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Abstract. In order to maintain a similar security level in a post-quantum
setting, many symmetric primitives should have to double their keys and
increase their state sizes. So far, no generic way for doing this is known
that would provide convincing quantum security guarantees. In this pa-
per we propose a new generic construction, QuEME, that allows to double
the key and the state size of a block-cipher. For this, we started by con-
sidering the ECB-Mix-ECB (EME) construction, but we found a new
type of quantum attack on it. We therefore tweaked EME in order to
resist these attacks, and provide several classical and quantum security
arguments and analyses on QuEME. We propose a concrete instantiation
of this construction with variants of AES-128.
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1 Introduction

For a long time, it was accepted that symmetric primitives only needed to double
their key length in order to stay resistant to quantum attackers. Though new
attacks in powerful models [KM12,KM10,KLLN16a] have shown that a more in-
depth study is needed and that some particular scenarios are dangerous, most
current symmetric primitives have best quantum attacks that achieve at most a
square-root speed-up on the classical attack, showing that most attacks would
indeed be infeasible with a double-sized key. Nevertheless, no generic, simple,
and efficient way is known for doubling the key size of a primitive, and the best
known candidate for this purpose—the FX construction [KR01]—was proven to
be insecure with respect to quantum attacks in the superposition model [LM17],
though it has been shown to fare better in weaker models [JST21]. Other key-
extension modes like the two-key Even Mansour [ABKM22] could also be shown
secure only in weaker models.
? This project has received funding from the European Research Council (ERC) un-
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Additionally, in [CNS17], it was pointed out that attacks on modes exploiting
internal collisions, that depend on the internal size of the primitives, might also
render the primitives weaker against quantum adversaries, so that just increas-
ing the key length might not be enough, and the internal size of the primitive
should also be increased. A new post-quantum symmetric family of primitives—
Saturnin [CDL+20]—was proposed to address this concern. The block-cipher
which forms the core of this family has a state-size of 256 bits, allowing much
more reasonable security claims regarding all types of quantum attacks.

A generic and provable way of extending secure classical constructions into
new ones with doubled key as well as doubled state-size is still an interest-
ing question that has been widely studied without a satisfactory answer being
found so far. In [HI19] the authors show a way of proving that the 4-round
Luby-Rackoff construction (LR4) is a qPRP. However, in order to build secure
post-quantum constructions, we need also to take into account the decryption
direction. In [IHM+19] it was shown that LR4 has a quantum attack when we al-
low both encryption and decryption queries, so a natural candidate for extending
this attack would be LR5. Unfortunately, with the proof techniques available at
present, proving the quantum security of LR5 is turning out to be very challeng-
ing. Using the same database technique as in the proof of [HI19] is not possible
since there is no known way yet of generalising database-oracles to permutations,
and the equations governing the internal variables are quite complex with many
variables, making ad-hoc techniques difficult to apply. Moreover, LR5 would not
provide more than (k/2) log n bits of security because of the quantum attack
shown in [DW18], where n is the size of the input to the round function, and k
is the size of one round key.

The aim of our work is to provide new useful information in order to advance
towards building a generic and provable way of easily extending secure classical
constructions into new ones with doubled key and doubled state-size, while their
post-quantum security remains comparable to the original classical one: we want
to provide a construction that provides n-bit security both in classical and
quantum settings. By this, we mean that it will provide the same resistance to
all attacks as would an ideal block-cipher with 2n-bit block and 2n-bit key to all
possible quantum adversaries in any model, including Q2. For this, we consider
a new approach, based on the Encrypt-Mix-Encrypt paradigm with five block-
cipher calls, that would allow to extend the internal state as well as the key
size of any classically secure block-cipher. The comparison with other possible
generic extension constructions is given in table 1.

The ECB-Mix-ECB or EME construction [HR04] was proposed as a highly
parallelisable mode of operation to extend the domain of a block-cipher to arbi-
trary lengths. The ECB layers above and below make it a suitable candidate for
resisting quantum attacks, since most Simon-like attacks rely on some part of the
input passing through only one block-cipher call or being XOR-ed directly to the
state, and the ECB layers ensure that every part of the input passes through at
least two block-cipher calls during both the encryption and decryption routines.
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1.1 Our Contributions

The main contributions of our work are as follows (n will consistently denote
the width of the underlying block-cipher throughout the paper):

1. An original quantum superposition attack on the EME construction, which
introduces a new family of attacks that exhibits a periodic property found
in collisions;

2. A new construction based on Encrypt-Mix-Encrypt that resists this attack,
by replacing the XOR-then-Encrypt mixing layer with a tweakable permu-
tation call, which we will call QuEME, and which is claimed to offer n bits
of security in both the classical and the quantum setting;

3. Four classical proofs for this construction: an IND-CPA proof of security
up to n bits using a conjecture from Mirror Theory; an IND-CCA proof
up to the same bound using a tighter conjecture from Mirror Theory, for
which we find numerical evidence through an original approach using some
simulations; and direct proofs of IND-CPA and IND-CCA security up to
2n/3 bits;

4. An original distinguisher that applies in particular to our construction that
runs in time O(2n), which matches our security bound;

5. The first quantum security arguments for Encrypt-Mix-Encrypt construc-
tions, to show that QuEME has, at least, n/6 bits of quantum security, which
is on par for instance with the quantum security of LR4 [HI19], and show in
particular that there is no collapse in the quantum security as can happen
in certain other constructions like LR3 [KM10];

6. A concrete instantiation of the QuEME scheme with AES-128 for building
a block-cipher with 256-bit state and key, with concrete (quantum) security
claims; and some variants with fewer rounds than 10 for the building block
that we also believe should be resistant.

Table 1: Comparison of the offered security by the different generic extension
constructions using a underlying block-cipher of size n and key-size k when
k = n. AES-256, with a state k/2 = n, provides a much worse security when
used in modes and when considering attacks on the size of the state (up to 242.6

quantumly).
Classical Quantum Classical Quantum Expected Overall

Constructions Bound Bound Best attack Best attack Security

EME 2n/2 [HR04] - 2n (Sec.7) 2n/2 (Q2 - Sec.4) 2n/2

QuEME
(this paper)

2n 2n/6 2n 2n 2n

LR5 2n [Pat04] - 2n [Pat04] 2n/2 [DW18] 2n/2

The paper is organised as follows: as there are several results of different
flavours in this paper, we start by providing in Section 2 an inclusive summary
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of the main conclusions and final results obtained in the paper. Section 3 in-
troduces some notation and states known results used later in the paper. Next,
in Section 4, the EME construction is introduced, along with a quantum attack
on it. Section 5 proposes our new construction, QuEME, and proves its classi-
cal security. Section 6 describes the simulation we have implemented in order
to validate the conjecture from the previous section, in a quite innovative ap-
proach. Section 7 presents our new distinguisher on O(2n) that matches our
bound. Section 8 provides some quantum arguments to support the quantum se-
curity of the construction. Section 9 provides variants of a concrete construction,
Double-AES, combining QuEME with AES-128. A conclusion and discussion are
provided in Section 10.

2 Summary of the Results

Our goal in this paper is to design a quantum-safe mode for doubling the width
and key-length of a block-cipher. To the best of our knowledge, such a design
has previously not been proposed. We propose a construction with five block-
cipher calls that achieves good parallelisability, good classical security bounds,
and some post-quantum security guarantees. Some side results of our work are
a new type of superposition attack that applies to the EME construction, an
original classical distinguisher on our construction matching our bound, and a
new approach using simulations for supporting the conjecture in the proof. In
addition we propose a concrete instantiation of our construction using the AES
block-cipher. In this section we provide a summary of each of the presented
results in this paper.

2.1 First Attempt and Attack

The main aim is to propose a construction that would double the internal state
and key; simultaneously we also considered building a parallelisable construction.
Therefore our first idea was to begin with a two-block version of EME (ECB-
Mix-ECB) [HR04], shown in Fig. 1a, which is known to be classically secure to
the birthday bound in n:

However, we show that this does not work, as we demonstrate a new super-
position key-recovery attack against this construction. This attack is one of its
own kind as it is the first (to our knowledge) to combine collision search and
Simon’s algorithm. Our attack uses the uniform superposition of collisions to
restrict a simple function, exposing a period property only for the correct key.

2.2 New Construction

We modify the EME construction by introducing a tweakable permutation call
in the mixing layer, which can be implemented with a block-cipher by inserting
the tweak as key. This we call QuEME, shown in Fig. 1b.
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(a) The EME construction [HR04].
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(b) The QuEME construction.

2.3 Classical Security Proofs

We present several classical security proofs for the paper. When we use a well-
accepted result from Mirror Theory, we can show IND-CPA security up to n
bits. If we assume a more general conjectured result from Mirror Theory, we can
also show IND-CCA security up to n bits. Finally, without Mirror Theory, we
can show security up to 2n/3 bits in both IND-CPA and IND-CCA settings.
Our results improve upon previously known security results of EME, which were
only up to the birthday bound in the width of E. In support of our conjectured
result from Mirror Theory, we show some numerical evidence obtained from
simulations, which to the best of our knowledge is a novel use of simulations in
reduction proofs of this kind.

2.4 Distinguisher Matching the bound

We did not find any classical or quantum attack of complexity lower than n bits
against the new mode. Even for less than 2n bits, mounting a key-recovery or
message-recovery attack seems to be difficult. However, we found an information-
theoretic distinguisher in 2n queries which works by exhausting the entropy of the
keyed block-cipher calls and solving the resulting equations. Our distinguisher
uses the fact that any query (x1||x2) done to our construction gives output
(y1||y2) satisfying

E1(x1)⊕ E2(x2) = E−13 (y1)⊕ E−14 (y2)

for some random permutations E1, E2, E3, E4. (Since this relation also holds in
EME and other similar constructions, our attack also works there.) What we show
using linear algebra arguments is that if we query a random permutation with
Ω(2n) queries then permutations E1, E2, E3, E4 such that the above equation is
compatible with our queries don’t exist anymore, which allows us to distinguish
between EME and a random permutation.
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2.5 Quantum Security Proof

We also analyse the security of the construction against a quantum adversary,
and obtain some basic bounds. We show that our proof has n/6 bits of quantum
security. In order to prove this bound, we exploit the fact that the construc-
tion starts with two encryption layers and relate the quantum security to the
classical security using Zhandry’s quantum lower bounds on small range func-
tions. However, we don’t know of any attack that would perform better than the
classical distinguisher running in time O(2n). Therefore, we don’t believe our
results are tight and discuss potential improvements of our results. A natural
way of doing so would be to use Zhandry’s technique of recording with permuta-
tion, but it is still an active topic in the field to better understand the quantum
query-recording in this setting.

2.6 Instantiations

Finally, we propose some concrete instantiations of our construction when using
(reduced-round versions of) AES-128 as building blocks. We propose Double-
AES, where the blocks are slightly-tweaked versions (constant-wise) of the full
10-round AES, and we also propose Double-AES-7, where the number of rounds
is reduced to 7 in all the blocks, and Double-AES-5-MC, a variant with 5 rounds
but that includes the last MC transformation in E1, E2 and E. Our security
claims of n-bit security are, for the first time to the best of our knowledge, unified,
as we claim a unique security against all adversaries, whether they are classical
or quantum. We believe that this is a trend that might become predominant as
the post-quantum future might approach.

3 Notation and General Related Concepts

For i ≤ j we will write [i..j] to denote the range {i, . . . , j}. We will use the
Pochhammer falling factorial power notation

(j)i := j(j − 1) . . . (j − i+ 1).

We recall that n will throughout denote the width of the underlying block-cipher
E; further, N will always denote 2n.

3.1 Common definitions and notations

We first define the prp advantage of an adversary that tries to distinguish a
function f from a random permutation, performing only queries to f .

Definition 1. Let D be a distribution over the set {f : {0, 1}n → {0, 1}n} for
a fixed n ∈ N. We write

AdvDprp(A) =

∣∣∣∣∣ Prf←D
[Af (·) = 1]− Pr

f
$←−P

[Af (·) = 1]

∣∣∣∣∣
where P is the set of permutations in {0, 1}n.
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Depending on the context, Af can be a classical or quantum algorithm that does
classical or quantum queries to f . We also say that an adversary performing
queries to f plays the IND-CPA game. We now define the strong prp advantage,
where A can also perform queries to f−1.

Definition 2. Let D be a distribution over the set Pn where Pn is the set of
permutations in {0, 1}n. We write

AdvDsprp(A) =

∣∣∣∣∣ Prf←D
[Af,f

−1

(·) = 1]− Pr
f

$←−Pn
[Af,f

−1

(·) = 1]

∣∣∣∣∣
In this case, we say A plays the IND-CCA game.

3.2 Mirror Theory

Consider two sequences of n-bit variables Y1, . . . , Yq1 and Z1, . . . , Zq2 , with q1 <
N, q2 < N . For some q < q1 + q2 suppose there are q bi-variate equations of the
form

Yi ⊕ Zj = δij .

Then the Mirror Theory Conjecture states the following.

Conjecture 1 (Mirror Theory Conjecture) The number of solutions to the
system described above such that Yi’s are all distinct and Zi’s are all distinct is
at least

(N)q1(N)q2
Nq

· (1− ε),

where ε = O(q/N).

Tighter version. Consider the graph where a bi-variate equation involving Yi
and Zj is represented by an edge between Yi and Zj . We assume none of the
equations is redundant and the system of equations is consistent, so there are
no cycles in this graph. Let C(1), . . . , C(t) be the connected components, where
t = q1+ q2− q. For each j ∈ [1..t] let q(j)1 (resp. q(j)2 ) be the number of Yi’s (resp.
Zi’s) that appear in C(j). Finally, define the cumulative sums

Q
(j)
b =

j−1∑
i=1

q
(i)
b

for each b ∈ {1, 2} and each j ∈ [1..t]. Then the Tight Mirror Theory Conjecture
states the following.

Conjecture 2 (Tight Mirror Theory Conjecture) The number of solutions
to this system such that Yi’s are all distinct and Zi’s are all distinct is at least

1

Nq
·
t∏

j=1

[(
N −Q(j)

1

)q(j)1
(
N −Q(j)

2

)q(j)2

]
· (1− ε),

where ε = O(q/N).
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In Sec. 6, we discuss some simulations we ran that suggest that this conjec-
ture is not unreasonable. App. A contains a more detailed discussion on Mirror
Theory.

3.3 H-Coefficient Technique

Suppose an adversary A is playing a distinguishing game against two oracles,
one representing an ideal cryptographic object (the ideal world denoted O0),
and the other representing an actual cryptographic construction C (the real
world denoted O1). To bound the advantage of A we use the H-Coefficient Tech-
nique [Pat09], which we briefly describe below. App. A.1 contains a more detailed
description of the formal setup used for applying the H-Coefficient Technique.

Let τ be the transcript of a q-query game played by A. In addition, when A
interacts with C, let τ∗ denote the internal transcript, i.e., intermediate variables
computed when computing the responses to A’s queries. Let S be a sampler
that takes τ as input and simulates an internal transcript τ∗ when A interacts
with f . We consider a modified game where at the end of the game τ∗ is released
to A, which can be used to compute the final response bit. (τ, τ∗) together will
be called the extended transcript.

We’ll define one or several bad events in the ideal world, based on the internal
random coins of f and S . (Note that for A we only consider deterministic
adversaries.) We’ll call a transcript (τ, τ∗) good if it can be obtained in the ideal
world without encountering any of the bad events. Given a transcript (τ, τ∗) and
an oracle Ob, we’ll examine the interpolation probability of (τ, τ∗) in Ob, denoted
Prb[(τ, τ

∗)], which is the probability of obtaining (τ, τ∗) in a game against Ob.
For a good transcript (τ, τ∗), the ratio of Pr1[(τ, τ∗)] and Pr0[(τ, τ

∗)] is called
the ratio of good probabilities, whereas the probability of at least one bad event
occurring (applicable only for the ideal world) is referred to as the bad probability.
Then the main theorem of H-Coefficient Technique gives us the following bound.

Theorem 1 (H-Coefficient Technique [Pat09]). Suppose for an adversary
A playing a q-query distinguishing game between an ideal object f and a real
construction C, we can define bad events and find ε1 and ε2 such that the prob-
ability of a bad event in a game against f is at most ε1, and the ratio of good
probabilities while interacting with C and f for any fixed good transcript τ is at
least 1− ε2. Then we have

AdvCf (A) ≤ ε1 + ε2.

3.4 Quantum Computing

We present here some quantum algorithms that we will use in this paper. Per-
forming a quantum query to a function f means applying the unitary Of :
|x〉 |y〉 → |x〉 |y ⊕ f(x)〉. If f is efficiently computable classically then Of is effi-
ciently computable quantumly.
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Simon’s Algorithm. A function g : {0, 1}n → {0, 1}m is said to have a period
s when g(x) = g(y) iff. x = y or x = y ⊕ s. If g is efficiently computable then
Simon’s algorithm [Sim97] is able to recover s in time poly(n). A relaxed version
of the Simon’s Algorithm can be used to detect the presence of a period without
recovering it [IHM+18, Sec. 4].

It is also possible to only evaluate g on a subspace as long as the subspace
admits s as a period, i.e. if x is the subspace, x⊕ s is also in the subspace.

Grover’s search. Given an efficiently computable function f : {0, 1}n → {0, 1},
Grover’s search algorithm [Gro94] finds an element x (if it exists) such that
f(x) = 1 in time O(2n/2).

BHT algorithm. Given a random function f : {0, 1}n → {0, 1}n, the BHT
algorithm [BHT98] finds a collision (i.e. x 6= y st. f(x) = f(y)) with O(2n/3)
quantum queries to f . If f is efficiently computable then the quantum running
time is also O(2n/3), given access to quantum RAM operations.

It is possible to modify the procedure to get the uniform superposition of
collisions instead of a random one.

Models for quantum attacks. Different scenarios are possible: The Q1 set-
ting allows the attacker to use a quantum computer but he can make only classi-
cal queries to the black-box primitives. The Q2 setting (or superposition attacks)
allows the attacker to make superposition queries to the black-box primitives.
Many of the published quantum attacks rely on this model [KLLN16b], and as
security in this setting represents security in any other intermediate scenarios,
we will aim for resistance to Q2 attacks for our construction.

4 Constructions based on Encrypt-Mix-Encrypt
Paradigm: First Attempt and Attack

Our aim is to find a 2n-bit-to-2n-bit encryption mode using an n-bit block-cipher,
ideally with five or fewer calls to the block-cipher. Specifically, we studied the
encrypt-mix-encrypt paradigm, where the plaintext blocks first pass through a
(weak) encryption layer, then an invertible mixing layer with possibly non-linear
components, and then another encryption layer. For the encryption layers we
can begin with something very simple, like an ECB layer (with different keys).
Then our generic encryption function becomes

(L,R) 7→ (E3(M(E1(L), E2(R))`), E4(M(E1(L), E2(R))r)),

where E1, . . . , E4 are block-ciphers with independent keys, andM is a 2n-bit-to-
2n-bit mixing layer withM(·, ·)` andM(·, ·)r indicating the left and right halves
of its output respectively (Fig. 2, left).

For a specific mixing function, we take a 2n-bit-to-n-bit compressing function
F and use

M(x, y) := (x⊕ F (x, y), y ⊕ F (x, y))
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as our mixing layer (Fig. 2, centre). Since M needs to be invertible, we have the
condition on F that (x, y) should be recoverable from (x⊕F (x, y), y⊕F (x, y)).
One easy way to achieve this is to take an n-bit-to-n-bit function f and define

F (x, y) := f(x⊕ y).

This was the first specific construction we considered (Fig. 2, right). We assumed
f is a qprf, and E1, . . . , E4 are qprp’s. When all the underlying primitives are
instantiated with a block-cipher, this becomes a variant of EME [HR04].

E1 E2

L R

M

E3 E4

S T

L̂ R̂

Ŝ T̂

E1 E2

L R

F

E3 E4

S T

L̂ R̂

Ŝ T̂X

E1 E2

L R

f

E3 E4

S T

L̂ R̂

Ŝ T̂X

Fig. 2: Left: The generic construction, with an invertible mixing layer M :
{0, 1}2n −→ {0, 1}2n. Centre: With a specific mixing layer, with a compressing
function F : {0, 1}2n −→ {0, 1}n. Right: A more specific instantiation of F ,
with a prf f : {0, 1}n −→ {0, 1}n.

4.1 New superposition attack on the EME construction

While analysing the quantum security of this construction with F (x, y) := f(x⊕
y), we discovered a new kind of superposition attack.

The original idea of the attack is to build in the beginning a superposition
of states that partially collide in the left output, after which performing an
exhaustive search of the key allows us to build a function that will be periodic
in the subset of colliding states. This procedure is presented in Algorithm 1, and
takes Õ(2k/2 + 2n/3) computations for recovering the key of E2. The same can
be applied for recovering the keys of E1, E3 or E4 (as the inverse has the same
shape). This is a new kind of superposition attack, that combines for the first
time BHT, Grover and Simon (introduced in subsection 3.4), and where BHT is
used to restraint the function to the interesting outputs that generate a partial
collision, and that will next verify a certain property. We believe this attack
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might apply to more constructions, and it should be considered in further studies
analysing the security of symmetric primitives with respect to superposition
attacks.

Algorithm 1 Attack on construction
Input: superposition oracle access to the construction
Output: the key k2 of E2

1: Choose two values L0 and L1

2: Repeat O(n) times (for confirmation)
3: Search with BHT algorithm for claws on Fb : R 7→ S(Lb, R) (using 2n/3 turns)

. We get a uniform superposition
∑
|R0, R1〉 of all elements of the set

{(R0, R1)/f(E1(L0)⊕ E2(R0))⊕ f(E1(L1)⊕ E2(R1)) = E1(L0)⊕ E1(L1)}.
4: EndRepeat

. We get O(n) superpositions that we use as a database for the following Grover
search

5: Grover search on k2 with 2k/2 turns using the following oracle :
6: ForEach superposition

∑
|R0, R1〉

7: Add an external qubit |b〉 = 1√
2
|0〉+ 1√

2
|1〉

8: Apply (b,R0, R1) 7→ (b, E2,k2(Rb), E2,k2(R1−b))
. If we guessed right, we get a uniform superposition

of the set {(b,R0, R1)/f(E1(Lb) ⊕ R0) ⊕ f(E1(L1−b) ⊕ R1) = E1(L0) ⊕ E1(L1)}.
This set admits the period (1, E1(L0)⊕ E1(L1), E1(L0)⊕ E1(L1)).

9: EndFor
10: Apply Simon’s algorithm on the resulting superposition with the function (b,

R0, R1) 7→ R0 ⊕R1.
. If we guessed k2 right, the function on this set admits

the period (1, E1(L0)⊕ E1(L1), E1(L0)⊕ E1(L1)). Detecting a period on a wrong
guess would mean a weakness of f .

11: Uncompute to get back the superpositions
∑
|R0, R1〉

12: EndGrover
13: Return k2

Description of the attack. Let S(L,R) be the function corresponding to this
construction for inputs L,R (see rightmost construction of Figure 2) so

S(L,R) = E3 (E1(L)⊕ f(E1(L)⊕ E2(R))) .

We start by fixing two distinct values L0 and L1 for left entries. Then, we
consider the uniform superposition of claws between F0 : R 7→ S(L0, R) and
F1 : R 7→ S(L1, R) :

1√
|{(R0, R1), S(L0, R0) = S(L1, R1)}|

∑
S(L0,R0)=S(L1,R1)

|R0, R1〉 .
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(We can obtain this with BHT algorithm with complexity 2n/3.) We observe
that S(L0, R0) = S(L1, R1) is equivalent to

f(E1(L0)⊕ E2(R0))⊕ f(E1(L1)⊕ E2(R1)) = E1(L0)⊕ E1(L1).

We add an external qubit |b〉 = 1√
2
|0〉 + 1√

2
|1〉 to the state and apply the

controlled exchange (b, R0, R1) 7→ (b, Rb, R1−b). The state becomes the uniform
superposition of elements from

{(b, R0, R1)/f(E1(Lb)⊕ E2(R0)⊕ f(E1(L1−b)⊕ E2(R1) = E1(L0)⊕ E1(L1)}.

This state is called |Φ〉 for the rest of the attack.
Now, if we guess the key of E2 right, we can apply OsupE2

: |x〉 → E2(|x〉) on
the 2 rightmost register of |Φ〉3 and get the superposition

1√
2|{(R0, R1), S(L0, R0) = S(L1, R1)}|

∑
(b,R0,R1)∈A

|b, R0, R1〉

where A = {(b, R0, R1)/f(E1(Lb)⊕R0)⊕f(E1(L1−b)⊕R1) = E1(L0)⊕E1(L1)}.

This set admits the period (1, E1(L0)⊕ E1(L1), E1(L0)⊕ E1(L1)), i.e. if (b,
R0, R1) is in the set then (b⊕1, R0⊕E1(L0)⊕E1(L1), R1⊕E1(L0)⊕E1(L1)) is
also in the set. Then, we apply Simon’s algorithm on (b, R0, R1) 7→ R0 ⊕ R1 to
recover the existence of this period and uncompute the last steps to recover the
states |Φ〉. This part is the execution of Theorem 2 below with g = 0, A = {(b,
R0, R1)|S(L0, R0) = S(L1, R1)}, f ′i : (b, R0, R1) 7→ (b, E2,k2(Rb), E2,k2(R1−b)),
fi : (b, R,R′) 7→ R′ ⊕ R and s = (1, E1(L0) ⊕ E1(L1), E1(L0) ⊕ E1(L1)) and
i0 = k2.

Theorem 2. Suppose that m = O(n), {fi} a family of public functions from
{0, 1}n → {0, 1}l, {f ′i} a family of public permutations from {0, 1}n → {0, 1}n
and g : A ⊆ {0, 1}n → {0, 1}l on which we only get some databases |φg〉 and
there is a unique i0 such that fi0 ⊕ g ◦ f ′i0 has a period s and

max
i,t/∈{0,1}m×{0}∪{i0,s}

Px∈f ′−1
i (A)((fi ⊕ g̃ ◦ f

′
i)(x⊕ t) = (fi ⊕ g ◦ f ′i)(x)) ≤

1

2

With O(n) databases |φg〉 =
∑
x∈A

1√
|A|
|x〉 |g(x)〉, we can recover i0 with a

probability in Θ(1). The running time is O(n32m/2).

This result can be obtained as a modification of the Offline-Simon algo-
rithm [BHN+19], which is explained in more detail in section B from the sup-
plementary material.

A variant of the attack for more mixing layers is presented in Appendix C.This
variant works the same way but the recovered period will be different.
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E1 E2

L R

E

E3 E4

S T

L̂ R̂

Ŝ T̂

X

Fig. 3: The new construction QuEME; the E in the middle layer takes its key as
an input from the right.

5 New Construction and Classical Security Proofs

To avoid the attack shown in the previous section, we propose the new con-
struction QuEME shown in Fig. 3. We define QuEMEE : {0, 1}2n −→ {0, 1}2n
as

QuEMEE(L,R) := (S, T ),

where

L̂ = E(K1, L), R̂ = E(K2, R),

X = L̂⊕ R̂,

Ŝ = E(X, L̂), T̂ = X ⊕ Ŝ,

S = E(K3, Ŝ), T = E(K4, T̂ ),

for a block-cipher E(· , ·) and four keys K1, . . . ,K4. For each i ∈ [1..4] we’ll use
the notation Ei := E(Ki, ·).

5.1 Proof of Classical Security

First we analyse the information-theoretic security of QuEME against a classical
adversary. To move to the information-theoretic setting, we replace E1, E2, E3,
E4 with independent random permutations π1, π2, π3, π4, and E(·, ·) with a
tweakable random permutation π̃. We call this modified construction QuEMEπ.

3 This is possible since from the key of E2, we can compute E2 and E−1
2 efficiently.

We then compute |x〉 |0〉
OE2−−−→ |x〉 |E2(x)〉

Swap−−−→ |E2(x)〉 |x〉
O
E
−1
2−−−−→ |E2(x)〉 |0〉.
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The inner call to E. Since the inner call to E uses a dynamic key derived from
the internal state, we consider the possibility that A tries to guess the internal
key with offline queries to E. However, we note that for a good block-cipher, the
only way this can provide A additional information about the game is if they can
guess a key-message pair or a key-ciphertext pair. Since there are O(q) internal
input and output pairs for E, this gives a O(qq′/22n) probability of guessing one
such pair correctly with q′ offline queries to E.

In addition, let αE(q, q′) be an upper-bound on the advantage of an adversary
who has learnt q′ key-plaintext-ciphertext triples for E and is trying to distin-
guish q other key-plaintext-ciphertext triples from random. In other words, it
reflects the non-idealness of E and should be negligible for a good block-cipher.
In our security bounds, whenever we switch from QuEMEπ to QuEMEE , we add
the terms O(qq′/22n) and αE(q, q′) to A’s advantage as the cost of replacing the
inner call to E with π̃.

Settings of the Game. For convenience, we first make a few standard stipulations
and modifications to the sprp game. We do not allow A to make any redundant
queries, which can either be repetitions of earlier queries or the feeding back in
the opposite direction of an earlier response. Since such queries can give A no
extra information, this constraint cannot decrease the advantage of A.

As a final modification, we consider the extended transcript game defined
in Sec. 3.3, with τ = {(Li, Ri, Si, T i) | i ∈ [1..q]} and τ∗ = {(L̂i, R̂i, Xi, Ŝi,

T̂ i) | i ∈ [1..q]}. Defining the sampler S will be a critical part of the proof.

Transcript Graphs. As preparation for sampling the internal transcript τ∗, we
first define two undirected bipartite graphs G andH on the external transcript τ .
The vertices of G are the q1 distinct values L1, . . . , Lq1 in the set {Li | i ∈ [1..q]}
and the q2 distinct values R1, . . . , Rq2 in the set {Ri | i ∈ [1..q]} (we’ll soon
specify how we pick these labels); we put an edge between Lj and Rk if they
appear together in some query, i.e., there is a query i ∈ [1..q] with (Li, Ri) = (Lj ,
Rk). H is defined identically except with the ciphertexts {(Si, T i) | i ∈ [1..q]}
replacing the plaintexts in the above definition of G.

Let α (resp. β) be the number of components in G (resp. H). We label these
components G(1), . . . , G(α) and H(1), . . . ,H(β). For t ∈ [1..α] let q(t)1 (resp. q(t)2 )
be the number of L-nodes (resp. R-nodes) in G(t). Similarly, for t ∈ [1..β] let
q
(t)
3 (resp. q(t)4 ) be the number of S-nodes (resp. T -nodes) in H(t). Define the
cumulative sums

Q
(j)
b =

j−1∑
i=1

q
(i)
b

for each j ∈ [1..α] when b ∈ {1, 2} and each j ∈ [1..β] when b ∈ {3, 4}. We
assume the labelling of the L-nodes in G is such that the nodes {Lk | Q(j)

1 +1 ≤
k ≤ Q(j+1)

1 } are in G(j), and likewise for the R-nodes, S-nodes, and T -nodes.

Classical Security Claim. We claim the following security bound for QuEMEπ.
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Theorem 3. For any classical adversary A playing a q-query IND-CCA game
against QuEMEπ, we have

AdvQuEMEπ
sprp (A) = O

( q
2n

)
.

For any classical adversary A′ playing a q-query IND-CCA game against QuEMEE

with q′ offline queries to E, we have

AdvQuEMEE
sprp (A′) ≤ O

( q
2n

)
+O

(
qq′

22n

)
+ αE(q, q′).

The proof of this relies on the Tight Mirror Theory Conjecture (Conjecture 2),
and is found in App. D.2 in the Supplementary Material. A simulation supporting
the conjecture following an innovative approach can be found in section 6.

5.2 IND-CCA security proof of (2n/3)-bit Security

In this subsection we instead prove the following weaker result without relying
on any conjectured bound.

Theorem 4. For any classical adversary A playing a q-query IND-CCA game
against QuEMEπ, we have

AdvQuEMEπ
sprp (A) = O

(
q3

22n

)
.

For any classical adversary A′ playing a q-query IND-CCA game against QuEMEE

with q′ offline queries to E, we have

AdvQuEMEE
sprp (A′) ≤ O

(
q3

22n

)
+O

(
qq′

22n

)
+ αE(q, q′).

When decryption queries are allowed, we partition the queries into two sets:
let I∗ contain the queries where both output blocks are fresh, and I contain the
queries where one of the output blocks collides with an earlier block at the same
position.

Sampler of Internal Transcripts. Here we’ll define the sampler S which takes
τ = {(Li, Ri), (Si, T i) | i ∈ [1..q]} as input and samples a τ∗ = {(L̂i, R̂i, Ŝi,
T̂ i) | i ∈ [1..q]}. The sampling proceeds as follows:

1. S initialises four tables DL̂, DR̂, DŜ , and DT̂ as empty.
2. For an encryption query i, S first checks the tables DL̂ and DR̂ to see if
L̂i or R̂i has already been sampled; whichever is not found in the table is
freshly sampled from the set of unsampled values. Xi is set to be L̂i ⊕ R̂i.

3. If i ∈ I, one of Ŝi and T̂ i is already sampled, so the other one is set as the
sum of the sampled one and Xi.
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4. If i ∈ I∗, both Ŝi and T̂ i are fresh, so Ŝi is sampled from outside DŜ , such
that T̂ i = Ŝi ⊕Xi is also outside DT̂ .

5. For a decryption query i, S first checks the tables DŜ and DT̂ to see if Ŝi or
T̂ i has already been sampled; whichever is not found in the table is freshly
sampled from the set of unsampled values. Xi is set to be Ŝi ⊕ T̂ i.

6. If i ∈ I, one of L̂i and R̂i is already sampled, so the other one is set as the
sum of the sampled one and Xi.

7. If i ∈ I, both L̂i and R̂i are fresh, so L̂i is sampled from outside DL̂, such
that R̂i = L̂i ⊕Xi is also outside DR̂.

Bad Events. We define the following bad events on the random coins of f and
S :

bad0: For some i, i′, i′′ ∈ [1..q] with i > i′ and i > i′′, Si = Si
′
and T i = T i

′′
;

bad1: In an encryption query i ∈ I, a previously unsampled Ŝi or T̂ i is set to
be equal to a previously sampled value at the same position;

bad2: In a decryption query i ∈ I, a previously unsampled L̂i or R̂i is set to be
equal to a previously sampled value at the same position.

In bad1 and bad2 we assume bad0 has not happened.

Bad Probabilities. For bad0 the two collisions have a joint probability of 1/N2,
with choice of the three indices i, i′, i′′. Thus,

Pr[bad0] ≤
q3

N2
. (1)

For bad1 we need one collision with a previous i′ for i ∈ I, and one collision with
a previously sampled value at some i′′. Again they have a joint probability of
1/N2, with choice of the three indices i, i′, i′′. Thus,

Pr[bad1] ≤
q3

N2
. (2)

Similarly we can show that

Pr[bad2] ≤
q3

N2
. (3)

Ratio of Good Probabilities. As before, in the real world, we have

Pr
1
[(τ, τ∗)] =

1

(N)q1 . . . (N)q4(N)t1 . . . (N)tr
. (4)

In the ideal world, we have a term 1/N2q that comes from the sampling
of the outputs in the online phase. As before, we use one Nq to cancel out
(N)t1 . . . (N)tr . If the j-th unique L̂ or R̂ first appears in an encryption query,
it will contribute a term 1/(N − j − 1) to the probability, and the resulting
(N − j − 1) in the numerator will cancel out the same term in (N)q1 or (N)q2 .
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Similarly, if the j-th unique Ŝ or T̂ first appears in an encryption query, it will
contribute a term 1/(N − j+1) to the probability, and the resulting (N − j+1)
in the numerator will cancel out the same term in (N)q3 or (N)q4 . For each
encryption query in I, no sampling is done for Ŝ or T̂ , and for each decryption
query in I, no sampling is done for L̂ or R̂, so these do not contribute anything
to the probability.

Finally, consider an encryption query in I∗ that contains the j-th unique Ŝ
and j′-th unique T̂ . Thus, when sampling Ŝ we need to avoid j + j′ − 2 values,
so this contributes a term 1/(N − j− j′+2) to the probability. We combine this
(N − j − j′ + 2) in the numerator with one N -term in the numerator and the
terms (N − j + 1) and (N − j′ + 1) in the denominator (from (N)q3 or (N)q4
respectively), to get

N(N − j − j′ + 2)

(N − j + 1)(N − j′ + 1)
= 1− (j − 1)(j′ − 1)

(N − j + 1)(N − j′ + 1)
≥ 1− 2jj′

N2
, (5)

where we use the inequalities j, j′ ≤ N(1− 1/
√
2). This uses up N |I

∗|, and the
remaining N |I| is used to cancel out the remaining terms in the denominator.

Thus we have

ρ ≥
∏
j,j′

(
1− 2jj′

N2

)
≥

∏
j∈[1..q]

(
1− 2j2

N2

)
≥ 1− q3

N2
, (6)

since we can replace the smaller of j and j′ with the bigger one without breaking
the inequality. This completes the proof with ε2 = q3/N2.

6 Simulation of the Mirror Theory

In order to verify the Tight Mirror Theory Conjecture, we have implemented a
simulation that allows us to predict the number of possible internal transcripts.
In this section, we describe these simulations that constitute, to the best of our
knowledge, an innovative approach that hasn’t been used before in this context.

First step: getting the sets of connected components. The first step for comparing
experiments to the conjecture is computing the set of the connected components
of two or more variables. We recall that there is an edge between the variables
Xi and Yj if and only if there is the equation Xi ⊕ Yj = δi,j . First we make a
list of equations sorted by index i and one sorted by index j for retrieving the
edges quickly, and then we apply a classic Breadth-First Traversal of the graph.
The procedure to get it is described in Algorithm 2 below:

Naive approach. Once the connected components have been obtained, the most
natural approach is to generate the solutions. This can be done by initialising
two sets of remaining places, viable values for making a solution, to {0, 1}n (SX
for the variables X and SY for the variables Y ). We take the largest component,
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Algorithm 2 Retrieving the sets on connected components
Input: List of equations of the form Xi ⊕ Yj = δi,j
Output: The list of connected components

1: Sort the equations Xi ⊕ Yj = δi,j by i the result is named LX
. There needs to have a place to mark the different i.

2: Sort the equations Xi ⊕ Yj = δi,j by j the result is named LY
. There needs to have a place to mark the different j.

3: for all i do
4: Start a pile with the element (X, i, 0)
5: Start a list for recording the elements of the current connected component with

the root element (X, i, 0)
6: while the pile is not empty do
7: Pop the first element (Z, l,∆)
8: if l is not marked in the list LZ then
9: for all Xi ⊕ Yj = δi,j in LZ with i = l if X = Z and j = l otherwise do
10: Add (Y, j,∆ ⊕ δi,j) to the pile and to the component if X = Z and

(X, i,∆⊕ δi,j) otherwise
11: end for
12: Mark l in the list LZ
13: end if
14: end while
15: Register the list if it contains more than one element

. This connected component has either no elements or is an isolated point.
16: end for
17: Return the lists of connected components

find an α for its root and for every point Xi or Yj of this component ruling
out α⊕∆ from the corresponding variable (SX for Xi and SY for Yj). We take
the second largest, find a place for the second root β such that for every point
Xi or Yj of this second component β ⊕ ∆ is in the set of remaining places of
corresponding variable, and once a β is found we rule them out. We continue
for the remaining components until there is either no component left (making a
solution) or there is no viable place for a root (so the earlier choices did not lead
to a solution). While this method is not practical as it generates every solution
which is double exponential on the size of the input, it is the only one (to our
knowledge) to give the exact number of solutions.

Approximation. Next we describe a method that computes an approximation of
the number of solutions of the system given by the equations Xi ⊕ Yj = δi,j .
For a given set of equations we want to obtain the connected components (Ci)
as described before and m their number and |Ci| their size. We denote by ∆i,j

the set of placements of the connected components such that the components Ci
and Cj collide. Then by the formula of the cardinality of a union, we get

2nm − |solutions| =
m∑
k=1

(−1)k−1
∑

{i1,j1}>...>{ik,jk}

|∆i1,j1 ∩ ... ∩∆ik,jk |
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where > is an order.
A first observation is that for all {i1, j1} 6= {i2, j2},

|∆i1,j1 ∩∆i2,j2 | × 2nm = |∆i1,j1 | × |∆i2,j2 |

as the difference between the value of the roots of Ci1 and Cj1 and between Ci2
and Cj2 are independent. Indeed, if {i1, j1}∩{i2, j2} = ∅ the sets are independent
and if {i1, j1}∩ {i2, j2} 6= ∅, we consider the differences of the root values which
are independent as we are in a vector space.

Then the computation of the different terms depends on whether the different
sets {i1, j1} > ... > {ik, jk} have an intersection or not. In that direction, for a
set {i1, j1} > ... > {ik, jk}, we define the graph G{i1,j1}>...>{ik,jk} with vertices
1, ...,m and an edge between vertices a and b if and only if there exists an l such
that {il, jl} = {a, b}. For a graph G on vertices 1, ...,m, we define

SG =
1

2nm

∑
G′∼=G

∣∣∣ ⋂
i,j∈G′

∆i,j

∣∣∣,
where ∼= denotes graph isomorphism. We let CG be the number of connected
components of G and PG the number of non-isolated points.

This first observation extends to the computation of any SG where G has
no cycle and to unions of non-connected sub-graphs. SG can be bounded by
(
∑
i |Ci|2)PG/2n(m−CG). This means that this method of approximation is suited

for cases where the value
∑
i |Ci|2 is controlled. For random systems,

∑
i |Ci|2 =

O (q). Then a first approximation can be made by taking

|solutions|
2nm

=
∏
i,j

(
1− |∆i,j |

2n

)
+O

(
q3

22n

)
.

More advanced approximations can be made by considering cycles of successively
bigger sizes. (For example, by considering the cycles of size 3, we get a better
approximation with an error in O(q4/23n).)

Figure 4 shows the different simulations of the different approximations. It
took 10 hours on an Intel i5-6500U CPU to compute. The approximations tend
to get more solutions than the conjecture, but remaining in the expected error.

Conclusion. Overall our simulations confirm that the Tight Mirror Theory Con-
jecture holds for small bit sizes (n ≤ 5 for the exact approach, n ≤ 8 for the
better approximation, and n ≤ 11 for the first approximation). While it becomes
infeasible to run the simulations for usable values of n, since we did not use any
special properties of small n-values, our results seem to suggest that it should
also hold for larger values of n, making our conjecture a reasonable one.

7 An O(2n)-distinguisher on our scheme

We have black box access to a function f st. f $←− P2n or f ← QuEMEπ, and
we want to distinguish in which case we are. We present a distinguisher that
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(a) exact approach (n =
5)

(b) better approximation
(n = 8)

(c) first approximation
(n = 11)

Fig. 4: Results of simulations: difference of the logarithm of the results between
simulation and conjectural prediction by number of equations (line is mean over
100 tries, area is variability)

performs only forward queries to f . Assume on query (x1||x2) we get output
(y1||y2). In the first case, (y1||y2) is a uniformly random string that hasn’t been
outputted before for any (x1||x2) that hasn’t been queried before. In the second
case, there exists permutations π1, π2, π3, π4 such

π1(x1)⊕ π2(x2) = π−13 (y1)⊕ π−14 (y2). (7)

Our proof will use linear algebra techniques. Let N† = 4N . Let x1, x2, y1,
y2 ∈ {0, 1}n that we interpret as integers in [0, N − 1], and let ex1x2y1y2 ∈ FN†2

be the binary column vector where the ith coordinate of ex1x2y1y2 is equal to 1
if and only if i = x1, i = x2 +N , i = y1 + 2N or t = y2 + 3N and is equal to 0

otherwise. This means each ex1x2y1y2 ∈ FN†2 has weight 4, meaning four non-zero
coordinates.

The idea of the distinguisher is the following: perform m queries of the form
{xi1xi2||yi1yi2}i∈[1..m], and let H = span{exi1xi2yi1yi2}i∈[1..m]; For m large enough
(but linear in N†), we will show that if we queried our QuEMEπ construction,
we have dim(H) ≤ N†− 2 with overwhelming probability, which we prove using
Equation 7. On the other hand, if we start from a random permutation, then we
can show that dim(H) ≥ N† − 1 since the exi1xi2yi1yi2 will essentially be random
vectors of FN†2 of weight 4.

We consider the following adversary

Adversary A for distinguishing the QuEMEπ construction from a random
permutation

– Perform m = 4N† random different queries (xi1||xi2) for i ∈ [1..m] and get
respective outputs (yi1||yi2).

– Let H = span{exi1xi2yi1yi2}i∈[1..m]. Compute dim(H).
– If dim(H) ≤ N† − 2, return “EME" else return “random permutation".
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Proposition 1. If the adversary queries a function f ← QuEMEπ, we have
dim(H) ≤ N† − 2 with overwhelming probability.

Proof. Take f ← QuEMEπ. This means in particular we choose random per-
mutations π1, π2, π3, π4 and for each query xi1, x

i
2 that gives output yi1, yi2, we

have
π1(x

i
1)⊕ π2(xi2) = π−13 (yi1)⊕ π−14 (yi2).

Consider the following matrix M ∈ Fn×N
†

2 : the first N columns of M are the

columns

[π1(x)]1
...

[π1(x)]n

 for x ∈ {0, 1}n. Then, the next N columns are the same

but we replace π1 with π2, and similarly with the third and last where we have
π−13 and π−14 respectively instead of π1. So we can write

M =


[π1(0)]1

...
[π1(0)]n

 . . .

[π2(0)]1
...

[π2(0)]n

 . . .

[π−13 (0)]1
...

[π−13 (0)]n

 . . .

[π−14 (0)]1
...

[π−14 (0)]n

 . . .


Because π1, π2, π3, π4 are permutations, the matrix M contains at least 2

different non-zero lines, therefore dim(M) ≥ 2. Also notice that

M · ex1x2y1y2 = π1(x1)⊕ π2(x2)⊕ π−13 (y1)⊕ π−14 (y2).

so H ⊆ Ker(M) and dim(Ker(M)) = N† − dim(M) ≤ N† − 2 from which we
conclude dim(H) ≤ N† − 2.

Proposition 2. If the adversary queries a random permutation f
$←− P2n, we

have dim(H) = N† − 1 with overwhelming probability.

Proof. Let Hj = span{exi1xi2yi1yi2}i∈[j]. We will show that if dim(Hj) ≤ N† − 2

then with constant probability, dim(Hj+1) = dim(Hj) + 1. Let H⊥j be the dual
of Hj , so

x ∈ Hj ⇔ ∀y ∈ H⊥j , 〈x, y〉 = 0.

We have dim(Hj) + dim(H⊥j ) = N† so in particular dim(H⊥j ) ≥ 2. This means
in particular that there exists two distinct non-zero vectors z1, z2 ∈ H⊥j . This
again implies that there exists z∗ ∈ H⊥j st. |z∗| ≤ 2N†/3. One can indeed easily
check that if |z1|, |z2| > 2N†/3 then |z1 + z2| ≤ 2N†/3. For a random tuple
x1, x2, y1, y2, we have

Pr[ex1x2y1y2 ∈ Hj ] ≤ Pr[〈ex1x2y1y2 , z
∗〉 = 0]

≤
(
1

3

)4

+ 6

(
1

3

)2(
1

3

)2

+

(
2

3

)4

=
41

81
.
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This gives Pr[ex1x2y1y2 /∈ Hj ] ≥ 40/81. In reality, the tuple (xj+1
1 xj+1

2 yj+1
1 yj+1

2 )

is not entirely random. Indeed, while xj+1
1 , xj+1

2 are chosen uniformly at ran-
dom, the outputs must satisfy the permutation constraints, meaning that if
(xj+1

1 ||xj+1
2 ) hasn’t been queried then the output (yj+1

1 ||yj+1
2 ) must be different

from the previous outputs. For a fixed query, this changes the output distribu-
tion by at most O(j/22n) = O(1/N) (since there are O(N†) = O(N) queries in
total, so j ≤ O(N)). From there, we get

Pr[exj+1
1 xj+1

2 yj+1
1 yj+1

2
/∈ Hj ] ≥

40

81
−O

(
1

N

)
.

when the above holds, this immediately implies that dim(Hj+1) = dim(Hj)+1.
Sincem = 4N†, this then implies that with overwhelming probability dim(Hm) ≥
N† − 1.

Quantising the distinguisher. So far we have not found any quantum versions
improving the complexity, and we do not believe that this distinguisher can
benefit of any speed-up in the quantum setting.

8 Quantum security

In this section, we study the quantum security of our constructions. We will
show that the QuEMEπ has n/6 bits of quantum security. While this isn’t an as
strong statement as in the classical setting, it implies at least that the security
doesn’t totally collapse when we consider quantum adversaries as is the case for
the 3-round Luby-Rackoff construction [KM10].

To prove this statement, we will actually reduce the quantum security to
classical security (in a non-tight way) using Zhandry’s lower bound on small
range functions. We then show how to prove our quantum security statement
in this framework. Finally, we discuss our results and ways of improving these
quantum security claims.

8.1 Hardness of distinguishing a random permutation from a
random function with small range

Our proof will use a quantum lower bound on distinguishing a random permuta-
tion from a random function with small range proven in [Zha15]. We first define
a distribution Sn(r) of small range functions:

Definition 3. Sn(r) is a distribution on functions from {0, 1}n to {0, 1}n sam-
pled as follows:

– Draw a random function g from {0, 1}n → [r].
– Draw a random injective function h from [r]→ {0, 1}n.
– Output the composition h ◦ g.
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Notice that any function f drawn from Sn(r) satisfies |Im(f)| ≤ r. Let also Pn
be the uniform distribution on permutations on {0, 1}n. Zhandry’s lower bound
can be stated as follows:

Proposition 3 ([Zha15]). For any r, for any quantum adversary Af perform-
ing q queries to f , we have

AdvSn(r)qprp (A) = O

(
q3

r

)
.

8.2 Quantum Security Statement

As in the classical setting, we consider the prp advantage against quantum ad-
versaries that can query the whole function QuEMEE but also the inner function
E. In the quantum setting, both these queries can be quantum queries.

Theorem 5. For any quantum adversary A playing a q-query IND-CPA game
against QuEMEE with q′ offline (quantum) queries to E, we have

AdvQuEMEE
prp (A) ≤ O

(
(q + q′)2

2n/3

)
+O

((
(q + q′)2

2n/3

)2
)

+ αE(r2, r2).

with r = O((q + q′)2n/3), where recall that αE(x, x′) be an upper-bound on the
advantage of an adversary who has learned x′ key-plaintext-ciphertext triples
for E and is trying to distinguish x other key-plaintext-ciphertext triples from
random. This implies in particular that the advantage is small essentially up to
(q + q′) = 2n/6.

Proof. We consider a quantum adversary A that performs q quantum queries to
QuEMEE and q′ quantum queries to E. We perform a game-based proof to prove
our statement. We start from Game 1 which corresponds to the prp-advantage.

Game1 → Game2. We transform Game1 into Game2 by adding two random
permutations j1, j2 in the key and in the input of E.

Game1: prp-game(A)
b

$←− {0, 1}
E

$←− TBCn
f ←

{
QuEMEπ if b = 0
P2n if b = 1

b′ ← Af,E(·)
Win if b = b′

Game2: adding permutations to E

b
$←− {0, 1}

E
$←− TBCn

j1, j2
$←− Pn

Let E′ st. E′k(x) = Ej1(k)(j2(x)).

f ←
{

QuEMEE
′
if b = 0

P2n if b = 1

b′ ← Af,E
′
(·)

Win if b = b′

Transforming E into E′ doesn’t change its distribution. It is still a random
TBCn. Therefore, this doesn’t change the value of the game.

Pr[A wins Game1] = Pr[A wins Game2].
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Game2 → Game3. We transform Game2 into Game3 by adding two random
permutations on top of QuEMEE

′
.

Game2: adding permutations to E

b
$←− {0, 1}

E
$←− TBCn

j1, j2
$←− Pn

Let E′ st. E′k(x) = Ej1(k)(j2(x)).

f ←
{

QuEMEE
′
if b = 0

P2n if b = 1

b′ ← Af,E
′
(·)

Win if b = b′

Game3: adding permutations to
QuEMEE

′

b
$←− {0, 1}

E
$←− TBCn

j1, j2
$←− Pn

Let E′ st. E′k(x) = Ej1(k)(j2(x)).

f ←
{

QuEMEE
′
if b = 0

P2n if b = 1

hL, hR
$←− Pn

f ′ := f ◦ (hL||hR).
b′ ← Af

′,E′(·)
Win if b = b′

In our encrypt then mix construction, we start already by 2 random permutations
so adding an extra layer of permutations won’t change the distribution QuEMEE

′
.

This of course doesn’t change the distribution of the random permutation as well
hence

Pr[A wins Game2] = Pr[A wins Game3].

Game3 → Game4. We now replace all the permutations with random small-
range functions.

Game3: adding permutations to
QuEMEE

′

b
$←− {0, 1}

E
$←− TBCn

j1, j2
$←− Pn

Let E′ st. E′k(x) = Ej1(k)(j2(x)).

f ←
{

QuEMEE
′
if b = 0

P2n if b = 1

hL, hR
$←− Pn

f ′ := f ◦ (hL||hR).
b′ ← Af

′,E′(·)
Win if b = b′

Game4: adding permutations to
QuEMEE

′

b
$←− {0, 1}

E
$←− TBCn

j1, j2
$←− Sn(r)

Let E′ st. E′k(x) = Ej1(k)(j2(x)).

f ←
{

QuEMEE
′
if b = 0

P2n if b = 1

hL, hR
$←− Sn(r)

f ′ := f ◦ (hL||hR).
b′ ← Af

′,E′(·)
Win if b = b′

From Zhandry’s bound on small range functions, we have

Pr[A wins Game3] ≤ Pr[A wins Game4] +O

(
q3

r

)
+O

(
q′3

r

)
≤ Pr[A wins Game4] +O

(
(q + q′)3

r

)
.
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Game4: classical emulation. We consider the following classical adversary.

Classical adversary Bf,E

1. Pick j1, j2, hL, hR
$←− Sn(r). Let Y1, Y2 be the ranges of j1, j2 respectively, and

ZL, ZR be the ranges of hL, hR respectively, so they are each subsets of {0, 1}n
of size r.
2. Define E′ st. E′k(x) = Ej1(k)(j2(x)) and f

′ := f ◦ (hL||hR).
3. Query f(x, y) for each (x, y) ∈ ZL × ZR and query Ek(x) for each (k, x) ∈
Y1× Y2, for a total of 2r2 queries. From these queries, recover the truth table of
f ′ and E′.
4. Emulate the quantum circuit Af ′,E′(·) and output b′ ← Af ′,E′(·).
Bf,E outputs exactly the same output as Af

′,E′ so by definition, we have

Pr[B wins Game1] = Pr[A wins Game4].

and moreover, B is a classical algorithm that performs 2r2 queries to f . We
still add a few remarks on the adversary B. Notice that we limit the number of
queries of B but not its running time so we don’t need to perform the different
steps of the algorithm efficiently. From this, it makes it much easier to see how
B performs the different steps of the algorithm. In particular, he chooses hL, hR,
j1, j2 at random and knows the full description of these functions, so he knows
Y1, Y2, ZL, ZR. Also, after his 2r2 queries, he can know the full truth table of f ′
and E′, so he knows the full description of Af

′,E′ . A quantum algorithm on n
qubits with m gates, can be emulated by a classical algorithm running in time
exponential in n,m. However, he doesn’t need any extra queries to f ′, E′ since
he already knows the full description of f ′ and E′. What is important here is
that even though the running time is large, the amount of queries done to f and
E is limited to r2.

We can now conclude

AdvQuEMEE
prp (A) = Pr[A wins Game1]

≤ Pr[A wins Game4] +O

(
(q + q′)3

r

)
= Pr[B wins Game1] +O

(
(q + q′)3

r

)
= AdvQuEMEE

prp (B) +O

(
(q + q′)3

r

)
.

In order to conclude, take r = O
(
(q + q′)2n/3

)
. From Theorem 8, we have

AdvQuEMEE
prp (B) ≤ O

(
r2

2n

)
+O

(
r4

22n

)
+ αE(r2, r2)

= O

(
(q + q′)2

2n/3

)
+O

((
(q + q′)2

2n/3

)2
)

+ αE(r2, r2).
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and from the choice of r, we have O
(
(q + q′)3/r

)
= O

(
(q + q′)2/2n/3

)
. From

there, we conclude

AdvQuEMEE
qprp (A) ≤ AdvQuEMEE

prp (B) +O

(
(q + q′)3

r

)
≤ O

(
(q + q′)2

2n/3

)
+O

((
(q + q′)2

2n/3

)2
)

+ αE(r2, r2).

8.3 Discussion

Our proof is very generic and we can relate the quantum security to the classical
security for any construction that start by encrypting the left and right halves
of the input. The drawback of this strategy is that it seems to be far from tight.
Indeed, when looking at our construction and the attack running with O(2n)
queries it’s not clear how to use quantum queries to improve this attack. We
expect our construction to have much more than n/6 bits of quantum security,
maybe its quantum security is actually n bits.

In order to improve these bounds, one natural path would be to look at
Zhandry’s quantum query recording technique. However, in our case, we need to
consider random permutation and not random functions and this is notoriously
hard, as some of the proposals for this turned out to be incorrect (see for in-
stance [Unr21]). As this topic becomes more mature, we hope that this tool will
be available for proving tight quantum security bounds for our construction.

9 Proposing a concrete instance: Double-AES

The aim of this section is to propose a concrete instance that would moti-
vate cryptanalysis on these constructions. For this, we propose some variants
that claim the same quantum security as the Saturnin block-cipher [CDL+20],
that was conceived with the objective of proposing resistance against quantum-
attackers. In particular, we also claim that:

There exists no quantum attack in the single-key setting with T 2/p < 2224,
where T is the time complexity, p the success probability and the query com-
plexity is included in the time complexity. We do not provide security against
related-key superposition attacks (as is the case of all known block-ciphers).

Therefore, in this section we propose a concrete construction based on AES-
128 [DR00], doubling the key and the state size. We show how to use domain
extensions in the different blocks, and propose several possible variants depend-
ing on how many AES rounds are considered in each block. We have chosen
the AES-128 block-cipher to benefit from the large amount of cryptanalysis on
reduced round versions, that will simplify analysing the instantiation of the new
construction. We also briefly describe the best attacks we have found so far in
these family of constructions. As we will see, these results motivated us to con-
sider including the last MC transformation on each block-cipher call. A brief
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description of AES-128 and of the best known attacks on it can be found in sec-
tion E. We estimate and compare implementation performances in section 9.5.

The main aim of these instantiations is to motivate cryptanalysis and com-
parison with other constructions as well as further research.

9.1 How to Extend the keys?

Independently of the blocks ciphers used, we can decide how to choose the keys
used in each block. As we expect that a 2n-bit key can have the same security
as a 4n one, we will choose the keys for E3 and E4 to be dependent on the ones
from E1 and E2 for the sake of simplicity. For this, we propose to have a 2n key
formed by (k1||k2). These keys will be used as the key of the two blocks applied
in the input of the construction: k1 for E1 and k2 for E2. We have to define
now the keys k3 and k4 for the two output blocks E3 and E4. The idea is that,
from the knowledge from one input key we should not be able to retrieve any
information from any other key. For this, we propose to define:

k3 = k1 ⊕ k2 and k4 = k1 ⊕ (k2≪ 1).

Though more robust and complicated key-extensions could be proposed, like
for instance K1,K2, E

K2
5 (K1), E

K1
6 (K2), we believe ours has the advantage of

being simpler and very efficient, and should have an equivalent security as long
as the used block-cipher is secure.

A property. Guessing one full key (k1 for instance) and x bits of any other key
(i.e. k2), allows to compute x and x − 1 bits of the other two keys (k3 and k4
in the example). We could have choosen other simple configurations where the
bits determined in the two last subkeys wouldn’t belong mainly to the same
bytes, but we believe this configuration is interesting, for the sake of simplicty
of implementation and analysis.

9.2 Introducing a domain in AES for defining Ej

We present in Section E.1 the specifications of AES-128. For defining 4 additional
different instances E1 to E4, we propose to use a different constant for each block.
All the remaining parts stay the same and we only change the constant, as: with

rci,j =


Xi mod X8 +X4 +X3 +X + 1

j
0
0

 .

For the middle call to the block-cipher we consider the original AES defini-
tion, where the input arriving as a parameter will have the role of the secret
key.
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9.3 Double-AES concrete proposals

Double-AES-10. A very conservative approach would be to consider a full AES
encription inside each block.

Double-AES-7. We conjecture that the existing 7-round attacks (see for instance
Table 3) cannot be exploited when using AES in our construction. We have
tried to build attacks in our construction exploiting the best known attacks on
7-rounds when we consider the blocks used in the instantiation reduced to 7
rounds and we have not been able to do so. We conjecture that these attacks
cannot apply when using our construction, and we propose therefore Double-
AES-7, that instead of 10 rounds in each block only used 7. We also believe
that it is quite a conservative approach, given the best found attacks in the next
section.

Variant including last MC: Double-AES-6-MC. We propose a variant where
the last MC operation is considered in the block call that do not belong to the
last layer (E3 and E4). We encourage the cryptanalysis of Double-AES-5-MC, for
which we think an attack might exist, and we conjecture that Double-AES-6-MC
should provide a comparable security to Double-AES-10.

Best attacks. In section F of supplementary material we present the best at-
tacks we have found on reduced-round versions. In order to reflect that different
number of rounds can be considered per block, we call an attack on r1-r2-r3
when it covers r1 rounds for E1 and E2, r2 rounds for E and r3 rounds for E3

and E4. Our best attacks cover X-3-3 and X-2-X, without the last MC in E1,
E2 and E.

9.4 Security Claims

The final construction has a 256-bit state and key. We provide an unique security
claim, not distinguishing between classical and quantum attacks: we claim that
our extended block-cipher Double-AES, with versions Double-AES-10, Double-
AES-7 and Double-AES-6-MC provide around 128 bits of security against any
type of attacker. 4

In addition, we claim that when plugged in secure modes, any attack that
requires a collision on the state would require at least the generic complexity for
generating a collision, that is, no attack significantly better than T 5×Mq = 2512

exists, where T represents the time complexity, and Mq the quantum memory
(that includes the classical memory). This is the theoretical limit given by the
best generic attacks, as stated in [CDL+20].

4 As all known block-ciphers, we cannot provide security against superposition related-
key attacks.
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9.5 Estimated Implementations Evaluations

We have not produced an implementation for now, as with this instance we
expect to motivate the analysis of the newly proposed generic construction,
which would allow to adapt the different parameters. Nevertheless, we believe it
is interesting to have a preliminary idea of the comparison of the implementation
costs of this construction with other comparable but dedicated primitives offering
similar security. We present estimations of the different costs of implementation
based on [SS17] and [CDL+20] in Table 2. We see that in particular Double-
AES-6-MC is much better than all the other with respect the cycles per block.

Cipher Gates per processed bit Cycles per block
Rijndael-256-256 283.5 1848

Saturnin 118.5 1678
Double-AES 506.5 1980

Double-AES-6-MC 306.25 1188
Table 2: Estimation of implementation performances

9.6 Discussion

As already said, we considered Saturnin [CDL+20], the first conceived block-
cipher aiming at security against all quantum attackers, as a model for our
quantum security claims. Given that that construction also inherits a lot from
the AES one, we consider the comparison interesting. The same goes for the
cipher AES-256 [DR02]. In particular, if we consider the Double-AES-7, as the
two upper and the two lower can be done in parallel, the time of one encryption
should take an equivalent of 3 × 7 = 21 AES rounds, while AES-256 takes 14
rounds for encrypting half of the state. Rijndael-256 [DR00] is a similar case than
the AES-256, but with a state of 256 bits this time, as Double-AES. Nevertheless,
this constructions, that was not standardized, has been much less studied by the
community and benefits less from the cryptanalysis knowledge of the community.

In all the three cases, our construction has the advantage of being a generic
way for doubling block-ciphers, and therefore, we belive further study would be
useful for understanding the properties of the underlying block-cipher that can
generate an attack or that can not.

We expect further cryptanalysis to show if we can reduce the number of
rounds in Double-AES-7 or in Double-AES-5-MC further in order to gain in
interest with respect to these previous constructions while staying secure.

10 Conclusion

In this paper we provide the first proposal of a generic way for extending both
the key and the state size, with quantum security arguments and significant
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classical proofs. In addition we have proposed a new type of superposition attacks
on the EME construction, an original distinguisher matching the bound of our
construction, and a method considering simulations for supporting conjectures
from proofs.

On concrete instances and cryptanalysis. Concrete instances of our construction
combined with AES-128 have been proposed, with the aim of motivating its
study, with a unified security claim regarding classical and quantum attackers.
We believe the number of rounds of AES-128 considered in the building blocks
can be reduced. We propose 7 rounds and 5 rounds if the finalMC is not omitted
in E1, E2 and E, where we claim equal security than with 10 rounds, but we
believe an interesting question would be whether we manage to attack a variant
with less rounds, as our best attack reaches X-3-3 rounds (so any number of
rounds in the first layer, and three in the middle and final layers), or 2 rounds
in the middle one, for any number of rounds in the upper and lower instances.
Related-key attacks on AES might also have an interesting application in this
case because of the middle block. We leave this as an interesting open question
to break a variant with 5-5-5 rounds, or 6-6-6, that should be harder, as the
structural distinguishers could not be exploited. Another option would be to
consider variants with less rounds in the middle block than in the four external
ones. How low could we go? We know attacks exists with only 2 rounds in the
middle, for any number of rounds in the external applications.

Open problems regarding quantum security arguments. It would be nice to find a
quantum reduction proof similar to that in [HI19], based on a recording oracle.
However, there is no known way to lazy-sample a permutation or respond to in-
verse queries using a quantum recording oracle, though several research groups
are working on this. Once a suitable proof technique using databases is discov-
ered, it will be interesting to revisit the quantum security of QuEME and see
what more we can say about it.
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Auxiliary Supporting Material

A A Discussion on Mirror Theory

We’ve used some results from a line of research that focuses on finding tight
approximations on the number of solutions to systems of bi-variate equations,
which goes by the name Mirror Theory [Pat03]. Some of these results have been
proved [DNS22,CDN+22,CLP15,Pat08], while others are still conjectural [Pat10],
but generally accepted in the community. There are several instances in litera-
ture [IMV16,MN17,ZHY18,BBN22] where conjectures from Mirror Theory have
been used to derive security bounds. We recall below the conjectures used, and
discuss the intuition behind them.

Consider two sequences of n-bit variables Y1, . . . , Yq1 and Z1, . . . , Zq2 , with
q1 < N, q2 < N . For some q < q1 + q2 suppose there are q bi-variate equations
of the form

Yi ⊕ Zj = δij .

Then the Mirror Theory Conjecture states the following.

Conjecture 1 (Mirror Theory Conjecture) The number of solutions to the
system described above such that Yi’s are all distinct and Zi’s are all distinct is
at least

(N)q1(N)q2
Nq

· (1− ε),

where ε = O(q/N).

The intuition behind this is that the numerator in the above expression is
the total number of solutions satisfying just the distinctness constraint, and any
randomly chosen solution has a probability of about 1/Nq of satisfying all q
bi-variate equations. However, the exact calculations needed to bound ε can be
very complicated, and so far has only been completed for the special case with
q1 = q2 = q where each variable appears in exactly one equation. In spite of this,
the result has been claimed earlier without complete proofs, first by Patarin and
then by others citing him, and is generally accepted in the community. In this
paper, we’ve used the Mirror Theory Conjecture as a black box.

Tighter version. When many of the variables appear multiple times, the above
bound can be made tighter. Consider the graph where a bi-variate equation
involving Yi and Zj is represented by an edge between Yi and Zj . We assume
none of the equations is redundant and the system of equations is consistent, so
there are no cycles in this graph. Let C(1), . . . , C(t) be the connected components,
where t = q1 + q2 − q. For each j ∈ [1..t] let q(j)1 (resp. q(j)2 ) be the number of
Yi’s (resp. Zi’s) that appear in C(j). Finally, define the cumulative sums

Q
(j)
b =

j−1∑
i=1

q
(i)
b
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for each b ∈ {1, 2} and each j ∈ [1..t]. Then the Tight Mirror Theory Conjecture
states the following.

Conjecture 2 (Tight Mirror Theory Conjecture) The number of solutions
to this system such that Yi’s are all distinct and Zi’s are all distinct is at least

1

Nq
·
t∏

j=1

[(
N −Q(j)

1

)q(j)1
(
N −Q(j)

2

)q(j)2

]
· (1− ε),

where ε = O(q/N).

The intuition behind this is an extension of the intuition behind the Mirror
Theory Conjecture. As before we randomly choose a valid solution for the {Yi}
and the {Zi}, and it satisfies the equations with (roughly) a probability 1/Nq.
However, in this case, the key additional observation is that when choosing the
valid solution, instead of ensuring distinctness among all {Yi} and all {Zi}, we
just need to ensure that there are no collisions between components; since our
system of equations is consistent, for any solution that satisfies the equations,
within-component distinctness is automatically ensured. Thus when choosing
the q(j)1 Yi’s from the j-th component, we just choose them randomly from all
the N −Q(j)

1 unsampled values, and similarly for the Zi’s.
When q(j)1 = q

(j)
2 = 1 for each j, this reduces to the Mirror Theory Conjecture

bound, and is strictly tighter in other cases, the gap increasing as the component
sizes increase. We’ve used this result as a black box too, to deal with cases
where the component sizes are difficult to bound. In Sec. 6, we discussed some
simulations we ran that suggest that this conjecture is not unreasonable.

A.1 H-Coefficient Technique

Suppose an adversary A is playing a distinguishing game against two oracles,
one representing an ideal cryptographic object f , and the other representing an
actual cryptographic construction C. We’ll use the standard terminology where
the oracle representing f is called the ideal oracle, denoted O0, and the oracle
representing C is called the real oracle, denoted O1. Formally, the challenger
samples a secret bit b at the beginning, and gives A the oracle Ob; A makes q
queries {ui | i ∈ [1..q]} and receives the corresponding responses vi = Ob(ui);
at the end of the game, A outputs a response bit b′, and wins if b′ = b. The
scenario where A interacts with the ideal (resp. real) oracle will interchangeable
be called the ideal (resp. real) world.

To bound the advantage of A we use the H-Coefficient Technique. Let τ be
the transcript of a q-query game played by A, i.e., τ = {(ui, vi) | i ∈ [1..q]}.
In addition, when A interacts with C, let τ∗ denote the internal transcript,
denoted τ∗ = {wi | i ∈ [1..q]}; these are the intermediate variables computed
when computing the responses to A’s queries. Note that here ui, vi, wi are of
unspecified length—the first two will depend on the oracle interface and the last
on the complexity of the internal computations.
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Extended Transcripts. Let S be a sampler that takes τ as input and simulates
an internal transcript τ∗ when A interacts with f . We consider a modified game
where at the end of the game τ∗ is released to A, which can be used to compute
the final response bit; as this is extra information A is free not to use, this
can only increase the advantage of A, so any upper bound we derive here must
hold for the original game as well. (τ, τ∗) together will be called the extended
transcript. (We’ll simply call it a transcript when the context is unambiguous.)

Good Transcripts. We’ll define one or several bad events in the ideal world, based
on the internal random coins of f and S . (Note that for A we only consider
deterministic adversaries.) In the first step of the proof, we’ll need to show that
for some suitably small ε1 the probability that at least one bad event occurs is
upper-bounded by ε1. We’ll call a transcript (τ, τ∗) good if it can be obtained in
the ideal world without encountering any of the bad events.

Interpolation Probabilities. Given a transcript (τ, τ∗) and an oracle Ob, we’ll
examine the interpolation probability of (τ, τ∗) in Ob, denoted Prb[(τ, τ

∗)]. This
is the probability that the internal random coins of Ob are compatible with
(τ, τ∗), i.e., (τ, τ∗) is obtained as the game transcript as long as A queries u1
first and for each i ∈ [2..q], on observing v1, . . . , vi−1, next queries ui. For an
adversary who does not make these queries, the probability of obtaining (τ, τ∗)
is trivially 0, and we ignore such adversaries when calculating the interpolation
probability.

Ratio of Good Probabilities. For the second step of the proof, we’ll need to find
a suitably small ε2 such that for any arbitrary good transcript (τ, τ∗), the ratio
of Pr1[(τ, τ∗)] and Pr0[(τ, τ

∗)] is lower-bounded by 1 − ε2. This ratio is often
simply referred to as the ratio of good probabilities, whereas the probability of
at least one bad event occurring (applicable only for the ideal world) is referred
to as the bad probability.

Once we have the stated bounds on both the bad probability and the ratio of
good probabilities, the main result of the H-Coefficient Technique [Pat09] tells
us that the distinguishing advantage of A between O0 and O1 cannot exceed
ε1 + ε2. Below we give the formal statement of the theorem we will use.

Theorem 1 (H-Coefficient Technique). Suppose for an adversary A playing
a q-query distinguishing game between an ideal object f and a real construction
C, we can define bad events and find ε1 and ε2 such that the probability of a bad
event in a game against f is at most ε1, and the ratio of good probabilities while
interacting with C and f for any fixed good transcript τ is at least 1− ε2. Then
we have

AdvCf (A) ≤ ε1 + ε2.

B Reasoning of Theorem 2

We start by recalling the fundamentals of Simon’s algorithm [Sim97], starting
with the Hadamard gate.
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Hadamard gate. the Hadamard gate (H) maps |0〉 to 1√
2
(|0〉 + |1〉) and |1〉 to

1√
2
(|0〉 − |1〉).

H = 1√
2

[
1 1
1 −1

]
|b〉 H

1√
2
(|0〉+ (−1)b |1〉)

Simon’s Algorithm. A function g : {0, 1}n → {0, 1}m is said to have a period
s when g(x) = g(y) iff. x = y or x = y ⊕ s. If g is efficiently computable then
Simon’s algorithm is able to recover s in time poly(n).

Algorithm 3 Description of Simon’s routine
Input: superposition oracle access to g
Output: a vector y such that y · s = 0

1: Start with the state |0n〉 |0m〉
2: Apply the Hadamard gate on all qubits of the first register, obtaining the state

1

2n/2

∑
x∈{0,1}n |x〉 ⊗ |0

m〉
3: Apply the oracle Og : |x〉 |y〉 7→ |x〉 |y ⊕ g(x)〉 to the state, obtaining∑

x∈{0,1}n
1

2n/2
|x〉 |g(x)〉

4: Measure the second register and get a value c = g(x0) for a unknown x0. By the
premise, we get the state 1√

2
(|x0〉+ |x0 ⊕ s〉) .

5: Apply the Hadamard gate on all qubits and we get the state

1√
2n+1

∑
y∈{0,1}n

(
(−1)x0·y + (−1)(x0⊕s)·y

)
|y〉 .

This simplifies to

1√
2n+1

∑
y∈{0,1}n

(−1)x0·y (1 + (−1)s·y)︸ ︷︷ ︸
0 if y·s=1

|y〉 .

6: Measure the state and get a uniformly random y such that y · s = 0.
7: return y

Simon’s algorithm consists in applying Simon’s routine (see Algorithm 3) l =
O(n) times, thus getting (y1, ..., yl) and solving the linear system with unknown
s 

y1 · s = 0
...

yl · s = 0

For further explanations, we name RANK a circuit that takes |y1〉 ... |yl〉 |b〉
and flips b iff the previous system admits a solution other than 0.

This version Simon’s algorithm have as a premise that g is a two-to-one
function. Luckily, has been studied for random functions that admits a period.
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Theorem 6 (Theorem 2 in [KLLN16a]). Suppose that g : {0, 1}n → X has
a period s, i.e. g(x⊕ s) = g(x) for all x ∈ {0, 1}n and satisfies

max
t/∈{0,s}

P(g(x⊕ t) = g(x)) ≤ 1

2

When we apply Simon’s algorithm to g with cn calls to the routine, it returns s
with a probability at least 1 − 2n · (3/4)cn. It is running in cn queries to g and
time cn2.

An important remark to Simon’s routine (and to Simon’s algorithm by con-
sequence) is that we do not need g if we have access to cn superposition states
|φg〉 =

∑
x∈{0,1}n

1
2n/2
|x〉 |g(x)〉. Moreover, we do not need the superposition to

include all x in {0, 1}n, it is possible to restrict g to a subset A as long as the
subset admits s as a period i.e., x ∈ A iff. x ⊕ s ∈ A, and A does not make
an artificial period appear (by restricting on elements such that g(x⊕ t) = g(x)
for a certain t). This can be taken to an extreme where g = 0 but A has the
information of the period.

Corollary 1. Suppose that g : A ⊆ {0, 1}n → X has a period s, i.e. x⊕ s ∈ A
g(x⊕ s) = g(x) for all x ∈ A and satisfies

max
t/∈{0,s}

Px∈A(g̃(x⊕ t) = g(x)) ≤ 1

2

where g̃(x) =
{
g(x) if x ∈ A
⊥ otherwise

When we apply Simon’s algorithm to cn copies of |φg〉 =
∑
x∈A

1√
|A|
|x〉 |g(x)〉,

it returns s with a probability at least 1− 2n · (3/4)cn. It is running in time cn2.

Then, because the properties of Simon’s algorithm did not change because of
the input restriction on g, we can apply the offline Simon’s algorithm [BHN+19]
ideas.

Theorem 7 (Proposition 2 in [BHN+19]). Suppose that m = O(n), f : {0,
1}m × {0, 1}n → {0, 1}l a public function and g : {0, 1}n → {0, 1}l on which
we only get some databases |φg〉 and there is a unique i0 such that fi0 ⊕ g has a
period s and

max
i,t/∈{0,1}m×{0}∪{i0,s}

P((fi ⊕ g)(x⊕ t) = (fi ⊕ g)(x)) ≤
1

2

When we apply the offline Simon’s algorithm, with O(n) databases |φg〉, it returns
i0 with a probability in Θ(1). It is running in time O(n32m/2).

This technique relies on the equality |φfi⊕g〉 = Ofi |φg〉 for preparing and
recovering the databases |φg〉. In our case, instead of fi0 ⊕ g being periodic, we
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Algorithm 4 Description of the Offline-Simon algorithm
Input: superposition oracle access to f and O(n) databases |φg〉
Output: i0

1: Grover search on i with O(2m/2) turns using the following oracle :
2: Compute O(n) copies of |φfi⊕g〉 = Ofi |φg〉
3: Apply the Hadamard gate on all qubits of the first registers of |φfi⊕g〉, obtaining
O(n) states y

. y · s = 0 if i = i0 and random otherwise
. This is Simon’s routine.

4: Apply the RANK circuit on the states y
. the flip occurs iff i = 0

5: Uncompute the Hadamard gates and the Ofi to recover the databases |φg〉
6: EndGrover
7: Measure and return i

look for fi0 ⊕ g ◦ f ′i0 being periodic with f ′i as public permutations. We build the
operator INf ′i : |x〉 7→ |f

′
i(x)〉 using ancila qubits and the following circuit:

Of ′i Of ′−1
i

|x〉 |f ′i(x)〉

|0〉 |0〉

We can compute
∣∣∣φfi0⊕g◦f ′i0〉 = Ofi ◦ (INf ′−1

i
⊗ I) |φg〉.

C Attack on EME with similar mixing layers

While the previous description of our attack targets the specific mixing layer
from figure 2-right, our attack can be adapted and impact also the other mixing
layersM(x, y) the following way. We describe the mixing layer the following way:

M(x, y) = Π2(f(Π1(x, y)), x, y)

By linearity, we write Π1(x, y) = Π1,L(x) ⊕ Π1,R(y) and Π2(f, x, y) = f ⊕
Π2,L(x) ⊕ Π2,R(y) (even if it means rewriting the function f). The collision
equation S(L0, R0) = S(L1, R1) is then equivalent to

f(Π1,L ◦ E1(L0)⊕Π1,R ◦ E2(R0))⊕ f(Π1,L ◦ E1(L1)⊕Π1,R ◦ E2(R1)) =

Π2,L ◦ E1(L0)⊕Π2,L ◦ E1(L1)⊕Π2,R ◦ E2(R0)⊕Π2,R ◦ E2(R1).

With a good guess and the controlled exchange, the equation of collisions be-
comes

f(Π1,L ◦ E1(Lb)⊕Π1,R(R0))⊕ f(Π1,L ◦ E1(L1−b)⊕Π1,R(R1)) =

Π2,L ◦ E1(L0)⊕Π2,L ◦ E1(L1)⊕Π2,R(R0)⊕Π2,R(R1).

Then, we discuss what happens whether Π1,R is reversible or not.
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First case: Π1,R is not reversible. Then there exists t 6= 0 such thatΠ1,R(t) =
0. and the set of collisions admits the period s = (0, t, t).

Second case: Π1,R is reversible. Then we note t = Π−11,R ◦ Π1,L(E1(L0) ⊕
E1(L1)) and the set of collisions admits the period s = (1, t, t).

Overall, the attack works the same way but the recovered period will be
different.

D Additional Results on Classical Proofs

D.1 IND-CPA security proof of n-bit Security using Mirror Theory

In this subsection we prove the following result.

Theorem 8. For any classical adversary A playing a q-query IND-CPA game
against QuEMEπ, under the assumption that the Mirror Theory Conjecture (Con-
jecture 1) holds, we have

AdvQuEMEπ
prp (A) = O

( q
2n

)
.

For any classical adversary A′ playing a q-query IND-CPA game against QuEMEE

with q′ offline queries to E, we have

AdvQuEMEE
prp (A′) ≤ O

( q
2n

)
+O

(
qq′

22n

)
+ αE(q, q′).

Sampler of Internal Transcripts. Here we’ll define the sampler S which takes
τ = {(Li, Ri), (Si, T i) | i ∈ [1..q]} as input and samples a τ∗ = {(L̂i, R̂i, Ŝi,
T̂ i) | i ∈ [1..q]}. The sampling proceeds as follows:

1. S first samples two independent n-bit random permutations π∗1 and π∗2 .
Then it sets L̂i ← π∗1(L

i), R̂i ← π∗2(R
i), and Xi ← L̂i⊕R̂i for each i ∈ [1..q].

2. Let Γ be the set of all 2q-sequences (Ŝ1, T̂ 1, . . . , Ŝq, T̂ q) satisfying the fol-
lowing conditions:
– (∀i, i′ ∈ [1..q])Ŝi = Ŝi

′ ⇐⇒ Si = Si
′
;

– (∀i, i′ ∈ [1..q])T̂ i = T̂ i
′ ⇐⇒ T i = T i

′
;

– (∀i ∈ [1..q])Ŝi ⊕ T̂ i = L̂i ⊕ R̂i.
Then S samples (Ŝ1, T̂ 1, . . . , Ŝq, T̂ q) uniformly at random from the set Γ .

Bad Events. We define the following bad events on the random coins of f and
S :

bad0: For some distinct i, i′ ∈ [1..q], (Si, T i) = (Si
′
, T i

′
);

bad1: For some distinct i, i′ ∈ [1..q]

Xi = Xi′ ∧
(
Si = Si

′
∨ T i = T i

′
)
.
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bad2: For a path P of even length ≥ 4 in H,⊕
i∈P

Xi = 0;

bad3: There is a cycle in H.

In bad1, bad2 and bad3 we assume bad0 has not happened.

Bad Probabilities. We recall that the bad events (and hence bad probabilities)
are only defined in the ideal world. bad0 involves a random collision over 2n bits,
with a choice of the two indices i and i′. Thus,

Pr
0
[bad0] ≤

(
q
2

)
N2
≤ q2

N2
. (8)

We now bound the probability of bad1. Let’s fix a pair of indices i, i′ 6= i.
Because we are in the ideal case, Si, Si

′
, T i, T i

′
, Xi, Xi′ are uniformly random

strings in [N ]. Therefore,

Pr
0
[bad1] ≤

q(q − 1) · 2
N2

≤ 2q2

N2
. (9)

For a path P of even length 2m ≥ 4, we can argue similarly that the 2m values
Xi, i ∈ P are all mutually independent, and sum to 0 with a probability of 1/N .
The event involves 2m− 1 further collisions (for forming the path P ), choice of
2m indices, and a choice whether the path begins from an S-node or a T -node.
Therefore,

Pr
0
[bad2] ≤

∑
m≥2

q(q − 1) . . . (q − 2m+ 1) · 2
N2m

≤
∑
m≥2

2q2m

N2m
=

2q2

N2

∑
m≥2

(
q2

N2

)m−1
≤ 2q2

N2

∑
m≥2

(
1

2

)m−1
≤ 2q2

N2
. (10)

Finally, a cycle of length 2m (with m ≥ 2, since a cycle of length 2 would
imply bad0) will need 2m collisions for the cycle and give a choice of 2m indices
and a choice of whether the first node is an S or a T ; since the choice of this
‘first node’ is arbitrary, we divide the total count by m. This gives

Pr
0
[bad3] ≤

∑
m≥2

q(q − 1) . . . (q − 2m+ 1) · 2
N2m ·m

≤
∑
m≥2

2q2m

mN2m
=

q2

N2

∑
m≥2

(
q2

N2

)m−1
≤ q2

N2

∑
m≥2

(
1

2

)m−1
≤ q2

N2
.

(11)

From Eqs. 8-11 it follows that the probability that at least one of the bad events
occurs is upper-bounded by

ε1 =
6q2

N2
. (12)
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Ratio of Good Probabilities. Next we turn to the second step of using the
H-Coefficient Technique: lower-bounding the ratio of good probabilities. Suppose
(τ, τ∗) is a good transcript. Recall that q1, q2, q3, q4 are the number of distinct
values respectively of Li, Ri, Si, T i in τ . Further suppose that in τ∗, there are r
distinct values of Xi, with the number of queries they appear in being t1, . . . , tr,
where t1 + . . .+ tr = q.

Real World. In the real world, for each j ∈ [1..4], the probability that πj is
compatible with (τ, τ∗) is 1/(N)qj , and the probability that π̃ is compatible
with (τ, τ∗) is 1/[(N)t1 . . . (N)tr ]. Thus,

Pr
1
[(τ, τ∗)] =

1

(N)q1 . . . (N)q4(N)t1 . . . (N)tr
. (13)

Ideal World. In the ideal world, the probability that f is compatible with τ
is 1/(N2)q. The probabilities that π∗1 and π∗2 are compatible with τ∗ are re-
spectively 1/(N)q1 and 1/(N)q2 . For the second step, the probability that the
(Ŝ1, T̂ 1, . . . , Ŝq, T̂ q) comes from Γ is 1/|Γ |. Thus,

Pr
0
[(τ, τ∗)] =

1

(N2)q(N)q1(N)q2 |Γ |
. (14)

Eqs. 13 and 14 give the ratio

ρ :=
Pr1[(τ, τ

∗)]

Pr0[(τ, τ∗)]
=

(N2)q|Γ |
(N)q3(N)q4(N)t1 . . . (N)tr

. (15)

Since (N)tj < N tj , and t1+ . . .+ tr = q, we have (N)t1 . . . (N)tr < Nq. Plugging
this in Eq. 15 gives

ρ ≥ Nq|Γ |
(N)q3(N)q4

. (16)

Using Mirror Theory as a Black-box. We recall that in the ideal world, having
chosen all L̂i and R̂i, we need to choose Ŝi and T̂ i such that, for each i, j ∈ [1..q]:

– Ŝi = Ŝj ⇐⇒ Si = Sj ;
– T̂ i = T̂ j ⇐⇒ T i = T j ;

and for each i ∈ [1..q], Ŝi ⊕ T̂ i = Xi. Then we can formulate our problem as
one of Mirror Theory as follows: we need to find Ŝ1, . . . , Ŝq3 , all distinct, and T̂1,
. . . , T̂q4 , all distinct, satisfying q bi-variate equations of the form Ŝi + T̂j = δij .
Since this is a good transcript, we know that none of the bad events happened,
making this system of equations cycle-free and consistent. Then from the Mirror
Theory Conjecture (Conjecture 1) we see that

|Γ | ≥
(N)q3(N)q4

Nq
· (1− ε2), (17)
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where ε2 = O(q/N).
Putting the bound of Eq. 17 in Eq. 16 gives the desired bound

ρ ≥ 1− ε2, (18)

thus completing the proof.

D.2 IND-CCA security proof of n-bit Security using Mirror Theory

In this subsection we prove Theorem 3. For simplicity we assume there are no
cycle queries; the case when there are cycle queries can be similarly handled. Let
L̂1, . . . , L̂q1 , R̂1, . . . , R̂q2 , Ŝ1, . . . , Ŝq3 and T̂1, . . . , T̂q4 be the distinct values we
need to choose for each permutation. Let Hτ be the graph analogous to Gτ , but
for x and y, i.e., two vertices i and i′ are adjacent in Hτ if Li = Li

′
or Ri = Ri

′
;

the edge (i, i′) is blue for the first condition and red for the second. We change
the sampling mechanism in the ideal world as follows:

1. S first samples a X1, . . . , Xq such that on any (non-empty) path P of even
length in G or H, ⊕

i∈P
Xi 6= 0.

Let Λ denote the set of all (X1, . . . , Xq) satisfying this condition.
2. Next, S samples L̂1, . . . , L̂q1 , all distinct, R̂1, . . . , R̂q2 , all distinct, subject

to q bi-variate equations of the form L̂i ⊕ R̂j = δGij . Let ΓG denote the set
of all solutions to this system.

3. Finally S samples Ŝ1, . . ., Ŝq3 , all distinct, and T̂1, . . . , T̂q4 , all distinct, sub-
ject to q bi-variate equations of the form Ŝi ⊕ T̂j = δHij . Let ΓH denote the
set of all solutions to this system.

Since we have assumed there are no cycles in G and H, we have q1 + q2 − α =
q3 + q4 − β = q.

Then the Tight Mirror Theory Conjecture (Conjecture 2) tells us that

|ΓG| ≥
α∏
j=1

[(
N −Q(j)

1

)q(j)1
(
N −Q(j)

2

)q(j)2

]
· 1

Nq
· (1− ε2), (19)

|ΓH | ≥
β∏
j=1

[(
N −Q(j)

3

)q(j)3
(
N −Q(j)

4

)q(j)4

]
· 1

Nq
· (1− ε3), (20)

where ε1 and ε2 are both O(q/N).
Similarly, we can show that

|Λ| ≥ Nq

 α∏
j=1

(N)
q
(j)
1
(N)

q
(j)
2

Nq
(j)
1 +q

(j)
2

 β∏
j=1

(N)
q
(j)
3
(N)

q
(j)
4

Nq
(j)
3 +q

(j)
4

 (1− ε3). (21)



Safely Doubling your Block Ciphers for a Post-Quantum World 45

We observe that

(
N −Q(j)

1

)q(j)1

(N)
q
(j)
1

=

q
(j)
1 −1∏
k=0

(
N −Q(j)

1

)
(N − k)

≥
q
(j)
1 −1∏
k=0

(
N −Q(j)

1 − k
)
N

=
(
N −Q(j)

1

)
q
(j)
1

Nq
(j)
1 , (22)

so that
α∏
j=1

(
N −Q(j)

1

)q(j)1

(N)
q
(j)
1
≥ (N)q1N

q1 . (23)

We can show a similar inequality for q2, q3, and q4.
Thus,

|ΓG||ΓH ||Λ|
(N)q1(N)q2(N)q3(N)q4

≥ 1

Nq
(1− ε2 − ε3 − ε4). (24)

Since
Pr
0
[(τ, τ∗)] =

1

(N2)q|ΓG||ΓH ||Λ|
, (25)

we have
ρ ≥ 1− ε2 − ε3 − ε4, (26)

which completes the proof.

D.3 IND-CPA security proof of (2n/3)-bit Security

In this subsection we prove the following result.

Theorem 9. For any classical adversary A playing a q-query IND-CPA game
against QuEMEπ, we have

AdvQuEMEπ
prp (A) = O

(
q3

22n

)
.

For any classical adversary A′ playing a q-query IND-CPA game against QuEMEE

with q′ offline queries to E, we have

AdvQuEMEE
prp (A′) ≤ O

(
q3

22n

)
+O

(
qq′

22n

)
+ αE(q, q′).

For this proof we change the second step of the sampling procedure of
Sec. D.1. We observe that for each j ∈ [1..`], once a value is assigned to Ŝij , it
induces a value on Ŝi, T̂ i for each i ∈ Cj , according to the following rules:
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– if Ŝi is already set, T̂ i ←− L̂i ⊕ R̂i ⊕ Ŝi;
– if T̂ i is already set, Ŝi ←− L̂i ⊕ R̂i ⊕ T̂ i;
– if Si = Si

′
and Ŝi

′
is already set, Ŝi ←− Ŝi′ ;

– if T i = T i
′
and T̂ i

′
is already set, T̂ i ←− T̂ i′ .

Since Cj is connected, all nodes in Cj are guaranteed to be covered in this
manner. We refer to this as extending Ŝij to all of Cj .

S uses two (initialised as empty) sets DŜ and DT̂ , to tabulate the sampled
values of Ŝi and T̂ i respectively; every time a value is assigned to some Ŝi or
T̂ i, it is added to the corresponding table. For a subgraph C of Gτ (which can
be seen as a subset of the queries), DŜ|C and DT̂ |C will respectively denote DŜ

and DT̂ restricted to C. The connected components will be considered listed by
decreasing size.

Step 1 is the same as in Sec. D.1. In Step 2 S samples Ŝ1 uniformly at
random from {0, 1}n and extends Ŝ1 to all of C1, and for each j ∈ [2..`] S
samples over Cj as follows:

1. it computes the banned set Bj defined with the following condition: if and
only if Ŝij is assigned a value in Bj and extended to all of Cj , at least one
of the sets DŜ|Cj ∩DŜ and DT̂ |Cj ∩DT̂ will be non-empty; 5

2. it samples Ŝij from {0, 1}n \Bj and extends it to all of Cj . 6

Once S has completed Step 3 for C`, the sampling of τ∗ is complete. We also
include the additional bad event defined as follows:

bad4 : There are is a path of length ≥ 3 in Gτ .

This happens with O(q3/N2) probability. When bad5 has not happened, Gτ has
no component of size ≥ 2. Thus, for each j ∈ [2..`], |Bj | ≤ 2(j − 1).

Good probability in ideal world. For each j ∈ [1..`], the probability that the
random sampling in the modified second step of S correctly outputs the Ŝij is
1/(N − |Bj |). (We take B1 to be the empty set.) Thus,

Pr
0
[(τ, τ∗)] =

1

(N2)q(N)q1(N)q2N(N − |B2|) . . . (N − |B`|)
. (27)

Eqs. 13 and 27 give the ratio

ρ =
(N2)qN(N − |B2|) . . . (N − |B`|)

(N)q3(N)q4(N)t1 . . . (N)tr
. (28)

Like in the derivation of Eq. 16, we plug in (N)t1 . . . (N)tr < Nq in Eq. 28 to
get

ρ ≥ NqN(N − |B2|) . . . (N − |B`|)
(N)q3(N)q4

. (29)

5 To avoid more complicated notation we assume here that the newly assigned values
are kept in DŜ|Cj and DT̂ |Cj but not yet added to DŜ and DT̂ .

6 It is easy to see that DŜ ⊆ Bj .
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Since q ≥ max(q3, q4), we have ` ≤ min(q3, q4). Thus, we can rewrite Eq. 29 as

ρ ≥ NqN(N − 2) . . . (N − (2`− 2))

(N)q3(N)q4

≥ Nq−`

(N − `)q3−`(N − `)q4−`
· N

`N(N − 2) . . . (N − (2`− 2))

(N)`(N)`

≥
∏̀
j=1

N(N − 2(j − 1))

(N − (j − 1))2

=
∏̀
j=1

N2 − 2(N)(j − 1)

N2 − 2(N)(j − 1) + (j − 1)2

=
∏̀
j=1

(
1− (j − 1)2

N2 − 2(N)(j − 1) + (j − 1)2

)

≥
∏̀
j=1

(
1− 2(j − 1)2

N2

)

≥ 1−
∑̀
j=1

2(j − 1)2

N2
≥ 1− `3

N2
, (30)

which completes the proof with ε2 = `3/N2.

E AES specification and known attacks

E.1 AES: specifications and discussion

AES is the most popular and widely used symmetric block-cipher. Its internal
state size is of 128 bits. Three variants are standardized, with a 128, a 192 or
a 256-bit keys, each one with 10, 12 or 14 rounds respectively. AES-256 would
then provide, regarding Grover a key-recovery security of 128 bits, but when
used in most common modes, collisions on internal states would provide other
kind of attacks, potentially better than classical attacks under some assumptions
for the attackers. We provide here a basic description of AES-128 and we point
to [DR00] for more details.

AES State The state of is composed of elements of F256 organized in a 4 × 4
matrix : 

α0 α4 α8 α12

α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α11 α15


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Composition of a round AES-128 is composed of 10 rounds which are composed
of :

– AddKey xors the state with the round key (see Key Schedule);
– SubBytes which applies the AES Sbox on all individual elements αi;
– ShiftRows which shifts the i-th row by i position;
– MixColumns which multiplies each column by a fixed matrix.

The last round omits the Mixcolumns operation and applies one extra AddKey.

Key Schedule The round key expansion from the 128-bit master key K =
(k0|k2|k3|k4) for the subkey of round i, Ki for E is as follows :

K0 = (k0|k1|k2|k3) and Ki+1 = (k4i+4|k4i+5|k4i+6|k4i+7) for i from 0 to 9

k4i+4 = SubWord (RotWord(k4i+3))⊕ k4i ⊕ rci
k4i+5 = k4i+4 ⊕ k4i+1

k4i+6 = k4i+5 ⊕ k4i+2

k4i+7 = k4i+6 ⊕ k4i+3

with rci =


Xi mod X8 +X4 +X3 +X + 1

0
0
0


E.2 Best known attacks on AES

List of reduced-round attacks We expose a quick list of the best known attack
against round-reduced AES-128 in the different settings.

F Best attacks on Double-AES

The two best attacks we have found work on 3 rounds in E, E3 and E4 blocks
and any number of rounds in the two first ones (X-3-3); and on 2 rounds in E
while having any number of rounds in the upper and lower blocks (X-2-X) and
are, logically, quantum attacks. They both use a step consisting on guessing at
least a whole 128-bit key.

They also exploit the following property:

First middle round canceled. Given the key-addition operation of the AES, the
input of the middle block after the first key addition will be equal to the output
of E2. This property is very interesting. As an example, if we consider differences
and if the input of the right part of the state is fixed, the first SB transfer of
the middle round will have no active sboxes.
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Attack Rounds Time Data Reference
Mixture Differential 5 221.5 221.5 [BDK+18]

Yoyo 5 233 213.3 [RBH17]
Partial Sum 5 240 28 [Tun12]
Rectangle 5 223 29 [DKRS20]
Rectangle 5 216.5 215 [DKRS20]

Improved Square 5 235 233 [FKL+00]
Boomeyong 5 249 249 [RSP21]
Rectangle 6 280 226 [DKRS20]
Partial Sum 6 244 234.5 [FKL+00]

Truncated Differential 6 278.7 271.3 [BGL20]
Boomeyong 6 279.72 279.72 [RSP21]

Impossible Differential 7 2117.2 2112.2 [LDKK08]
Meet-in-the-Middle 7 2116 2116 [DKS10]

Impossible Differential 7 2113 2105.1 [BLSNP18]
Impossible Differential 7 2110.9 2104.9 [LP21]
Meet-in-the-Middle 7 299 297 [DFJ13]

Table 3: Current cryptanalysis for round-reduced AES-128 in the secret-key
model.

Attack Rounds Time Data Reference
Related-key

RK Boomerang 7 297 297 [BN10]
Chosen-key

Multi-collision 9 255 255 [FJP13]
Multiple-of-n 9 264 264 [GLR+20]

Known-key
Uniform Distribution 10 264 264 [Gil14]
Uniform Distribution 12 282 282 [GR20]

Table 4: Current cryptanalysis for AES-128 in the related-key/chosen-
key/known-key model.

Attack on X-3-3 without last MC in blocks E1, E2 and E. This attack
is based on the square attack [FKL+00]. From it we know that, if the input is
an active diagonal only in the left part of the plaintext, we will recover 224 sets
that verify that the state 4 rounds later is an state where all of its bytes take all
the possible values independently. The aim is to generate a square state thanks
to the left input at the beginning of the middle E, but we have to be careful,
as this input state will also influence its subkeys. In order to make it work, we
will consider a byte (in the before last column, not to affect too much further
subkeys due to key-schedule), that takes all the 28 possible values in the input
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AK

k2,1

SB SR MC
Round 1

AK

k2,2

SB SR MC
Round 2

AK

k2,3

SB SR
Round 3

AK

k2,4

Fig. 5: Square-like property on the middle part. We use green for bytes that take
every values, purple for balanced bytes and black for ignored bytes.

instead of structures of 232, and we will then cover with the distinguisher one
less round than the original square attack.

We guess k1 of E1, in order to generate an input to E with two fully active
bytes, as shown in figure 5. Therefor, any number of rounds in E1 would allow
the attack to work. In addition, we guess the subkeys from k3 associated to: 32
bits of antidiagonal for the last subkey, and 8 bits of subkey for the before-last
equivalent subkey, as shown in figure 6. This allows us to compute, for a given
left output, a byte after the first MC transformation in E3 and check whether
the sum of the resulting bytes is 0 or not. This filters one guess out of 256.

In order to increase this sieving, we choose, instead of one fixed state for the
right input, 21, which would provide a sieving of 2−8×21 to have balanced bytes
each time, leaving approximately 2128+5×8 × 2−8×21 = 1 key guess.

Complexity will be 21× 28 × 2(128+32+8)/2 = 296.5 data and time.
We expect that these attacks might be extended to 4-4-4, or to 4-3-4 with

MC by having a closer look at the properties generated by the key-schedule of
the middle block.

Attack on X-2-X without last MC in blocks E1, E2 and E.

Guessing k3. We start with a fixed pair (P1, P2) of left blocks of plaintexts
and perform the encryption through Double-AES-X-2-X of (P1, R), (P2, R), for
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Fig. 6: Recovery on the bottom part. We use green for bytes that take every
value, purple for balanced bytes, black for ignored bytes, � for guessed bytes
and • for deduced and known bytes.
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a fixed value R. We consider exclusively the left part of the output, we obtain
C1 and C2. For each guess of key k3 from E3, we will try a decryption through
E3 of C1 and C2 and note the difference δ.

Guessing k1 and some middle subkeys. For each guess of key k1 from E1, we
will try a encryption through E1 of P1 and P2. This will produce values x1 and
x2 that correspond to the values that should enter the middle part E.

Then, we will experience the cancellation of the first round as described
earlier. The second round starts by a key addition, and we can get to know
the differences on the bytes 0,4,8 and 12 (the first line) before the second SB
for one additional guess of the byte 13 of E2(R). Each one of this differences
can be associated to 232−4 = 228 output differences through the DDT of these
four sboxes. The output differences of these second SB will be determined by δ
xored to the last subkey of the middle round. In order to compute the difference
of this subkey for the first line, and therefore the posible values for finding a
match of this first line with the δs, we can perform an additional guess of the
byte 14 of E2(R) and the xor of the bytes 1,5,9 and 13 of E2(R). We therefore
get to compute the possible output differences of E and compare them to the
differences δ we described earlier.

As we just said, the probability of this sieving is of 2−4 because of the DDT.

More pairs. In order to sieve more guesses, we use 70 pairs instead of one, which
leaves approximately 2128+128+3×8 × 2−4×70 = 1 combination.

Complexity. We can then use an element distinctiveness algorithm to find the
correct combination of (k1, k3). Thanks to Ambainis algorithm [Amb07], the cost
of this attack will be about 70× (2128 + 2128+24)2/3 = 2107.5 time and memory.
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