
CCA-1 Secure Updatable Encryption with
Adaptive Security

Huanhuan Chen1, Yao Jiang Galteland2, and Kaitai Liang1

1 Delft University of Technology, Delft, The Netherlands
{h.chen-2, kaitai.liang}@tudelft.nl

2 Norwegian University of Science and Technology, NTNU, Norway
yao.jiang@ntnu.no

Abstract. Updatable encryption (UE) enables a cloud server to update
ciphertexts using client-generated tokens. There are two types of UE:
ciphertext-independent (c-i) and ciphertext-dependent (c-d). In terms of
construction and efficiency, c-i UE utilizes a single token to update all
ciphertexts. The update mechanism relies mainly on the homomorphic
properties of exponentiation, which limits the efficiency of encryption
and updating. Although c-d UE may seem inconvenient as it requires
downloading parts of the ciphertexts during token generation, it allows
for easy implementation of the Dec-then-Enc structure. This methodol-
ogy significantly simplifies the construction of the update mechanism.
Notably, the c-d UE scheme proposed by Boneh et al. (ASIACRYPT’20)
has been reported to be 200 times faster than prior UE schemes based
on DDH hardness, which is the case for most existing c-i UE schemes.
Furthermore, c-d UE ensures a high level of security as the token does
not reveal any information about the key, which is difficult for c-i UE to
achieve. Moreover, previous security studies on c-d UE only addressed
selective security, while the studies for adaptive security remain an open
problem.

In this study, we make three significant contributions to ciphertext-
dependent updatable encryption (c-d UE). Firstly, we provide stronger
security notions compared to previous work, which encompass adaptive
security and also consider the adversary’s decryption capabilities. Sec-
ondly, we propose a new c-d UE scheme that achieves the proposed se-
curity notions. The token generation technique significantly differs from
the previous Dec-then-Enc structure, while still preventing key leakages.
At last, we introduce a packing technique that enables the simultaneous
encryption and updating of multiple messages within a single ciphertext.
This technique helps alleviate the cost of c-d UE by reducing the need to
download partial ciphertexts during token generation. Our schemes are
based on the Learning with Error assumption, resulting in faster per-
formance compared to previous UE schemes that rely on the expensive
group operations of the DDH assumption.

Keywords: Updatable Encryption · Adaptive Security · Lattice

1 Introduction

Regularly changing encryption keys is widely recognized as an effective approach
to mitigate the risk of key compromise, especially when entrusting encrypted
data to a semi-honest cloud server. Updatable encryption (UE), introduced by
Boneh et al. [7], offers a practical solution to this challenge. In UE schemes, in
addition to the usual KG,Enc,Dec algorithms, two core algorithms, TokenGen and
Update, are employed. Essentially, TokenGen takes the old and new encryption
keys, along with possibly a small fraction of the ciphertext, and generates an
update token on the client side. This token is then sent to the cloud server,
which utilizes the Update algorithm to convert ciphertexts from the old keys to
the new keys.

c-d/c-i UE. Depending on if a part of ciphertext (called ciphertext header) is
needed in the token generation algorithm TokenGen, UE schemes have two vari-
ants: ciphertext-independent (c-i) UE [8,17,19,20,22,25] and ciphertext-dependent
(c-d) UE [6,7,11,13]. In the former, tokens are independent of ciphertexts, and
a single update token is used to update all old ciphertexts. In the latter, update
tokens depend on the specific ciphertext to be updated and a tiny part of the
ciphertexts is downloaded by the client when generating the update tokens.

In this paper, we specifically focus on ciphertext-dependent UE (c-d UE) due
to its notable advantages in terms of efficiency and security. First of all, c-d UE
schemes have been reported to be more efficient than ciphertext-independent
(c-i) constructions. For instance, the nested c-d UE construction presented in
[6], which relies solely on symmetric cryptographic primitives, approaches the
performance of AES. In contrast, c-i UE schemes imply the use of public key
encryption, as proven by Alamati et al. [3], and most c-i constructions require
costly exponentiation operations to update ciphertexts. With regards to UE se-
curity, Jiang [17] demonstrated that c-i UE schemes with no-directional key up-
dates, defined in Section 3, are significantly stronger than c-i schemes with other
directional key updates. However, constructing such schemes remains an open
problem, primarily due to the requirement that update tokens should not reveal
any information about either the old key or the new key. Consequently, only two
c-i UE schemes with no-directional key updates have been proposed thus far.
One is presented by Slamanig [25], which is based on the SXDH assumption,
thus necessitating expensive exponential operations. The other is introduced by
Nishimaki [22], relying on the existence of indistinguishability obfuscation, but
remains purely theoretical. On the other hand, for c-d UE, the construction
of no-directional key update schemes is considerably easier and practical. In
fact, the token generation algorithm, denoted as TokenGen, in all existing c-d
UE constructions [13,6,7] benefits from a ”Dec-then-Enc” process. This involves
decrypting the ciphertext header using the old key to recover the secret informa-
tion, and then computing the token by encrypting the secret information using
the new key. As a result, the old key remains independent of the token, while
the new key is safeguarded by the underlying encryption scheme. The update
token does not divulge any information about the old and new keys.

2

Security Notions (c-d UE). The primary security objective of UE is to en-
sure the confidentiality of ciphertexts even when the keys are exposed. Extensive
research on this topic has been conducted in [13,6]. Previous security models pro-
vide guarantees that adversaries cannot differentiate between a freshly generated
ciphertext in the current epoch and an updated ciphertext rotated to the cur-
rent epoch. In practical scenarios, this property safeguards the confidentiality of
the age of ciphertext, i.e., the number of times it has been updated, from being
leaked to an adversary. For instance, consider a situation where a client stores its
encrypted medical records with a cloud provider. The existing security notions
ensure that the adversary observing the records cannot determine which records
are new and which ones are old, thereby preserving the sort of privacy.

Limitation. Unfortunately, prior work on c-d UE has the following limitations:

1. The existing security notions for c-d UE solely capture selective security. It
is important to note that this security does not provide assurance of post-
compromise (or forward) security when the provided selective keys represent
all the keys used after (or before, respectively) the challenge phase. More-
over, these notions do not take into account the decryption capabilities of
the adversary. This leads to a fact that the existing constructions can only
provide CPA security. It is a natural need to propose a stronger security
notion and the corresponding construction.

2. Prior notions for c-d UE only apply to randomized ciphertext updates,
whereas the ciphertext update procedure can be also deterministic 3, which
can be seen in our construction in Sect. 5.1. It is still an open problem that
how could we capture confidentiality for both types of ciphertext udpates.

3. The current security notions for c-d UE are complex, requiring multiple
simulations of oracles the adversary has access to in the security analysis. A
simpler and more compact notion can help one simplify the proof.

1.1 Related Work

Constructions of UE. Since the introduction of updatable encryption by
Boneh et al. [7], various constructions have been proposed. All c-d UE schemes
in [7,13,6], either treated in a symmetric manner to deploy a double encryption
or relying on key-homomorphic PRFs, benefiting from a Dec-then-Enc structure
in token generation. As a consequence, tokens only contain the ciphertext under
new key, avoiding the issue of leaking neither old nor new key.

By comparison, all c-i UE schemes in [20,19,8] are based on the DDH or
SXDH assumption and rely on the homomorphic properties of exponentiation
to rotate ciphertexts. Tokens are the division of new key and old key; therefore,
one of the two of the two successive keys key can be inferred if the other is leaked.

3 Note this case does not require the sever to generate randomness for ciphertext
updates, which is required in the former case.

3

Schemes
Dir.
Key

s/a Prob. Enc.
Token
Gen.

Update

c-i
UE

*SHINE [8] bi a DDH 1 exp. 1 division 1 exp.

LWEUE [17] bi a LWE (n,m, l) 1 subtract. (n,m, l)

Nishimaki [22] bk. a LWE (1,m, l) (nk,m, n+ l) (1,m, n+ l)

Nishimaki [22] no a IO, OWF − − −
SS [25] no a SXDH − − −

c-d
UE

KSS [13] no s Symmetry 1 AE.Enc 1 AE.Enc 1 vect. addition

ReCrypt [13] no s KH-PRF 1 KH-PRF 1 KH-PRF 1 KH-PRF

Nested [6] no s Symmetry 1 AE.Enc 1 AE.Enc 1 AE.Enc

BEKS [6] no s KH-PRF 1 KH-PRF 1 AE.Enc 1 KH-PRF

TDUE (5.1) no a LWE (1, n, m̄+ 2l)
m̄+ 2l

sampling
(1, m̄+ 2l,
m̄+ 2l)

Packing UE (5.4) no a LWE
(1, n, m̄+
l +Nl)

m̄+ l +Nl
sampling

(1, m̄+ l +Nl,
m̄+ l +Nl)

Fig. 1. A comparison of c-i UE which can avoid the leakage of “ciphertext age” and all
existing c-d UE. The second column set states the direction of key updates, achieved
security, and the underlying assumptions, where bk. stands for the backward directional
key updates, s and a represent the selective and adaptive security, respectively, and KH-
PRF, IO, OWF represent key-homomorphic PRF, indistinguishability obfuscation, and
one-way function, respectively. The third column set shows the computational efficiency
in terms of the most expensive cost of encryption, token generation, and update for
one-block ciphertext ([22] and [25] are omitted here as the first is theoretical and the
second is built on a totally different expiry model). For lattice-based schemes, (a, b, c)
denotes the major computation cost by the multiplication of two matrices of size a× b
and b× c, and m, n denote the size of matrix generated on Zq in the setup, for which
m = poly(n), k = ⌈q⌉, message bit length l = nk, and m̄ = O(nk). In our UE schemes,
token are generate with multiple calls to a preimage sampling oracle, and N is a
power of 2 that defines the associated cyclotomic ring. AE represents authenticated
encryption, and KH-PRFs are constructed from the Ring-LWE problem in [6].

Such a leakage limitation is also applied to the scheme proposed by Jiang [17],
because tokens are the subtraction of new and old keys, even though this scheme
avoids the expensive exponentiation but instead lattice-based.

Two promising c-i UE schemes have been proposed to overcome this leakage
limitation. Nishimaki [22] presented a construction that utilizes indistinguishabil-
ity obfuscation (IO) for an update circuit, which operates as a Dec-then-Enc pro-
cess taking a ciphertext as input. This scheme relies on an assumption that there
exists a practical IO. Slamanig and Striecks [25] gave a pairing-based scheme and
defined an expiry model: each ciphertext is associated with an expiry key, after
which the updated ciphertext cannot be decrypted any more. Their scheme con-
sumes expensive group operations and moreover the key size increases linearly

4

to number of maximum number of update. In Fig. 1, we provide a comparison
of UE schemes in terms of security and efficiency.

Relative Primitives. Proxy Re-encryption (PRE) and Homomorphic Encryp-
tion (HE) are two highly related primitives to updatable encryption.

Proxy Re-encryption (PRE) enables a ciphertext to be decryptable by the
new key after re-encryption. Compared to UE, it does not necessarily require
the update ciphertext to be indistinguishable with fresh encryption, thereby not
covering the confidentiality requirement inherent in UE. However, PRE schemes
have served as a source of inspiration for the construction of UE due to the similar
ciphertext update process, for example, the ElGamal-based proxy re-encryption
scheme is adapted to RISE [20] and Sakurai et al.[24] to SHINE [8].

The PRE scheme proposed by Kirshanova [18] is based on lattice and only
uses the old secret key (serving as the trapdoor) to sample a matrix as the
update token to rotate ciphertexts, which are LWE samples. Such a matrix
leaks neither the old nor the new keys, since it does not involve any function of
old and new key (recall the key leakage caused the division or subtraction of two
keys in the token of c-i UE schemes). However, Fan and Liu [14] pointed out a
mistake in the security proof of [18] that the simulated game in the proof is not
indistinguishable to the real game. In this work, a new UE scheme that leverages
a part of techniques in [18] is constructed with a detailed reduction proof.

Fully Homomorphic Encryption (FHE) develops a key-switching technique
[10,9] that takes as input the old ciphertext and the encryption of old key under
new key (called key-switching key) and outputs a new ciphertext that is decrypt-
able by the new key. Such a technique has been used in [19,15] to construct UE
schemes with so-called backward directional key updates. In our UE construc-
tion, the matrix in token is called a key-switching matrix as it achieves the same
functionality as the key-switching key in FHE.

1.2 Our Approaches

We propose new UE schemes that achieve the new confidentiality notion. To
achieve this, we first build a new PKE scheme inspired by [21] that utilizes
lattice trapdoor techniques as the underlying encryption scheme. For the UE
construction, we leverage the “re-encryption key generation” process in [18] to
generate a key-switching matrix, which is used to update ciphertexts from the
old to the new key. However, the key-switching matrix alone is not sufficient to
achieve our confidentiality notion, which will be discussed later in this section.
A detailed proof of our construction is presented in Sect. 5.3.

A New PKE Scheme. This scheme is based on lattice trapdoor techniques.
The public key is a 1× 3 block matrix Aµ = [A0 | A0R+HµG | A1] ∈ Zm̄+2nk

where A0 and A1 are two random matrices, and Hµ is an invertible matrix. The
secret key is the trapdoor R for the first two block matrices of Au, which allows
for an efficient algorithm for inverting LWE samples related to Aµ (see Sect. 4.1

5

for more details). The ciphertext is a tuple c = (Hµ,b) where b is a LWE sample
as follows:

bt = stAµ + (e0, e1, e2)
t + (0, 0, encode(m))t mod q, (1)

for a proper encoding algorithm encode, error items (e0, e1, e2), and integer
q. To decrypt a ciphertext, one first recovers s and (e0, e1) from the first two
blocks of b using the trapdoor R and an inversion algorithm. Then m and e2 are
recovered from the last block of b with the recovered s and the inverse of encode.

Key-switching Matrix. The key-switching matrix enables the transition of
a ciphertext in Eq. (1) to a new ciphertext with the same form, denoted as
c′ = (Hu,b

′), where

b′t = stA′µ + e′t + (0,0, encode(m))t mod q, (2)

for new public matrix A′µ and new error items e′. This matrix is essentially the
transition matrix from Au to A′u, with the last row block matrix [0 0 I], i.e.,
Au ·M = A′u. The old ciphertext c is updated by by multiplying bt and M,
that is

btM = stAµ ·M+ et ·M+ (0,0, encode(m))t ·M
= stA′µ + e′t + (0,0, encode(m))t mod q,

which matches the desired form in Eq. (2). The matrix M can be efficiently
generated by the trapdoor (secret key) R and the preimage sampling algorithm,
as presented in Sect 2.2.

Challenges and a New UE Scheme. We state that there are two technical
challenges on directly using the key-switching matrix as the update token to con-
struct a secure UE scheme satisfying our confidentiality notion, which requires
the indistinguishability between “fresh” and updated ciphertexts. The first ob-
servation is that Hµ, as part of the ciphertext, is never rotated in the update
process. The adversary can distinguish the challenge ciphertexts by comparing
Hµ extracted from the challenge output and input. Beyond that, s is also never
changed during update process. With the known s used in the challenge input ci-
phertext, the adversary may attempt to decrypt the challenge output (note that
the last step in the decryption algorithm in PKE only requires s). If it fails, then
the adversary knows the challenge output is a fresh encryption of the challenge
input message. Otherwise, that is an update of the challenge input ciphertext.

Our solution to address the challenges is to change the invertible matrix Hµ

and the variable s in each update. Specifically, a new invertible matrix H′µ and

a fresh encryption of message 0 under the new key with H′µ, denoted by b0,
is generated in the token generation algorithm to improve the randomness. In
summary, the update token is a triple ∆ = (M,b0,H

′
µ), and the update of

ciphertext c = (Hµ,b) works by multiplying b by M and then adding b0. That

6

is, c′ = (H′u,b
′), where

(b′)t = bt ·M+ bt
0

=
[
stAµ + et + (0, 0, encode(m))t

]
M+ (s′)tA′µ + (e′)t

= (s+ s′)tA′µ +
(
etM+ (e′)t

)
+ (0, 0, encode(m))t mod q. (3)

Thus, the updated ciphertext shares the same form with old ciphertext, but
has new independent invertible matrix and new random factor s+ s′, thereby
avoiding the two problems mentioned above. Note that even if an adversary
corrupts the update token and the old key (or new key), it can only recover A′µ
(or Aµ, resp.) that is actually public. Therefore, the UE scheme does not leak
any information about secret keys, and its token generation process is different
from the previously commonly used Dec-then-Enc method.

Regarding the CCA-1 security, at a high level, the decryption procedure
allows the adversary to recover at most Aµ before the challenge phase, while
ensuring that the secret key R (i.e., the trapdoor) remains statistically hidden
from the adversary. We state that the scheme cannot achieve CCA-2 security as
the decryption of a challenge ciphertext with extra small noise, which is also a
valid ciphertext, reveals the information of the challenge plaintext. We note that
the construction of a CCA-2 secure UE remains open.

A Packing UE.Our packing UE scheme allows for the simultaneous encryption
and updating of multiple messages in a single ciphertext. It is based on our UE
scheme with main difference in the encoding algorithm as follows:

encode(m0, . . . ,mN−1) = encode(m0)+encode(m1)X+· · ·+encode(mN−1)X
N−1,

for messages m0, . . . ,mN−1, where the encode in the right side is the same as
that in the PKE scheme. Multiple messages blocks are encrypted into one single
ciphertext, which can then be recovered degree by degree. This packing scheme
enhances efficiency by requiring only one ciphertext header to be downloaded
during the update process.

1.3 Summary of Contributions

We strengthen the confidentiality notions for c-d UE to address the above lim-
itations 1-3 of existing work and provide efficient UE schemes that achieve the
confidentiality we define. First, we simplify the description of confidentiality
model with less oracles available to the adversary while maintaining the same
security, which facilitates the security analysis of UE schemes. Our new defini-
tion “maximizes” the capability of the adversary, including the ability to corrupt
keys in an adaptive manner and gain access to the decryption oracle, thus pro-
viding a stronger security than prior work. We then propose a new construction
that is the first c-d UE to achieve CCA-1 security under the LWE assumption.
It is built on our lattice-based PKE scheme, and rotates ciphertext with a key-
switching matrix, which differs from the Dec-then-Enc structure used in existing

7

c-d UE schemes. We also propose a new packing method to further enhance the
efficiency of c-d UE. Our approach enables multiple messages to be encrypted
and updated simultaneously, reducing the overhead associated with downloading
ciphertext headers during the update process.

2 Preliminaries

We use upper-case and lower-case bold letters to denote matrices and column
vectors, respectively. For a vector x, we denote the 2-norm of x by ∥x∥ and the
infinity norm by ∥x∥∞. The largest singular value of a matrix B is denoted by
s1(B) := max

u
∥Btu∥, where the maxima is taken over all unit vectors u and

Bt is the transposition of B. For two matrices A and B, [A | B] denotes the
concatenation of the columns of A and B. We also use standard asymptotical
notations such as ω, Ω and O.

2.1 Updatable Encryption

We briefly review the syntax of ciphertext-dependent UE and prior confidential-
ity notions for c-d UE.

Definition 1 ([7,13,6]). A ciphertext-dependent UE scheme includes a tuple
of PPT algorithms {KG, Enc, Dec, TokenGen, Update} that operate in epochs
starting from 0.

– KG(1λ): the key generation algorithm outputs an epoch key ke.
– Enc(ke,m): the encryption algorithm takes as input an epoch key ke and a

message m and outputs a ciphertext header ĉte and a ciphertext body cte,
i.e., ct = (ĉte, cte).

– Dec(ke, (ĉte, cte)): the decryption algorithms takes as input an epoch key ke
and a ciphertext (ĉte, cte) and outputs a message m′ or ⊥.

– TokenGen(ke, ke+1, ĉte): the token generation algorithm takes as input two
epoch keys ke and ke+1 and a ciphertext header ĉte, and outputs an update
token ∆e+1,ĉte or ⊥.

– Update(∆e+1,ĉte , (ĉte, cte)): the update algorithm takes as input a token ∆e+1,ĉt

with related to the ciphertext (ĉte, cte), and outputs an updated ciphertext
(ĉte+1, cte+1) or ⊥.

In an updatable encryption scheme, there are two ways to generate a cipher-
text: either via the encryption algorithm to produce the fresh ciphertext, or via
the update algorithm to produce an updated ciphertext. The correctness of a UE
scheme requires both types of ciphertexts to decrypt correctly to the underlying
message, except with a low failure probability.

Prior Notions of Confidentiality. To capture the security under key leakage,
the challenger in prior confidentiality games [13,6] provides the adversary some

8

selective keys in the setup phase. In the query phase, the adversary is given access
to query the algorithms involved in UE schemes, including {Enc, TokenGen,
Update}, to obtain the encryption of messages, update tokens, and updates of
ciphertexts, respectively. The adversary then submits two challenge inputs in
the challenge phase based on the information it has acquired and receives the
challenge output from the challenger. The goal of the adversary is to guess which
challenge input the challenge output is related to (encrypted or updated from).
The adversary can continue querying those oracles as long as the combination
of queries would not lead to a trivial win, and eventually submits a guess bit.

Prior confidentiality notions have three variants with the only difference in
challenge inputs: UP-IND [13] has inputs of two messages (m̄0, m̄1) to capture
the security of fresh encryptions, UP-REENC [13] uses inputs of two ciphertexts
(c̄0, c̄1) to protect the confidentiality after updating, and Confidentiality [6], which
is stronger the former two, takes one message and one ciphertext as input (m̄0, c̄1)
to protect against the leakage of the age of ciphertext, i.e., the number of update
times, to the adversary. We rewrite the confidentiality game of Confidentiality in
Fig. 2 with two modifications.

First, we describe oracles that operate in consecutive epochs {. . . , e− 1, e,
e+ 1, . . . }, which is more consistent with the practical periodic updating of
ciphertexts and differs from the node-based oracles originating from proxy re-
encryption in prior work. Second, we introduce a new lookup table in the game
to track non-challenge ciphertexts (as defined in Definition 2) to address the in-
sufficient analysis of trivial win conditions for deterministic UE schemes in prior
work [7,13,6]. Our main observation is that for UE schemes with deterministic
updates, the adversary should be prevented from querying OUpdate and OTokenGen

on the challenge input ciphertext in the challenge epoch before querying the
challenge oracle, as this would enable the adversary to know one of the possible
challenge output ciphertexts in advance due to the determinism of the update.
Such conditions are not analyzed in prior notions, which are therefore only ap-
plicable to UE with randomized updates; however, the update algorithm can be
deterministic as in our construction, even though the encryption algorithm must
be randomized.

Definition 2. A ciphertext is called challenge-equal ciphertext, if adversary learns
it via querying the challenge oracle OChall, or obtains it by updating the challenge
ciphertext using OUpdate or tokens acquired from OTokenGen. Any ciphertext that is
not obtained through these methods is referred to as a non-challenge ciphertext.

The functionalities and restrictions of oracles used in the Confidentiality game
in Fig. 2 are as follows.

- OEnc: returns an encryption of a message.
- OUpdate: returns an update of a valid (line 1-3) ciphertext, recorded by TCchall

(line 8) or TCnon (line 9) according to the input. But the update of challenge-
equal ciphertexts in epochs with known epoch keys is not allowed (line 7).

- OTokenGen: returns a token related to a valid ciphertext, and updates TCchall

(line 6) or TCnon (line 8). But tokens related to challenge-equal ciphertexts
in epochs with known epoch keys is not allowed to acquire (line 1-2).

9

ExptConfidentialityUE (λ, l,A, b) :

1 : k1, . . . , kl ← KG(1λ)

2 : b′ ← AO(K)
3 : return b′ = b

OEnc(e,m) :

1 : (ĉt, ct)← Enc(ke,m)

2 : TCnon[e, ĉt]← ct

3 : return (ĉt, ct)

OUpdate(e, (ĉt, ct)) :

1 : if TCchall[e− 1, ĉt] =⊥ and

2 : TCnon[e− 1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ← TokenGen(ke−1, ke, ĉt)

5 : if TCchall[e− 1, ĉt] ̸=⊥ then

6 : if e ∈ K return ⊥
7 : else ct← TCchall[e− 1, ĉt]

8 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

9 : TCchall[e, ĉt
′
]← ct′

10 : else ct← TCnon[e− 1, ĉt]

11 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

12 : TCnon[e, ĉt
′
]← ct′

13 : return (ĉt
′
, ct′)

OTokenGen(e, ĉt) :

1 : if e ∈ K and TCchall[e− 1, ĉt] ̸=⊥
2 : return ⊥
3 : ∆e,ĉt ← TokenGen(ke−1, ke, ĉt)

4 : if e ̸∈ K and TCchall[e− 1, ĉt] ̸=⊥
5 : ct← TCchall[e− 1, ĉt]

6 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

7 : TCchall[e, ĉt
′
]← ct′

8 : elseif TCnon[e− 1, ĉt] ̸=⊥
9 : ct← TCnon[e− 1, ĉt]

10 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

11 : TCnon[e, ĉt
′
]← ct′

12 : else return ⊥
13 : return ∆e,ĉt

OChall(e,m, (ĉt, ct)) :

1 : if e ∈ K return ⊥

2 : (ĉt
′
0, ct

′
0)← Enc (ke,m)

3 : if (ĉt
′
0, ct

′
0) =⊥ or TCnon[e− 1, ĉt] ̸= ct

4 : return ⊥
5 : ∆e,ĉt ← TokenGen

(
ke−1, ke, ĉt

)
6 : (ĉt

′
1, ct

′
1)← Update(∆e,ĉt, (ĉt, ct))

7 : if |ĉt′0| ≠ |ĉt
′
1| or

∣∣ct′0∣∣ ̸= ∣∣ct′1∣∣
8 : return ⊥

9 : if (xx = det and TCnon[e, ĉt
′
1] = ct′1)

10 : return ⊥

11 : TCchall[e, ĉt
′
b]← ct′b

12 : return (ĉt
′
b, ct

′
b)

Fig. 2. Security game for Confidentiality. The adversary in the startup are provided
with selective keys whose epochs are recorded by the set K, and the other keys are
kept private from the adversary. Initially set to be empty, the table Tchall (or Tnon)
maps an epoch and challenge-equal (or non-challenge, respectively) ciphertext header
pair to the corresponding challenge-equal (or non-challenge, respectively) ciphertext
body. xx = det means the update algorithm is deterministic.

- OChall: returns the challenge output, either a fresh encryption of input mes-
sage or an update of input valid ciphertext (line 2-4). However, this oracle

10

should not be queried in epochs with known epoch keys (line 1), and for
deterministic UE, the input ciphertext should not be updated in advance
(line 9-10).

In fact, the adversary may infer more ciphertexts, tokens and keys from
corrupted information, aside from the recorded sets, and the extended leakages
cannot be tracked (but can be computed) by look-up tables. For example, a
token can be inferred if two successive epoch keys are known. We will show in
lemmas 3 to 5 that trivial win conditions on recorded leakages and extended
leakages are actually the same for no-directional UE (Def. 5). Therefore, it is
sufficient to check the above restrictions on recorded look-up tables to avoid
trivial win.

2.2 Gaussians and Lattices

Given a matrix A ∈ Zn×m
q , we first review the Learning With Errors (LWE)

and Short Integer Solution (SIS) problems as follows:

– LWEq,α: for arbitrary s ∈ Zn
q and error e from the discrete Gaussian distri-

bution DZm,αq (Def. 4), let bt = stA+ et mod q ∈ Zm
q . The search-LWEq,α

is to find s and e from (A,b); the decision-LWEq,α is to distinguish between
b and a uniformly random sample from Zm

q .
– SISq,β : find a nonzero x ∈ Zm such that Ax = 0 mod q and ∥x∥ ≤ β.

When A is a uniformly random matrix, solving the above two problems is
computationally intractable under some parameter settings [2,23]. However, for
a random matrix A with a G-trapdoor (Def. 3), those two problems can be
solved immediately (Lemma 1 and Lemma 2).

For the rest of the paper, let q ≥ 2 be an integer modulus with k = ⌈log2 q⌉,
and G is defined as G := In ⊗ gt ∈ Zn×nk

q , i.e.,

G = diag(gt, . . . ,gt),

where gt = [1 2 4 . . . 2k−1] ∈ Z1×k
q and integer n ≥ 1.

Definition 3 (G-trapdoor). Let A ∈ Zn×m
q for some m ≥ nk ≥ n. A

G-trapdoor for A is a matrix R ∈ Z(m−nk)×nk
q such that A [RI] = HG for

some invertible matrix H ∈ Zn×n
q .

As an example in [21], R is a G-trapdoor for a random matrix A = [A0| −
A0R+HG], where A0 is a uniform matrix in Zn×m

q , H ∈ Zn×n
q is an invertible

matrix and R is chosen from a distribution over Zm×nk
q .

Lemma 1 ([21], Theorem 5.4). Given a G-trapdoor R for A ∈ Zn×m
q and

an LWE instance bt = stA+ et, if ∥[Rt I] · e∥∞ ≤ q/4 , then there is an efficient

algorithm called InvertO(R,A,H,b) that recovers s and e from the bt = stA+et.

11

Lemma 2 ([21], Theorem 5.5). Given a G-trapdoor R for A ∈ Zn×m
q

with invertible matrix H and any u ∈ Zn
q , there is an efficient algorithm called

SampleDO(R,A,H,u, s) that samples a Gaussian vector x from DZm,s such that

Ax = u, where s can be as small as
√

s1(R)2 + 1 ·
√

s1(
∑

G) + 1 ·ω(
√
log n) and

s1(
∑

G) is a constant for given G(equal to 4 if q is a power of 2, and 5 other-
wise).

Definition 4 ([1]). For a positive real s, the discrete Gaussian distribution
over a countable set A is defined by the density function

DA,s(x) :=
ρs(x)∑
y∈A ρs(y)

,

where ρs(x) = exp
(
−π∥x∥2/s2

)
.

Lemma 1 and Lemma 2 work for G as well. More conclusions related to
Gaussians and lattices are provided in Supplementary Material B.

3 New Confidentiality Notions for Updatable Encryption

To simplify the security notion given in [6], we define a new confidentiality no-
tion called sConfidentiality, where we replace OTokenGen and OUpdate in the security
game with a single OsUpd that returns both the update token and updated cipher-
text to the adversary simultaneously. We prove in Theorem 1 that sConfidentiality
and Confidentiality are equal for UE schemes with no-directional key updates.

Meanwhile, in order to provide the adversary with maximum power, we intro-
duce a new stronger confidentiality notion than sConfidentiality, called xxIND-UE-atk4,
where the adversary is given extra access to ODec and OCorr, which enables it to
corrupt epoch keys at any time during the game. To avoid making the security
game trivial, we fully analyze the conditions for any trivial win in this game
model. A brief comparison of the proposed notions with those of prior work is
presented in Fig. 3.

3.1 UE Schemes with No-Directional Key Updates

In c-i UE schemes, update tokens are generated by two successive epoch keys:
∆ = TokenGen(ke, ke+1), e.g., ∆ = ke+1/ke in [8] or ∆ = ke+1−ke in [17]); there-
fore, one key may be derived by the other if the token is known by the adver-
sary. However, in c-d UE schemes, tokens are also determined by the ciphertext
header: ∆ = TokenGen(ke, ke+1, ĉte), so keys may not be derived via corrupted
tokens. We generalise the definition of no-directional key updates from c-i UE
to c-d UE as follows.
4 The same notion for c-i UE scheme was proposed in [8]. We aim to unify the notions
for c-i/c-d UE that both capture adaptive security and prevent the leakage of cipher-
text age. Note that, as analysed in the introduction, there are intrinsic differences
between c-i UE and c-d UE. The disparity is evident in the confidentiality notion,
specifically in the approach to recording leakage sets.

12

Notions Oracles
Compromised

Key
Challenge
Input

Update

UP-IND [13] OEnc,OTokenGen,OUpdate Selective (m̄0, m̄1) rand
UP-REENC [13] OEnc,OTokenGen,OUpdate Selective (c̄0, c̄1) rand
Confidentiality [6] OEnc,OTokenGen,OUpdate Selective (m̄0, c̄1) rand

sConfidentiality Sect. 3.2 OEnc,OsUpd Selective (m̄0, c̄1) rand
xxIND-UE-CPA Sect. 3.3 OEnc,OsUpd,OCorr, Adaptive (m̄0, c̄1) xx
xxIND-UE-CCA Sect. 3.3 OEnc,OsUpd,OCorr,ODec Adaptive (m̄0, c̄1) xx

Fig. 3. A summary of confidentiality notions, where xx ∈ {rand, det} represents the
update procedure can be either randomized or deterministic. The adversary in each
confidentiality game provides two challenge inputs based on the oracles it has access to
and tries to distinguish the challenge outputs. Confidentiality is proven stronger than
both UP-IND and UP-REENC in [6], and OsUpd is defined in Sect. 3.2.

Definition 5. A UE scheme, either ciphertext-independent or ciphertext-dependent,
is said to have no-directional key updates if epoch keys cannot be inferred from
known tokens.

No-directional UE is stronger than other variants [17]. All known c-d UE
schemes in [7,13,6] (as well as our construction in Sect. 5), have no-directional
key updates, which benefits from a Dec-then-Enc process as discussed in the
introduction, even though there are only two c-i UE schemes with no-directional
key update: one is not practical [19] and the other is less efficient [25]. In the
following, we focus on c-d UE schemes with no-directional keys updates.

3.2 A Simplified Confidentiality Notion

Based on our refinement on Confidentiality, we now define a new simplified confi-
dentiality notion by substituting the oracles OEnc and OUpd in the Confidentiality
game with a single OsUpd that returns both the token and update simultaneously.
We call this new notion sConfidentiality. In Theorem 1, we prove sConfidentiality
is equivalent to Confidentiality for UE schemes with no-directional key updates,
as defined in [6].

Definition 6 (sConfientiality). Let UE = {KG,Enc,Dec,TokenGen,Update} be
an updatable encryption scheme. For a security parameter λ, an integer l, an
adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality experiment
ExptsConfUE (λ, l,A, b) and oracles O = {OEnc,OsUpd,OChall} as described in Fig. 4.
The experiment maintains two look-up tables TCnon and TCchall that record non-
challenge and challenge-equal ciphertexts known to the adversary, respectively,
and an epoch set K in which epoch keys are provided to the adversary in setup.

We say that an updatable encryption scheme UE satisfies sConfidentiality if
there exists a negligible function negl(λ) such that for all K ⊆ [0, . . . , l] and

13

ExptsConfUE (λ, l,A, b) :

1 : k1, . . . , kl ← KG(1λ)

2 : b′ ← AO(K)
3 : return b′ = b

OsUpd(e, (ĉt, ct)) :

1 : if TCchall[e− 1, ĉt] =⊥ and

2 : TCnon[e− 1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ← TokenGen(ke−1, ke, ĉt)

5 : if TCchall[e− 1, ĉt] ̸=⊥ then

6 : if e ∈ K return ⊥
7 : else ct← TCchall[e− 1, ĉt]

8 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

9 : TCchall[e, ĉt
′
]← ct′

10 : else ct← TCnon[e− 1, ĉt]

11 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

12 : TCnon[e, ĉt
′
]← ct′

13 : return (∆e,ĉt, (ĉt
′
, ct′))

OEnc(e,m) :

1 : (ĉt, ct)← Enc(ke,m)

2 : TCnon[e, ĉt]← ct

3 : return (ĉt, ct)

OChall(e,m, (ĉt, ct)) :

1 : if e ∈ K return ⊥

2 : (ĉt
′
0, ct

′
0)← Enc (ke,m)

3 : if (ĉt
′
0, ct

′
0) =⊥ or TCnon[e− 1, ĉt] ̸= ct

4 : return ⊥
5 : ∆e,ĉt ← TokenGen

(
ke−1, ke, ĉt

)
6 : (ĉt

′
1, ct

′
1)← Update(∆e,ĉt, (ĉt, ct))

7 : if |ĉt′0| ≠ |ĉt
′
1| or

∣∣ct′0∣∣ ̸= ∣∣ct′1∣∣
8 : return ⊥

9 : if (xx = det and TCnon[e, ĉt
′
1] = ct′1)

10 : return ⊥

11 : TCchall[e, ĉt
′
b]← ct′b

12 : return (ĉt
′
b, ct

′
b)

Fig. 4. Security game for sConfidentiality in Definition 6.

efficient adversaries A, we have∣∣∣Pr [ExptsConfUE (λ, l,A, 0) = 1
]
− Pr

[
ExptsConfUE (λ, l,A, 1) = 1

]∣∣∣ ≤ negl(λ).

Theorem 1. Let UE = (KG,Enc,Dec,TokenGen,Update) be an updatable en-
cryption scheme with no-directional key updates. For any sConfidentiality adver-
sary A against UE, there is a Confidentiality adversary B against UE such that

AdvsConfUE,A(1
λ) ≤ AdvConfUE,B(1

λ). (4)

In addition, for any Confidentiality adversary B against UE, there is a sConfidentiality
adversary A against UE such that

AdvConfUE,B(1
λ) = AdvsConfUE,A(1

λ).

Proof. In general, we construct a reduction that runs the Confidentiality (or
sConfidentiality) game and simulates all responses to the queries of the adversary
in the sConfidentiality (or Confidentiality game, respectively), as shown in Fig. 5.
The details are presented in Supplementary Material A. ⊓⊔

14

Fig. 5. Reductions in the proof of Theorem 1. When the adversary makes queries to
specific oracles, indicated above the arrow, the reduction forward to the adversary the
corresponding responses from its own challenger, marked below the arrow.

3.3 A Stronger Confidentiality Notion

We now provide a stronger confidentiality notion, called xxIND-UE-atk for c-d UE
in Definition 7, which provides the adversary with more power than the notion of
sConfidentiality in Sect. 3.2. All available oracles that the adversary has access to
are described in Fig. 8. The stronger notion allows the adversary to corrupt keys
at any time during the game by querying OCorr, instead of selecting the compro-
mised keys in the setup phrase. In addition, the adversary is provided with an
extra ability to query the decryption oracle compared with sConfidentiality. Prior
to define xxIND-UE-atk, we first analyze the conditions that lead the adversary to
trivially win the game through a combination of queries, which therefore should
be excluded from the game.

Leakage Information. To track the information leaked to the adversary, we
similarly record two look-up tables TCnon and TCchall as defined in Sect. 3.2, and
an epoch set K in which the epoch key is corrupted via OCorr. We define TCchall[0]
as the set of epochs in which the adversary learns a challenge-equal ciphertext,
and T as the set of epochs in which the adversary learns a token corresponding
to a challenge-equal ciphertext, which are exactly the epochs stored in TCchall

and ∆e,ĉt, respectively. A summary of notations is shown in Table 1.

Table 1. Summary of leakage set notations

Notations Descriptions

TCnon Look-up table recording leaked non-challenge ciphertexts
TCchall Look-up table recording leaked challenge-equal ciphertexts
TCchall[0] Set of epochs in which the a challenge-equal ciphertext is learned
K Set of epochs in which the adversary learned the epoch key
T Set of epochs in which a token w.r.t. a challenge-equal ct is learned

15

Leakage Extension. Note that the adversary possibly extends its corrupted
information TCnon,TCchall,K via corrupted tokens, and the former leakages may
also in turn help to corrupt more tokens. We denote TC∗chall[0],K∗, T ∗ as the
extended sets of TCchall[0],K, T , respectively. Following the analysis in [20], the
extended leakage sets are computed as follows:

K∗ = K (no-directional key updates), (5)

T ∗ = {e ∈ {0, . . . , l} | (e ∈ T) ∨ (e ∈ K∗ ∧ e− 1 ∈ K∗}, (6)

TC∗chall[0] = {e ∈ {0, . . . , l} | (e ∈ TCchall[0]) ∨ (e− 1 ∈ TCchall[0] ∧ e ∈ T ∗)∨
(e+ 1 ∈ TCchall[0] ∧ e+ 1 ∈ T ∗)}. (7)

An example is shown in Fig. 6. Assume the adversary queries OsUpd only in epoch
e− 5 and corrupts epoch keys in epochs e− 5 and e− 4. Even though it cannot
learn the token in epoch e − 4 by OsUpd, it can infer that token via corrupted
keys in e− 5 and e− 4, which further infers the ciphertexts in e− 4.

Epoch . . . e− 5 e− 4 . . .

TCchall[0] ✓ ×
K ✓ ✓
T ✓ ×

TC∗
chall[0] ✓ ✓
K∗ ✓ ✓
T ∗ ✓ ✓

Fig. 6. Example of leakage sets. Marks ✓ and × indicate if an epoch key/token is
corrupted. The green mark ✓ indicates an epoch key/token can be inferred from other
corrupted keys and tokens.

Trivial Win Conditions. We follow the analysis of trivial win conditions for
c-i UE in [20,19,8,17], as shown in Fig. 7. Our analysis for c-d UE in lemmas 3
to 5 shows that it is sufficient to check trivial win conditions on recorded leakages
K,TCchall, T , eliminating the need to calculate extended leakages K∗,TC∗chall, T ∗
and check trivial win conditions on them.

I. Trivial win by keys and ciphertexts
If the adversary knows the epoch key and a valid challenge-equal ciphertext

in the same epoch, it can recover the underlying message by a direct decryption
with its corrupted key and therefore win the game. Namely, we should ensure
K∗ ∩ TC∗chall[0] = ∅. The following lemma shows this condition is equal to K ∩
TCchall[0] = ∅ for c-d UE with no-directional key updates.

Lemma 3. For c-d UE schemes with no-directional key updates, we have K∗ ∩
TC∗chall[0] = ∅ ⇐⇒ K ∩ TCchall[0] = ∅.

16

Abilities Trivial Win Conditions

Keys and ciphertexts K∗ ∩ TC∗
chall[0] ̸= ∅

Updates
rand-UE : −
det-UE : ē ∈ T ∗ or OsUpd(ē, (ĉt, ct)) is queried (line 8-9)

Decryptions
rand-UE : e ∈ TC∗

chall[0] and (m′ = m or m1) (line 3-4)
det-UE : TC∗

chall[e, ĉt] = ct (line 2)

Fig. 7. A summary of trivial win conditions, where ē is the challenge epoch, (ĉt, ct)
is the challenge input ciphertext whose underlying message is m1, m is the challenge
input message, and m′ is returned message of decryption algorithm. Oracles are given
in Fig. 8.

Proof. By the definition of no-directional key updates, we have K∗ = K. In addi-
tion, we have TCchall[0] ⊆ TC∗chall[0]. Therefore, we only need to prove TCchall[0] =
TC∗chall[0] when K ∩ TCchall[0] = ∅.

Suppose TCchall[0] = ∪{estart, . . . , eend}. We prove that the adversary cannot
learn a challenge-equal ciphertext in epoch eend+1 either by querying or inferring.
First, the adversary cannot learn a challenge-equal ciphertext in epoch eend+1

via querying OsUpd, since eend is the last epoch in the epoch continuum; other-
wise the received update ciphertext will be recorded in the table TCchall, which
conflicts with the condition that eend is the last epoch in the epoch continuum.
Alternatively, it can update challenge-equal ciphertext in epoch eend with its
inferred token as Eq. (7). But from K ∩ TCchall[0] = ∅, we know the epoch key
kend is unknown to the adversary, which is needed to infer the token in eend+1

(see Eq. (6)).
The proof is the same for the challenge-equal ciphertext in epoch estart.

Therefore, the adversary cannot learn a challenge-equal ciphertext in any epoch
outside of the set TCchall[0], which implies that TCchall[0] = TC∗chall[0]. ⊓⊔

Remark 1. Lemma 3 shows that the adversary cannot infer a challenge-equal
ciphertext in an epoch that is not recorded in the look-up table, i.e., TCchall[0] =
TC∗chall[0]. But that does not mean all the ciphertexts known to the adversary
are stored in the table TCchall, or equally TCchall = TC∗chall, which is only true
for deterministic UE. For randomized UE schemes, the adversary can create
arbitrary number of valid challenge-equal ciphertexts in any epoch in TCchall[0]
by performing the update with its known ciphertexts and tokens.

II. Trivial win by updates
For UE schemes with randomized updates, there is no restrictions on the up-

date oracle. However, for UE schemes with deterministic updates, the adversary
can learn one of the possible challenge outputs by querying the oracle OsUpd on
the challenge input (ĉt, ct), or infer the update of (ĉt, ct) if ē ∈ T ∗, in advance
before the challenge phase. In the first case, all known ciphertext leakages before

17

the challenge are recorded by TCnon, so that we can set line 8-9 in challenge
oracle to check for this, as shown Fig. 8. In the second case, if ē ∈ T (⊆ T ∗),
i.e., the token is learned by querying OsUpd, it goes back to the first case (OsUpd

also returns the update ciphertext, which is recorded in TCnon). If ē ∈ T ∗\T ,
the following lemma shows the impossibility.

Lemma 4. For c-d UE schemes with no-directional key updates, if K∩TCchall[0] =
∅, then the challenge epoch ē ̸∈ T ∗\T .

Proof. Note that since the adversary queries the challenge oracle in ē, then
ē ∈ TCchall[0]. Due to K ∩ TCchall[0] = ∅, we know the epoch key kē is unknown
to the adversary, which is necessary to infer ∆ē,ĉt (see Eq. (6)). ⊓⊔

OEnc(e,m) :

1 : (ĉt, ct)← Enc(ke,m)

2 : TCnon[e, ĉt]← ct

3 : return (ĉt, ct)

OsUpd(e, (ĉt, ct)) :

1 : if TCchall[e− 1, ĉt] =⊥ and

2 : TCnon[e− 1, ĉt] =⊥ then

3 : return ⊥
4 : ∆e,ĉt ← TokenGen(ke−1, ke, ĉt)

5 : (ĉt
′
, ct′)← Update(∆e,ĉt, (ĉt, ct))

6 : if TCchall[e− 1, ĉt] ̸=⊥

7 : TCchall[e, ĉt
′
]← ct′

8 : else TCnon[e, ĉt
′
]← ct′

9 : return (∆e,ĉt, (ĉt
′
, ct′))

OCorr(e) :

1 : K = K ∪ {e}
2 : return ke

ODec(e, (ĉt, ct)) :

1 : m′ or ⊥ ← Dec(ke, (ĉt, ct))

2 : if (xx = det and TCchall[e, ĉt] = ct) or

3 :
(
(xx = rand and e ∈ TCchall[0]) and

4 : (m′ = m or m1)
)
then

5 : return ⊥
6 : return Dec

(
ke, (ĉt, ct)

)
OChall(ē,m, (ĉt, ct)) :

1 : (ĉt
′
0, ct

′
0)← Enc (kē,m)

2 : if (ĉt
′
0, ct

′
0) =⊥ or TCnon[ē− 1, ĉt] ̸= ct

3 : return ⊥
4 : ∆¯̄e,ĉt ← TokenGen

(
kē−1, kē, ĉt

)
5 : (ĉt

′
1, ct

′
1)← Update(∆ē,ĉt, (ĉt, ct))

6 : if |ĉt′0| ̸= |ĉt
′
1| or

∣∣ct′0∣∣ ̸= ∣∣ct′1∣∣
7 : return ⊥

8 : if (xx = det and TCnon[ē, ĉt
′
1] = ct′1)

9 : return ⊥

10 : TCchall[ē, ĉt
′
b]← ct′b

11 : return (ĉt
′
b, ct

′
b)

Fig. 8. An overview of the oracles that the adversary has access to in Definition 7.
In the decryption oracle, m is the challenge input message and m1 is the underlying
message of the challenge input ciphertext.

III. Trivial win by decryptions
Table TC∗chall records all the challenge-equal ciphertexts known to the adver-

sary in the game. By remark 1, we first have the following lemma.

18

Lemma 5. For c-d UE schemes with no-directional key updates, if K∩TCchall[0] =
∅, then TC∗chall = TCchall for deterministic UE, and TC∗chall[0] = TCchall[0] for ran-
domized UE.

For UE schemes with deterministic ciphertext updates, table TCchall records
all leaked challenge-equal ciphertexts in the game. The adversary can trivially
win the game by querying the decryption oracle on the challenge-equal cipher-
texts recorded on the table TCchall (line 2 in ODec, Fig. 8).

For UE schemes with randomized ciphertext updates, the epoch set TCchall[0]
records all the epochs in which the adversary can generate a valid challenge-equal
ciphertext. The adversary can trivially win the game if the returned message of
the decryption oracle in epochs in TCchall[0] is the challenge message or the plain-
text of the challenge input ciphertext (line 3-4).

In summary, the above analysis shows trivial win conditions for c-d UE can
be checked immediately based on the recorded leakages during the confidentiality
game, without the need for extra calculations and further checks of the extended
leaked sets of keys, tokens and ciphertext as in previous work for c-i UE in
[20,8,17]. After all the queries, if ⊥ is not returned, only one condition remains to
be checked: K ∩ TCchall[0] = ∅. This advantage is due to both the no-directional
key update setting and the proper ways of recording leakage information via
look-up tables. Finally, we introduce the definition of xxIND-UE-atk.

Definition 7 (xxIND-UE-atk). Let UE = (KG,Enc,Dec,TokenGen,Update) be
a ciphertext-dependent updatable encryption scheme with no-directional key up-
dates. For an adversary A and b ∈ {0, 1}, we define the confidentiality experi-
ment ExpxxIND-UE-atk-b

UE,A in Fig. 9 for xx ∈ {det, rand} and atk ∈ {CPA,CCA-1,CCA}.
We say UE meets the xxIND-UE-atk confidentiality if there is a negligible

function negl(λ) such that AdvxxIND-UE-atk
UE,A (λ) ≤ negl(λ), where

AdvxxIND-UE-atk
UE,A (λ) =

∣∣∣Pr[ExpxxIND-UE-atk-1
UE,A = 1

]
− Pr

[
ExpxxIND-UE-atk-1

UE,A = 0
]∣∣∣ .

3.4 Firewall Techniques

Firewall Technique. In c-i UE, the firewall technique was developed in [20,19]
to facilitate the security proof by separating epochs into different regions. Inside
an insulated region, the simulation in the proof should appropriately respond the
queries of the adversary, since it corrupts all tokens within this region. While
outside, the simulation can generate tokens and epoch keys freely.

In c-d UE, we similarly define the insulated region, inside which all tokens re-
lated to challenge-equal ciphertexts (called challenge-equal tokens) are corrupted
but no epoch key is corrupted.

Definition 8 (Firewall). In ciphertext-dependent UE schemes, an insulated
region with firewalls fwl and fwr, denoted by FW, is consecutive sequence of
epochs (fwl, . . . , fwr) for which:

19

ExpxxIND-UE-atk-b
UE,A :

1 : (m, (ĉt, ct))← AO1(1λ) // setup phase

2 : A queries Ochall on (m, (ĉt, ct)) // challenge phase

3 : b′ ← AO2(1λ) // response phase

4 : if (K ∩ TCchall[0] ̸= ∅) then

5 : b′ $← {0, 1}
6 : return b′

Fig. 9. The confidentiality game ExpxxIND-UE-atk-b
UE,A where xx ∈ {det, rand} indicates the

type of UE scheme (deterministic or randomized) and atk ∈ {CPA,CCA-1,CCA} in-
dicates the type of attack model. In the game, the adversary is given access to a set
of oracles, denoted by O1 and O2 which are shown in Fig. 8 and Fig. 10. During the
setup phase, the adversary generates a challenge plaintext and a challenge ciphertext
using the oracles in O1, and submits them to the challenger in the challenge phase.
The adversary continues to query the oracles in O2 and eventually provides a guess
bit. The only condition for the adversary to lose the game is K ∩ TCchall[0] ̸= ∅.

atk O1 O2

CPA OEnc,OsUpd,OCorr OEnc,OsUpd,OCorr

CCA-1 OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd,OCorr

CCA OEnc,OsUpd, ODec ,OCorr OEnc,OsUpd, ODec ,OCorr

Fig. 10. Oracles that the adversary has access to before and after the challenge phase
in the confidentiality game for different attacks. It can corrupt keys at any time during
the game in all attacks via querying OCorr, but is not allowed to query the decryption
oracle in the CPA attack, limited to query the decryption oracle before the challenge
in the CCA-1 attack, and free to query the decryption oracle in the CCA attack.

– no key in the sequence of epochs {fwl, . . . , fwr} is corrupted;

– no challenge-equal tokens in epochs fwl and fwr + 1 is corrupted;

– all challenge-equal tokens in epochs {fwl+ 1, . . . , fwr} are corrupted.

Suppose a xxIND-UE-atk adversary A queries the challenge oracle in epoch
ē and does not trigger trivial win conditions in the game, and TCchall[0] =
∪{estart, . . . , eend}. The proof of Lemma 3 shows A cannot update a ciphertext
from the epoch eend to the start epoch e′start of the next continuum. Thus, we
have TCchall[0] = {estart, . . . , eend}, meaning that the epoch set in which A knows
a challenge-equal ciphertext is only a consecutive continuum starting from the
challenge epoch (estart = ē), and ending in the epoch eend, the last epoch that
the adversary queries the update oracle OsUpd on the challenge-equal cipher-
text. The epoch keys and tokens in the epoch in TCchall[0] have the following
properties.

20

– A does not know the challenge-equal token in epochs estart and eend + 1,
following from the proof of Lemma 3;

– A knows all challenge-equal tokens in epochs in {estart + 1, . . . , eend}, ob-
tained when A queries the updates of challenge-equal ciphertexts via OsUpd;

– A does not know any key in epochs in {estart, . . . , eend}, as K∩TCchall[0] = ∅;

We thus have the Lemma 6, following from the discussion above, and Lemma
7, as a corollary of Lemma 6, both of which provide important tools in the
confidentiality proof for c-d UE.

Lemma 6. Let UE = (KG,Enc,TokenGen,Update,Decrypt) be a c-d UE scheme
with no-directional key updates, and xx ∈ {det, rand} and atk ∈ {CPA,CCA-1,CCA}.
For an xxIND-UE-atk adversary A against UE, the set of epoch in which A knows
a challenge-equal ciphertext is an insulated region (Def. 8), starting from the
challenge epoch and ending at the last epoch in which the adversary queries the
OsUpd.

Lemma 7. For a c-d UE with no-direcitonal key updates, if the xxIND-UE-atk
adversary knows a challenge-equal ciphertext in epoch e, then e must be in an
insulated region.

4 A CCA-1 Secure PKE Scheme

In this section, we propose a new PKE scheme called TDP, which is based on the
lattice trapdoor techniques. We will use this scheme in Sect. 5 as the underlying
encryption scheme to build our UE scheme.

4.1 A New PKE Scheme

Our overall idea is to construct a 1 × 3 block matrix Aµ in the encryption
algorithm, with the secret key serving as the trapdoor for the first two blocks of
Aµ to ensure the correctness of decryption.

We introduce some parameters involved in the construction in Fig. 11, where
we use standard asymptotic notations ofO,Ω, ω. Let λ be the security parameter,
ω(
√
log n) is a fixed function that grows asymptotically faster than

√
log n, and

Λ(Gt) is the lattice generated by Gt.
The PKE scheme TDP is described as follows. On a first reading, we suggest

readers to neglect the error parameter settings that are used to control the error
bound within the decryption capability, in order to have a simpler view at a high
level.

– TDP.KG(1λ): choose A0
$← Zn×m̄

q , R1, R2
$← D and let A = [A0 | A1 |

A2] = [A0 | −A0R1 | −A0R2] ∈ Zn×m
q where m = m̄+2nk. The public key

is pk = A and the secret key is sk = R1.

21

Notations Functionalities

G = Zn×nk
q (Sect. 2.2)

k = ⌈log2 q⌉ = O(logn),
q = poly(λ)

Make oracles InvertO and SampleDOefficient
for the random matrix with a G-trapdoor

m̄ = O(nk),
D = DZm̄×nk,ω(

√
logn)

Ensure (A,AR) is negl(λ)-far from uniform for

A
$← Zn×m̄

q and R← D, due to leftover hash lemma

encode : {0, 1}nk → Λ(Gt) by

encode(m) = Bm ∈ Znk, and
B is any basis of Λ(Gt)

Ensure an efficient decoding for decryption

LWE error rate α such that :
1/α = 4 ·O(nk) · ω(

√
logn)

Control the magnitude of error in ciphertext

Fig. 11. A summary of notations used in PKE construction and their functionalities.

– TDP.Enc(pk = A,m ∈ {0, 1}nk): choose an invertible matrix Hµ ∈ Zn×n
q ,

and let Aµ = [A0 | A1 + HµG | A2]. Choose a random vector s ∈ Zn
q

and an error vector e = (e0, e1, e2) ∈ DZm̄,αq ×DZnk,d ×DZnk,d where d2 =

(∥e0∥2 + m̄ · (αq)2) · ω(
√
log n)2. Let

bt = stAµ + et + (0, 0, encode(m))t mod q, (8)

where the first 0 has dimension m̄ and the second has dimension nk. Output
the ciphertext c= (Hµ, b). Notice thatR1 is a trapdoor for [A0 | A1+HµG].

– TDP.Dec(sk = R1, c = (Hµ,b)): let Aµ = [A0 | A1 + HµG | A2]. The
decryption first recovers s from the first two blocks via the invert algorithm
and then the message m from third block by decoding (when s is known):

(b0,b1,b2)
t =st[A0 | A1 +HµG | A2]

+ (e0, e1, e2)
t + (0, 0, encode(m))t mod q.

1. If c or b does not parse, or Hµ = 0, output ⊥. Otherwise parse bt =
(b0,b1,b2)

t.
2. Recover s. Call InvertO(R1, [A0 | A1+HµG], [b0,b1], Hµ) by Lemma

1, which returns s and (e0, e1) such that

(b0,b1)
t = st[A0 | A1 +HµG] + (e0, e1)

t mod q.

If InvertO fails, output ⊥. Invert bt
2 − stA2 again and find the unique

solution u, e2 to the equation

bt
2 − stA2 = utG+ et2 mod q,

3. If ∥e0∥ ≥ αq
√
m̄ or ∥ej∥ ≥ αq

√
2m̄nk · ω(

√
log n) for j = 1, 2, output ⊥

(Lemma 12).

22

4. Recover the plaintext. Output the following result

encode−1
(
bt
2 − stA2 − et2

)
∈ Znk

2 ,

if it exists, otherwise output ⊥.

4.2 Correctness and Security

We provide a full proof of the correctness (Lemma 8) and security (Lemma 9)
of the updatable encryption scheme TDUE in Sect. 5, which is based on TDP as
a subcase of TDUE.

Lemma 8. Our TDP decrypts correctly except with 2−Ω(n) failure probability.

Proof. The proof is the same as that of Lemma 10, except the bound for the
error vectors. The secret key R serves as the trapdoor the first two blocks of Aµ,
which ensures the proper recovery of s in Step 2 as long as the error bound is
within the capability of Invert. That is ∥et(RI)∥ ≤ q/4 by Lemma 1. By Corollary

14, we have s1(R) = ω(
√
log n) ·O(

√
nk). By Lemma 12, we have ∥e0∥ ≤ αq

√
m̄

and ∥ei∥ ≤ αq
√
2m̄nk ·ω(

√
log n) for j = 1, 2, except with negligible probability

2−Ω(n), where m̄ = O(nk). Therefore,∥∥(e0, e1)t [RI]∥∥∞ ≤ ∥∥(e0, e1)t [RI]∥∥ ≤ ∥∥et0R∥∥+ ∥e1∥ ≤ αq ·O(nk) · ω(
√
log n),

which is further smaller than q/4 since 1/α = 4 ·O(nk) ·ω(
√
log n), and ∥e2∥∞ ≤

q/4 for the same reason, which ensures the correct recovery of s, u and m. ⊓⊔

Lemma 9. Our PKE scheme TDP is CCA-1 secure if the LWE problem is hard.

Proof. We provide a detailed CCA-1 proof for our UE scheme in Theorem 2. Note
that, if the adversary is disallowed to query the token generation and update
algorithm, the CCA-1 game for UE is exactly the standard CCA-1 game for the
underlying PKE. Therefore, CCA-1 security of TDP follows from Theorem 2. ⊓⊔

5 A CCA-1 Secure Updatable Encryption Scheme

Based on our PKE scheme in Sect. 4, we construct a new UE scheme, which is
IND-UE-CCA-1 secure under the assumption of the LWE hardness.

5.1 Construction

Our UE scheme uses the same encryption and decryption algorithm in TDP,
i.e., the ciphertext of a plaintext m is of the form (ĉt, ct) = (Hµ, s

tAµ + et +
(0,0,encode(m)t). To update a ciphertext, at a high level, the update algorithm
first generates a key-switching matrixM with the last row block matrix [0 0 I],
such that AµM = A′µ for the aimed A′µ in the new ciphertext. This step is

23

(Hµ, stAµ + et + (0,0,encode(m)t)

(H′
µ, stA′

µ + e′t + (0,0,encode(m)t)

(H′
µ, s′′tA′

µ + e′′′t + (0,0,encode(m)t)

Multiplied by M
(generated by Lemma 2)

Add s′tA′
µ + e′′t,

an encryption of 0

Fig. 12. An overview of ciphertext update in our UE construction. The first step mainly
updates Aµ to A′

µ, and the second step refreshes the randomness s.

feasible since the secret key is the trapdoor for the first two blocks ofAµ, ensuring
an efficient preimage sampling algorithm (Lemma 2). To increase the randomness
of s, then we add a fresh encryption of message 0 to the ciphertext. Fig. 12 shows
an overview of the ciphertext update.

We use the same parameters as in Sect. 4.1 except the followings. We also
suggest readers on first reading to neglect the parameter setting for error items
which are used to control the updated error bound.

– 1/α = 4l·ω(
√
log n)2l+2O(

√
nk)3l+3 where l is the maximal number of update

that the scheme can support.
– τ =

√
s1(R)2 + 1 ·

√
s1(

∑
G) + 1 ·ω(

√
log n) is smallest Gaussian parameter

for the discrete Gaussian distribution from which the sampling algorithm
SampleDO can sample vectors, where s1(

∑
G) = 5 by Theorem 1.

The UE scheme TDUE is described as follows.

– TDUE.KG(1λ): output TDP.KG(1λ).

– TDUE.Enc(pk = A,m ∈ {0, 1}nk): output TDP.Enc(A,m).

– TDUE.Dec(sk = R1, c = (Hµ,b)): output TDP.Dec(R1, (Hµ,b)).

– TDUE.TokenGen(pk, sk, pk′,Hµ): parse pk = [A0 | A1 | A2] = [A0 | −A0R1 |
−A0R2], sk = R1, and pk′ = [A′0 |A

′
1 | A

′
2].

1. Generate a random invertible matrix H′µ and let A′µ = [A′0 | A
′
1+H′µG |

A′2]. We first generate a transition matrixM for whichAµM = A′µ in the
following steps 2, 3, 4, and then compute the encryption of the message
0 under A′µ in step 5.

2. Call SampleO(R1, [A0 | −A0R1 +HµG],Hµ,A
′
0, τ) (Lemma 2 and R1

is a trapdoor for [A0 | −A0R1+HµG]), which returns an (m̄+nk)× m̄
matrix, parsed as X00 ∈ Zm̄×m̄ and X10 ∈ Znk×m̄ with Gaussian entries
of parameter τ , satisfying

[A0 | −A0R1 +HµG]

[
X00

X10

]
= A′0. (9)

24

3. Call SampleO(R1, [A0 | −A0R1+HµG],Hµ,A
′
1+H′µG, τ

√
m̄/2), which

returns X01 ∈ Zm̄×nk
q and X11 ∈ Znk×nk

q with Gaussian entries of pa-

rameter τ
√
m̄/2 such that

[A0 | −A0R1 +HµG]

[
X01

X11

]
= A′1 +H′µG. (10)

4. Continue calling the sample oracle SampleO(R1, [A0 | −A0R1+HµG],H1,

A′2 − A2, τ
√
m̄/2) and obtain X02 ∈ Zm̄×nk

q and X12 ∈ Znk×nk
q with

Gaussian entries of parameter τ
√
m̄/2 such that

[A0 | −A0R1 +HµG]

[
X02

X12

]
= A′2 −A2. (11)

Let M be the key-switching matrix as follows:

M =

X00 X01 X02

X10 X11 X12

0 0 I

 . (12)

Note that Aµ = [A0 | A1+HµG | A2]. Then we have AµM = A′µ from
Equations (9) to (11).

5. Let b0 be the ciphertext of message m = 0 under the public key pk′

with the invertible matrix H′µ generated in step 1. That is,

bt
0 = (s′)tA′µ + (e′)t mod q.

6. Output the update token ∆ = (M,b0,H
′
µ).

– TDUE.Update(∆, c = (Hµ,b)): parse ∆ = (M,b0,H
′
µ) and compute

(b′)t = bt ·M+ bt
0 mod q,

and output c′ = (H′µ,b
′).

No-directional Key Updates. TDUE has no-directional key updates since one
can only learn from the update token about the value of A′µ (or Aµ) through

AµM = A′µ even if sk (or sk′, resp.) is corrupted, whereasA′µ andAµ are random
due to the leftover hash lemma and the distribution of secret key. Therefore, the
adversary cannot infer any information about the secret key from the update
tokens.

5.2 Correctness

We prove that the decryption algorithm in our scheme can perform correctly with
overwhelming probability. Note that the second component in the ciphertext

25

generated by the update algorithm (updated ciphertext) is as follows:

(b′)t = bt ·M+ bt
0

=
[
stAµ + et + (0, 0, encode(m))t

]
M+ (s′)tA′µ + (e′)t

= (s+ s′)tA′µ +
(
etM+ (e′)t

)
+ (0, 0, encode(m))t mod q. (13)

The third equation holds because AµM = A′µ and the last nk rows in M is
[0 0 I]. Therefore the item (0, 0, encode(m))t stays the same when multiplied
by M. Then the updated ciphertext shares the same form with the fresh cipher-
text (generated by the encryption algorithm), except that the update algorithm
enlarges the error terms by etM+ (e′)t, which may cause the failure in the in-
vert algorithm InvertO and further influence the correctness of the decryption
algorithm. In the following, we show that the decryption algorithm can tolerate
the accumulated errors in the updated ciphertexts by choosing an appropriate
value for the parameter α.

Lemma 10. Our UE scheme TDUE decrypts correctly except with 2−Ω(n) failure
probability.

Proof. Since the decryption on the fresh ciphertext (from Enc) is a subcase of
that on the updated ciphertext (from Update), we choose to prove that the
decryption algorithm can output a correct plaintext after performing l updates
from epoch 0, where l is the maximal update number.

Let (pke, ske = Re)0≤e≤l ← KG(1n) be the public and secret key in epoch e.

For a random plaintext m ∈ {0, 1}nk, let ce be the ciphertext of m in epoch e,
which is updated from c0 = Enc(m) = (Hµ,0, s

t
0Aµ,0 + et0 +(0, 0, encode(m))t).

For 1 ≤ i ≤ l, let the token in epoch i be ∆i = (Mi,b0,i,Hµ,i), where b0,i is
the fresh ciphertext of message 0 in epoch i, i.e., bt

0,i = stiAµ,i + eti in which
Aµ,i = [A0,i | A1,i+Hµ,iG | A2,i]. Iteratively by Eq. (13), we know the updated
ciphertext of m in epoch l is cl = (Hµ,l,bl) where

bt
l = (

l∑
i=0

si)
tAµ,l +

l∑
i=0

(eti

l∏
j=i+1

Mj) + (0,0, encode(m))t.

Let
∑l

i=0(e
t
i

∏l
j=i+1 Mj) = (e

(l)
0 , e

(l)
1 , e

(l)
2)t = (e(l))t. We provide in Supple-

mentary Material C the upper bound for the error e(l) that∥∥∥(e(l)0 , e
(l)
1 , e

(l)
2)t ·

[
Rl

I
0

]∥∥∥
∞

< q/4 and
∥∥∥e(l)2

∥∥∥
∞

< q/4, (14)

except with probability 2−Ω(n) via the appropriate parameter selection for the

scheme. Let bt
l = (b

(l)
0 ,b

(l)
1 ,b

(l)
2)t. Then by Lemma 1, the call to InvertO made

by Dec(skl, (Hµ,l,bl)) returns s (=
∑l

i=0 si) and (e
(l)
0 , e

(l)
1) correctly, for which

(b
(l)
0 ,b

(l)
1)t = st[A0,l | A1,l +Hµ,lG] + (e

(l)
0 , e

(l)
1)t mod q.

26

It follows that
(b

(l)
2)t − stA2,l = (e

(l)
2)t + encode(m)t, (15)

where
∥∥∥e(l)2

∥∥∥ < q/4 by Inequality (14) and encode(m)t = utG for some u ∈ Znk
q

by the definition of encode. Inverting (b
(l)
2)t − stA2,l, we can find the unique

solution e
(l)
2 and u to Eq. (15). Finally, we have

encode−1
(
(utG)t

)
= encode−1 (encode(m)) = m.

Therefore, the decryption algorithm Dec outputs m as desired. ⊓⊔

5.3 Security Proof

In this section, we show that our scheme is IND-UE-CCA-1 secure under the
hardness assumption of LWE.

Theorem 2. For any IND-UE-CCA-1 adversary A against TDUE, there exists
an adversary B against LWEn,q,α such that

AdvIND-UE-CCA-1
TDUE,A (1λ) ≤ 2(l + 1)3 ·

[
(l + 2) · negl(λ)

+ (nDec + nsUpd) · 2−Ω(n) + AdvLWE
n,q,α(B)

]
,

where l is the maximal number of ciphertext updates that the scheme TDUE
supports, and nDec and nsUpd are the number of queries to the oracles ODec and
OsUpd, respectively.

Step Process

Step 1
epochHi : i

real ct random ct

Step 2
epochGi : i

real ct

fwl

random ct

fwr

Step 3
Game 1: Simulate epoch keys and tokens in {fwl, . . . , fwr}
Game 2: Simulate the challenge-equal ciphertexts
Game 3: A reduction solving LWE and simulating Game 2

Fig. 13. Steps in the security proof of TDUE. Within an insulated region, the reduction
should appropriately respond to all the queries made by the adversary. Outside the
region, the reduction can generate epoch keys and tokens freely. ct is the abbreviation
of ciphertext.

Proof. In general, we take three steps, see Fig. 13, to bound the advantage of
the adversary. In the first step, we build a hybrid game Hi for each epoch i,

27

following [17,22]. To the left of i, the game Hi returns the real challenge-equal
ciphertexts and real generated tokens to respond to OChall and OsUpd queries;
while, to the right of i, Hi returns random ciphertexts and tokens as responses.
To distinguish games Hi and Hi+1, we assume the adversary queries a challenge-
equal ciphertext in epoch i, otherwise the response of both games will be the
same. Therefore, the epoch i must be in an insulated region by Lemma 7. In
Step 2, we then set up a modified game of Hi, called Gi that is the same as Hi

except for the two randomly chosen epochs fwr, fwl to simulate the insulated re-
gion around epoch i: if the adversary queries keys inside the region [fwr, · · · , fwl]
or challenge-equal tokens in epochs fwr or fwl+1, Gi aborts. In the last step, we
play three games to bound the advantage of distinguishing games Gi and Gi+1.
In Game 1, we simulate keys inside the insulated region, which are unknown to
the adversary, and show how to simulate response to queries on challenge-equal
and non-challenge ciphertexts with the simulated keys. We then simulate the
challenge-equal ciphertext in the second game, which allows for the construction
of a reduction that solves the LWE by simulating the second game to the adver-
sary. We provide the proof details in Supplementary Material D. ⊓⊔

5.4 A Packing UE

We now introduce a packing method to further improve the efficiency of c-d UE,
which allows us to encrypt multiple messages into one ciphertext and execute
ciphertext updates simultaneously.

Let N be a power of 2, R = Z[X]/(XN + 1), and Rq = R/(qR) be the
residue ring of R modulo q. Any polynomial p(X) in R can be represented

by p(X) =
∑N−1

i=0 piX
i with degree less than N , which is associated with to

its coefficient vector {p0, . . . , pN−1} ∈ ZN . For a distribution X , when we say

p(X)
$← X , we mean the coefficient of p(X) is chosen from X . We the same

notations as in Sect. 5.1

Encoding. Prior to the packing construction, we first present an efficient en-
coding algorithm that encodes multiple messages m0, . . . , mN−1 ∈ Znk

2 as an
element in Rq with coefficients in Λ(Gt) as follows:

encode(m0, . . . ,mN−1) = B ·
(
m0 +m1x+ · · ·+mN−1x

N−1) ,
where B ∈ Znk×nk is any basis of Λ(Gt). Note that it can be efficiently decoded.

At a high level, multiple message blocks are encrypted in the following form:

(b0,b1,b2(x))
t = st[A0 | A0R+HµG | A2(x)]

+ (e0, e1, e2(x))
t + (0, 0, encode(m0, . . . ,mN−1))

t mod q. (16)

Compared to TDUE, the major modification in this approach is in the third block
that uses polynomial matrices and vectors. The secret key R is still the trapdoor
for [A0 | A0R+HµG]. Therefore, the decryption procedure is able to properly

recover s from the first two block in Eq. (16) as TDUE.Dec, and then call InvertO

28

over b2(x)− stA2(x) degree by degree to recover every message. Moreover, the
token generation is feasible due to a generalized preimage sampling algorithm in
Lemma 11.

Lemma 11. Given a G-trapdoor R for A ∈ Zn×m
q with invertible matrix H

and any polynomial vector u(X) ∈ Rn
q , there is an efficient algorithm called

GSampleDO(R,A,H,u(X), s) that samples a Gaussian polynomial vector p(X) ∈
Rm

q with coefficients from DZ,s such that A ·p(X) = u(X), where s is the small-
est Gaussian parameter defined in Lemma 2.

Proof. Calling the oracle SampleDO on each coefficient vector of u(X) returns a
vector pi such that

Api = ui,

for 0 ≤ i ≤ N and u(X) =
∑N−1

i=0 uiX
i. Denote p(X) =

∑N−1
i=0 piX

i, then we
know Ap(X) = u(X). ⊓⊔

Packing UE. Our packing UE scheme is described as follows.

– KG(1λ): choose A0
$← Zn×m̄

q , R1, R2(X)
$← D and let A = [A0 | A1 | A2] =

[A0 | −A0R1 | −A0R2(X)] ∈ Rn×m
q where m = m̄ + 2nk. The public key

is pk = A and the secret key is sk = R1.

– Enc(pk = A,m0, . . . ,mN−1 ∈ {0, 1}nk): choose an invertible matrix Hµ ∈
Zn×n
q , and let Aµ = [A0 | A1 +HµG | A2]. Choose a random vector s ∈ Zn

q

and an error vector e = (e0, e1, e2(X)) ∈ DZm̄,αq × DZnk,d × DZnk,d where

d2 = (∥e0∥2 + m̄ · (αq)2) · ω(
√
log n)2. Let

bt = stAµ + et + (0, 0, encode(m0, . . . ,mN−1)
t mod q, (17)

where encode(m0, . . . ,mN−1) = B · (m0 +m1X + · · ·+mN−1X
N−1).

– Dec(sk = R1, c = (Hµ,b)): Recover s as the steps 1 to 3 in the decryption
algorithm of TDP. Parse bt = (b0,b1,b2(X))t, invert b2(X)t− stA2 degree
by degree, and find the unique solution ui, e2,i to the equation

bt
2,i − stA2,i = ut

iG+ et2,i mod q,

by Lemma 1 if they exist, where b2(X) =
∑

b2,iX
i and A2 =

∑
A2,iX

i.
Output the following result as mi if it exists,

encode−1
(
(ut

iG)t
)
∈ Znk

2 ,

for 0 ≤ i ≤ N − 1, otherwise output ⊥.

– TokenGen(pk, sk, pk′,Hµ): Generate the first two row block matrices M00,
M01, M10, M11 of M as in step 2 and 3 of TDUE.TokenGen, and call the

29

algorithm GSampleDO in Lemma 11 to find M02(X) ∈ Rm̄×nk
q ,M12(X) ∈

Rnk×nk
q such that

[A0 | −A0R1 +HµG]

[
M02(X)
M12(X)

]
= A′2 −A2.

Generate b0 a fresh encryption of message 0. Output the update token
∆ = (M,b0,H

′
µ).

– TDUE.Update(∆, c = (Hµ,b)): parse ∆ = (M,b0,H
′
µ) and compute

(b′)t = bt ·M+ bt
0 mod q,

and output c′ = (H′µ,b
′).

Remark. The correctness and IND-UE-CCA-1 security of packing UE is analo-
gous to those of TDUE (as shown in Lemma 10 and Theorem 2). We omit the
details. For a message of bit length Nnk, packing UE, compared to TDUE, re-
duces the number of ciphertexts by a factor of N , and only one ciphertext header
is required to be downloaded in token generation procedure.

6 Conclusion and Future Work

In this paper, we propose a stronger confidentiality notion than prior work for
ciphertext-dependent updatable encryption, which captures adaptive security
and is applied to both types of UE schemes: deterministic and randomized up-
dates. We also provide a new public key encryption scheme, based on which
we construct our updatable encryption scheme. Moreover, we propose a cost-
effective packing UE scheme that is able to execute ciphertext updates simulta-
neously.

Future Work. The first FHE scheme introduced by Gentry [16] and all its
subsequent work require a “circular security” assumption, namely that it is safe
to encrypt old secret key with new key. Such an idea has inspired the UE con-
struction with backward directional key updates. In turn, we suggest an open
problem that if no-directional updatable encryption, which is able to update
ciphertext without revealing old and new keys, can be used to construct FHE
that does not rely on the assumption.

References

1. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma
over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I.
LNCS, vol. 8269, pp. 97–116. Springer (2013). https://doi.org/10.1007/978-3-642-
42033-7 6

30

https://doi.org/10.1007/978-3-642-42033-7_6
https://doi.org/10.1007/978-3-642-42033-7_6

2. Ajtai, M.: Generating hard instances of lattice problems. In: STOC. pp. 99–108
(1996). https://doi.org/10.1145/237814.237838

3. Alamati, N., Montgomery, H., Patranabis, S.: Symmetric primitives with struc-
tured secrets. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 650–679. Springer (2019). https://doi.org/10.1007/978-3-
030-26948-7 23

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011). https://doi.org/10.1007/s00224-010-9278-3

5. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296, 625–635 (1993). https://doi.org/10.1007/BF01445125

6. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and secu-
rity in updatable encryption schemes. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part III. LNCS, vol. 12493, pp. 559–589. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 19

7. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/978-3-
642-40041-4 23

8. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable en-
cryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS,
vol. 12170, pp. 464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56784-2 16

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITIC 2012. pp. 309–
325. ACM (2012). https://doi.org/10.1145/2090236.2090262, https://doi.org/

10.1145/2090236.2090262

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS, 2011. pp. 97–106. IEEE Computer
Society (2011). https://doi.org/10.1109/FOCS.2011.12

11. Chen, L., Li, Y., Tang, Q.: CCA updatable encryption against malicious re-
encryption attacks. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.
LNCS, vol. 12493, pp. 590–620. Springer (2020). https://doi.org/10.1007/978-3-
030-64840-4 20

12. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
335–352. Springer (2014). https://doi.org/10.1007/978-3-662-44371-2 19

13. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS,
vol. 10403, pp. 98–129. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-63697-9 4

14. Fan, X., Liu, F.: Proxy re-encryption and re-signatures from lattices. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol.
11464, pp. 363–382. Springer (2019). https://doi.org/10.1007/978-3-030-21568-
2 18

15. Galteland, Y.J., Pan, J.: Backward-leak uni-directional updatable encryption from
public key encryption. IACR Cryptol. ePrint Arch. p. 324 (2022), https://eprint.
iacr.org/2022/324

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) STOC 2009. pp. 169–178. ACM (2009).
https://doi.org/10.1145/1536414.1536440

31

https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/978-3-030-26948-7_23
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1007/BF01445125
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/978-3-642-40041-4_23
https://doi.org/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-030-64840-4_20
https://doi.org/10.1007/978-3-030-64840-4_20
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-030-21568-2_18
https://doi.org/10.1007/978-3-030-21568-2_18
https://eprint.iacr.org/2022/324
https://eprint.iacr.org/2022/324
https://doi.org/10.1145/1536414.1536440

17. Jiang, Y.: The direction of updatable encryption does not matter much. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 529–558.
Springer (2020). https://doi.org/10.1007/978-3-030-64840-4 18

18. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer (2014). https://doi.org/10.1007/978-
3-642-54631-0 5

19. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 68–99. Springer (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

20. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 685–716. Springer (2018). https://doi.org/10.1007/978-3-319-78372-7 22

21. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer (2012). https://doi.org/10.1007/978-3-642-29011-4 41

22. Nishimaki, R.: The direction of updatable encryption does matter. In: Hanaoka,
G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp.
194–224. Springer (2022). https://doi.org/10.1007/978-3-030-97131-1 7

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) ACM 2005. pp. 84–93. ACM (2005).
https://doi.org/10.1145/1060590.1060603

24. Sakurai, K., Nishide, T., Syalim, A.: Improved proxy re-encryption scheme
for symmetric key cryptography. In: IWBIS, 2017. pp. 105–111. IEEE (2017).
https://doi.org/10.1109/IWBIS.2017.8275110

25. Slamanig, D., Striecks, C.: Puncture ’em all: Stronger updatable encryption with
no-directional key updates. IACR Cryptol. ePrint Arch. p. 268 (2021), https:
//eprint.iacr.org/2021/268

32

https://doi.org/10.1007/978-3-030-64840-4_18
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-97131-1_7
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/IWBIS.2017.8275110
https://eprint.iacr.org/2021/268
https://eprint.iacr.org/2021/268

Supplementary Material

A Proof of Theorem 1

We provide reductions for both sConfidentiality and Confidentiality games. For
any sConfidentiality adversary A, we construct a reduction B that runs the
Confidentiality game and simulates all responses to the queries of A as the first
line shown in Fig. 5. The reduction sends all its known keys to A, all A’s queries
except OsUpd to its challenger, and returns the challenger’s responses to A.

When A queries the oracle OsUpd on some input, the reduction B submits
the same input to OTokeGen. If the response of the challenger is ⊥, B also sends
⊥ to A; otherwise, B calculates the updated ciphertext by the received update
token and forwards the update token, together with the updated ciphertext, to
the adversary A. At last, B forwards A’s guess to its challenger.

We check the trivial win conditions of A and B one by one. Suppose A
does not query an update of challenge-equal ciphertext in an epoch in which
it knows the key (via OsUpd). From the proof of Lemma 3, then we know
TCchall[0] = TC∗chall[0], and therefore the epochs in which A knows a challenge-
equal ciphertext are the same as B. Therefore, B will not query the token related
to challenge-equal ciphertexts in epochs in which it knows the epoch key (since
A and B have the same known keys). There is no additional restrictions for ran-
domized UE. For deterministic UE, the adversary should not learn the update of
challenge input ciphertext in advance before the challenge. Note that the look-up
table TCnon for A and B is the same. If A does not query OsUpd(ē, (ĉt, ct)) be-
fore querying the challenge oracle, the same applies to B (recall the ciphertexts
acquired before the challenge are all recorded in TCnon). Therefore, ⊥ will also
not be returned from the challenger of B when A does not trigger trivial win
conditions. Thus B has at least the same advantage as A, i.e., the Inequality (4).

Similarly, for any Confidentiality adversary B, we construct a reduction A
that runs the sConfidentiality game and simulates all the responses to the queries
of the given B as shown in the second line of Fig. 5. The reduction A sends all
its known keys to B and all B’s queries except those on OTokenGen and OUpd to
its challenger, and returns its challenger’s responses to B. When B queries the
oracle OTokenGen (or OUpd) on some input, the reduction A submits the same
input to the OsUpd oracle, and returns the update token (or updated ciphertext,
respectively) received from its challenger to B if the response is not ⊥; otherwise,
A returns ⊥ to B.

Therefore, the reduction A simulates all response to B’s queries. Suppose B
does not query an update of challenge-equal ciphertext in an epoch in which it
knows the epoch key. By proof of Lemma 3 again, we know A does not query
OsUpd in an epoch in which it knows the epoch key. In addition, the analysis for
deterministic is almost the same as above. We omit the details. Thus, we have

AdvConfUE,B(1
λ) ≤ AdvsConfUE,A(1

λ).

In combination with (4), we conclude the advantage of A is equal to that of B.

33

B Gaussians and Lattices

Lemma 12 ([5], Lemma 1.5). Let c ≥ 1, C = c · exp
((
1− c2

)
/2
)
. For any

real s > 0 and any integer n ≥ 1, we have that

Pr
e←DZn,s

[
∥e∥ ≥ cs

√
n/(2π)

]
≤ Cn.

In particular, letting c =
√
2π and C < 1/4 , we have that Pr

e←DZn,s

[∥e∥ ≥ s
√
n] <

2−2n.

Lemma 13 ([21], Lemma 2.9). Let X ∈ Rn×m be a δ-subgaussian random
matrix with parameter s. There exists a universal constant C > 0 such that for
any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+
√
n+ t) except with probability at most

2 exp(δ) exp
(
−πt2

)
.

Lemma 14 ([12], Fact 6). For any m,n, s > 0, let R ∈ Dn×m
Z,s , we have

s1(R) ≤ s ·O(
√
n+
√
m), except with probability 2−Ω(n+m).

The following lemma bounds the maximal singular value of the product and
addition of two matrices, which follows directly from the definition.

Lemma 15. Let A ∈ Rm×n, B ∈ Rn×m, then s1(AB) ≤ s1(A)s1(B) and
s1(A+B) ≤ s1(A) + s1(B).

Lemma 16 (Leftover Hash Lemma). Let P be a distribution over Zn
q with

min-entropy k. For any ϵ > 0 and l ≤ (k − 2 log(1/ϵ) − O(1))/ log(q), the joint
distribution of (C,Cs) is ϵ-close to the uniform distribution over Zl×n

q × Zl
q,

where C
$← Zl×n

q and s← P.

Lemma 17 ([4], Fact 2.2). Let X1, . . . , Xn be independent mean-zero sub-
gaussian random variables with parameter s, and let u ∈ Rn be arbitrary. Then∑

k(akXk) is subgaussian with parameter s∥u∥.

C Proof of Inequality (14)

We start from the error e0 generated in the fresh encryption in epoch 0 and
estimate the bound on et0 ·

∏l
j=1 Mj . Errors generated in the update algorithm

in later epochs have the same distribution as e0, but are multiplied fewer times
than e0 by the transition matrix {Mj}.

Step 1. Let et0 = (e0,0, e1,0, e2,0)
t and M(s) be the s products of {Mj}sj=1,

denoted as follows:

M(s) =

s∏
t=1

Mt =

X(s)
00 X

(s)
01 X

(s)
02

X
(s)
10 X

(s)
11 X

(s)
12

0 0 I

 and Mj =

X00,j X01,j X02,j

X10,j X11,j X12,j

0 0 I

 ,

34

for s ∈ {1, . . . , l}.
We first estimate the bound on the maximal singular values of Mj and M(s).

For any j ∈ {1, . . . , l}, we have s1(Xkt,j) ≤ τ · O(
√
nk) for kt ∈ {00, 10}, and

s1(Xkt,j) ≤ τ
√
m̄/2 · O(

√
nk) for kt ∈ {01, 11, 02, 12} by Lemma 14. Let µ =√

m̄/2. For s = 2, since X
(2)
00 = X00,1 ·X00,2 +X01,1 ·X10,2, we have

s1(X
(2)
00) ≤ s1(X00,1) · s1(X00,2) + s1(X01,1) · s1(X10,2)

≤ τ2(1 + µ) ·O(
√
nk)2,

by Lemma 15. Similarly, we give the bound on the maximal singular value of
other block matrices in M(2) (except the last nk rows, which equal [0, 0, I] for
all M) as follows (element-wise comparison):[

s1(X
(2)
00) s1(X

(2)
01) s1(X

(2)
02)

s1(X
(2)
10) s1(X

(2)
11) s1(X

(2)
12)

]

≤
[
τ2(1 + µ) τ2µ(1 + µ) τ2µ[(1 + µ) + 1]
τ2(1 + µ) τ2µ(1 + µ) τ2µ[(1 + µ) + 1]

]
· O(

√
nk)2.

Iteratively, we have the bound on maximal singular value of each block matrix
in M(l), which is[

s1(X
(l)
00) s1(X

(l)
01) s1(X

(l)
02)

s1(X
(l)
10) s1(X

(l)
11) s1(X

(l)
12)

]

≤

[
τ l(1 + µ)l−1 τ lµ(1 + µ)l−1 τ lµ

∑l−1
k=0(1 + µ)k

τ l(1 + µ)l−1 τ lµ(1 + µ)l−1 τ lµ
∑l−1

k=0(1 + µ)k

]
· O(

√
nk)l . (18)

Now we can estimate the bound on the updated e0 in the last epoch. Notice
that

et0 ·M
(l) ·

[
R1,l

I
0

]
= (e0,0, e1,0, e2,0)

t

[
X

(l)
00 X

(l)
01 X

(l)
02

X
(l)
10 X

(l)
11 X

(l)
12

0 0 I

] [
R1,l

I
0

]
= (et0,0X

(l)
00 + et1,0X

(l)
10)R1,l + et0,0X

(l)
01 + et1,0X

(l)
11 . (19)

By Lemma 12, we have ∥e0,0∥ < αq
√
m̄ and ∥ei∥ < αq

√
2m̄nk · ω(

√
log n) for

ei ∈ {e1,0, e2,0}, except with probability 2−Ω(n). Combining this conclusion with
Eq. (18), we obtain

∥∥∥et0,0X(l)
00R1,l

∥∥∥ ≤ ∥e0,0∥ · s1(X(l)
00) · s1(R1,l) < αq

√
m̄ · τ l(1 + µ)l−1O(

√
nk)l · σ,∥∥∥et1,0X(l)

10R1,l

∥∥∥ < (αq
√
2m̄nk · ω(

√
log n)) · τ lµ(1 + µ)l−1O(

√
nk)l · σ,∥∥∥et0,0X(l)

01

∥∥∥ < αq
√
m̄ · τ lµ(1 + µ)l−1O(

√
nk)l,∥∥∥et1,0X(l)

11

∥∥∥ < (αq
√
2m̄nk · ω(

√
log n)) · τ lµ(1 + µ)l−1O(

√
nk)l,

(20)

35

where σ is the upper bound for s1(R1,l) by Corollary 14, i.e., σ := ω(
√
log n) ·

O(
√
nk).

Substituting σ, τ and µ in Inequality (20), we get the upper bound for the
norm of the updated et0 in Eq.(19) by the triangle inequality as follows:∥∥∥(et0,0X(l)

00 + et1,0X
(l)
10)R1,l + et0,0X

(l)
01 + et1,0X

(l)
11

∥∥∥ < αqω(
√
log n)2l+2O(

√
nk)3l+3,

(21)

and similarly, the bound for the norm of the last nk coordinates of et0 ·M
(l) is∥∥∥et0,0X(l)

02 + et1,0X
(l)
12 + et2,0

∥∥∥ < αqω(
√
log n)2l+1O(

√
nk)3l+2. (22)

Since the infinity norm is smaller than the 2-norm, we have∥∥∥∥∥∥(et0 ·
l∏

j=1

Mj)

R1,l 0
I 0
0 I

∥∥∥∥∥∥
∞

≤ αqω(
√
log n)2l+2O(

√
nk)3l+3, (23)

by combining the Inequality (21) and Inequality (22).
Step 2. Errors generated from epoch 1 to l − 1 have the same distribution

with e0, but are multiplied fewer time by the key-switching matrices {Mj},
which therefore yields a lower bound than e0.

Step 3. For el, it is not multiplied by any transition matrix. Let etl =
(e0,l, e1,l, e2,l). Then we have

etl ·

R1 0
I 0
0 I

 = (et0,lR1 + et1,l, e
t
0,lR2 + et2,l).

The bound on updated e0 in Inequality (23) also holds for el.
Finally, we conclude that the upper bound on the infinity norm of the sum

of updated errors is αqlω(
√
log n)2l+2O(

√
nk)3l+3 by triangle inequality, except

with probability 2−Ω(n). That is∥∥∥∥∥∥
l∑

i=0

(eti ·
l∏

j=i+1

Mj) ·

R1,l 0
I 0
0 I

∥∥∥∥∥∥
∞

≤ αqlω(
√

log n)2l+2O(
√
nk)3l+3.

Since 1/α = 4lω(
√
log n)2l+2O(

√
nk)3l+3, we have the desired property of error

vectors, i.e., the Inequality (14).

D Proof of Theorem 2

Denote the challenge input as (m̄, c̄). We proceed via the following three steps.
Step 1. Consider a sequence of hybrid experiments Hb

0 , . . . ,H
b
l+1 for b ∈

{0, 1}. The game Hb
i is the same as the IND-UE-CCA-1 game except when the

adversary queries a challenge-equal ciphertext via OChall or OsUpd in epoch j:

36

– if j < i, return an honestly generated challenge-equal ciphertext to OChall.
That is, return the encryption of Enc(pkj , m̄) if b = 0, and the update
ciphertext of Upd(∆j , c̄) if b = 1. For the query to OsUpd, return the real
generated token and the truly update of challenge-equal ciphertexts.

– if j ≥ i, return a random ciphertext to OChall. For the query to OsUpd, return
a randomly generated token and the update of ciphertext by TDUE.Update.

We see that Hb
l+1 is the same as ExpIND-UE-CCA-1-b

UE,A , and H0
0 = H1

0 since all
challenge responses are the same. Then We have

AdvIND-UE-CCA-1-b
UE,A (1λ) =

∣∣Pr[H1
l+1 = 1

]
− Pr

[
H0

l+1 = 1
]∣∣

≤
l∑

i=0

∣∣Pr[H1
i+1 = 1

]
− Pr

[
H1

i = 1
]∣∣

+

l∑
i=0

∣∣Pr[H0
i+1 = 1

]
− Pr

[
H0

i = 1
]∣∣.

Our goal is to prove
∣∣Pr[Hb

i+1 = 1
]
− Pr

[
Hb

i = 1
]∣∣ ≤ negl(λ) for any i and b.

Step 2. Since the responses in all epochs except i will be the same in both
games Hb

i+1 and Hb
i for b ∈ {0, 1}, we assume the adversary who tries to distin-

guish the two games asks for a challenge-equal ciphertext in epoch i. Therefore,
there exists an insulated region [fwl, fwr] around epoch i such that no epoch keys
in (fwl, . . . , fwr) and no tokens related to challenge-equal ciphertexts in epochs
fwl and fwr + 1 are corrupted by Lemma 7.

We then define a new game Gbi which is the same as Hb
i except that the game

chooses two random numbers fwl, fwr← {0, . . . , l}. If the adversary corrupts any
epoch keys in [fwl, fwr], or any token related to challenge-equal ciphertexts in
epochs fwl and fwr + 1, the game aborts. The guess is correct with probability
1/(l + 1)2. Then we have∣∣Pr[Hb

i+1 = 1
]
− Pr

[
Hb

i = 1
]∣∣ ≤ (l + 1)2 ·

∣∣Pr[Gbi+1 = 1
]
− Pr

[
Gbi = 1

]∣∣.
Our next goal is to prove

∣∣Pr[Gbi+1 = 1
]
− Pr

[
Gbi = 1

]∣∣ ≤ negl(λ) for any i
and b.

Step 3. For b ∈ {0, 1} let Ai be an adversary who tries to distinguish
Gbi+1 from Gbi . To provide an upper bound for the advantage of Ai, we define a
sequence of games as follows, and w.l.o.g. we assume i = fwl.

Game 0:
For a random number d

$← {0, 1}, if d = 0 the game plays Gbi to Ai; otherwise
it plays Gbi+1 to Ai. Denote Ej be the event that the adversary succeeds in
guessing d in the Game j for j ∈ {0, 1, 2, 3}. Then we have

Pr[E0] =
∣∣Pr[Gbi+1 = 1

]
− Pr

[
Gbi = 1

]∣∣.
Game 1:

37

We consider a modified game same as Game 0, except the way that the
epoch keys and tokens are generated in epochs from i to fwr. The overall idea
to change the key in epoch i with a special form that ensures the embedding of
LWE samples to the challenge ciphertexts in epoch i. But this form of public key
in epoch i may cause the failure to generate token in epochs from i + 1 to fwr.
We will show how to simulate tokens in epoch from i+ 1 to fwr.

1. At the start of the game, we pre-generate random invertible matrices {H∗µ,j}fwrj=i ∈
Zn×n
q that will be used to generate ∆j and pkj .

2. We generate all keys from 0 to l as Game 0 by running the key generation
algorithm, except for pki, . . . , pkfwr.

3. Public key in epoch i. We choose random A0,i ∈ Zn×m̄
q and secret key

R1,i ∈ D, and let the public key be

pki =
[
A0,i | −A0,iR1,i −H∗µ,iG | −A0,iR2,i

]
.

Notice that pki is still negl(λ)-far from the uniform for any choice of H∗µ,i.
This design is to generate challenge ciphertexts of the form in the following
Eq. (28) and further facilitate the simulation of challenge-equal ciphertext
in epoch i in Game 2.

Public key in epoch i+1. In epoch i+1, we choose two matrices X00,i+1 ∈
Zm̄×nk
q and X10,i+1 ∈ Znk×nk

q from a Gaussian distribution with parameter
τ and let

A0,i+1 = [A0,i | −A0,iR1,i] ·
[
X00,i+1

X10,i+1

]
, (24)

which is still a negl(λ)-far from the uniform. Then we choose a random
matrix R1,i+1 ∈ Zm̄×nk whose entry equals to 0 with probability 1/2 and
±1 with probability 1/4 each, and two random matrices X02,i+1,X12,i+1 ∈
Zm̄×nk
q × Znk×nk

q with Gaussian entries of parameter τ
√
m̄/2. Compute

A1,i+1 = [A0,i | −A0,iR1,i]

[
X00,i+1

X10,i+1

]
·R1,i+1, (25)

A2,i+1 = [A0,i | −A0,iR1,i]

[
X02,i+1

X12,i+1

]
−A2,i, (26)

where A2,i = −A0,iR2,i. Let the public key in epoch i+ 1 be

pki+1 = [A0,i+1 | A1,i+1 −H∗µ,i+1G | A2,i+1],

and secret key be ski+1 = R1,i+1, where H∗µ,i+1 is generated in process 1.

Remark 2. By Lemma 16, we know (A0,i+1,A0,i+1R1,i+1) is negl(n)-close
to the uniform if m̄ ≥ n log(q) + 2 log(nk/δ) for some small δ = negl(n).

38

Remark 3. Every entry of
[
X00,i+1

X10,i+1

]
·R1,i+1 is an inner product of a m̄-vector

from a Gaussian distribution with parameter τ and a {0, 1,−1}m̄ vector with
half of the coordinates equal to 0, which is therefore a vector from a Gaussian
distribution with parameter τ

√
m̄/2 by Lemma 17, i.e., the same distribution

as the second-column block matrix of the token in Game 0, which is the
same distribution as in the real game.

Remark 4. We do not require the last block matrix A2,i+1 to be presented
in the form of A0,i+1R2,i+1 for some matrix R2,i+1 as in the real game.
However, we will show this does not affect the responses to the queries.

Public key in epochs from i+2 to fwr. For any epoch j in {i+2, . . . , fwr},
we iteratively generate the public key pkj and secret key skj in a way as
generating pki+1 and ski+1, respectively.

4. Simulating challenge-equal queries. An overview of the oracles that the
adversary has access to on challenge-equal ciphertexts are summarised in
Fig. 14. We should respond to the update of and token w.r.t challenge-equal
ciphertexts in epochs from i to fwr, but do not need to answer decryption
queries on challenge-equal ciphertexts.

Simulation
Challenge-equal

i i+ 1

Public Key
A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG −A0,i+1R1,i+1 −H∗

µ,i+1G
−A0,iR2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,iR1,i −A0,iR1,i+1

−A0,iR2,i A2,i+1

Dec − −
TokenGen Eq. (31)

Update bt
i+1 = bt

i∆i+1 + bt
0

Fig. 14. Simulation of the responses to the queries on challenge-equal ciphertexts.
When the adversary queries the oracle OsUpd, the simulation returns the output of
TokenGen and Update simultaneously. Public keys and ciphertexts (only Aµ is shown)
are represented by the block matrices.

Ciphertext. For challenge-equal ciphertexts in epoch i, notice that a ran-
dom invertible matrix should be generated when updating ciphertexts and
encrypting messages; here we use the special pre-generated invertible matrix
H∗µ,i in both of the two algorithms, which is randomly generated in process 1
and is unknown to the adversary conditioned on the public keys we sampled
in process 3. Then the challenge ciphertext in epoch i generated either from

39

updating or from fresh encryption is in the form ci = (H∗µ,i,bi) where (for
simplicity, we skip the modular arithmetic operation in the ciphertexts)

bt
i = st[A0,i | (−A0,iR1,i −H∗µ,iG) +H∗µ,iG | −A0,iR2,i] + et + (0, 0, encode(mb))

t

= st[A0,i | −A0,iR1,i | −A0,iR2,i] + et + (0, 0, encode(mb))
t, (27)

for some s, e and b ∈ {0, 1}, where m0 = m̄ and m1 is the plaintext of
the challenge ciphertext c̄. Similarly, we use the pre-generated invertible
matrix H∗µ,j in the update algorithm for epoch j ∈ {i+1, . . . , fwr}. And the
challenge-equal ciphertext is in the form cj = (H∗µ,j ,bj) where

bt
j = st[A0,j | (−A0,jR1,j −H∗µ,jG) +H∗µ,jG | A2,j] + et + (0, 0, encode(mb))

t

= st[A0,j | −A0,jR1,j | A2,j] + et + (0, 0, encode(mb))
t, (28)

for some s, e.

Token. For challenge-equal tokens in epoch i+ 1, we set[
X01,i+1

X11,i+1

]
=

[
X00,i+1

X10,i+1

]
·R1,i+1, (29)

and

Mi+1 =

X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I

 , (30)

and b0,i+1 is the ciphertext of message 0 under pki+1 with the invertible
matrix H∗µ,i+1, i.e., b0,i+1 = stAµ,i+1 + et for some s and e. Based on
Equations (24) to (26), we know that Mi+1 is the key-switching matrix
from epoch i to i+1: Aµ,iMi+1 = Aµ,i+1, and moreover has the distribution
negl(n)-far from the distribution of the token in Game 0 by Remark 3. Then
we have

∆i+1 = (Mi+1,b0,i+1,H
∗
µ,i+1), (31)

is a valid challenge-equal token in epoch i+1. Similarly, we generate challenge-
equal tokens in epochs from i+ 2 to fwr.

5. Simulating non-challenge queries. An overview of the oracles that the
adversary has access to on non-challenge ciphertexts is summarised in Fig.
15. We should respond to the queries on the encryption, update, and decryp-
tion in all epochs. Since keys outside the insulated region are truly generated
in process 2, we focus on the simulation inside the region.

Ciphertext. For non-challenge ciphertexts in epoch i, we perform the en-
cryption and update algorithm as Game 0 by generating random invertible

40

Simulation
Non-challenge

i i+ 1

Public Key
A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG −A0,i+1R2,i+1 −H∗

µ,i+1G
−A0,iR2,i A2,i+1

Enc/Aµ

A0,i A0,i+1

−A0,iR1,i −H∗
µ,iG+Hµ,iG −A0,i+1R1,i+1 −H∗

µ,i+1G+Hµ,i+1G
−A0,iR2,i A2,i+1

Dec SimDec

TokenGen ∆i+1 = TokenGen()

Update bt
i+1 = bt

i∆i+1 + bt
0

Fig. 15. Simulation to the queries on non-challenge ciphertexts. The algorithm SimDec
is defined below, which has the same decryption ability as TDUE.Dec if Hµ,j ̸= H∗

µ,j

for j ∈ {i+1, fwr}. When the adversary queries the oracle OsUpd, the simulation returns
the output of TokenGen and Update simultaneously.

matrices Hµ,i. The resulting non-challenge ciphertexts in epoch i are in the
form ci = (Hµ,i,bi) where

bt
i = st[A0,i | (−A0,iR1,i −H∗µ,iG) +Hµ,iG | −A0,iR2,i]

+ et + (0, 0, encode(m))t, (32)

for some s, e. Similarly, for non-challenge ciphertexts in any epoch j ∈ {i+
1, . . . , fwr}, we randomly generate invertible matrices Hµ,j in the update
algorithm and the encryption algorithm. The ciphertext is in the form cj =
(Hµ,j ,bj) where

bt
j = st[A0,j | (−A0,jR1,j −H∗µ,jG) +Hµ,jG | A2,j]

+ et + (0, 0, encode(m))t. (33)

Decryption. To aid with update and decryption queries, we choose an arbi-
trary (not necessarily short) R̂i ∈ Zm̄×nk

q such that −A0,iR̂i = −A0,iR1,i−
H∗µ,iG. Then we know R̂i is a trapdoor for Aµ,i,01 = [A0,i | (−A0,iR1,i −
H∗µ,iG)+Hµ,iG]. We use the algorithm SimDec described below to simulate
the decryption algorithm for non-challenge ciphertexts in epoch i, and the
simulated decryption algorithm can also be applied to non-challenge cipher-
texts in epoch from i+ 1 to fwr.

– SimDec(sk = R1,i, c = (Hµ,i,b)) :
1. If c or b does not parse, or Hµ,i = 0 or H∗µ,i, output ⊥. Otherwise

parse bt = (b0,b1,b2)
t.

2. Call InvertO(R̂i,Aµ,i,01, (b0,b1) mod q, Hµ,i) to get z and et =
(e0, e1)

t such that (b0,b1)
t = ztAµ,i,01 + (e0, e1)

t mod q (Lemma

1). If InvertO fails, output ⊥.

41

3. Let u, e2 be the unique solution to the equation

bt
2 − ztA2,i = utG+ et2 mod q,

if they exist; otherwise output ⊥. Let m = encode−1(utG mod q).
4. If ∥e0∥ ≥ αq

√
m̄ or ∥ej∥ ≥ αq

√
2m̄nk ·ω(

√
log n) for j = 1, 2, output

⊥. Otherwise output m.

Whenever Hµ,i ̸= H∗µ,i which is the case with probability 2−Ω(n), the call to
the invert algorithm returns z and u properly if they exist, and SimDec has
the same decryption ability as TDUE.Dec.

Token. By construction, the matrix R̂i is the trapdoor for the [A0,i |
(−A0,iR1,i −H∗µ,iG) +Hµ,iG]. We can use the real token generation algo-
rithm to generate matrices {Xi,00,Xi,01,Xi,02,Xi,10,Xi,11,Xi,12} with the
same distributions as in Game 0 by calling the invert algorithm on [A0,i |
(−A0,iR1,i −H∗µ,iG) +Hµ,iG] with the trapdoor R̂i such that

[A0,i | (−A0,iR1,i −H∗µ,iG) +Hµ,iG | A2,i]

X00,i+1 X01,i+1 X02,i+1

X10,i+1 X11,i+1 X12,i+1

0 0 I

= [A0,i+1 | (−A0,i+1R1,i+1 −H∗µ,i+1G) +Hµ,i+1G | A2,i+1]. (34)

Let b0,i+1 be the ciphertext of message 0 under pki+1 with the random
invertible matrix Hµ,i, Mi+1 be the transition matrix from Aµ,i to Aµ,i+1

in Eq. (34), and ∆i+1 = (Mi+1,b0,i+1,H
∗
µ,i+1). Based on Equations (32)

to (34), we know that ∆i+1 is a valid non-challenge token in epoch i + 1.

Since this process only requires the property that R̂i is a trapdoor, it can
be applied to any epoch j ∈ {i + 1 . . . fwr} by choosing an matrix R̂j with
the same property, which works as long as Hµ,j ̸= H∗µ,j .

Overall, we conclude that Game 1 and Game 0 are indistinguishable, which
follows from

|Pr[E1]− Pr[E0]| ≤ (nDec + nsUpd) · Pr[H = H∗] + negl(λ) · (l + 1)

= (nDec + nsUpd) · 2−Ω(n) + negl(λ) · (l + 1),

where nDec and nsUpd are the number of queries to decryption and update, re-
spectively. Pr[H = H∗] is the probability that two random invertible matrices
are equal, and l + 1 is the maximal length of the firewall.

Game 2:

Compared to Game 1, we only change challenge-equal ciphertexts in epoch
from i to fwr, while keeping the other simulations the same, especially the
challenge-equal token. In epoch i, we modify the last two nk-coordinates of

42

the challenge ciphertext and keep the first m̄ coordinates unchanged. That is,

bt
0 = stA0,i + êt0,

bt
1 = −bt

0 ·R1,i + êt1,

bt
2 = −bt

0 ·R2,i + êt2 + encode(mb)
t,

where s ← Zn
q , ê0 ← DZm̄,αq and ê1, ê2 ← DZnk,αq

√
m·ω(

√
logn). By substitu-

tion, we have bt
1 = −stA0,i ·R1,i − êt0 ·R1,i + êt1. According to the Corollary

3.10 in [23], the distribution of −êt0 ·R1,i + êt1 is negl(n)-far from DZnk,d where

d2 = (∥e0∥2 + m̄ · αq) · ω(
√
log n)2, which is the error distribution of b1 in

Game 1. Therefore, the distribution of b1 is within negl(n)-distance from that
in Game 1. The same applies to b2. Then we change the ciphertext in epoch
i+1 by updating (H∗µ,i, (b0,b1,b2)) using the challenge-equal token in Eq. (31),
which is therefore a valid token, and similarly change challenge-equal ciphertexts
in epochs from i+ 2 to fwr. Thus, we have |Pr[E2]− Pr[E1]| ≤ negl(λ).

Game 3:
We consider a modified game that is the same as Game 2, except that we

change the first m̄ coordinates of the challenge ciphertext in epoch i, letting it be
the challenge ciphertext to the adversaryAi: either uniformly random or stA0,i+

êt0, which should be hard to distinguish under the LWEn,q,α problem. Then we
also update this modified challenge-equal ciphertext and change the ciphertext
in epochs from i+1 to fwr as in Game 2 to make sure that the challenge-equal
tokens still sever as valid tokens. Thus, we have |Pr[E3]− Pr[E2]| ≤ AdvLWE

n,q,α.
The rest we need to prove now is that |Pr[E3]| = 1/2. It follows from

(A0,i,b0,b0 · R1,i,b0 · R2,i) is negl(λ)-far from uniform by the leftover hash
lemma for random A0,i ∈ Zn×m̄

q , b0 ∈ Zm̄
q , and R1,i, R2,i ∈ D.

We thus complete the proof.

43

	CCA-1 Secure Updatable Encryption with Adaptive Security

