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Abstract. BKZ is currently the most efficient algorithm in solving the
approximate shortest vector problem (SVPγ). One of the most important
parameter choices in BKZ is the blocksize β, which greatly affects its
efficiency and reduction effort. In 2016, Aono et al. presented Improved
Progressive BKZ (pro-BKZ). By designing a blocksize strategy selection
algorithm, their pro-BKZ runs faster than BKZ 2.0 which has a fixed
blocksize. However, pro-BKZ only considers enumeration as its subrou-
tine, without using the more efficient lattice sieving algorithm. Besides,
their blocksize strategy selection is not optimal, so the strategy selection
algorithm could further be improved.
In this paper, we present a new lattice solving algorithm called Improved
Progressive pnj-BKZ (pro-pnj-BKZ) mainly based on an optimal block-
size and jump strategy selection algorithm for BKZ with sieving, which
relies on accurate time cost models and simulating algorithms. We pro-
pose the following approaches:
- New simulator for sieving and BKZ with sieving. A simulator is used for
simulating lattice reduction process without running the BKZ algorithm
itself. We give a new simulator for BKZ, to simulate the cases where
blocks in BKZ with sieve oracle jump by more than one dimension.
- New two-step mode for solving SVPγ with BKZ and sieving. Other than
a subroutine of BKZ, sieving can also be combined with BKZ to get a
more efficient lattice solving algorithm, but the best way of combination
is currently unknown. We show that to solve SVPγ more efficiently, one
should first repeatedly run BKZ to improve the quality of lattice basis
and finally run progressive sieving once, since BKZ performs better in
lattice basis reduction, while sieving performs better in finding short
vectors. By our simulator, we can properly choose the suitable timing
where the algorithm ends the BKZ routine and begins sieving.
- New blocksize and jump strategy selection algorithm for BKZ with
sieving. Since the blocksize strategy selection algorithm in pro-BKZ is
not optimal and doesn’t consider the jump strategy, we design a new
blocksize and jump strategy selection algorithm to give an optimal SVPγ

solving strategy. In particular, we improve the efficiency by 8.4∼10.5
times compared with the heuristic blocksize strategy in G6K. We also
re-estimate the concrete hardness of the lattice-based NIST candidate
schemes from the LWE primal attack and it decreases by 2.4∼10 bits.



- We test the efficiency of the pro-pnj-BKZ with the TU Darmstadt
LWE challenge and break the LWE challenges with (n, α) ∈ {(40, 0.035),
(40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}.

Keywords: cryptanalysis, lattice reduction, SVPγ , progressive BKZ, optimal
blocksize selection

1 Introduction

To date, many post-quantum cryptosystems are lattice-based, e.g. Dilithium
[1], Kyber [2] which have been accepted as NIST standards. Lattice-based struc-
tures appear to be immune from both classical and quantum attacks. As a result,
many lattice-based constructions are considered secure, assuming that certain
well-studied computational lattice problems cannot be solved in polynomial time.
A large fraction of lattice-based cryptographic mechanisms are built upon the
LWE problem [3] and its variants [2–5]. One of the best-known cryptanalytic
techniques against these problems is primal attack [6], which is widely used in
cryptanalysis of lattice-based cryptosystems. The primal attack solves the LWE
problem by reducing it to the unique Shortest Vector problem (uSVPγ). It then
calls an approximate Shortest Vector Problem (SVPγ) solver to find the approx-
imate shortest vector which is used to recover the solution of LWE.

SVPγ is a basic lattice hard problem. In recent years, substantial improve-
ments have been made in solving SVPγ . In 1982, the first polynomial-time lat-
tice reduction algorithm named the LLL [7] was proposed to solve SVPγ with
an exponential approximation factor γ. To solve the problem with a smaller ap-
proximation factor, Schnorr and Euchner [8] presented Block Korkin-Zolotarev
(BKZ) reduction, which is considered as a combination of LLL algorithm and
the enumeration algorithm to balance the algorithm’s time consumption and
the success probability using a parameter β called the blocksize. In the litera-
ture, many cryptanalysts improved the BKZ algorithm, e.g. the extreme pruning
technique [9] to speed up enumeration, BKZ 2.0 [10] based on [9], approximate
enumeration oracle [11] on speeding up enumeration, and parameters optimiza-
tion in BKZ such as Improved Progressive BKZ (pro-BKZ) [12].

A BKZ simulator is used to predict the practical behavior of a BKZ algorithm
(when β ≥ 45), which is important in optimizing the parameter selection in
BKZ. Based on the Gaussian heuristic, Chen and Nguyen refined the sandpile
model from [13] and provided a BKZ simulator in BKZ 2.0 [10]. Using the
properties that the last β vectors in BKZ-β reduction basis satisfy HKZ reduction
and Gaussian heuristic, [12] proposed a simulator for predicting BKZ-β fully
reduced basis. Since the BKZ 2.0 simulator could not accurately predict the head
concavity phenomenon after multiple tours of BKZ-β, Bai et al. [14] considered
the norm of the shortest vector as a random variable rather than a fixed value,
and brought randomness into the BKZ 2.0 simulator. The new simulator [14]
can effectively predict and explain the phenomenon of head concavity of lattice
basis reduced by multiple tours of BKZ.
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Based on the BKZ simulator, pro-BKZ [12] solves SVPγ first by calling a
series of BKZs with different blocksizes first to optimize the basis quality, and
finally an SVP oracle to find the approximate shortest vector (we call it a two-
step mode). One of the main contributions of their work is a blocksize strategy
selection algorithm to generate the different blocksizes to be used in the BKZ
reduction, which uses the shortest path algorithm to solve an optimized blocksize
strategy by setting multiple different middle reduction qualities as the inner
nodes. But in this paper, we shall show that their method is not supposed to
generate an optimal blocksize strategy, and still has room for improvement.

Besides the development of BKZ reduction itself, some researchers attempted
to replace the enumeration algorithm in BKZ with a sieving algorithm, as with
the development of the memory manufacturing process, large-memory machines
are available. A lattice sieving algorithm requires more memory but less time
than enumeration.

In 2019, Albrecht et al. [15] designed the General Sieve Kernel (G6K), im-
plemented a new version of BKZ named pump-and-jump BKZ (pnj-BKZ) and
the progressive sieving algorithm named Pump can selectively call the Gauss
sieve [16, 17], NV sieve [18], k-list sieve [19, 20] or BGJ1 sieve [21]. Pump is a
generic design based on sieving algorithms using the progressive sieve introduced
in [22] (Similar ideas are also independently proposed in [23]) with dimension-
for-free technique [23], which makes the sieving process more efficient and allows
a higher solving rate. Ducas et al. [24] improved the efficiency of G6K using GPU
and implemented the fastest sieving algorithm BDGL16 [25] in both G6K and
G6K-GPU-Tensor. Unlike classical BKZ using an enumeration algorithm as its
SVP oracle, pnj-BKZ adopts Pump as its SVP oracle with a selective parameter
jump. The jump value controls the jump stage of blocks in BKZ with a sieve
oracle, which can jump by more than one dimension. Default mode in G6K us-
ing pnj-BKZ and Pump solves TU Darmstadt challenges 400 times faster than
the previous records for comparable instances. However, the blocksize strategy
used in the default parameter selection in G6K is heuristic. As shown in pro-
BKZ [12], the default mode of G6K can be further improved by an optimized
blocksize strategy selection algorithm. But to implement an optimized blocksize
strategy selection algorithm adapting from pro-BKZ, simulating algorithms and
cost models for both pnj-BKZ and Pump are necessary.
Contribution. In this work, we propose Improved Progressive pnj-BKZ(pro-pnj-
BKZ) mainly based on an optimal blocksize and jump strategy selection algo-
rithm for pnj-BKZ, which relies on accurate time cost models and simulating
algorithms for pnj-BKZ and Pump. More specifically:

- We construct a new simulator to simulate the lattice reduction process for
pnj-BKZ, especially in the case of jump > 1, and give a new Pump estimation
algorithm for determining the dimension in Pump when solving SVPγ and LWE
problem. Furthermore, we design a new simulator to simulate the quality of
lattice basis after Pump.

- We propose a new model for solving SVPγ by the simulating algorithms. We
modify the default mode in G6K to a two-step mode, which firstly calls a series
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of pnj-BKZs following a blocksize selection strategy to reduce the basis and then
uses a Pump algorithm to search the approximate shortest vector. Compared
to the G6K’s default strategy, we can efficiently save the time cost during the
stage for improving the quality of lattice basis through the new blocksize and
jump strategies. Besides, we avoid wasting time due to failed Pumps in G6K’s
default strategy by a high solving probability Pump which executes only once.
Eventually, we solve SVPγ more efficiently than G6K’s default strategy through
the improvement during these two stages.

- Based on the simulating algorithms and two-step mode, we give two new
blocksize and jump strategy selection algorithms. We borrow the same short-
est path algorithm as in pro-BKZ to design our first algorithm called blocksize
strategy selection algorithm based on pro-BKZ (BSSA) by replacing the BKZ
and enumeration algorithm with pnj-BKZ and Pump respectively. However, we
find that the strategy generated by BSSA is not optimal. To obtain an optimal
blocksize strategy, we design a new strategy selection algorithm named block-
size strategy enumeration (EnumBS). EnumBS can obtain an optimal blocksize
strategy at the cost of a higher theoretical complexity than BSSA, but the time is
still acceptable for low-dimensional lattices. Using the blocksize strategy chosen
from EnumBS, the algorithm increases the efficiency at most 10.5 times in solv-
ing the TU Darmstadt LWE challenges compared with the default LWE solver
in G6K.

- Based on these two blocksize strategy selection algorithms, we propose and
have implemented the Improved Progressive pnj-BKZ (pro-pnj-BKZ) and have
made public1 and solved the TU Darmstadt LWE challenges2 (n, α) ∈{(40,0.035),
(90,0.005), (50,0.025), (55,0.020), (40,0.040)}.

Organization. The paper is organized as follows. Section 2 presents basic nota-
tions and preliminaries. Section 3 presents the sketch of pro-pnj-BKZ. Section 4
design a pnj-BKZ simulator and a Pump sieving dimension estimator for simula-
tion. Section 5 proposes our two improved blocksize strategy selection algorithms
in detail and compare them both in time cost and optimization effect. Section
6 presents the results for solving the TU Darmstadt LWE challenge by pro-
pnj-BKZ, and compare it with other LWE solving algorithms. Section 7 gives a
conclusion and the prospect for further study.

2 Preliminaries

2.1 Notations and Basic Definitions

We write a matrix B as B = (b0, · · · ,bd−1) where bi is the (i + 1)-th column
vector of B. The Euclidean norm of a vector v is denoted by ∥v∥.

1 https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
2 https://www.latticechallenge.org/lwe_challenge/challenge.php
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If B ∈ Rd×d has full rank d, the lattice L generated by the basis B is denoted
by L(B) = {Bx|x ∈ Zd}. We denote B∗ = (b∗

0, · · · ,b∗
d−1) as the Gram-Schmidt

orthogonalization of B, in which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j =

⟨bi,b
∗
j ⟩

∥b∗
j ∥2 .

For i ∈ {0, · · · , d − 1}, we denote the orthogonal projection to the span of
(b0, · · · ,bi−1) by πi, i.e. ∀v, πi(v) = v −

∑i−1
j=0 ωjb

∗
j , in which ωj =

⟨v,b∗
j ⟩

∥b∗
j ∥2 .

For i, j ∈ Zd and 0 ≤ i < j ≤ d− 1, given an arbitrary d-dimensional vector
v = (v0, · · · , vd−1), define v[i:j] as (vi, · · · , vj−1) with a size j − i. For a lattice
basis B, let B[i:j] ← (bi, · · · ,bj−1). Moreover, we denote Bπ[i:j] by the local
projected block (πi(bi), · · · , πi(bj−1)), and call Lπ[i:j] the lattice generated by
Bπ[i:j]. We use Bπ[i] and Lπ[i] as shorthands for Bπ[i:d] and Lπ[i:d] .

The volume of a lattice L(B) is Vol(L(B)) =
∏d−1

i=0 ∥b∗
i ∥, an invariant of the

lattice. The first minimum of a lattice L(B) is the length of the shortest non-zero
vector, denoted by λ1(L(B)). We use the abbreviations Vol(B) = Vol(L(B)) and
λ1(B) = λ1(L(B)).

Suppose the input basis is B = (b0, · · · ,bd−1) and its corresponding Gram-
Schmidt basis is B∗ = (b∗

0, · · · ,b∗
d−1), the logarithms of the Gram-Schmidt

norms li = ln (∥b∗
i ∥), i ∈ {0, · · · , d− 1}. Let rr(B) = (l0, · · · , ld−1), abbreviate

to rr, rr[i:j] = (li, · · · , lj−1).

Notations for algorithms description. Let BKZ-β/pnj-BKZ-(β, J) be an
abbreviation of a one-tour BKZ/pnj-BKZ with blocksize β and jump value J .
Assume the input basis is B, and the basis B reaches a basis quality after calling
sufficient tours of BKZ-β. To simplify the above step, we use β to imply the
quality of a BKZ-β reduced basis. Let ♯tours be the minimum tours for BKZ-
β/pnj-BKZ-(β, J) to reach a BKZ-β/pnj-BKZ-(β, J) reduced basis. Denote t as
the number of tours for implementing BKZ/pnj-BKZ with a fixed blocksize β.

Let TBKZ(β)/TpnjBKZ(β, J) be time assumption of one-tour BKZ/pnj-BKZ
with blocksize β and jump value J . Let TBKZs(S)/TpnjBKZs(S) be total time
cost for series of BKZ/pnj-BKZ with a specific blocksize strategy S (e.g. S =
[β0, · · · , βn−1]), abbreviate it as TBKZs/TpnjBKZs.

Denote Tpump(dsvp) as the time cost of Pump with sieve dimension equal to
dsvp, abbreviate it as Tpump. Let PSC be the expected Pump cost to find the
target vector, which will be explained in the section 4.2.
Definition 1. (The Gaussian Distribution [26]) Let σ ∈ R be the standard
deviation, u ∈ R be the mean value, a continuous Gaussian Distribution can be
denoted as N(u, σ2). The probabilistic density function of N(u, σ2) is

ρN(u,σ2) =
1

σ
√
2π

e−
(x−u)2

2σ2 .

Lemma 1. (Chi-Squared Distribution [26]) Given n random variables Xi ∼
N(0, 1), the random variables X2

0 + · · ·+X2
m−1 follows a chi-squared distribution

χ2
m over R∗ of mean m and variance 2m with probabilistic density function

ρχ2
m
(x) =

1

2
m
2 Γ (m2 )

x
m
2 −1e−

x
2 .
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Given m random variables Yi ∼ N(0, σ2), the random variables Y 2
0 + · · · +

Y 2
m−1 follows a scaled chi-squared distribution σ2 ·χ2

m over R∗ of mean mσ2 and
variance 2mσ2.

Proposition 1. (Gaussian Heuristic [23]) The expected first minimum of a
lattice L (denoted as λ1(L(B))) according to the Gaussian Heuristic denoted by
GH(L) is given by

λ1(L(B)) ≈ GH(L) =
(
Vol(L)
Vd(1)

) 1
d

=

(
Γ (d2 + 1) ·Vol(L)

) 1
d

√
π

≈
√

d

2πe
·Vol(L) 1

d .

Where Vd (1) is the volume of the d-dimensional unit sphere. We also write
GH(B) = GH(L(B)) and GH(rr[i:j]) = GH(Bπ[i:j]).

Definition 2. (HKZ reduction and BKZ reduction [23]) The basis B of a lat-
tice L is said to be HKZ reduced if b∗

i = λ1(L(Bπ[i:d])), for all i < d. It
is said BKZ reduced with block-size β(also called as BKZ-β reduced) if b∗

i =
λ1(L(Bπ[i:min{i+β,d}])), for all i < d.

Definition 3. (Root Hermite Factor [27]) For a basis B of d-dimensional lattice,
the root Hermite factor is defined as

δ =
(
∥b0∥/Vol(B)1/d

)1/d

, (1)

for estimating the equality of the output vector of BKZ. For larger blocksize, it
follows the asymptotic formula

δ(β)2(β−1) =
β

2πe
(βπ)1/β . (2)

Definition 4. (Geometric Series Assumption [15]) Let B be a lattice basis after
lattice reduction, then Geometric Series Assumption states that ∥b∗

i ∥ ≈ α·∥b∗
i−1∥,

0 < α < 1.
Combine the GSA with root-Hermite factor (Equation (1)) and V ol(L(B)) =∏d−1

i=0 ∥b∗
i ∥, it infers that α = δ−

2d
d−1 ≈ δ−2.

2.2 Lattice Hard Problems

SVP Problem and its Variants

Definition 5. (Shortest Vector Problem(SVP) [28]) Given an arbitrary basis B
of some lattice L = L(B), find a shortest non-zero vector, v ∈ L for such that
∥v∥ = λ1(L).

Definition 6. (Approximate Shortest Vector Problem(SVPγ) [28]) Given an
arbitrary basis B of some lattice L = L(B), find a shortest non-zero vector,
v ∈ L such that ∥v∥ ≤ γ(d) · λ1(L), where γ(d) ≥ 1 is an approximation factor
function of lattice dimension d.
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Definition 7. (unique Shortest Vector Problem(uSVPγ) [29]) Given an arbi-
trary basis B of some lattice L = L(B), L satisfying the condition γλ1(B) <
λ2(B) (λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v such that ∥v∥ = λ1(B).

Definition 8. (LWEm,n,q,Dσ
Distribution [28,30,31]) Given a number of sam-

ples m ∈ Z, a secret vector length n ∈ Z, a modulo q ∈ Z , a probability
distribution Dσ. Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vec-
tor s ∈ Zn

q from a specific distribution, randomly sample a relatively small noise
vector e ∈ Zm

q from Gaussian distribution Dσ whose standard deviation is σ. The
LWE distribution Ψ is constructed by the pair (A,b = As + e) ∈ (Zm×n

q ,Zm
q )

sampled as above.

Definition 9. (Search LWEm,n,q,Dσ problem [28, 30, 31]) Given a pair (A,b)
sampled from LWE distribution Ψ compute the pair (s, e).

2.3 G6K and G6K-GPU-Tensor

G6K [15] is an abstract machine for running sieve algorithms and deriving lat-
tice reduction. Its performance is far better than any earlier lattice solving
algorithms. Solving SVP with G6K is at least 400 times faster than the pre-
vious records in the TU Darmstadt SVP Challenge. G6K’s main contribution
is building on, generalizing, and extending the previous sieve algorithms. G6K-
GPU-Tensor improves the efficiency of G6K through GPU implementations. The
above improvement reaches dimension 180 for TU Darmstadt SVP Challenge in
51.6 days on a server with 4 NVIDIA Turing GPUs and 1.5 TB of RAM.

2.4 Sieving Algorithms and Pump in G6K

Sieving Algorithms The first and simplest of practical sieving algorithms by
Nguyen and Vidick uses a database of N0 = (4/3)

d/2+o(d) ≈ 20.2075d+o(d) vectors
and runs in time N

2+o(1)
0 ≈ 20.415d+o(d) by repeatedly checking all pairs v ±w

[18]. The database size of (4/3)d/2+o(d) is the minimal number of vectors that
should be reached to ensure finding enough short pairs constantly, and eventually
saturate the ball of radius

√
4/3 · GH(L). In a line of works [21, 25, 32, 33] the

time complexity was gradually improved to 20.292d+o(d) by nearest neighbour
searching techniques to find close pairs more efficiently.

Progressive Sieve Progressive sieve [23] is a sieve technique to save the cost
of full dimensional sieve. It can be realized by a right-to-left operation. It first
calls a sieving algorithm on a lattice projection with small dimension, then uses
Babai’s nearest plane algorithm [34] to recover the vector to a lattice projection
with higher dimension. Repeat the above step until recover the short vectors
onto a full dimensional lattice.
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Dimension for Free Technique Dimension for free technology [23] is an im-
provement technology for sieve algorithms which can bring sub-exponential time
speedup and memory decreasing. [23] has given two theoretical dimension for free
(d4f) estimations for solving β-dimension SVP as d4f(β) = β ln(4/3)

ln(β/2π) and d4f(β) =
β ln(4/3)
ln(β/2πe) , while in the code implementation of G6K [15], it gives a more relaxed
bound as

d4f(β) =


0, β < 40

⌊β−40
2 ⌋, 40 ≤ β ≤ 75

⌊11.5 + 0.075β⌋, β > 75.
(3)

Pump in G6K Martin R. Albrecht et al. proposed Pump algorithm in [15],
which is improved based on progressive Sieve [22] with dimension for free tech-
nique [23] and the insertion tricks in [23]. There are four input parameters for
Pump algorithm: lattice basis B, left insertion bound κ, insertion upper bound
dsvp (κ+ dsvp = d) and dimension-for-free value d4f(dsvp) (the upper bound of
sieve dimension is dsvp − d4f(dsvp)) as mentioned in section 2.4. After calling a
Pump, it will return a basis reduced by Pump.

2.5 Pnj-BKZ in G6K

The pnj-BKZ algorithm is a BKZ-type lattice reduction algorithm that uses
Pump as the subroutine for finding the shortest projected vector on the projected
sub-lattice. Unlike the classical BKZ algorithm, pnj-BKZ could perform the SVP
oracle with an adjustable jump no less than 1. More specifically, after executing
the SVP oracle on a certain block Bπ[i:i+β′], the SVP oracle will be executed
on the B[i+J:i+β′+J] block with a jump count J rather than B[i+1:i+β′+1]. The
detailed description of pnj-BKZ is Algorithm 1.

2.6 Slope: the measurement of the lattice basis quality

To measure the quality of lattice basis we use the same averaged quality mea-
surement as that used in [35]. It is the least squares fit coefficient of the slope
of log ∥b∗

i ∥, which means that the larger(closer to 0) the slope is, the better the
basis quality improves.

3 Improved Progressive pnj-BKZ

In this section, we shall first give a sketch of Improved Progressive pnj-BKZ
in section 3.1, where we use a two-step mode for solving SVPγ . Next, we give
a comparison among BKZ-only mode, the default mode in G6K and two-step
mode to explain the benefit of two-step mode in section 3.2.
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input : B, β, J = jump, fextra = 12;
output: B;

1 f ← d4f(β);
2 β, f ← β + fextra, f + fextra;
3 B← LLL(B);
4 for i← 0 to d+2f−β

J
do

5 if 0 ≤ i < f
J

then
6 κ, β′, f ′ ← 0, β − f + J · i, J · i;
7 else if f

J
≤ i < d−β+f

J
then

8 j ← J · i− f ;
9 κ, β′, f ′ ← j, β, f ;

10 else
11 j ← J · i− (d− β + f);
12 κ, β′, f ′ ← d− β + j, β − j, f − j;
13 Bπ[k:β′+k] · vi ← Pump(B, κ, β′, f ′);
14 B = LLL(B);
15 return B;

Algorithm 1: pnj-BKZ

3.1 Algorithm overview

Our Improved Progressive pnj-BKZ can be described as the following: input a
basis B, an optimized blocksize and jump strategy S for reducing B, dimension
d and target norm M , reduce B through a series of pnj-BKZ-(β, J). Each (β, J)
is selected from blocksize and jump strategy S. The blocksize and jump strat-
egy is generated from the blocksize and jump strategy selection algorithm (see
section 5) and stored as a sequential list. To minimize the total cost, it will first
use a series of pnj-BKZ to reduce the lattice basis properly, then at the suitable
timing, it will call a Pump algorithm to find the target vector. The parameter
selection of Pump follows Algorithm 6, which will lead to finding the approxi-
mate shortest vector after Pump. The detailed process is as Algorithm 2.

input : B, S, M , F (⋆,D);
output: The approximate shortest vector v;

1 B = LLL(B);
2 for (β, J, ♯tours) ∈ S do
3 for t from 1 to ♯tours do
4 B← pnj-BKZ(B, β, J);

5 dsvp, _ ← ProSieveDimEst(rr(B)/M , F (⋆,D)); f ← d4f(dsvp);
6 B ← Pump(B,d− dsvp, dsvp, f);
7 return v← b0;

Algorithm 2: Improved Progressive pnj-BKZ
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Our algorithm improves the heuristic SVPγ solver in G6K from two aspects:
firstly, we use a two-step mode with an optimal blocksize strategy; secondly,
we choose the optimized jump(≥ 1) strategy instead of letting the jump value
always equals to 1.

The experiments in [35] suggest that compared with the reduction strategy
of jump = 1, the reduction strategy of jump = 3 is not beneficial. More precisely,
[35] shows that the reduction strategy of jump = 3 requires similar running time
to obtain the same quality of lattice basis, which is reduced by the strategy of
jump = 1, with a larger memory consumption. However, while the jump strategy
becomes larger, it can decrease the walltime to reach the same quality of lattice
basis. Our experiment result shows that compared with the experiments results
in [35], using a more efficient parallel computing implementation in [24], the
acceleration effect of the strategy with jump > 1 on the improvement of lattice
quality is indeed more obvious. More details can be found in Figure 1, which
shows that the pnj-BKZ with the jump > 1 has a smaller time cost (3 ∼ 6 times
faster) while achieving the same reduction quality as that of the pnj-BKZ with
the jump = 1. Therefore, to find the optimal pnj-BKZ reduction parameters, it
is essential to construct a pnj-BKZ simulator to handle the case for jump > 1
which we will discuss in section 4.1.

Fig. 1. Efficiency Speedup in Reduc-
tion by Jump strategy.
The walltime and slope are averaged
over 5 instances for each algorithm.
Each instance ran on a machine with
2 GPU and 32 threads. We label the
point by pnj-BKZ blocksize β.

Fig. 2. Simulation error of pnj-BKZ
simulator with different jump values
For each pnj-BKZ reduction parameter
tested by 20 experiments to obtain the
average length of Gram-Schmidt vec-
tors.

3.2 Comparison among BKZ-only Mode, Default Mode in G6K and
Two-step Mode

In this part, we introduce the three different modes for solving the SVPγ problem
and give an experiment to prove the comparison result.
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BKZ-only Mode BKZ-only mode [27,36] implements multiple loops of BKZ-
β/pnj-BKZ-(β, J = 1) for solving SVPγ problem. The pseudocodes of the BKZ-
only Mode are as Algorithm 3, in which M denotes the upper bound of the
Euclidean norm of the approximate shortest vector. It is a tunable attack since
one can change the blocksize strategy to reduce the basis to a specific quality.

input : B, d, M ;
output: The approximate shortest vector v;

1 B ← LLL (B);
2 for i← 1 to ♯tours do
3 B ← BKZ(B, β) / pnj-BKZ(B, β, 1); // B = (b0, · · · ,bd−1).
4 if ∥b0∥ < M then
5 return b0;

Algorithm 3: BKZ-only Mode

Default LWE solving Mode in G6K In the default LWE solving mode
of G6K [15], it solves the LWE problem by calling progressive pnj-BKZ and a
conditional Pump (The algorithm calls Pump only if the estimated time cost of
Pump is shorter than an upper bound) repeatedly. In the default LWE solving
mode of G6K, it will reduce the basis by a specific blocksize strategy S0

1. After
each lattice reduction by pnj-BKZ-(β, J = 1), β ∈ S0 and jump always equal
to 1, the default LWE solving mode will record the time cost of the pnj-BKZ-
(β, J = 1) process and determine whether a Pump will finish in the same cost.
If it does, it will call a Pump; If not, it will skip to the next pnj-BKZ-(β, J = 1).
The concrete process is as the Algorithm 4.

The benefit of the default LWE solving mode in G6K is that if we do not
have an accurate simulator for BKZ/pnj-BKZ and we are not sure of the solv-
ability by a final Pump calling, then a Default LWE solving Mode in G6K will
make sure in outputting the required result in a reasonable time. However, with-
out a simulator, it will sometimes enter a Pump with solving failure and waste
processing time heavily since a Pump call is costly. Here a failed Pump means
that the dimension setting of the sieving in the Pump is too optimistic, which
makes the Pump fail to find the target vector. Besides, it might enter a Pump
late and waste the processing time of extra cost for several pnj-BKZs with large
blocksizes.

Two-step Mode The two-step mode was first proposed by [12], which calls a
series of BKZ first for lattice reduction and calls an enumeration algorithm to
find the target vector at last. In this paper, we use a two-step mode adapted
1 S0 = list(range(10, 50)) + [b− 20, b− 17] + list(range(b− 14, b + 25, 2)) in default

mode
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input : B, S0, d, M , γ = 1.5;
output: The approximate shortest vector v;

1 B ← LLL (B);
2 for β ∈ S0 do
3 B ← pnj-BKZ (B, β, J = 1);
4 B ← LLL (B);
5 Tmax

pump ← TpnjBKZ(β);
6 nmax is the solution of the equation Tmax

pump · ♯threads = 2
n−58
2.85 ;

7 nexpected ∈ N is the minimum value such that√
4/3 ·GH(B[d−nexpected:d]) ≥M/γ ·

√
(nexpected)/d;

8 κ ∈ N is the maximal value such that GH(B[κ:d]) ≥M ·
√

(d− κ)/d;
9 if nexpected ≤ nmax then

10 f = max{d− κ− nexpected, 0};
11 B = Pump(B, κ, d− κ, f);
12 B ← LLL (B);
13 if ∥b0∥ < M then
14 return b0; //B = (b0, · · · ,bd−1)

Algorithm 4: Default LWE Solving Mode in G6K

to pnj-BKZ and Pump. It calls a series of pnj-BKZ to reduce the basis first
and finds a good timing to use a Pump algorithm to search the approximate
shortest vector in the end, to solve the SVPγ problem. The concrete process
is as Algorithm 2. By our pnj-BKZ simulator Algorithm 5 and Pump sieving
dimension estimation Algorithm 6 in section 4.1, we can guarantee that the last
Pump outputs the required target vector.

Experiments of Comparison among BKZ-only Mode, Default Mode
in G6K, and Two-step Mode In this part, we give an experimental result to
illustrate that for solving SVPγ , the two-step mode is the best mode among the
three different modes.

To compare the two-step mode and the BKZ-only mode, we call a Pump-
(κ, dsvp, f) and a pnj-BKZ-β (β < dsvp) separately on the same lattice basis,
where the Pump and the pnj-BKZ is in the same time cost, i.e. Tpump(dsvp) =
TpnjBKZ(β). Table 1 shows that the reduced shortest vector b0 after a Pump
is shorter than that after a pnj-BKZ. Thus, calling a Pump is more likely to
find the shortest vector compared to a pnj-BKZ in the same time cost. On this
account, it states that two-step mode is better than the BKZ-only mode.
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Table 1. Simulated norm of b0 after a
pnj-BKZ and a Pump under the same
time cost.

(n,α)† κ
ln(∥b0∥2)

pnj-BKZ Pump(L[κ:d])

(40,0.020) 34 14.64 12.05
(40,0.025) 42 14.73 12.55
(50,0.010) 53 15.49 11.85
(65,0.005) 85 16.70 11.42

† Basis from LWE instance (n, α) in TU
Darmstadt LWE challenge.

Table 2. Basis quality estimation after
a pnj-BKZ and a Pump under the same
time cost.

(n,α) Cost‡ log2(PSC)(log2h)
pnj-BKZ Pump(L[κ:d])

(50,0.025) 22.01 11.69 12.01
(55,0.020) 17.77 12.63 12.95
(75,0.010) 91.02 20.17 20.48
(90,0.005) 24.18 20.48 22.05

‡ Cost for calling the corresponding algo-
rithm.

For the comparison between the two-step mode and G6K default mode, we
show that an early Pump is less helpful in solving SVPγ than an early pnj-
BKZ. Let the time cost of the Pump for finding the target norm on the specific
lattice basis, i.e. PSC, be a standard of measuring the quality of lattice reduced
by different algorithms. A lattice basis with low PSC can be regarded as high
quality. Separately call a pnj-BKZ/Pump on the same lattice basis with the same
time cost. Table 2 shows that basis quality after a pnj-BKZ reduction is higher
than that after a Pump reduction in the same time cost. The latter basis quality
is estimated by the Pump sieving dimension estimation Algorithm 6. Thus, in the
G6K-default mode, if it enters a Pump with no solution, the quality of returned
lattice basis will be worse than that after a pnj-BKZ reduction in the same time
limit. In conclusion, the G6K-default mode is less efficient than the two-step
mode.

4 Simulator in Two-Step Solving Mode

In section 4.1, we first give the construction of the pnj-BKZ simulator and give a
validation experiment on the performance of pnj-BKZ simulator is shown. Then
we give the Pump cost model and the sieving dimension estimation of the last
Pump in two-step solving mode in section 4.2.

4.1 Pnj-BKZ Simulator

The first step in the two-step solving mode is using a series well-chosen pnj-BKZ
to reduce the lattice basis. To find the optimized reduction strategy of pnj-BKZ
with jump > 1, we need an accurate pnj-BKZ simulator.

The pnj-BKZ Simulator Construction Before we give the construct detail
of our pnj-BKZ simulator, let’s briefly review the main idea of the BKZ simulator
proposed in [10]. Suppose the input basis is B = (b0, · · · ,bd−1) and its corre-
sponding Gram-Schmidt basis is B∗ = (b∗

0, · · · ,b∗
d−1). Let B

′∗ =
(
b

′∗
0 , ...,b

′∗
d−1

)
be the corresponding output of the Gram-Schmidt basis reduced by one tour of
BKZ-β. The BKZ simulator proposed in [10] will calculate Sim∥b′∗

1 ∥ = GH(L[1:β])
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≈
√

β
2πe

(∏β
i=1 ∥b∗

i ∥
)1/β

by Gaussian Heuristic. Then it will calculate Sim∥b′∗
2 ∥ =

GH(L
′

[2:β+1]) ≈
√

β
2πe

(∏β+1
i=1 ∥b∗

i ∥
Sim∥b′∗

1 ∥

)1/β

by Gaussian Heuristic and the informa-

tion of Sim∥b′∗
1 ∥ since the insert of new b1 will change the value ofVol(L[2:β+1]) =∏β+1

i=2 ∥b∗
i ∥ to Vol(L

′

[2:β+1]) =
∏β+1

i=1 ∥b∗
i ∥

∥b′∗
1 ∥

. Here Sim∥b′∗
1 ∥ is a simulated approxi-

mate value of ∥b′∗
1 ∥ by Gaussian Heuristic. Iteratively calculating all remaining

unknown Sim∥b′∗
i ∥, such a simulator can predict the length value of each vector

in B
′∗.
The BKZ 2.0 simulator [10] cannot be used directly to simulate the behavior

of pnj-BKZ with jump > 1. We observe that when jump > 1, let J equals to the
value of jump, every time after new b∗

i insert at the first position of the block
Bπi[i:i+β′], the J−1 norms of Gram-Schmidt vectors b∗

i+1, ...,b
∗
i+J−1 will change

and remain unknown. These unknown norms prevent the BKZ 2.0 simulator [10]
from predicting the norm of the first Gram-Schmidt vector in the next block. Our
idea is that when jump > 1 we let each projected sub-lattice basis be reduced by
a pump satisfying the property of HKZ reduction so that we can predict these
unknown norms of Gram-Schmidt vectors between adjacent blocks.

Suppose the logarithms of the Gram-Schmidt norms li = ln (∥b∗
i ∥), i ∈

{0, · · · , d− 1}. Let B
′′ and l

′′

i be the corresponding output of the basis and
the logarithm of each Gram-Schmidt norm after one tour of pnj-BKZ-(β, J).
If the first J vectors in each block reduced by Pump satisfies HKZ reduced
condition2, then we can simulate each li after a pnj-BKZ-(β, J) reduction by
Gaussian Heuristic as


Sim

(
l
′′

i

)
= ln

(
GH

(
L

′′

π[i:i−(i mod J)+β]

))
, if i ∈ [0, d− β − 1]

Sim
(
l
′′

i

)
= ln

(
GH

(
L

′′

π[i:d]

))
, if i ∈ [d− β, d− 1]

Here ln
(
GH

(
L

′′

π[i:i−(i mod J)+β]

))
≈

1

2
ln

(
β − (i mod J)

2πe

)
+

1

β − (i mod J)

i−(i mod J)+β−1∑
j=0

lj −
i−1∑
j=0

Sim
(
l
′′
j

) , (4)

2 To obtain such HKZ reduced basis, we should turn on pump/down_sieve dur-
ing Pump process in pnj-BKZ, delete the condition ”(pump.insert_left_bound
<= kappa+down_stop)” in the file ”https://github.com/WvanWoerden/G6K-GPU-
Tensor/blob/main/g6k/algorithms/pump.py” to make sure the output basis projec-
tion satisfying HKZ reduction conditions as much as possible.
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where i ∈ {0, · · · , d− β − 1}, Vol
(
L

′′

π[i:i−(i mod J)+β]

)
=

Vol(L[0:i−(i mod J)+β])
Vol

(
L

′′
[0:i]

) .

And for last β Gram-Schmidt norms

ln
(
GH

(
L

′′

π[i:d]

))
≈ 1

2
ln

(
d− i

2πe

)
+

1

d− i

(
d−1∑
j=0

lj −
i−1∑
j=0

Sim
(
l
′′
j

))
. (5)

In other words, we only need to input the initial Gram-Schmidt norms li =
ln (∥b∗

i ∥), i ∈ {0, · · · , d− 1} of the lattice basis. Without performing pnj-BKZ-
(β, J) reduction, we can calculate Sim

(
l
′′

i

)
which are prediction values of l′′i by

(4) and (5). Here l′′i are these actual Gram-Schmidt vector norms of lattice base
after reducing by one tour of pnj-BKZ-(β, J). Therefore, the reduction effect
of the pnj-BKZ-(β, J) algorithm can be predicted without actually running
pnj-BKZ algorithm.

To show that it is reasonable for us to use the properties of the HKZ reduction
basis to simulate the actual reduction effect of pnj-BKZ-(β, J), we first illustrate
that the Pump2 output lattice basis is an almost HKZ reduced basis. For each
tour, for i ∈ [1, d], calculate the ratio l

′′
i

Sim(l
′′
i )
, see Figure 3. Here l

′′

i for i ∈ [1, d]

are the average logarithms of these Gram-Schmidt vector lengths obtained from
20 experiments, and Sim(l

′′

i ) are logarithm of lengths of Gram-Schmidt vector
which are calculated by (4) and (5).

We calculate the simulation length of the Gram-Schmidt vector strictly ac-
cording to the property of the HKZ reduction basis and Gaussian Heuristic.
Therefore, in addition to being one of the criteria for measuring the accuracy
of the pnj-BKZ simulator, this ratio l

′′
i

Sim(l
′′
i )

can also be used as a criterion for
judging whether the output basis of the Pump satisfies the property of HKZ
reduction2. However, it can be seen from Figure 3 that when jump ≤ 9 even the
tours increase to 10, the ratios l

′′
i

Sim(l
′′
i )

are all between 0.975 and 1.025, indicat-
ing that the pnj-BKZ simulator uses (4) and (5) as the approximate estimate of
the actual value ∥b′′∗

i ∥ and can already reflect how the average of the norms of
Gram-Schmidt vectors change during each tour’s reduction of pnj-BKZ-(β, J).

Besides, when simulating the length value of Gram-Schmidt vector, we note
that while i ≡ 1 (mod J) the index i of GH

(
L

′′

[i:i+β−(i mod J)]

)
is the same as

that in GH
(
L

′

[i:i+β−1]

)
, however, the simulation volumes of projected sublattice

L
′

[i:i+β−1] and L
′′

[i:i+β−1] are different. Because Vol(L
′

[i:i+β−1]) =
∏i+β−1

j=1 ∥b∗
j∥∏i−1

j=1∥b′∗
j ∥

here

∥b′∗
j ∥ := GH

(
L

′

[j:j+β−1]

)
in BKZ 2.0 simulator [10]. While Vol(L

′′

[i:i+β−1]) =∏i+β−1
j=1 ∥b∗

j∥∏i−1
j=1∥b′′∗

j ∥
here ∥b′′∗

j ∥ calculated by (4) and (5) in pnj-BKZ simulator. We give
a detailed algorithm description of the pnj-BKZ simulator in the Algorithm 5.

Performance of pnj-BKZ simulator We give an experiment to verify the
effectiveness of our pnj-BKZ simulator in this part.
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(a) Jump=5

(b) Jump=9

Fig. 3. ratio l
′′
i

Sim(l
′′
i )

, β = 95.
Run 10 tours (β = 95, J = 5 and β = 95, J = 9 respectively) of pnj-BKZ reduction on
a 252 dimension lattice basis, and record the output of Gram-Schmidt vector lengths
each tour. For each pnj-BKZ reduction parameter, we did experiments 20 times to
obtain the average length of Gram-Schmidt vector.
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input : rr = (l0, · · · , ld−1), blocksize β ∈ {45, · · · , d}, number of tours t and
size of jump J to simulate.

output: A prediction for the logarithms of the Gram-Schmidt norms
l′i = ln (∥b′∗

i ∥) after t tours pnj-BKZ-β reduction with jump is J .
1 for i← 0 to 44 do
2 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

3 for i← 45 to β do
4 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

5 for j ← 0 to t− 1 do
6 flag ← true; //flag to store whether L[k,d] has changed
7 for k ← 0 to d− β − 1 do
8 β′ ← min (β, d− k + 1); //Dimension of local block
9 h← min (k − (k mod J) + β − 1, d);

10 ln (V)←
∑h

i=0 li −
∑k−1

i=0 l′i;
11 if flag = True then
12 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
13 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);
14 flag← False;
15 else
16 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

17 for k ← d− β to d− 46 do
18 β′ ← d− k; h← d; ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

19 if flag = True then
20 if ln (V) /β′ + cβ′ < lk then
21 l′k ← ln (V) /β′ + cβ′ ; flag← false;
22 else
23 l′k ← ln (V) /β′ + cβ′ ;

24 ln (V)←
∑h

i=1 li −
∑k−1

i=1 l′i;
25 for k ← d− 45 to d− 1 do
26 l′k ←

ln(V)
45

+ rk+45−d;
27 for k ← 0 to d− 1 do
28 lk ← l′k;

29 return l0, · · · , ld−1;
Algorithm 5: pnj-BKZ Simulator
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To measure the accuracy of pnj-BKZ simulator, SimError calculated as the
equation (6)

SimError(♯tours) =

d−1∑
i=0

(
∥b∗

i ∥(♯tours) − Sim(∥b∗
i ∥)(♯tours)

)2

, (6)

where ♯tours represents the number of current tours and Sim(∥b∗
i ∥)(♯tours) are the

lengths of Gram-Schmidt vectors predicted by pnj-BKZ simulator with ♯tours.
As can be seen in the Figure 4, pnj-BKZ simulator can well predict the

behavior of the pnj-BKZ algorithm when jump within [2, 9] ∩ Z since the cor-
responding SimError(♯tours) is small. Figure 2 shows that as the jump value
increases, the prediction error increases, and the accuracy of pnj-BKZ simulator
decreases. However, the prediction error SimError(♯tours) is still within 1 espe-
cially when the jump takes within [2, 12] and the SimError(♯tours) of pnj-BKZ
simulator is not bigger than that of BKZ 2.0 simulator. Therefore the pnj-BKZ
simulator can predict how the average norms of Gram-Schmidt vectors change
during each tour reduction of pnj-BKZ-(β, J).

(a) β = 95, jump = 5, ♯tours = 10 (b) β = 95, jump = 9, ♯tours = 10

Fig. 4. Prediction effect of pnj-BKZ simulator.
To verify the effectiveness of our pnj-BKZ simulator, we perform the following exper-
iments, reducing (n = 70, α = 0.005) LWE challenge lattice basis by pnj-BKZ with
reduction parameter: blocksize β = 95, jump size J ∈ [1, · · · , 16], ♯tours ∈ [1, · · · , 10].
Here under the same reduction parameters, we do 20 times experiments.

See Appendix B for more details about the prediction effect of the simulator
under different jump values and different tours.

4.2 Pump Cost Model and Dimension Estimation of the Last Pump

Pump Cost Model We set Tpump as the computational cost of a Pump since
the main cost of a Pump can be regard as a (β − f)-dimensional progressive
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sieve, i.e.

Tpump(β) =

β∑
j=β0

Tsieve(j) =

β−f∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(β−f−β0)

)
≤ 2cβ0 · 2

c(β−f+1)+o(β−f+1)

1− 2c
= O

(
2c(β−f)

)
≈ 2c(β−f)+c1 ,

(7)

where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30,
and in G6K-GPU, it is set to 50), c and c1 are the coefficients of the full sieve
cost related to sieve dimension, Tsieve(j) is the sieve cost in dimension j with
dim-for-free value f = d4f(j). More detail about our practical Pump cost model
can be seen in the Appendix C.

Dimension Estimation of the Last Pump Except for the pnj-BKZ sim-
ulator, to solve LWE with high success probability we need to determine the
dimension of sieving in the last Pump. In G6K, a Pump sieving dimension es-
timation method has been given. Let Mdsvp

= M ·
√
dsvp/d be the expected

norm of the required approximate shortest vector projection in the sub-lattice
Lπ[d−dsvp:d] and dsvp be the maximal dimension to sieve while calling Pump,
where GH(rr[d−dsvp:d]) = GH(Bπ[d−dsvp:d]) ≤Mdsvp .

We give a new dimension of sieving estimation of Pump named ProSieveD-
imEst (Algorithm 6) here to estimate the selected dimension of the progressive
sieve in the end. In this algorithm, F (β,D) be a distribution function related
to the projected lattice Lπ[d−β:d] and D describes the distribution of the ele-
ments in the projected target vector v ∈ Lπ[d−β:d]. For instance, when solv-
ing standard form LWE the target vector contains the noise vector e ∈ Zm

q

from a discrete Gaussian distribution Dσ whose standard deviation is σ, then
F (β,D) = σ2χ2

β . Algorithm 6 will evaluates the maximal sieve dimension dsvp
for calling Pump within a high probability(≥ 0.999) to find the target vector,
then give a cost estimation by dsvp. Let Tpump(β) =

∑β
j=β0

Tsieve(j) as equa-
tion (7). Since Pump contains the progressive sieve process, we should consider
the failure/success probability during the process. Let the success probability of
sieve-β be Psuc(β), then its failure probability is 1−Psuc(β). We call the sieve-β
only if sieve-(β− 1) didn’t find the target vector, so the expected cost of sieve-β
is Tsieve(β)(1− Psuc(β − 1)). Iterate β from β0 to dsvp, the expected Pump cost

PSC(dsvp) =

dsvp∑
β=β0

[Tsieve(β) · (1− Psuc(β − 1))]

=

dsvp∑
β=β0

[Tpump(β) · (Psuc(β)− Psuc(β − 1))] ,

(8)

wher Psuc(dsvp) ≥ 0.999.
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input : rr, F (⋆,D), Psuccess = 0.999 ;
output: dsvp, PSC;

1 for dsvp ← dstart to d do

2 Psuc(dsvp) ← Pr

[
x← F (dsvp,D)

∣∣∣∣x ≤ (GH(rr[d−dsvp:d])
)2];

3 if Psuc(dsvp) > Psuccess then
4 return dsvp, PSC(dsvp);

Algorithm 6: ProSieveDimEst

4.3 Estimator Stability Assumption

In this part, we give a heuristic assumption about our strategy estimator which
will be discussed in detail in Section 5. In practice, although the sieving algorithm
has a certain randomness, the time cost of the Pump, pnj-BKZ-(β, J) and the
reduction effect of a series of pnj-BKZ-(β, J) are stable. Same as the length of
Gram-Schmidt vectors of BKZ-β fully reduced basis will follow GSA (Definition
4) and BKZ 2.0 simulator can well simulate how the length of Gram-Schmidt
vectors changes during every tour of BKZ-β’s reducing. Therefore, we give the
Heuristic 1.

Heuristic 1 The practical time cost model (Appendix C) and pnj-BKZ simulator
(Alg.5) fit the actual time cost of the pump algorithm and pnj-BKZ algorithm
and the reduction effect of a series of pnj-BKZ-(β, J) for almost all lattices.

5 Improved Progressive pnj-BKZ: Blocksize and Jump
Strategy Optimization

In this section, we describe the two blocksize and jump strategy selection al-
gorithms in detail. The first is blocksize and jump strategy selection algorithm
based on pro-BKZ (BSSA), based on the blocksize selection strategy in Improved
Progressive BKZ [12]. The second is a new algorithm called blocksize and jump
strategy enumeration (EnumBS), through which we can get an optimal blocksize
and jump strategy. We give both formal proof and Experimental results to show
that our new strategy selection algorithm is better than the algorithm based on
pro-BKZ.

5.1 Blocksize and Jump Strategy Selection Algorithm based on
Pro-BKZ

The blocksize and jump strategy selection algorithm based on pro-BKZ (BSSA)
can be described as an application of the shortest path algorithm on blocksize
and jump strategy selection. To store the variables in the BSSA process, we
define a blocksize and jump strategy dictionary BS, in which the key is for
each middle βgoal node and the value is a tuple of bs = (rr, S, GBKZ), where
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rr is the length of Gram-Schmidt vector which is fully BKZ-βgoal reduced, S
means the blocksize and jump selection strategy which will improve the quality
of lattice basis from fully BKZ-βstart reduced to fully BKZ-βgoal reduced and
GBKZ denotes simulated time cost for strategy S.

BSSA firstly sets several middle nodes of βi as a measure of basis quality
and expects to find the optimal blocksize and jump (βalg, Jalg) with tours t be-
tween each node whose reduction cost is GBKZ, which can be used to minimize
the time cost of improving the quality of lattice basis from fully BKZ-βstart re-
duced to fully BKZ-βgoal reduced and store the reduction strategy (βalg, Jalg),
simulated reduced GS-lengths and cost for the strategy as BS[βstart + 1] =
([(βalg, Jalg, t)], rr, GBKZ). Given βstart, β, βgoal and βstart < β < βgoal, sup-
pose we have found the best single pnj-BKZ strategy from βstart to β, then we
could try to find the strategy with minimal cost from from βstart to βgoal by
looking for another pnj-BKZ-(βalg, Jalg) from βstart to βgoal or considering the
minimal cost of pnj-BKZ-(βalg, Jalg) from βstart to β and β to βgoal separately
and find the minimal total cost from βstart to βgoal. Let βstart = β0, repeat the
above steps from β0 + 1 to βgoal = d, we will find the minimal cost from β0 to
each β that β0 + 1 ≤ β ≤ d.

To find the efficient two-step solving strategy, we should consider the cost of
the last Pump, i.e. PSC, after several pnj-BKZ reductions. By setting different
final βgoal, we can get different reduction strategy BS which improving the qual-
ity of lattice basis from βstart to βgoal and different sieving dimension of the last
Pump corresponding to different quality of lattice which is fully βgoal reduced.
Then we set multiple different final βgoal to choose the two-step solving strategy
whose total time cost is the minimal. Here total time cost includes the time cost
of improving the quality of lattice by a series pnj-BKZ-(β, J) ∈ BS and the time
cost of final Pump. See Algorithm 7 for more detail about BSSA.

Since BSSA uses the quality of the BKZ-β fully reduced basis as the in-
termediate node to find the optimized block strategy, the BSSA strategy with
more flexible intermediate node settings can be constructed by the slope of the
length of Gram-Schmidt vectors or combining the root Hermit factor value δ
and geometry series assumption. We plan to finish this work in the future.

5.2 Blocksize and Jump Strategy Enumeration Algorithm

In this part we will introduce another blocksize and jump strategy selection
algorithm.

In the case where Heuristic 1 holds we can prove that there is an algorithm
that can find the optimal Blocksize and Jump Strategy of a series of pnj-BKZ-
(β, J) algorithm for improving the quality of lattice basis and the optimal di-
mension of Pump to find the target vector with a high probability. We design
such an algorithm named blocksize and jump strategy enumeration algorithm
(EnumBS) which is a pruning enumeration algorithm that enumerates all the
possible blocksize and jump strategies and we will describe the proposed algo-
rithm in detail and prove it optimality in this section. The detailed description
of EnumBS can be seen in Algorithm 8.
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input : rr0= (l0, · · · , ld−1), F (⋆,D), β0 = 50, Jmax(⋆)← min{d4f(⋆), 0.1 · (⋆)};
output: Gmin, Bmin, Smin;

1 d← len(rr0); BS[βstart] = (rr0, [ ], 0);
2 for β ← β0 to d do
3 GBKZ

min ← +∞;
4 for βsstart ← βstart to β − 1 do
5 bssstart ← BS [βsstart]; bs← (∅, ∅,+∞);
6 ♯tours ← the maximal tours for pnj-BKZ-β;
7 rr∗ ← PnjBKZSim(bssstart.rr,β,1,♯tours);
8 (d∗svp,PSC

∗) ← ProSieveDimEst(rr∗, F (⋆,D));
9 for βalg ← β + 1 to d do

10 for j ← Jmax(β
alg) to 1 do

11 if d−βalg

j
· Tpump(β

alg) > bs.GBKZ then
12 break; // It means a larger beta cannot decrease cost.
13 G′ ← +∞;
14 ♯tours ← the maximal tours for pnj-BKZ-(βalg, j);
15 for t ← 1 to ♯tours do
16 rr′ ← PnjBKZSim(bssstart.rr, βalg, j, t);
17 GBKZ(β, j)← t · d−β

j
· Tpump(β);

18 (d′svp,PSC
′) ← ProSieveDimEst(rr∗, F (⋆,D));

19 if PSC′ ≤ PSC∗ then
20 G′ ← GBKZ(β, j);
21 break;

22 if bs.GBKZ > G′ then
23 bs← (bssstart.S ∪ [(βalg, j, t)], rr′, bssstart.GBKZ +G′);

24 if GBKZ
min > bs.GBKZ then

25 GBKZ
min ← bs.GBKZ; BS [β] ← bs;

26 Gmin ← +∞, Smin ← ∅;
27 for β ← βstart to d do
28 bs← BS[β]; (dsvp,PSC)← ProSieveDimEst(bs.rr, F (⋆,D));
29 G← bs.GBKZ + PSC; ♯S← len(bs.S);
30 if G < Gmin then
31 B ← bitpump(max{bs.S[♯S], dsvp});
32 Gmin, Bmin, Smin ← G, B, S;

33 return Gmin, Bmin, Smin;
Algorithm 7: BSSA
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In EnumBS, we use BS to store the information of each reduction strategy
which might be the optimal strategy or will become the optimal strategy after
adding more (β, J) nodes. BS is a list and each element bs in the BS is a tuple
of values bs = (rr, S, GBKZ, dsvp,PSC). It is important to note that each bs in BS
should be in order that increases by its GBKZ value and decreases by its PSC
value. In bs, S is a list storing the blocksize and jump strategy calling pnj-BKZ,
GBKZ is the time cost for calling such a series of pnj-BKZ, rr stores the current
simulated gs-lengths after calling pnj-BKZ following strategy S by calling pnj-
BKZ simulator (Alg.5), dsvp and PSC is the parameters related to last Pump by
calling a Pump dimension estimation method (Alg.6), in which dsvp denotes the
maximal dimension to be selected in last Pump and PSC is estimated time cost
for last Pump. Each element in S is a tuple (β, J, t), where β is block size value
of pnj-BKZ, J is the jump value of pnj-BKZ and t is the number of tours for
calling pnj-BKZ-(β, J). For the sake of narrative simplicity, we will use bs.⋆ to
denote each element in bs, e.g. bs.S. Let ♯S and ♯BS be the length of S and BS.

At the start of EnumBS, there is only one tuple bs(0) in BS, where bs(0).S = [ ]
denotes a no pnj-BKZ block size strategy with a pure Pump sieve. The total cost
of bs(0) is the Pump cost. Then, to generate more strategies and try to find the
optimal strategy, we can regard bs(0) as the root node and expand the strategy
list from bs(0). Let the relation between bs∗.S = bs.S ∪ [(β, J, t)] and bs.S be the
child strategy and the father strategy, where the (β, J) value should be larger
than the largest block size strategy in bs.S (i.e. β > bs.S[♯S] or (β = bs.S[♯S].β
and j < bs.S[♯S].J)) to ensure the reducibility after adding a new (β, J, t). We
call such a bs∗ a child node of bs and the corresponding bs is the father node.
Considering each child strategy bs∗.S of bs(0).S for all possible (β, J, t), compute
the other values in bs∗, i.e. bs∗.GBKZ, bs∗.rr, bs∗.dsvp and bs∗.PSC. When we try
to add a bs∗ into BS, we should first determine whether it exists a bs ∈ BS so
that bs∗.PSC ≥ bs.PSC and bs∗.GBKZ ≥ bs.GBKZ. If so, we cannot add such bs∗

into BS, because the child strategies generated by bs∗( including bs∗ itself ) won’t
have a shorter time overhead than which generated by the corresponding bs. If
not, then we should first add bs∗ and then delete the bad strategy in BS whose
PSC value and GBKZ value are both larger than bs∗. Iterate each BS[k] and its
child nodes sequentially, and we’ll end up with a BS containing the optimal block
size strategy. Iterate through BS and return the optimal strategy in the end.

Proof for the Optimality of EnumBS As we mention at start of Section
5.2, EnumBS is an algorithm that can find the optimal block size strategy in
two-step mode. Theorem 1 proves its optimality.

Theorem 1. Let bs.G = bs.GBKZ + bs.PSC be the total cost of a two-step
reduction using parameters in bs and S be a set containing all possible strategies.
It exists an optimal strategy bsop.S ∈ S s.t. bsop.G is minimal. The output strategy
bsEnumBS.S of EnumBS is the optimal strategy, i.e. bsEnumBS.S = bsop.S.

Proof. (Proof by contradiction) Suppose there is a strategy bs′.S ∈ S such that
bs′.G < bsEnumBS.G. Then, there are four different situations:
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If bs′.PSC < bsEnumBS.PSC, i.e. the cost of last Pump in bs′ is shorter than
which of SEnumBS, then it exists the following two situations.

(1) If bs′.GBKZ ≤ bsEnumBS.GBKZ, then bsEnumBS will be replaced by bs′ in
the EnumBS algorithm, contradictory.

(2) If bs′.GBKZ > bsEnumBS.GBKZ, one of the child strategies of bs′ or bs′ it
self. Since bs′.G < bsEnumBS.G, the EnumBS won’t output the strategy bsEnumBS,
contradictory.

If bs′.PSC ≥ bsEnumBS.PSC, i.e. the cost of last Pump in bs′ is larger than
which of SEnumBS, then it exists the following two situations.

(3) If bs′.GBKZ ≥ bsEnumBS.GBKZ, then bs′.G ≥ bsEnumBS.G, contradictory to
the assumption.

(4) If bs′.GBKZ < bsEnumBS.GBKZ, then one of the child strategies of bs′ or
bs′ it self will appear in the BS to the last. Since bs′.G < bsEnumBS.G, EnumBS
won’t output the strategy bsEnumBS.S, contradictory.

Consequently, bsEnumBS.S is the optimal strategy. □

6 Applying Pro-pnj-BKZ to LWE

In section 6.1, we will explain the method of choosing the upper bound of the
sieving dimension of the last Pump in two-step mode for solving LWE. It is
different from that used in the default G6K’s LWE solving strategy, which we
think is over-optimistic. The over-optimistic estimation for the sieving dimension
of the last Pump in default G6K’s LWE solving strategy will make the Pump
fail to find the target vector and lead to a bad reduction. In section 6.2 we
give the optimized blocksize and jump strategy for solving TU Darmstadt LWE
challenge. In section 6.3, we apply our algorithm to solve TU Darmstadt LWE
Challenges and we will give a comparison of different LWE-solving modes by
experiments and simulation respectively. In section 6.4, we show these new TU
Darmstadt LWE Challenges we solved. In section 6.5, we give a new security
estimation of LWE in NIST schemes [37] based on the optimized blocksize and
jump selection and two-step solving mode strategy .

6.1 Estimation of sieving dimension in Pump for solving LWE

In this part, we reconsider the relationship between the dimension of sieving
in the last Pump and the probability of finding the target vector in LWE.
We present a new method for determining these parameters in the final high-
dimensional sieving in Pump based on the distribution of the square of length
of LWE error vector, which is a chi-squared distribution.

The value estimation of dsvp in default G6K cannot always guarantee finding
the target vector t. It uses the inequality

σ
√
dsvp ≈

∥∥πd−dsvp
(t)

∥∥ ≤ GH(B[d−dsvp]), (9)

which is relevant to the expected length of the target vector and current shortest
vector in the projection of the sub-lattice, to determine the upper bound of
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input : rr0= (l0, · · · , ld−1), F (⋆,D), Jmax(⋆)← min{d4f(⋆), 0.1 · (⋆)};
output: Smin, Gmin, Bmin;

1 k ← 1; d← len(rr0); d(0)svp,PSC
(0) ← ProSieveDimEst(rr0, F (⋆,D));

2 BS ← {(rr0, [ ], 0, d(0)svp,PSC
(0))}; ♯BS← len(BS); bs∗ ← BS[0];

3 while k < ♯BS do
4 bs← BS [k];
5 if bs.S = [ ] then
6 (βstart, jstart)← (β0, Jmax(β0);
7 else
8 ♯S = len(bs.S); (βstart, jstart)← bs.S[♯S];
9 if jstart = 1 then

10 βstart, jstart ← βstart + 1, Jmax(β
start + 1);

11 else
12 jstart ← jstart − 1;

13 tmpBS = {};
14 do in parallel
15 for β ← βstart + 1 to d do
16 for j ← jstart to 1 do
17 ♯tours ← the maximal tours for pnj-BKZ-β with jump j;
18 TpnjBKZ ← d−β

j
· Tpump(β);

19 for t ← 1 to ♯tours do
20 bs∗.S← S ∪ [(β, j, t)]; bs∗.rr← PnjBKZSim (bs.rr, β, j, t);
21 bs∗.GBKZ ← bs∗.GBKZ + t · TpnjBKZ;
22 bs∗.dsvp, bs∗.PSC ←ProSieveDimEst(bs∗.rr, F (⋆,D));
23 tmpBS ← tmpBS ∪ {bs∗};

24 jstart ← Jmax(β + 1);

25 for bs∗ ∈ tmpBS do
26 BS ← BS ∪ {bs∗};
27 if ∃ bs ∈ BS s.t. bs∗.PSC ≥ bs.PSC and bs∗.GBKZ ≥ bs.GBKZ then
28 BS ← BS \ {bs∗};
29 else
30 for ∀bs ∈ BS s.t. bs∗.PSC ≤ bs.PSC and bs∗.GBKZ ≤ bs.GBKZ do
31 BS ← BS \ {bs };

32 k ← k + 1;
33 Smin, Gmin, Bmin ← [ ], +∞, +∞;
34 for bs ∈ BS do
35 G← bs.GBKZ + bs.PSC; ♯S = len(bs.S); B ← bitpump(max{bs.S[♯S], dsvp});
36 if Gmin > G then
37 Smin, Gmin, Bmin ← bs.S, G,B;

38 return Smin, Gmin, Bmin;
Algorithm 8: EnumBS
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sieving in the Pump. In other words, the upper bound of the sieving dimension
used in default G6K supposes that the length of the target vector is fixed as
its expected value and is over-optimistic. In fact, the square of the length of
the LWE error vector is a randomly positive variable rather than a fixed value.
Instead of giving a univariate parameter for evaluating the upper bound of the
sieving dimension, it is more reasonable to make sure the success probability of
recovering the target vector is high enough with a suitable sieving dimension.

New upper bound of sieving dimension in Pump. We wish to describe
the relationship between the success probability of finding (e, 1) and the quality
of lattice basis using different upper bound of sieving dimensions of Pump. Then,
we can set the suitable upper bound of sieving dimension in Pump to make the
probability of finding the approximate shortest vector close to 1. Through that,
we can avoid executing an invalid Pump which fail to find the target vector due
to an inaccurate prediction function.

The Algorithm 6 represents the condition of selecting the upper bound of
sieving dimension in a progressive sieve according to a certain solving probability
threshold. This idea was first proposed in [38] to optimize the dimension selection
for BKZ, and [26] further accelerated the algorithm. We use the same method
in [26] to reduce the cost of evaluation.

In order to calculate the value Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
B[d−β:d]

))2], one
can integrate the probability density function of the chi-squared distribution
from 0 to the 1

σ2

(
GH

(
B[d−β:d]

))2 value:

Cβ

(
x =

1

σ2

(
GH

(
B[d−β:d]

))2)
=

∫ x

0

t
β
2 −1e−

t
2

2
β
2 Γ

(
β
2

)dt,
then Pr

[
y ← σ2χ2

β

∣∣∣∣y ≤ GH
(
B[d−β:d]

)2]
= σ2 · Cβ

(
x = 1

σ2

(
GH

(
B[d−β:d]

))2).
When solving LWE instead of SVPγ , Let F (dsvp,D) = σ2χ2

dsvp
and call the

Algorithm 6. In addition, we can combine pnj-BKZ simulator (Alg.5) and Pump
sieving dimension estimator (Alg.6) to give a probabilistic simulator for solving
LWE based on our optimization strategy as Algorithm 7 and Algorithm 8, which
has been introduced in Section 5.

6.2 Optimized Blocksize and Jump Strategy for Solving TU
Darmstadt LWE Challenge

We use a machine with Intel Xeon 5128 16c 32@2.3GHz, 1.48T RAM, and
NVIDIA GTX 3090 * 2 to construct a practical time-cost model by experi-
ments, see more detail in the Appendix C. Based on this practical time-cost
model we give a comparison of different LWE-solving algorithms to show our
improvement.
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Table 3 shows the blocksize and jump strategy selected by Algorithm 8
for solving TU Darmstadt LWE challenge instances with Psuccess = 0.999 us-
ing the practical cost model. From Table 3 we can also see that the time
cost of generating the blocksize and jump strategy by Algorithm 8 is accept-
able. To generate the optimal strategy for other lattice can implement our
code shown in public. We solved TU Darmstadt LWE challenge instances of
(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)} successfully
using these strategies.

Table 3. Blocksize and Jump strategy generated by EnumBS.

(n, α) Strategy (β, jump, ♯tours) EnumBSGen/s
(40,0.025) [( 91, 8, 1),(104, 8, 1)] 6.5
(45,0.020) [( 79, 8, 1),( 91, 8, 1),(108, 8, 1)] 18
(50,0.015) [( 79, 8, 1),( 91, 8, 1),(106, 8, 1)] 20
(60,0.010) [( 79, 8, 1),( 89, 8, 1),(104, 8, 1),(112, 8, 1)] 57
(80,0.005) [( 91, 9, 1),(111, 11, 2),(117, 11, 2),(120, 11, 1)] 390
(40,0.035) [(117, 11, 2),(117, 4, 1),(129, 4, 1),(142, 4, 1)] 180

(40,0.040) [(102, 10, 1),(116, 11, 1),(120, 11, 1),
(120, 4, 1), (134, 4, 1),(146, 4, 1),(154, 2, 1)] 320

(50,0.025) [( 94, 9, 1),(112, 11, 1),(117, 11, 1),(118, 11, 1),
(118, 4, 1),(129, 4, 1),(140, 4, 1),(146, 4, 1),(154, 2, 1)] 690

(55,0.020) [(101, 10, 1),(111, 11, 1),(117, 11, 1),(117, 4, 1),
(119, 4, 1),(128, 4, 1),(140, 4, 1),(147, 4, 1),(155, 4, 1)] 740

(90,0.005)
[(91, 9, 1),(103, 10, 1),(111, 11, 1),(117, 11, 3),

(117, 4, 1),(118, 4, 1),(120, 4, 1),(128, 4, 1),
(133, 4, 1),(141, 4, 1),(143, 4, 1),(148, 4, 1)]

180

6.3 Practical Experimental Test Comparison of LWE-solving
algorithms

In this part we firstly test the actual walltime cost of different LWE solving
algorithms through actual experiments, so as to prove that our algorithm is
indeed improved compared with the default LWE solving algorithm in G6K.
From Table 4 we can see that compared with the default LWE solving strategy
in G6K we decreased the walltime cost by about 8.4 ∼ 10.5 times by EnumBS
strategy and 5.3 ∼ 10 times by BSSA strategy.

Meanwhile to show the accuracy of our optimized blocksize and jump selec-
tion strategy, we compare the quality of lattice basis and walltime in each middle
node predicted by our optimized blocksize and jump selection strategy with that
of actual experiments. Table 5 illustrates that both the quality of actual lattice
basis and the actual walltime of each tour of pnj-BKZ-(β, J) are almost the
same as our prediction. This also proves that Heuristic 1 is established in an
experimental way.
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Table 4. Experimental result of different LWE-solving algorithms§.

(n, α)
Walltime/s Memory/GB Walltime Acceleration Ratio

G6K BSSA EnumBS G6K BSSA EnumBS BSSA EnumBS
(40, 0.025) 11864 1314 1307 4.5 10.0 6.5 9 9.1
(45, 0.020) 22400 2227 2124 1.7 7.2 4.0 10 10.5
(50, 0.015) 20185 2518 2241 11.2 11.2 4.2 8 9
(80, 0.005) 147464 27595 17544 23.1 9.0 20.8 5.3 8.4

§ Here BSSA represents the two-step LWE solving algorithm whose blocksize and
jump strategy is generated by alg 7 and EnumBS represents the two-step LWE
solving algorithm whose blocksize and jump strategy is generated by alg 8.

Table 5. The simulated and actual quality and walltime of lattice basis in reduction
process using LWE instance (n, α) = (40, 035).

(β, J, tours)
Simulation Practical

Slope log(Walltime/s) Slope log(Walltime/s)
(83,8,1) −0.050127 8.74 −0.04768 8.83
(93,8,1) −0.04388 9.24 −0.04279 10.08
(108,8,1) −0.03994 10.03 −0.03957 11.06
(117,8,1) −0.038133 10.48 −0.03801 11.96
(119,4,1) −0.03669 11.87 −0.03709 12.99
(133,4,1) −0.0351 14.66 −0.03553 14.92

6.4 New LWE Records

The TU Darmstadt LWE challenge website presents sample instances for testing
algorithms that solve the LWE problem. The main goal of this challenge is to
help in assessing the hardness of the LWE problem in practice. Furthermore, it
can be used to compare different types of LWE solvers.

By our new algorithm, i.e. pro-pnj-BKZ, we have solved the LWE instances
(n, α) ∈ {(40, 0.035), (90, 0.005), (50, 0.025), (55, 0.020), (40, 0.040)} in TU Darm-
stadt LWE challenge website. (We solved the LWE instance (n, α) = (80, 0.005)
earlier.). Specifically we denoted a service with AMD EPYCTM 7002 Series
128@2.6GHz, NVIDIA RTX 3090 * 8, 1.5T RAM as Machine A, and denoted
a service with AMD EPYCTM 7002 Series 64@2.6GHz, a100 *4, 512 GB RAM
as Machine B. Then we listed the walltime and RAM cost in solving the above
LWE challenges in Table 6. The unit of running time in Table 6 is hour and the
unit of RAM in it is GB.

6.5 Security Estimation for NIST schemes

In this part, we estimated security bits of LWE in NIST schemes [37] under
consideration of the influence of the optimized blocksize and jump selection and
two-step mode strategy. Our new hardness estimation of LWE tries to answer
Question 7 in Section 5.3 of [2] and narrows the security estimation error interval.
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Table 6. Actual running time, RAM cost and simulation cost.

(n,α) Machine Walltime (h) RAM (GB)
(40,0.035) B 233 184
(50,0.025) A 592 184
(55,0.020) A 611 890
(90,0.005) B 370 332
(40,0.040) A 683 1120

For more details about our evaluation code can be seen in the open source code1.
Under the RAM model, i.e, it assumes that access into even exponentially large
memory is free, the estimated security bits of LWE in NIST schemes [37] can be
reduced by 8.5 ∼ 11.9 bits in the case of paying memory cost increased by at
most 6 bits compared to the current estimation generated by Leaky-Estimator2

in [39]. See Table 7 for details. Here G and B in Table 7 respectively represent the
total log number of logic circuits for these LWE instances in NIST schemes [37]
being solved and the maximal memory needed for solving these LWE instances,
that both are calculated by Gate-count algorithm [40].

Table 7. Security Estimation results of different estimator for NIST schemes♮.

G/log2(gates) B/log2(bit)
∆G ∆G+∆BLeaky-Estimator Two-Step Leaky-Estimator Two-Step

Kyber512 151.5 139.6 93.8 95.7 11.9 10
Kyber768 215.1 206.4 138.5 143.2 8.7 4.1
Kyber1024 287.3 278.2 189.7 194.1 9.1 4.7
Dilithium-I 158.6 150.1 97.8 102.9 8.9 4
Dilithium-II 216.7 207.9 138.7 144.0 9.1 4.1
Dilithium-III 285.4 276.5 187.4 193.1 8.5 2.4

♮ In the column of G/log2(gates) and B/log2(bit), respectively reflect the security bit estimations
and memory bit estimations of LWE instances in NIST schemes with different estimators. Here
under the influence of the optimized blocksize and jump selection and two-step mode strategy,
∆G means the security bits decreasing under the RAM model and ∆G+∆B means the security
bits decreasing by considering the sum of time complexity and space complexity.

In practice, our strategy using larger memory cost will indeed lead to an
extra overhead of accessing exponentially large memory, which will somewhat
offset the above-claimed decreasing of security hardness. But even including the
additional overhead caused by accessing higher memory, the optimized blocksize
and jump selection and two-step mode strategy still have smaller sum of time
complexity and space complexity compared with that of Leaky-Estimator. More
preciously, considering the sum of time complexity and space complexity, the
1 https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
2 https://github.com/lducas/leaky-LWE-Estimator
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optimized blocksize and jump selection and two-step mode strategy will decrease
the security bits of LWE by 2.4 ∼ 10 bits claimed in NIST schemes [37]. See
Table 7 for more detail.

7 Conclusion and Future Work

7.1 Conclusion

In this paper, we propose Improved Progressive pnj-BKZ, which combines pnj-
BKZ and Pump algorithm to solve SVPγ problem based on two new simulat-
ing algorithms (pnj-BKZ simulator and Pump estimator). Experimental results
show that our simulators can accurately predict the behavior of pnj-BKZ even if
jump ≥ 1. We design two new blocksize and jump strategy selection algorithms:
BSSA and EnumBS, and demonstrate the optimality of the EnumBS strategy.
Meanwhile, applying the blocksize and jump strategy generated from EnumBS
to solve the LWE Challenge results in at most 10.5 times improvement compared
to default G6K mode and help us to solve the TU Darmstadt LWE challenges
(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}. In addition,
using our new hardness estimator of LWE for security evaluation of these NIST
lattice-based schemes shows that our optimized blocksize and jump strategy se-
lection and two-step mode will cause the security strength to drop by 2.4 ∼ 10
bits.

7.2 Future Work

When constructing the practical time cost model of the Pump to find the optimal
reduction parameter, we found that the time cost of each Pump increases linearly
with the increase of the index of the Pump (index < d− f) in each tour of pnj-
BKZ. Currently, we are only sure that this phenomenon is caused by the early
termination condition (See the Appendix C for more detail), but we don’t know
how the early termination condition affects the time cost of the pump, and we
plan to find out the reason in the future.

A good insertion in Pump could decrease the time cost and increase the
quality of basis, the insert function in the Pump in the G6K is Heuristic. So we
plan to study the insert function and try to design a more fittable function in
our future work.

In addition, we noticed that when using G6K to solve the high-dimension
lattice challenge, the program often displays a saturation warning. We don’t
know what causes this warning, however, in most cases, it may result in longer
time overhead and we plan to solve this problem.

Besides, we give a new security estimation of the hardness of LWE in the
NIST schemes by considering the influence of our optimized blocksize and jump
selection and two-step mode strategy. We plan to give details of our new security
estimation of NIST schemes in future work.

Although the EnumBS could obtain the optimal blocksize and jump strategy,
its theoretical complexity is exponential. In future work, we hope to accelerate
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the speed of generating the optimal blocksize and jump strategy for estimating
the security of lattice-based schemes by improving the efficiency of EnumBS.
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A Pump Simulator

To simulate the default G6K mode in the high dimension, we should use a Pump
Simulator to simulate the change of the lattice basis. Our Pump simulator is designed
under the assumption of HKZ, which means that the Gram-Schmidt lengths after
Pump obeys HKZ assumption. We have compared the Gram-Schmidt lengths after
Pump with the simulated one, and find out that the square error between them is close
to 0. It shows that the Pump simulator is accurate while it takes dimension-for-free
value as f = d ln(4/3)

ln(d/2π)
mentioned in section 2.4. Figure 5 shows the pump simulation

result and the pseudo code is as Alg.9.

Fig. 5. Pump Simulation

B More experimental details about pnj-BKZ simulator

Here we give more verification experiments of our pnj-BKZ simulator, reducing (n =
70, α = 0.005) LWE challenge lattice basis by pnj-BKZ with reduction parameter:
(β = 95, J = 9) and (β = 100, J = 12) respectively, ♯tours ∈ [1, · · · , 10]. Here under
the same reduction parameters, we do 20 times experiments. Figure 4 shows that our
pnj-BKZ simulator fits well to the actual pnj-BKZ reduction result.

C Practical time cost model of pnj-BKZ and Pump

To find the optimal progressive blocksize and jump size selection strategy for solving
TU Darmstadt LWE challenges, it is necessary to construct pnj-BKZ and pump time
cost models. However, the asymptotic complexity of the sieving does not match the
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input : (l0, · · · , ld−1),d, κ, β, f .
output: A prediction for the logarithms of the Gram-Schmidt norms

l′i = ln (∥b′∗
i ∥) after Pump(κ, β, f).

1 dsieve ← β − f ;
2 for β′ ← dsieve to d do
3 if β′ < 40 then
4 f ′ ← 0;
5 else
6 f ′ ← β′ ln 4/3

ln(β′/2π)
;

7 if β′ − f ′ ≥ dsieve then
8 β ← β′; break;

9 for i← 0 to 44 do
10 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

11 for i← 45 to β do
12 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

13 for k ← 0 to d− β − 1 do
14 l′k ← lk;
15 flag ← True; //flag to store whether L[k,d] has changed
16 for k ← d− β to d− 46 do
17 β′ ← d− k; h← d; ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

18 if flag = True then
19 if ln (V) /β′ + cβ′ < lk then
20 l′k ← ln (V) /β′ + cβ′ ; flag ← false;
21 else
22 l′k ← ln (V) /β′ + cβ′ ;

23 ln (V)←
∑h

i=1 li −
∑k−1

i=1 l′i;
24 for k ← d− 45 to d− 1 do
25 l′k ←

ln(V)
45

+ rk+45−d;
26 for k ← 0 to d− 1 do
27 lk ← l′k;
28 return l0, · · · , ld−1;

Algorithm 9: Pump Simulator
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(a) β = 95, jump = 9, ♯tours = 10

(b) β = 95, jump = 12, ♯tours = 10

Fig. 6. Prediction effect of pnj-BKZ simulator. To verify the effectiveness of our pnj-
BKZ simulator, we perform the following experiments, reducing (n = 70, α = 0.005)
LWE challenge lattice basis by pnj-BKZ with reduction parameter: blocksize β =
95, jump size J ∈ [1, · · · , 16], ♯tours ∈ [1, · · · , 10]. Here under the same reduction
parameters, we do 20 times experiments to obtain the average length of Gram-Schmidt
vector. 36



(a) Jump=9

(b) Jump=12

Fig. 7. ratio l
′′
i

Sim(l
′′
i )

, β = 95. Run 10 tours (β = 95, J = 9 and β = 95, J = 12 respec-
tively) of pnj-BKZ reduction on a lattice basis, and record the output of Gram-Schmidt
vector lengths each tour. For each pnj-BKZ reduction parameter, we did experiments
20 times to obtain the average length of Gram-Schmidt vector.
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actual cost well in the low-dimensional case3 ( dimension ≤ 128). The multithread-
ing technology used in Pump will balance part of the time cost increases when the
dimension of sieving increases. Therefore, we construct a practical time cost model by
using the experimental method to test the running time of the Pump on a different
lattice basis for finding the optimal reduction parameters of solving TU Darmstadt
LWE challenges.

Here we need to point out that although the time-cost model based on the results
of experiments can well fit the actual cost of running pnj-BKZ, using testing machines
with different configurations will inevitably lead to changes in the time-cost model in
low-dimensional cases. Therefore, we only use this experimentally constructed time-
cost model when looking for the optimal progressive blocksize and jump size selection
strategy for solving LWE challenges.

Besides, when we construct the actual time cost model by testing the time cost of
pnj-BKZ on the specific machine, we find that each Pump in pnj-BKZ takes a different
time cost as the figure 8(a) shown. Especially, the Pump cost increases under the
incremental index smaller than d−β+f and decreases after d−β+f indices. It infers
that for a fixed blocksize β, the average Pump cost in pnj-BKZ will increase with the
growth of dimension d.

We can regard Tpump as a computational cost model of the (β − f)-dimensional
progressive sieve, i.e.

Tpump(β) =

β∑
j=β0

Tsieve(j) =

β−f∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(β−f−β0)

)
≤ 2cβ0 · 2

c(β−f+1)+o(β−f+1)

1− 2c
= O

(
2c(β−f)

)
≈ 2c(β−f)+c1 ,

(10)

where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30, and in
G6K-GPU, it is set to 50), c and c1 are the coefficients of the full sieve cost related to
sieve dimension, Tsieve(j) is the sieve cost with dimension j in dim-for-free.

However, we find that the asymptotic complexity of the sieving does not match
the actual cost well in the low-dimensional case. While dimension is low, the number
of threads used in Pump increases with the dimension, which balance out part of the
time cost increase. So in low dimension, c might be much lower than the theoretical
result.

In order to accurately predict the unknown coefficients c and c1 in the computa-
tional cost model, we use the experimental method to test the running time of Pump
on different lattice basis corresponding to different TU Darmstadt LWE challenges and
with different blocksizes β. The experimental results show that our computational cost
model above can fit well with the actual cost of Pump.

Take (β − f) as the independent variable, where f selected from equation (3)
in section 2.4(Sieving Algorithms and Pump in G6K) of our main body. log2 T is
obtained from the experimental test as the dependent variable, and we use the least
squares fitting to find c and c1. We use R2 to denote the coefficient of determination (R
squared) value above linear regression model. The coefficient of determination (R2 or R
squared) is a statistical measure in a regression model that determines the proportion of
variance in the dependent variable that can be explained by the independent variable.

3 While dimension exceeds 128, the time cost for pump and pnj-bkz fits the theoretical
value well, we can directly use the time cost model of trple_gpu sieve declared in [24].
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(a) Cost for each Pump under different index in pnj-BKZ-100 with one tour

(b) Average Pump cost in pnj-BKZ-β grows linearly with d

Fig. 8. Pump cost under different indices in pnj-BKZ and average Pump costs in pnj-
BKZ with change of d using Machine C.

39



(a) log2 Tpump: Test Pump independently.

(b) log2 Tpump: Average Pump Cost in pnj-BKZ.

Fig. 9. Pump and pnj-BKZ Cost Figure while d = 180, Pump Oracle = gpu_sieve,
using Machine C: average Tpump in pnj-BKZ is lower than Tpump test directly, since
in pnj-BKZ, the Tpump cost distributes uneven. The different functions from β − f to
log2 Tpump result from the saturation of threads in CPU/GPU.
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Generally, the range of R2 is [0, 1] and when R2 closer is to 1, the better the model fits
the data.

From Figure 9(a), we can see that R2 is close to 1. It means that the fitting effect
is good. Figure 9(a) also shows that the logarithm of the computational cost of Pump
is linearly correlated to β− f , where f is selected from dim4free function mentioned in
equation (3) in section 2.4(Sieving Algorithms and Pump in G6K) of our main body.

Pnj-BKZ consists of a series of Pumps. If we regard pnj-BKZ as a combination of
Pumps with equal cost, the computational cost of pnj-BKZ can be calculated by the
sum cost of d+2f−β

J
progressive sieves on the (β − f)-dimension projection sublattice

with J = jump. However, as the figure 8(a) shows, each Pump in pnj-BKZ takes a
different cost. Especially, the Pump cost increases under the incremental index smaller
than d− β+ f and decreases after d− β+ f indices. It infers that for a fixed blocksize
β, the average Pump cost in pnj-BKZ will increase with the growth of dimension d. As
Figure 8(b) shown, we have tested on 5 fixed blocksizes and proven that the average
Pump cost in pnj-BKZ grows linearly with d.

We suggest that the average Tpump in pnj-BKZ is linear in d when d is small, and
independent with d when d is large. Combining the functions among Tpump, blocksize
β and dimension d, we can get the average Pump cost equation as

Tpump = min
{
2c(β−f)+c1 · (c2 · d+ c3) , 2

c′(β−f)+c′1
}

(11)

where 2c·(β−f)+c1 is the Pump cost related to blocksize β and f satifsies the equation
(3) in section 2.4(Sieving Algorithms and Pump in G6K) of our main body. For a
lattice with dimension d = 180, the average Pump cost in pnj-BKZ can be simulated
as Figure 9(b) and c2 and c3 can be computed by Figure 8(b) shown.

We believe that the relationship between average Tpump in pnj-BKZ and d is affected
by the early termination condition in the implementation of sieving algorithms in
Pump, where the algorithm stops when enough short vectors are generated. And we
conducted the following experiments to verify our suspect.

We know that the key parameter controlling the early termination condition is the
size of saturation ratio (saturation ratio is set to 0.5 by default in G6K). Therefore, we
test the time cost of the pump on each projection sub-lattice under different saturation
ratio. In order to remove the possible impact of the lift operation in the d4f technology,
we set both d4f and fextra to 0 in Figure 10(a). From Figure a we can see that the
phenomenon that the pump time cost increases with the increase of the initial index
of the projected sub-lattice is no longer obvious when saturation ratio is set to 1. In
other words, when the early termination condition is removed, the time cost of the
pump increasing phenomenon will disappear. In fact even if the d4f technique is used,
as long as the early termination condition is removed, the the time cost of the pump
increasing phenomenon will disappear. See Figures 10(b) and 10(c) for details.

If d is large enough, we suppose that the algorithm stops only when all vectors
are reduced, then the time cost of the Pump will achieve the theoretical complexity,
so the average Pump cost with the growth of d will also achieve an upper bound
T

(max)
pnj−BKZ = 2c

′(β−f)+c′1 . However, we are currently not able to calculate the exact
value of c′ and c′1. Besides, We believe that the reason for the gradual decrease in
pump cost corresponding to the last d − β + f is the gradual decreasing dimension
sieving in these pumps.
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(a) d = 180, β = 80, d4f = 0, fextra = 0.

(b) saturation ratio=3.0, d = 180, β = 100, d4f = 19,
fextra = 0.

(c) saturation ratio=1.0 d = 180, β = 100, d4f = 19, fextra =
12.

Fig. 10. The influence of early termination condition.
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D Choosing the number of LWE Samples

BKZ-only mode is the mainstream method for estimating the security of an LWE-
based crytosystem at current. It uses Kannan’s Embedding technique to reduce the
LWE problem to the uSVPγ problem and uses the GSA assumption to simulate the
change after a BKZ-β reduction. Its evaluation method was firstly proposed by Erdem
Alkim et al.. in [36] and has been proved the correctness in [41], which has both given
a lower bound of LWE samples and a blocksize β. We rename it ”2016 Estimation from
GSA for LWE” (refer to as 2016 Estimate).

In order to solve the LWE problem, the first thing we need to do is to determine
the number of LWE instances to construct the lattice basis described in the primal
attack. The strategy to select the number of LWE instances in 2016 Estimate is to find
the number of LWE instances m so that the following inequality holds and the value
of β is minimal. Let d = m+ 1, n be the dimension of LWE instance, then

min
β∈N

{
Tbkz(β) : σ

√
β ≤ δ (β)2β−d−1 · q

d−n−1
d

}
. (12)

The strategy in 2016 Estimate is to find m so that the LWE problem can be solved
with the least time cost when using a fixed blocksize of BKZ-β algorithm to solve it.

In G6K, its estimation method simulates a two-stage strategy. Their main differ-
ence from ours is that its two-stage strategy contains two tours of pnj-BKZ with a
fixed blocksize β simulated from GSA assumption and a progressive sieve algorithm
in dimension dsvp. It simulates the above scenario and try to find the minimal cost of
(β, dsvp) from

min
β,dsvp∈N

{
2 · Tbkz(β) + PSC(dsvp) : ∥πd−dsvp(v)∥ ≤ GH(Lπ[d−dsvp])

}
, (13)

where c = 0.349 in G6K-CPU and c = 0.292 in G6K-GPU.
Our strategy for solving the LWE problem is also simulating a two-stage strategy.

In the first stage, it will call the pnj-BKZ simulator to simulate the basis after a series of
pnj-BKZ. In the second stage, it tries to find the approximate shortest vector by Pump.
Based on the estimation scheme in the default G6K described above, we modify the time
cost of two pnj-BKZs and a progressive sieve to the time cost of serial pnj-BKZs follow-
ing the blocksize strategy and a progressive sieve. Besides, we use the new Pump esti-
mation scheme (as described in Algorithm: Pump estimation in LWE) to simulate the

norm of the target vector. Let P (dsvp) = Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (GH
(
Lπ[d−dsvp:d]

))2]
.

Thus, the inequality becomes

min
β,dsvp∈N

{TpnjBKZs (B) + PSC (dsvp) : P (dsvp) ≥ Psuccess} , (14)

where δ is the basis quality after pnj-BKZs. TpnjBKZs (B) will respectively call
BSSA and EnumBS to calculate the corresponding computational cost. To minimize
the number of attempts, we narrow the range of m to [m0 − τ,m0 + τ ], where m0 is
the number of samples chosen in the estimation of default G6K and set a maximum
search field range τ . We use a dichotomization to find an m with minimal β and dsvp
satisfying the inequality (14). Furthermore, the concrete process is as the Algorithm
10.

Using the optimization strategy for LWE instance number selection, we can solve
challenges faster than G6K default strategy. See the table 8.
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input: n, q, α, mall, βbound, d(svp)bound, τ , Amall×n , bmall×1;
output: Smin, Tmin, m;

1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (13);
3 mmax,mmin ←

max {m satisfies equation (13)} ,min {m satisfies equation (13)};
4 while τ ̸= 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
;

6 Smin, Tmin ← EnumBS(rr(B), m0 + 1, σ2m0 + 1, J);
7 m1 ← m0;
8 for m ∈ {max{n,m0 − τ},min{mall,m0 + τ}} do
9 if m ≥ mmin and m ≤ mmax then

10 d← m+ 1, M ← σ2m+ 1;
11 Construct B by

(
Am×n,bm×1, q

)
;

12 S, Ttotal ← EnumBS(rr(B), d, M , J);
13 if Tmin < Ttotal then
14 Smin, Tmin, m1 ← S, Ttotal, m;

15 if m1 = m0 then
16 τ ← ⌊ τ

2
⌋;

17 m0 ← m1;
18 return Smin, Tmin, m0;

Algorithm 10: Our LWE Samples Selection Algorithm

Table 8. LWE samples improvement simulated result with jump = 1.

(n,α) G6K’s m Our m Costnew/Costold
(50,0.025) 218 216 99.98%
(55,0.020) 229 234 98.76%
(60,0.015) 240 246 99.30%
(90,0.005) 305 312 95.11%
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