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Abstract. At SAC 2011, Bertoni et al. introduced the keyed duplex con-
struction as a tool to build permutation based authenticated encryption
schemes. The construction was generalized to full-state absorption by
Mennink et al. (ASIACRYPT 2015). Daemen et al. (ASIACRYPT 2017)
generalized it further to cover much more use cases, and proved security
of this general construction, and Dobraunig and Mennink (ASIACRYPT
2019) derived a leakage resilience security bound for this construction.
Due to its generality, the full-state keyed duplex construction that we
know today has plethora applications, but the flip side of the coin is that
the general construction is hard to grasp and the corresponding secu-
rity bounds are very complex. Consequently, the state-of-the-art results
on the full-state keyed duplex construction are not used to the fullest.
In this work, we revisit the history of the duplex construction, give a
comprehensive discussion of its possibilities and limitations, and demon-
strate how the two security bounds (of Daemen et al. and Dobraunig and
Mennink) can be interpreted in particular applications of the duplex.

Keywords: sponge · duplex · permutation · applications · MAC · au-
thenticated encryption.

1 Introduction

Since the introduction of the sponge hash construction by Bertoni et al. [13]
in 2007, permutation based cryptography immensely gained in popularity. The
sponge hash function construction operates on a b-bit state, split into an inner
part of c bits, called the “capacity”, and an outer part of r bits, called the
“rate”. To hash some data P , the data is first injectively padded into r-bit
blocks, which are then absorbed to the outer part block by block, interleaved
by a b-bit cryptographic permutation p. After the last block, a squeezing phase
starts, where the outer part of the state is output iteratively, until a sufficient
amount of digest bits are squeezed. As such, the sponge construction is not just
a hash function, but rather a hash function with variable output lengths (later
called an extendable output function, or XOF).

As plain hash function construction, the sponge immediately faced rapid
adoption around the NIST SHA-3 competition [66]: multiple candidates were
inspired by the sponge methodology, and the eventual winner Keccak that is
now standardized as SHA-3 [65] internally uses the actual sponge construction.
In part due to its minimalist and simple design, the sponge construction is
also a popular approach for lightweight hashing [5, 22,50]. In the ongoing NIST



Lightweight Cryptography competition [67], 5 out of the 10 finalists [6,7,31,34,
37] support hashing using the sponge or a sponge-like construction.

Bertoni et al. [14] proved in 2018 that the sponge construction is hard to dif-
ferentiate from a random oracle, in the indifferentiability framework of Maurer
et al. [56] and Coron et al. [30], provided that the permutation is assumed to be
perfectly random and the adversary cannot make more than around 2c/2 permu-
tation evaluations. This is a powerful result: it implies that the sponge construc-
tion behaves like a random oracle and can replace it as such in many applications,
provided at most 2c/2 permutation evaluations are made. It also implies that the
“conventional” hash function attacks like finding collisions, preimages, and sec-
ond preimages for the sponge construction are not easier than for the random
oracle, up to 2c/2 evaluations [4, Appendix A]. (However, refer to Lefevre and
Mennink [54] for an improved security bound on the preimage resistance of the
sponge construction.) Another implication of the sponge function indifferentia-
bility result is that the construction can be easily used for keyed applications,
such as keystream generation and MAC computation [18], reseedable pseudo-
random sequence generation [15, 45], and authenticated encryption [16, 20]. For
example, one can easily build a MAC construction out of the sponge by simply
concatenating key K and plaintext P , as in K‖P , and feeding it to the hash
construction [19]. (This construction later became known as the “outer-keyed
sponge construction.”) Security of this, and other, constructions follows from
the hash function indifferentiability result, provided the number of permutation
evaluations does not exceed 2c/2.

However, despite its power, it was quickly acknowledged that the indiffer-
entiability bound also has its limitation: the 2c/2 bound is tight for unkeyed
use cases, i.e., for plain cryptographic hashing, but for keyed use cases a higher
level of security could be achieved. This is because in keyed applications, one
must make a distinction between permutation evaluations known to the adver-
sary and permutation evaluations unknown to the adversary. This fact has led
to an impressive amount of research on the generic security of keyed versions of
the sponge constructions, all for slightly differing constructions and with slightly
differing bounds. Chang et al. [25] suggested an alternative to simply hashing
K‖P , namely one where the initial state of the sponge contains the key in its
inner part. Andreeva et al. [3] generalized and improved the analyses of both con-
structions, since then called the outer-keyed and inner-keyed sponge, and also
analyzed security in the multi-user setting. Naito and Yasuda [63] developed
an improved security analysis of these constructions. Finally, whereas these two
constructions stayed reasonably close to the original sponge hash function de-
sign, it was quickly acknowledged that, due to the secrecy of the sponge state
after key injection, one can absorb data over the entire b-bit state, and there-
with maximize the absorption rate. The idea of full-state absorption was first
suggested in the donkeySponge MAC construction [20]. Security analyses for
fixed output length were given by Gaži et al. [44], and for variable output length
and a general description of the full-state keyed sponge by Mennink et al. [61].
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These constructions, the outer-keyed, inner-keyed, and full-state keyed sponge,
are mostly relevant for message authentication and stream encryption. Authen-
ticated encryption, on the other hand, is typically done via the keyed duplex
construction. The keyed duplex dates back to a work of Bertoni et al. [16] from
2011, and is a stateful sponge-inspired construction that consists of an initial-
ization interface and a duplexing interface. The initialization interface resets
the state, and the duplexing interface can be seen as a 1-round sponge on the
current state: it absorbs data, permutes the state, and squeezes data. By sub-
sequent application of the duplexing interface for different types of inputs and
outputs, one can build an authenticated encryption scheme, like the SpongeWrap
construction of Bertoni et al. [16]. Also this duplex construction has undergone
various improvements. Mennink et al. [61] introduced the full-state keyed duplex,
where data is absorbed over the entire state (but squeezing only happens from
the outer part). Daemen et al. [32] generalized the construction even further,
allowing arbitrary length keys, covering multi-user security by design, and most
importantly, allowing the user to not only absorb data but also overwrite the
outer part of the state with data. This additional feature made the scheme much
more complex, but was needed to make the general full-state duplex construc-
tion more broadly applicable (e.g., to bound the security in the case of release of
unverified plaintext [2], see also Remark 4). Finally, Dobraunig and Mennink [40]
considered a slight generalization of aforementioned full-state duplex, and an-
alyzed security of the construction in the leakage resilience setting. Dobraunig
and Mennink applied their result to the encryption ideas of Taha and Schau-
mont [73] and ISAP v2 [34, 36]. This result was later combined with the leakage
resilience of the suffix keyed sponge construction [41] to obtain a security proof
of the entire ISAP v2 construction under leakage [35].

Although the gradual generalization of the full-state duplex construction has
its advantages, namely that it has the potential to apply to many applications,
it also had a disadvantageous side-effect: the security bounds became harder to
grasp and it is not immediately clear how to interpret the security results. For
example, the security bound of Daemen et al. [32] was defined in terms of 6
adversarial complexity parameters, and the one of Dobraunig and Mennink [40]
even in 7 parameters, some of which were rather obscure and required deep
understanding of the construction to judge whether they were relevant or not
in a specific use case. This has led to the fact that we have not seen many
applications of the security bounds of Daemen et al. [32] and of Dobraunig
and Mennink [40], despite that the full-state keyed duplex has been present, in
disguise, in many applications over the years.

In a nutshell, we can conclude that the two general full-state duplex results
of Daemen et al. [32] and of Dobraunig and Mennink [40], although they are very
powerful, found very minimal applications. This seems to have two main reasons:
(i) the general full-state duplex is too general and it is not immediately clear how
it can be used in practical applications, and (ii) the security bounds are extremely
complex and it is not clear when — and if so, how — the security bounds simplify
for specific applications. In this work, we aim to give a comprehensive idea of
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the power of the versatile duplex construction and of the two bounds of Daemen
et al. and Dobraunig and Mennink.

1.1 Understanding the Duplex Construction

As first part of the work, we have a fresh look at the duplex construction as we
know it today, in particular the two very comparable constructions of Daemen
et al. [32] and of Dobraunig and Mennink [40]. The constructions are, in fact,
almost identical, barring two differences: (i) the construction of Dobraunig and
Mennink allowed for use cases that rotated the initialized state, and (ii) the
two schemes adopted a different type of “phasing”, referring to what operations
constitute a single duplex round.

The first difference makes the construction of Dobraunig and Mennink slightly
more general, and we therefore adopt their scheme over that of Daemen et al.,
noting that the security result of Daemen et al. can be easily generalized to
rotated initialized states.

The second difference between the constructions of Daemen et al. and Do-
braunig and Mennink, regarding the phasing, sounds rather innocent. For exam-
ple, Daemen et al. considered a single duplexing call to consist of a sequential op-
eration of permute-squeeze-absorb, whereas Dobraunig and Mennink considered
a single duplexing call to consist of a sequential operation of squeeze-absorb-
permute. While the choice of phasing does not really change the security of the
scheme, it is just about how to interpret the duplex, different interpretations
might be useful for different applications of the duplex. In our attempt to fully
understand the phasing of the duplex, and which choice of phasing might be
best suited for most applications, we took a fresh look at how the duplex has
actually grown from its original introduction in 2011 [16] to the currently known
full-fledged construction, and observe that all results so far [16, 32, 40, 61] used
different phasing. Even more surprising, by looking ahead at applications of the
duplex that we consider in this work, we conclude that the most suitable phas-
ing is yet another one: in this work, a duplexing call consists of a sequential
application of permute-squeeze-absorb, and the initialization simply initializes
the state (with no permutation call, unlike in the phasing of Daemen et al.).

In conclusion, the eventual construction that we adopt is the one of Dobrau-
nig and Mennink, i.e., with rotatable initial state, but with our new rephasing.
The construction is given in detail in Section 3.1. We also describe the ideal du-
plex in Section 3.2 and the duplex security model in Section 3.3, mostly following
Dobraunig and Mennink [40] mutatis mutandis. An in-depth discussion on the
phasing of the duplex, including a table summarizing all earlier and current
phasing, is given in Section 3.4. In Section 4, we summarize, in full generality,
the security results of Daemen et al. [32] and of Dobraunig and Mennink [40] in
terms of our generalized construction of Section 3.1.
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1.2 Understanding the Duplex Bound

The next step is to understand how the duplex can be used in applications. We
demonstrate its actual power along the discussion of multiple different construc-
tions, all of them either existing ones, direct derivatives of existing ones, or rather
natural constructions in the first place. The constructions are described in de-
tail, and for each of these constructions, we demonstrate the power of the duplex
bounds of Daemen et al. [32] and of Dobraunig and Mennink [40] by mapping
these bounds to simplified and tangible security bounds and implications.

In detail, in this work we look at the following constructions in detail:

– Truncated permutation in Section 5;
– Parallel keystream generation in Section 6;
– Sequential keystream generation in Section 7;
– Message authentication, and more specifically the full-state keyed sponge

construction and an application to the Ascon-PRF [38] construction, in Sec-
tion 8;

– Authenticated encryption, and more specifically a modernization of the
SpongeWrap [16] construction, called MonkeySpongeWrap, in Section 9.

For some of these constructions, such as the keystream generation constructions,
the security bounds are not very surprising but nevertheless never written out
in detail. For others, including Ascon-PRF [38] and the authenticated encryp-
tion construction of Section 9, our new findings have immediate applications.
Of particular interest is the modernization of SpongeWrap, noting that the orig-
inal SpongeWrap construction as introduced and proven secure by Bertoni et
al. [17] was too restrictive. Instead, many designers rather resorted to using the
SpongeWrap construction inside the MonkeyDuplex of Bertoni et al. [20], often
with some adjustments. This construction, however, was never formally analyzed
and the original SpongeWrap proof did not carry over. The MonkeySpongeWrap
construction that we describe and analyze in Section 9 more closely captures
the applications, and has some other simplifications compared to the original
SpongeWrap construction as well.

1.3 Outline

The remainder of the work starts with preliminaries, mostly discussing conven-
tional PRF and AE security models, in Section 2. The duplex construction,
including a discussion of its rationale, its ideal counterpart, and the duplex se-
curity model, in Section 3. The known security bounds of Daemen et al. [32] and
of Dobraunig and Mennink [40] are discussed in full generality in Section 4. The
various use cases of the duplex construction are given in Sections 5-9. The work
is concluded in Section 10.

2 Preliminaries

Throughout, N includes 0. Let n ∈ N and m ∈ N ∪ {∗}. The set of n-bit strings
is denoted {0, 1}n. The set of arbitrarily length strings is denoted {0, 1}∗, and
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the set of infinitely long strings is denoted {0, 1}∞. We define by func(m,n) the
set of all functions f : {0, 1}m → {0, 1}n, by func(n) the set of all functions
f : {0, 1}n → {0, 1}n, and by perm(n) the set of all permutations p : {0, 1}n →
{0, 1}n. By X ← Y we denote the assignment of the value Y to X. For X ∈
{0, 1}n and Y ∈ {0, 1}m, we denote by X ⊕ Y the bitwise exclusive OR of the
first min{m,n} bits of X and Y .

For a finite set X , we denote by X
$←− X the uniformly random drawing of

an element X from a finite set X . We will slightly abuse this notation for sets

with infinite inputs, and by f
$←− func(∗, n) we denote a function f that for each

new input generates a uniformly random string of length n bits.
For P ∈ {0, 1}∗\{∅}, we denote by padn(P ) the function that transforms

P into blocks P1, . . . , P`, where |P1|, . . . , |P`−1| = n and 0 < |P`| ≤ n. For

P ∈ {0, 1}∗, we denote by pad10∗

n (P ) = padn(P10−|P |−1 mod n), i.e., the function
that first appends a 1 and a sufficient number of 0s to P , so that the last block
will be of length n bits. For X ∈ {0, 1}n and for m ≤ n, we denote by leftm(X)
the m leftmost bits of X and by rightm(X) the m rightmost bits of X. For
Y ∈ {0, . . . , 2n − 1}, we denote by 〈Y 〉n the encoding of Y as an n-bit string.

2.1 Distinguisher

A distinguisher D is an algorithm that is given access to one or more oracles O,
denoted DO, and that outputs a bit b ∈ {0, 1} after interaction with O. If O and
P are oracles, we denote by

∆D (O ; P) =
∣∣Pr

(
DO → 1

)
−Pr

(
DP → 1

)∣∣
the advantage of a distinguisher D in distinguishing O from P. In our work,
we will only be concerned with information-theoretic distinguishers: these have
unbounded computational power, and their success probabilities are solely mea-
sured by the number of queries made to the oracles.

2.2 PRF Security

Let b, k, t ∈ N and m ∈ N ∪ {∗}. Consider a function F that gets as input a
key K ∈ {0, 1}k and a plaintext P ∈ {0, 1}m, outputs a value T ∈ {0, 1}t, and
that is instantiated using a b-bit permutation p ∈ perm(b). We will consider
multi-user security of F, where a distinguisher can query up to µ ≥ 1 versions of
the scheme. The multi-user pseudorandom function (PRF) security of F against
a distinguisher D is defined as

Advµ-prfF (D) = ∆D

((
F[p]K[j]

)µ
j=1

, p± ;
(
Rprf
j

)µ
j=1

, p±
)
, (1)

where K = (K[1], . . . ,K[µ])
$←− ({0, 1}k)µ, p

$←− perm(b), and Rprf
1 , . . . ,Rprf

µ
$←−

func(m, t).
For PRF security, the distinguisher is usually bounded by the number of

queries q it makes to the µ constructions (F[p]K[j] or Rprf
j for j = 1, . . . , µ), the

total construction query length in blocks σ, and the number of queries N to the
primitive.
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2.3 AE Security

Let b, k, n, t ∈ N. An authenticated encryption scheme AE consists of an en-
cryption function ENC and a decryption function DEC. The encryption function
ENC gets as input a key K ∈ {0, 1}k, a nonce NIV ∈ {0, 1}n (typically, one
uses N , but that parameter will be used to bound the adversarial resources),
associated data A ∈ {0, 1}∗, and a plaintext P ∈ {0, 1}∗, and it outputs a ci-
phertext C ∈ {0, 1}|P | and a tag T ∈ {0, 1}t. The decryption function DEC gets
as input a key K ∈ {0, 1}k, a nonce NIV ∈ {0, 1}n, associated data A ∈ {0, 1}∗,
a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and it outputs either a plaintext
P ∈ {0, 1}|C| if the tag is correct, or a dedicated ⊥-sign if the tag is incorrect.
The two functions should satisfy

DEC(K,NIV , A,ENC(K,NIV , A, P )) = P .

We will restrict our focus to authenticated encryption instantiated using a
b-bit permutation p ∈ perm(b). As before, we will consider multi-user security
of AE, where a distinguisher can query up to µ ≥ 1 versions of the scheme. The
multi-user authenticated encryption (AE) security of AE against a distinguisher
D is defined as

Advµ-aeAE (D) = ∆D

((
ENC[p]K[j],DEC[p]K[j]

)µ
j=1

, p± ;
(
Rae
j ,⊥

)µ
j=1

, p±
)
, (2)

where K = (K[1], . . . ,K[µ])
$←− ({0, 1}k)µ, p

$←− perm(b), and the functions
Rae
1 , . . . ,R

ae
µ that for each new input (NIV , A, P ) return a random string of size

|P |+ t bits. The function ⊥ returns the ⊥-sign for each query.
For AE security, we will only consider nonce-respecting distinguishers. These

distinguishers never make, for any j ∈ {1, . . . , µ}, two encryption queries to
ENCK[j] for the same nonce NIV . These distinguishers are also not allowed to
query, for any j ∈ {1, . . . , µ}, their decryption oracle (DECK[j] in the real world
and ⊥ in the ideal world) on input of the output of an earlier encryption query
(ENCK[j] in the real world and Rae

j in the ideal world). The distinguisher is
usually bounded by the number of queries q it makes to the µ constructions
((ENC[p]K[j],DEC[p]K[j]) or (Rae

j ,⊥) for j = 1, . . . , µ), the total construction
query length in blocks σ, and the number of queries N to the primitive.

3 Duplex Construction and Security Model

We describe the general duplex construction of Daemen et al. [32], but we do
so in the notation of Dobraunig and Mennink [40]. This notation allows us to
easier discuss the multiple use cases in Sections 5-9 in a consistent and clean
way without conflicting notation. We remark that the main change in notation
between the original work of Daemen et al. and the newer work of Dobraunig
and Mennink is in the parametrization of the bit strings that are processed in/by
the duplex construction; the security parameters and state sizes are identical in
the works of Daemen et al., Dobraunig and Mennink, and this work. As a rule of
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thumb, calligraphic letters denote sets, sans serif letters denote functions, capital
letters denote state values, and small letters denote state sizes. A few exceptions
apply when the complexity of the distinguisher is defined in Section 3.3.

The general keyed duplex construction that we consider will be the one of
Dobraunig and Mennink [40] but with (yet another) rephasing. It is given in
Section 3.1. We describe the ideal equivalent of it in Section 3.2, and define
the duplex security model in Section 3.3. In Section 3.4 we discuss the history of
duplex phasing and put the phasing of our description of Section 3.1 into context.
Sections 3.1-3.3 are largely copied from Dobraunig and Mennink [40], but differ
in the rephasing and are amended with clearly indicated remarks important for
further understanding of this work.

3.1 Duplex Construction

Let b, c, r, k, µ, α ∈ N, with c+r = b, k ≤ b, and α ≤ b−k. We describe the keyed
duplex construction KD in Algorithm 1. The keyed duplex construction gets as
input a key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ consisting of µ keys, and
it is instantiated using a b-bit permutation p ∈ perm(b). The construction inter-
nally maintains a b-bit state S, and has two interfaces: KD.init and KD.duplex.

Algorithm 1 Keyed duplex construction KD[p]K

Interface: KD.init
Input: (δ, IV ) ∈ {1, . . . , µ} × IV
Output: ∅
S ← rotα(K[δ] ‖ IV )
return ∅

Interface: KD.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r
S ← p(S)
Z ← leftr(S)
S ← S ⊕ [flag ] · (Z‖0b−r)⊕ P . if flag , overwrite outer part
return Z

The initialization interface gets as input a key index δ ∈ {1, . . . , µ} and an
initialization vector IV ∈ IV ⊆ {0, 1}b−k, and initializes the state with the δ-th
key and the initialization vector IV as S ← rotα(K[δ] ‖ IV ). It outputs nothing.

The duplexing interface gets as input a flag flag ∈ {true, false} and a new
data block P ∈ {0, 1}b. The interface first applies an evaluation of the underlying
permutation p on the state S. Then, it outputs an r-bit block Z ∈ {0, 1}r off the
internal state S, and transforms the state using the new data block P . The flag
flag describes how absorption is done on the r leftmost bits of the state that are
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Fig. 1: The duplexing interface of KD.

squeezed: those r bits are either overwritten (if flag = true) or XORed with r
bits of the input block P (if flag = false). See also Figure 1, where the duplex is
depicted for key offset α = 0.

Remark 1. The sole difference between our construction and that of Dobraunig
and Mennink [40] is in the rephasing of the duplex interface. In a nutshell, in our
description one duplexing call consists of a primitive evaluation, a squeeze, and
an absorb (in this order), whereas in Dobraunig and Mennink one duplexing call
consisted of a squeeze, and absorb, and a permutation evaluation. As a matter of
fact, the phasing in Algorithm 1 is the same as the phasing of Daemen et al. [32],
with the difference that Daemen et al. basically “integrated” one duplexing call
in the initialization call. We separated those. We will discuss the history duplex
phasing in more detail in Section 3.4. As we will explain in Section 4.3, the
rephasing does not change the security results.

Besides the phasing, our description of the duplex technically differs from that
of Daemen et al. in the fact that the original duplex construction of Daemen et al.
did not rotate the input, i.e., it matches Algorithm 1 for α = 0. Our construction
is thus a strict generalization, but it is easy to incorporate this change in the
security analysis, and once we describe the main security bound in Section 4.3,
it will be described in generality for any α.

Remark 2. The usage of the flag input flag is new since Daemen et al. [32] and
also included in the work of Dobraunig and Mennink [40]. It is confusing at first
sight, but does nothing else than distinguishing between a case where the outer
part of the input block is added to the state and where it replaces the state. In
Figure 2, we give a simplified depiction of a duplexing call for flag = false or
flag = true.

Although a duplexing call gets as input a flag flag ∈ {true, false} and a
new data block P ∈ {0, 1}b, there is a difference between the two in that a
user (typically) has more freedom in choosing the latter. Indeed, the data block
may for example consist of plaintext bits, whereas the flag is determined by
how the duplexing call occurs in the cryptographic scheme. To be more precise,
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Fig. 2: A duplexing call with flag = false (a) and with flag = true (b).

there exist cryptographic schemes built on top of the duplex construction that
sometimes allow the attacker to overwrite the outer part of the state; a typical
example for this is SpongeWrap (see Section 9).

On the other hand, intuition suggests that one should try to limit the amount
of duplexing calls for flag = true, the reason being that in these duplexing calls
an attacker has much more freedom in choosing the value that is entered into
the next permutation call. Not coincidentally, the existing security bounds of
the duplex construction in Section 4 rely on a parameter that keeps track of the
amount of duplexing calls made for flag = true.

3.2 Ideal Duplex

Daemen et al. [32] described the ideal extendable input function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, modulo
syntactical changes based on the changes we made on the keyed duplex in Sec-
tion 3.1. The function is described in Algorithm 2.

The IXIF has the same interface as the keyed duplex, but instead of being
based on a key array K ∈ ({0, 1}k)µ and being built on primitive p ∈ perm(b),
it is built on a random oracle ro : {0, 1}∗ × N → {0, 1}∞, that is defined as
follows. Let ro∞ : {0, 1}∗ → {0, 1}∞ be a random oracle in the sense of Bellare
and Rogaway [11]. For P ∈ {0, 1}∗, ro(P, r) outputs the first r bits of ro(P ). The
IXIF maintains a path path, in which it unambiguously stores all data input by
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the user. It is initialized by encode[δ] ‖ IV for some suitable injective encod-
ing function encode : {1, . . . , µ} → {0, 1}k, and upon each duplexing call, the
new plaintext block is appended to the path. Duplexing output is generated by
evaluating the random oracle on path.

Algorithm 2 Ideal extendable input function IXIF[ro]

Interface: IXIF.init
Input: (δ, IV ) ∈ {1, . . . , µ} × IV
Output: ∅

path ← encode[δ] ‖ IV
return ∅

Interface: IXIF.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r
Z ← ro(path, r)
path ← path ‖ ([flag ] · (Z‖0b−r)⊕ P ) . if flag , overwrite outer part
return Z

3.3 Security Model

Let b, c, r, k, µ, α ∈ N, with c+ r = b, k ≤ b, and α ≤ b− k. Let p
$←− perm(b) be

a random transformation, ro be a random oracle, and K
$←− ({0, 1}k)µ a random

array of keys. In the black-box security model, one considers a distinguisher that
has access to either (KD[p]K , p

±) in the real world or (IXIF[ro], p±) in the ideal
world, where “±” stands for the fact that the distinguisher has bi-directional
query access:

AdvKD(D) = ∆D

(
KD[p]K , p

± ; IXIF[ro], p±
)
. (3)

In our analyses, the distinguisher is obliged to always make at least one duplexing
call after an initialization call (this condition is required to make sure that the
results of [32,40] still hold after our duplex rephasing).

Remark 3. The analysis of Daemen et al. [32] considered a slight relaxation of
above model, namely where the keys are not uniformly randomly generated, but
rather randomly according to some distribution D. As this slight generalization
hinders a conceptually simple discussion of the applications, we have dropped
this generalization and restrict our focus to uniformly randomly generated keys.

The analysis of Dobraunig and Mennink [40] significantly differs from above
model in that leakage is taken into account. In detail, in their model, each eval-
uation of p within KD[p] might leak λ bits of information about its in- and/or
output. Dobraunig and Mennink also show how a specific use of the keyed duplex
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construction, namely one along the same lines as a proposal of Taha and Schau-
mont [73] and as ISAP v2 [36], results in leakage resilient encryption. General
constructions, e.g., the ones we discuss in Sections 5-9, do not necessarily yield
security in the leaky setting.

3.4 Understanding Duplex Phasing

One typical evaluation of a (long) duplex-based construction consists of (i) an
absorption of the key and initialization vector, followed by an arbitrarily long
loop of (ii) a primitive evaluation, (iii) a squeeze, and (iv) an absorption of the
data. In our description of Algorithm 1, step (i) is covered by an initialization
call whereas (ii-iv) are covered by a duplexing call. This seems to be the most
logical choice, but it is not that trivial. As a matter of fact, this choice of phasing
differs from all earlier duplex security results [16, 32, 40, 61]. In this section, we
put our choice in perspective. A visualization of the phasing approaches over
time is given in Table 1.

The earliest introduction of the duplex, by Bertoni et al. in 2011 [17], con-
sidered one duplex round to consist of an absorption, a primitive evaluation,
and a squeeze (in this order). Mennink et al. in 2015 [61], who introduced the
full-state duplex, followed the same approach. Here, strictly seen in initialization
the absorption was separated into key absorption (inner part) and data absorp-
tion (outer part); these two parts of absorption are merged in this discussion
and in Table 1 we consider the first duplexing call to be an initialization call as
this interpretation makes most sense. The absorb-permute-squeeze approach of
Bertoni et al. and Mennink et al. makes sense historically, noting that one duplex
round can be seen as a “mini-sponge” and, indeed, Bertoni et al. argued security
of the duplex based on the indifferentiability of the sponge construction [14].

In 2017, Daemen et al. [32] noticed, however, that this approach was too
restrictive in getting a good security bound. Indeed, the absorb-permute-squeeze
approach technically allows the attacker to always overwrite the outer part of
the state to a certain value. This is because the duplex security proof, by default,
considers blockwise attackers: the attacker can make a duplex evaluation and use
the resulting squeeze to construct the data block of the next duplexing call. In
practical applications, it is sometimes possible for an attacker to overwrite the
outer part of the state, and it really depends on the use case. For example, if
a duplex construction is used for authenticated encryption and authenticated
decryption is performed with release of unverified plaintext [2], the attacker has
the possibility to overwrite the outer part of the state in decryption (see also
Remark 4 in Section 9).

Daemen et al. resolved the issue by rephasing the duplex to permute-squeeze-
absorb, with the subtle difference that absorption not only takes a data block
but also flag flag that indicates whether the outer part is overwritten or not.
They, in addition, integrated one integral duplexing call in the initialization,
making the initialization consist of absorb-permute-squeeze-absorb, where the
first absorption consisted of key and initialization vector. The phasing of Daemen
et al. is also the phasing that we used in our description in Algorithm 1, with
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the difference that we removed the duplexing call from the initialization call. See
also Table 1. This change has as main advantage that the primitive evaluations
only occur in duplexing calls and not in initialization calls, making the analysis
and results conceptually cleaner.

Dobraunig and Mennink [40], took a different avenue. In their phasing, one
duplexing call consisted of squeeze-absorb-permute (with the initialization con-
sisting of absorb-permute). Their approach was taken because they analyzed the
duplex construction under leakage and it made most sense to include the “next”
permutation evaluation in the duplexing call. In practical instantiations, how-
ever, one would not make the “last” permutation call of a (long) duplex-based
construction, and adopting their approach in our work would lead to complica-
tions in the discussion of the use cases in Sections 5-9.

Table 1: Depiction of earlier and current phasing choice of the duplex construc-
tion. Here, A stands for absorb, P for permutation evaluation, and S for squeeze.
The first absorb includes the key. We remark that there are differences how the
absorption is implemented in the five variants.

A P S A P S A P S A · · ·
BDPV11 [16] init duplex duplex · · ·
MRV15 [61] init duplex duplex · · ·
DMV17 [32] init duplex duplex · · ·
DM19 [40] init duplex duplex · · ·
now (Alg. 1) init duplex duplex duplex · · ·

4 Security of Duplex Construction

In Section 4.1 we summarize the notation used to describe the adversarial re-
sources. This section is again largely copied from Dobraunig and Mennink [40],
but updated to the current setting. Then, in Section 4.2, we will discuss a math-
ematical function used in the duplex security bounds, namely the multicollision
limit function. Finally, the known (black-box) security bounds on the keyed du-
plex, derived from Daemen et al. [32] and Dobraunig and Mennink [40], are given
in Section 4.3.

4.1 Distinguisher’s Resources

We consider an information-theoretic distinguisher D that has access to either
the real world (KD[p]K , p

±) or the ideal world (IXIF[ro], p±), where p is some
permutation. Two basic measures to quantify the distinguisher’s resources are
its online complexity M and offline complexity N :

– M : the number of distinct construction (duplexing) calls;
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– N : the number of distinct primitive queries.

For each construction call, we define a path path that “registers” the data
that got absorbed in the duplex up to the point that the cryptographic primitive
(p in the real world and ro in the ideal world) is evaluated. For an initialization
call (δ, IV ) 7→ ∅, the associated path is defined as path = encode[δ] ‖ IV . For
each duplexing call (flag , P ) 7→ Z, the value [flag ] · (Z‖0b−r) ⊕ P is appended
to the path of the previous construction query. Not surprisingly, the definition
matches the actual definition of path in the IXIF[ro] construction of Algorithm 2,
but defining the same thing for the real world will allow us to better reason about
the security of the keyed duplex. Note that the value path contains no information
that is secret to the distinguisher. In order to reason about duplexing calls, we
will also define a subpath of a path, which is the path leading to the particular
duplexing call. In other words, for a path path, its subpath is simply path with
the last b bits removed.

In order to derive a detailed and versatile security bound, that in particular
well-specifies how leakage influences the bound, we further parameterize the
distinguisher as follows. For initialization calls:

– Q: the number of initialization calls;
– QIV : the maximum number of initialization calls for a single IV .

For duplexing calls:

– L: the number of duplexing calls with repeated subpath, i.e., M minus the
number of distinct subpaths;

– Ω: the number of duplexing queries with flag = true.

Note that these parameters can all be described as a function of the duplexing
calls and the related path’s, and the distinguisher can compute these values based
on the queries it made so far. The parametrization of the distinguisher is as that
of Daemen et al. [32]. The parameters L and Ω are, as in [32], used to upper
bound the number of duplexing calls for which the distinguisher may have set
the r leftmost bits of the input to the permutation in the duplexing call to a
certain value of its choice. This brings us to the last parameter:

– νfix: the maximum number of duplexing calls for which the adversary has set
the outer part to a single value leftr(T ).

Note that νfix ≤ L+ Ω, but it may be much smaller in specific use cases of the
duplex, for example, if overwrites only happen for unique values. It also plays a
role in the application on Ascon-PRF in Section 8.3.

4.2 Multicollision Limit Function

We will use the notion of multicollision limit functions from Daemen et al. [32],
which considers a balls-into-bins experiment tailored to sponge constructions.
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Definition 1 (multicollision limit function). Let M, c, r ∈ N. Consider the
experiment of throwing M balls uniformly at random in 2r bins, and let ν be
the maximum number of balls in a single bin. We define the multicollision limit
function νMr,c as the smallest natural number x that satisfies

Pr (ν > x) ≤ x

2c
.

The multicollision limit function is a somewhat vague concept, but it can be
clearly estimated. In particular, the targeted value x satisfies [32, Section 6.5]

2be−M/2r (M/2r)x

(x−M/2r)x!
≤ 1 . (4)

It turns out that this bound behaves differently depending on the value M/2r,
and Daemen et al. also gave a technical interpretation of the upper bounds
suggested for νMr,c for specific values of M/2r. We will describe these in more
accessible terminology below, and also exemplify those for a running example of
(b, c, r) = (400, 272, 128).

– If M/2r < 1, an appropriate choice for νMr,c is the smallest integer x such that

M/2r ≤ 2−b/x, i.e., x =
⌈

b
r−log2(M)

⌉
. For our running example, if M = 264,

one would get ν2
64

128,272 ≤ 7, and if M = 288, one would get ν2
88

128,272 ≤ 10;

– If M/2r = 1, an appropriate choice for νMr,c is the smallest integer x such

that x ≥ ln(2)b
ln(x)−1 . For our running example, if M = 2128, one would get

ν2
128

128,272 ≤ 82;
– If M/2r > 1, the bound (4) becomes less controllable. However, if M is

a multiple of 2r, νMr,c could be upper bounded by M
2r + ν2

r

r,c ·
⌈
M
2r

⌉
. For our

running example, if M = 2132, one would get ν2
132

128,272 ≤ 16 + 82 · 4 = 344.

We remark that above example values on νM128,272 are based on the simplified
bounds; (4) would give a tighter value. A depiction of (4) for our running example
of b = 400, but with a more general choice of (c, r), is given in Figure 3.

4.3 Main Result

We can now state the existing security results on the keyed duplex construction in
the model of (3). In fact, we have two bounds that are derived using two different
proof techniques. The first bound, Theorem 1 is the original result of Daemen et
al. [32], extended to cover arbitrary initial state rotation α. The security bound
still holds under the rephasing (cf., Remark 1), due to our requirement that the
distinguisher always makes at least one duplexing call after each initialization
call.

Theorem 1 (security of duplex construction [32]). Let b, c, r, k, µ, α ∈ N,

with c+ r = b, k ≤ b, and α ≤ b−k. Let p
$←− perm(b) be a random permutation,
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Fig. 3: Plot of the multicollision limit function for b = 400, based on (4), where
νMr,c is computed as function of M/2r.

and K
$←− ({0, 1}k)µ a random array of keys. For any distinguisher D quantified

as in Section 4.1 and with M +N ≤ 0.1 · 2c,1

AdvKD(D) ≤ (L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2

)
2c

(5a)

+
(M − L−Q)Q

2b −Q
+
M(M − L− 1)

2b
(5b)

+
Q(M − L−Q)

2min{c+k,max{b−α,c}} +
QIVN

2k
+

(
µ
2

)
2k

. (5c)

The second bound, Theorem 2, is the leakage resilience result of Dobraunig and
Mennink [40], restricted to the setting of zero leakage (λ = 0). Also for this
result, the rephasing (cf., Remark 1) does not change the bound, noting that
the security analysis of [41] relies on a proper categorization of the construction
evaluations into their type (init , full , or fix , to be precise) and that the number
of evaluations per type does not change after rephasing. Also here, we rely on the
condition that the distinguisher always makes at least one duplexing call after
each initialization call.

Theorem 2 (security of duplex construction [40]). Let b, c, r, k, µ, α ∈ N,

with c+ r = b, k ≤ b, and α ≤ b−k. Let p
$←− perm(b) be a random permutation,

1 This side condition has a technical cause. The multicollision limit function of Def-
inition 1 is for uniform throwings with replacement whereas Daemen et al. apply
it to uniform throwings without replacement. They proved that the multicollision
limit function for the case of throwings without replacement was at most that of
with replacement, provided the number of throwings was doubled (hence the 2 in

the superscript of ν
2(M−L)
r,c in (5a)) and provided M +N ≤ 0.1 · 2c holds.

16



and K
$←− ({0, 1}k)µ a random array of keys. For any distinguisher D quantified

as in Section 4.1,2

AdvKD(D) ≤ νfixN

2c
+

2νMr,c(N + 1)

2c
+
νMr,c(L+Ω) + max{νfix−1,0}

2 (L+Ω)

2c
(6a)

+

(
M−L−Q

2

)
+ (M − L−Q)(L+Ω)

2b
+

(
M+N

2

)
+
(
N
2

)
2b

(6b)

+
Q(M −Q)

2min{c+k,max{b−α,c}} +
QIVN

2k
+

(
µ
2

)
2k

. (6c)

The bounds of Theorems 1 and 2 share many similarities, but also expose sub-
tle differences. These differences come from the different proof techniques. For
example:

– Dobraunig and Mennink started their proof with a RP-to-RF-switch. This
switch contributed to the second fraction of (6b). The advantage of this
switch is that it significantly simplified further analysis of the scheme (and
also led to easier-to-parse terms), but on the downside, the bound contains
a term of the order O(N2/2b), which is rather restrictive in the case of small
b;

– Dobraunig and Mennink introduced a term νfix to resolve a minor lossiness
in the bound, noting that although there are typically L + Ω evaluations
where the distinguisher may have set the r leftmost bits to a value of its
choice, the actual number is in practice often smaller than L + Ω, namely
νfix. The usage of νfix will become apparent in the application to Ascon-PRF
in Section 8.3.

In upcoming Sections 5-9, we will discuss various applications of the duplex con-
struction and of Theorems 1 and 2. In the security analyses of these applications,
we will also consider distinguishers that are bound with certain resources. One of
them is the number of distinct primitive queries, which always happens to be the
same as the number of distinct primitive queries in the duplex security proofs.
We will henceforth stick to the parameter N , just like in Section 4.1. For the
online complexity of the distinguisher in below applications, we will explicitly
use different parameters than in Section 4.1, namely q and σ, to make sure the
transition of the bounds of Theorems 1 and 2 to the security of the applications
is clear and transparent. See also the models in Section 2.

5 Use Case 1: Truncated Permutation

According to the well-known PRP-PRF switch [9,12,26,51,52], an n-bit PRP be-
haves like a PRF up to approximately 2n/2 evaluations. As this bound could be

2 The max in the third fraction of (6a) was missing in the original bound, but should
obviously be included.
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problematic for small values of n, there has been performed a significant amount
of research to designing a PRF from a PRP with beyond-birthday bound secu-
rity. These studies have given rise to various schemes, like the sum of (secret)
permutations [8, 10, 28, 33, 55, 60, 68–70], EDM [29, 33, 59], EDMD [59], trunca-
tion [8, 21,46–48,51,58,72], and the summation-truncation hybrid [49].

In recent years, advances have been made in understanding how to turn a
public random permutation into a PRF, constructions of which were often in-
spired by the above. For example, Chen et al. [27] considered a sum of externally
keyed public permutations, and Dutta et al. [43] a permutation-based variant
of EDM. In this section, we will highlight the public permutation based variant
of truncation. The construction is described in Section 5.1 and its security is
analyzed in Section 5.2.

5.1 Construction

Let b, c, r, k ∈ N, with c+ r = b and k ≤ b. The truncated permutation construc-
tion TP : {0, 1}k × {0, 1}b−k → {0, 1}r is defined as

TP[p](K,X) = leftr(p(K‖X)) . (7)

It can be described in terms of a duplex construction as in Algorithm 3, and as
depicted in Figure 4. In case we consider multiple instances of the scheme, the
key input in Algorithm 3 will be replaced by a key array K = (K[1], . . . ,K[µ]) ∈
({0, 1}k)µ, and the first input to KD.init will be the index of the instance that
is evaluated. We admit that this description is slightly odd, where first r bits of
the permutation output are squeezed and then the entire state is truncated, but
this is simply done to make the similarity with the duplex construction clear.

Algorithm 3 Truncated permutation TP[p]

Input: (K,X) ∈ {0, 1}k × {0, 1}b−k
Output: Y ∈ {0, 1}r
Underlying keyed duplex: KD[p](K)

KD.init(1, X)
Y ← KD.duplex(false, 0b)
return Y

5.2 Security

As the truncated permutation construction TP of (7) can be described in terms
of a duplex, we can reduce the PRF security of TP to the security of the duplex
construction, and rely on the results of Section 4.3. Note that we obtain two dif-
ferent results, one based on Theorem 1 and one based on Theorem 2. It depends
on the actual values of b, c, r, k which of the two bounds is better. In general, the
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Fig. 4: Truncated permutation TP. The function gets as input a key K and an
input value X. It outputs Y .

former bound (based on Theorem 1) is better, except if the bound is still � 1
for q +N exceeding 0.1 · 2c, because in that case, this bound is inapplicable.

Theorem 3 (PRF security of truncated permutation). Let b, c, r, k, µ ∈
N, with c + r = b and k ≤ b. Let p

$←− perm(b) be a random permutation, and

K
$←− ({0, 1}k)µ a random array of keys. For any distinguisher D making at most

q construction queries and N primitive queries, we have the following results:

(i) Provided q +N ≤ 0.1 · 2c,

Advµ-prfTP (D) ≤
2ν2qr,c(N + 1)

2c
+

2
(
q
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

; (8)

(ii) In general,

Advµ-prfTP (D) ≤
2νqr,c(N + 1)

2c
+

(
q+N
2

)
+
(
N
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

. (9)

Proof. We will first discuss how TP fits in the description of the duplex con-
struction of Section 3.1, then we discuss what this means for the actual power
of the distinguisher, i.e., the distinguisher’s resources of Section 4.1, and finally
we derive our bound.

Starting with mapping TP to the description of the duplex construction,
note that we also here consider multi-user security. In other words, we consider
security of TP under µ keys K[1], . . . ,K[µ] ∈ {0, 1}k, which we store in key
array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ fed to the duplex construction. In
addition, IV = {0, 1}b−k, i.e., IV simply determines the domain of the truncated
permutation construction. Now, an evaluation of TP for key K[δ] ∈ {0, 1}k and
input X ∈ {0, 1}b−k corresponds to calling the initialization interface KD.init on
input (δ,X) ∈ {1, . . . , µ} × IV, where the state is initialized as K[δ]‖X (hence
α = 0), subsequently calling the duplexing interface KD.duplex on no input and
outputting the leftmost r bits. See also Algorithm 3.
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The TP distinguisher D can make q construction queries and N primitive
queries. Each construction query is made for different (δ,X) and corresponds
to exactly one initialization and one duplexing call. This particularly means
that the parameters M and Q of the distinguisher’s resources equal q. Another
parameter of the distinguisher’s resources to consider is QIV , the maximum
number of initialization calls for a single IV , i.e., for different X. Note that
all distinguisher’s construction queries must be for different input (δ,X). This
means that QIV is at most µ, as each value X can be queried alongside at most µ
different keys. Finally, as each construction query de facto starts with a different
(δ,X) each path is distinct, and also no duplexing calls are made for flag = true
(looking at the construction, the flag simply does not matter). We conclude that
L = Ω = 0 and thus νfix = 0.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M q
N N
Q q
QIV ≤ µ
L 0
Ω 0
νfix 0

If we plug these values into the bound (5) of Theorem 1, we obtain the
following result, provided q +N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2qr,c(N + 1)

2c
+

2
(
q
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

. (10)

If we plug these values into the bound (6) of Theorem 2, we obtain the following
result:

AdvKD(D) ≤
2νqr,c(N + 1)

2c
+

(
q+N
2

)
+
(
N
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

. (11)

The bound (10) is in general better. The subtle differences between the two
bounds arise from the fact that Dobraunig and Mennink started their proof with
a RP-to-RF-switch. This added the second term in (11) but lead to a simpler
first term. See also the remark regarding this RP-to-RF-switch at the end of
Section 4.3. However, (10) only holds provided q+N ≤ 0.1 ·2c. This means that
for certain parameters, namely if b� 2c and k � c, (11) is better. We will thus
continue with both bounds.

What remains is to translate these bounds into the multi-user PRF secu-
rity of TP. This can be done by a simply triangle inequality, noting that the
formal description TP[p] of Algorithm 3 is in fact a description TP[KD[p]],
where the key array K input to TP is directly fed into KD. Thus, denoting
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Rprf = (Rprf
1 , . . . ,Rprf

µ )
$←− func(b− k, r)µ,

Advµ-prfTP (D) = ∆D

(
TP[KD[p]]K , p

± ; Rprf , p±
)

= ∆D

(
TP[KD[p]K ], p± ; Rprf , p±

)
≤ ∆D

(
TP[KD[p]K ], p± ; TP[IXIF[ro]], p±

)
(12)

+∆D

(
TP[IXIF[ro]], p± ; Rprf , p±

)
. (13)

The distance of (12) is the security of KD as bounded in (10) or (11), and the
distance of (13) equals 0 as both oracles output uniform random and independent
strings for each input. ut

6 Use Case 2: Parallel Keystream Generation

The truncated permutation construction TP of Section 5 behaves like a PRF
but only outputs r bits. However, in practice, b � k so the input value X can
be quite large. It is thus possible to include a counter in X, and basically use
TP in counter mode, yielding a parallel keystream generation construction. The
construction is described in Section 6.1 and its security is analyzed in Section 6.2.

6.1 Construction

Let b, c, r, k, a ∈ N, with c + r = b and k + a ≤ b. We consider the following
duplex-based parallel keystream generation construction:

P-SC : {0, 1}k × {0, 1}b−k−a × {0, . . . , r2a} → {0, 1}∞

(K,NIV , `) 7→ S .
(14)

The construction gets as input a key K, a nonce NIV , and a requested keystream
length `, and outputs a keystream S of length ` bits. It simply evaluates TP of
(7) in counter mode, on input of (K,NIV ‖〈i − 1〉a) for i = 1, . . . , d`/re. The
construction is described in Algorithm 4, and for one counter value i it is depicted
in Figure 5. In case we consider multiple instances of the scheme, the key input in
Algorithm 4 will be replaced by a key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ,
and the first input to KD.init will be the index of the instance that is evaluated.
We admit that the description in Figure 5 of the construction is a bit odd, in
the sense that K gets an own arrow while NIV and 〈i〉a have to share an arrow.
The reason for this depiction is to show the similarity with TP of Section 5.

6.2 Security

PRF security of P-SC immediately follows from the fact that counter mode based
on a fixed-output-length random function is perfectly secure (as long as the input
to the underlying random function is never repeated), and from the fact that TP
behaves like a fixed-output-length random function, as proven in Theorem 3. As
before, we obtain two different results.
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Algorithm 4 Duplex-based parallel keystream generation P-SC[p]

Input: (K,NIV , `) ∈ {0, 1}k × {0, 1}b−k−a × {0, . . . , r2a}
Output: S ∈ {0, 1}`
Underlying keyed duplex: KD[p](K)

S ← ∅
for i = 1, . . . , d`/re do

KD.init(1,NIV ‖〈i− 1〉a))
S ← S ‖ KD.duplex(false, 0b)

return left`(S)

p

K

NIV ‖〈i− 1〉a

Si

discard

discard

\

k

\

b− k

\

r

\

c

init duplex

Fig. 5: One evaluation of duplex-based parallel keystream generation P-SC. The
function gets as input a key K, a nonce NIV , and a counter value i ∈ {1, . . . , 2a}.
It outputs a keystream block Si.

Theorem 4 (PRF security of duplex-based parallel keystream gener-

ation). Let b, c, r, k, a, µ ∈ N, with c + r = b and k + a ≤ b. Let p
$←− perm(b)

be a random permutation, and K
$←− ({0, 1}k)µ a random array of keys. For any

distinguisher D making at most q construction queries, of total length at most σ
permutation calls, and N primitive queries, we have the following results:

(i) Provided σ +N ≤ 0.1 · 2c,

Advµ-prfP-SC (D) ≤
2ν2σr,c(N + 1)

2c
+

2
(
σ
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

; (15)

(ii) In general,

Advµ-prfP-SC (D) ≤
2νσr,c(N + 1)

2c
+

(
σ+N

2

)
+
(
N
2

)
2b

+
µN

2k
+

(
µ
2

)
2k

. (16)

Proof. The function P-SC can we written in terms of TP of (5) as

P-SC(K,NIV , `) =

TP(K,NIV ‖〈0〉a) ‖ TP(K,NIV ‖〈1〉a) ‖ · · · ‖ TP(K,NIV ‖〈d`/re − 1〉a) ,
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truncated to ` bits.
As such, security of P-SC against a distinguisher D making at most q con-

struction queries, of total length at most σ permutation calls, follows imme-
diately from the security of TP against a distinguisher D′ making at most σ
construction queries (both D and D′ have primitive complexity N):

Advµ-prfP-SC (D) ≤ Advµ-prfTP (D′) .

The result now immediately follows from Theorem 3, with q replaced by σ. ut

7 Use Case 3: Sequential Keystream Generation

The parallel keystream generation of Section 6 is clean and simple, but it also
has a disadvantage that the key is evaluated multiple times. This could be a
problem if the scheme is evaluated in a leaky environment. In addition, the
sponge and duplex are mostly designed to be evaluated in a sequential direction.
We will now consider what the duplex results of Section 4.3 could imply for
the naive and most logical way of building stream encryption from the duplex
construction. The construction is described in Section 7.1 and its security is
analyzed in Section 7.2.

7.1 Construction

Let b, c, r, k ∈ N, with c + r = b and k ≤ b. We consider the following duplex-
based sequential keystream generation construction:

S-SC : {0, 1}k × {0, 1}b−k × N→ {0, 1}∞

(K,NIV , `) 7→ S .
(17)

The construction gets as input a key K, a nonce NIV , and a requested keystream
length `, and outputs a keystream S of length ` bits. It simply initializes a
duplex with state K‖NIV , and then it makes duplexing calls that do not absorb
any data but simply squeeze r bits at a time. The construction is described in
Algorithm 5, and is depicted in Figure 6. In case we consider multiple instances
of the scheme, the key input in Algorithm 5 will be replaced by a key array
K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be the
index of the instance that is evaluated.

7.2 Security

The S-SC construction described above is, in fact, the most logical way of
keystream generation in the sponge. It can for example be recognized in the
encryption of ISAP v2 [34–36] and in Asakey [42], though with a different initial-
ization of the state (rather than simply K‖NIV ) in order to guarantee improved
strength against side-channel attacks.
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Algorithm 5 Duplex-based sequential keystream generation P-SC[p]

Input: (K,NIV , `) ∈ {0, 1}k × {0, 1}b−k × N
Output: S ∈ {0, 1}`
Underlying keyed duplex: KD[p](K)

S ← ∅
KD.init(1,NIV )
for i = 1, . . . , d`/re do

S ← S ‖ KD.duplex(false, 0b)

return left`(S)
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Fig. 6: Duplex-based sequential keystream generation S-SC. The function gets as
input a key K and a nonce NIV . It outputs keystream blocks (S1, S2, . . .). The
actual number of output blocks is determined by an additional input parameter
`.

The S-SC is, in fact, not just a duplex based construction, it is a specific case
of the full-state keyed sponge, and hence one can rely on the result of Mennink
et al. [61]. However, below, we derive a more accurate bound using the results
of Section 4.3. As before, we obtain two different results.

Theorem 5 (PRF security of duplex-based sequential keystream gen-

eration). Let b, c, r, k, µ ∈ N, with c + r = b and k ≤ b. Let p
$←− perm(b) be

a random permutation, and K
$←− ({0, 1}k)µ a random array of keys. For any

distinguisher D making at most q construction queries, of total length at most σ
permutation calls, and N primitive queries, we have the following results:

(i) Provided σ +N ≤ 0.1 · 2c,

Advµ-prfS-SC (D) ≤
2ν2σr,c(N + 1)

2c
+

(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

;

(18)
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(ii) In general,

Advµ-prfS-SC (D) ≤
2νσr,c(N + 1)

2c
+

(
σ−q
2

)
2b

+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(19)

Proof. As in Theorem 3, we will first discuss how S-SC fits in the description of
the duplex construction of Section 3.1, then we discuss what this means for the
actual power of the distinguisher, i.e., the distinguisher’s resources of Section 4.1,
and finally we derive our bound.

The S-SC construction in fact looks very much like TP. Each initialization is
made for a different state: K[δ]‖NIV in S-SC and K[δ]‖X in TP. The main dif-
ference is that TP makes 1 duplexing call KD.duplex(false, 0b) per initialization
call, whereas S-SC makes d`/re of them. Concretely, this means that we again
have a key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ fed to the duplex construc-
tion. In addition, IV = {0, 1}b−k, i.e., IV simply determines the set of nonces
of S-SC. As before, the state is initialized as K[δ]‖NIV (hence α = 0).

The S-SC distinguisher D can make q construction queries, of total length
at most σ duplexing calls, and N primitive queries. Each construction query
is made for different (δ,NIV ) and corresponds to exactly one initialization and
d`/re duplexing calls (where ` is the input parameter to S-SC). The total amount
of duplexing calls is at most σ. This particularly means that the parameters
M and Q of the distinguisher’s resources equal σ and q, respectively. Another
parameter of the distinguisher’s resources to consider is QIV , the maximum
number of initialization calls for a single IV , i.e., in current case, for different
NIV . As in the proof of Theorem 3, this value is bounded by µ, as each value NIV
can be queried alongside at most µ different keys. (Note that one can imagine
applications with user-dependent NIV , in which case QIV = 1.) Finally, as
each construction query de facto starts with a different (δ,NIV ) each path is
distinct, and also no duplexing calls are made for flag = true. We conclude that
L = Ω = 0 and thus νfix = 0.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σ
N N
Q q
QIV ≤ µ
L 0
Ω 0
νfix 0
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If we plug these values into the bound (5) of Theorem 1, we obtain the
following result, provided σ +N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σr,c(N + 1)

2c
+

(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(20)

If we plug these values into the bound (6) of Theorem 2, we obtain the following
result:

AdvKD(D) ≤
2νσr,c(N + 1)

2c
+

(
σ−q
2

)
2b

+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(21)

As in the proof of Theorem 3, the bound (20) is better in general, but (21) is
better for certain parameter settings. However, it is obvious that in this case, the
differences are a bit subtler than in the proof of Theorem 3 (though still minor).
The final step of translating these bounds into the multi-user PRF security of
S-SC is identical to the reasoning in the proof of Theorem 3, and henceforth
omitted. ut

8 Use Case 4: Message Authentication

As mentioned in Section 7.2, the S-SC construction is not just a duplex based
construction, but rather a specific case of the full-state keyed sponge. In this
section, we dive in more detail into the full-state keyed sponge construction,
and consider what the results of Section 4.3 imply for this construction. The
construction is described in Section 8.1 and its security is analyzed in Section 8.2.

Note that the full-state keyed sponge construction can be found in many
applications. For example, the DonkeySponge of Bertoni et al. [20] is de facto
a full-state keyed sponge, be it with round-reduced permutations for which it
is unreasonable to assume perfect randomness. Chaskey [62] is also a variant of
the full-state keyed sponge construction. Ascon-PRF [38] is a special case where
the state is also initialized with the key, but then one only does outer-part
absorption. However, something special holds for the Ascon-PRF construction,
as we will discuss in Section 8.3.

8.1 Construction

Let b, c, r, k, t ∈ N, with c + r = b and k ≤ b. Let IV ⊆ {0, 1}b−k be a set
of initialization vectors. The full-state keyed sponge construction is defined as
follows:

FSKS : {0, 1}k × IV × {0, 1}∗ → {0, 1}t

(K, IV , P ) 7→ T .
(22)
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The construction gets as input a key K, an initialization vector IV , and a plain-
text P , and outputs a tag T of length t bits. It simply initializes a duplex
with state K‖IV , then it absorbs plaintext blocks b bits at a time, and finally
it squeezes tag blocks r bits at a time. The construction is described in Al-
gorithm 6 and is depicted in Figure 7. In case we consider multiple instances
of the scheme, the key input in Algorithm 6 will be replaced by a key array
K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be the
index of the instance that is evaluated.

Algorithm 6 Full-state keyed sponge FSKS[p]

Input: (K, IV , P ) ∈ {0, 1}k × IV × {0, 1}∗
Output: T ∈ {0, 1}t
Underlying keyed duplex: KD[p](K)

(P1, P2, . . . , Pw)← pad10∗

b (P )
T ← ∅
KD.init(1, IV )
for i = 1, . . . , w do

KD.duplex(false, Pi) . discard output

for i = 1, . . . , dt/re do
T ← T ‖ KD.duplex(false, 0b)

return leftt(T )
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Fig. 7: Full-state keyed sponge FSKS. The function gets as input a key K and
a plaintext P . The plaintext gets padded into w blocks as (P1, P2, . . . , Pw) ←
padb(P ). It outputs tag blocks (T1, T2, . . .) truncated to t bits.

27



8.2 Security

Security of a variant of FSKS, where a full b-bit plaintext block was already
absorbed at initialization, already follows from the result of Mennink et al. [61],
who derived the following bound:

Advµ-prfFSKS(D) ≤ 2(q`)2

2b
+

2q2`

2c
+
ρN

2k
,

where the distinguisher can make q construction queries, each of maximum length
`, and N primitive queries, and where ρ is the “multiplicity” (named µ in [61],
but renamed to avoid parameter collision), which roughly upper bounds the
maximum amount of construction query blocks for a certain fixed outer part.
However, as mentioned in [32], this multiplicity term ρ should have been left
implicit in the proof. Below, we derive a new, more advanced, security bound
based on the results of Section 4.3. As before, we obtain two different results.

Theorem 6 (PRF security of full-state keyed sponge). Let b, c, r, k, t, µ ∈
N, with c + r = b and k ≤ b. Let p

$←− perm(b) be a random permutation, and

K
$←− ({0, 1}k)µ a random array of keys. For any distinguisher D making at

most q construction queries, of total length at most σ permutation calls, and N
primitive queries, we have the following results:

(i) Provided σ +N ≤ 0.1 · 2c,

Advµ-prfFSKS (D) ≤
2ν2σr,c(N + 1)

2c
+

(q − 1)N +
(
q
2

)
2c

+
(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

;

(23)

(ii) In general,

Advµ-prfFSKS (D) ≤
2νσr,c(N + q)

2c
+

(q − 1)N +
(
q−1
2

)
2c

+

(
σ−q
2

)
+ (σ − q)q
2b

+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(24)

Proof. As in Theorem 3, we will first discuss how FSKS fits in the description of
the duplex construction of Section 3.1, then we discuss what this means for the
actual power of the distinguisher, i.e., the distinguisher’s resources of Section 4.1,
and finally we derive our bound.

The FSKS construction is, from a security perspective, quite different from
the constructions of previous sections (TP, P-SC, and S-SC). The reason is (i)
that there is no unique nonce/input that makes sure the state is always initialized
to a different value, and (ii) that the distinguisher can freely choose the plaintexts
input to the absorption part. In detail, each initialization simply sets the state
to K[δ]‖IV , where δ is the key index and IV an initial value that can be reused.
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In other words, we again have a key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ

fed to the duplex construction, and we have α = 0 and IV as defined.
The FSKS distinguisher D can make q construction queries, of total length at

most σ duplexing calls (counting both the absorption and the squeezing phase),
and N primitive queries. This particularly means that the parameters M and Q
of the distinguisher’s resources equal σ and q, respectively. Another parameter
of the distinguisher’s resources to consider is QIV , the maximum number of
initialization calls for a single IV ∈ IV. As in the proof of Theorem 3, this value
is bounded by µ, as any IV can be queried alongside at most µ different keys.

So far, the quantification of the distinguisher’s resources in the duplex setting
is similar to that of Theorem 3 and Theorem 5. However, for the more advanced
adversarial parameters, the quantification is more involved. The easiest one, Ω,
which counts the number of duplexing calls for flag = true, satisfies Ω = 0 as be-
fore (see Algorithm 6). The value L, which counts the number of duplexing calls
with repeated subpath, could be quite large. Indeed, suppose the distinguisher
makes a query P1‖P2‖P310∗ (padding included) and a query P1‖P2‖P ′310∗ where
P3 6= P ′3, then the absorption of these two plaintexts consists of 4 distinct du-
plexing calls (noting that P1 and P2 are identical in both queries, but P3 6= P ′3),
but the duplexing calls for P3 and P ′3 have the same subpath.3 However, it is
important to observe that two duplexing calls can have the same subpath only
if they are at the same distance to their corresponding initialization calls, as
the length of a subpath is initialized at an initialization call and increases per
duplexing call. In addition, once two subpaths are different, any extension of
these subpaths will never be the same. This means that, per initialization call,
the distinguisher can end up with a repeated subpath for a duplexing call at
most once. Concretely, we obtain that L ≤ q − 1. Finally, regarding νfix, in the
current example the distinguisher actually can set all L outer parts to a single
value, and hence νfix = L ≤ q − 1.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σ
N N
Q q
QIV ≤ µ
L ≤ q − 1
Ω 0
νfix ≤ q − 1

3 In practice, the distinguisher can actually use this to set the outer part of an absorp-
tion call to a value of its choice. To see this, ignore the IV and ignore padding for a
moment, and assume that the distinguisher makes an evaluation of FSKS on input
of a b-bit plaintext P to obtain an r-bit tag T . Then, it makes an evaluation of FSKS
on input of P‖T‖0c. The state of this duplex evaluation after the second duplexing
call equals 0r on its leftmost bits. This shows why the parameter L (and a similar
issue occurs for the parameter Ω) is relevant for the security of the construction.
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If we plug these values into the bound (5) of Theorem 1, and simplify the
bound at some points for readability, we obtain the following result, provided
σ +N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σr,c(N + 1)

2c
+

(q − 1)N +
(
q
2

)
2c

+
(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(25)

If we plug these values into the bound (6) of Theorem 2, and again simplify the
bound at some points for readability, we obtain the following result:

AdvKD(D) ≤
2νσr,c(N + q)

2c
+

(q − 1)N +
(
q−1
2

)
2c

+

(
σ−q
2

)
+ (σ − q)q
2b

+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(26)

Due to the presence of a fraction of order O((qN+q2)/2c), one never exceeds
the condition σ + N ≤ 0.1 · 2c, and the bound (25) is better. However, in Sec-
tion 8.3 we will discuss an extension of current result where this fraction happens
to drop, in both (25) and (26). Therefore, we will continue with both bounds.
The final step of translating these bounds into the multi-user PRF security of
FSKS is identical to the reasoning in the proof of Theorem 3, and henceforth
omitted. ut

8.3 Application to Ascon-PRF

As mentioned in footnote 3 in the proof of Theorem 6, the distinguisher can
actually use reappearing paths to actually set the outer r bits of a certain state
to a certain value. The value L + Ω counts the number of cases this occurs.
However, looking more closely at the example in this footnote, here the distin-
guisher exploits a subpath from which two distinct duplexing calls are made: one
squeezing call and one absorbing call. It turns out that if reappearing paths only
happen among absorbing calls, the situation is less worrisome. A good example
of this is the Ascon-PRF construction [38]. Even though Ascon-PRF is an actual
PRF function instantiated with the actual Ascon permutation [39], we will re-
strict our focus to the mode only (i.e., for arbitrary parameters and in the ideal
permutation model).

Let b, c, r, k, t ∈ N, with c+ r = b and k ≤ b. Let IV ⊆ {0, 1}b−k be a set of
initialization vectors. The Ascon-PRF construction is defined as follows:

Ascon-PRF : {0, 1}k × IV × {0, 1}∗ → {0, 1}t

(K, IV , P ) 7→ T .
(27)

Just like FSKS, the construction gets as input a key K, an initialization vector
IV , and a plaintext P , and outputs a tag T of length t bits. The main difference

30



is that it has a special domain separator bit before squeezing. The construction
is described in Algorithm 7 and is depicted in Figure 8. In case we consider
multiple instances of the scheme, the key input in Algorithm 7 will be replaced
by a key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init
will be the index of the instance that is evaluated.

Algorithm 7 Ascon-PRF[p]

Input: (K, IV , P ) ∈ {0, 1}kIV × {0, 1}∗
Output: T ∈ {0, 1}t
Underlying keyed duplex: KD[p](K)

(P1, P2, . . . , Pw)← pad10∗

r (P )
T ← ∅
KD.init(1, IV )
for i = 1, . . . , w − 1 do

KD.duplex(false, Pi) . discard output

KD.duplex(false, Pw‖0c−11)
for i = 1, . . . , dt/re do

T ← T ‖ KD.duplex(false, 0b)

return leftt(T )
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Fig. 8: The construction underlying Ascon-PRF. The function gets as input a key
K, initial value IV , and a plaintext P . The plaintext gets padded into w blocks
as (P1, P2, . . . , Pw)← padr(P ). It outputs tag blocks (T1, T2, . . .) truncated to t
bits.

One could see the Ascon-PRF construction as a special case of FSKS, where
the r-bit blocks P1, P2, . . . , Pw−1 can be appended with 0c. However, the domain
separation at the last plaintext block plays a prominent role: it makes sure that
there will never be two different evaluations of Ascon-PRF with reappearing sub-
paths, ending up in the squeezing phase at one evaluation and in the absorption
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phase at the other evaluation. In other words, the trick of footnote 3 does not
work.

Nevertheless, the analysis of Daemen et al. [32] does not seem to accommo-
date this. This is caused by the fact that in the proof of Daemen et al., there
is a certain lossy bounding. In detail, in the proof of Daemen et al., the follow-
ing is stated: “Denote by S the size of the subset of [the] occasions for which
the adversary can (in the worst case) force the outer part of [a state] to be a
value of its choice. Note that S ≤

(
L+Ω+1

2

)
.” However, as the distinguisher can

only force the outer part of a state to a value of its choice if it first learns it
(through a squeezing call), and this never happens in Ascon-PRF, one can use a
tighter bound of S = 0 here. Concretely, this means that of the bound (23) of
Theorem 6, the term (

L+Ω+1
2

)
2c

=

(
q
2

)
2c

vanishes.
The bounding appears in disguise later on in the proof as well: “Therefore,

if [we] take Tfw = L+Ω+ ν
2(M−L)
r,c . . . ” If we drop the L+Ω here (for the same

reason), it happens to be the case that

(L+Ω)N

2c
=

(q − 1)N

2c

vanishes from (23) as well.
The same improvement can be observed for (24) of Theorem 6, be it for

different reasons. In the current case, we have νfix = 0, as the maximum number
of duplexing calls for which the adversary can set the outer part to a single value
leftr(T ) is 0. This means that in (24) the fraction

(q − 1)N +
(
q−1
2

)
2c

never appears in the first place.
In summary, one obtains the following improved bounds for the Ascon-PRF

mode, compared to (23) and (24) of Theorem 6.

Corollary 1 (PRF security of Ascon-PRF). Let b, c, r, k, t, µ ∈ N, with c+r =

b and k ≤ b. Let p
$←− perm(b) be a random permutation, and K

$←− ({0, 1}k)µ

a random array of keys. For any distinguisher D making at most q construction
queries, of total length at most σ permutation calls, and N primitive queries, we
have the following results:

(i) Provided σ +N ≤ 0.1 · 2c,

Advµ-prfAscon-PRF(D) ≤
2ν2σr,c(N + 1)

2c
+

(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

;

(28)
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(ii) In general,

Advµ-prfAscon-PRF(D) ≤
2νσr,c(N + q)

2c
+

(
σ−q
2

)
+ (σ − q)q
2b

+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

.

(29)

9 Use Case 5: Authenticated Encryption

The main advantage of the duplex over the ordinary keyed sponge is that
the duplex, unlike the keyed sponge, is very well-suited to design an authen-
ticated encryption scheme. Already in the original introduction of the duplex
construction, the designers proposed a mode for authenticated encryption called
SpongeWrap [16].

At a very high level, the encryption of SpongeWrap took as input a key K,
associated data A, and plaintext P , all of which were padded into (r − 2)-bit
blocks. To each block, a 0/1-bit was appended to assure domain separation.
Then, each block was appended with a 1 (we will get back to this later). Sub-
sequently, each of the key, associated data, and plaintext blocks were processed
one-by-one, where for the plaintext blocks, corresponding ciphertext blocks were
derived from the state. Finally, a tag of required length was generated. This
original SpongeWrap construction is depicted in Figure 9.

The construction has formed an inspiration of many SpongeWrap based au-
thenticated encryption schemes. However, none of them took the literal SpongeWrap
construction as described in [16], but made adaptations to improve the efficiency
or simplicity of the construction.

As a matter of fact, looking back at this original SpongeWrap construction
from 2011, there are a few quite notable properties. These properties may look
odd at first sight, but are, in retrospect (in particular in light of Section 3.4),
perfectly understandable:

(1) As mentioned above, each key, associated data, and plaintext block is padded
with a 1. The reason for this is that the original security proof of the du-
plex was reduced to the indifferentiability of the sponge hash function [14].
Stated differently, looking at Figure 9, the absorption of K1‖1‖1 and the
subsequent permutation call can be seen as a plain sponge hash function
evaluation on input of K1‖1, noting that the sponge does a 10∗-padding.
Next, the evaluation in Figure 9 up to the permutation after the absorption
of K2‖1‖1 can be seen as a plain sponge hash function evaluation on input
of K1‖1‖1‖K2‖1, again noting that the sponge does a 10∗-padding. The ex-
act same reasoning continues until the last absorbed block. Concretely, one
can conclude that this consistent 1-padding to each block was an artifact of
the proof technique adopted in [16], and this proof technique has become
deprecated in light of follow-up work [32,40,61];
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Fig. 9: Encryption of SpongeWrap. The function gets as input a key K, as-
sociated data A, and a plaintext P . The key gets padded into µ blocks
as (K1,K2, . . . ,Ku) ← padr−2(K), the associated data into v blocks
as (A1, A2, . . . , Av) ← padr−2(A), and the plaintext into w blocks as
(P1, P2, . . . , Pw) ← padr−2(P ). It outputs a ciphertext C = C1‖C2‖ · · · ‖Cw
of size |P | and tag blocks (T1, T2, . . .) truncated to t bits.

(2) The domain separator bits seem slightly off. In detail, domain separator bit
1 is used for all key blocks except for the last one, domain separator bit 0
is used for all associated data blocks except for the last one, and domain
separator bit 1 is used for all plaintext blocks except for the last one. This
seems odd, but seems to be a mere consequence of the phasing adopted in
the original proof of Bertoni et al. [16]. In detail, Bertoni et al. followed the
absorb-permute-squeeze approach (see Section 3.4), and the domain sepa-
rator bit then corresponds to the “role” of the upcoming permutation call
rather than the “type” of absorbed plaintext block. In light of the current
permute-squeeze-absorb approach, a slight readjustment of the domain sep-
arator bits makes sense;

(3) Strictly seen, as the currently known duplex construction allows to absorb
over the entire state (only squeezing happens with the outer r bits) the
domain separation bits can spill over into the capacity. We note that it is
also possible to absorb associated data in parallel to the message encryp-
tion, as in the construction of Sasaki and Yasuda [71] or in the full-state
SpongeWrap [61], but it results in a more complicated description of the
construction;

(4) The original SpongeWrap does not explicitly include a nonce, but rather
expects the associated data to be different each time. We can make the
nonce input explicit;
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(5) The key is not used to initialize the state, but is (like associated data and
plaintext) absorbed r − 2 bits at a time. As pointed out in point (1) above,
this design decision seems to be inspired from the reduction to the security
of SpongeWrap to the indifferentiability of the sponge hash function. More
generally, we have seen this in the outer-keyed sponge [3] as well. Although
Mennink [57] demonstrated that this does not significantly degrade secu-
rity, simply initializing the state with the key, and optionally also the nonce
of point (4), conceptually simplifies the design. This idea is not new. As a
matter of fact, in [20], Bertoni et al. described the MonkeyDuplex construc-
tion, which basically consists of the original duplex construction, but with
the state initialized as K‖NIV (exactly as in S-SC of Section 7). The du-
plexing part in this construction could, for example, be the associated data,
plaintext/ciphertext, and tag portion of SpongeWrap, as suggested by the
authors.

In this section, we will consider a generalization of the SpongeWrap construc-
tion that is based on the original SpongeWrap (Figure 9) but with the changes
proposed in above five points taken into account. (Admittedly, the change of
step (5) also makes it easier to apply our results of Section 4.3, as they do not
natively support multi-round key absorption.) Given that our generalization is
basically the MonkeyDuplex construction [20] with the duplexing part replaced
by the associated data, plaintext/ciphertext, and tag portion of SpongeWrap, we
will refer to the scheme as MonkeySpongeWrap.4 The construction is described
in Section 9.1 and its security is analyzed in Section 9.2.

9.1 Construction

Let b, c, r, k, t ∈ N, with c + r = b and k ≤ b. The generalized SpongeWrap
authenticated encryption mode MonkeySpongeWrap consists of an encryption
and a decryption algorithm:

ENC : {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ → {0, 1}∞ × {0, 1}t

(K,NIV , A, P ) 7→ (C, T ) ,
(30)

DEC : {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∞ ∪ {⊥}
(K,NIV , A,C, T ) 7→ P or ⊥ .

(31)

The encryption construction gets as input a key K, a nonce NIV , associated
data A, and a plaintext P , and outputs a ciphertext C of length |P | bits and a
tag T of length t bits. It initializes a duplex with state K‖NIV , then it absorbs
associated data blocks r bits at a time, then it does duplexing calls that both
squeeze r bits (keystream to be added to the corresponding r-bit plaintext block)
and absorb r bits (the actual plaintext block), and finally it squeezes tag blocks

4 Credits of this name go to Richie Frame who coined this terminology before, at
StackExchange in 2015, https://crypto.stackexchange.com/questions/31051/

norx-duplex-padding.
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r bits at a time. The decryption construction gets as input a key K, a nonce
NIV , associated data A, a ciphertext C, and a tag T , and outputs a plaintext
P of length |C| bits or ⊥ if authentication failed. It differs from the encryption
construction in two ways. The first difference is that the decryption of ciphertext
blocks into plaintext blocks is done using duplexing calls that overwrite the outer
r bits of the state. The second difference is that decryption does not output a
tag, but instead it computes a new tag T ?, which it subsequently compares with
input T , and if the values match, the plaintext P is output. The encryption
and decryption constructions are described in Algorithm 8 and are depicted in
Figure 10 (encryption) and Figure 11 (decryption). In case we consider multiple
instances of the scheme, the key input in Algorithm 8 will be replaced by a key
array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be
the index of the instance that is evaluated.
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Fig. 10: Encryption of MonkeySpongeWrap. The function gets as input a key
K, a nonce NIV , associated data A, and a plaintext P . The associated data
gets padded into v blocks as (A1, A2, . . . , Av) ← padr(A) and the plain-
text into w blocks as (P1, P2, . . . , Pw) ← padr(P ). It outputs a ciphertext
C = C1‖C2‖ · · · ‖Cw of size |P | and tag blocks (T1, T2, . . .) truncated to t bits.

9.2 Security

The original SpongeWrap (Figure 9) was analyzed by Bertoni et al. [16] in its
original introduction. However, the construction was subsequently rarely used as
such, but people rather resorted to “SpongeWrap-like” (or rather “MonkeySpongeWrap-
like”) constructions. These all differed subtly, resulting in various different proofs.
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Algorithm 8 MonkeySpongeWrap[p]

Interface: ENC
Input: (K,NIV , A, P ) ∈ {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗
Output: (C, T ) ∈ {0, 1}|P | × {0, 1}t
Underlying keyed duplex: KD[p](K)

(A1, A2, . . . , Av)← pad10∗

r (A)
(P1, P2, . . . , Pw)← pad10∗

r (P )
C ← ∅
T ← ∅
KD.init(1,NIV )
for i = 1, . . . , v do

KD.duplex(false, Ai‖0‖0c−1) . discard output

for i = 1, . . . , w do
C ← C ‖ KD.duplex(false, Pi‖1‖0c−1)⊕ Pi

for i = 1, . . . , dt/re do
T ← T ‖ KD.duplex(false, 0b)

return (left|P |(C), leftt(T ))

Interface: DEC
Input: (K,NIV , A,C, T ) ∈ {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ × {0, 1}t
Output: P ∈ {0, 1}|C| or ⊥
Underlying keyed duplex: KD[p](K)

(A1, A2, . . . , Av)← pad10∗

r (A)
(C1, C2, . . . , Cw)← pad10∗

r (C)
P ← ∅
T ? ← ∅
KD.init(1,NIV )
for i = 1, . . . , v do

KD.duplex(false, Ai‖0‖0c−1) . discard output

for i = 1, . . . , w do
P ← P ‖ KD.duplex(true, Ci‖1‖0c−1)⊕ Ci

for i = 1, . . . , dt/re do
T ? ← T ? ‖ KD.duplex(false, 0b)

leftt(T ) = leftt(T
?) ? left|C|(P ) : ⊥

For example, security proofs for dedicated SpongeWrap-like constructions
have been given by Andreeva et al. [1] (for APE), Jovanovic et al. [53] (for
NORX), Sasaki and Yasuda [71] (for a variant with more efficient associated
data absorption), Chakraborti et al. [23] (for Beetle), Dobraunig et al. [35] (for
ISAP v2), and Chakraborty et al. [24] (for a generalized Beetle construction).
Mennink et al. [61] introduced the full-state SpongeWrap, where the associated
data is absorbed along with the message encryption, noting that the duplex
allows for full-state absorption but only r-bit squeezing.

Beyond these results, various SpongeWrap-like constructions have been in-
troduced whose security was claimed to follow from the original SpongeWrap
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Fig. 11: Decryption of MonkeySpongeWrap. The function gets as input a key K, a
nonce NIV , associated data A, a ciphertext C, and a tag T . The associated data
gets padded into v blocks as (A1, A2, . . . , Av)← padr(A) and the ciphertext into
w blocks as (C1, C2, . . . , Cw) ← padr(C). It subsequently computes tag blocks
(T ?1 , T

?
2 , . . .) truncated to t bits. If T ?i = Ti for all i = 1, 2, . . ., it outputs a

plaintext P = P1‖P2‖ · · · ‖Pw of size |C|, otherwise it outputs ⊥.

result of Bertoni et al. [16]. These schemes, however, often had subtle differences
compared to the original SpongeWrap, most importantly in the initialization
with the key and nonce. Our generalized construction MonkeySpongeWrap, as
such, is more broadly applicable. Below, we derive a security bound for the more
general MonkeySpongeWrap, based on the results of Section 4.3. Afterwards, in
Remark 4, we elaborate on the issues that come with release of unverified plain-
text in MonkeySpongeWrap. As before, we obtain two different results.

Theorem 7 (AE security of MonkeySpongeWrap). Let b, c, r, k, t, µ ∈ N, with

c + r = b and k ≤ b. Let p
$←− perm(b) be a random permutation, and K

$←−
({0, 1}k)µ a random array of keys. For any distinguisher D making at most qe
encryption construction queries, of total length at most σe permutation calls,
qd decryption construction queries, of total length at most σd permutation calls,
writing σ = σe + σd and q = qe + qd for brevity, and N primitive queries, we
have the following results:
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(i) Provided σe + σd +N ≤ 0.1 · 2c,

Advµ-aeMonkeySpongeWrap(D) ≤
2ν2σr,c(N + 1)

2c
+

(σd + qe − 1)N +
(
σd+qe

2

)
2c

+
(σ − q)q
2b − q

+
2
(
σ
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

+
qd
2t

;

(32)

(ii) In general,

Advµ-aeMonkeySpongeWrap(D) ≤
2νσr,c(N + σd + qe)

2c
+

(σd + qe − 1)N +
(
σd+qe−1

2

)
2c

+

(
σ−q
2

)
+ (σ − q)(σd + qe − 1)

2b
+

(
σ+N

2

)
+
(
N
2

)
2b

+
q(σ − q)

2min{c+k,b} +
µN

2k
+

(
µ
2

)
2k

+
qd
2t
.

(33)

Proof. As in Theorem 3, we will first discuss how MonkeySpongeWrap fits in the
description of the duplex construction of Section 3.1, then we discuss what this
means for the actual power of the distinguisher, i.e., the distinguisher’s resources
of Section 4.1, and finally we derive our bound.

The MonkeySpongeWrap construction is structurally different from the con-
structions of previous sections (TP, P-SC, S-SC, and FSKS), most importantly
as the distinguisher has access to an encryption and a decryption interface. For
encryption queries, we require nonce uniqueness which means that the state is al-
ways initialized to a different values. For decryption queries, however, the distin-
guisher may repeat nonces. Nevertheless, in either way, we have a key array K =
(K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ fed to the duplex construction. In addition, IV =
{0, 1}b−k, i.e., IV simply determines the set of nonces of MonkeySpongeWrap.
As before, the state is initialized as K[δ]‖NIV (hence α = 0).

The MonkeySpongeWrap distinguisher D can make qe encryption queries, of
total length at most σe duplexing calls (counting both the absorption and the
squeezing phase), qd decryption construction queries, of total length at most σd
permutation calls, and N primitive queries. This particularly means that the
parameters M and Q of the distinguisher’s resources equal σe + σd and qe + qd,
respectively. Another parameter of the distinguisher’s resources to consider is
QIV , the maximum number of initialization calls for a single IV ∈ IV. As in
the proof of Theorem 3, this value is bounded by µ, as any IV can be queried
alongside at most µ different keys.

So far, the quantification of the distinguisher’s resources in the duplex setting
is similar to that of Theorem 3 and Theorem 5. However, for the more advanced
adversarial parameters, the quantification is more involved. It makes sense to
distinguish between encryption queries and decryption queries. Each encryption
query is made for a different nonce and thus starts with a (δ,NIV ) different from
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all earlier encryption queries. However, the nonce could have appeared in an
earlier decryption query, and hence it could be that a subpath is repeated. This
means that the encryption queries contribute at most qe to L. As in encryption
queries, no duplexing calls are made for flag = true, we conclude that they
contribute 0 to Ω. Now, for decryption queries, the distinguisher can repeat
nonces. As before, this means that decryption queries contribute at most qd to
L. In decryption queries, the duplexing calls corresponding to the deciphering of
the ciphertext are made for flag = true, and there can be at most σd− 2qd such
calls, where the subtraction of 2qd comes from the fact that each decryption call
contains at least two duplexing calls for flag = false. (Refer to Remark 4 below
for some clarifications regarding these bounds.) We conclude that L ≤ qe+qd−1
(noting that there must always be a first query that sets the first subpath),
Ω ≤ σd − 2qd and thus νfix ≤ σd − 2qd + qe + qd − 1 = σd − qd + qe − 1.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σe + σd
N N
Q qe + qd
QIV ≤ µ
L ≤ qe + qd − 1
Ω ≤ σd − 2qd
νfix ≤ σd − qd + qe − 1

Write σ = σe+σd and q = qe+qd for brevity. If we plug these values into the
bound (5) of Theorem 1, and simplify the bound at some points for readability,
we obtain the following result, provided σ +N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σr,c(N + 1)

2c
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(
σd+qe

2

)
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+
2
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)
2b
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2k
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(
µ
2

)
2k
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(34)

If we plug these values into the bound (6) of Theorem 2, and again simplify the
bound at some points for readability, we obtain the following result:

AdvKD(D) ≤
2νσr,c(N + σd + qe)
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(35)

Note that, typically, σd � σe. This means that, as before, the bound (34)
is in general better, but only holds provided q + N ≤ 0.1 · 2c. This means that
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for certain parameters, namely if b� 2c and k � c, (35) is better. We will thus
continue with both bounds.

What remains is to translate these bounds into the multi-user AE security of
MonkeySpongeWrap. The reasoning is similar as in the proof of Theorem 3, but
differs slightly in the decryption functionality of MonkeySpongeWrap. We can
note that the formal description MonkeySpongeWrap[p] of Algorithm 3 is in fact
a description MonkeySpongeWrap[KD[p]], where the key array K input to TP is
directly fed into KD. Thus, denoting Rae = (Rae

1 , . . . ,R
ae
µ ) as a list of µ random

functions as defined in Section 2.3, and ⊥ as a list of µ ⊥-symbols,

Advµ-aeAE (D) = ∆D

(
ENC[KD[p]]K ,DEC[KD[p]]K , p

± ; Rae,⊥, p±
)

= ∆D

(
ENC[KD[p]K ],DEC[KD[p]K ], p± ; Rae,⊥, p±

)
≤ ∆D

(
ENC[KD[p]K ],DEC[KD[p]K ], p± ; ENC[IXIF[ro]],DEC[IXIF[ro]], p±

)
(36)

+∆D

(
ENC[IXIF[ro]],DEC[IXIF[ro]], p± ; ENC[IXIF[ro]],⊥, p±

)
(37)

+∆D

(
ENC[IXIF[ro]],⊥, p± ; Rae,⊥, p±

)
. (38)

The distance of (36) is the security of KD as bounded in (34) or (35), the distance
of (37) is at most qd/2

t as distinguishing both world can only be done by a
random tag guess, and the distance of (38) equals 0 as both oracles output
uniform random and independent strings for each input. ut

Remark 4. In the proof of Theorem 7, it is mentioned that any encryption query
may have a colliding subpath with an earlier decryption query, and hence that qe
decryption queries contribute at most qe to L. Typically, however, these queries
with colliding subpaths are not expected to help the distinguisher as it likely
has not seen the output of the corresponding decryption query. Likewise for de-
cryption queries, the distinguisher can enforce a repeated subpath (contributing
at most qd to L), and the distinguisher can even set up to σd − 2qd outer values
of its choice. Again, here we are overly generous to the distinguisher in that it
never sees the output of the decryption, unless with negligible probability, and
it is unlikely the distinguisher can deduce any information from those queries.
In a strict sense, the counting performed here is comparable to what would be
done in a setting where unverified plaintexts are released [2]. Concretely, if the
distinguisher makes a decryption query, the permutation calls are defined inter-
nally and collisions may occur, and this is the reason the bounds on L and Ω
are defined as such. (We do not claim that any security of MonkeySpongeWrap
under release of unverified plaintext can be concluded from Theorem 7.)

10 Conclusion

The potential of the general full-state keyed duplex is huge, as it can be (and
actually, is) used to describe a wide range of permutation based symmetric cryp-
tographic schemes. However, the explicit use of the security bounds of the keyed
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duplex has been left behind, in part due to the generality of the construction as
well as the generality of the security analysis. In this paper, we aimed to give a
comprehensive overview of (i) how the duplex is defined in general, (ii) why it
is defined as such, (iii) how the general security bounds look like, (iv) why they
look like this, and finally, (v) how we can actually use these bounds by ways of
simple yet practical applications.

The applications presented in Sections 5-9 are only the tip of the iceberg.
Other potential applications not covered in these sections include reseedable
pseudorandom sequence generation [15,45], password-based key derivation [64],
Beetle-style authenticated encryption [23], and more. However, the same me-
chanics as in Sections 5-9 can be used to apply the bounds of Section 4 to these
types of construction.

Having said that, the results in this work also deserve a word of caution,
namely that all results in this work only hold in the ideal permutation model.
This means that the underlying permutation is assumed to be perfectly random.
If instantiated with an actual permutation like the permutation of Keccak [65],
of Ascon [39], or of PHOTON [50], the security may be lower. At the very least,
our bounds guarantee security under the assumption that the adversary does
not take any internal primitives of the permutation into account; breaking the
scheme faster than the proven bounds requires the adversary to dive into the
permutation and exploit certain properties there.
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