secret key R is a G-trapdoor for Aµ. However, the
decryption algorithm further regards e′ as e and outputs encode−1 ((b− e′)t [RI ])
as the plaintext m. In the following, we show e ̸≡ e′.

By Eq. (4), we know

bt = 2(stAµ mod q) + et + (0, encode(m))t mod q. (6)

If e′ = e, then there exists some s′ such that

(0, encode(m))t = (s′)tAµ = (s′)t[A0 | −A0R+HµG] mod q. (7)

As a necessary condition, we have

(0, encode(m))t
[
R
I

]
= (s′)tAµ

[
R
I

]
mod q, (8)

which implies vtG = (s′)tHµG mod q for which vtG = encode(m)t by the
definition of the encode function, and therefore vtH−1µ = (s′)t mod q. Then

(s′)tA0 = vtH−1µ A0 mod q.

By Eq. (7), we know (s′)tA0 = 0 mod q for any message m, which equals
vtH−1µ A0 = 0 mod q for any v. Therefore, A0 ≡ 0 mod q, which is a contra-
diction to the key generation algorithm.

4.1 A New PKE Scheme

In our PKE scheme TDP we construct a 1 × 3 block matrix as the encryption
matrix Aµ. The secret key serves as the trapdoor for the first two blocks of
Aµ and is used in the decryption algorithm to ensure the correct output of the
error items. In addition, we only encode the message to Λ(Gt) (by comparison,
Λ(Gt)/2Λ(Gt) in [15]), and perform the modular arithmetic operation on q
instead of 2q.

Some parameters involved in the construction are introduced as follows, in
which we use standard asymptotic notations of O,Ω, ω. Let 1λ be the security
parameter and ω(

√
log n) is a fixed function.
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– G = Zn×nk
q is the gadget matrix in Sect. 2 to make the oracles InvertO

and SampleDO efficient. We choose sufficiently large prime power q = pe =
poly(λ) and k = O(log q) = O(log n).

– m̄ = O(nk) and D =Dm̄×nk
Z,ω(
√
logn)

so that (A,AR) is negl(λ)-far from uniform

for A ← Zn×m̄
q and R ← D from the leftover hash lemma. We define σ as

the upper bound for s1(R) by Corollary 1, i.e., σ := ω(
√
log n) ·O(

√
nk).

– An efficient encoding encode : {0, 1}nk → Λ(Gt), which is defined by encode(m) =
Bm ∈ Znk where m ∈ {0, 1}nk and B is any basis of Λ(Gt). Note that this
mapping can be efficiently inverted.

– α is an error rate for LWE such that 1/α = 4 ·O(nk) · ω(
√
log n).

The PKE scheme TDP is described as follows:

– TDP.KG(1λ): choose A0
$← Zn×m̄

q , R1, R2
$← D and let the encryption ma-

trix A = [A0 | A1 | A2] = [A0 | −A0R1 | −A0R2] ∈ Zn×m
q . The public key

is pk = A and the secret key is sk = R1.

– TDP.Enc(pk = A,m ∈ {0, 1}nk): choose an invertible matrix Hµ ∈ Zn×n
q ,

and let Aµ = [A0 | A1 + HµG | A2]. Choose a random vector s ∈ Zn
q

and an error vector e = (e0, e1, e2) ∈ Dm̄
Z,αq × Dnk

Z,d × Dnk
Z,d where d2 =

(∥e0∥2 + m̄ · (αq)2) · ω(
√
log n)2. Let

bt = stAµ + et + (0, 0, encode(m))t mod q, (9)

where the first 0 has dimension m̄ and the second has dimension nk. Output
the ciphertext c= (Hµ, b). Notice thatR1 is a trapdoor for [A0 | A1+HµG].

– TDP.Dec(sk = R1, c = (Hµ,b)): let Aµ = [A0 | A1 +HµG | A2].
1. Recover the error item from the ciphertext. If c or b does not

parse, or Hµ = 0, output ⊥. Otherwise parse bt = (b0,b1,b2)
t. If

(b0,b1) /∈ Λ([A0 | A1+HµG]t), output⊥. Otherwise, call InvertO(R1, [A0 |
A1+HµG], [b0,b1], Hµ) by Lemma 1, which returns z and (e0, e1) such
that

(b0,b1)
t = zt[A0 | A1 +HµG] + (e0, e1)

t mod q.

If InvertO fails, output ⊥. Invert bt
2− ztA2 and find the unique solution

u, e2 to the equation

bt
2 − ztA2 = utG+ et2 mod q,

by Theorem 1, if they exist. If ∥e0∥ ≥ αq
√
m̄ or ∥ej∥ ≥ αq

√
2m̄nk ·

ω(
√
log n) for j = 1, 2, output ⊥ (Lemma 11).

2. Recover the plaintext. Output

encode−1
(
(utG)t

)
∈ Znk

2 ,

if the result exists, otherwise output ⊥.
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4.2 Correctness and Security

We provide a full proof of the correctness (Lemma 8) and security (Lemma 9)
in Sect. 5 for the updatable encryption scheme TDUE, which is based on TDP,
regarded as a subcase of TDUE.

Lemma 8. Our PKE scheme TDP decrypts correctly except with 2−Ω(n) failure
probability.

Proof. The proof is the same as Lemma 10 except the bound for the error vectors.
By Corollary 1, we have s1(R) = ω(

√
log n) · O(

√
nk). By Lemma 11, we have

∥e0∥ ≤ αq
√
m̄ and ∥ei∥ ≤ αq

√
2m̄nk · ω(

√
log n) for j = 1, 2, except with

negligible probability 2−Ω(n), where m̄ = O(nk). Therefore,∥∥(e0, e1)t [RI ]∥∥∞ ≤ ∥∥(e0, e1)t [RI ]∥∥ ≤ ∥∥et0R∥∥+ ∥e1∥ ≤ αq ·O(nk) · ω(
√
log n),

which is further smaller than q/4 by the α we choose, and ∥e2∥∞ ≤ q/4 for the
same reason.

Lemma 9. Our PKE scheme TDP is CCA-1secure if the LWE problem is hard.

5 A CCA-1 Secure Updatable Encryption Scheme

Based on the TDP scheme in Sect. 4, we construct a new UE scheme, which is
IND-UE-CCA-1 secure under the assumption of the LWE hardness.

5.1 Construction

At a high level, the ciphertext of a plaintextm is of the form (ĉt, ct) = (Hµ, s
tAµ+

et + (0,0,encode(m)t) generated by the TDP.Enc, where the encryption matrix
Aµ can be computed from the public key and the invertible matrix Hµ. The
secret key R1 serves as a trapdoor for the first two block matrices of Aµ, and
therefore can be used to generate a transition matrix M between the previous
and new encryption matrices, i.e. AµM = A′µ where A′µ is the new encryption
matrix. The invertible matrix Hµ is randomly changed in next epoch to avoid
the adversary trivially winning the security game by comparing Hµ. Meanwhile,
the ciphertext of message 0 is added to the new ciphertext to ensure the random-
ness. Then the update algorithm runs by substituting Hµ by Hµ

′ and computing
bt ·M+Enc(0), which equals s′tA′µ+ e′t+(0,0,encode(m)t). Therefore the up-
dated ciphertext is of the same shape as the encrypted ciphertext with new
randomness and error, which guarantees the forward and post-compromise se-
curity [14], i.e., preserving the confidentiality in the presence of temporary key
compromises.

We use the same parameters as in Sect. 4.1 except

– α is an error rate for LWE such that 1/α = 4l · ω(
√
log n)2l+2O(

√
nk)3l+3

where l is the maximal number of update that the scheme can support.
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– τ =
√
s1(R)2 + 1 ·

√
s1(
∑

G) + 1 ·ω(
√
log n) is smallest Gaussian parameter

for the discrete Gaussian distribution from which the sampling algorithm
SampleDO can sample vectors, where s1(

∑
G) = 5 by Theorem 1.

The UE scheme TDUE is described as follows.

– TDUE.KG(1λ): output TDP.KG(1λ).
– TDUE.Enc(pk = A,m ∈ {0, 1}nk): output TDP.Enc(A,m).
– TDUE.Dec(sk = R1, c = (Hµ,b)): output TDP.Dec(R1, (Hµ,b)).
– TDUE.TokenGen(pk, sk, pk′,Hµ): parse pk = [A0 | A1 | A2] = [A0 | −A0R1 |
−A0R2], sk = R1, and pk′ = [A′0 |A

′
1 | A

′
2].

1. Generate a random invertible matrix H′µ and let A′µ = [A′0 | A
′
1+H′µG |

A′2] be the new encryption matrix. We first generate a transition matrix
M for which AµM = A′µ in the following steps 2, 3, 4, and then compute

the encryption of the message 0 under A′µ in step 5.

2. Call SampleO(R1, [A0 | −A0R1 +HµG],Hµ,A
′
0, τ) (Remark 1 and R1

is a trapdoor for [A0 | −A0R1+HµG]), which returns an (m̄+nk)× m̄
matrix, parsed as X00 ∈ Zm̄×m̄ and X10 ∈ Znk×m̄ with Gaussian entries
of parameter τ , satisfying

[A0 | −A0R1 +HµG]

[
X00

X10

]
= A′0. (10)

3. Call SampleO(R1, [A0 | −A0R1+HµG],Hµ,A
′
1+H′µG, τ

√
m̄/2), which

returns X01 ∈ Zm̄×nk
q and X11 ∈ Znk×nk

q with Gaussian entries of pa-

rameter τ
√
m̄/2 such that

[A0 | −A0R1 +HµG]

[
X01

X11

]
= A′1 +H′µG. (11)

4. Continue calling the sample oracle SampleO(R1, [A0 | −A0R1+HµG],H1,

A′2 − A2, τ
√
m̄/2) and obtain X02 ∈ Zm̄×nk

q and X12 ∈ Znk×nk
q with

Gaussian entries of parameter τ
√
m̄/2 such that

[A0 | −A0R1 +HµG]

[
X02

X12

]
= A′2 −A2. (12)

Note that Aµ = [A0 | A1 + HµG | A2]. Define the transition matrix
from Aµ to A′µ as

M =

X00 X01 X02

X10 X11 X12

0 0 I

 . (13)

Then AµM = A′µ from Eq. (10), (11), (12).

5. Let b0 be the ciphertext of message m = 0 under the public key pk′

with the invertible matrix H′µ generated in step 1. That is,

bt
0 = (s′)tA′µ + (e′)t mod q.
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6. Output ∆ = (M,b0,H
′
µ).

– Update(∆, c = (Hµ,b)): parse ∆ = (M,b0,H
′
µ) and compute

(b′)t = bt ·M+ bt
0 mod q,

and output c′ = (H′µ,b
′).

5.2 Correctness

We prove that the decryption algorithm in our scheme can perform correctly with
overwhelming probability. Note that the second component in the ciphertext
generated by the update algorithm (updated ciphertext) is as follows.

(b′)t = bt ·M+ bt
0

=
[
stAµ + et + (0, 0, encode(m))t

]
M+ (s′)tA′µ + (e′)t

= (s+ s′)tA′µ +
(
etM+ (e′)t

)
+ (0, 0, encode(m))t mod q. (14)

The third equation holds because AµM = A′µ and the last nk rows in M is
[0 0 I]. Therefore the item (0, 0, encode(m))t stays the same when multiplied
by M. Then the updated ciphertext shares the same form with the fresh cipher-
text (generated by the encryption algorithm), except that the update algorithm
enlarges the error terms by etM+ (e′)t, which may bring the failure to the in-
vert InvertO and further influence the correctness of the decryption algorithm.
In the following, we show the “increased” errors in the updated ciphertexts can
be tolerated by the decryption algorithm via the appropriate selection on the
LWE parameter α.

Lemma 10. Our UE scheme TDUE decrypts correctly except with 2−Ω(n) fail-
ure probability.

Proof. Since the decryption on the fresh ciphertext (from Enc) is a subcase
of that on the updated ciphertext (from Upd), we choose to prove that the
decryption algorithm can output a correct plaintext after l updates from epoch
0, where l is the maximal update number.

Let (pke, ske = (R1,e,R2,e))0≤e≤l ← KG(1n) be the public and secret key

in epoch e. For a random plaintext m ∈ {0, 1}nk, let ce be the ciphertext of
m in epoch e and c0 = Enc(m) = (Hµ,0, s

t
0Aµ,0 + et0 + (0, 0, encode(m))t).

For 1 ≤ i ≤ l, let the token in epoch i be ∆i = (Mi,b0,i,Hµ,i), where b0,i

is the fresh ciphertext of message 0 in epoch i, i.e. bt
0,i = stiAµ,i + eti and

Aµ,i = [A0,i | A1,i + Hµ,iG | A2,i] defined in the encryption algorithm. Then
iteratively using Eq. (14), we know the updated ciphertext of m at epoch l is
cl = (Hµ,l,bl) where

bt
l =

(
l∑

i=0

si

)t

Aµ,l +

l∑
i=0

eti ·
l∏

j=i+1

Mj

+ (0,0, encode(m))t.
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Let etl =
∑l

i=0(e
t
i

∏l
j=i+1 Mj) = (e0l , e

1
l , e

2
l )

t. We provide in Appendix B the
upper bound for the error in bl that∥∥∥(e0l , e1l , e2l )t · [R1,l

I
0

]∥∥∥
∞

< q/4 and
∥∥(e2l )∥∥∞ < q/4, (15)

except with probability 2−Ω(n) via the appropriate parameter selection for the
scheme. Let bt

l = (b0
l ,b

1
l ,b

2
l )

t. Then the call to InvertO made by Dec(skl, (Hµ,l,bl))
returns z and (e0l , e

1
l ) correctly, for which

(b0
l ,b

1
l )

t = zt[A0,l | A1,l +Hµ,lG] + (e0l , e
1
l )

t mod q.

It follows that
(b2

l )
t − ztA2,l = (e2l )

t + encode(m)t,

where
∥∥e2l ∥∥ < q/4 by Inequality (15) and encode(m)t = utG for some u ∈ Znk

q

by the definition of encode. Inverting (b2
l )

t − ztA2,l, we will find the unique e2l
and u. Finally, we have

encode−1
(
(utG)t

)
= encode−1 (encode(m)) = m.

Therefore, the decryption algorithm Dec outputs m as desired.

5.3 Security Proof

In this section, we show that our scheme is IND-UE-CCA-1 secure under the
hardness assumption of LWE. In general, we take three steps, see Fig. 2, to bound
the advantage of the adversary. In the first step, we build a hybrid game Hi for
any epoch i, which follows [11,16]. To the left of i, the game Hi returns the real
challenge-equal ciphertexts; while, to the right of i, it returns random ciphertexts.
In the second step, we adopt the firewall technique, which was developed in
ciphertext-independent schemes [14,13,6,11] to set up a modified game of Hi

that enables a simulation of the modified game in the third step. This is feasible
due to our new confidentiality notion and Lemma 6. At last, we play a sequence
of games. In the first game, we simulate valid epoch keys and tokens in firewall
areas, showing how to simulate the responses to all the queries. This is the main
part we attempt to overcome from [12], where the adversary in the security game
of a PRE scheme can easily distinguish the simulated and the real games and
also the simulation cannot respond multiple times of update queries. We then
modify the challenge-equal ciphertext in the second game, which delivers the
construction of a reduction that solves the LWE by simulating the second game
to the adversary.

Theorem 3. Let UE be the updatable encryption scheme described in Sect. 5.
For any IND-UE-CCA-1 adversary Aagainst UE, there exists an adversary B
against LWEn,q,α such that

AdvIND-UE-CCA-1
UE,A (1λ) ≤ 2(l + 1)3 ·

[
(l + 2) · negl(λ) + (nDec + nsUpd) · 2−Ω(n) + AdvLWE

n,q,α(B)
]
.
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Step Process

Step 1
epochHi : i

real ct random ct

Step 2
epochGi : i

real ct

fwl

random ct

fwr

Step 3
Game 1: Simulate epoch keys and tokens in {fwl, · · · , fwr}
Game 2: Modify the challenge-equal ciphertext
Game 3: A reduction solving LWE and simulating Game 2

Table 2. Steps in the security proof. Within an insulated region, the reduction should
appropriately respond to all the queries made by the adversary, since all challenge-equal
tokens in this area are known to it. Outside the region, the reduction can generate epoch
keys and tokens freely. ct is the abbreviation of ciphertext.

where l is the maximal number of ciphertext updates that the scheme UE supports,
and nDec and nsUpd are the number of queries to the oracles ODec and OsUpd,
respectively.

Proof. We proceed via three steps that are defined as follows:
Step 1. Consider a sequence of hybrid experiments Hb

0 , · · · , Hb
l+1 for b ∈

{0, 1}, where Hb
i is the same as the IND-UE-CCA-1 game except when the ad-

versary sends a query with challenge input (m̄, c̄) to O.Chall in epoch j:

– if j < i, return an honestly generated challenge-equal ciphertext. That is,
for b = 0, return the update ciphertext of Enc(pkj , m̄); otherwise return the
update ciphertext of Upd(∆j , c̄).

– if j ≥ i, return a random ciphertext.

We see that Hb
l+1 is the same as ExpIND-UE-CCA-1-b

UE,A , and H0
0 = H1

0 since all
challenge responses are the same. Then We have

AdvIND-UE-CCA-1-b
UE,A (1λ) =

∣∣Pr[H1
l+1 = 1

]
− Pr

[
H0

l+1 = 1
]∣∣

≤
l∑

i=0

∣∣Pr[H1
i+1 = 1

]
− Pr

[
H1

i = 1
]∣∣

+

l∑
i=0

∣∣Pr[H0
i+1 = 1

]
− Pr

[
H0

i = 1
]∣∣.

Our goal is to prove
∣∣Pr[Hb

i+1 = 1
]
− Pr

[
Hb

i = 1
]∣∣ ≤ negl(λ) for any i and b.

Step 2. Since the responses in all epochs except i will be the same in both
games Hb

i+1 and Hb
i for b ∈ {0, 1}, we assume the adversary who tries to dis-

tinguish the two games asks for the challenge in epoch i (by O.Chall). Therefore
by Lemma 6, there exists an insulated region [fwl, fwr] around epoch i such that
epoch keys in (fwl, · · · , fwr) and no challenge-equal tokens in epochs fwl and
fwr+ 1 are corrupted, otherwise trivial win conditions will be triggered. In fact,
we have fwl = i by Lemma 5.
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We then define a new game Gbi which is the same as Hb
i except that the game

chooses two random numbers fwl, fwr← {0, · · · , l}. If the adversary corrupts one
of epoch keys in [fwl, fwr], or one of tokens in epochs fwl and fwr + 1, the game
aborts. The guess is correct with probability 1/(l + 1)2. Then we have∣∣Pr[Hb

i+1 = 1
]
− Pr

[
Hb

i = 1
]∣∣ ≤ (l + 1)2 ·

∣∣Pr[Gbi+1 = 1
]
− Pr

[
Gbi = 1

]∣∣.
Our goal is to prove

∣∣Pr[Gbi+1 = 1
]
− Pr

[
Gbi = 1

]∣∣ ≤ negl(λ) for any i and b.
Step 3. For b ∈ {0, 1} let Ai be an adversary who tries to distinguish

Gbi+1 from Gbi . To provide an upper bound for the advantage of Ai, we define a
sequence of games as follows.

Game 0:
For a random number d

$← {0, 1}, if d = 0 the game plays Gbi to Ai; otherwise
it plays Gbi+1 to Ai. Denote Ej be the event that the adversary succeeds in
guessing d in the Game j. Then we have

Pr[E0] =
∣∣Pr[Gbi+1 = 1

]
− Pr

[
Gbi = 1

]∣∣.
Game 1:
We consider a modified game that is the same as Game 0, except how the

public keys and tokens are generated in epochs from i (=fwl) to fwr. The overall
idea to change the public key in epoch i with a special form that ensures the
embedding of LWE samples to the challenge ciphertexts in epoch i. But this
form of public key in epoch i may cause the failure of generating token ∆i+1.
We leverage a method introduced in [12] to simulate tokens in epoch from i+ 1
to fwr by generating the public keys from i+2 to fwr with the same form as pki.
Our simulation overcomes some proof risks in [12], in which the simulated token
can be distinguished9 but also tackle the shortcoming that ciphertexts can only
be updated one time.

(1) At the start of the game, we pre-generate random invertible matrices {H∗µ,j}fwrj=i ∈
Zn×n
q that will be used to generate ∆j and pkj .

(2) We generate all keys from 0 to l as Game 0 by running the key generation
algorithm, except for pki, · · · , pkfwr.

(3) Public key in epoch i. We choose random A0,i ∈ Zn×m̄
q and secret key

R1,i ∈ D, and let the public key be

pki =
[
A0,i | −A0,iR1,i −H∗µ,iG | −A0,iR2,i

]
.

Notice that pki is still negl(λ)-far from the uniform for any choice of H∗µ,i.
This design is to generate challenge ciphertexts of the form in the following
Eq. (20) and further facilitate the simulation in Game 3.

9 This was first observed in [9]. But the distribution of the simulated secret key in
their proof is different from that in the real scheme they constructed, which may
lead to the potential failure of decryption.
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Public key in epoch i+1. In epoch i+1, we choose two matrices X00,i+1 ∈
Zm̄×nk
q and X10,i+1 ∈ Znk×nk

q from a Gaussian distribution with parameter
τ and let

A0,i+1 = [A0,i | −A0,iR1,i] ·
[
X00,i+1

X10,i+1

]
, (16)

which is still a negl(λ)-far from the uniform. Then we choose a random
matrix R1,i+1 ∈ Zm̄×nk whose entry equals to 0 with probability 1/2 and
±1 with probability 1/4 each, and two random matrices X02,i+1,X12,i+1 ∈
Zm̄×nk
q × Znk×nk

q with Gaussian entries of parameter τ
√
m̄/2. Compute

A1,i+1 = [A0,i | −A0,iR1,i]

[
X00,i+1

X10,i+1

]
·R1,i+1, (17)

A2,i+1 = [A0,i | −A0,iR1,i]

[
X02,i+1

X12,i+1

]
−A2,i, (18)

where A2,i = −A0,iR2,i. Let the public key in epoch i+ 1 be

pki+1 = [A0,i+1 | A1,i+1 −H∗µ,i+1G | A2,i+1].

and the secret key be ski+1 = R1,i+1.

Remark 5. By Lemma 15, we know (A0,i+1,A0,i+1R1,i+1) is negl(n)-close
to the uniform if m̄ ≥ n log(q) + 2 log(nk/δ) for some small δ = negl(n).

Remark 6. Every entry of
[
X00,i+1

X10,i+1

]
·R1,i+1 is an inner product of a m̄-vector

from a Gaussian distribution with parameter τ and a {0, 1,−1}m̄ vector
with half of the coordinates equal to 0, which is therefore a vector from a
Gaussian distribution with parameter τ

√
m̄/2 by Lemma 16 that is the same

distribution as the second-column block matrix of the token in Game 0.

Remark 7. We do not requireA2,i+1 to be presented in the form ofA0,i+1R2,i+1

for some matrix R2,i+1 as in the real game, and we will show that this does
not affect the responses to the queries.

Public key in epochs from i+2 to fwr. For any epoch j in {i+2, · · · , fwr},
we iteratively generate the public key pkj and the secret key skj as pki+1

and ski+1 respectively.
(4) Simulating challenge-equal queries. An overview of the oracles that

the adversary has access to on challenge-equal ciphertexts is summarised in
Table 3. We should respond the queries on challenge-equal ciphertexts and
challenge-equal tokens in epochs from i to fwr, but do not need to answer
the decryption on the challenge-equal ciphertext.
Ciphertext. For challenge-equal ciphertexts in epoch i, we notice that a
random invertible matrix should be generated when updating ciphertexts
and encrypting messages; here we use the special pre-generated invertible
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Simulation
Challenge-equal

i i+ 1

Public Key
A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG −A0,i+1R1,i+1 −H∗

µ,i+1G
−A0,iR2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,iR1,i −A0,iR1,i+1

−A0,iR2,i A2,i+1

Dec − −
TokenGen Eq. (23)

Update bt
i+1 = bt

i∆i+1 + bt
0

Table 3. Simulation of the responses to the queries on challenge-equal ciphertexts.
When the adversary queries the oracle O.sUpd, the simulation returns the output of
TokenGen and Update simultaneously. Public keys and ciphertexts (only Aµ is shown)
are represented by the block matrices.

matrix H∗µ,i in both of the two algorithms, which is randomly generated in
step (1) and is unknown to the adversary conditioned on the public keys we
sampled in step (3). Then the challenge ciphertext in epoch i either from
updating or from fresh encryption is in the form ci = (H∗µ,i,bi) where (for
simplicity, we skip the modular arithmetic operation in the ciphertexts)

bt
i = st[A0,i | (−A0,iR1,i −H∗µ,iG) +H∗µ,iG | −A0,iR2,i] + et + (0, 0, encode(mb))

t

= st[A0,i | −A0,iR1,i | −A0,iR2,i] + et + (0, 0, encode(mb))
t, (19)

for some s, e and b ∈ {0, 1}, and m0 = m̄ and m1 is the plaintext of the
challenge ciphertext c̄. Similarly, for updated ciphertexts in any epoch j ∈
{i+1, · · · , fwr} under the public key pkj defined in step (3), we use the pre-
generated invertible matrix H∗µ,j in the update algorithm. And the challenge
ciphertext is in the form cj = (H∗µ,j ,bj) where

bt
j = st[A0,j | (−A0,jR1,j −H∗µ,jG) +H∗µ,jG | A2,j ] + et + (0, 0, encode(mb))

t

= st[A0,j | −A0,jR1,j | A2,j ] + et + (0, 0, encode(mb))
t, (20)

for some s, e.

Token. For challenge-equal tokens in epoch i+ 1, we set[
X01,i+1

X11,i+1

]
=

[
X00,i+1

X10,i+1

]
·R1,i+1, (21)
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and

Mi+1 =

X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I

 , (22)

and b0,i+1 is the ciphertext of message 0 under pki+1 with the invertible
matrix H∗µ,i+1, i.e., b0,i+1 = stAµ,i+1 + et for some s and e. Based on
Eq. (16), (17), and (18), we know that Mi+1 is the transition matrix from
Aµ,i to Aµ,i+1: Aµ,iMi+1 = Aµ,i+1, and moreover has the distribution
negl(n)-far from the distribution of the token in Game 0 by Remark 6 and
the distribution of X00,i+1,X10,i+1,X02,i+1,X12,i+1 we chose in step (3).
Then we have

∆i+1 = (Mi+1,b0,i+1,H
∗
µ,i+1) (23)

is a valid challenge-equal token in epoch i+1. Similarly, we generate challenge-
equal tokens in epochs from i+ 2 to fwr.

(5) Simulating non-challenge queries. An overview of the oracles that the
adversary has access to on non-challenge ciphertexts is summarised in Table
4. We should respond the queries on the encryption, update, as well as the
decryption in all epochs. Since keys outside the insulated region are truly
generated in step (2), we focus on the simulation inside the region.

Simulation
Non-challenge

i i+ 1

Public Key
A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG −A0,i+1R2,i+1 −H∗

µ,i+1G
−A0,iR2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG+Hµ,iG −A0,i+1R1,i+1 −H∗

µ,i+1G+Hµ,i+1G
−A0,iR2,i A2,i+1

Dec SimDec

TokenGen ∆i+1 = TokenGen( )

Update bt
i+1 = bt

i∆i+1 + bt
0

Table 4. Simulation to the queries on non-challenge ciphertexts. The algorithm SimDec
is defined below. Game 1 correctly simulates all the responses if the random generated
matrix Hµ,j ̸= H∗

µ,j for j ∈ {i+ 1, fwr}.

Ciphertext. For non-challenge ciphertexts in epoch i, we perform the en-
cryption and update algorithm as Game 0 by generating random invertible
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matrices Hi,µ. The non-challenge ciphertexts in epoch i are in the form
ci = (Hµ,i,bi) where

bt
i = st[A0,i | (−A0,iR1,i −H∗µ,iG) +Hµ,iG | −A0,iR2,i]

+ et + (0, 0, encode(mb))
t, (24)

for some s, e and b ∈ {0, 1}, and m0 = m̄ and m1 is the plaintext of the
challenge ciphertext c̄. Similarly, for non-challenge ciphertexts in any epoch
j ∈ {i + 1, · · · , fwr}, we randomly generate invertible matrices H∗µ,j in the
update algorithm and the encryption algorithm. The challenge ciphertext is
in the form cj = (Hµ,j ,bj) where

bt
j = st[A0,j | (−A0,jR1,j −H∗µ,jG) +Hµ,jG | A2,j ]

+ et + (0, 0, encode(mb))
t, (25)

for some s, e and b ∈ {0, 1}.

Decryption. To aid with update and decryption queries, we choose an arbi-
trary (not necessarily short) R̂i ∈ Zm̄×nk

q such that −A0,iR̂i = −A0,iR1,i−
H∗µ,iG. Then we know R̂i is a trapdoor for Aµ,i,01 = [A0,i | (−A0,iR1,i −
H∗µ,iG)+Hµ,iG]. We use the algorithm SimDec described below to simulate
the decryption algorithm, and the simulated decryption algorithm can also
be applied in epoch from i+ 1 to fwr.

• SimDec(sk = R1,i, c = (Hµ,i,b)) :

1. If c or b does not parse, or Hµ,i = 0 or H∗µ,i, output ⊥. Otherwise

parse bt = (b0,b1,b2)
t. If (b0,b1) /∈ Λ(At

µ,i,01), output ⊥.
2. Call InvertO(R̂i,Aµ,i,01, (b0,b1) mod q, Hµ,i) to get z and et =

(e0, e1)
t such that (b0,b1)

t = ztAµ,i,01 + (e0, e1)
t mod q (Lemma

1). If InvertO fails, output ⊥.
3. Let u, e2 be the unique solution to the equation

bt
2 − ztA2,i = utG+ et2 mod q,

if they exist; otherwise output ⊥. Let m = encode−1(utG mod q).
4. If ∥e0∥ ≥ αq

√
m̄ or ∥ej∥ ≥ αq

√
2m̄nk ·ω(

√
log n) for j = 1, 2, output

⊥. Otherwise output m.

Whenever Hµ,i ̸= H∗µ,i which is the case with probability 2−Ω(n), the call to
the invert algorithm returns z and e properly if they exist, and SimDec has
the same decryption ability as Dec.

Token. By construction, the matrix R̂i is the trapdoor for the [A0,i |
(−A0,iR1,i −H∗µ,iG) +Hµ,iG]. We can use the real token generation algo-
rithm to generate matrices {Xi,00,Xi,01,Xi,02,Xi,10,Xi,11,Xi,12} with the
same distributions as in Game 0 by calling the invert algorithm on [A0,i |
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(−A0,iR1,i −H∗µ,iG) +Hµ,iG] with the trapdoor R̂i such that

[A0,i | (−A0,iR1,i −H∗µ,iG) +Hµ,iG | A2,i]

X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I


= [A0,i+1 | (−A0,i+1R1,i+1 −H∗µ,i+1G) +Hµ,i+1G | A2,i+1]. (26)

Let b0,i+1 be the ciphertext of message 0 under pki+1 with the random
invertible matrix Hµ,i, Mi+1 be the transition matrix from Aµ,i to Aµ,i+1

in Eq. (26) and ∆i+1 = (Mi+1,b0,i+1,H
∗
µ,i+1). Based on Eq. (24), (25) and

(26), we know that ∆i+1 is a valid non-challenge token in epoch i+1. Since

this process only uses the property that R̂i is a trapdoor, it can be applied
to any epoch j ∈ {i + 1 · · · fwr} by choosing an matrix Rj with the same
property, which works as long as Hµ,j ̸= H∗µ,j .

Overall, we conclude that Game 1 and Game 0 are indistinguishable, which
follows from

|Pr[E1]− Pr[E0]| ≤ (nDec + nsUpd) · Pr[H = H∗] + negl(λ) · (l + 1)

= (nDec + nsUpd) · 2−Ω(n) + negl(λ) · (l + 1),

where nDec and nsUpd are the number of queries to decryption and update, re-
spectively; Pr[H = H∗] is the probability that two random invertible matrices
are equal, and l + 1 is the maximal length of the firewall.

Game 2:
Compared to Game 1, we only change challenge-equal ciphertexts in epoch

from i to fwr, while keeping the other simulation, especially the challenge-equal
token, the same. In epoch i, we change the last two nk-coordinates of the chal-
lenge ciphertext and keep the first m̄ coordinates unchanged. That is,

bt
0 = stA0,i + êt0,

bt
1 = −bt

0 ·R1,i + êt1,

bt
2 = −bt

0 ·R2,i + êt2 + encode(mb)
t,

where s ← Zn
q , ê0 ← Dm̄

Z,αq and ê1, ê2 ← Dnk
Z,αq

√
m·ω(

√
logn)

. By substitu-

tion, we have bt
1 = stA0,i · R1,i + êt0 · R1,i + êt1. According to [[17], Corol-

lary 3.10], the distribution of êt0 · R1,i + êt1 is negl(n)-far from Dnk
Z,d where

d2 = (∥e0∥2+ m̄ ·αq) ·ω(
√
log n)2 that is the error distribution of b1 in Game 1.

Therefore, the distribution of b1 is within negl(n)-distance from that in Game
1. The same applies to b2. Then we change the ciphertext in epoch i + 1 by
updating (H∗µ,i, (b0,b1,b2)) using the challenge-equal token in Eq. (23), which
is therefore a valid token, and similarly change ciphertexts in epoch from i+2 to
fwr by updating the modified ciphertext using challenge-equal tokens in Game
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1. And thus, we have |Pr[E2]− Pr[E1]| ≤ negl(λ).

Game 3:
We consider a modified game that is the same as Game 2, except that we

change the first m̄ coordinates of the challenge ciphertext in epoch i, letting it
be the challenge ciphertext: uniformly random or stA0,i + êt0, which are hard
to distinguish under the LWEn,q,α problem. Then we also update this modified
challenge-equal ciphertext and change the ciphertext in epochs from i+1 to fwr
as in Game 2 to make sure that the challenge-equal tokens still sever as valid
tokens. Thus, we have |Pr[E3]− Pr[E2]| ≤ AdvLWE

n,q,α.
The rest we need to prove now is that |Pr[E3]| = 1/2. It follows from

(A0,i,b0,b0 ·R1,i,b0 ·R2,i) is negl(λ)-from uniform by the leftover hash lemma
for random A0,i ∈ Zn×m̄

q , b0 ∈ Zm̄
q , and R1,i, R2,i ∈ D.

We thus complete the proof.
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A Lattice Background

A.1 Lattices and Hard Problems

Given n linearly independent vectors b1, · · · ,bn ∈ Zm, the lattice Λ generated
by them is the set of all Z-linear combinations of B = {b1, · · · ,bn}, i.e. Λ :=
{Bz | z ∈ Zn}. We call B a basis of Λ, n the rank of Λ and m the dimension of
Λ. The dual lattice Λ∗ of Λ is the set of all v ∈ span(Λ) such that ⟨v, x⟩ ∈ Z for
all x ∈ Λ.

For a uniformly random matrix A ∈ Zn×m
q where m = poly(n), there are two

lattice-based hard problems associated with it:

– SISq,β : find a nonzero x ∈ Zm such that Ax = 0 mod q and ∥x∥ ≤ β;
– LWEq,α: for arbitrary s ∈ Zn

q and error e from the Gaussian distribution
over Zm with parameter α (defined in Sect. A.2), let bt = stA+ et mod q ∈
Zm
q . The search-LWEq,α is to find s from (A,b); while the decision-LWEq,α

is to distinguish between b and uniformly random samples from Zm
q with

noticeable probability.

When q ≥ β
√
n·ω(
√
log n), solving SISq,β is at least as hard as solving the approx-

imating Shortest Independent Vector Problem (SIVP) on n-dimensional lattices
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[1,17], which is believed to be a hard problem in the study of lattices. When
q ≥ 2

√
n/α, the hardness also applies to the search-LWEq,α and decision-LWEq,α

problem [17].

A.2 Gaussians on Lattices

Let N(0, σ2) denote the Gaussian distribution over R with mean 0 and vari-
ance σ2. It is defined by the density function (1/σ

√
2π) · exp

(
−x2/2σ2

)
. For

a positive real s, the n-dimensional Gaussian function is defined as ρs(x) =
exp

(
−π∥x∥2/s2

)
for x ∈ Rn. The discrete Gaussian distribution over a count-

able set A is defined by the density functionDA,s(x) :=
ρs(x)∑

y∈A ρs(y)
. The following

lemma shows a tail bound on discrete Gaussians.

Lemma 11 ([3], Lemma 1.5). Let c ≥ 1, C = c · exp
((
1− c2

)
/2
)
. For any

real s > 0 and any integer n ≥ 1, we have that

Pr
e←Dn

Z,s

[
∥e∥ ≥ cs

√
n/(2π)

]
≤ Cn.

In particular, letting c =
√
2π and C < 1/4 , we have that Pr

e←Dn
Z,s

[∥e∥ ≥ s
√
n] <

2−2n.

In the construction of encryption schemes, the notion of subgaussian is used
to analyze the behavior of error terms in [15,12] and this paper. For any δ ≥ 0,
we say that a random variable X (or its distribution) over R is δ-subgaussian
with parameter r > 0, if the (scaled) moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp
(
πr2t2

)
,

for all r > 0.
More generally, the notion of subgaussianity can be extended to vectors and

matrices. A random vector x or its distribution (respectively, a random matrix
X) is δ-subgaussian with parameter r > 0 if all its one-dimensional marginals
⟨u,v⟩ (respectively, utXv) for unit vectors u,v is δ-subgaussian with parameter
r > 0.

Lemma 12 ([15], Lemma 2.8). Let Λ ⊂ Rn be a lattice. For any s > 0, DΛ,s

is 0-subgaussian with parameter s.

Lemma 13 ([15], Lemma 2.9). Let X ∈ Rn×m be a δ-subgaussian random
matrix with parameter s. There exists a universal constant C > 0 such that for
any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+
√
n+ t) except with probability at most

2 exp(δ) exp
(
−πt2

)
.

Micciancio and Peikert [15] showed that the concatenation of independent
δi-subgaussian vectors with common parameter s, interpreted as either a vector
or matrix, is

∑
δi-subgaussian, which follows directly from the definition. For

any m,n > 0, Dn
Z,s and Dn×m

Z,s are 0-subgaussian with parameter s, since DZ,s
is 0-subgaussian (with s) by Lemma 12. This leads to the following result by
Lemma 13.



34 H. Chen et al.

Corollary 1. For any m,n, s > 0, let R ∈ Dn×m
Z,s , we have s1(R) ≤ s ·O(

√
n+

√
m), except with probability 2−Ω(n+m).

The following lemma bounds the maximal singular value of the product of two
matrices, which follows directly from the definition. More details about singular
values can be seen in Theorem 3.3.16 [10]. We will also use the Lemma 15 and
16 in our proof.

Lemma 14. Let A ∈ Rm,n, B ∈ Rn,m, then s1(AB) ≤ s1(A)s1(B) and s1(A+B) ≤
s1(A) + s1(B).

Lemma 15 (Leftover Hash Lemma). Let P be a distribution over Zn
q with

min-entropy k. For any ϵ > 0 and l ≤ (k − 2 log(1/ϵ) − O(1))/ log(q), the joint
distribution of (C,Cs) is ϵ-close to the uniform distribution over Zl×n

q × Zl
q,

where C
$← Zl×n

q and s← P.

Lemma 16 ([2], Fact 2.2). Let X1, · · · , Xn be independent mean-zero sub-
gaussian random variables with parameter s, and let u ∈ Rn be arbitrary. Then∑

k(akXk) is subgaussian with parameter s∥u∥.

B Proof of Inequality (15)

We start from the error e0 which is generated in the fresh encryption in epoch
i = 0 and estimate the bound on et0 ·

∏l
j=1 Mj . Errors generated in the update

algorithm in later epochs have the same distribution as e0, but are multiplied
less times than e0 by the transition matrix {Mj}.

Step 1. Let e0 = (e00, e10, e20) and M(s) be the s products of {Mj}sj=1 that
are denoted as follows:

Mj =

X00,j X01,j X02,j

X10,j X11,j X12,j

0 0 I

 and M(s) =

s∏
t=1

Mt =

X(s)
00 X

(s)
01 X

(s)
02

X
(s)
10 X

(s)
11 X

(s)
12

0 0 I

 ,

for s ∈ {1, · · · , l}. We first estimate the bound on the maximal singular values

of Mj and M(s). For any j ∈ {1, · · · , l}, we have s1(Xkt,j) ≤ τ ·O(
√
nk) for kt ∈

{00, 10} and s1(Xkt,j) ≤ τ
√
m̄/2 ·O(

√
nk) for kt ∈ {01, 11, 02, 12} by Corollary

1. Let µ =
√
m̄/2. For s = 2, we obtain X

(2)
00 = X00,1 ·X00,2+X01,1 ·X10,2. Then

by Lemma 14, we have s1(X
(2)
00 ) ≤ s1(X00,1) · s1(X00,2)+ s1(X01,1) · s1(X10,2) ≤

τ2(1 + µ) ·O(
√
nk)2. Similarly, we give the bound on maximal singular value of

other block matrices in M(2) (except the last nk rows, which equal [0, 0, I] for
all M) as follows (element-wise comparison):[

s1(X
(2)
00 ) s1(X

(2)
01 ) s1(X

(2)
02 )

s1(X
(2)
10 ) s1(X

(2)
11 ) s1(X

(2)
12 )

]
≤
[
τ2(1+µ) τ2µ(1+µ) τ2µ[(1+µ)+1]

τ2(1+µ) τ2µ(1+µ) τ2µ[(1+µ)+1]

]
· O(

√
nk)2.
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Iteratively, we have the bound on maximal singular value of each block matrix
in M(l), that is[

s1(X
(l)
00 ) s1(X

(l)
01 ) s1(X

(l)
02 )

s1(X
(l)
10 ) s1(X

(l)
11 ) s1(X

(l)
12 )

]
≤
[
τ l(1+µ)l−1 τ lµ(1+µ)l−1 τ lµ

∑l−1
k=0(1+µ)k]

τ l(1+µ)l−1 τ lµ(1+µ)l−1 τ lµ
∑l−1

k=0(1+µ)k]

]
· O(

√
nk)l .

(27)

Now we can estimate the bound on the updated e0 in the last epoch. Notice
that

et0 ·M
(l) ·

[
R1,l

I
0

]
= (e00, e10, e20)

t

[
X

(l)
00 X

(l)
01 X

(l)
02

X
(l)
10 X

(l)
11 X

(l)
12

0 0 I

] [
R1,l

I
0

]
= (et00X

(l)
00 + et10X

(l)
10 )R1,l + et00X

(l)
01 + et10X

(l)
11 . (28)

By Lemma 11, we have ∥e00∥ < αq
√
m̄ and ∥ei∥ < αq

√
2m̄nk · ω(

√
log n) for

i ∈ {10, 20}, except with probability 2−Ω(n). Combining this conclusion with Eq.
(27), we obtain

∥∥∥et0X(l)
00R1,l

∥∥∥ ≤ ∥e0∥ · s1(X(l)
00 ) · s1(R1,l) < αq

√
m̄ · τ l(1 + µ)l−1O(

√
nk)l · σ,∥∥∥et1X(l)

10R1,l

∥∥∥ < (αq
√
2m̄nk · ω(

√
log n)) · τ lµ(1 + µ)l−1O(

√
nk)l · σ,∥∥∥et0X(l)

01

∥∥∥ < αq
√
m̄ · τ lµ(1 + µ)l−1O(

√
nk)l,∥∥∥et1X(l)

11

∥∥∥ < (αq
√
2m̄nk · ω(

√
log n)) · τ lµ(1 + µ)l−1O(

√
nk)l.

(29)
Substituting σ, τ and µ, we get the upper bound for the norm of the updated
et0 in Eq.(28) by the triangle inequality as follows:∥∥∥(et00X(l)

00 + et10X
(l)
10 )R1,l + et00X

(l)
01 + et10X

(l)
11

∥∥∥ < αqω(
√
log n)2l+2O(

√
nk)3l+3.

(30)

Notice that X
(l)
01 ,X

(l)
11 , X

(l)
02 ,X

(l)
12 have the same asymptotic bound for the

maximal singular value by Inequality (27), and ∥e2∥ < αq
√
2m̄nk · ω(

√
log n).

We obtain the same bound for the norm of the last nk coordinates, that is∥∥∥et00X(l)
02 + et10X

(l)
12 + et2

∥∥∥ < αqω(
√
log n)2l+1O(

√
nk)3l+2. (31)

Since the infinity norm is smaller than the 2-norm, we have∥∥∥∥∥∥(et0 ·
l∏

j=1

Mj)

R1,l 0
I 0
0 I

∥∥∥∥∥∥
∞

≤ αqω(
√

log n)2l+2O(
√
nk)3l+3, (32)

by combining the Inequality (30) and Inequality (31).
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Step 2. Errors generated from epoch 1 to l − 1 have the same distribution
with e0, but are multiplied less time by the transition matrices {Mj}, which
therefore yields a lower bound than e0.

Step 3. For el, it is not multiplied by any transition matrix. Let etl =
(e0,l, e1,l, e2,l). Then we have

etl ·

R1 0
I 0
0 I

 = (et0,lR1 + et1,l, e
t
0,lR2 + et2,l).

Note that ∥ei∥ < αq
√
2m̄nk ·ω(

√
log n) for i ∈ {1, 2} by Corollary 1. Therefore,

the bound on update e0 in Inequality (32) also holds for el.
Finally, we conclude that the upper bound on the infinity norm of the sum

of updated errors is αqlω(
√
log n)2l+2O(

√
nk)3l+3 by triangle inequality, except

with probability 2−Ω(n). That is∥∥∥∥∥∥
l∑

i=0

(eti ·
l∏

j=i+1

Mj) ·

R1,l R2,l

I 0
0 I

∥∥∥∥∥∥
∞

≤ αqlω(
√

log n)2l+2O(
√
nk)3l+3.

Since 1/α = 4lω(
√
log n)2l+2O(

√
nk)3l+3, we have the desired property of error

vectors, i.e., the Inequality (15).
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