
Improved Progressive BKZ with Lattice Sieving

Wenwen Xia1,⋆, Leizhang Wang1,⋆, Geng Wang2, Dawu Gu1,2,3, and Baocang Wang1

1 Xidian University
2 Shanghai Jiao Tong University
3 xiawenwen@stu.xidian.edu.cn
4 lzwang_2@stu.xidian.edu.cn

Abstract. BKZ is currently the most efficient algorithm in solving the approximate shortest
vector problem (SVPγ). One of the most important parameter choice in BKZ is the blocksize
β, which greatly affects its efficiency. In 2016, Aono et al. presented Improved Progressive
BKZ (pro-BKZ). Their work designed a blocksize strategy selection algorithm so that pro-
BKZ runs faster than BKZ 2.0 which has a fixed blocksize. However, pro-BKZ only considers
enumeration as its subroutine, without using the more efficient lattice sieving algorithm.
Besides, their blocksize strategy selection is not optimal, so the strategy selection algorithm
could further be improved.
In this paper, we present a new lattice solving algorithm called Improved Progressive pnj-
BKZ (pro-pnj-BKZ) mainly based on an optimal blocksize strategy selection algorithm for
BKZ with sieving, which relies on accurate time cost models and simulating algorithms. We
propose the following approaches:
- New simulators and time cost models for sieving and BKZ with sieving. A simulator is
used for simulating lattice reduction process without running the lattice reduction algorithm
itself. We give new simulators for sieving and BKZ, to simulate the cases where blocks in BKZ
with sieve oracle jump by more than one dimension. We also give more accurate time cost
models for both sieving and BKZ with sieving by experiments. Specifically, we discover new
relationships among time cost, blocksize and lattice dimension, which cannot be explained by
the existing theoretical results, and discuss the reason.
- New two-step mode for solving SVPγ problem with BKZ and sieving. Other than a subrou-
tine of BKZ, sieving can also be combined with BKZ to get a more efficient lattice solving
algorithm, but the best way of combination is currently unknown. We show that to solve
SVPγ problem more efficiently, one should first repeatedly run BKZ to reduce the lattice
basis and finally run lattice sieving once, since BKZ performs better in lattice basis reduc-
tion, while sieving performs better in finding short vectors. By our simulator, we can properly
choose the timing where the algorithm ends the BKZ routine and begins sieving.
- New blocksize strategy selection algorithm for BKZ with sieving. Since the blocksize strategy
selection algorithm in pro-BKZ is not optimal, we design a new blocksize strategy selection
algorithm to ensure an optimal strategy output. We implement both blocksize strategy selec-
tion algorithms in pro-BKZ and ours, along with our new BKZ simulator and two-step mode
to generate the blocksize strategies. Simulation results show that the strategy generated by
our new algorithm are more efficient in solving SVPγ problem. By generated strategy, we
improve the efficiency nearly 24.6 times compared with heuristic blocksize strategy in G6K.
We test the efficiency of the pro-pnj-BKZ with the TU Darmstadt LWE challenge and break
the LWE challenges with (n, α) ∈ {(40, 0.035), (50, 0.025), (55, 0.020), (90, 0.005)}.
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1 Introduction

To date, many post-quantum cryptosystems are lattice-based, e.g. Dilithium [DEKL+20], Ky-
ber [ABD+20] which have been accepted as NIST standards. Lattice-based structures appear to be
immune from attacks by both classical and quantum computers. As a result, many lattice-based con-
structions are considered secure, assuming that certain well-studied computational lattice problems
cannot be solved in polynomial time. A large fraction of lattice-based cryptographic mechanisms
is built upon the LWE problem [Reg09] and its variants [Reg09, LPR10,BG14,ABD+20]. One of
the best-known cryptanalytic technique against these problems is primal attack [Kan83], which
is widely used in cryptanalysis of lattice-based cryptosystems. The primal attack solves the LWE
problem by reducing it to the unique Shortest Vector problem (uSVPγ problem). It then calls an
approximate Shortest Vector Problem (SVPγ) solver to find the approximate shortest vector which
can be used to recover the solution of LWE.

The SVPγ problem is a basic lattice hard problem. In recent years, substantial improvements
have been made on solving the SVPγ problem. In 1982, the first polynomial-time lattice reduction
algorithm named the LLL [LLL82] was proposed to solve the SVPγ problem with an exponential
approximate factor γ. To solve the problem with a smaller approximate factor, Schnorr and Euchner
[SE91] presented Block Korkin-Zolotarev (BKZ) reduction, which is considered as a combination of
LLL algorithm and the enumeration algorithm to balance the algorithm’s time consumption and the
success probability using a parameter β called the blocksize. In the literature, many cryptanalysts
improved the BKZ algorithm, e.g. the extreme pruning technique [GNR10] to speed up enumeration,
BKZ 2.0 [CN11] based on [GNR10], approximate enumeration oracle [ABLR21] on speeding up
enumeration, and parameters optimization in BKZ such as Improved Progressive BKZ (pro-BKZ)
[AWHT16].

A BKZ simulator is used to predict the practical behavior of a BKZ algorithm (when β ≥ 45),
which is important in optimizing the parameter selection in BKZ. Based on the Gaussian heuristic,
Chen and Nguyen refined the sandpile model from [HPS11] and provided a BKZ simulator in
BKZ 2.0 [CN11]. Using the properties that the last β vectors in BKZ-β reduction basis satisfy
HKZ reduction and Gaussian heuristic, [AWHT16] proposed a simulator for predicting BKZ-β
fully reduced basis. Since the BKZ 2.0 simulator could not accurately predict the head concavity
phenomenon after multiple tours of BKZ-β, Bai et al. [BSW18] considered the norm of shortest
vector as a random variable rather than a fixed value, and brought randomness into the BKZ 2.0
simulator. The new simulator can effectively predict and explain the phenomenon of head concavity
of lattice basis reduced by multiple tours of BKZ.

Based on the BKZ simulator, pro-BKZ [AWHT16] solves the SVPγ problem by calling a series
of BKZs with different blocksizes first to optimize the basis quality, and an SVP oracle to find the
approximate shortest vector at last (we call it a two-step mode). The main contribution of their
work is a blocksize strategy selection algorithm to generate the different blocksizes to be used in
the BKZ reduction, which uses the shortest path algorithm to solve an optimized blocksize strategy
by setting multiple different mid reduction qualities as the inner nodes. But in this paper, we shall
show that their method is not supposed to generate an optimal blocksize strategy, and still has
room for improvement.

Besides the development of BKZ reduction itself, some researchers attempted to replace the
enumeration algorithm in BKZ with a sieving algorithm, as with the development of the mem-
ory manufacturing process, large-memory machines become more commonplace. A lattice sieving
algorithm requires more memory but less time than enumeration.



Improved Progressive BKZ with Lattice Sieving 3

In 2019, Albrecht et al. [ADH+19] designed the General Sieve Kernel (G6K), implemented a
new version of BKZ named pump-and-jump BKZ (pnj-BKZ) and the progressive sieving algorithm
named Pump, which can selectively call the Gauss sieve [MV10,FBB+15], NV sieve [NV08], k-list
sieve [HK17,HKL18] or BGJ1 sieve [BGJ15]. Pump is a generic design based on sieving algorithms
using the progressive sieve introduced in [LM18] with dimension-for-free technique [Duc18], which
makes the sieving process more efficient and allows a higher solving rate. Ducas et al. [DSvW21]
improved the efficiency of G6K using GPU and implemented the fastest sieving algorithm BDGL16
[BDGL16] in both G6K and G6K-GPU-Tensor. Unlike classical BKZ using an enumeration algo-
rithm as its SVP oracle, pnj-BKZ adopts Pump as its SVP oracle with a selective parameter jump.
The jump value controls the jump stage of blocks in BKZ with sieve oracle, which can jump by more
than one dimension. Default mode in G6K using pnj-BKZ and Pump solves TU Darmstadt chal-
lenges 400 times faster than the previous records for comparable instances. However, the blocksize
strategy used in the default parameter selection in G6K is heuristic. Like what has been shown in
pro-BKZ [AWHT16], the default mode of G6K can be further improved by an optimized blocksize
strategy selection algorithm. But to implement an optimized blocksize strategy selection algorithm
adapting from pro-BKZ, simulating algorithms and cost models for both pnj-BKZ and Pump are
necessary.
Contribution. In this work, we propose Improved Progressive pnj-BKZ (pro-pnj-BKZ) mainly based
on an optimal blocksize strategy selection algorithm for pnj-BKZ, which relies on accurate time
cost models and simulating algorithms for pnj-BKZ and Pump. More specifically:

- We construct a new simulator to simulate the lattice reduction process for pnj-BKZ, especially
in the case of jump > 1, and give a new Pump estimation algorithm for determining the dimension
in Pump when solving SVPγ and LWE problem. Besides, we also give time cost models for pnj-
BKZ and Pump. In particular, we illustrate new relationships among time cost, blocksize and
lattice dimension, which previous theoretical results fail to explain, and we also discuss the reason.
Furthermore, we design a new simulator to simulate the quality of lattice basis after Pump.

- We propose a new model for solving SVPγ problem by the simulating algorithms and time
cost models. We modify the default mode in G6K to a two-step mode, which firstly calls a series
of pnj-BKZs following a blocksize selection strategy to reduce the basis and then uses a Pump
algorithm to search the approximate shortest vector. Compared to the G6K’s default strategy, we
can efficiently save the time cost during the stage for improving the quality of lattice basis through
the new blocksize strategies. Besides, we avoid wasting time due to failed Pumps in G6K’s default
strategy by using a high solving probability Pump which executes only once. Eventually, we solve
the SVPγ problem more efficiently than G6K’s default strategy through the improvement during
these two stages (lattice basis pre-processing stage and target vector searching stage).

- Based on the simulating algorithms, the time cost models and two-step mode, we give two new
blocksize strategy selection algorithms. We borrow the same shortest path algorithm as in pro-BKZ
to design our first algorithm called blocksize strategy selection algorithm based on pro-BKZ (BSSA)
by replacing the BKZ and enumeration algorithm with pnj-BKZ and Pump respectively. However,
we find that the strategy generated by BSSA is not optimal. To obtain an optimal blocksize strategy,
we design a new strategy selection algorithm named blocksize strategy enumeration (EnumBS).
EnumBS can obtain an optimal blocksize strategy at the cost of higher theoretical complexity than
BSSA, but the time is still acceptable for low-dimensional lattices. Using the blocksize strategy
chosen from EnumBS, the algorithm increases the efficiency at most 24.6 (611, respectively) times
in solving the TU Darmstadt LWE challenges compared with the default LWE solver in G6K (the
LWE solver in BKZ with a fixed blocksize, respectively).
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- Since the solving process has changed, we also give a new samples estimation for the LWE
problem. Using this new samples estimation, we further increase the efficiency in solving LWE
challenges by around 5%.

- Based on these two blocksize strategy selection algorithms, we propose the Improved Progres-
sive pnj-BKZ (pro-pnj-BKZ). We solved the TU Darmstadt LWE challenges1 (n, α) ∈{(40,0.035),
(90,0.005), (50,0.025), (55,0.020)}.

Organization. The paper is organized as follows. In Section 2, we present basic notations and
preliminaries. In section 3, we present the sketch of pro-pnj-BKZ, design a pnj-BKZ simulator and
a Pump estimator for simulation, and give cost models for Pump and pnj-BKZ. In section 4, we
propose our two improved blocksize strategy selection algorithms in detail and compare them both
in time cost and optimization effect. In section 5, we apply our algorithm to solving LWE problem
and estimate the LWE samples afresh. In section 6, we present the simulating results and actual
walltime of cost for solving the LWE challenge by pro-pnj-BKZ, and compare it with other lattice
solving algorithms. In section 7, we give a conclusion and the prospect for further study.

2 Preliminaries

2.1 Notations and Basic Definitions

We write a matrix B as B = (b0, · · · ,bd−1) where bi is the (i+ 1)-th column vector of B. The
Euclidean norm of a vector v is denoted by ∥v∥.

If B ∈ Rd×d has full rank d, the lattice L generated by the basis B is denoted by L(B) =
{Bx|x ∈ Zd}. We denote B∗ = (b∗

0, · · · ,b∗
d−1) as the Gram-Schmidt orthogonalization of B, in

which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j =

⟨bi,b
∗
j ⟩

∥b∗
j ∥2 .

For i ∈ {0, · · · , d− 1}, we denote the orthogonal projection to the span of (b0, · · · ,bi−1) by πi,
i.e. ∀v, πi(v) = v −

∑i−1
j=0 ωjb

∗
j , in which ωj =

⟨v,b∗
j ⟩

∥b∗
j ∥2 .

For i, j ∈ Zd and 0 ≤ i < j ≤ d− 1, given an arbitrary d-dimensional vector v = (v0, · · · , vd−1),
define v[i:j] as (vi, · · · , vj−1) with a size j − i. For a lattice basis B, let B[i:j] ← (bi, · · · ,bj−1).
Moreover, we denote Bπ[i:j] by the local projected block (πi(bi), · · · , πi(bj−1)), and call Lπ[i:j] the
lattice generated by Bπ[i:j]. We use Bπ[i] and Lπ[i] as shorthands for Bπ[i:d] and Lπ[i:d] .

The volume of a lattice L(B) is Vol(L(B)) =
∏d−1

i=0 ∥b∗
i ∥, an invariant of the lattice. The first

minimum of a lattice L(B) is the length of the shortest non-zero vector, denoted by λ1(L(B)). We
use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

Suppose the input basis is B = (b0, · · · ,bd−1) and its corresponding Gram-Schmidt basis is
B∗ = (b∗

0, · · · ,b∗
d−1), the logarithms of the Gram-Schmidt norms li = ln (∥b∗

i ∥), i ∈ {0, · · · , d− 1}.
Let rr(B) = (l0, · · · , ld−1), abbreviate to rr, rr[i:j] = (li, · · · , lj−1).

Notations for algorithms description. Let BKZ-β/pnj-BKZ-β be an abbreviation of a one-tour
BKZ/pnj-BKZ with blocksize β. Assume the input basis is B, and the basis B reaches a basis quality
after calling sufficient tours of BKZ-β. To simplify the above step, we use β to imply the quality of

1 (www.latticechallenge.org/lwe_challenge)
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a BKZ-β reduced basis. Let ♯tours be the minimum tours for BKZ-β/pnj-BKZ-β to reach a BKZ-
β/pnj-BKZ-β reduced basis. Denote t as the number of tours for implementing BKZ/pnj-BKZ with
a fixed blocksize β.

Let TBKZ(β)/TpnjBKZ(β) be time assumption of one-tour BKZ/pnj-BKZ with blocksize β. Let
TBKZs(S)/TpnjBKZs(S) be total time cost for series of BKZ/pnj-BKZ with a specific blocksize strat-
egy S (e.g. S = [β0, · · · , βn−1]), abbreviate it to TBKZs/TpnjBKZs.

Denote Tpump(dsvp) as the time cost of Pump with sieve dimension equal to dsvp, abbreviate it
to Tpump. Let PSC(rr,M) be the Pump Solvable Cost to find the vector, whose norm is shorter
than M , in lattice L(B) and rr = rr(B), abbreviate it to PSC.

Definition 1. (The Gaussian Distribution [PV21]) Let σ ∈ R be the standard deviation, u ∈ R be
the mean value, a continuous Gaussian Distribution can be denoted as N(u, σ2). The probabilistic
density function of N(u, σ2) is

ρN(u,σ2) =
1

σ
√
2π

e−
(x−u)2

2σ2 .

Definition 2. (Chi-Squared Distribution [PV21]) Given n random variables Xi ∼ N(0, 1), the
random variables X2

0 + · · · +X2
m−1 follows a chi-squared distribution χ2

m over R∗ of mean m and
variance 2m with probabilistic density function

ρχ2
m
(x) =

1

2
m
2 Γ (m2 )

x
m
2 −1e−

x
2 .

Given m random variables Yi ∼ N(0, σ2), the random variables Y 2
0 + · · ·+Y 2

m−1 follows a scaled
chi-squared distribution σ2 · χ2

m over R∗ of mean mσ2 and variance 2mσ2.

Proposition 1. (Gaussian Heuristic [Duc18]) The expected first minimum of a lattice L (denoted
as λ1(L(B))) according to the Gaussian Heuristic denoted by GH(L) is given by

λ1(L(B)) ≈ GH(L) =
(
Vol(L)
Vd(1)

) 1
d

=

(
Γ (d2 + 1) ·Vol(L)

) 1
d

√
π

≈
√

d

2πe
·Vol(L) 1

d .

Where Vd (1) is the volume of the d-dimensional unit sphere. We also write GH(B) = GH(L(B))
and GH(rr[i:j]) = GH(Bπ[i:j]).

Definition 3. (HKZ reduction and BKZ reduction [Duc18]) The basis B of a lattice L is said to
be HKZ reduced if b∗

i = λ1(L(Bπ[i:d])), for all i < d. It is said BKZ reduced with block-size β(also
called as BKZ-β reduced) if b∗

i = λ1(L(Bπ[i:min{i+β,d}])), for all i < d.

Definition 4. (Root Hermite Factor [Che13]) For a basis B of d-dimensional lattice, the root
Hermite factor is defined as

δ =
(
∥b0∥/Vol(B)1/d

)1/d
, (1)

for estimating the equality of the output vector of BKZ. For larger blocksize, it follows the asymptotic
formula

δ(β)2(β−1) =
β

2πe
(βπ)1/β . (2)

Definition 5. (Geometric Series Assumption [ADH+19]) Let B be a lattice basis after lattice re-
duction, then Geometric Series Assumption states that ∥b∗

i ∥ ≈ α · ∥b∗
i−1∥, 0 < α < 1.

Combine the GSA with root-Hermite factor (Equation (1)) and V ol(L(B)) =
∏d−1

i=0 ∥b∗
i ∥, it

infers that α = δ−
2d

d−1 ≈ δ−2.
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2.2 Lattice Hard Problems

SVP Problem and its Variants

Definition 6. (Shortest Vector Problem(SVP) [Pei16]) Given an arbitrary basis B of some lattice
L = L(B), find a shortest non-zero vector, i.e. a vector v ∈ L for which ∥v∥ = λ1(L).

Definition 7. (Approximate Shortest Vector Problem(SVPγ) [Pei16]) Given an arbitrary basis B
of some lattice L = L(B), find a shortest non-zero vector, i.e. a vector v ∈ L for which ∥v∥ ≤
γ(d) · λ1(L). Besides, γ(d) is an approximate factor greater than or equal to 1 and a function
approximate to the lattice dimension d.

Definition 8. (unique Shortest Vector Problem(uSVPγ) [LM09]) Given an arbitrary basis B of
some lattice L = L(B) and L satisfies the condition γλ1(B) < λ2(B) (λ2(B) is norm of the second
shortest vector which is linearly independent to the shortest vector), find the shortest non-zero vector
v such that ∥v∥ = λ1(B).

Definition 9. (LWEm,n,q,Dσ
Distribution [APS15,Pei16,Xag10]) Given a number of samples m ∈

Z, a secret vector length n ∈ Z, a modulo q ∈ Z , a probability distribution Dσ.
Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q from a specific

distribution, randomly sample a relatively small noise vector e ∈ Zm
q from Gaussian distribution

Dσ whose standard deviation is σ.
The LWE distribution Ψ is constructed by the pair (A,b = As + e) ∈ (Zm×n

q ,Zm
q ) sampled as

above.

Definition 10. (Search LWEm,n,q,Dσ problem [APS15,Pei16,Xag10]) Given a pair (A,b) sampled
from LWE distribution Ψ(described in Definition 9), to compute the pair (s, e).

2.3 Primal Attack

Martin R. Albrecht et al.. [AFG14] firstly presented the primal attack for the LWE problem,
which reduced Standard Form LWE problem to an SVPγ problem by Kannan’s embedding technique
[Kan83]. (A,b) are LWE instances and the form of the embedding lattice basis is as

.

BA′,b =

(
A′ b
0T 1

)
, (3)

A′ = P−1

(
qIm−n Ā
O In

)
,

in which P ∈ Zm×m is a permutation matrix such that P ·A =

(
Ā
In

)
.

2016 Estimation from GSA for LWE [AGVW17,ADPS16] If β in the BKZ algorithm (or
its variant) satisfies the inequality√

β/d∥v∥ ≤ δ2β−dVol(L(B))1/d, (4)

then BKZ can obtain vector v in time T (β) (time cost relative to β, which is an exponential function
of β).
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2.4 G6K and G6K-GPU-Tensor

General Sieve Kernel (G6K, [ADH+19]) was proposed by Martin R. Albrecht et al. in 2019 as
an abstract machine for running sieve algorithms and deriving lattice reduction. Its performance is
far better than any earlier lattice solving algorithms. Solving SVP with G6K is at least 400 times
faster than the previous records in the TU Darmstadt SVP Challenge. G6K’s main contribution is
building on, generalizing, and extending the previous sieve algorithms. G6K-GPU-Tensor improves
the efficiency of G6K through GPU implementations. The above improvement reaches dimension
180 for TU Darmstadt SVP Challenge in 51.6 days on a server with 4 NVIDIA Turing GPUs and
1.5 TB of RAM.

2.5 Sieving Algorithms and Pump in G6K

Sieving Algorithms The first and simplest of practical sieving algorithms by Nguyen and Vidick
uses a database of N0 = (4/3)

d/2+o(d) ≈ 20.2075d+o(d) vectors and runs in time N2+o(1)
0 ≈ 20.415d+o(d)

by repeatedly checking all pairs v ± w [NV08]. The database size of (4/3)d/2+o(d) is the minimal
number of vectors that should be reached to ensure finding enough short pairs constantly, and
eventually saturate the ball of radius

√
4/3 · GH(L). In a line of works [Laa15, BGJ15, BL16,

BDGL16] the time complexity was gradually improved to 20.292d+o(d) by nearest neighbour searching
techniques to find close pairs more efficiently. Instead of checking all pairs, they first apply some
bucketing strategy in which close vectors are more likely in the same bucket. Considering the close
pairs inside each bucket are enough for reduction, the cost of a full search in the set for finding close
pairs can be decreased. In order to lower the memory requirement of 20.2075d+o(d), one can also
reduce triplets of vectors in addition to pairs. It leads to a time-memory trade-off, which lowers the
memory cost while increasing the computational cost. The current best triple sieve with minimal
memory 20.1887d+o(d) takes time 20.3588d+o(d) [HKL18].

Progressive Sieve Progressive sieve [LM18] is a sieve technique to save the cost of full dimensional
sieve. It can be realized by a right-to-left operation. It first calls a sieving algorithm on a lattice
projection with small dimension, then uses Babai’s nearest plane algorithm [Bab86] to recover the
vector to a lattice projection with higher dimension. Repeat the above step until recover the short
vectors onto a full dimensional lattice.

Dimension for Free Technique The output of the sieve heuristically contains all vectors which
length less than

√
4
3 ·GH(L), not only the shortest vector of L. Thus, we can denote the output of

the sieve for specific sub-lattice Lπ[f ] of dimension d0 − f as

L← Sieve(Lπ[f ]) =

{
x ∈ Lπ[f ] \ {0} : ∥x∥ ≤

√
4

3
·GH(Lπ[f ])

}
. (5)

Suppose the shortest vector of lattice L is v, from the property of short vector set after sieving,
the projection of the shortest vector v has been contained in L, i.e. πf (v) ∈ L. Since GH(L) =
∥v∥ ≥ ∥πf (v)∥, it is sufficient for containing v while

GH(L) ≤
√

4

3
·GH(Lf ). (6)
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In general, if v is uniform, then ∥πf (v)∥ ≈
√

d−f
d ∥v∥. Thus, we obtain a more relaxed condition

for a sieve in the projected lattice is that√
d0 − f

d0
·GH(L) ≤

√
4

3
·GH(Lf ). (7)

Ducas has given two theoretical dimension for free estimations in [Duc18] as

f =
d0 ln(4/3)

ln(d0/2π)
and f =

d0 ln(4/3)

ln(d0/2πe)
,

while in G6K [ADH+19], it gives a more relaxed bound as

f =


0, d0 < 40

⌊d0−40
2 ⌋, 40 ≤ d0 ≤ 75

⌊11.5 + 0.075d0⌋, d0 > 75
(8)

Pump in G6K Martin R. Albrecht et al. proposed Pump algorithm in [ADH+19], which is im-
proved based on progressive Sieve [LM18] with dimension for free technique [Duc18] and the inser-
tion tricks in [Duc18]. There are four input parameters for Pump algorithm: lattice basis B, left
insertion bound κ, insertion upper bound dsvp (κ + dsvp = d) and dimension-for-free value f (the
upper bound of sieve dimension is dsvp − f) as mentioned in section 2.5. After calling a Pump, it
will return a basis reduced by Pump.

2.6 Plain BKZ and Pnj-BKZ

BKZ algorithm is an adaptive algorithm for solving the SVPγ problem, which can handle differ-
ent approximate factors by adjusting the blocksize β to balance the solving time and the accuracy
of the solution. Here we list two different versions of BKZ: plain BKZ and pnj-BKZ. The main
difference is that they use different SVP oracles, where plain BKZ uses an enumeration algorithm
as its SVP oracle while pnj-BKZ uses a progressive sieve algorithm Pump as its SVP oracle.

Plain BKZ Block Korkine-Zolotarev (BKZ) reduction algorithm is a lattice reduction algorithm
whose performance between LLL reduction algorithm and HKZ reduction algorithm introduced by
Schnorr and Euchner [Sch91].

The main idea of BKZ algorithm is using β′ dimensional SVP oracle to find a lattice vector
vi ∈ Ld s.t. ∥πi (vi)∥ = GH

(
Lπ[i:i+β′]

)
, then insert it in i-th position of lattice basis, where

β′ = min (β, d− i), i = 0, · · · , d − 1. After each insertion, it will improve the quality of the lattice
basis. Besides, it calls an LLL algorithm before lattice reduction to vanish the linear dependence
and make a rough reduction after the insertion.

Pnj-BKZ in G6K The pnj-BKZ algorithm is a BKZ-type lattice reduction algorithm that uses
Pump as the subroutine for finding the shortest projected vector on the projected sub-lattice. Unlike
the plain BKZ algorithm, pnj-BKZ could perform the SVP oracle with an adjustable jump no less
than 1. More specifically, after executing the SVP oracle on a certain block Bπ[i:i+β′], the SVP
oracle will be executed on the B[i+J:i+β′+J] block with a jump count J rather than B[i+1:i+β′+1].
The detailed description of pnj-BKZ is as Algorithm 1.
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input : B, β, J = jump, fextra = 12;
output: B;

1 f ← equality (8) with d0 = β;
2 β, f ← β + fextra, f + fextra;
3 B← LLL(B);
4 for i← 0 to d+2f−β

J
do

5 if 0 ≤ i < f
J

then
6 κ, β′, f ′ ← 0, β − f + J · i, J · i;
7 else if f

J
≤ i < d−β+f

J
then

8 j ← J · i− f ;
9 κ, β′, f ′ ← j, β, f ;

10 else
11 j ← J · i− (d− β + f);
12 κ, β′, f ′ ← d− β + j, β − j, f − j;

13 Bπ[k:β′+k] · vi ← Pump(B, κ, β′, f ′);
14 B = LLL(B);

15 return B;
Algorithm 1: pnj-BKZ

2.7 Blocksize Strategy in Improved Progressive BKZ

Yoshinori Aono et al. proposed a blocksize strategy selection method in [AWHT16] to find an
optimized blocksize strategy and speed up the efficiency of BKZ 2.0 for solving the SVPγ problem
and LWE problem. In this section, we will describe the concrete scheme of their blocksize strategy
selection method.

The basic idea of Improved Progressive BKZ’s optimized blocksize strategy selection algorithm
is to select a sequence of blocksizes by repeatedly calling their BKZ simulator to minimize the total
cost of BKZ reduction for obtaining a BKZ-β reduced basis.

Notations on blocksize strategy in pro-BKZ. A tuple in blocksize strategy (βalg, βstart, βgoal)

satisfying 2 ≤ βstart < βgoal ≤ βalg, βstart βalg

→ βgoal means that we input a βstart reduced basis
B, call the algorithm to update B using enough tours of BKZ-βalg algorithm and terminate until

the quality of the basis B is better than a BKZ-βgoal reduced basis. TBKZ(β
start βalg

→ βgoal) implies
computing time in seconds of the above operation.

The blocksize strategy to obtain a BKZ-β reduced basis from an LLL reduced basis is denoted
as follows,

{(βalg
j , βgoal

j )}j=1,··· ,D ←
(
LLL(= βgoal

0 )
βalg
1→ βgoal

1

βalg
2→ βgoal

2

βalg
3→ · · ·

βalg
D→ βgoal

D (= β)

)
. (9)

Blocksize Strategy Optimization Method in Improved Progressive BKZ To find an opti-
mized sequence {(βalg

j , βgoal
j )}j=1,··· ,D that minimizes the total computing time in seconds, i.e. try
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to find a sequence of {(βalg
j , βgoal

j )}j=1,··· ,D to minimize the following formula:

min

D∑
i=1

TBKZ

(
βgoal
i−1

βalg
i→ βgoal

i

)
. (10)

Let TBKZs(β
goal
0 → β′) be the minimal time in seconds from an LLL reduced basis to a β′−reduced

basis, then

TBKZs(β
goal
0 → βgoal) = min

β′,βalg

{
TBKZs(β

goal
0 → β′) + TBKZ

(
β′ βalg

→ βgoal

)}
, (11)

where β′ < βgoal ≤ βalg. It is similar to the Shortest Path Problem. We can use a Shortest Path
Algorithm to solve it.

3 Improved Progressive pnj-BKZ: Sketch and Basic Variants

In this section, we shall first give a sketch of Improved Progressive pnj-BKZ in section 3.1. In
section 3.2, we give a simulator for pnj-BKZ and a dimension estimation for Pump. In section 3.3,
we give a cost estimation for Pump and pnj-BKZ. At the end of this section, we give a comparison
among BKZ-only mode, the default mode in G6K and two-step mode to explain the benefit of
two-step mode in section 3.4.

3.1 Our Improved Progressive pnj-BKZ

Our Improved Progressive pnj-BKZ can be described as the following: input a basis B, an op-
timized blocksize strategy S for reducing B, dimension d and target norm M , reduce B through a
series of pnj-BKZ-β. Each β is selected from blocksize strategy S. The blocksize strategy is gener-
ated from the blocksize strategy selection algorithm (see section 4) and stored as a sequential list.
After a series of lattice reductions, it will call a Pump algorithm. The parameter selection of Pump
follows Algorithm 4, which will lead to finding the approximate shortest vector after Pump. The
detailed process is as Algorithm 2.

input : B, S, M , J ;
output: The approximate shortest vector v;

1 B = LLL(B);
2 for β in S do
3 B = pnj-BKZ (B, β, J);

4 dsvp, _ ← PumpEstimation(rr(B), M);
5 f ← Equation (8) with d0 = dsvp;
6 B ← Pump(B,d− dsvp, dsvp, f); // B = (b0, · · · ,bd−1).
7 return b0;

Algorithm 2: Improved Progressive pnj-BKZ
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3.2 The pnj-BKZ Simulator and Pump estimation

The pnj-BKZ Simulator The pnj-BKZ is a BKZ-type lattice reduction algorithm that includes
the jump strategy and uses Pump as the SVP oracle. The BKZ 2.0 simulator [CN11] cannot be used
directly to simulate the behavior of pnj-BKZ with jump > 1. When jump > 1, let J = jump, after
the reduction of block Bπi[i:i+β′], the J − 1 norms of GS vectors bi+1, ...,bi+J−1 remain unknown.
These unknown norms prevent the BKZ 2.0 simulator from predicting the norm of the first GS
vector in the next block. So we give a new BKZ simulator to predict the case of jump > 1. To
simulate pnj-BKZ while jump > 1, we let these vectors satisfy the HKZ reduced condition, so that
we can predict the behavior of the pnj-BKZ.

Suppose the input basis is B = (b0, · · · ,bd−1) and its corresponding Gram-Schmidt basis is
B∗ = (b∗

0, · · · ,b∗
d−1) , the logarithms of the Gram-Schmidt norms li = ln (∥b∗

i ∥), i ∈ {0, · · · , d− 1}.
Let B′ and l′i be the corresponding output of the basis and the logarithm of each Gram-Schmidt
norm after a pnj-BKZ-β. If the first J vectors in each block reduced by Pump satisfies HKZ reduced
condition2, then we can simulate each li after a pnj-BKZ-β reduction with jump = J by Gaussian
Heuristic as

l′i = ln
(
GH

(
B′

π[i:i−(i mod J)+β]

))
≈ 1

2
ln

(
β − (i mod J)

2πe

)
+

1

β − (i mod J)

i−(i mod J)+β−1∑
j=0

lj −
i−1∑
j=0

l′j

 ,
(12)

where i ∈ {0, · · · , d− β − 1}, Vol
(
B′

π[i:i−(i mod J)+β]

)
=

Vol(B[0:i−(i mod J)+β])
Vol

(
B′

[0:i]

) . As for the norm

prediction of last GS norms li: i ∈ {d−β, d−1}, we use the same method as the BKZ 2.0 simulator.

(a) β = 105, J = 12, our square error = 0.482, sim-
ulator in BKZ 2.0 square error = 3.067

(b) β = 115, J = 18, our square error = 0.656,
simulator in BKZ 2.0 square error = 5.325

Fig. 1. Gram–Schmidt log-norms for pnj-BKZ with Jump > 1

2 To obtain the HKZ basis, we should turn on pump/down_sieve during Pump process in pnj-BKZ and
delete the condition "(pump.insert_left_bound <= kappa+down_stop)" to make sure the output basis
projection is HKZ reduced.
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input : (l0, · · · , ld−1), the desired blocksize β ∈ {45, · · · , d}, the number of tours t and the size of
jump J to simulate.

output: A prediction for the logarithms of the Gram-Schmidt norms l′i = ln (∥b′∗
i ∥) after t tours

pnj-BKZ-β reduction with jumpsize is J .
1 for i← 0 to 44 do
2 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume 45-dimensional lattice;

3 for i← 45 to β do
4 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

5 for j ← 0 to t− 1 do
6 flag ← true; //flag to store whether L[k,d] has changed
7 for k ← 0 to d− β − 1 do
8 β′ ← min (β, d− k + 1); //Dimension of local block
9 if k ≡ 0 (mod J) then

10 h← min (k + β − 1, d); //End index of local block
11 ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

12 if flag = True then
13 if ln (V) /β′ + cβ′ < lk then
14 l′k ← ln (V) /β′ + cβ′ ; flag ← false;

15 else
16 l′k ← ln (V) /β′ + cβ′ ;

17 else
18 h← min (k − (k mod J) + β, d); ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

19 if flag = True then
20 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
21 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J); flag ← false;

22 else
23 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

24 for k ← d− β to d− 46 do
25 β′ ← d− k; h← d; ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

26 if flag = True then
27 if ln (V) /β′ + cβ′ < lk then
28 l′k ← ln (V) /β′ + cβ′ ; flag ← false;

29 else
30 l′k ← ln (V) /β′ + cβ′ ;

31 ln (V)←
∑h

i=1 li −
∑k−1

i=1 l′i;
32 for k ← d− 45 to d− 1 do
33 l′k ←

ln(V)
45

+ rk+45−d;

34 for k ← 0 to d− 1 do
35 lk ← l′k;

36 return l0, · · · , ld−1;
Algorithm 3: pnj-BKZ Simulator
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We give a detailed algorithm description of the pnj-BKZ simulator in the algorithm 3. To
verify the effectiveness of our pnj-BKZ simulator, we perform the following experiments, reducing
(n = 70, α = 0.005) LWE challenge lattice basis by pnj-BKZ with different jump sizes. Then
BKZ 2.0 simulator and our jump BKZ simulator are used respectively to simulate the reduction
effective, and finally the prediction effect of different simulator is compared. From Figure 1, it can
be intuitively seen that as the jump value gradually increases, the simulation effect of BKZ 2.0
simulator becomes more and more inaccurate, however our pnj-BKZ simulator can well predict the
actual behavior of pnj-BKZ with jump > 1. To illustrate the difference between the two simulators
more clearly, we calculate the sum of squares value of residuals between the simulator simulated
values and the mean of multiple experiments separately, which can be seen in Figure 1. When the
value of jump increased, the square error of BKZ 2.0 simulator is increasing, while the square error
of our simulator is still keeping in a low level which is much smaller than that in BKZ 2.0 simulator.

Pump Estimation Besides the simulator, we need a Pump estimator to determine the di-
mension of the final Pump. In G6K, a Pump estimation method has been given. Let Mdsvp =

M ·
√

dsvp

d be the expected norm of the required approximate shortest vector projection in the
sub-lattice Lπ[d−dsvp:d] and dsvp be the maximum dimension to sieve while calling Pump, where
GH(rr[d−dsvp:d]) = GH(Bπ[d−dsvp:d]) ≤Mdsvp

.
We give a new Pump estimation method here, which regards Mdsvp

as a distribution Mdsvp
=

M[L=d−dsvp:R=d] = F (L,R,D) that is related to the projected lattice, and the distribution D is
the uniform distribution of all vectors with norm ≤ M . In our Pump estimation method (as in
Algorithm 4), it first evaluates the maximum sieve dimension dsvp for calling Pump to guarantee a
high solving probability, then give a cost estimation by dsvp, where Pump cost will be mentioned
in section 3.3.

input : rr, M , Psuccess = 0.8;
output: dsvp, PSC;

1 for dsvp ← dstart to d do
2 p ← Pr

[
Mdsvp ← F (d− dsvp, d,D)|Mdsvp ≤ GH(rr[d−dsvp:d])

]
;

3 if p > Psuccess then
4 PSC ← Equality (14) with β = dsvp;
5 return dsvp, PSC;

Algorithm 4: PumpEstimation

3.3 Time Cost Model for Pump, pnj-BKZ and BKZ

Pump Cost We can regard Tpump as a computational cost model of the (β − f)-dimensional
progressive sieve, i.e.

Tpump =

β−f∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(β−f−β0)

)
≤ 2cβ0 · 2

c(β−f+1)+o(β−f+1)

1− 2c
= O

(
2c(β−f)

)
≈ 2c(β−f)+c1 ,

(13)
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where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30, and in G6K-GPU, it
is set to 50), c and c1 are the coefficients of the full sieve cost related to sieve dimension.

However, we find that the asymptotic complexity of the sieving does not match the actual cost
well in the low-dimensional case. While dimension is low, the number of threads used in Pump
increases with the dimension, which balance out part of the time cost increase. So in low dimension,
c might be much lower than the theoretical result.

(a) log2 Tpump: Test Pump independently. (b) log2 Tpump: Average Pump Cost in pnj-BKZ.

Fig. 2. Pump and pnj-BKZ Cost Figure while d = 180, Pump Oracle = gpu_sieve, using Machine C:
average Tpump in pnj-BKZ is lower than Tpump test directly, since in pnj-BKZ, the Tpump cost distributes
uneven. The different functions from β−f to log2 Tpump result from the saturation of threads in CPU/GPU.

In order to accurately predict the unknown coefficients c and c1 in the computational cost
model, we use the experimental method to test the running time of Pump on different lattice basis
corresponding to different TU Darmstadt LWE challenges and with different blocksizes β. The
experimental results show that our computational cost model above can fit well with the actual
cost of Pump.

Take (β−f) as the independent variable, where f selected from equation (8). log2 T is obtained
from the experimental test as the dependent variable, and we use the least squares fitting to find
c and c1. We use R2 to denote the coefficient of determination (R squared) value above linear
regression model. The coefficient of determination (R2 or R squared) is a statistical measure in a
regression model that determines the proportion of variance in the dependent variable that can be
explained by the independent variable. Generally, the range of R2 is [0, 1] and when R2 closer is to
1, the better the model fits the data.

From Figure 2(a), we can see that R2 is close to 1. It means that the fitting effect is good.
Figure 2(a) also shows that the logarithm of the computational cost of Pump is linearly correlated
to β − f , where f is selected from dim4free function mentioned in section 2.5.

As described in Algorithm 1, pnj-BKZ consists of a series of Pumps. If we regard pnj-BKZ as a
combination of Pumps with equal cost, the computational cost of pnj-BKZ can be calculated by the
sum cost of d+2f−β

J progressive sieves on the (β−f)-dimension projection sublattice with J = jump.
However, as the figure 3(a) shown, each Pump in pnj-BKZ takes different cost. Especially, the Pump
cost increases under the incremental index smaller than d − β + f and decreases after d − β + f
indices. It infers that for a fixed blocksize β, the average Pump cost in pnj-BKZ will increase with
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the growth of dimension d. As Figure 3(b) shown, we have tested on 5 fixed blocksizes and proven
that the average Pump cost in pnj-BKZ grows linearly with d.

(a) Cost for each Pump under different index in
pnj-BKZ-100 with one tour

(b) Average Pump cost in pnj-BKZ-β grows lin-
early with d

Fig. 3. Pump cost under different indices in pnj-BKZ and average Pump costs in pnj-BKZ with change of
d using Machine C.

We suggest that average Tpump in pnj-BKZ is linear in d when d is small, and independent with
d when d is large. Combining the functions among Tpump, blocksize β and dimension d, we can get
the average Pump cost equation as

Tpump = min
{
2c(β−f)+c1 · (c2 · d+ c3) , 2

c′(β−f)+c′1

}
(14)

where 2c·(β−f)+c1 is the Pump cost related to blocksize β for a fixed dimension d0 and f satifsies
the equation (8). For a fixed dimension d = 180, the average Pump cost in pnj-BKZ can be
simulated as Figure 2(b) and c2 and c3 can be computed by Figure 3(b) shown. We believe that the
relationship between average Tpump in pnj-BKZ and d is affected by the early termination condition
in the implementation of sieving algorithms in Pump, where the algorithm stops when enough short
vectors are generated. If d is large enough, we suppose that the algorithm stops only when all vectors
are reduced, then the time cost of Pump will achieve the theoretical complexity, so average Pump
cost with growth of d will also achieve an upper bound T

(max)
pnj−BKZ = 2c

′(β−f)+c′1 . However, we are
currently not able to calculate the exact value of c′ and c′1.

3.4 Comparison among BKZ-only Mode, Default Mode in G6K and Two-step Mode

In this part, we introduce the three different modes for solving the SVPγ problem and give an
experiment to prove the comparison result.

BKZ-only Mode BKZ-only mode [Che13, ADPS16] implements multiple loops of BKZ-β/pnj-
BKZ-β for solving SVPγ problem. The pseudocodes of the BKZ-only Mode are as algorithm 5, in
which M denotes the upper bound of the Euclidean norm of the approximate shortest vector. It is a
tunable attack since one can change the blocksize strategy to reduce the basis to a specific quality.
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input : B, d, M ;
output: The approximate shortest vector v;

1 B ← LLL (B);
2 for i in ♯tours do
3 B ← BKZ(B, β) / pnj-BKZ(B, β, 1); // B = (b0, · · · ,bd−1).
4 if ∥b0∥ < M then
5 return b0;

Algorithm 5: BKZ-only Mode

Default Mode in G6K In the default mode of G6K [ADH+19], it solves the SV Pγ problem
by calling progressive pnj-BKZ and a conditional Pump (The algorithm calls Pump only if the
estimated time cost of Pump is shorter than an upper bound) repeatedly. In the default mode
of G6K, it will reduce the basis by a specific blocksize strategy S0. After each lattice reduction
by pnj-BKZ-β, β ∈ S0, the default mode will record the time cost of the pnj-BKZ-β process and
determine whether a Pump will finish in the same cost. If it does, it will call a Pump; If not, it will
skip to the next pnj-BKZ. The concrete process is as the Algorithm 6.

The benefit of the default mode in G6K is that if we do not have an accurate simulator for plain
BKZ/pnj-BKZ and we are not sure of the solvability by a final Pump calling, then a Default Mode
in G6K will make sure in outputting the required result in a reasonable time. However, without a
simulator, it will sometimes enter a Pump with solving failure and waste processing time heavily
since a Pump call is costly. Besides, it might enter a Pump late and waste the processing time of
extra cost for several pnj-BKZs with large blocksizes.

input : B, S0, d, M ;
output: The approximate shortest vector v;

1 B ← LLL (B);
2 for β ∈ S0 do
3 B ← pnj-BKZ (B, β, 1);
4 B ← LLL (B);
5 Tmax

pump ← TpnjBKZ(β);

6 nmax is the solution of the equation Tmax
pump · ♯threads = 2

n−58
2.85 ;

7 dsvp ∈ N is the minimum value such that
√

4
3
·GH(B[d−dsvp:d]) ≥M ·

√
dsvp
d

;

8 κ ∈ N is the maximum value such that GH(B[κ:d]) ≥M ·
√

d−κ
d

;
9 if dsvp ≤ nmax then

10 f = max{d− κ− nmax, 0};
11 B = Pump(B, κ, d− κ, f);

12 if ∥b0∥ < M then
13 return b0; //B = (b0, · · · ,bd−1)

Algorithm 6: Default Mode in G6K
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Two-step Mode Two-step mode was firstly proposed by [AWHT16], which calls a series of BKZ
first for lattice reduction and calls an enumeration algorithm to find the target vector at last,
without an optimal proof. In this paper, we use a two-step mode adapted to pnj-BKZ and Pump.
It calls a series of pnj-BKZ to reduce the basis firstly and uses a Pump algorithm to search the
approximate shortest vector in the final, to solve the SVPγ problem. The concrete process is as
Algorithm 2. By our pnj-BKZ simulator and Pump estimation algorithm, we can guarantee that
the last Pump outputs the required target vector and the process for solving SVPγ problem in
two-step mode is optimal.

Experiments of Comparison among BKZ-only Mode, Default Mode in G6K and Two-
step Mode In this part, we give an experimental result to illustrate that the two-step mode is the
best mode among the three different modes.

For the comparison between two-step mode and BKZ-only mode, we can see that the reduced
shortest vector in projected lattice after a Pump is shorter than that after a pnj-BKZ in the same
time cost in Table 1. Thus, if the lattice basis is already well-reduced by pnj-BKZ, then calling a
Pump is more likely to find the target vector compared to a pnj-BKZ in the same time cost. On
this account, it states that two-step mode is better than the BKZ-only mode.

Table 1. Simulated norm of b∗
κ after a pnj-BKZ

and a Pump under the same time cost.

(n,α)† κ
ln(∥b∗

κ∥2)
pnj-BKZ Pump in L[κ:d]

(50,0.020) 70 13.53 12.54
(55,0.020) 82 13.39 12.22
(75,0.010) 123 13.04 11.30
(90,0.005) 156 12.14 9.94

† Basis from LWE instance (n, α) in TU Darmstadt

LWE challenge.

Table 2. Basis quality estimation after a pnj-
BKZ and a Pump under the same time cost.

(n,α) Cost‡ log2(PSC)(log2h)
pnj-BKZ Pump in L[κ:d]

(50,0.025) 22.01 11.69 12.01
(55,0.020) 17.77 12.63 12.95
(75,0.010) 91.02 20.17 20.48
(90,0.005) 24.18 20.48 22.05

‡ Cost for calling the corresponding algorithm.

For the comparison between two-step mode and G6K default mode, we show that an early Pump
is less helpful in solving SVPγ than an early pnj-BKZ. Let the time cost of Pump for finding the
target norm on the specific lattice basis, i.e. PSC, be a standard of reduced quality. A lattice basis
with low PSC can be regarded as high quality. Separately call a pnj-BKZ/Pump on the same lattice
basis with same time overhead. Table 2 shows that basis quality after a pnj-BKZ reduction is higher
than that after a Pump reduction in the same time overhead. (The latter basis quality is estimated
using the Pump estimator in Appendix A.) Thus, in the G6K-default mode, if it enters a Pump with
no solution, the quality of returned lattice basis will be worse than that after a pnj-BKZ reduction
in the same time limit. In conclusion, G6K-default mode is less efficient than two-step mode.

4 Improved Progressive pnj-BKZ: Blocksize Strategy Optimization

In this section, we describe the two blocksize strategy selection algorithms in detail. The first is
blocksize strategy selection algorithm based on pro-BKZ (BSSA), based on the blocksize strategy in
Improved Progressive BKZ mentioned in section 2.7. The second is a new algorithm called blocksize
strategy enumeration (EnumBS), through which we can get an optimal blocksize strategy. We give
both formal proof and experiment results to show that our new strategy selection algorithm is
better than the algorithm based on pro-BKZ.
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input : rr0, BS,βstart
0 , βgoal

0 , d, M , J ;
output: BS for βstart

0 → βgoal
0 ;

1 for β ← βstart
0 to βgoal

0 do
2 Tmin ← +∞;
3 for βsstart ← βstart

0 to β do
4 if βsstart = βstart

0 then
5 TpnjBKZs(β

start
0 → βsstart), rr ← 0, rr0;

6 else if βsstart > βstart
0 then

7 if βsstart not in BS then
8 BS ← GenBSproBKZ (rr0, BS, βstart

0 , βsstart, d, M , J);

9 rr ← BS [βsstart].value (rr);

10 TpnjBKZs(β
start
0 → βsstart) ← BS [βsstart].value (TpnjBKZs(β

start
0

t·βalg

→ βsstart));

11 rr′, βalg, t, TpnjBKZs(β
sstart t·βalg

→ β) ← SimTimeOpt(rr, βsstart, β, d, M , J);

12 T ← TpnjBKZs(β
start
0 → βsstart) + TpnjBKZs(β

sstart t·βalg

→ β);
13 if Tmin > T then

14 Tmin, BS[β] ← T ,
(
rr′, βsstart t·βalg

→ β, TpnjBKZs(β
sstart t·βalg

→ β)

)
;

15 return BS of βstart
0 → βgoal

0 ;
Algorithm 7: Blocksize strategy generation in pro-BKZ (GenBSproBKZ)

4.1 Blocksize Strategy Selection Algorithm based on Pro-BKZ

The blocksize strategy selection algorithm based on pro-BKZ (BSSA) can be described as an
application of the shortest path algorithm on blocksize strategy selection. It firstly sets several
nodes of βi as a measure of basis quality and expects to find the optimal blocksize βalg with tours
t between each nodes, which can be used to minimize the time cost from βstart to βgoal and the
pseudocode is as the Algorithm 7. The goal of function SimTimeOpt is to find the best βalg such
that after calling t tours of pnj-BKZ-βalg with jump J , the quality of rr which has reached quality
of βstart will elevate to the βgoal quality. To store the variables in blocksize generation process,
we define a blocksize strategy dictionary BS, in which the key is each βgoal node, and the value

is a tuple of
(
rr(βgoal), βstart t·βalg

→ βgoal, TpnjBKZs(β
start t·βalg

→ βgoal)

)
, where rr(βgoal) is the GS-

lengths’ norm in pnj-BKZ-βgoal reduction, t = ♯tours(βstart βalg

→ βgoal) means the minimum number

of tours from rr(βstart) to rr(βgoal) and TpnjBKZs(β
start t·βalg

→ βgoal) denotes simulated time cost
for t tours of pnj-BKZ-βalg.

To find the shortest vector’s minimum cost, we should also consider the cost of the last Pump,
i.e. PSC , after several pnj-BKZ reductions. Thus, we choose multiple number of βgoals to find the
minimum total cost of pnj-BKZ from βstart to βgoal and Pump from βgoal to finding the short
vector. The pseudocodes about BSSA is Algorithm 8.
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input : rr0 = (l0, · · · , ld−1), βstart, βgoal, d, M , J ;
output: BS of βstart → βmin, Tmin;

1 BS = {};
2 BS = GenBSproBKZ(rr0, BS, βstart, βgoal, d, M , J);
3 Tmin, βmin ← +∞, βstart;
4 for β ← βstart + 1 to βgoal do

5 TpnjBKZs ← BS[β].value(TpnjBKZs(β
start t·βalg

→ β));
6 rr ← BS [β].value(rr);
7 _, PSC ← PumpEstimation(rr, M);
8 T ← TpnjBKZs + PSC;
9 if T < Tmin then

10 Tmin, βmin ← T , β;

11 return BS of βstart → βmin, Tmin;
Algorithm 8: blocksize strategy selection algorithm based on pro-BKZ(BSSA)

4.2 Blocksize Strategy Enumeration Algorithm

The blocksize strategy enumeration algorithm (EnumBS) is a pruning enumeration algorithm
that enumerates all the possible blocksize strategies below the maximum time cost. Let each
blocksize strategy be stored as a tuple ([β1, ..., βn], TpnjBKZs =

∑n
i=1 Tpnj−BKZ(βi),PSC(rr,M), rr),

where 50 ≤ β1 ≤ ... ≤ βn ≤ d, TpnjBKZs is the total cost of pnj-BKZs under blocksize list [β1, ..., βn],
and PSC(rr,M)/PSC is the Pump Solvable Cost, which can be viewed as the quality of basis after
n tours of pnj-BKZ reduction.

We consider all possible strategies as a dynamic enumeration tree, traverse through the tree and
store each node in a list of blocksize strategies. A strategy is discarded from the list, only if there
is another strategy which the total time cost of pnj-BKZ is shorter and the quality of basis after
reduction is also better. Finally, we compare all strategies in the list to find the optimal strategy.
The pseudocode of EnumBS is in Algorithm 9.

Proof for the Optimality of EnumBS

Theorem 1. Let rr(S) be the Gram-Schmidt Lengths of basis after calling a series of pnj-BKZ
simulator following the strategy S. Suppose all stratgies form set S, it exists an optimal strategy
Sop ∈ S s.t. T (Sop) = TpnjBKZs(Sop) + PSC (rr(Sop),M) is minimum. The output strategy SEnumBS

of EnumBS is the optimal strategy, i.e. SEnumBS = Sop.

Proof. (Reduction to Absurdity) Suppose there’s a strategy S′ ∈ S such that T (S′) < T (SEnumBS).
Then there are four different situations:

(1) PSC(rr(S′),M) < PSC(rr(SEnumBS),M), i.e. the basis quality of series of pnj-BKZ with
strategy of S′ is better than the basis quality of SEnumBS.

(1.1) If TpnjBKZs(S′) ≤ TpnjBKZs(SEnumBS), then the strategy SEnumBS will be replaced by S′,
contradictory.

(1.2) If TpnjBKZs(S′) > TpnjBKZs(SEnumBS), S′ will appear in the BS at last. Since T (S′) <
T (SEnumBS), EnumBS won’t output the strategy SEnumBS, contradictory.

(2) PSC(rr(S′),M) ≥ PSC(rr(SEnumBS),M), i.e. the basis quality of series of pnj-BKZ with
strategy of S′ is worse than the basis quality of SEnumBS.
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(2.1) If TpnjBKZs(S′) ≥ TpnjBKZs(SEnumBS), then T (S′) ≥ T (SEnumBS), contradictory to the
assumption.

(2.2) If TpnjBKZs(S′) < TpnjBKZs(SEnumBS). Then, S′ will appear in the BS at last. Since T (S′)
< T (SEnumBS), EnumBS won’t output the strategy SEnumBS, contradictory. □

Table 3 shows the blocksize strategy selected by Algorithm 9 in TU Darmstadt LWE challenge
instances with Psuccess = 0.8. In this paper the threshold for judging whether a simulated solving
strategy can successfully find target vector is set to 0.8.

4.3 Practical Time cost Comparison between BSSA and EnumBS

Although the time cost of EnumBS is exponential, it is still acceptable in selecting a strategy
since it takes only about an hour while running the algorithm on dimension d = 313 and even faster
than BSSA when the lattice dimension is low. Table 4 shows the actual time cost of BSSA and
EnumBS while running them to obtain the optimized blocksize strategy for LWE instances in the
LWE challenge. Besides, the simulated time cost of strategy generated by EnumBS is lower than
the time cost of BSSA as the Table 5, thus the generating cost for EnumBS is valuable.

Table 4. Running time of BSSA and EnumBS
for strategy generation.

(n,α) Cost(s)
BSSA EnumBS

(45,0.030) 1100.57 181.8
(50,0.025) 1837.74 373.24
(55,0.020) 1404.99 462.67
(60,0.015) 1224.61 686.07
(90,0.005) 2344.02 3864.899

Table 5. Cost estimation of strategy from BSSA
and EnumBS.

(n,α) Cost(h)
BSSA EnumBS

(45,0.030) 476.83 315.6
(50,0.025) 2132.63 867.57
(55,0.020) 1029.44 834.87
(60,0.015) 136.28 130.0
(90,0.005) 278.6 277.85

5 Applying Pro-pnj-BKZ to LWE

In this section, we apply our algorithm to LWE and present a new rule for choosing LWE samples
based on our optimized blocksize selection strategy in section 4, which is different from that in 2016
Estimate [ADPS16]. In section 5.1, we will explain the method in choosing a dimensional upper
bound for the last Pump in two-step mode, which is different from the chosen rule in default G6K
since the chosen rule in default G6K is over-optimistic. An over-optimistic estimation for dimension
in last Pump will lead to a bad reduction, through which the output basis will exclude the predicted
short vector. In section 5.2, we will give a scheme for selecting an optimized number of LWE samples.

5.1 Pump Estimation in LWE

In this section, we reconsider the relationship between the dimension of final Pump and the
probability of finding the target vector in LWE. We present a new method for determining these
parameters in the final high-dimensional Pump based on the distribution of the length of LWE
error term, which is a chi-squared distribution.

The value estimation of dsvp in default G6K cannot always guarantee finding the target vector
t. It uses the inequality

σ
√
dsvp ≈

∥∥πd−dsvp (t)
∥∥ ≤ GH(B[d−dsvp]), (15)



Improved Progressive BKZ with Lattice Sieving 21

input : rr0= (l0, · · · , ld−1), d, M , J ;
output: Smin, Tmin;

1 _, PSC(0) ← PumpEstimation (rr0, M);
2 BS ← {(∅, 0, PSC(0), rr0)};
3 i = 0; // ♯BS is the number of elements in BS.
4 while i < ♯BS do
5 BS ← Sort BS in order PSC from large to small;
6 Sstart ← BS [i][0]; // Blocksize strategy list.
7 if Sstart = ∅ then
8 βstart ← 50;
9 else

10 βstart ← max(Sstart);

11 for β ← βstart + 1 to d do
12 ♯tours ← the maximum tours for pnj-BKZ-β;
13 for t ← 1 to ♯tours do
14 S∗ ← S ∪ [β, · · · , β]︸ ︷︷ ︸

t

;

15 T ∗ ← TpnjBKZs(S∗);
16 rr∗ ← GS-lengths after calling pnj-BKZ simulator with jump J by strategy S∗;
17 _, PSC∗ ← PumpEstimation(rr∗, M);
18 BS ← BS ∪ {(S∗, T ∗, PSC∗, rr∗)};
19 if ∃ (S′, T ′, PSC′, rr′) ∈ BS s.t. PSC∗ ≥ PSC′ and T ∗ ≥ T ′ then
20 BS ← BS \ {(S∗, T ∗, PSC∗, rr∗)};
21 else
22 for ∀ (S, T , PSC, rr) ∈ BS s.t. PSC∗ ≤ PSC and T ∗ < T do
23 BS ← BS \ {(S , T , PSC, rr)};

24 i← i+ 1;

25 Smin, Tmin ← [ ], +∞;
26 for bs ∈ BS do
27 (S, TpnjBKZs, PSC , rr) ← BS [bs ];
28 _, PSC ← PumpEstimation(rr, M);
29 T ← TpnjBKZs + PSC;
30 if Tmin > T then
31 Smin, Tmin ← S, T ;

32 return Smin, Tmin;
Algorithm 9: Blocksize Strategy Enumeration (EnumBS)

Table 3. Blocksize strategy generated by EnumBS in TU Darmstadt LWE challenges.

n α Strategies jump dpump(κ, β, f)

45 0.030 [87, 87, 117, 117, 137, 143] 2 (36,152,22)
50 0.025 [87, 87, 107, 117, 119, 129, 140] 2 (53,167,24)
55 0.020 [87, 87, 107, 107, 117, 123, 140, 145] 2 (66,165,23)
60 0.015 [87, 107, 107, 107, 117, 121, 130, 135] 2 (84,158,23)
85 0.005 [87, 87, 88, 107, 107, 107, 117, 117, 120, 124, 127] 2 (141,146,22)
90 0.005 [87, 87, 107, 107, 117, 117, 117, 119, 127, 129, 133, 140] 2 (147,160,23)
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which is relevant to the expected length of the target vector and current shortest vector in the
projection of sub-lattice, to determine the upper bound of sieving in Pump.

In fact, the length of LWE error vector is a randomly positive variable rather than a fixed value.
Instead of giving a univariate parameter for evaluating the sieving dimension, it is more reasonable
to calculate the success probability in recovering the target vector with different dimensions.

New upper bound of dimension in Pump. We wish to describe the relationship between the
length of the target vector (e, 1) and the success probability of finding (e, 1) from different Pump
dimensions. Then, we can set the upper dimension bound in Pump to make the probability of finding
the approximate shortest vector large. Through that, we will save the time of executing an invalid
Pump with a low dimension due to an inaccurate prediction function and find the approximate
shortest vector in one Pump with a probability of success close to 1.

The algorithm 10 represents the condition of selecting the upper dimension bound in a pro-
gressive sieve according to a certain solving probability threshold. This idea was first proposed
in [DSDGR20] to optimize the dimension selection for BKZ, and [PV21] further accelerated the
algorithm. We use the same method in [PV21] to reduce the evaluation cost.

input: σ, rr, dstart = 50, Psuccess = 0.8;
output: dsvp;

1 for dsvp ← dstart to d do

2 p← Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
rr[d−dsvp:d]

))2
]
;

3 if p > Psuccess then
4 PSC ← Equality (14) with β = dsvp;
5 return dsvp, PSC;

Algorithm 10: PumpEstimationInLWE

In order to calculate the value Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (GH
(
B[d−β:d]

))2], one can integrate the

probability density function of the chi-squared distribution from 0 to the 1
σ2

(
GH

(
B[d−β:d]

))2 value:

Fβ

(
x =

1

σ2

(
GH

(
B[d−β:d]

))2)
=

∫ x

0

t
β
2 −1e−

t
2

2
β
2 Γ
(

β
2

)dt,
then Pr

[
y ← σ2χ2

β

∣∣∣∣y ≤ GH
(
B[d−β:d]

)2]
= σ2 · Fβ

(
x = 1

σ2

(
GH

(
B[d−β:d]

))2).
When solving LWE instead of SVPγ , we use Algorithm 10 instead of Algorithm 4. In addition,

we can combine pnj-BKZ simulator and Pump estimator to give a probabilistic simulator for solving
uSVPγ based on our optimization strategy as Algorithm 8 and 9, which has been introduced in
Section 4.

5.2 Choosing the number of LWE Samples

BKZ-only mode is the mainstream method for estimating the security of an LWE-based cry-
tosystem at current. It uses Kannan’s Embedding technique to reduce the LWE problem to the
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uSVPγ problem and uses the GSA assumption to simulate the change after a BKZ-β reduction. Its
evaluation method was firstly proposed by Erdem Alkim et al.. in [ADPS16] and has been proved
the correctness in [AGVW17], which has both given a lower bound of LWE samples and a blocksize
β. We rename it "2016 Estimation from GSA for LWE" (refer to as 2016 Estimate).

In order to solve the LWE problem, the first thing we need to do is to determine the number of
LWE instances to construct the lattice basis described in the primal attack. The strategy to select
the number of LWE instances in 2016 Estimate is to find the number of LWE instances m so that
the following inequality holds and the value of β is minimal. Let d = m+ 1, n be the dimension of
LWE instance, then

min
β∈N

{
Tbkz(β) : σ

√
β ≤ δ (β)

2β−d−1 · q
d−n−1

d

}
. (16)

The strategy in 2016 Estimate is to find m so that the LWE problem can be solved with the least
time cost when using a fixed blocksize of BKZ-β algorithm to solve it.

In G6K, its estimation method simulates a two-stage strategy. Their main difference from ours
is that its two-stage strategy contains two tours of pnj-BKZ with a fixed blocksize β simulated
from GSA assumption and a progressive sieve algorithm in dimension dsvp. Thus, it obtains the
inequality (17) to simulate the above scenario and hope to find the minimal cost of (β, dsvp):

min
β,dsvp∈N

{
2 · Tbkz(β) + PSC(dsvp) : ∥πd−dsvp

(v)∥ ≤ GH(Lπ[d−dsvp])
}
, (17)

i.e. min
β,dsvp∈N

2d · 2c·(β−f(β)) + 2c·(dsvp−f(dsvp)) : σ ·
√
dsvp ≤ δ

dsvp−d
β ·

(
Γ (

dsvp

2 + 1)
√
π

) 1
dsvp

· q
d−n−1

d

 ,

(18)
where c = 0.349 in G6K-CPU and c = 0.292 in G6K-GPU.

Our strategy for solving the LWE problem is also simulating a two-stage strategy. In the first
stage, it will call the pnj-BKZ simulator to simulate the basis after a series of pnj-BKZ. In the second
stage, it tries to find the approximate shortest vector by Pump. Based on the estimation scheme
in the default G6K described above, we modify the time cost of two pnj-BKZs and a progressive
sieve to the time cost of serial pnj-BKZs following the blocksize strategy and a progressive sieve.
Besides, we use the new Pump estimation scheme (as described in Algorithm 10) to simulate the
norm of the target vector. Thus the inequality becomes

min
β,dsvp∈N

{
TpnjBKZs (B) + PSC (dsvp) : Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (GH
(
Lπ[d−dsvp:d]

))2] ≥ Psuccess

}
,

(19)

i.e. min
β,dsvp∈N

{TpnjBKZs (B) + PSC (dsvp) :

Pr

y ← σ2χ2
dsvp

∣∣∣∣y ≤ δdsvp−d ·

(
Γ (

dsvp

2 + 1)
√
π

) 1
dsvp

· q
d−n−1

d

 ≥ Psuccess},
(20)

where δ is the basis quality after pnj-BKZs. TpnjBKZs (B) will respectively call BSSA and EnumBS
to calculate the corresponding computational cost. To minimize the number of attempts, we narrow
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the range of m to [m0 − τ,m0 + τ ], where m0 is the number of samples chosen in the estimation
of default G6K and set a maximum search field range τ . We use a dichotomization to find an m
with minimal β and dsvp satisfying the inequality (20). Furthermore, the concrete process is as the
Algorithm 11.

input: n, q, α, mall, βbound, d
(svp)
bound, τ , Amall×n , bmall×1;

output: Smin, Tmin, m;
1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (18);
3 mmax,mmin ← max {m satisfies equation (18)} ,min {m satisfies equation (18)};
4 while τ ̸= 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
as the equality (3);

6 Smin, Tmin ← EnumBS(rr(B), m0 + 1, σ2m0 + 1, J);
7 m1 ← m0;
8 for m ∈ {max{n,m0 − τ},min{mall,m0 + τ}} do
9 if m ≥ mmin and m ≤ mmax then

10 d← m+ 1, M ← σ2m+ 1;
11 Construct B by

(
Am×n,bm×1, q

)
as the equality (3);

12 S, Ttotal ← EnumBS(rr(B), d, M , J);
13 if Tmin < Ttotal then
14 Smin, Tmin, m1 ← S, Ttotal, m;

15 if m1 = m0 then
16 τ ← ⌊ τ

2
⌋;

17 m0 ← m1;

18 return Smin, Tmin, m0;
Algorithm 11: Our LWE Samples Selection Algorithm

Using the optimization strategy for LWE instance number selection, we can solve challenges
faster than G6K default strategy. See the table 6.

Table 6. LWE samples improvement simulated result with jump = 1.

(n,α) G6K’s m Our m Costnew/Costold
(50,0.025) 218 216 99.98%
(55,0.020) 229 234 98.76%
(60,0.015) 240 246 99.30%
(90,0.005) 305 312 95.11%
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6 New LWE Records

The TU Darmstadt LWE challenge website presents sample instances for testing algorithms that
solve the LWE problem. The main goal of this challenge is to help in assessing the hardness of the
LWE problem in practice. Furthermore, it can be used to compare different types of LWE solvers.

By our new algorithm, i.e. pro-pnj-BKZ, we have solved the LWE instances (n, α) ∈ {(40, 0.035),
(90, 0.005), (50, 0.025), (55, 0.020)} in TU Darmstadt LWE challenge website. (We solved the LWE
instance (n, α) = (80, 0.005) earlier, but we only use an improved heuristic blocksize strategy, not
the optimized strategy presented in this paper.)

6.1 Simulation Results and Comparison

We use a workstation with Intel Xeon 5128 16c 32@2.3GHz, 1.48T RAM and NVIDIA GTX
3090 * 2 to construct our simulating algorithms, and also for running tests and experiments.

The comparison between simulating results for different modes are given below:

Table 7. Simulated result of Mode comparison.

(n,α) Default G6K (h) BKZ-only (h) pro-pnj-BKZ (h)
(95,0.005) 45720 3786242 6662
(100,0.005) 921308 91646709 150395
(40,0.040) 77350 276700 3144
(45,0.035) 676715 5463845 48242

As Table 7 shown, for the LWE instance (40, 0.040), we have an increase of about 24.6 times
compared to the default pnj-BKZ in G6K. Moreover, for the LWE instance (100, 0.005) we have an
increase of about 611 times compared to a BKZ-only algorithm.

6.2 Actual Wall Time for Solving LWE Challenges

We have solved the LWE instances (n, α) ∈ {(40, 0.035), (50, 0.025), (55, 0.020)} in TU Darm-
stadt LWE challenge website by a service with AMD EPYCTM 7002 Series 128@2.6GHz, NVIDIA
RTX 3090 * 8, 1.5T RAM (denoted as Machine A), and solved (n, α) = (90,0.005) by a service
with AMD EPYCTM 7002 Series 64@2.6GHz, a100 *4, 512 GB RAM (denoted as Machine B).
Since the original solving strategy used in solving (n, α) = (40, 0.035) is generated by BSSA instead
of EnumBS, we rerun the solving algorithm using a strategy generated by EnumBS on our test
machine in Section 6.1 (denoted as Machine C).

We have listed the the actual running time and RAM cost in solving the above LWE challenges
in Table 8. The unit of running time in Table 8 is hour and the unit of RAM in it is GB.

We can see that our simulated time is close to the wall time we used in solving LWE challenges
from Table 8. Since machine A is faster than machine C, and machine B is slower than machine
C, the wall time for solving (50, 0.025), (55, 0.020) (resp. (90, 0.005)) is also smaller (resp. larger)
then the simulated time. For (40, 0.035), it takes more time since the length of LWE error term is
relatively large hence failed to be solved with Psuccess = 0.8.
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Table 8. Actual running time, RAM cost and simulation cost.

(n,α) Machine Walltime (h) RAM (GB) Simulated Time (h) ‡‡

(40,0.035) C 79 384 57
(50,0.025) A 592 184 868
(55,0.020) A 611 890 835
(90,0.005) B 370 332 278

‡‡ Using the time cost model in Section 3.3 based on machine C to simulate the time cost of pro-pnj-BKZ.

7 Conclusion and Future Work

7.1 Conclusion

In this paper, we propose Improved Progressive pnj-BKZ, which combines pnj-BKZ and Pump
algorithm to solve SVPγ problem based on two new simulating algorithms (pnj-BKZ simulator
and Pump estimator) and two time cost models (pnj-BKZ time cost model and Pump time cost
model). Experimental results show that our simulators can accurately predict the behavior of pnj-
BKZ even if jump>1 and the behavior of Pump respectively. Besides, both our time cost models
fit well with the walltime of experiments. We propose two-step mode and prove that this model is
indeed better than default mode in G6K and BKZ only mode. We design two new blocksize strategy
selection algorithms: BSSA and EnumBS, and demonstrate the optimality of the EnumBS strategy.
Meanwhile, applying the blocksize strategy generated from EnumBS to solve the LWE Challenge
results in at most 24.6 times (611 times respectively) improvement compared to default G6K mode
(BKZ only mode respectively) and help us to solve the TU Darmstadt LWE challenges (n, α) ∈
{(40, 0.035),(90, 0.005),(50, 0.025),(55, 0.020)}. What’s more, we also propose a new LWE samples
selection strategy which saves at most 5% time cost in our new algorithm compared to the original
one in G6K.

7.2 Future Work

Time Cost Model When constructing the time cost model of Pump in section 3.3, we found that
the time cost of each Pump increases linearly with the increase of index of Pump (index < d− f)
in each tour of pnj-BKZ. Meanwhile, the increasing slope of this Pump cost with increasing index
seems to be proportional to the blocksize of pnj-BKZ. It is also unclear how to accurately describe
the relationship between the growth slope and the blocksize of pnj-BKZ. We don’t know why these
phenomenona occur, and we plan to find out the reason in future.

Dual Attack During the writing of this paper, we noticed that compared with primal attack,
the dual attack with FFT and modulus exchange technology seems to have less computational
complexity in solving the LWE problem. Using this dual attack, one can efficiently determine
whether a part of the private key vector guessed are correct or not, and finally recover partial
component of private key vector to decrease the dimension of LWE problem. But there is currently
no implementation of this efficient dual attack, so we plan to implement this dual attack and
combined it with our optimized lattice reduce strategy to solve higher dimensional LWE challenges.
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Code Improvement We hope to improve the interaction between CPU and GPU, try to optimize
the code of "gpu_sieve" implemented in C++ and CUDA code in G6K-GPU. Also, we will try to
solve the saturation warning occurred in G6K/G6K-GPU.

Security Estimation of LWE We will re-estimate the security of LWE-based cryptosystems.
We have a more accurate simulator for the efficient lattice reduction algorithm pnj-BKZ algorithm
(jump ≥ 1) in section 3.2 and give an optimized lattice reduction strategies in section 2.7 which can
help we to give a more accurate security hardness estimation of these main LWE-based schemes.

Blocksizes Strategy Selection Algorithm Although the EnumBS could obtain the optimal
blocksize strategy, its theoretical complexity is exponential, though it is more efficient than a theo-
retical guess in a practical test. In future work, we hope to improve the blocksize strategy selection
algorithm in solving efficiency.
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A Pump Simulator

Our Pump simulator is designed under the assumption of HKZ, which means that the Gram-Schmidt
lengths after Pump obeys HKZ assumption. We have compared the Gram-Schmidt lengths after Pump with
the simulated one, and find out that the square error between them is close to 0. It proves that the Pump
simulator is accurate while it takes dimension-for-free value as f = d ln(4/3)

ln(d/2π)
mentioned in section 2.5.
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input : (l0, · · · , ld−1),d, κ, β, f .
output: A prediction for the logarithms of the Gram-Schmidt norms l′i = ln (∥b′∗

i ∥) after Pump(κ,
β, f).

1 dsieve ← β − f ;
2 for β′ ← dsieve to d do
3 if β′ < 40 then
4 f ′ ← 0;
5 else
6 f ′ ← β′ ln 4/3

ln(β′/2π)
;

7 if β′ − f ′ ≥ dsieve then
8 β ← β′; break;

9 for i← 0 to 44 do
10 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume 45-dimensional lattice;

11 for i← 45 to β do
12 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

13 for k ← 0 to d− β − 1 do
14 l′k ← lk;

15 flag ← True; //flag to store whether L[k,d] has changed
16 for k ← d− β to d− 46 do
17 β′ ← d− k; h← d; ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

18 if flag = True then
19 if ln (V) /β′ + cβ′ < lk then
20 l′k ← ln (V) /β′ + cβ′ ; flag ← false;

21 else
22 l′k ← ln (V) /β′ + cβ′ ;

23 ln (V)←
∑h

i=1 li −
∑k−1

i=1 l′i;
24 for k ← d− 45 to d− 1 do
25 l′k ←

ln(V)
45

+ rk+45−d;

26 for k ← 0 to d− 1 do
27 lk ← l′k;

28 return l0, · · · , ld−1;
Algorithm 12: Pump Simulator
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