
Improved Progressive BKZ with Lattice Sieving
and a Two-Step Mode for Solving uSVP

Wenwen Xia1,⋆, Leizhang Wang1,⋆, Geng Wang2, Dawu Gu1,2, and Baocang
Wang1

1 Xidian University
{xiawenwen, lzwang_2}@stu.xidian.edu.cn

bcwang@xidian.edu.cn
2 Shanghai Jiao Tong University
{wanggxx, dwgu}@sjtu.edu.cn

Abstract. The unique Shortest Vector Problem (uSVP) is one of the
core hard problems in lattice-based cryptography. In NIST PQC stan-
dardization (Kyber, Dilithium), leaky-LWE-Estimator is used to esti-
mate the hardness of LWE-based cryptosystems by reducing LWE to
uSVP and considers the primal attack using Progressive BKZ (ProBKZ).
ProBKZ trivially increases blocksize β and lifts the shortest vector in the
final BKZ block to find the unique shortest vector in the full lattice.
In this paper, we show that a ProBKZ algorithm as above (we call it
a BKZ-only mode) is not the best way to solve uSVP. So we present
a two-step mode to solve it, where the ProBKZ algorithm is followed
by a sieving algorithm with the dimension larger than the blocksize of
BKZ. While instantiating our two-step mode with the sieving algorithm
Pump and Pump-and-jump BKZ (PnjBKZ) presented in G6K, which are
the state-of-art sieving and BKZ implementations, we show that our
algorithm is not only better than the BKZ-only mode but also better
than the heuristic uSVP solving algorithm in G6K.
However, a ProBKZ with the heuristic parameter selection in leaky-
LWE-Estimator or the optimized parameter selection in the literature
(Yoshinori Aono et al. at Asiacrypt 2016), is insufficient in optimizing
the efficiency of a two-step solving algorithm. To find the best param-
eters, we design a PnjBKZ simulator which allows the choice of value
jump to be more than 1. Based on the newly designed simulator, we give
a blocksize and jump strategy selection algorithm, which can achieve the
best simulated efficiency in solving uSVP instances. Combining all the
things above, we get a new lattice solving algorithm called Improved
Progressive PnjBKZ (ProPnjBKZ for short).
We test the efficiency of our ProPnjBKZ with the TU Darmstadt LWE
Challenge. The experiment result shows that our ProPnjBKZ is 7.6∼12.9
times more efficient than the heuristic uSVP solving algorithm in G6K.
Besides, we break the TU Darmstadt LWE Challenges with (n, α) ∈
{(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}.
Finally, we give a newly refined security estimator of LWE. The evalua-
tion results indicate that the concrete hardness of the lattice-based NIST

⋆ Wenwen Xia and Leizhang Wang are the co-first authors of this work.

candidate schemes from LWE primal attack will decrease by 1.9∼4.2 bits
when using our optimized blocksize and jump selection strategy and two-
step solving mode. In addition, when using the list-decoding technology
proposed by MATZOV in 2022, it further decreased by 8∼10.7 bits.

Keywords: cryptanalysis· lattice reduction· uSVP· progressive BKZ·
PnjBKZ Simulator· optimized blocksize and jump strategy selection.

1 Introduction

To date, many post-quantum cryptosystems are lattice-based, e.g. Dilithium
[1], Kyber [2] which have been accepted as NIST standards. Lattice-based struc-
tures appear to be immune from both classical and quantum attacks. As a result,
many lattice-based constructions are considered secure, assuming that certain
well-studied computational lattice problems cannot be solved in polynomial time.
A large fraction of lattice-based cryptographic mechanisms are built upon the
LWE problem [3] and its variants [2–5]. One of the best-known cryptanalytic
techniques against these problems is primal attack [6], which is widely used in
cryptanalysis of lattice-based cryptosystems. The primal attack solves the LWE
problem by reducing it to the unique Shortest Vector Problem (uSVPγ). Given
a lattice L such that λ2(L) > γλ1(L), the goal of uSVPγ is to find the unique
lattice vector v ∈ L with length λ1(L), which can be viewed as a variant of the
approximate Shortest Vector Problem (SVPγ) and solved through lattice reduc-
tion. Inputting an initial lattice basis, the lattice reduction algorithm outputs
nearly orthogonal and short lattice vectors.

In recent years, substantial improvements have been made in lattice reduc-
tion algorithms. In 1982, the first polynomial-time lattice reduction algorithm
named LLL [7] was proposed to solve SVPγ with an exponential approximate
factor γ. To solve the problem with a smaller approximate factor, Schnorr and
Euchner [8] presented Block Korkin-Zolotarev reduction (BKZ), which is consid-
ered as a combination of the LLL algorithm and the enumeration algorithm to
balance the algorithm’s time consumption and the success probability using a
parameter β called blocksize. In the literature, many cryptanalysts improved the
BKZ algorithm, e.g. the extreme pruning technique [9] to speed up enumeration,
BKZ 2.0 [10] based on [9], approximate enumeration oracle [11], and parameters
optimization in BKZ such as Improved Progressive BKZ (ProBKZ) [12].

However, solving uSVPγ is not exactly the same as solving SVPγ . In [13],
the authors gave a successful condition for the BKZ algorithm in solving uSVPγ

which is verified by the experiments results of [14]. By the claim of [13, 14],
the unique shortest vector is recovered by first finding the shortest vector in
a projected sublattice and lifting it into the full lattice, which means that the
reduced lattice basis is not the only requirement in solving uSVPγ . A natural
question arises as to whether there exists a better algorithm for solving uSVPγ

than using only lattice-reduction algorithms such as BKZ.
General Sieve Kernel (G6K). In 2019, Albrecht et al. [15] designed the

General Sieve Kernel (G6K), implemented the progressive sieving algorithm

2

named Pump which can selectively call the Gauss sieve [16, 17], NV sieve [18],
k-list sieve [19,20] or BGJ1 sieve [21]. Pump is a generic design based on sieving
algorithms using the progressive sieve introduced in [22] (Similar ideas are also
independently proposed in [23]) with dimension-for-free (d4f) technique [23],
which makes the sieving process more efficient and allows a higher solving rate.
Ducas et al. [24] improved the efficiency of G6K using GPU and implemented
the fastest sieving algorithm BDGL16 [25] in both G6K and G6K-GPU-Tensor.

In addition to sieving algorithms, a new version of BKZ named Pump-and-
jump BKZ (PnjBKZ) is also implemented in G6K. Unlike classical BKZ using an
enumeration algorithm as its SVP oracle, PnjBKZ adopts Pump as its SVP oracle
with a selective parameter jump. The jump value controls the jump stage of blocks
in BKZ with the sieve oracle, which can jump by more than one dimension.

Solving uSVPγ in G6K. G6K provides an algorithm for solving LWE
using primal attack which translates LWE to an uSVPγ , and this LWE solving
algorithm is a combination of PnjBKZ and Pump. The main idea is that each
time after running a PnjBKZ-β tour with a large enough blocksize β, a Pump on a
projected sublattice with similar running time (which means that the dimension
of projected sublattice is slightly larger than β) is inserted into the PnjBKZ
procedure. It then lifts the shortest vector in the projected sublattice onto the
full lattice and checks whether it is the unique shortest vector.

It was shown by experiments that the new strategy of inserting Pump into Pn-
jBKZ can improve the success rate in solving uSVPγ and LWE significantly. For
the default parameter selection in G6K, it solves TU Darmstadt LWE Challenges
400 times faster than the previous records for comparable instances.

However, we show that the default mode in G6K still has a weakness, as the
inserted Pump is not guaranteed to find the unique shortest vector. If the Pump
failed, the G6K returns to the PnjBKZ procedure to further reduce the lattice
basis. But since a large dimensional Pump is very inefficient for lattice basis
reduction, the running time of a failed Pump is mostly wasted. The problem can
be solved by giving an estimation of the success rate of the inserted Pump on a
well-reduced lattice basis. To solve this problem we rely on a BKZ simulator with
high accuracy to simulate the quality of lattice basis after PnjBKZ procedure.

BKZ Simulator. A BKZ simulator is used to predict the practical behavior
of a BKZ algorithm (when β ≥45), which is important in optimizing the parame-
ter selection in BKZ. Based on the Gaussian heuristic, Chen and Nguyen refined
the sandpile model from [26] and provided a BKZ simulator in BKZ 2.0 [10].
Using the properties that the last β vectors in BKZ-β reduced basis satisfy HKZ
reduction and Gaussian Heuristic, [12] proposed a simulator for predicting BKZ-
β fully reduced basis. Since the BKZ 2.0 simulator could not accurately predict
the head concavity phenomenon after multiple tours of BKZ-β, Bai et al. [27]
considered the norm of the shortest vector as a random variable rather than a
fixed value, and brought randomness into the BKZ 2.0 simulator. The new sim-
ulator [27] can effectively predict and explain the phenomenon of head concavity
of lattice basis reduced by BKZ. However, as above simulators did not consider
the case of jump>1, so they cannot be directly used for PnjBKZ simulation.

3

Based on the BKZ simulator, in 2016, Aono et al. presented improved pro-
gressive BKZ (ProBKZ) [12]. For solving SVPγ , ProBKZ calls a series of BKZ
tours with different blocksizes to find the approximate shortest vector. One of
the main contributions of their work is a blocksize strategy selection algorithm
to generate the different blocksizes to be used in the BKZ reduction, which
uses the shortest path algorithm to solve an optimized blocksize strategy by set-
ting multiple different middle reduction qualities as the inner nodes. By using
the blocksize strategy selection algorithm along with pre-processing and post-
processing procedures, their ProBKZ runs faster than BKZ 2.0 which has a fixed
blocksize. However, ProBKZ only considers enumeration as its subroutine, with-
out using the more efficient lattice sieving algorithm. Besides, in this paper, we
shall show that their method is not supposed to generate an optimal blocksize
strategy, and still has room for improvement.

LWE Estimation. In addition to solving specific lattice hard problems,
security estimation of lattice-based cryptography schemes is also one of the im-
portant applications of the BKZ algorithm. In 2022, three over four PQC candi-
dates selected by NIST are lattice-based schemes [28]. In their documentations,
they use leaky-LWE-Estimator to give refined security estimations that consider
recent progress in lattice-based cryptanalysis compared with the conservative
core-SVP model. Specifically, the leaky-LWE-Estimator first uses the estimator
in [29] to calculate the expected value of BKZ blocksize of solving LWE. Then,
it considers the influence of dimension-for-free technology [23] to calculate the
total number of logic circuit gates needed to solve LWE by calling the gate-
count algorithm proposed in [30]. However, in this paper, we show that their
model will lead to an over-optimistic estimation. To ensure the security of these
lattice-based PQC candidate schemes, it is necessary to evaluate the impact of
our optimized blocksize and jump selection strategy and the two-step solving
mode on the security of these lattice-based schemes.

Contribution. In this work, we formally define a two-step mode of solving
uSVPγ , which is divided into a reduction step and a searching step. The same
idea has been proposed in [12] for solving SVPγ with small approximate factor
γ = 1.05, but it was not known previously to be applicable for uSVPγ or LWE.

In particular, we prove that the two-step mode of solving uSVPγ is more effi-
cient than that of using BKZ reduction only. Besides, to increase the efficiency of
the reduction step, we propose a blocksize and jump strategy selection algorithm
to replace the trivial progressive reduction strategy in [31]. Our two-step mode of
solving uSVPγ and the optimal blocksize and jump strategy selection algorithm
mainly relies on the accurate time cost models and simulating algorithms for
PnjBKZ and Pump. More specifically:

- We propose a new two-step mode for solving uSVPγ by simulating algo-
rithms. We modify the default mode in G6K to a two-step mode, which firstly
calls a series of PnjBKZs following a blocksize selection strategy to reduce the
basis and then uses a Pump algorithm to search the unique shortest vector. Com-
pared to the G6K’s default strategy, we can efficiently save time cost of improv-
ing the quality of lattice basis through the new blocksize and jump strategies.

4

Besides, we avoid wasting time due to failed Pumps in G6K’s default strategy by
a high solving probability Pump which executes only once. Eventually, we signif-
icantly improve the efficiency of solving uSVPγ and it becomes faster than that
of G6K’s default strategy through the improvement during these two steps. We
are not only the first who give a two-step lattice solving algorithm for BKZ with
lattice sieving, but also the first who give a theoretical analysis on the parameter
selection of a two-step mode based on a BKZ simulator.

- We construct a new simulator to simulate the PnjBKZ reduction, especially
in the case of jump > 1, and give a new Pump estimation algorithm for determin-
ing the dimension in Pump when solving LWE problem. Furthermore, we design
a new simulator to simulate the quality of lattice basis after Pump. Both our
PnjBKZ simulator and Pump simulator are verified experimentally.

- Based on the simulating algorithms and two-step mode, to improve the
efficiency of the reduction step, we give two new reduction strategy generation
algorithms, which generate the blocksize and jump strategy and the suitable
sieving dimension for Pump to minimize the expected cost of solving uSVPγ .
The code for strategy selection algorithms for solving LWE is available in the
github1. We borrow the same shortest path algorithm as in ProBKZ to design
our first algorithm called blocksize strategy selection algorithm based on ProBKZ
(BSSA) by replacing the BKZ and enumeration algorithm with PnjBKZ and
Pump respectively. However, we find that the strategy generated by BSSA has
room for improvement. To obtain a reduction strategy to minimize the simu-
lated cost for ProPnjBKZ, we design a new strategy selection algorithm named
blocksize strategy enumeration (EnumBS). EnumBS can obtain a better block-
size and jump selection strategy at a higher theoretical complexity than BSSA
when generating, but the time is still acceptable for low-dimensional lattices.

- We test the performance of our two-step mode of solving uSVPγ based on
our blocksize and jump strategy selection algorithm. Using the blocksize strategy
chosen from EnumBS, the algorithm significantly increases the efficiency at most
12.9 times (at least 7.6 times) in solving the TU Darmstadt LWE Challenges
compared with that of the default LWE solver in G6K shown in Table 4 in Sec.
6.2. We have uploaded the executable code of our ProPnjBKZ2 in the github.
Besides, we cracked the TU Darmstadt LWE Challenges3 (n, α) ∈ {(40, 0.035),
(90, 0.005), (50, 0.025), (55, 0.020), (40, 0.040)} for the first time.

- Based on the leaky-LWE-Estimator, our optimized blocksize and jump selec-
tion strategy, and the two-step solving mode, we propose a newly refined security
estimator for estimating the concrete hardness of LWE1. Meanwhile, evaluation
results in Table 7 in Sec. 6.4 indicate that compared with the estimation in [28],
by considering our optimized blocksize and jump selection strategy, and the two-
step solving mode to attack, the concrete hardness of these lattice-based NIST
PQC candidates under primal attack for LWE will decrease by 1.9∼4.2 bits
(8.0∼10.7 bits if using list-decoding skill [32] shown in Table 11 in Appendix G).

1 https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
2 https://github.com/Summwer/pro-pnj-bkz
3 https://www.latticechallenge.org/lwe_challenge/challenge.php

5

https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
https://github.com/Summwer/pro-pnj-bkz
https://www.latticechallenge.org/lwe_challenge/challenge.php

Organization. The paper is organized as follows. Sec. 2 presents the basic
notations and preliminaries. Sec. 3 gives a sketch of ProPnjBKZ. Sec. 4 design
a PnjBKZ simulator and a Pump sieving dimension estimator for simulation. We
give an detailed description on our two blocksize strategy selection algorithms
in Sec. 5. Besides, we compare their costs on solving LWE instances in Sec. 6.
Meanwhile, Sec. 6 also gives a new refined security estimation of NIST PQC
schemes also shown. Finally, we give conclusion and further work in Sec. 7.
2 Preliminaries

2.1 Notations and Basic Definitions

We write a matrix B as B = (b0, · · · ,bd−1) where bi is the (i + 1)-th col-
umn vector of B. The Euclidean norm of a vector v is denoted by ∥v∥. If
B ∈ Rd×d has full rank d, the lattice L generated by the basis B is denoted
by L(B) = {Bx|x ∈ Zd}. We denote B∗ = (b∗0, . . . ,b

∗
d−1) as the Gram-Schmidt

orthogonalization of B, in which b∗i = bi −
∑i−1

j=0 µi,jb
∗
j , µi,j = ⟨bi,b

∗
j ⟩
/
∥b∗j∥2,

for i ∈ {0, · · · , d−1}. Let the orthogonal projection to the span of (b0, · · · ,bi−1)

be πi, i.e. ∀v, πi(v) = v −
∑i−1

j=0 ωjb
∗
j , where ωj = ⟨v,b∗j ⟩

/
∥b∗j∥2. For i, j ∈

Zd and 0 ≤ i < j ≤ d − 1, given an arbitrary d-dimensional vector v =
(v0, · · · , vd−1), define v[i:j] as (vi, · · · , vj−1) with a size j − i. For a lattice basis
B, let B[i:j] ← (bi, · · · ,bj−1). Moreover, we denote Bπ[i:j] by the local projected
block (πi(bi), · · · , πi(bj−1)), and call Lπ[i:j] the lattice generated by Bπ[i:j]. We
use Bπ[i] and Lπ[i] as shorthands for Bπ[i:d] and Lπ[i:d]. The volume of a lattice
L(B) is Vol(L(B)) =

∏d−1
i=0 ∥b∗i ∥, an invariant of the lattice. The first minimum of

a lattice L(B) is the length of the shortest non-zero vector, denoted by λ1(L(B)).
We use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

Notations for algorithms description. Let BKZ-β/PnjBKZ-(β, J) be an
abbreviation of a one-tour BKZ/PnjBKZ with blocksize β and jump value J .
Assume B = (b0, · · · ,bd−1), its Gram-Schmidt basis is B∗ = (b∗0, · · · ,b∗d−1).
Denote li by the logarithm of Gram-Schmidt norm, i.e. li = ln(∥b∗i ∥), for i ∈
{0, · · · , d− 1}. Let rr(B) = (l0, · · · , ld−1), abbreviate to rr, rr[i:j] = (li, · · · , lj−1).

Denote BKZSim by the BKZ simulator proposed in [10]. The simulation for
PnjBKZ is denoted as PnjBKZSim(rr(B(rr), β, J, t), which simulates a PnjBKZ-
(β, J) with t tours on the lengths rr and return the new lengths. Moreover, if
we have a blocksize and jump strategy S that stores a series of (βi, Ji), then
PnjBKZSim(rr, S) means iteratively calling a tour of PnjBKZ-(βi, Ji) simulator
on rr, where (βi, Ji) ∈ S. Assume the input basis is B, and the basis B reaches
a basis quality after calling sufficient tours of BKZ-β. To simplify the above
step, we use β to imply the quality of a BKZ-β reduced basis. Let ♯tours(BKZ-
β)/♯tours(PnjBKZ-(β, J)) be the minimum tours for BKZ-β/PnjBKZ-(β, J) to
reach a BKZ-β/PnjBKZ-(β, J) reduced basis, abbreviated as ♯tours. Denote t as
the number of tours for implementing BKZ/PnjBKZ with a fixed blocksize β.

Let TBKZ(β)/TPnjBKZ(β, J) be the time cost of one-tour BKZ/PnjBKZ with
blocksize β and jump value J . Let TPnjBKZs(S) be the total time cost for a series

6

of PnjBKZ with a specific reduction strategy S={(β0, J0), · · · , (βn−1, Jn−1)},
abbreviate it as TPnjBKZs. Denote TPump(dsvp) as the time cost of Pump with
dsvp sieving dimension, abbreviate it as TPump. Let PSC be the expected Pump
cost to find the target vector, which will be explained in the Sec. 4.2.
Definition 1. (The Gaussian Distribution [33]) Let σ, u ∈ R be the standard de-
viation and the mean value respectively, a continuous Gaussian Distribution de-
noted as N(u, σ2). Its probabilistic density function ρN(u,σ2) = e−

(x−u)2

2σ2
/
σ
√
2π.

Definition 2. (Chi-Squared Distribution [33]) Given n random variables Xi ∼
N(0, 1), the random variables X2

0 + · · · + X2
n−1 follows a chi-squared distribu-

tion χ2
n over R∗ of mean n and variance 2n with probabilistic density function

ρχ2
n
(x) = x

n
2−1e−

x
2 /2

n
2 Γ (n/2). Given n random variables Yi ∼ N(0, σ2), the

random variables Y 2
0 + · · ·+Y 2

n−1 follows a scaled chi-squared distribution σ2 ·χ2
n

over R∗ of mean nσ2 and variance 2nσ2.

Heuristic 1 (Gaussian Heuristic [23]) The expected first minimum of a lattice L
(denoted as λ1(L(B))) according to the Gaussian Heuristic denoted by GH(L) is
given by λ1(L(B)) ≈ GH(L) =

(
Γ (d2 + 1) ·Vol(L)

) 1
d
/√

π ≈
√
d/(2πe) ·Vol(L) 1

d

Where Vd (1) is the volume of the d-dimensional unit sphere. We also write
GH(B) = GH(L(B)) and GH(rr[i:j]) = GH(Bπ[i:j]).

Definition 3. (HKZ reduction and BKZ reduction [23]) The basis B of a lattice
L is HKZ reduced if b∗i = λ1(L(Bπ[i:d])), for all i < d. L is BKZ-β reduced if
b∗i = λ1(L(Bπ[i:min{i+β,d}])), for all i < d.
Definition 4. (Root Hermite Factor [34]) For a basis B of d-dimensional lattice,
the root Hermite factor is defined as δ =

(
∥b0∥/Vol(B)1/d

)1/d
, for estimating

the equality of the output vector of BKZ. For larger blocksize, it follows the
asymptotic formula δ(β)2(β−1) = β

2πe (βπ)
1/β .

Heuristic 2 (Geometric Series Assumption [15]) Let B be a lattice basis after
lattice reduction, then Geometric Series Assumption states that ∥b∗i ∥ ≈ α·∥b∗i−1∥,
0 < α < 1. Combine the GSA with root-Hermite factor (Definition 4) and
V ol(L(B)) =

∏d−1
i=0 ∥b∗i ∥, it infers that α = δ−

2d
d−1 ≈ δ−2.

2.2 Lattice Hard Problems
Definition 5. (unique Shortest Vector Problem(uSVPγ) [35]) Given an arbi-
trary basis B on lattice L = L(B), L satisfies the condition γλ1(B) < λ2(B)
(γ > 1, λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v s.t. ∥v∥ = λ1(B).
Definition 6. (LWEm,n,q,Dσ

Distribution [36–38]) Given some samples m ∈ Z,
a secret vector length n ∈ Z, a modulo q ∈ Z , a probability distribution Dσ.
Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q from a

specific distribution, randomly sample a relatively small noise vector e ∈ Zm
q from

Gaussian distribution Dσ whose standard deviation is σ. The LWE distribution
Ψ is constructed by the pair (A,b = As+ e) ∈ (Zm×n

q ,Zm
q) sampled as above.

7

Definition 7. (Search LWEm,n,q,Dσ
problem [36–38]) Given a pair (A,b) sam-

pled from LWE distribution Ψ compute the pair (s, e).

2.3 G6K and G6K-GPU-Tensor

G6K [15] is an abstract machine for running sieve and reduction algorithms,
which is built on generalizing and extending the previous sieve algorithms. G6K-
GPU-Tensor as a state-of-art SVP solver improves the efficiency of G6K by GPU
implementations, and holds many records in TU Darmstadt SVP Challenges.

2.4 Sieving Algorithms and technologies in G6K

Sieving Algorithms The first practical NV sieving algorithm uses a database
of N0 ≈ 20.2075d+o(d) vectors and runs in time N2

0 ≈ 20.415d+o(d) by repeatedly
checking all pairs v ± w [18]. To find the shortest vector, N0 is the minimal
number of vectors to ensure saturating the ball of radius GH(L)

√
4/3 by short

vector. In a line of works [21, 25, 39, 40] the time complexity was gradually de-
creased to 20.292d+o(d) by nearest neighbour searching techniques.

Progressive Sieve Progressive sieve [23] can save the cost of classical sieve. It
realized by a right-to-left operation which first calls a sieve on a small dimension
projected lattice, then uses Babai’s nearest plane algorithm [41] to recover the
vector to a higher dimension projected lattice. Repeat such step until recover
the short vectors onto a full dimensional lattice.

Dimension for Free (d4f) Technique D4f technology [23] can bring sub-
exponential time speedup and memory decreasing for sieve algorithms. [23] has
given two theoretical d4f estimations for solving β-dimension SVP as d4f(β) =
β ln(4/3)/ ln(β/2π) and d4f(β) = β ln(4/3)/ ln(β/2πe), while in the implementa-
tion of G6K [15], it gives a more relaxed bound d4f(β) : when β < 40, d4f(β) = 0;
when 40 ≤ β ≤ 75, d4f(β) = ⌊β−40/2⌋; when β > 75, d4f(β) = ⌊11.5+0.075β⌋.

Pump in G6K Albrecht et al. proposed Pump algorithm in [15], which is im-
proved based on Progressive Sieve [22] with d4f technique [23] and the insertion
tricks in [15]. There are four input parameters for Pump algorithm: lattice basis
B, left insertion bound κ, insertion upper bound dsvp and d4f value d4f(dsvp).
Here κ+ dsvp = d and the upper bound of sieve dimension is dsvp − d4f(dsvp).

Slope in G6K To measure the quality of lattice basis [15] use the averaged
quality measurement. It is the least squares fit coefficient of the slope of log∥b∗i ∥,
which means that the slope closer to 0, the better basis quality.

8

2.5 PnjBKZ in G6K

PnjBKZ is a BKZ-type reduction algorithm that uses Pump as its SVP oracle.
Unlike classical BKZ, PnjBKZ performs the SVP oracle with an adjustable jump
no less than 1. Specifically, runing a PnjBKZ with blocksize β and jump=J , after
executing the SVP oracle on a certain block B[i:i+β], the next SVP oracle will be
executed on theB[i+J:i+β+J] block with a jump count J rather thanB[i+1:i+β+1].

3 ProPnjBKZ in Two-step mode for solving uSVPγ

In this section, we firstly give a comparison among BKZ-only mode, the default
mode in G6K and two-step mode (Fig. 1) to explain the benefit of two-step mode
in Sec. 3.1. Then, we give a sketch of ProPnjBKZ in Sec. 3.2, where we use the
two-step mode with a strategy selection method for solving uSVPγ .

3.1 Comparison of uSVPγ solving Mode

In this part, we introduce BKZ-only Mode and Default Mode in G6K for solving
the uSVPγ in the literature and compare them with our two-step mode. We also
give an experiment to prove the comparison result.

BKZ-only Mode. BKZ-only mode [13, 34] (Fig. 1(a)) implements multiple
tours of BKZ-β/PnjBKZ-(β, J = 1) whose blocksize is fixed until solving the
uSVPγ problem. The BKZ-only mode is the mainstream method in the security
estimation of LWE-based cryptosystems, such as in [29].

Default uSVPγ solving Mode in G6K G6K [15,24] solve the LWE problem
by primal attack, i.e. reduce LWE to the uSVPγ and solve it by calling progres-
sive PnjBKZ and a conditional Pump (The algorithm calls Pump only if the esti-
mated time cost of Pump is shorter than an upper bound computed) repeatedly.
We can extract a uSVPγ solving mode from their implement lwe_challenge.py
and name it as the Default uSVPγ solving Mode in G6K (Fig. 1(b)).

In the default uSVPγ solving mode of G6K, it will reduce the basis by a
specific blocksize strategy S0

4. After each lattice reduction by PnjBKZ-(β, J =
1), β ∈ S0, the default uSVPγ solving mode will record the time cost of the
reduction process and determine whether a Pump will finish in the same cost. If
it does, it will call a Pump; If not, it will skip to the next PnjBKZ-(β, J = 1).

The benefit of the default uSVPγ solving mode in G6K is that if we do
not have an accurate simulator for BKZ/PnjBKZ and we are not sure of the
solvability by a final Pump calling, then a Default uSVPγ solving Mode in G6K
will make sure in outputting the required result in a reasonable time. However,
without a simulator, it will sometimes enter a Pump with solving failure and waste
processing time heavily since a Pump call is costly. Here a failed Pump means that
4 S0 = list(range(10, 50)) + [b− 20, b− 17] + list(range(b− 14, b + 25, 2)).

9

the dimension setting of the sieving in the Pump is over-optimistic, which makes
the Pump fail to find the target vector. Besides, it might enter a Pump late and
waste the processing time of extra cost for several PnjBKZs with large blocksizes.

(a) BKZ-only (b) Default Mode in G6K (c) Two-step

Fig. 1. Different mode to solve the uSVPγ Problem: (a) BKZ-only Mode; (b) Default
uSVPγ Solving Mode ing G6K; (c) Two-step Mode.

Two-step Mode The two-step mode (Fig. 1(c)) was first informally stated
in [12], in the term called “lattice-based attack” for solving exact SVP (γ = 1.05),
which calls a series of BKZ first for lattice reduction and calls an enumeration
algorithm to find the shortest vector at last (called point search). However, their
algorithm is not known to be applicable for uSVPγ .

In this paper, we show that a two-step mode adapted to PnjBKZ and Pump
is more efficient in solving uSVPγ . Our algorithm calls a series of PnjBKZ for
reduction first and at a good timing uses a Pump algorithm to search the unique
shortest vector. By our PnjBKZ simulator Alg. 2 and Pump sieving dimension
estimation Alg. 3 in Sec. 4.1, we ensure that the last Pump outputs target vector.

Experiments of Comparison among BKZ-only Mode, Default Mode
in G6K, and Two-step Mode In this part, we give an experimental result to
illustrate that for solving uSVPγ , the two-step mode is better than both BKZ-
only mode and G6K default mode. For comparison, assume that the blocksize
strategy used in different modes are the same and simply let jump = 1.

The two-step mode and the BKZ-only mode both run the same BKZ tours at
the beginning. However, in their final stages to find the unique shortest vector,
the two-step mode calls a Pump, while the BKZ-only mode calls more BKZ tours.
We show that Pump is more efficient in recovering short lattice vector than BKZ.

We call a Pump-(κ, dsvp, f) and a PnjBKZ-(β, J) (β<dsvp) separately on the
same lattice basis, denote cost of Pump as TPump. Table 1 shows that the reduced

10

shortest vector b0 after a Pump is shorter than that after a PnjBKZ-(β = 55, J =
1) while TPump ≤ TPnjBKZ. Thus, calling a Pump is more likely to find a shorter
vector compared to the PnjBKZ in no more time cost than PnjBKZ. Therefore,
it states that two-step mode is better than the BKZ-only mode.

On the other hand, both the two-step mode and the G6K default mode end
with a Pump which outputs the unique shortest vector. Their differences are at
the earlier stage, where the two-step mode always call BKZ, while the G6K
default mode may call an early Pump without a solution.

Table 1. Simulated norm of b0 after
a PnjBKZ and a Pump under the same
time cost.

(n,α)† Cost‡ ln(∥b0∥2)
PnjBKZ Pump(L[κ:d])

(55,0.005) 23.9 15.82 10.55
(40,0.015) 6.6 14.76 11.27
(45,0.010) 18.0 15.04 11.12
(40,0.020) 17.1 14.76 12.05

† Basis from LWE instance (n, α) in TU
Darmstadt LWE Challenge.

Table 2. Basis quality estimation after
a PnjBKZ and a Pump under the same
time cost.

(n,α) Cost‡ log2(PSC)(log2h)
PnjBKZ Pump(L[κ:d])

(55,0.010) 6.0 7.94 8.44
(60,0.005) 10.3 11.69 12.01
(70,0.005) 12.6 16.01 17.34
(75,0.005) 14.9 21.68 22.76

‡ The cost limit in minutes while calling
the algorithm.

In the comparison between the two-step mode and G6K default mode, we
show that an early Pump is less helpful in solving uSVPγ than an early PnjBKZ.
Let the time cost of Pump for finding the target norm on the specific lattice
basis, i.e. PSC, be a standard of measuring the quality of lattice basis reduced
by different algorithms. Lattice basis with low PSC can be regarded as better
quality. Our experiments by separately call a PnjBKZ/Pump on the same lattice
basis. Table 2 shows that basis quality after a PnjBKZ-(β = 60, J = 5) reduction
is better than that after a Pump reduction while TPnjBKZ ≤ TPump. The latter
basis quality is estimated by the PSC estimation Alg. 3. So, in the G6K-default
mode, if it enters a Pump with no solution, the quality of the returned lattice
basis will be worse than that after a PnjBKZ reduction under a same time limit.
In conclusion, the G6K-default mode is less efficient than the two-step mode.

3.2 Algorithm overview

Our Improved Progressive PnjBKZ(ProPnjBKZ) are designed in two-step mode
and a strategy selection algorithm, which will introduce in Sec. 5. It aims to
speedup the efficiency for solving the uSVPγ and can be described as the fol-
lowing: input a lattice basis B, and the distribution function F (⋆,D) of the
(projected) target norm (see Sec. 4.2). It first generates an optimized blocksize
and jump strategy S using a strategy selection algorithm (EnumBS or BSSA,
see Sec. 5) and then reduce B through a series of PnjBKZ-(β, J), in which each
(β, J) is selected from S. To minimize the total cost, it will first use a series of
PnjBKZ to reduce the lattice basis properly, then at the suitable timing, it will
call a Pump algorithm to find the target vector. The parameter selection of Pump
follows Alg. 3, which will lead to finding the unique shortest vector after Pump.
The detailed process is as Alg. 1.

11

input : B, F (⋆,D);
output: The approximate shortest vector v;

1 Function ProPnjBKZ(B, F (⋆,D)):
2 B = LLL(B);
3 Generate Strategy S using EnumBS or BSSA;
4 for (β, J, ♯tours) ∈ S do
5 for t from 1 to ♯tours do
6 B← PnjBKZ(B, β, J, ♯tours);

7 dsvp, _ ← ProSieveDimEst(rr(B), F (⋆,D)); f ← d4f(dsvp);
8 B ← Pump(B,d− dsvp, dsvp, f);
9 return v← b0;

Algorithm 1: Improved Progressive PnjBKZ

Our algorithm improves the heuristic uSVPγ solver in G6K from two aspects:
firstly, we use a two-step mode with an optimal blocksize strategy; secondly, we
choose the optimized jump(≥1) strategy instead of always keeping the jump=1.

Although the experiments in [31] suggest that compared with the reduction
strategy of jump=1, the reduction strategy of jump>1 is not beneficial, we show
that it is not the case. More precisely, [31] shows that the reduction strategy of
jump=3 requires similar running time to obtain the same quality of lattice basis
reduced by the strategy of jump=1, with a larger memory consumption. However
in our experiments, while the jump strategy becomes larger, the walltime for
reaching the same lattice basis quality decreases significantly. Our experiment
result shows that compared with the experiments results in [31], using a more
efficient parallel computing implementation in [24], the acceleration effect of
the strategy with jump>1 on the improvement of lattice quality is indeed more
obvious. More details can be found in Fig. 2, which shows that the PnjBKZ
with the jump>1 has a smaller time cost (3∼6 times faster) while achieving the
same reduction quality as that of the PnjBKZ with jump=1. Therefore, to find
the optimal PnjBKZ reduction parameters, it is essential to construct a PnjBKZ
simulator to handle the case for jump>1 which we will discuss in Sec. 4.1.

4 Simulators in Two-Step Mode of Solving uSVPγ

In this section, we construct the simulators we need to design the optimized
Blocksize and Jump Strategy, to obtain the expected minimal cost of the two-
step mode of solving uSVPγ .

Specifically, in Sec. 4.1, we first give the construction of the PnjBKZ simu-
lator and show the validation experiments of the performance of the PnjBKZ
simulator. Then we give the Pump cost model and the sieving dimension estima-
tion of the last Pump in two-step solving mode in Sec. 4.2.

Set Gram-Schmidt vectors reduced by one tour of BKZ-β and PnjBKZ-(β, J)
respectively as l

′

i=ln(∥b∗′i ∥) and l
′′

i =ln(∥b∗′′i ∥), for i ∈ {0, · · · , d− 1}. Denote

12

Fig. 2. Efficiency Speedup in Reduction by Jump strategy. Test on a 252-dimension
lattice basis. The walltime and slope are averaged over 5 instances for each algorithm.
Each instance ran on a machine with 2 GPUs, 32 threads. The points labeled by β.

BKZSim by the BKZ simulator proposed in [10]. Denote our PnjBKZ simulator
as PnjBKZSim to simulate the change of lattice basis B after calling a PnjBKZ.

4.1 PnjBKZ Simulator

The first step in the two-step solving mode is using a series of well-chosen
PnjBKZ-(β, J, t) to reduce the lattice basis. To find the optimized reduction
strategy of PnjBKZ with jump > 1 an accurate PnjBKZ simulator is necessary.

The PnjBKZ Simulator Construction Before we give the detailed construc-
tion of our PnjBKZ simulator, let’s briefly review the main idea of the BKZ
simulator proposed in [10]. The BKZ simulator proposed in [10] first will calcu-
late Sim(l

′

0) = ln
(
GH(L[0:β−1])

)
≈ 1

2 ln (β/2πe)+ ln
(
Vol(L[0:β−1])

)
/β by Gaus-

sian Heuristic (Heuristic 1). Then it will calculate Sim(l
′

1) = ln
(
GH(L[1:β])

)
≈

1
2 ln (β/2πe)+

(
ln Vol(L[0:β])− Sim(l

′

0)
)/

β by Heuristic 1 and the information of
Sim(l

′

0) since the insert of new b1 will change the value of Vol(L[1:β]) =
∏β

i=1∥b∗i ∥
to Vol(L′

[1:β]) =
(∏β

i=0∥b∗i ∥
)/
∥b∗′0 ∥. Here Sim(l

′

0) is a simulated approximate
value of l′0 by Heuristic 1. Iteratively calculating all remaining unknown Sim(l

′

i),
such a simulator can predict the value of each l

′

i in B∗
′ .

However, the BKZ 2.0 simulator [10] cannot be used directly to simulate the
behavior of PnjBKZ when jump>1. We observe that when J>1, each time after
new b∗i inserting at the first position of the block Bπ[i:i+β], the J − 1 norms of
Gram-Schmidt vectors b∗i+1, ...,b

∗
i+J−1 will change and remain unknown. These

unknown norms prevent the BKZ 2.0 simulator [10] from predicting the norm of
the first Gram-Schmidt vector in the next block. Our idea is that when jump>1,
we let each projected sub-lattice basis be reduced by Pump satisfying HKZ re-
duced so that we can predict these unknown norms between adjacent blocks.

13

Let l′′i be the logarithm of each Gram-Schmidt norm after one tour of PnjBKZ-
(β, J). If the first J vectors in each block reduced by pump satisfies HKZ re-
duced5, then we simulate each li after a PnjBKZ-(β, J) reduction (denoted as
Sim(l′′i)) by Heuristic 1.

Sim(l′′i) = ln
(
GH

(
L′′

π[i:k]

))
, k =

{
i− (i mod J) + β, i ∈ [0, d− β − 1] ,

d, i ∈ [d− β, d− 1] .
(1)

The key is how to calculate the volume of L′′π[i:k]. Same as BKZ reduction
during the process of PnjBKZ reduction the volume of L′′π[0:k] equals to that
of Lπ[0:k]. Suppose we already know Sim(l′′j), j ∈ {0, ..., i − 1}, we calculate
ln

(
Vol

(
L′′π[i:k]

))
=ln

(
Vol

(
L[0:k]

))
−ln

(
Vol

(
L′′

[0:i]

))
=

∑k
j=0 lj−

∑i−1
j=0 Sim(l′′j).

Finally, based on Heuristic 1 we iteratively calculate Sim(l′′i) by Eq. (1).
In other words, we only need to input the initial Gram-Schmidt norms li =

ln (∥b∗i ∥), i ∈ {0, · · · , d− 1} of the lattice basis. Without performing PnjBKZ
reduction, we can simulate l′′i by Eq. (1), which describes the change of lattice
basis after each tour of PnjBKZ-(β, J). Here l′′i are these actual Gram-Schmidt
vector norms of lattice base after reducing by one tour of PnjBKZ-(β, J).

(a) Jump=5 (b) Jump=9

Fig. 3. ratio l′′i /Sim(l′′i), β=95. Run 10 tours of PnjBKZ-(95,5) and PnjBKZ-(95,9)
reduction on a 252-dimension lattice basis, and record the output of Gram-Schmidt
vector lengths each tour. We test 20 times for each reduction parameters.

To show that it is reasonable for us to use the properties of the HKZ reduction
basis to simulate the actual reduction effect of PnjBKZ-(β, J), we first illustrate
that if J is below a specific upper bound (we heuristicly set the upper bound
to be d4f(β)/2), the first J vectors in the Pump5 output lattice basis are almost
HKZ reduced. For each tour, calculate the ratio li

′′/Sim(li
′′) for i ∈ [0, d− 1], see

5 To obtain such HKZ reduced basis, we should set pump/down_sieve = True and
delete the condition “(pump.insert_left_bound <= kappa+down_stop)” in the file
“pump.py” in the path “G6K-GPU-Tensor/g6k/algorithms” to make sure the output
projected basis close to an HKZ reduction.

14

input : rr, blocksize β ∈ {45, · · · , d}, jump J and number of tours t.
output: A prediction for the logarithms of the Gram-Schmidt norms

l′i = ln (∥b′∗
i ∥) after t tours PnjBKZ-β reduction with jump is J .

1 Function PnjBKZSim(rr, β, J , t):
2 for i← 0 to 44 do
3 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

4 for i← 45 to β do
5 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

6 for j ← 0 to t− 1 do
7 flag ← true; //flag to store whether L[k,d] has changed
8 for k ← 0 to d− β − 1 do
9 β′ ← min (β, d− k); //Dimension of local block

10 h← min (k − (k mod J) + β − 1, d− 1);
11 ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′i; //Let

∑−1
i=0 l

′
i = 0

12 if flag = True then
13 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
14 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);
15 flag← False;
16 else
17 l′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

18 for k ← d− β to d− 46 do
19 β′ ← d− k; h← d− 1; ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′i;

20 if flag = True then
21 if ln (V) /β′ + cβ′ < lk then
22 l′k ← ln (V) /β′ + cβ′ ; flag← false;
23 else
24 l′k ← ln (V) /β′ + cβ′ ;

25 ln (V)←
∑h

i=0 li −
∑k−1

i=0 l′i;
26 for k ← d− 45 to d− 1 do
27 l′k ←

ln(V)
45

+ rk+45−d;
28 for k ← 0 to d− 1 do
29 lk ← l′k;

30 return l0, · · · , ld−1;
Algorithm 2: PnjBKZ Simulator

15

Fig. 3. Here li
′′ is the average logarithms of these Gram-Schmidt vector lengths

obtained from 20 experiments, and Sim(li
′′) is the simulated logarithm of lengths

of Gram-Schmidt vector which are calculated by Eq. (1).
We calculate the Sim(li

′′) strictly according to the property of the HKZ
reduction basis and Heuristic 1. Therefore, in addition to being one of the criteria
for measuring the accuracy of the PnjBKZ simulator, this ratio li

′′/Sim(li
′′) can

also be used as a criterion for judging whether during the reduction of PnjBKZ,
when the i-th Pump is called, the basis of Lπ[i:i+β] reduced by Pump (Turn on
sieving during the Pump-down stage) satisfies the HKZ reduction property5.

However, it can be seen from Fig. 3 that for β=95, when jump ≤ d4f(β)/2 ≈
9, even the tours increase to 10, the ratios li′′/Sim(li

′′) are all between 0.975 and
1.025, indicating that the PnjBKZ simulator using Eq. (1) as the approximate
estimate of the actual value li′′ can already reflect how the average of the norms
of Gram-Schmidt vectors change during each tour’s reduction of PnjBKZ-(β, J).

Besides, when simulating the length value of Gram-Schmidt vector, we note
that even for i ≡ 1(modJ), the index i of GH

(
L′′π[i:i+β−(i modJ)]

)
in our simula-

tor is the same as that of GH
(
L′π[i:i+β]

)
in the BKZ-2.0 simulator, the simulated

volumes of projected sublattice L′π[i:i+β] and L′′π[i:i+β] are different. The rea-
son is that in BKZ 2.0 simulator [10] Vol(L′π[i:i+β]) =

∏i+β−1
j=0 ∥b∗j∥

/∏i−1
j=0∥b∗

′

j ∥

and it calculates ∥b∗′j ∥ by ∥b∗
′

j ∥ := GH
(
L′π[j:j+β]

)
, while in PnjBKZ simulator

Vol(L′′π[i:i+β]) =
∏i+β−1

j=1 ∥b∗j∥
/∏i−1

j=1∥b∗
′′

j ∥ and ∥b∗
′′

j ∥ obtained from Eq. (1). We
give a detailed algorithm description of the PnjBKZ simulator in the Alg. 2.

(a) β = 95, jump = 5, ♯tours = 10 (b) β = 95, jump = 9, ♯tours = 10

Fig. 4. Prediction effect of PnjBKZ simulator. To verify the effectiveness of our PnjBKZ
simulator, we perform the experiments by reducing the lattice basis of LWE Challenge
(n = 70, α = 0.005) by PnjBKZ with reduction parameter: blocksize β = 95, jump size
J ∈ [1, · · · , 12], ♯tours ∈ [1, · · · , 10]. We test 20 times for each reduction parameters.

16

Performance of PnjBKZ simulator We give an experiment to verify the
effectiveness of our PnjBKZ simulator in this part.

Fig. 5. Simulation error of PnjBKZ simulator with different jump values. For each
reduction parameter tested by 20 experiments to get the average length of GS vectors.

To measure the accuracy of PnjBKZ simulator, SimError is calculated as fol-
lowing the equation: SimError(♯tours) =

∑d−1
i=0

(
∥b∗i ∥(♯tours) − Sim(∥b∗i ∥)(♯tours)

)2,
where ♯tours represents the number of current tours and Sim(∥b∗i ∥)(♯tours) are the
lengths of Gram-Schmidt vectors predicted by PnjBKZ simulator with ♯tours.

As can be seen in the Fig. 4, PnjBKZ simulator can well predict the behav-
ior of the PnjBKZ algorithm for β=95 when jump<10 since the corresponding
SimError(♯tours) is small. Fig. 5 shows that as the jump value increases, the
prediction error increases, and the accuracy of PnjBKZ simulator decreases.
However, β=95, the prediction error SimError(♯tours) is still within 1 especially
when the jump<13 and the SimError(♯tours) of PnjBKZ simulator is not bigger
than that of BKZ 2.0 simulator. Therefore the PnjBKZ simulator can predict
how the average norms of Gram-Schmidt vectors change during each tour reduc-
tion of PnjBKZ-(β, J). See Appendix B for more details about the prediction
effect of the simulator under different jump values and different tours.

4.2 Pump Cost Model and Dimension Estimation of the Last Pump

Pump Cost Model We set TPump as the time cost of a Pump since the main
cost of a Pump can be regard as a (β − f)-dimensional progressive sieve, i.e.

TPump(β) =

β−f∑
j=β0

Tsieve(j) ≤ 2cβ0 · 2
c(β−f+1)+o(β−f+1)

1− 2c
≈ 2c(β−f)+c1 , (2)

where β0 is the dimension of initial sieving in Pump (In G6K β0 set as 30, and in
G6K-GPU, it set as 50), c and c1 are the coefficients of sieve cost related to sieve
algorithm, Tsieve(j) is the sieve cost in dimension j with d4f value f = d4f(j).
More detail of our practical Pump cost model can be seen in the Appendix C.

17

Dimension Estimation of the Last Pump Except for the PnjBKZ simu-
lator, to solve uSVPγ with high success probability, we need to determine the
dimension of sieving in the last Pump. In this part, we propose a new dimension
of sieving estimation of Pump named ProSieveDimEst (Alg. 3) to calculate the
expected sieving dimension needed by a Pump to solve the uSVPγ .

Specifically, F (⋆,D) as the input value of Alg. 3 is a distribution function,
which describes the relationship between the length of the target vector pro-
jected on the projected sub-lattice and its probability. The idea, which considers
the length of the projected target vector on the sub-lattice as a random variable
rather than an expected value, was firstly proposed in [33]. Let ⋆ = β, β repre-
sents the dimension β of projected lattice Lπ[d−β:d] and D is the distribution of
the length ∥t∥ of the projected target vector t ∈ Lπ[d−β:d].

It is efficient to calculate the probability in line 3 of the Alg. 3, because
the dimension of the projected lattice dsvp will determine the upper limit of the
integration of the probability density function, and the corresponding probabil-
ity value can be easily obtained by doing the integration operation. Alg. 3 will
evaluate the maximal sieve dimension dsvp for calling Pump within a high prob-
ability(>0.999) to find the target vector of uSVPγ , then give a cost estimation.

Then we briefly explain the calculation of PSC(dsvp) in Alg. 3. Let TPump(β) =∑β
j=β0

Tsieve(j) as Eq. (2). Since Pump contains the progressive sieve process,
we should consider the failure/success probability during the process. A β-
dimension progressive sieve runs sieve-i from some fixed β0 to β. We set the
success probability of β-dimension progressive sieve as Psuc(β), then Psuc(β) −
Psuc(β − 1) represents the success probability of the event Eβ that one finds
the target vector until the dimension of sieving exactly equals to β during the
process of running the β-progressive sieve. The expected time cost of event Eβ is
TPump(β) · (Psuc(β)−Psuc(β − 1)). Iterate β from β0 to dsvp, the expected Pump
cost: PSC(dsvp) =

∑dsvp

β=β0
[TPump(β) · Pr(Eβ)] calculated by Eq. (3)

PSC(dsvp) =

dsvp∑
β=β0

[TPump(β) · (Psuc(β)− Psuc(β − 1))] . (3)

Here Psuc(dsvp) ≥ 0.999. More theoretical analysis about the calculation of
PSC(dsvp): the success probability of solving the uSVPγ by a Pump with dsvp-
dimension progressive sieve, see Eq. (11) in Appendix E.1, and for the corre-
sponding verification experiments, see Appendix E.2.

In the case of solving standard form LWE, the fastest solving algorithm to
it is the primal attack. The primal attack solves LWE problem by transforming
it to uSVPγ Problem and then call a uSVPγ solver to solve it. Its target vector
t = (e,±1) is a combination of ±1 and the noise vector e ∈ Zm

q from a discrete
Gaussian distribution Dσ with standard deviation σ.

The estimation of dsvp in the default G6K uses the estimation proposed in
[13]. It computes the expected norm of the projected target vector ∥πd−dsvp

(t)∥ ≈
σ
√

dsvp. It declared that it satisfies the condition σ
√
dsvp ≈ ∥πd−dsvp

(t)∥ ≤
GH(Bπ[d−dsvp]), then the projected shortest vector may be in the projected sub-

18

lattice. It outputs the minimal value dsvp such that the inequality σ
√

dsvp ≤
GH(Bπ[d−dsvp]) holds and take it as the upper bound of sieving in the Pump. Since
norm of the target vector maybe larger than its expected value in some cases,
estimating the upper bound of Pump by the expected value is over-optimistic.
∥e∥2 is a randomly positive variable following chi-squared distribution (Def-

inition 2) rather than a fixed value. It is more reasonable to consider a high
success probability (≥ 0.999) for recovering the target vector with a suitable
sieving dimension by setting F (β,D) = σ2χ2

β in Alg. 3.

input : rr, F (⋆,D);
output: dsvp, PSC;

1 Function ProSieveDimEst(rr, F (⋆,D)):
2 for dsvp ← dstart to d do

3 Psuc(dsvp) ← Pr

[
x← F (dsvp,D)

∣∣∣∣x ≤ (
GH(rr[d−dsvp:d])

)2];

4 if Psuc(dsvp) ≥ 0.999 then
5 return dsvp, PSC(dsvp);

Algorithm 3: Dimension Estimation for Pump on solving uSVPγ .

4.3 Estimator Stability Assumption
In this part, we give some heuristic assumptions on our simulator to support
the strategy generation algorithms which will be discussed in detail in Sec. 5.
Since we use only Gaussian Heuristic in our PnjBKZ simulator, we can see that
our PnjBKZ simulator fits well for all lattices satisfying Gaussian Heuristic.
Furthermore, since the theoretical time cost of sieving algorithm is related only
to lattice dimension, we can also assume that our time cost model fits well for
almost all lattices. Therefore, we give Heuristic 3.

Heuristic 3 The practical time cost model (Appendix C) and PnjBKZ simulator
(Alg.2) fit the actual time cost of the Pump algorithm and PnjBKZ algorithm and
the reduction effect of a series of PnjBKZ-(β, J) for almost all lattices.

The quality of the lattice basis is not always improved by using a fixed
PnjBKZ-(β, J). Using a fixed PnjBKZ-(β, J) tour repeatedly for reduction can
only gradually approach a certain degree of reduction basis, but the number
of tours of calling PnjBKZ-(β, J) to obtain such a reduction basis is unclear.
However, we can give a heuristic assumption on an upper bound of lattice quality
such that PnjBKZ-(β, J) will not improve a lattice basis with this quality.

Heuristic 4 Let B be a lattice basis after reduction of several PnjBKZ-(βi, Ji)
tours, Ji ≤ d4f(βi)/2. If B has same quality with a BKZ-β reduced basis (in the
term of PSC), then the basis cannot be further improved by a PnjBKZ-(β, J)
tour for any J ≥ 1.

19

Heuristic 4 is reasonable if we assume that a lattice basis after PnjBKZ-
(βi, Ji), Ji ≤ d4f(βi)/2 satisfies GSA. Since a BKZ-β reduced basis also satisfies
GSA, we can assume that the lengths of Gram-Schmidt basis vectors in B and
a BKZ-β reduced basis are the same, thus behave the same in the PnjBKZ
simulator. Since a BKZ-β reduced basis cannot be improved by a PnjBKZ-(β, J)
tour, it also happens for B.

5 Improved Progressive PnjBKZ: Blocksize and Jump
Strategy Optimization

In this section, we describe our two blocksize and jump strategy selection al-
gorithms in detail. The first is blocksize and jump strategy selection algorithm
based on ProBKZ (BSSA), based on the blocksize selection strategy in Improved
Progressive BKZ [12]. The second is a new algorithm called Enumeration for
Blocksize and jump Strategy (EnumBS), through which we can get a blocksize
and jump strategy with minimum simulated time cost. We give both formal proof
and experimental results to show that our new strategy selection algorithm is
better than the algorithm based on ProBKZ.

5.1 Blocksize and Jump Strategy Selection based on ProBKZ

The blocksize and jump strategy selection algorithm based on ProBKZ (BSSA,
Fig.6) applies the Shortest Path Algorithm to strategy selection.

Fig. 6. BSSA Process.

BSSA starts with a fully BKZ-βstart reduced lattice basis. It firstly sets sev-
eral middle nodes of βgoal as a measure of basis quality. For the edges between
two nodes βi and βj , BSSA finds the optimal blocksize and jump (βalg, Jalg)
with tours t which reduces a BKZ-βi reduced lattice basis into a BKZ-βj re-
duced lattice basis, with minimum simulated time cost TPnjBKZ. The tuple
(βalg, Jalg, t, TPnjBKZ) is stored in a list which the key is each edge in the graph.

For each node, we define a blocksize and jump strategy dictionary BS, in
which the key is each middle βgoal node and the value is a tuple of bs = (rr, S,

20

TPnjBKZs,PSC), where rr is the length of Gram-Schmidt vector which is fully
BKZ-βgoal reduced, S means the blocksize and jump selection strategy which
will improve the quality of lattice basis from fully BKZ-βstart reduced to fully
BKZ-βgoal reduced, which is the combination of (βalg, Jalg) tours stored on each
edge in the shortest path from node βstart to βgoal with respect to the sum
of simulated BKZ cost TPnjBKZs, while the shortest path can be found using
Dijkstra algorithm. PSC is one of the output from the Pump dimension estimation
method (Alg.3), which means the estimated time cost for uSVPγ to be solved
by processing Pump on the BKZ-βgoal reduced basis.

To find the efficient two-step solving strategy, we should consider the cost
of the last Pump, i.e. PSC, after several PnjBKZ reductions. By setting different
final βgoal, we can get different reduction strategy BS that improves the quality of
lattice basis from βstart to βgoal and different sieving dimension of the last Pump
corresponding to the different quality of the lattice that is fully βgoal reduced.
Then we set multiple different final βgoal to choose the two-step solving strategy
whose total time cost is minimum. Here, the total time cost includes the time
cost of improving the quality of lattice by a series of PnjBKZ-(β, J) ∈ S and the
time cost of final Pump. See Alg. 11 for more details about BSSA.

5.2 Blocksize and Jump Strategy Enumeration Algorithm

The advantage of BSSA is that the algorithm runs in polynomial time. However,
there are also some disadvantages, we list two of them.

First, the reduction effect of a BSSA strategy is not estimated accurately.
Each intermediate result of lattice basis is fitted into one of the nodes, which
is a BKZ-β reduced basis for some β, but the acutual basis may have higher
quality than the node. Thus a BSSA strategy may overestimate the time cost,
which leads to the non-optimization of the output strategy.

Second, BSSA also misses many potential optimized strategies. For example,
BSSA only considers reducing a BKZ-β reduced basis into a BKZ-(β+1) reduced
basis with BKZ tours of fixed blocksize. However, the optimal reduction between
the two nodes might be progressive, and cannot be found by BSSA.

The problems can be solved by using a blocksize and jump strategy enumer-
ation algorithm to enumerate all possible blocksize and jump strategies, so that
we can always find the optimized strategy among them.

However, an enumeration algorithm is inefficient, and cannot be used in prac-
tice since it costs an exponential time overhead. We improve the algorithm using
a branch and bound method. To design an algorithm on pruning the strategy in
the branch and bound, we need another heuristic assumption.

Heuristic 5 Given two sufficiently reduced lattice bases B,B′ with lengths rr, rr′.
If PSC(rr) ≥ PSC(rr′), then PSC(PnjBKZSim(rr, β, J, 1)) ≥ PSC(PnjBKZSim
(rr′, β, J, 1)) also holds for any β and J ≤ d4f(β)/2.

This assumption holds trivially if we assume that B and B′ satisfy GSA.
Note that all heuristic assumptions we used in this work is weaker than GSA

21

(Definition 2). Since GSA is always considered as a reliable assumption and
widely used in many lattice solving algorithms and estimators, it is sufficient to
say that our strategy selection algorithm can output a blocksize and jump strat-
egy with expected minimal cost in solving uSVPγ for any randomly generated
lattice instance.

input : rr0, F (⋆,D), Jmax(⋆)← d4f(⋆)/2;
output: Tmin , Smin;

1 Function EnumBS(rr0, F (⋆,D), Jmax(⋆)← d4f(⋆)/2):
2 k ← 1; d← len(rr0); _,PSC(0) ← ProSieveDimEst(rr0, F (⋆,D));
3 bs(0) ← (rr0, [], 0,PSC(0)); BS ← {bs(0)};
4 while k ≤ ♯BS do
5 bs← BS [k]; (β, J)← the last element of BS[k].S;
6 (β, J) ← next (β, J) s.t. PSC(PnjBKZSim (bs.rr, β, J , 1)) < bs.PSC;
7 while (β, J) is not None do
8 bs∗.S← S ∪ [(β, J)], update bs∗ under bs∗.S;
9 BS ← BS ∪ {bs∗};

10 if ∃ bs ∈ BS s.t. bs∗.PSC ≥ bs.PSC and
bs∗.TPnjBKZs ≥ bs.TPnjBKZs then

11 BS ← BS \ {bs∗};
12 else
13 for ∀bs ∈ BS s.t. bs∗.PSC ≤ bs.PSC and

bs∗.TPnjBKZs ≤ bs.TPnjBKZs do
14 BS ← BS \ {bs };

15 (β, J) ← next (β, J) s.t. PSC(PnjBKZSim (bs.rr, β, J , 1)) < bs.PSC;
16 k ← k + 1;

17 bsmin ← min
bs.TPnjBKZs+bs.PSC

BS;

18 return Tmin ← bsmin.TPnjBKZs + bsmin.PSC, Smin ← bsmin.S ;
Algorithm 4: EnumBS

The detailed description of EnumBS with pruning shown in Alg. 4. In EnumBS,
we use BS to store the information of each reduction strategy which might be
the optimal strategy or will become the optimal strategy after adding more
(β, J) nodes. BS is a list and each element bs in the BS is a tuple of values
bs = (rr, S, TPnjBKZs,PSC). It is important to note that each bs in BS should be
in order that increases by its TPnjBKZs value and decreases by its PSC value. In
bs, S is a list storing the blocksize and jump strategy used for calling PnjBKZ,
TPnjBKZs is the time cost for calling such a series of PnjBKZ, rr stores the cur-
rent simulated gs-lengths after simulatedly calling PnjBKZ following strategy S
by PnjBKZ simulator (Alg.2). PSC output from the Pump dimension estimation
method (Alg.3), it estimates the expected time cost for last Pump. Each element
in S is a tuple (β, J), where β is the blocksize value of PnjBKZ and J is the

22

jump value of PnjBKZ. For the sake of narrative simplicity, we will use bs.⋆ to
denote each element in bs, e.g. bs.S. Let ♯S and ♯BS be the length of S and BS.

At the start of EnumBS, there is only one tuple bs(0) in BS, where bs(0).S = []
denotes a no PnjBKZ blocksize and jump strategy with a pure Pump sieve. The
total cost of bs(0) is the Pump cost. Then, to generate more strategies and try to
find the optimal strategy, we can regard bs(0) as the root node and expand the
strategy list from bs(0) using a breadth-first search.

For a node bs in the tree, each of its children bs∗ satisfies that bs∗.S =
bs.S ∪ [(β, J)], where PSC(PnjBKZSim(bs.rr, β, J, 1)) < bs.PSC, which means
that a (β, J) tour can further improve the basis quality. Assuming Heuristic 4,
we can begin the search from β0+1, where bs.rr has equal or higher quality than
a BKZ-β0 reduced basis.

Considering each child strategy bs∗.S of bs.S for all possible (β, J), compute
the other values in bs∗, i.e. bs∗.TPnjBKZs, bs∗.rrand bs∗.PSC. When we try to
add a bs∗ into BS, we should first determine whether it exists a bs′ ∈ BS so that
bs∗.PSC ≥ bs′.PSC and bs∗.TPnjBKZs ≥ bs′.TPnjBKZs. If so, we cannot add such
bs∗ into BS, because the child strategies generated by bs∗(including bs∗ itself)
won’t have a shorter time overhead than which generated by the corresponding
bs′. If not, then we should first add bs∗ and then delete the bad strategy in BS
whose PSC value and TPnjBKZs value are both larger than bs∗. Iterate each BS[k]
and its child nodes sequentially, we will end up with a BS containing the block
size strategy with minimum simulated time cost. Finally, we search through BS
and return the best strategy in the end.

In addition, Theorem 1 proves that EnumBS can find the blocksize and jump
strategy with minimal simulated cost to solve uSVPγ in two-step mode.

Theorem 1. Let S be the set of all sequences consist of (β, J ≤ d4f(β)/2),
S is the set of all possible blocksize and jump strategies. If Heuristic 5 holds,
the algorithm EnumBS always returns the blocksize strategy in S with minimum
simulated time cost.

Proof. Let rr0 be the input basis quality, Suppose that the strategy in S with
minimum simulated cost is S = [(β1, J1), ..., (βk, Jk)]. We write the sub-strategy
[(β1, J1), ..., (βi, Ji)] of S, i ≤ k as Si.

We can see that PSC(PnjBKZSim(rr0, Si−1)) ≥ PSC(PnjBKZSim(rr0, Si))
for all i ≤ k, otherwise removing (βi, Ji) from S can get a better strategy by
Heuristic 5. From the description of EnumBS, either S is inside the final strategy
set BS, or there is a sub-strategy Si such that Si is removed from BS (then
S won’t appear in BS anymore). Since S has minimum time cost among all
strategies in BS, S must be the final output strategy and meets the first case.
Now we show that the second case cannot occur.

If Si is removed from BS, then there must be another strategy S′ such that
PSC(PnjBKZSim(rr0, Si)) ≥ PSC(PnjBKZSim(rr0, S

′)), and the PnjBKZ time
cost Si.TPnjBKZs ≥ S′.TPnjBKZs. If we append the sequence (βi+1, Ji+1), ..., (βk, Jk)
into S′ and get a new strategy S∗, it infers that S.TPnjBKZs ≥ S∗.TPnjBKZs.

23

By Heuristic 5, PSC(PnjBKZSim(rr0, S)) ≥ PSC(PnjBKZSim(rr0, S
∗)). Now

we have that S∗ has expected smaller time cost than S, which makes a contra-
diction. Thus we finish the proof. ⊓⊔

6 Apply ProPnjBKZ to LWE

In this section, we mainly show the performance of our ProPnjBKZ to solve LWE
in the two-step mode. Specifically, in Sec. 6.1, we give the optimized blocksize
and jump strategy for solving the TU Darmstadt LWE Challenge. In Sec. 6.2, we
apply our ProPnjBKZ to TU Darmstadt LWE Challenge and give a comparison
among different LWE-solving modes by experiments. In Sec. 6.3, wwe show the
new TU Darmstadt LWE Challenges recording we have broken. In Sec. 6.4,
we give a new security estimation of LWE in NIST schemes [28] based on the
two-step solving mode and EnumBS.

6.1 ProPnjBKZ for Solving TU Darmstadt LWE Challenge

We use a machine with Intel Xeon 5128 16c 32@2.3GHz, 1.48T RAM and
NVIDIA Geforce RTX 3090 * 2 to construct a practical time-cost model by
experiments, see more detail in the Appendix C. Based on this practical time-
cost model we give a comparison of different LWE-solving algorithms.

Table 3. Blocksize and Jump strategy generated by EnumBS.

(n, α) Strategy (β, jump) EnumBSGen/s
(40,0.025) [(89,9),(114,10)] 100
(40,0.030) [(73,8),(89,9),(117,10),(119,10)] 460
(45,0.020) [(73,8),(90,9),(117,10)] 220
(50,0.015) [(73,8),(90,9),(114,10)] 280

We use EnumBS (Alg. 4) with the practical cost model to select the blocksize
and jump strategy for some instances of TU Darmstadt LWE Challenges, we
list the selected strategies in Table 3. Besides, Table 3 shows that the time
cost of generating the reduction strategy by EnumBS is acceptable. Also, we
upload the open source code for blocksize and jump strategy generation on any
LWE instances1. We solved the TU Darmstadt LWE Challenge instances with
(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)} successfully
by the selected strategies in Appendix F.

6.2 Experimental Comparison of LWE-solving Algorithms

In this part, we test the walltime of different LWE solving algorithms through
experiments to prove that our algorithm is indeed improved compared with the
default LWE solving algorithm in G6K.

24

The default LWE solving algorithm in G6K is the script lwe_challenge.py
in the implementation of G6K’s GPU version [24], we have discussed it in Sec.
3.1. Besides, for more detail about the default LWE solving algorithm in G6K’s
GPU version6. Table 4 gives the experimental result of different LWE-solving
algorithms. The columns of “G6K” is the experimental time/memory cost of
default strategy in G6K. The columns of “EnumBS”(“BSSA”) give the exper-
imental time/memory cost using the strategy generated by EnumBS(Alg. 4)
(BSSA(Alg. 11)). From the result of Table 4, we can see that using the strat-
egy selected by EnumBS (BSSA) significantly decreased the walltime cost by
about 7.6∼12.9 (5.5∼11.7) times compared to the default LWE solving strategy
in G6K. One can refer to the full vision of Table 4 in the folder lwechal-test.
It can also be reproduced by running the test code implement_low_dim.sh2.

Table 4. Experimental Result of Different LWE-solving Algorithms§.

(n, α)
Walltime/s Memory/GB TAR

G6K BSSA EnumBS G6K BSSA EnumBS BSSA EnumBS
(40, 0.025) 11864 2153 1571 4.5 27.2 3.2 5.5 7.6
(40, 0.030) 70671 6020 5495 10.1 35.1 46.8 11.7 12.9
(45, 0.020) 22400 3267 2569 1.7 30.9 5.0 6.9 8.7
(50, 0.015) 20185 2414 2390 11.2 11.2 3.4 8.4 8.4

§ Here EnumBS(BSSA) represents the two-step LWE solving algorithm whose reduction strategy
is generated by Alg. 4(Alg. 11) in a machine of 32 threads(Intel Xeon 5128 16c 32@2.3GHz),
1.48T RAM and 2 gpus(NVIDIA Geforce RTX 3090). ”TAR” means the Walltime Acceleration
Ratio computed in Walltime(G6K)/Walltime(BSSA) or Walltime(G6K)/Walltime(EnumBS).

Meanwhile, to show the accuracy of our optimized blocksize and jump se-
lected strategy, we compare the quality of lattice basis and walltime in each
middle node predicted by the selected blocksize and jump strategy with that of
actual experiments. Table 5 illustrates that both the quality of the actual lattice
basis and the actual walltime of each tour of PnjBKZ-(β, J) are close to our
prediction.7 It also proves that Heuristic 3 established in an experimental way.

6.3 New LWE Records

TU Darmstadt LWE Challenge website presents Challenges for testing the effi-
ciency of solving LWE which helps to estimate the hardness of LWE in practice.

By our new algorithm, i.e. ProPnjBKZ, we have solved the LWE instances
(n, α) ∈ {(40, 0.035), (90, 0.005), (50, 0.025), (55, 0.020), (40, 0.040)} in TU Darm-
stadt LWE Challenge website. (We solved the LWE instance (n, α) = (80, 0.005)

6 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py
7 The data in Table 5 is extracted from a test in Table 4 for comparing the quality

and walltime between our simulations and actual experiments.

25

https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

Table 5. Quality(walltime T/s) during re-
duction of LWE (n, α) = (40, 0.030).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(73,8) −0.0547 8.0 −0.0520 8.2
(89,9) −0.0469 8.7 −0.0455 8.8

(117,10) −0.0400 10.0 −0.0396 10.5
(119,10) −0.0381 10.4 −0.0381 10.8

Table 6. Actual running time, RAM cost
and simulation cost.

(n,α) Machine T (h) RAM (GB)
(40,0.035) B 233 184
(50,0.025) A 592 184
(55,0.020) A 611 890
(90,0.005) B 370 332
(40,0.040) A 683 1120

earlier.)8 Specifically we denoted a service with AMD EPYCTM 7002 Series
128@2.6GHz, NVIDIA RTX 3090 * 8, 1.5T RAM as Machine A, and denoted
a service with AMD EPYCTM 7002 Series 64@2.6GHz, a100 *4, 512 GB RAM
as Machine B. Then we listed the walltime and RAM cost in solving the above
LWE Challenges in Table 6. The unit of time in Table 6 is hour and the unit of
RAM is GB.

6.4 Security Estimation for NIST schemes

In this part, we estimate the security bit of LWE based NIST schemes [28] under
consideration of the influence of the two-step mode and the blocksize and jump
strategy selection. Our new concrete hardness estimation of LWE tries to answer
Question 7 in Section 5.3 of [2] and narrows the security estimation error interval.
For more details about the construction of our new concrete hardness estimator
of two-step mode of solving LWE, we refer to Appendix E and Appendix G for
more estimation results. Now our evaluation code is available at open source1.

We compare our estimation with Leaky-LWE-Estimator [42] under the same
gate-count algorithm [30] and same heuristic assumptions. Under the RAM
model, i.e, it assumes that access into even exponentially large memory is free,
the estimated security bit of LWE in NIST schemes [28] can be reduced by
1.9 ∼ 4.2 bit compared to the current estimation generated by Leaky-LWE-
Estimator9 in [42]. See Table 7 for details. Here G and B in Table 7 respectively
represent the total number of logic circuits for these LWE instances in NIST
schemes [28] being solved and the maximal memory needed for solving these
LWE instances, that both are calculated by Gate-count algorithm [30].

Without considering the RAM model, Two-step mode of using larger Pump
dimension will indeed lead to an extra cost of accessing exponentially large
memory, which will somewhat offset the above-claimed decreasing of security
hardness. But since the time cost (Number of gates G) is far larger than than
the memory cost B, the impact of memory growth can be ignored with such a
significant decreasing in time cost. Specifically, in Table 7 even though ∆B is
negative (Two-step mode use bigger memory), ∆ log2(G + B) same as ∆ log2 G
between 1.9∼4.2 bit is still positive. It means that the increase in memory will
8 https://www.latticechallenge.org/lwe_challenge/challenge.php
9 https://github.com/lducas/leaky-LWE-Estimator

26

https://www.latticechallenge.org/lwe_challenge/challenge.php
https://github.com/lducas/leaky-LWE-Estimator

partially offset the decrease in the number of gates. However, in general, the
time cost is still decreasing even considering the extra increase in memory.

Table 7. Security Estimation results of different estimator for NIST schemes♮.

log2G/log2(gate) log2B/log2(bit)
∆GPrevious Two-Step EnumBS Previous Two-Step EnumBS

Kyber512 151.5 148.6 147.4 93.8 99.1 98.1 4.1
Kyber768 215.1 212.1 210.9 138.5 144.0 143.2 4.2
Kyber1024 287.3 284.2 283.4 189.7 195.4 194.6 3.9
Dilithium-I 158.6 156.7 156.6 97.8 104.3 104.4 2.0
Dilithium-II 216.7 214.5 214.5 138.7 145.3 145.3 2.2
Dilithium-III 285.4 283.5 283.5 187.4 194.5 194.5 1.9

♮ The column “Previous” is the Security estimation in the statement of Kyber and Dilithium.
“Two-step” is using a trial progressive BKZ+Pump in two step mode to estimate security.
“EnumBS” is the estimated security by optimized strategy. ∆G is the difference between “Pre-
vious” and “EnumBS” under the RAM model. However, the list-decoding method proposed
by MATZOV [32] can further decrease security bit and Albrecht et al adapted it to construct
their estimator (https://github.com/malb/lattice-estimator). It helps us give the estimation in
Appendix G.

Last but not least, although we only compare our security estimation with
Leaky-LWE-Estimator [43] in this section, for other LWE estimators which con-
sider only the BKZ-only mode, using our two-step mode along with the time-cost
models in these estimators will also lead to better security estimation.

7 Conclusion and Future Work

In this paper, we propose the ProPnjBKZ, which combines PnjBKZ and Pump
to solve the uSVPγ problem based on two new simulators (PnjBKZ simula-
tor and Pump estimator). Experimental results show that our simulators can
accurately predict the behavior of PnjBKZ even if jump>1. We design two
new blocksize and jump strategy selection algorithms: BSSA and EnumBS,
and demonstrate that the EnumBS strategy has minimal simulation time cost.
Meanwhile, applying the blocksize and jump strategy generated from EnumBS
to solve the LWE Challenge results in 7.6∼12.9 times improvement compared
to default G6K mode and help us solve the TU Darmstadt LWE Challenges
(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}. In addition,
using our new hardness estimator of LWE for security evaluation of NIST lattice-
based schemes shows that our optimized blocksize and jump strategy selection
and two-step mode will cause the security strength to drop by 1.9∼4.2 bits
(8∼10.7 bits when the list-decoding method proposed by MATZOV is used).

We show some future works: A good insertion in Pump could decrease the
time cost and increase the quality of basis, but the insert function in the Pump in

27

https://github.com/malb/lattice-estimator

the G6K is heuristic. So we plan to study the insert function and try to design
a more fittable function. In addition, we noticed that when using G6K to solve
the high-dimension lattice challenge, the program often displays a saturation
warning which we don’t know what caused. However, it often results in longer
time cost and we plan to solve this problem. Besides, we plan to give details
of our new security estimation of the hardness of LWE in the NIST schemes
by considering the influence of our optimized blocksize and jump selection and
two-step mode strategy.

References

1. L. Ducas, T. L. Eike Kiltz, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé,
Dilithium(Round 3). NIST PQC probject, 2020.

2. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Kyber(Round 3),” p. 42, 2020.

3. O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” Journal of the ACM, vol. 56, pp. 34:1–34:40, Sept. 2009.

4. V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with
Errors over Rings,” in Advances in Cryptology – EUROCRYPT 2010 (H. Gilbert,
ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 1–23, Springer,
2010.

5. S. Bai and S. D. Galbraith, “An Improved Compression Technique for Signatures
Based on Learning with Errors,” in Topics in Cryptology – CT-RSA 2014 (J. Be-
naloh, ed.), (Cham), pp. 28–47, Springer International Publishing, 2014.

6. R. Kannan, “Improved algorithms for integer programming and related lattice
problems,” in Proceedings of the fifteenth annual ACM symposium on Theory of
computing, STOC ’83, (New York, NY, USA), pp. 193–206, Association for Com-
puting Machinery, Dec. 1983.

7. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, Dec. 1982.

8. C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems,” in Fundamentals of Computation Theory
(L. Budach, ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 68–
85, Springer, 1991.

9. N. Gama, P. Q. Nguyen, and O. Regev, “Lattice Enumeration Using Extreme Prun-
ing,” in Advances in Cryptology – EUROCRYPT 2010 (D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, and H. Gilbert, eds.), vol. 6110, pp. 257–278, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. Series Title: Lecture Notes in Computer Sci-
ence.

10. Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better Lattice Security Estimates,” in
Advances in Cryptology – ASIACRYPT 2011 (D. H. Lee and X. Wang, eds.),
Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 1–20, Springer, 2011.

11. M. R. Albrecht, S. Bai, J. Li, and J. Rowell, “Lattice Reduction with Approximate
Enumeration Oracles,” in Advances in Cryptology – CRYPTO 2021 (T. Malkin
and C. Peikert, eds.), Lecture Notes in Computer Science, (Cham), pp. 732–759,
Springer International Publishing, 2021.

28

12. Y. Aono, Y. Wang, T. Hayashi, and T. Takagi, “Improved Progressive BKZ Al-
gorithms and Their Precise Cost Estimation by Sharp Simulator,” in Advances
in Cryptology – EUROCRYPT 2016 (M. Fischlin and J.-S. Coron, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 789–819, Springer, 2016.

13. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum Key
Exchange—A New Hope,” pp. 327–343, 2016.

14. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the expected
cost of solving usvp and applications to lwe,” in Advances in Cryptology – ASI-
ACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 297–322, Springer
International Publishing, 2017.

15. M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,”
in Advances in Cryptology – EUROCRYPT 2019 (Y. Ishai and V. Rijmen, eds.),
(Cham), pp. 717–746, Springer International Publishing, 2019.

16. D. Micciancio and P. Voulgaris, “Faster exponential time algorithms for the short-
est vector problem,” in Proceedings of the 2010 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), Proceedings, pp. 1468–1480, Society for Industrial
and Applied Mathematics, Jan. 2010.

17. R. Fitzpatrick, C. Bischof, J. Buchmann, Ö. Dagdelen, F. Göpfert, A. Mariano,
and B.-Y. Yang, “Tuning gausssieve for speed,” in Progress in Cryptology - LATIN-
CRYPT 2014 (D. F. Aranha and A. Menezes, eds.), (Cham), pp. 288–305, Springer
International Publishing, 2015.

18. P. Q. Nguyen and T. Vidick, “Sieve algorithms for the shortest vector problem are
practical,” Journal of Mathematical Cryptology, vol. 2, Jan. 2008.

19. G. Herold and E. Kirshanova, “Improved Algorithms for the Approximate k-List
Problem in Euclidean Norm,” in Public-Key Cryptography – PKC 2017 (S. Fehr,
ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 16–40, Springer,
2017.

20. G. Herold, E. Kirshanova, and T. Laarhoven, “Speed-Ups and Time–Memory
Trade-Offs for Tuple Lattice Sieving,” in Public-Key Cryptography – PKC 2018,
pp. 407–436, Springer, Cham, Mar. 2018.

21. A. Becker, N. Gama, and A. Joux, “Speeding up lattice sieving without increasing
the memory, using sub-quadratic nearest neighbor search,” 2015.

22. T. Laarhoven and A. Mariano, “Progressive Lattice Sieving,” in Post-Quantum
Cryptography (T. Lange and R. Steinwandt, eds.), (Cham), pp. 292–311, Springer
International Publishing, 2018.

23. L. Ducas, “Shortest Vector from Lattice Sieving: A Few Dimensions for Free,” in
Advances in Cryptology – EUROCRYPT 2018 (J. B. Nielsen and V. Rijmen, eds.),
(Cham), pp. 125–145, Springer International Publishing, 2018.

24. L. Ducas, M. Stevens, and W. van Woerden, “Advanced Lattice Sieving on GPUs,
with Tensor Cores,” in Advances in Cryptology – EUROCRYPT 2021 (A. Canteaut
and F.-X. Standaert, eds.), Lecture Notes in Computer Science, (Cham), pp. 249–
279, Springer International Publishing, 2021.

25. A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions in nearest neigh-
bor searching with applications to lattice sieving,” in Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms, SODA ’16, (USA),
pp. 10–24, Society for Industrial and Applied Mathematics, Jan. 2016.

26. G. Hanrot, X. Pujol, and D. Stehlé, “Analyzing Blockwise Lattice Algorithms
Using Dynamical Systems,” in Advances in Cryptology – CRYPTO 2011 (P. Rog-
away, ed.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 447–464,
Springer, 2011.

29

27. S. Bai, D. Stehlé, and W. Wen, “Measuring, Simulating and Exploiting the Head
Concavity Phenomenon in BKZ,” in Advances in Cryptology – ASIACRYPT 2018
(T. Peyrin and S. Galbraith, eds.), Lecture Notes in Computer Science, (Cham),
pp. 369–404, Springer International Publishing, 2018.

28. I. T. L. C. S. R. CENTER, “Post-quantum cryptography pqc selected algo-
rithms 2022.” https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

29. D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “Lwe with side information:
Attacks and concrete security estimation,” in Advances in Cryptology – CRYPTO
2020 (D. Micciancio and T. Ristenpart, eds.), (Cham), pp. 329–358, Springer In-
ternational Publishing, 2020.

30. M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck, “Estimat-
ing quantum speedups for lattice sieves,” in Advances in Cryptology – ASIACRYPT
2020 (S. Moriai and H. Wang, eds.), (Cham), pp. 583–613, Springer International
Publishing, 2020.

31. M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,”
in Advances in Cryptology – EUROCRYPT 2019 (Y. Ishai and V. Rijmen, eds.),
vol. 11477, pp. 717–746, Cham: Springer International Publishing, 2019. Series
Title: Lecture Notes in Computer Science.

32. MATZOV, “Report on the Security of LWE: Improved Dual Lattice Attack,” Apr.
2022.

33. E. W. Postlethwaite and F. Virdia, “On the Success Probability of Solving Unique
SVP via BKZ,” in Public-Key Cryptography – PKC 2021 (J. A. Garay, ed.),
vol. 12710, pp. 68–98, Cham: Springer International Publishing, 2021. Series Title:
Lecture Notes in Computer Science.

34. P.-Q. Chen, Yuanmi; Nguyen, Réduction de réseau et sécurité concrète du chiffre-
ment complètement homomorphe. PhD Thesis, 2013.

35. V. Lyubashevsky and D. Micciancio, “On Bounded Distance Decoding, Unique
Shortest Vectors, and the Minimum Distance Problem,” in Advances in Cryptol-
ogy - CRYPTO 2009 (S. Halevi, ed.), vol. 5677, pp. 577–594, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009. Series Title: Lecture Notes in Computer Science.

36. M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of Learning
with Errors,” Journal of Mathematical Cryptology, vol. 9, Jan. 2015.

37. C. Peikert, “A Decade of Lattice Cryptography,” Found. Trends Theor. Comput.
Sci., vol. 10, pp. 283–424, Mar. 2016. Place: Hanover, MA, USA Publisher: Now
Publishers Inc.

38. K. Xagawa, “Cryptography with Lattices,” p. 244, 2010.
39. T. Laarhoven, “Sieving for Shortest Vectors in Lattices Using Angular Locality-

Sensitive Hashing,” in Advances in Cryptology – CRYPTO 2015 (R. Gennaro and
M. Robshaw, eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 3–
22, Springer, 2015.

40. A. Becker and T. Laarhoven, “Efficient (Ideal) Lattice Sieving Using Cross-
Polytope LSH,” in Progress in Cryptology – AFRICACRYPT 2016 (D. Pointcheval,
A. Nitaj, and T. Rachidi, eds.), (Cham), pp. 3–23, Springer International Publish-
ing, 2016.

41. L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem,”
Combinatorica, vol. 6, pp. 1–13, Mar. 1986.

42. D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “LWE with Side Information:
Attacks and Concrete Security Estimation,” in Advances in Cryptology – CRYPTO

30

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II, (Berlin, Heidelberg),
pp. 329–358, Springer-Verlag, Aug. 2020.

43. L. Ducas, “leaky-LWE-Estimator.”
44. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected

Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 297–322, Springer
International Publishing, 2017.

45. M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning
with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3, pp. 169–203, 2015.

31

A Pump Simulator

To simulate the default G6K mode in the high dimension, we should use a Pump
Simulator to simulate the change of the lattice basis. Our Pump simulator is designed
under the assumption of HKZ, which means that the Gram-Schmidt lengths after
Pump obeys HKZ assumption. We have compared the Gram-Schmidt lengths after
Pump with the simulated one, and find out that the square error between them is close
to 0. It shows that the Pump simulator is accurate while it takes dimension-for-free
value as f = d ln(4/3)

ln(d/2π)
mentioned in section 2.4. Figure 7 shows the pump simulation

result and the pseudo code is as Alg.5.

Fig. 7. Pump Simulation

B More experimental details about pnj-BKZ simulator

Here we give more verification experiments of our pnj-BKZ simulator, reducing (n =
70, α = 0.005) LWE challenge lattice basis by pnj-BKZ with reduction parameter:
(β = 95, J = 9) and (β = 100, J = 12) respectively, ♯tours ∈ [1, · · · , 10]. Here under
the same reduction parameters, we do 20 times experiments. Figure 8 shows that our
pnj-BKZ simulator fits well to the actual pnj-BKZ reduction result.

Figure 9 shows that when jump = 9 or jump = 12, even the tours increase to
10, the ratios l

′′
i

Sim(l
′′
i)

are all between 0.975 and 1.05. It indicating that the pnj-BKZ

simulator calculate the estimation value of the actual value ∥b′′∗
i ∥ by Eq. (1) can

already reflect how the average of the norms of Gram-Schmidt vectors change during
each tour’s reduction of pnj-BKZ-(β, J). Therefore our pnj-BKZ simulator fits well
with the actual pnj-BKZ reduction result.

32

input : (l0, · · · , ld−1),d, κ, β, f .
output: A prediction for the logarithms of the Gram-Schmidt norms

l′i = ln (∥b′∗
i ∥) after Pump(κ, β, f).

1 dsieve ← β − f ;
2 for β′ ← dsieve to d do
3 if β′ < 40 then
4 f ′ ← 0;
5 else
6 f ′ ← β′ ln 4/3

ln(β′/2π)
;

7 if β′ − f ′ ≥ dsieve then
8 β ← β′; break;

9 for i← 0 to 44 do
10 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

11 for i← 45 to β do
12 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

13 for k ← 0 to d− β − 1 do
14 l′k ← lk;
15 flag ← True; //flag to store whether L[k,d] has changed
16 for k ← d− β to d− 46 do
17 β′ ← d− k; h← d; ln (V)←

∑h
i=1 li −

∑k−1
i=1 l′i;

18 if flag = True then
19 if ln (V) /β′ + cβ′ < lk then
20 l′k ← ln (V) /β′ + cβ′ ; flag ← false;
21 else
22 l′k ← ln (V) /β′ + cβ′ ;

23 ln (V)←
∑h

i=1 li −
∑k−1

i=1 l′i;
24 for k ← d− 45 to d− 1 do
25 l′k ←

ln(V)
45

+ rk+45−d;
26 for k ← 0 to d− 1 do
27 lk ← l′k;
28 return l0, · · · , ld−1;

Algorithm 5: Pump Simulator

33

(a) β = 95, jump = 9, ♯tours = 10

(b) β = 95, jump = 12, ♯tours = 10

Fig. 8. Prediction effect of pnj-BKZ simulator. To verify the effectiveness of our pnj-
BKZ simulator, we perform the following experiments, reducing (n = 70, α = 0.005)
LWE challenge lattice basis by pnj-BKZ with reduction parameter: blocksize β =
95, jump size J ∈ [1, · · · , 16], ♯tours ∈ [1, · · · , 10]. Here under the same reduction
parameters, we do 20 times experiments to obtain the average length of Gram-Schmidt
vector. 34

(a) Jump=9

(b) Jump=12

Fig. 9. ratio l
′′
i

Sim(l
′′
i)

, β = 95. Run 10 tours (β = 95, J = 9 and β = 95, J = 12 respec-
tively) of pnj-BKZ reduction on a lattice basis, and record the output of Gram-Schmidt
vector lengths each tour. For each pnj-BKZ reduction parameter, we did experiments
20 times to obtain the average length of Gram-Schmidt vector.

35

C Practical time cost model of pnj-BKZ and Pump

To find the optimal progressive blocksize and jump size selection strategy for solving
TU Darmstadt LWE challenges, it is necessary to construct pnj-BKZ and pump time
cost models. However, the asymptotic complexity of the sieving does not match the
actual cost well in the low-dimensional case3 (dimension ≤ 128). The multithread-
ing technology used in Pump will balance part of the time cost increases when the
dimension of sieving increases. Therefore, we construct a practical time cost model by
using the experimental method to test the running time of the Pump on a different
lattice basis for finding the optimal reduction parameters of solving TU Darmstadt
LWE challenges.

Here we need to point out that although the time-cost model based on the results
of experiments can well fit the actual cost of running pnj-BKZ, using testing machines
with different configurations will inevitably lead to changes in the time-cost model in
low-dimensional cases. Therefore, we only use this experimentally constructed time-
cost model when looking for the optimal progressive blocksize and jump size selection
strategy for solving LWE challenges.

Besides, when we construct the actual time cost model by testing the time cost of
pnj-BKZ on the specific machine, we find that each Pump in pnj-BKZ takes a different
time cost as the figure 10(a) shown. Especially, the Pump cost increases under the
incremental index smaller than d−β+f and decreases after d−β+f indices. It infers
that for a fixed blocksize β, the average Pump cost in pnj-BKZ will increase with the
growth of dimension d.

We can regard Tpump as a computational cost model of the (β − f)-dimensional
progressive sieve, i.e.

Tpump(β) =

β∑
j=β0

Tsieve(j) =

β−f∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(β−f−β0)

)
≤ 2cβ0 · 2

c(β−f+1)+o(β−f+1)

1− 2c
= O

(
2c(β−f)

)
≈ 2c(β−f)+c1 ,

(4)

where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30, and in
G6K-GPU, it is set to 50), c and c1 are the coefficients of the full sieve cost related to
sieve dimension, Tsieve(j) is the sieve cost with dimension j in dim-for-free.

However, we find that the asymptotic complexity of the sieving does not match
the actual cost well in the low-dimensional case. While dimension is low, the number
of threads used in Pump increases with the dimension, which balance out part of the
time cost increase. So in low dimension, c might be much lower than the theoretical
result.

In order to accurately predict the unknown coefficients c and c1 in the computa-
tional cost model, we use the experimental method to test the running time of Pump
on different lattice basis corresponding to different TU Darmstadt LWE challenges and
with different blocksizes β. The experimental results show that our computational cost
model above can fit well with the actual cost of Pump.

Take (β − f) as the independent variable, where f selected from equation (3)
in section 2.4(Sieving Algorithms and Pump in G6K) of our main body. log2 T is
obtained from the experimental test as the dependent variable, and we use the least
3 While dimension exceeds 128, the time cost for pump and pnj-bkz fits the theoretical

value well, we can directly use the time cost model of trple_gpu sieve declared in [24].

36

(a) Cost for each Pump under different index in pnj-BKZ-100 with one tour

(b) Average Pump cost in pnj-BKZ-β grows linearly with d

Fig. 10. Pump cost under different indices in pnj-BKZ and average Pump costs in
pnj-BKZ with change of d using Machine C.

37

(a) log2 Tpump: Test Pump independently.

(b) log2 Tpnj−BKZ: Average pnj-BKZ Cost. Test on random lattice basis from 180-
dimension SVP Challengehttps://www.latticechallenge.org/svp-challenge.

Fig. 11. Pump and pnj-BKZ Cost Figure while d = 180, Pump Oracle = gpu_sieve,
using Machine C: average Tpump in pnj-BKZ is lower than Tpump test directly, since
in pnj-BKZ, the Tpump cost distributes uneven. The different functions from β − f to
log2 Tpump result from the saturation of threads in CPU/GPU.

38

https://www.latticechallenge.org/svp-challenge

squares fitting to find c and c1. We use R2 to denote the coefficient of determination (R
squared) value above linear regression model. The coefficient of determination (R2 or R
squared) is a statistical measure in a regression model that determines the proportion of
variance in the dependent variable that can be explained by the independent variable.
Generally, the range of R2 is [0, 1] and when R2 closer is to 1, the better the model fits
the data.

From Figure 11(a), we can see that R2 is close to 1. It means that the fitting effect
is good. Figure 11(a) also shows that the logarithm of the computational cost of Pump
is linearly correlated to β− f , where f is selected from dim4free function mentioned in
equation (3) in section 2.4(Sieving Algorithms and Pump in G6K) of our main body.

Pnj-BKZ consists of a series of Pumps. If we regard pnj-BKZ as a combination of
Pumps with equal cost, the computational cost of pnj-BKZ can be calculated by the
sum cost of d+2f−β

J
progressive sieves on the (β − f)-dimension projection sublattice

with J = jump. However, as the figure 10(a) shows, each Pump in pnj-BKZ takes a
different cost. Especially, the Pump cost increases under the incremental index smaller
than d− β+ f and decreases after d− β+ f indices. It infers that for a fixed blocksize
β, the average Pump cost in pnj-BKZ will increase with the growth of dimension d. As
Figure 10(b) shown, we have tested on 5 fixed blocksizes and proven that the average
Pump cost in pnj-BKZ grows linearly with d.

We suggest that the average Tpump in pnj-BKZ is linear in d when d is small, and
independent with d when d is large. Combining the functions among Tpump, blocksize
β and dimension d, we can get the average Pump cost equation as

Tpump = min
{
2c(β−f)+c1 · (c2 · d+ c3) , 2

c′(β−f)+c′1
}

(5)

where 2c·(β−f)+c1 is the Pump cost related to blocksize β and f satifsies the equation
(3) in section 2.4(Sieving Algorithms and Pump in G6K) of our main body. For a
lattice with dimension d = 180, the average Pump cost in pnj-BKZ can be simulated
as Figure 11(b) and c2 and c3 can be computed by Figure 10(b) shown.

We believe that the relationship between average Tpump in pnj-BKZ and d is affected
by the early termination condition in the implementation of sieving algorithms in
Pump, where the algorithm stops when enough short vectors are generated. And we
conducted the following experiments to verify our suspect.

We know that the key parameter controlling the early termination condition is the
size of saturation ratio (saturation ratio is set to 0.5 by default in G6K). Therefore, we
test the time cost of the pump on each projection sub-lattice under different saturation
ratio. In order to remove the possible impact of the lift operation in the d4f technology,
we set both d4f and fextra to 0 in Figure 12(a). From Figure a we can see that the
phenomenon that the pump time cost increases with the increase of the initial index
of the projected sub-lattice is no longer obvious when saturation ratio is set to 1. In
other words, when the early termination condition is removed, the time cost of the
pump increasing phenomenon will disappear. In fact even if the d4f technique is used,
as long as the early termination condition is removed, the the time cost of the pump
increasing phenomenon will disappear. See Figures 12(b) and 12(c) for details.

If d is large enough, we suppose that the algorithm stops only when all vectors
are reduced, then the time cost of the Pump will achieve the theoretical complexity,
so the average Pump cost with the growth of d will also achieve an upper bound
T

(max)
pnj−BKZ = 2c

′(β−f)+c′1 . However, we are currently not able to calculate the exact
value of c′ and c′1. Besides, We believe that the reason for the gradual decrease in

39

(a) d = 180, β = 80, d4f = 0, fextra = 0.

(b) saturation ratio=3.0, d = 180, β = 100, d4f = 19,
fextra = 0.

(c) saturation ratio=1.0 d = 180, β = 100, d4f = 19, fextra =
12.

Fig. 12. The influence of early termination condition.

40

pump cost corresponding to the last d − β + f is the gradual decreasing dimension
sieving in these pumps.

While we construct the practical time cost model of Pump to find the optimal
reduction parameter, we found that the time cost of each Pump increases linearly with
the growth of the index (index < d − f) in each tour of PnjBKZ. Currently, we only
know that this phenomenon is caused by the early termination condition, but we don’t
know how the early termination condition affects the time cost of the Pump, and we
plan to find out the reason in the future.

D Choosing the number of LWE Samples

BKZ-only mode is the mainstream method for estimating the security of an LWE-
based crytosystem at current. It uses Kannan’s Embedding technique to reduce the
LWE problem to the uSVPγ problem and uses the GSA assumption to simulate the
change after a BKZ-β reduction. Its evaluation method was firstly proposed by Erdem
Alkim et al.. in [13] and has been proved the correctness in [44], which has both given
a lower bound of LWE samples and a blocksize β. We rename it ”2016 Estimation from
GSA for LWE” (refer to as 2016 Estimate).

In order to solve the LWE problem, the first thing we need to do is to determine
the number of LWE instances to construct the lattice basis described in the primal
attack. The strategy to select the number of LWE instances in 2016 Estimate is to find
the number of LWE instances m so that the following inequality holds and the value
of β is minimal. Let d = m+ 1, n be the dimension of LWE instance, then

min
β∈N

{
TBKZ(β) : σ

√
β ≤ δ (β)2β−d−1 · q

d−n−1
d

}
. (6)

The strategy in 2016 Estimate is to find m so that the LWE problem can be solved
with the least time cost when using a fixed blocksize of BKZ-β algorithm to solve it.

In G6K, its estimation method simulates a two-stage strategy. Their main differ-
ence from ours is that its two-stage strategy contains two tours of pnj-BKZ with a
fixed blocksize β simulated from GSA assumption and a progressive sieve algorithm
in dimension dsvp. It simulates the above scenario and try to find the minimal cost of
(β, dsvp) from

min
β,dsvp∈N

{
2 · TBKZ(β) + PSC(dsvp) : ∥πd−dsvp(v)∥ ≤ GH(Lπ[d−dsvp])

}
, (7)

where c = 0.349 in G6K-CPU and c = 0.292 in G6K-GPU.
Our strategy for solving the LWE problem is also simulating a two-stage strategy.

In the first stage, it will call the pnj-BKZ simulator to simulate the basis after a series of
pnj-BKZ. In the second stage, it tries to find the approximate shortest vector by Pump.
Based on the estimation scheme in the default G6K described above, we modify the time
cost of two pnj-BKZs and a progressive sieve to the time cost of serial pnj-BKZs follow-
ing the blocksize strategy and a progressive sieve. Besides, we use the new Pump esti-
mation scheme (as described in Algorithm: Pump estimation in LWE) to simulate the

norm of the target vector. Let P (dsvp) = Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
Lπ[d−dsvp:d]

))2
]
.

Thus, the inequality becomes

min
β,dsvp∈N

{TpnjBKZs (B) + PSC (dsvp) : P (dsvp) ≥ Psuccess} , (8)

41

where δ is the basis quality after pnj-BKZs. TpnjBKZs (B) will respectively call
BSSA and EnumBS to calculate the corresponding computational cost. To minimize
the number of attempts, we narrow the range of m to [m0 − τ,m0 + τ], where m0 is
the number of samples chosen in the estimation of default G6K and set a maximum
search field range τ . We use a dichotomization to find an m with minimal β and dsvp
satisfying the inequality (8). Furthermore, the concrete process is as the Algorithm 6.

input: n, q, α, mall, βbound, d(svp)bound, τ , Amall×n , bmall×1;
output: Smin, Tmin, m;

1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (7);
3 mmax,mmin ←

max {m satisfies equation (7)} ,min {m satisfies equation (7)};
4 while τ ̸= 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
;

6 Smin, Tmin ← EnumBS(rr(B), m0 + 1, σ2m0 + 1, J);
7 m1 ← m0;
8 for m ∈ {max{n,m0 − τ},min{mall,m0 + τ}} do
9 if m ≥ mmin and m ≤ mmax then

10 d← m+ 1, M ← σ2m+ 1;
11 Construct B by

(
Am×n,bm×1, q

)
;

12 S, Ttotal ← EnumBS(rr(B), d, M , J);
13 if Tmin < Ttotal then
14 Smin, Tmin, m1 ← S, Ttotal, m;

15 if m1 = m0 then
16 τ ← ⌊ τ

2
⌋;

17 m0 ← m1;
18 return Smin, Tmin, m0;

Algorithm 6: Our LWE Samples Selection Algorithm

Using the optimization strategy for LWE instance number selection, we can solve
challenges faster than G6K default strategy. See the table 8.

Table 8. LWE samples improvement simulated result with jump = 1.

(n,α) G6K’s m Our m Costnew/Costold
(50,0.025) 218 216 99.98%
(55,0.020) 229 234 98.76%
(60,0.015) 240 246 99.30%
(90,0.005) 305 312 95.11%

42

E A refined Two-step security estimator for solving LWE

In this section, we will give the details of our Two-step security estimator for solving
LWE. Firstly, we construct our Two-step LWE concrete hardness estimator in Section
E.1. Then, we give the experiments to verify the accuracy of our Two-step LWE esti-
mator in Section E.2. Finally, we compare the Two-Step mode estimator using different
reduction strategies (and considering whether to use the technology of list-decoding or
not) with the leaky-lwe estimator in Section E.3.

In addition, we will analyze the influence brought by optimized blocksize and jump
selection on the hardness of LWE in Section ??.

E.1 Construction of the Two-step LWE concrete hardness estimator

The Two-step mode was first proposed by [12], which calls a series of BKZ first for
lattice reduction and calls an enumeration algorithm to find the target vector at last.
In this paper, since NIST selected PQC schemes [1, 2] uses leaky-LWE-Estimator to
evaluate the security strength of their schemes, and we want to know the impact of our
Two-step mode of solving LWE with optimized blocksize and jump selection strategy
on the security strength of the NIST selected PQC schemes, we specialise to construct
Two-step LWE concrete hardness estimator mainly based on the leaky-LWE-Estimator.
In fact, based on other security evaluators such as Martin’s evaluator [45] to construct
our Two-step LWE concrete hardness estimator can also obtain similar conclusions
that our Two-step mode of solving LWE with optimized blocksize and jump selection
strategy will result in a decrease of the estimated security bits.

Specifically, we use a Two-step mode adapted to pnj-BKZ and Pump. It calls a
series of pnj-BKZ to reduce the basis first and finds a good timing to use a Pump
algorithm to search the approximate shortest vector in the end, to solve the LWE
problem. The concrete process is as Algorithm 1. By our pnj-BKZ simulator Algorithm
2 and Pump sieving dimension estimation Algorithm 3, we can guarantee that the last
Pump outputs the required target vector. More detail about verification experiments
can be seen in Section E.2.

Leaky-LWE-Estimator Therefore let’s briefly review the leaky-LWE-Estimator.
The reduction strategy S used in Algorithm indicates the blocksize and jump selection
strategy during the reduction step. There is a trivial reduction strategy S0 = {(βi =
i + 1, Ji = 1) | i = 1, ..., k}, here k can be set as the integer which smaller than
the dimension of embedding lattice d. In fact, the LWE solving strategy considered
by leaky-LWE-Estimator [29] is the same as S0. The difference is that leaky-LWE-
Estimator [29] will use the solving success probability to determine the final k value.
A natural thought is whether there is a better blocksize and jump selection strategy
to make the total cost of solving LWE more smaller, which also is an open problem
in Section 5.3 of [2]. In order to evaluate the impact of optimized blocksize and jump
selection strategy and Two-step mode on the security strength of NIST candidate
schemes, we give a new refined security hardness estimator for solving LWE through
the primal attack in the following Section ??.

Before we introduce the influence of optimized blocksize and jump selection strat-
egy, let us first illustrate that using the Two-step solving strategy whose reduction step
uses the trivial reduction strategy S0 can already decrease the security bits of these
NIST selected PQC schemes [1,2].

43

Unlike classical LWE hardness estimation [13], leaky-LWE-Estimator considers the
sum square of the length of the target vector as a random variable that follows the
chi-square distribution. We think it is more accurate to describe the true situation of
primal attack since (s, e) corresponding to each LWE instance is randomly selected
from the Gaussian distribution. So we also use the same idea that we treat the length
of the target vector as a random variable rather than some fixed expected value.

Besides, Leaky-LWE-Estimator considers the progressive BKZ-only mode. Let W
be the event of solving LWE during the run of Progressive BKZ, Wβ the probability
of being able to solve LWE during the round with blocksize β and Fβ = ¬Wβ . They
implicitly partition W as follows:

Pr[W] = Pr[W3] + Pr[W4 ∧ F3] + Pr[W5 ∧ F4 ∧ F3] + · · · =
d∑

β=3

Pr

[
Wβ ∧

β−1∧
j=3

Fj

]

Here Pr[Wβ] = Pr

[
x← χβ

∣∣∣∣x ≤ rr[d−β:d]

]
, and rr[d−β:d] is the length of the first

Gram-Schmidt vector of projective sub-lattice L[d−β:d] of current lattice basis which
has been reduced by Progressive BKZ with reduction strategy S0 = {(βi = i + 2,
Ji = 1) | i = 1, ..., β}.

Then leaky-lwe estimator based on a Heuristic assumption that events Wi and
Fj for i ≠ j are independent. Therefore, they calculate P [W] by Equation 9. See the
discussion in Section 4.1 of [33] or the implement of leaky-lwe estimator: Algorithm 7
for more details.

input: d;
output: β̄;

1 ptot ← 0, β̄ ← 0
2 profile← GSA profile of an LLL reduced, rank d, LWE instance basis
3 for β ← 3 to d do
4 profile← BKZ 2.0 simulator(profile, β);
5 plift ← P[t recovered in ⌊d/β⌋ rounds | πd−β+1(t) recovered this round]
6 prec ←P[x← χ2

β : x← χ2
β : x ≤ profile[d− β + 1]]

7 pnew ← (1− ptot) · prec · plift
8 β̄ ← β̄ + pnew · β
9 if p > 0.999 then

10 break

11 return β̄

Algorithm 7: Concrete hardness estimator of LWE in [29]

Here, the χ2
β is the chi-squared distribution with β degrees of freedom is the dis-

tribution of a sum of the squares of β independent standard normal random variables.

Pr[W] =

d∑
β=3

Pr

[
Wβ ∧

β−1∧
j=3

Fj

]
=

d∑
β=3

Pr [Wβ] · Pr

[
β−1∧
j=3

Fj

]
(9)

44

Equation 9 can be established only when Wi and event Fj for i ̸= j are independent
events, otherwise Pr

[
Wβ ∧

∧β−1
j=3 Fj

]
̸= Pr [Wβ] · Pr

[∧β−1
j=3 Fj

]
. From the line 4 of

Algorithm 7 we know that the quality of lattice basis will be improved by every time
a new bigger lattice reduction. The Heuristic assumption that events Wi and Fj for
i ̸= j are independent that leaky-lwe estimator based on, is reasonable to some extent,
if we assume that the lattice basis will be re-randomized each time it is reduced by a
stronger BKZ reduction. Below we reformulate this assumption formally:

Heuristic 6 The lattice basis is randomized by each time of a new bigger BKZ-β
reduced. Then every events Wi and Fj for i ̸= j are independent.

More specifically, if we set event Eβ for β ∈ {3, ...d} as the event that solv-
ing LWE during the process of running Progressive BKZ: BKZ-3,..., BKZ-β. Then⋃β

i=3

(
(Wi) ∧

∧i−1
j=3 Fj

)
= Eβ and

∧β−1
j=3 Fj = ¬Eβ−1. Then we obtain the same prob-

ability accumulation calculation recursive Equation 10 as that in the line 7 of of Algo-
rithm 7.

Pr[Eβ] = Pr[Eβ−1] + Pr[Wβ] · (1− Pr[Eβ−1]) (10)

Equation 10 holds if and only if Heuristic 6 is established. Since only when events Wi

and event Fj for i ̸= j are completely independent events, one can write Pr
[∧β−1

j=3 Fj

]
=

1− Pr[Eβ−1].
Then based on Equation 10 leaky-LWE-Estimator calculates the accumulation

probability Pr[Eβ] for β ∈ {3, ...} of solving LWE when using progressive BKZ with
reduction strategy S0 = {(βi = i+ 2, Ji = 1) | i = 1, ..., β}. And leaky-LWE-Estimator
will output β̄ when a certain β s.t P [Eβ] > 0.999. Here β̄ =

∑β
i=3 i · P [Ei].

Finally leaky-LWE-Estimator will call the Gate-count algorithm in [30] to calculate
the number of gates (time cost): gates(β̄) = C2 · agps20gates(β̄− d4f (β̄)) and memory
cost: bitspump(β̄) = 8(β̄ − d4f (β̄)) · agps20vectors(β̄ − d4f (β̄)) for solving the LWE
respectively. Here the Gate-court algorithm [30] can analyze the cost of sieving with
a classical and quantum circuit and C = 1

1−2−0.292 , a constant used to simulate the
time cost of progressive sieving when BDGL16 sieving [25] is used and progressive BKZ
blocksize. More detail about functions agps20gates() can be seen in [43] and d4f () is
Equation 2.4.

Two-step-LWE-estimator We use similar notations: W be the event of solving
LWE during running Progressive pnj-BKZ or the final high-dimension Pump of Two-
step mode, W

(1)

(β,J) be the event of solving LWE by using pnj-BKZ-(β, J), F
(1)

(β,J) =

¬W(1)
β and W

(2)

(dsvp)
as the event that a dsvp-dimension Pump solved LWE. Here

Pr[W
(1)

(β,J)] = Pr

[
x← χβ

∣∣∣∣x ≤ rr[d−β:d]

]
, and rr[d−β:d] is the length of the first Gram-

Schmidt vector of projective sub-lattice L[d−β:d] of current lattice basis which has been
reduced by Progressive BKZ with reduction strategy S = {(βi, Ji) | i = 1, ..., β}. In
Two-step mode we partition W as:

45

Pr[W] = Pr[W
(1)

(β1,J1)
] + Pr[W

(1)

(β2,J2)
∧ F

(1)

(β1,J1)
] + Pr[W

(1)

(β3,J3)
∧ F

(1)

(β2,J2)
∧ F

(1)

(β1,J1)
] + . . .

+Pr

[
W

(1)

(βend,Jend)
∧

end−1∧
j=1

F
(1)

(βj ,Jj)

]
+ Pr

[
W

(2)

(dsvp)
∧

end∧
j=1

F
(1)

(βj ,Jj)

]
=

end∑
i=1

Pr

[
W

(1)

(βi,Ji)
∧

i−1∧
i>1,j=1

F
(1)

(βj ,Jj)

]
+ Pr

[
W

(2)

(dsvp)

]
· Pr

[
end∧
j=1

F
(1)

(βj ,Jj)

]
(11)

Here W
(2)

(dsvp)
means during the process of Pump, dsvp-dimension progressive sieving

finds the projection vector of the target vector and F
(2)
dsvp

= ¬W(2)

(dsvp)
. Event W

(2)

(dsvp)

happened means all pnj-BKZ(β, J) in reduction step fail to find the target vector, other
else it will not call the final high-dimension Pump. So Event W

(2)

(dsvp)
is independent

with all events F(1)

(βj ,Jj)
. The value of dsvp will be set to solve this LWE with a probability

above 0.999. Set end as the index of the last block in the pnj-BKZ reduced sequence
and dstart is the dimension of the initial projection sub-lattice sieved by Pump.

Besides, set event E
(1)
i for i ∈ {1, 2, ...} as the event that solving LWE during the

process of running Progressive pnj-BKZ: pnj-BKZ(β1, J1),..., pnj-BKZ(βi, Ji). based on
Heuristic 6, we have Pr

[
W

(1)

(βi,Ji)
∧
∧i−1

i>1,j=1 F
(1)

(βj ,Jj)

]
= Pr

[
W

(1)

(βi,Ji)

]
·Pr

[∧i−1
i>1,j=1 F

(1)

(βj ,Jj)

]
and Equation 12.

Pr[E
(1)
i] = Pr[E

(1)
i−1] + Pr[W

(1)

(β,J)] ·
(
1− Pr[E

(1)
i−1]

)
(12)

We will use Equation 12 to calculate the cumulative probability of solving LWE
during reduction step, see line 8 of Algorithm 10.

However, how to calculate the probability of solving LWE when running the final
Pump is one of the main differences between our Two-step LWE estimator and leaky-
lwe estimator. First of all, the leaky-lwe estimator does not consider solving uSVP by
using Pump. Secondly, in leaky-lwe estimator, they calculate the cumulative solving
probability by Equation (10) which holds only when events Wi and Fj for i ̸= j are
independent. According to the Heuristic 6, we suppose that only when the quality of
lattice basis has been improved by a stronger reduction, the lattice basis will be re-
randomized so that events W

(2)

(i) and F
(2)

(j) for i ̸= j can be supposed as independent. In
fact during running the final Pump to solve LWE, although the Pump is a progressive
sieve, the lattice basis will not change during sieving. Therefore, the similar Heuristic
assumption that events W

(2)

(i) and F
(2)

(j) for i ̸= j are independent may not established.
Since unlike progressive BKZ every time a new bigger BKZ reduction will re-randomize
the lattice basis, the lattice basis does not change every time the sieving area L[i:d]

increases 1 dimension by extend left operation.
On the contrary, instead of considering that events W

(2)

(i) and F
(2)

(j) for i ̸= j are
independent, we consider that there is an inclusive relationship between W

(2)

(i) and
W

(2)

(j) for j ≤ i, i.e W
(2)

(i) ⊇ W
(2)

(j) . Since the lattice basis will not change during the
progressive sieving of Pump and running an i-dimension progressive sieving, it will
definitely running a j-dimension progressive sieving at first, for j ≤ i.

Setting event E
(2)

(β) as until the sieving dimension of a Pump increase to β, this
Pump find the projection of target vector which means during β-dimension progressive

46

sieving all the sieving dimension smaller than β failed to find the target vector. We
give following Heuristic assumption.

Heuristic 7 For i ∈ {2, ..., dsvp}, W
(2)

(i) ⊇ W
(2)

(i−1) ⊇ W
(2)

(i−2) · · · ⊇ W
(2)

(2). Then E
(2)

(i) =

W
(2)

(i) −W
(2)

(i−1).

According to Heuristic 7 we can calculate the cumulative probability of solving
LWE by using a high-dimension Pump by Equation 13, see the line 12 of of Algorithm
10 for more details.

Pr
[
E

(2)

(dsvp)

]
= Pr

[
W

(2)

(dsvp)

]
− Pr

[
W

(2)

(dsvp−1)

]
(13)

The difference between our Two-step-LWE-estimator and leaky-LWE-
Estimator In addition to consideration of Pump, another difference between our
Two-step-LWE-estimator and Leaky-LWE-Estimator is the way of calculating concrete
hardness bits of LWE.

Leaky-LWE-Estimator use Algorithm 7 to obtain the expected value of BKZ block-
size β̄ for solving LWE to estimate the hardness of LWE. We think it is inaccurate. In
the description of [33], we can get that

β̄ =

d∑
β=3

β · Pr

[
Wβ ∧

β−1∧
j=3

Fj

]
,

then the gate count of β̄ is

gate(β̄) = C2 · agps20gates(β̄ − d4f (β̄))

= C2 · agps20gates(
d∑

β=3

β · Pr

[
Wβ ∧

β−1∧
j=3

Fj

]
− d4f (

d∑
β=3

β · Pr

[
Wβ ∧

β−1∧
j=3

Fj

]
))

= C2 · agps20gates(
d∑

β=3

(β − d4f (β)) · Pr

[
Wβ ∧

β−1∧
j=3

Fj

]
))

= C2
d∏

β=3

agps20gates(β − d4f (β))
Pr

[
Wβ∧

∧β−1
j=3 Fj

]
)

=

d∏
β=3

GproBKZ(β − d4f (β))
Pr

[
Wβ∧

∧β−1
j=3 Fj

]
)
.

gate(β̄) in [33] is not an average cost for progressieve BKZ. Thus, instead of calculating
the expected value of BKZ blocksize β̄ then calculate the number of gates (time cost)
by β̄: gate(β̄) = C2 · agps20gates(β̄ − d4f (β̄)) and memory cost: bitspump(β̄) = 8(β̄ −
d4f (β̄)) · agps20vectors(β̄ − d4f (β̄)) for solving the LWE

However, we choose directly calculate the expected cost to give a more accurate
security estimation as it shown in Algorithm 8.

More specifically, we consider the total gates count for Two-step mode of solving
LWE divided by two parts: G1 and G2. Here, G1 is the number of gates of the case
that if we solving the u-SVP during running the reduction step without entering the
search step and G2 is the number of gates of the case that if we solving the u-SVP

47

input : n,m, q, χ, Psuccess;
output: GB;

1 GB← (0, 0); ptot ← 0;
2 rr← GSA profile of an LLL reduced LWEn,m,q,χ instance;
3 for β from β0 to d do
4 rr← SimBKZ(rr, β, 1);

5 Psuc(β) ← Pr

[
x← χβ

∣∣∣∣x ≤ rr[d−dsvp:d]

]
;

6 GBcum ← (
∑β

b=β0
GpnjBKZ(b),BpnjBKZ(β));

7 GB← GB+ GBcum · (1− ptot) · P (β);
8 ptot ← ptot + (1− ptot) · P (β);
9 if ptot > Psuccess then

10 break;

11 return GB;
Algorithm 8: Expected Cost Version of [33].

when we running the last pump in the search step. See Equation 14 and Equation 16
for more detail.

In fact, the main difference between our Two-step-LWE-estimator and leaky-LWE-
Estimator is the calculation of gates count of searching step G2 since our estimator
considers a two-step attack rather than reduction only mode (using BKZ class algo-
rithm do reduction only to find the target vector). See Equation 16 for more detail.

Gates count of reduction step In this part, we introduce how to count the
numbers of Gates when we solved uSVP in the reduction step. After we calculate
each Pr[E

(1)
i] value for i ∈ {1, 2, ...} by using Equation 12 in the reduction step, we

can calculate the expected value of gates counts G1 of reduction step. We evaluate
the expected value of gates counts G1 of reduction step by Equation 14, see line 7 of
algorithm 10 for more details.

G1 =

end∑
i=1

[
Pr[W

(1)

(βi,Ji)
] ·

(
1− Pr[E

(1)
i−1]

)]
·

βi∑
l=40

Gatescount(l − d4f(B)) · d− βi

Ji
(14)

Besides, the d4f(B) represents the maximum d4f value under current lattice basis
B which initially has been reduced by a LLL and then reduced by a series pnj-BKZ.
We give a d4f estimation d4f(B) based on the current quality of lattice basis:

max
f

: ∥πf (v)∥ ≤ GH
(
L[f :d](B)

)
·
√

4/3 (15)

As the quality of lattice basis B gradually improved, the maximum d4f value d4f(B)
also increased since the better quality of lattice basis we get, the bigger the value of
GH

(
L[f :d](B)

)
. Equation 15 is more accurate than that given in [23]. Since the d4f

estimation given in [23] is based on an assumption that the current quality of lattice
basis reaches at least BKZ-d/2 reduction. Here d is the dimension of the embedding
lattice. However, when we estimate the reduction effort of progressive BKZ with grad-
ually increased blocksize, the quality of lattice basis also gradually improved rather
than achieving BKZ-d/2 reduced at the very beginning.

48

Here we use the pnj-BKZ simulator to simulate how the quality of lattice basis
changes during the process of reduction by a series pnj-BKZ. Therefore, compared
with the d4f estimation in [23] we know the current quality of lattice basis which can
help us to give the more accurate estimation of d4f value.

Gates count of searching step In this part, we introduce how to calculate the
numbers of Gates when we solved u-SVP in the searching step. Because when we solved
u-SVP in the searching step, it meant that all the pnj-BKZ algorithms in the reduction
step failed to find the target vector. Meanwhile, the pump which we called to find the
target vector in the searching step, uses a progressive sieving to find the target vector.
Thus, based on Equation 13 to calculate Pr

[
E

(2)

(dsvp)

]
, we use Equation 16 to calculate

the expected value of gates of the searching step, see line 12 of Algorithm 10 for more
details.

G2 =

dsvp∑
i=50

Pr
[
E

(2)

(i)

]
·
(
1− Pr[E

(1)

(end)]
)
·

[
βend∑
l=40

Gatescount (l − d4f(B)) · d− βi

Ji
+

i−1∑
j=50

Gatescount (j − d4f(j))

] (16)

When considering the cost of solving u-SVP during the searching step, it means that
all pnj-BKZ did in the reduction step failed to find the target vector. We calculate the
Pr

[∧end
j=1 F

(1)

(βj ,Jj)

]
in Equation 16 to represent the probability of all pnj-BKZ did in the

reduction step failed to find the target vector. Besides before starting the big dimension
Pump in the searching step, the total time cost of solving the u-SVP in the searching
step already contains the full time cost of all pnj-BKZs we run in the reduction step.
Therefore, the total gate count of reduction step is

∑βend
l=40 Gatescount(l−d4f(B)) · d−βi

Ji

and when the dimension of SVP Oracle we considered equals i, the gate count of
searching step is

∑i−1
i>1,j=50 Gatescount (j − d4f(j)). Besiedes, the d4f(j) is calculated

by Equation 2.4.
Finally the total gates count for Two-step mode of solving LWE G : = G1 +G2.

Memory count of Two-step LWE concrete estimator The Memory count
of Two-step LWE concrete estimator we set as the maximum memory used during
reduction step and searching step as Eq. (17).

B = bitscount(max {max {βi ∈ S} , dsvp − d4f(B)}) (17)

The number of LWE instances chosen in Two-step LWE concrete es-
timator Given a set of LWE parameters (n,m, q, σs, σe) waiting for hardness eval-
uation. Determining the number of LWE instances used to construct the embedding
lattice basis also will affect the security estimation of LWE. As the analysis in section
D, we know that by optimizing the choice of the number of LWE instances according
to the blocksize and jump selection strategy, the total cost of solving LWE decreased
at most 5%. More detail also can be seen in Appendix D. Therefore we choose the
same method in [13] and leaky-lwe estimator [43] to initially choose the number of
LWE instances to construct the embedding lattice basis.

49

Estimate Hardness of LWE in Two-step Mode In this part, we give the
detailed pseudocode of our Two-step LWE concrete hardness estimator, see Algorithm
10 for more detail. See https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
for the code implementation of our Two-step LWE concrete hardness estimator.

input : n,m, q, χ, Psuccess;
output: GBmin;

1 GBmin ← (+∞,+∞); GB← (0, 0); GBpre ← (0, 0); ptot ← 0;
2 rr← GSA profile of an LLL reduced LWEn,m,q,χ instance;
3 for β from β0 to d do
4 rr← SimBKZ(rr, β, 1);

5 P (β) ← Pr

[
x← χβ

∣∣∣∣x ≤ rr[d−dsvp:d]

]
;

6 GBcum ← (
∑β

b=β0
GpnjBKZ(b),BpnjBKZ(β));

7 GBpre ← GBpre + GBcum · (1− ptot) · P (β);
8 ptot ← ptot + (1− ptot) · P (β); GBcsieve ← (0, 0); pctot ← ptot;
9 for dsvp ← β0 to d do

10 P (dsvp) ← Pr

[
x← χdsvp

∣∣∣∣x ≤ GH(rr[d−dsvp:d])

]
;

11 GBcum ← (GBcum[0] +
∑dsvp

b=β+1 Gsieve(b),Bsieve(dsvp));
12 GBcsieve ← GBcsieve + GBcum · (1− pctot) · P (dsvp);
13 pctot ← pctot + (1− pctot) · P (dsvp);
14 if pctot > Psuccess then
15 break;

16 GB← GBpre + GBcsieve;
17 if GB[0] < GBmin[0] then
18 GBmin ← GB;

19 return GBmin;
Algorithm 9: Two-step LWE estimator with cum_prob

Consider the dimension-for-free situation for the estimator, the estimator is de-
scribed as Algorithm 10.

E.2 Experiments on verifying the accuracy of Two-step LWE
estimator

In this section, we mainly focus on the success probabilities of solving LWE by Two-step
mode, especially the success probabilities of the last pump when using different sieving
dimensions. we give the detail of our verification experiments to verify the Heuristic 7
which Equation 13 based on and the accuracy of Equation 13.

In particular, we use different parameters of the LWE instances to test the success
probabilities of the last pump when using different progressive sieving dimensions.
We choose four different LWE parameters (n = 40, q = 1601,m = 1600, α = 0.005),
(n = 40, q = 1601,m = 1600, α = 0.015), (n = 55, q = 3037,m = 3025, α = 0.005),
(n = 45, q = 2027,m = 2025, α = 0.010) to test. For each LWE parameter, we initial

50

https://github.com/Summwer/lwe-estimator-with-pnjbkz.git

input : n,m, q, χ, S;
output: GBmin;

1 Function TwoStepLWEEsimator(n,m, q, χ, S):
2 GBmin ← (+∞,+∞); GB← (0, 0); GBpre ← (0, 0); ptot ← 0;
3 rr← GSA profile of an LLL reduced LWEn,m,q,χ instance;
4 for β ∈ S or (β, J) ∈ S do
5 rr← BKZSim(rr, β); // PnjBKZSim(rr, β, J) if J > 1;

6 Psuc(β) ← Pr

[
x← χ2

β

∣∣∣∣x ≤ rr[d−β:d]

]
;

7 GBcum ← (
∑β

b=β0
pbgate(b− d4f(b)), bit(β − d4f(β)));

8 GBpre ← GBpre + GBcum · (1− ptot) · P (β);
9 ptot ← ptot + (1− ptot) · P (β); GBcsieve ← (0, 0); Psuc(β0 − 1)← 0;

10 for dsvp ← dstart to d do

11 Psuc(dsvp) ← Pr

[
x← χ2

dsvp

∣∣∣∣x ≤ (GH(rr[d−dsvp:d]))
2

]
;

12 GBcum[0]← GBcum[0] + pgate(dsvp − d4f(dsvp));
13 GBcum[1]← max{GBcum[1], bit(dsvp − d4f(dsvp))};
14 GBcsieve ← GBcsieve + GBcum · (1− ptot) · (P (dsvp)− P (dsvp−1));
15 if ptot + (1− ptot) · P (dsvp) ≥ 0.999 then
16 break;

17 GB← GBpre + GBcsieve;
18 if GB[0] < GBmin[0] then
19 GBmin ← GB;

20 return GBmin;
Algorithm 10: Two-step LWE Estimator

51

100 random LWE instances to construct 100 different lattice bases. Each lattice basis
corresponds to an uSVP instance with a different target vector. Then we use pnj-BKZ
to do pre-processing by some well-chosen reduction strategy S. Using LWE parameter
(n = 40, q = 1601,m = 1600, α = 0.005) for example, we set S = {(β1 = 10, J1 =
1), ..., (βend = 17, Jend = 1)}. Here, 100 different lattice basis under the same LWE
parameter is used to simulate the situation that the distribution of the error vector of
the LWE instance.

After pre-processing, we set the key parameter in the Pump of solving LWE, the
value of κ. κ ∈ {0, ..., d} will decide the size of the SVP we need to solve. In [13]
they consider that one can solve an LWE by solving a d− κ dimension SVP on L[κ,d]

as long as σ
√
d− κ < GH(L[κ,d]). Here σ

√
d− κ is the expected value of the target

vector. However, since we consider the square sum of the length of the target vector
as a chi-squared distribution with d − κ degrees of freedom, we calculate the cumula-
tive probability of solving LWE when using a high-dimension Pump in section E.1 by
Equation 13, and the line 12 of of Algorithm 10. To verify the Heuristic 7 Equation 13
based on and the accuracy of Equation 13, we actual test the success rate of solving
LWE by Pump with different κ value.

More precisely, we set the dsvp in Pump from 30 to d by adjusting the value of κ
and use each Pump with different dsvp value to try to find the solution of LWE on
100 different lattice basis which is reduced by pre-processing. Meanwhile, we record
the actual success rate of each Pump with different dsvp values on 100 different lattice
bases. Finally, we compare the actual success rate of each Pump with different dsvp
with our estimation success rate of solving LWE by Pump in Equation 13, and the line
12 of Algorithm 10. See Figure 13 for more detail.

From Figure 13 we can see that the predication of the success rate of solving LWE
given by Eq. (13), and the line 12 of Algorithm 10 is consistent with the experimental
results, which means our analysis and estimation in Section E.1 is accurate.

E.3 The comparison of different estimation modes

In this part, we compare the Two-Step mode estimator using different reduction strate-
gies (and considering whether to use the technology of list-decoding or not) with the
leaky-lwe estimator.

We draw a Figure 14 to describe the relationship between the success rate of solv-
ing LWE estimated by different estimators and corresponding the expected number
of gates. The blue line in Figure 14 is the relationship between the expected gates
count and the accumulation success probability of solving LWE by pure progressive
BKZ with trivial reduction strategy S0. These Two-step lines in Figure 14 are the re-
lationship between the expected gates count and the accumulation success probability
of solving LWE by two-step mode whose reduction step also used a trivial reduction
strategy S1 : S1 ⫋ S0 (In two-step mode it will end the reduction step at a suitable
time to make the total cost minimal). These Enumbs lines in Figure 14 also are the
relationship between the expected gates count and the accumulation success probabil-
ity of solving LWE by two-step mode while the reduction strategy is the optimized
blocksize and jump selection strategy. The [AGPS20] means estimation does not use
the list-decoding technology proposed in [32], while [MATZOV22] means using the
list-decoding technology [32] to evaluate the security strength.

From Figure 14 we can see that no matter the LWE challenge instances or the LWE
instances in NIST candidates, the accumulation success probability of solving LWE

52

(a) n = 40, α = 0.005, q = 1601 (b) n = 40, α = 0.015, q = 1601

(c) n = 55, α = 0.005, q = 2501 (d) n = 45, α = 0.010, q = 2027

Fig. 13. Verification experiments of Equation 13 which calculates the success proba-
bility of solving LWE by Pump. See the line 12 of of Algorithm 10 for more details.

53

by two-step mode is much faster approach 1 than that of the leaky-lwe estimator.
Besides the expected number of gates in the two-step solving mode is smaller than
that of the leaky-lwe estimator when the accumulation success probability of solving
LWE approaches 1. The evaluation result shows that the leaky-lwe estimator gives an
optimistic estimation. In addition, both the optimized blocksize and jump selection
strategy and the list-decoding technology proposed in [32] can further decrease the
estimated security strength by replacing the trivial reduction strategy in Two-step
mode. See Figure 14 or Table 9 for more details about the difference between different
estimation modes.

(a) n, α = 40, 0.025, ∆E(log2(G)) = 8.11 (b) n, α = 80, 0.005, ∆E(log2(G)) = 8.24

(c) Kyber512, ∆E(log2(G)) = 10.48 (d) Kyber1024, ∆E(log2(G)) = 10.68

Fig. 14. Comparison between the output of Cumulated Cost Version of [33](Algo-
rithm 8) and Two-step mode(Algorithm 10, this work) for lwe challenge (n, α) ∈
{(40, 0.025), (80, 0.005)} and on Kyber 512 and 1024 [2]. The difference in predicted
mean first viable block size between the two simulators is reported as ∆E(log2(G)).

F The Optimized Strategy for the LWE Challenge

In Table 10, we give the optimized blocksize and jump strategy generated by EnumBS
for solving TU Darmstadt LWE Challenge instances with

(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}

54

Table 9. Security bits decreasing (∆E(log2(G))) under different estimation modes

(n=40,α=0.025) (n=80,α=0.005) Kyber512 Kyber1024
Two-Step with Trivial Strategy [AGPS20] 3.78 3.51 3.34 3.34

Two-Step with Trivial Strategy [MATZOV22] 7.68 7.33 9.29 9.83
Two-Step with EnumBS [AGPS20] 4.29 4.34 4.55 4.22

Two-Step with EnumBS [MATZOV22] 8.11 8.24 10.48 10.68

successfully.

Table 10. Blocksize and Jump strategy generated by EnumBS.

(n, α) Strategy (β, jump) EnumBSGen/s
(40,0.035) [(76,8),(91,9),(117,10),(117,4),(132,4)] 1700
(40,0.040) [(73,8),(117,10),(117,10),(119,4),(135,4),(147,4)] 2800

(50,0.025) [(76,8),(91,9),(114,10),(117,10),(117,4),
(128,4),(141,4),(147,4)] 5200

(55,0.020) [(94,9),(117,10),(117,10),(117,4),(128,4),
(132,4),(141,4),(147,4)] 6500

(90,0.005) [(89,9),(92,9),(116,10),(116,10),(117,10),(117,10),
(117,4),(118,4),(121,4),(128,4),(132,4),(138,4),(141,4)] 12000

G Impact on the NIST lattice based scheme
In this section, we quantitative analysis of the impact of the Two-step LWE solving
mode and optimized blocksize and jump selection strategy on NIST PQC schemes.

We change the gate count of list-decoding from [30] to [32] in the estimation.
By using the list-decoding technology proposed in [32] it will further decreasing the
estimated security strenth of NIST PQC candidates.

The evaluation results show that combining our optimized blocksize and jump
selection strategy and Two-step mode with the new gate count of the list-decoding
method [32] can further reduce the estimated security bits of LWE. Specifically, under
the RAM model, the estimated security bit of LWE in NIST schemes [28] can be reduced
by 8.0∼10.7 bit. Besides, in Table 11 even though ∆B is negative (our strategies use
bigger memory). But since the time cost (Number of gates G) is far larger than than the
memory cost B, the impact of memory growth can be ignored with such a significant
decreasing in time cost. Specifically, in Table 11 even though ∆B is negative (Two-step
mode use bigger memory), ∆ log2(G + B) is same as ∆ log2 G between 8.0∼10.7 bit
using list-decoding skill proposed in [32]. It means that the increase in memory will
partially offset the decrease in the number of gates. However, in general, the time cost is
still decreasing even considering the extra increase of memory. See Table 11 for details.

Here G and B in Table 11 respectively represent the total log number of logic circuits
for event W happened and the maximum memory needed for event W happened.

H Pseucode for BSSA
The concrete process for BSSA is as Alg. 11.

55

Table 11. Security Estimation results of different estimator for NIST schemes♮.

log2G/log2(gate) log2B/log2(bit)
∆GPrevious Two-Step EnumBS Previous Two-Step EnumBS

Kyber512 151.5 142.6 141.4 93.8 99.1 98.1 10.1
Kyber768 215.1 204.4 196.3 138.5 143.2 137.3 10.7
Kyber1024 287.3 277.7 276.9 189.7 195.4 194.6 10.4
Dilithium-I 158.6 150.8 150.6 97.8 104.3 104.4 8.0
Dilithium-II 216.7 207.9 207.9 138.7 145.3 145.3 8.8
Dilithium-III 285.4 277.0 277.0 187.4 194.1 194.1 8.4

♮ In the column of G/log2(gates) and B/log2(bit), respectively reflect the security bit estimations
and memory bit estimations of LWE instances in NIST schemes with different estimators. Here
under the influence of the optimized blocksize and jump selection and two-step mode strategy,
∆G means the security bits decreasing under the RAM model and ∆G+∆B means the security
bits decreasing by considering the sum of time cost and memory cost. MATZOV presented a
new list-decoding method in 2022 [32] and Martin Albrecht et al estimates its gate count in his
LWE estimator(https://github.com/malb/lattice-estimator), so we apply the new gate count
of list-decoding mehthod for the estimation on the NIST standardization.

input : rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2;
output: Tmin, Smin;

1 Function BSSA(rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2):
2 d← len(rr0); PSC(0) ← ProSieveDimEst(rr0, F (⋆,D)); BS[βstart] = (rr0, [], 0,PSC(0));
3 for β ← βstart to d do
4 T

(min)
PnjBKZs ← +∞;

5 for βsstart ← βstart to β − 1 do
6 bssstart ← BS [βsstart]; bs← (∅, ∅,+∞,+∞);
7 Update bs∗ under strategy bssstart.S ∪ [(β, 1, ♯tours(BKZ-β)];
8 for βalg ← β + 1 to d do
9 for j ← Jmax(β

alg) to 1 do
10 T ′ ← +∞;
11 for t ← 1 to ♯tours(PnjBKZ-(βalg, j)) do
12 Update bs′ under strategy bssstart.S ∪ [(βalg, j, t)];
13 if bs′.PSC < bs∗.PSC then
14 T ′ ← bs′.TPnjBKZs;
15 break;

16 if bs.TPnjBKZs > T ′ then
17 bs← bs′;

18 if T
(min)
PnjBKZs > bs.TPnjBKZs then

19 T
(min)
PnjBKZs ← bs.TPnjBKZs; BS [β] ← bs;

20 bsmin ← min
bs.TPnjBKZs+bs.PSC

BS;

21 return Tmin ← bs.TPnjBKZs + bs.PSC, Smin ← bsmin.S;

Algorithm 11: BSSA

56

https://github.com/malb/lattice-estimator

	Improved Progressive BKZ with Lattice Sieving and a Two-Step Mode for Solving uSVP

