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Abstract. The Distorted Bounded Distance Decoding Problem (DBDD)
was introduced by Dachman-Soled et al. [Crypto ’20] as an intermedi-
ate problem between LWE and unique-SVP (uSVP). They presented an
approach that reduces an LWE instance to a DBDD instance, integrates
side information (or “hints”) into the DBDD instance, and finally re-
duces it to a uSVP instance, which can be solved via lattice reduction.
They showed that this principled approach can lead to algorithms for
side-channel attacks that perform better than ad-hoc algorithms that do
not rely on lattice reduction.
The current work focuses on new methods for integrating hints into a
DBDD instance. We view hints from a geometric perspective, as opposed
to the distributional perspective from the prior work. Our approach pro-
vides the rigorous promise that, as hints are integrated into the DBDD
instance, the correct solution remains a lattice point contained in the
specified ellipsoid.
We instantiate our approach with two new types of hints: (1) Inequality
hints, corresponding to the region of intersection of an ellipsoid and a
halfspace; (2) Combined hints, corresponding to the region of intersec-
tion of two ellipsoids. Since the regions in (1) and (2) are not necessarily
ellipsoids, we replace them with ellipsoidal approximations that circum-
scribe the region of intersection. Perfect hints are reconsidered as the
region of intersection of an ellipsoid and a hyperplane, which is itself an
ellipsoid. The compatibility of “approximate,” “modular,” and “short
vector” hints from the prior work is examined.
We apply our techniques to the decryption failure and side-channel at-
tack settings. We show that “inequality hints” can be used to model de-
cryption failures, and that our new approach yields a geometric analogue

⋆ This project is supported in part by NSF grant #CNS-1453045 (CAREER), by
financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S. De-
partment of Commerce, National Institute of Standards and Technology, and by
Intel through the Intel Labs Crypto Frontiers Research Center.

⋆⋆ Supported in part by the Clark Doctoral Fellowship from the Clark School of Engi-
neering, University of Maryland, College Park

https://orcid.org/0000-0001-6797-641X
https://orcid.org/0000-0001-8284-6795
https://orcid.org/0009-0002-0090-1944
https://orcid.org/0000-0001-6953-0710


of the “failure boosting” technique of D’anvers et al. [ePrint, ’18]. We
also show that “combined hints” can be used to fuse information from a
decryption failure and a side-channel attack, and provide rigorous guar-
antees despite the data being non-Gaussian. We provide experimental
data for both applications. The code that we have developed to imple-
ment the integration of hints and hardness estimates extends the Toolkit
from prior work and has been released publicly.

1 Introduction

LWE-based cryptosystems are among the foremost candidates for post-quantum
standardization and, as such, are expected to be deployed in the next few years.
It is therefore critical to understand the concrete security of LWE, i.e., exactly
how much computational cost is needed to solve an LWE instance for a particular
choice of parameters. Parameters for standardized cryptosystems are typically
set so that the best known (quantum) attack in a given computational model
requires some minimum amount of time (e.g. a common target is “128-bit secu-
rity”). If the state-of-the-art algorithm for solving LWE is significantly improved,
parameter settings of all cryptosystems relying on LWEmust be modified in order
to retain their security guarantees.

One of the commonly used algorithms for solving LWE follows this template:
(1) Embed the LWE instance into a uSVP instance, which asks to find the shortest
non-zero vector in a lattice, and then (2) solve the uSVP instance using a type
of algorithm known as lattice reduction. In this work, we consider algorithms
that follow the above template, and our goal is to develop improved methods
for the first step—in the case that side information about the LWE secret or
error is available. While side-channel information is not considered as part of
the standard security model, it remains an important practical consideration,
especially for standardized cryptosystems which will be widely deployed in a
range of settings. Indeed, Round 3 of the NIST post-quantum cryptography
(PQC) standardization effort focused attention on resistance to side-channel
attacks [1].

Dachman-Soled et al. [17] created a toolkit for integrating so-called “hints”
into uSVP instances that can then be solved via lattice-reduction algorithms. To
achieve this, they introduced an intermediate lattice problem known as DBDD
(Distorted Bounded Distance Decoding). A DBDD instance consists of three
parts: A lattice Λ, a mean vector µ, and a covariance matrix Σ. The original
lattice Λ represents the lattice obtained through Kannan’s embedding–which is
a way to construct a lattice in which the LWE secret/error is the shortest non-
zero vector. Subsequently, side information can sometimes be used to sparsify or
reduce the dimension of the original lattice. The remaining parts of the instance
(µ,Σ), correspond to a mean vector and covariance matrix, and these represent
distributional information known about the LWE secret/error. (µ,Σ) originally
represents the fact that the secret/error is drawn from a distribution with known
mean/covariance determined by the specifications of the cryptosystem. Subse-
quently, it captures the conditional distribution on the secret/error, given the
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side information, in cases where this conditional distribution remains well ap-
proximated by a Gaussian. Thus, certain types of information on the structure or
on the distribution of the secret can be integrated into a DBDD instance, starting
with the original instance, and then modifying Λ, and/or (µ,Σ) appropriately.
A DBDD instance can then be converted into a uSVP instance using homog-
enization—centering the ellipsoid at the origin—and isotropization—applying
a linear transformation that simultaneously transforms the ellipsoid into a ball
and transforms the lattice into a different lattice with higher volume. Finally, the
resulting uSVP instance is fed into the BKZ [49] lattice reduction algorithm to
obtain the shortest non-zero vector in the transformed lattice. This short non-
zero vector allows direct recovery of the LWE secret/error. [17] demonstrated
their methodology with numerous examples, and provided an open-source im-
plementation to predict the security decay (i.e. reduction in the BKZ blocksize,
β, required for key recovery) of an LWE instance given a set of hints.

The approach of the current work is to provide an alternate geometric in-
terpretation to the distributional approach considered in [17]. We alter the re-
duction from LWE to DBDD, by viewing the solution of an LWE instance (with
secret of dimension n and error of dimension m, for a total dimension d = n+m)
as the (unique) integer point contained in an ellipsoid that is constructed from
the given LWE instance. Thus, the problem of finding the unique integer point
is captured by the DBDD instance (Zd,µ,Σ). Here, µ and Σ are the center and
the positive semidefinite “shape” matrix defining the ellipsoid. Interestingly, this
geometric interpretation appears to have a connection with quadratic forms in
lattices (e.g., [23]), warranting further investigation.

We now view “hints” as geometric operations on the DBDD ellipsoid, as
opposed to inducing a conditional probability distribution (represented by a
mean and covariance) on the secret/error. In our framework, the information
obtained from a hint corresponds to the intersection of the DBDD ellipsoid with
another convex body such as a hyperplane (perfect hints), halfspace (inequality
hints), or another ellipsoid (combined hints). This region of intersection is itself
a convex body, but may not be an ellipsoid. Thus, to obtain the updated DBDD
instance, we compute (an approximation of) the minimal volume ellipsoid that
circumscribes the region of intersection. Such ellipsoids are well-studied in the
literature on convex geometry and are known as Löwner-John ellipsoids. Since
the ellipsoid circumscribes the region of intersection, replacing the original DBDD
ellipsoid with the new ellipsoid provably maintains the DBDD invariant that the
LWE secret corresponds to a lattice point contained in the ellipsoid.

1.1 Benefits and Drawbacks of Our Geometric Approach

Our approach establishes a connection between ellipsoidal approximations in
convex geometry and analysis of the impact of side information on the concrete
hardness of an LWE instance. This opens up a body of literature which we only
begin to tap into in this work.

One benefit of our geometric approach is that in some cases it can more
naturally handle the type of information obtained from side channels. For ex-
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ample, in decryption failure attacks, the type of information obtained is exactly
an inequality hint on the LWE secret and error. The prior work of [17] proposed
an ingenious way of capturing the information obtained from a decryption fail-
ure, without the direct use of inequality hints. As we describe in more detail
in Section 1.2, our framework allows for direct incorporation of inequality hints
as they correspond to the region of intersection of an ellipsoid and a halfspace.
Our approach is also inherently compatible with continuous variants of LWE (see
Remark 4 for further details).

Another benefit is that our approach removes the need for the Gaussian
assumption. Not all natural distributions on the LWE secret and error are Gaus-
sian. For example, the data obtained from the side-channel attack (SCA) of
Bos et al. [13] (which we use for experimentation in Section 5.3) gives rise to a
probability distribution on each secret key coordinate that is far from a Gaus-
sian distribution. What does one do now if one would like to initialize a DBDD
instance with this SCA distribution and then integrate additional hints? One
approach is to simply treat the SCA distribution as a Gaussian and apply the
hint formulas based on conditional Gaussians from the prior work. In this case,
however, there are no guarantees that the DBDD invariant—that the LWE secret
corresponds to a lattice point contained in the ellipsoid—holds after hint inte-
gration, and so the obtained BKZ-β estimates may be inaccurate (see Figure 2
for a case where underestimation of the ellipsoid norm impacts the accuracy
of BKZ-β estimates). Our method provides rigorous guarantees even when the
data distribution is non-Gaussian. Specifically, our approach can be viewed as
a “worst case” approach that guarantees that the secret is contained in the
evolving DBDD ellipsoid, even for the “worst case” distribution over the secret.

We show that in the perfect hint setting, even though the data is (approx-
imately) Gaussian, our modeling leads to slightly more accurate estimates of β
in certain regimes. 3 Further, despite being a worst-case approach, we are able
to show a setting in which our approach yields a decreased predicted BKZ-β, as
compared to the prior work of [17]. This is possible since our modeling in that
setting is fundamentally different from the prior work (we model decryption fail-
ures as inequality hints versus full dimensional approximate hints) so that the
two approaches no longer correspond to worst-case/average-case estimates for
the same process. Finally, we analyze a setting in which the distribution on the
LWE secret, due to incorporation of side-channel data, is far from a Gaussian dis-
tribution. We show that our approach allows combining this SCA data with side
information from an independent source, without resorting to Gaussian models.
We elaborate on these examples in Section 1.2 as well as in Sections 5.1, 5.2, and
5.3, respectively. Direct comparisons with the prior work of [17] can be found in
Figures 1 (in the perfect hints plot), 2, 3, and 5, respectively.

3 We believe our improved accuracy is due to the fact that our modeling incorporates
the true distances (w.r.t. the ellipsoid norm) of the intersecting hyperplanes from the
center of the ellipsoid with each successive hint, whereas the average-case approach
can be viewed as incorporating the expected distance each time.
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A drawback of our approach is that due to our worst-case modeling, we can
get “stuck” and not make progress when integrating new hints. This occurs when
the minimal circumscribing ellipsoid works out to be equivalent to the original
ellipsoid. In Section 5.2 such a situation occurred in our experiments and we
provide some techniques based on the unique geometry of the problem to allow
for continued progress. We discuss constraints on hints for which this situation
can occur at the end of Sections 2.3.1 and in Section 4.2 (see Theorem 4.1). In
Section 1.3 we discuss additional approaches for circumventing this issue.

Further, since our ellipsoids no longer represent Gaussian distributions, we
cannot necessarily predict the expected length of the secret (with respect to the
“ellipsoid norm”) in the evolving DBDD instances. In some cases, we therefore
need to scale the DBDD instance (in a way that depends on the actual LWE
secret) in order to make accurate predictions on the hardness. We note that this
additional scaling is needed only for hardness estimates (in which case the LWE
secret is, in fact, known) but is not needed to launch a full attack, since the
BKZ-β is agnostic to scaling of the instance. See Section 5.1 for a more detailed
discussion of this phenomenon for the case of inequality hints.

1.2 Instantiations of our Approach

Inequality Hints. Here we consider the leakage of the information that ⟨v, s⟩ ≥
γ, where v is known and s is the LWE secret/error vector. Given our geometric
perspective, this hint now exactly corresponds to the information that the LWE
secret is contained in the intersection of the initial ellipsoid and the halfspace
{x ∈ Rd | ⟨x,v⟩ ≥ γ}. Unfortunately, the geometric perspective does not seem
helpful, as this region of intersection is no longer an ellipsoid! Instead, we ap-
proximate the region of intersection with an ellipsoid. We use the fact that one
can efficiently compute the minimal volume ellipsoid (called the Löwner-John
ellipsoid) that circumscribes the intersection of an ellipsoid and a halfspace [12].
Using this circumscribed ellipsoid in our DBDD instance maintains our required
invariant, yet the new ellipsoid has smaller volume (under the constraints given
in Section 2.3.1), making the resulting uSVP problem easier. See Section 4.1 for
details on integration of inequality hints and Section 5.1 for validation of our β
estimates for these hints.

Inequality hints are useful in the decryption failure setting since the infor-
mation that is learned from a decryption failure is exactly of the form of an
inequality hint. We show that this yields improved estimation accuracy (see Fig-
ure 2) compared to modeling decryption failures as full dimensional approximate
hints as in [17]. We then show our approach reduces the predicted β value re-
quired for key recovery, given a fixed number of decryption failures. We further
describe a new, geometric-based failure boosting technique4 obtained from our
approach. See Section 5.2 for details and experimental results.

4 The term “failure boosting” (see [20]) refers to techniques that use information from
previous decryption failures to increase the failure rate for subsequent queries.
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Combined Hints. Combined hints provide a way to “fuse” information from
two DBDD instances into a single instance. To motivate this type of hint, consider
a situation where we have two sources of side information for a single LWE se-
cret/error, such as data from decryption failures, and data from a side-channel
attack. The information from these sources is captured by the two DBDD in-
stances (Λ,µ1,Σ1) and (Λ,µ2,Σ2) (for purposes of this example we assume the
two lattices are equal in the two instances, but our techniques extend to the case
in which the lattice differ).

One might consider using the conditional approximate hints of [17] to inte-
grate the information from the second instance (µ2,Σ2) into the first instance
(µ1,Σ1). However, the formulas for conditional approximate hints given by [17]
require both distributions to be Gaussian. If those formulas are applied when one
or both sources are not well-approximated by a Gaussian, then the DBDD invari-
ant may no longer hold for the evolved instance. In cases where the distribution
over individual secret/error coordinates are independent, it is possible to use
the a posteriori approximate hints of [17], even when the distributions are non-
Gaussian. This approach essentially erases certain information from (µ1,Σ1),
and replaces it with corresponding information from (µ2,Σ2). Our approach,
which we discuss next, combines information from the two instances more effec-
tively, rather than simply replacing one with the other.

We first observe that even when no distributional information is available,
given the promise of the two DBDD instances, we can conclude that the LWE
secret/error vector s lies in the intersection of the two ellipsoids corresponding
to (µ1,Σ1) and (µ2,Σ2). This region is not necessarily an ellipsoid, so we can-
not simply obtain a new DBDD instance by intersecting the ellipsoids. Instead,
we adopt the “fusion” approach [48,53] which is to find the convex combination
of the two ellipsoids that optimizes the volume of the resulting ellipsoid. The
optimal convex combination has the following properties: (1) It is an ellipsoid,
(2) It is guaranteed to contain the intersection of the two ellipsoids, (3) It does
not contain points that are outside both ellipsoids, and (4) Points on the surface
of both ellipsoids are on the surface of the resulting ellipsoid. This approach is
attractive since the fused ellipsoid can be obtained by solving a one-dimensional
convex optimization problem, which is computationally feasible. Further, the ap-
proach was shown to be equivalent to several other proposed relaxation methods
for finding the optimal circumscribing ellipsoid [53]. See Section 4.2 for details
on integration of combined hints and discussion of when the resulting ellipsoid
achieves smaller volume than both input ellipsoids. Validation of our β estimates
for these hints can be found in Section 5.1.

We illustrate our approach by using it to fuse information from decryption
failures and side-channel leakage, reducing the predicted β value required to
recover the secret as compared to the naive approach of combining the informa-
tion. See Section 5.3 for details and experimental results.

Revisiting perfect hints. Once a DBDD instance has evolved via the inte-
gration of inequality or combined hints, we can no longer make the Gaussian
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assumption from the prior work. This means that if there are additional perfect
hints, they can no longer be integrated using the prior method. We present a
new algorithm for integrating “perfect hints” into an LWE instance that does
not require any distributional assumptions. A perfect hint is the leakage of the
information that ⟨v, s⟩ = γ, where v is known and s is the LWE secret/error
vector. We now view this hint as consisting of the information that the LWE
secret lies in the the intersection of the current DBDD ellipsoid and the hyper-
plane H := {s : ⟨v, s⟩ = γ}. We note that the resulting intersection is itself
an ellipsoid, thus maintaining our DBDD invariant. We also propose a differ-
ent way to deal with non-homogenized perfect hints. All perfect hints from [17]
were homogenized so that the incorporated hint was ⟨v′, s′⟩ = 0 with γ = 0.
This was needed in order to maintain the invariant that the lattice part of the
DBDD instance remains a lattice, and not a lattice coset. However, it also had
the by-product that the hint vector v′ is not in the span of Σ, the shape matrix
of the ellipsoid corresponding to the DBDD instance. For consistency with our
geometric approach we require that our hint vectors v ∈ Span(Σ), and so we
suggest an alternative technique for dealing with non-homogenized perfect hints.
See Section 4.3 for more details.

Experimental results show that our β estimates improve accuracy when more
hints are integrated, compared to the estimates of [17]. Specifically, when the γ
from the perfect hint ⟨v, s⟩ = γ is large, the hyperplane is far from the center
of the ellipsoid, resulting in a smaller ellipsoid compared to the one obtained
using the conditional Gaussian formulas described in [17]. The actual β needed
to recover the secret are the same across the two techniques, since the generated
instances differ only by a scaling factor. See Section 5.1 for validation of our β
estimates for these hints and comparison with the β estimates from [17].

Compatibility with approximate hints. Given an evolved DBDD instance
(Λ,µ,Σ), and ℓ ≤ d number of approximate hints5 each having independent
error of standard deviation σe, we can write the hints as sV ≈ γ, where V is
a d× ℓ matrix with each column corresponding to a hint vector. The hints can
be integrated by considering the set {x : ∥sV − γ∥2 ≤ ℓ · σ2

e}, which defines a
(possibly degenerate) ellipsoid with mean and shape matrix (µ′,Σ′). We then
apply a combined hint on (Λ,µ,Σ) and (Λ,µ′,Σ′), to obtain the new instance
(Λ,µ′′,Σ′′).

Compatibility with modular hints. We sketch how modular hints can be
incorporated into an evolved DBDD instance, where the secret distribution is no
longer Gaussian. Assume we are given a DBDD instance (Λ,µ,Σ), and a hint
⟨v, s⟩ ≡ γ mod k, where s denotes the LWE secret/error. We add a variable
c′ such that ⟨v, s⟩ − c′ · k = γ, where the equation is over the reals. Since s is
contained in the ellipsoid defined by (µ,Σ), we have that c′ · k + γ is bounded

by ⟨v,µ⟩±
√
rvΣvT (where r is the rank of Σ). Therefore, we can first consider

5 ℓ should be large enough that concentration bounds hold for the noise on the aggre-
gate set of hints.
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the DBDD instance (Λ′,µ′,Σ′), where Λ′ = Λ × Z, µ′ = (µ|| 1k (⟨v,µ⟩ − γ))
and Σ′ has dimension one larger than Σ, with the final row and column all 0

except the bottom right corner set to rvΣvT

k2 . Note that (s||c′) is guaranteed to
be contained in the corresponding rank-scaled ellipsoid. Finally, we apply our
new perfect hint algorithm for hint ⟨v, s⟩−c′ ·k = γ. This results in a new DBDD
instance (Λ′′,µ′′,Σ′′) with dimension equal to the original DBDD instance.

If some distributional information is known about the instance (Λ,µ,Σ),
one can potentially find a (µ′,Σ′) where Σ′ has a smaller bottom right cor-
ner coordinate, and for which (s||c′) is still guaranteed to be contained in the
corresponding rank-scaled ellipsoid. For example, if Σ is the original LWE distri-
bution then ⟨v, s⟩ is a Gaussian with variance vΣvT . One can choose a constant

h ≪
√
r such that ⟨v, s⟩ ≤ h

√
vΣvT with probability 1 − ϵ. The bottom right

corner of Σ′ can then be set to h2vΣvT

k2 , with the guarantee that the secret is
contained in the rank-scaled ellipsoid with probability 1−ϵ. We defer implemen-
tation of compatible modular hints to future work.

Compatibility with short vector hints. Our new approach remains compat-
ible with the approach of [17] for short vector hints. See Section 4.4 for more
details on the adjustment that must be made.

1.3 Future Work

In this initial work, our main goal is to establish a connection between techniques
in convex geometry and analysis of the security loss of LWE with side information.
We believe that this connection can be further explored in several ways.
The maximal inscribed ellipsoid. The Löwner-John ellipsoids we have dealt
thus far correspond to the minimal volume ellipsoid circumscribing a convex
body. The literature also explores the maximal volume ellipsoid that can be
inscribed in a convex body. For such ellipsoids, closed-form formulas for the case
of inequality hints can be obtained from the more general formulas for ellipsoidal
slabs [27]. As suggested to us by an anonymous reviewer, security estimations
based on the maximal volume inscribed ellipsoid can be viewed as upper bounds
on the strength of the optimal algorithm for recovering the LWE secret via lattice-
reduction. Combining such estimates with our prior techniques, we would obtain
both upper and lower bounds on the optimal algorithm that follows the attack
template under consideration.

We note that both in the case of inequality hints and combined hints, it is
possible that, while the volume of the intersected region is smaller, the minimal
circumscribing ellipsoid is nevertheless equal to the original ellipsoid. This means
that the hint yields no progress in our current framework. This, however, cannot
occur with the maximal volume inscribed ellipsoid. Thus, we plan to explore
using the maximal inscribed ellipsoid in cases where no progress can be made
with the minimal circumscribing ellipsoid. One such example is inequality hints
that carry little information about the secret.
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Incorporating techniques from Control Theory. There is a rich body of
literature in control theory dealing with the “state estimation” problem in which
the goal is to integrate new information (obtained from noisy measurements) into
a current model of a system. Indeed, the conditional approximate hints from
the prior work [17] can be viewed as a special case of the celebrated Kalman
filter [34] from control theory (which assumes that all measurements are linear
and all noise is Gaussian). A more recent line of work [40,48,53] studies the
case in which the noise is not guaranteed to be Gaussian (and may even be
deterministic) and uses a set of fundamental ellipsoidal operations (known as
an “Ellipsoidal Calculus”) to combine the information. Hybrid models (where
some of the noise is assumed to be Gaussian, whereas worst-case assumptions
are made for the rest) have also been studied [30]. We plan to explore further
connections with the control theory literature, to understand better the tradeoffs
of using worst-case/average-case assumptions to analyze a system.
Toolkit Extension.Alongside this paper, we release an extension to the original
python/sage 9.0 toolkit from [17]6. We provide an updated API (which simplifies
further extensions to the toolkit), and several new class files. The new EBDD.sage
class is fully-featured implementation of our geometric approach. It maintains
all information about the instance: the lattice Λ, and the (rank-scaled) ellipsoid
E(Rank)(µ,Σ) as hints are integrated. We leave the lightweight implementations
of this extension to future work, as the full implementation is presently required
to perform accurate estimation of the hardness loss resulting from our (more-
general) geometry-based hints.

1.4 Related Work

Concrete security of Lattice Based Cryptosystems. Two LWE attack tem-
plates considered in the literature are known as the primal, and dual attacks.
Both of these attack templates reduce the task of breaking LWE to solving an SVP
instance. The SVP problem is a long-standing problem that has attracted much
attention from the cryptographic as well as quantum communities. The current
asymptotically best SVP algorithms (for classical and quantum computers) in-
clude [3,10,41,31]. In practice, the BKZ algorithm [49] was found to perform well
on parameter regimes of interest, though it is not amenable to provable guaran-
tees on its asymptotic performance. The BKZ algorithm on dimension d includes
as a core subroutine an SVP solving step on a smaller block-size β ≪ d. It is
compatible with both classical and quantum algorithms for solving the smaller
blocksize SVP-β instances. NIST post quantum (PQC) candidates have used the
runtime estimates for the BKZ algorithm to inform the setting of their concrete
parameters [1]. Several works have sought to create models to accurately predict
the behavior of the BKZ algorithm in parameter regimes of interest [5,8,16].
Finally, there has been some work on comparing the lattice reduction-based
algorithms described up to now with combinatorial algorithms [4,2].

6 The updated toolkit can be found at https://hunterkipt/

Geometric-LWE-Estimator.
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Sice-Channel Attacks (SCA). There are various ways in which an attacker
can obtain “side-channel” information about the secret key of a cryptographic
scheme, greatly reducing the security of the scheme, or even allowing for a full key
recovery. These methods include timing attacks [38], power analysis attacks [39],
cache side-channel attacks [51], and microarchitectural attacks [37,42]. Side-
channel attacks on NIST PQC candidates include attacks on (earlier versions
of) Dilithium, which was recently announced as a selected digital signature al-
gorithm [46,47], qTESLA [47], NTRUEncrypt [50], as well as Rainbow, NTRU,
and McEliece [52]. Template attacks were introduced by [15], who used a de-
vice identical to the target to generate a precise “template” of the noise. When
noisy side-channel data is obtained, the template can be used to learn infor-
mation about the secret. Bos et al. [13] applied this approach to FrodoKEM, a
Round 3 PQC alternate candidate, simulating a single trace power attack using
ELMO [43]. We use their side channel attack as the starting point of our experi-
ments in Section 5.3. Other research has focused on active side-channel attacks,
where faults are injected during computation involving the secret key, such as
RowHammer. Such attacks were performed on the LUOV signature scheme, a
Round 2 PQC candidate [44], as well as Dilithium [32].

Decryption Failures. A decryption failure is when the decryption process
returns an incorrect message on a validly encrypted ciphertext. Since most
lattice-based cryptographic KEM schemes have a non-zero decryption failure
rate, several prior works have investigated the possibility of decryption fail-
ure attacks. Specifically, decryption failures leak information about the secret
key, and in some cases can be used to fully recover the secret. These attacks
were first applied on CPA-secure schemes [36,25,9,45,21,22]. However, CCA-
secure schemes use a Fujisaki-Okamoto transform which protects against such
attacks and ensures that even a malicious attacker can only cause decryption
failures with extremely low probability. Several methods have been suggested to
boost the rate at which decryption failures occur, thereby lowering the complex-
ity of the attack [20,18,28,11,19]. Recently, Fahr et al. [24] combined SCA and
Decryption Failure attacks by using a Rowhammer attack—which induces bit
flips in memory—to artificially boost the failure rate of NIST PQC candidate
FrodoKEM. This allowed an end-to-end key recovery attack on Frodo-640.

1.5 Organization

In Section 2, we present notation and provide necessary background in linear
algebra (Section 2.2), geometry (Section 2.3), and lattices (Section 2.4). Back-
ground on the ellipsoid method can be found in Appendix A. Section 3 defines
the DBDD problem, as well as a new variant of the DBDD problem. The reduc-
tion from DBDD to uSVP is given in Section 3.1, and Section 3.2 presents security
estimates for the uSVP problem. Section 3.3 presents the initial embedding we
use in this work from LWE to DBDD.

Section 4 introduces inequality hints (Section 4.1), combined hints (Sec-
tion 4.2), and revisits perfect (Section 4.3) and short vector (Section 4.4) hints.
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Missing proofs can be found in Appendix B. Section 5 presents experimental val-
idation of our β estimates (Section 5.1), applications of our new types of hints to
the decryption failure setting (Section 5.2), and to combining decryption failure
and side-channel information (Section 5.3).

2 Preliminaries

2.1 Notation

We use bold lower case letters to denote vectors, and bold upper case letters
to denote matrices. We use row notation for vectors, and start indexing from
1. We denote by Id the d-dimensional identity matrix and denote by ⟨x,y⟩ the
inner product of vectors x,y of the same dimension. We denote by (x||y) the
concatenation of two row vectors x,y. For v ∈ Rd, ∥v∥ denotes the ℓ2 norm of
the vector. For a vector v, we use both vi and v[i] to denote the i-th coordinate of
the vector. For a matrix M we use M [i][j] to denote the (i, j)-th position of the
matrix. Random variables—i.e. variables whose values depend on outcomes of a
random experiment—are denoted with lowercase calligraphic letters e.g. a, b, e,
while random vectors are denoted with uppercase calligraphic letters e.g. C ,X ,Z.

2.2 Linear Algebra

Definition 2.1 (Positive Semidefinite). A n × n symmetric real matrix M is
positive semidefinite if the scalar quantity xMxT ≥ 0∀x ∈ Rn; if so, we write
M ≥ 0. Given two n×n real matrices A and B, we note that A ≥ B if A−B
is positive semidefinite.

Definition 2.2. M is a square root of Σ, denoted
√
Σ, if MT ·M = Σ.

As in the prior work [17], we make use of a generalized notion of the inverse
and determinant, where these operations are restricted to operate on the row
span of the input matrix. For X ∈ Rd×k (with any d, k ∈ N), we denote by
ΠX the orthogonal projection matrix onto Span(X). More formally, let Y be
a maximal set of independent row-vectors of X; the orthogonal projection ma-
trix is given by ΠX = Y T · (Y · Y T )−1 · Y . Its complement (the projection
orthogonally to Span(X)) is denoted by Π⊥

X := Id −ΠX . We naturally extend
the notation ΠF and Π⊥

F to subspaces F ⊂ Rd. By definition, the projection
matrices satisfy Π2

F = ΠF , Π
T
F = ΠF and ΠF ·Π⊥

F = Π⊥
F ·ΠF = 0.

Definition 2.3 (Restricted Inverse and Determinant [17]). Let Σ be a symmet-
ric matrix. We denote a restricted inverse denoted Σ∼ as

Σ∼ := (Σ +Π⊥
Σ)−1 −Π⊥

Σ .

It satisfies Span(Σ∼) = Span(Σ) and Σ ·Σ∼ = ΠΣ.
We denote by rdet(Σ) the restricted determinant: rdet(Σ) := det(Σ +Π⊥

Σ).
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2.3 Geometry

Definition 2.4 (Ellipsoid [26]). A set E ⊆ Rd is a (possibly degenerate) ellip-
soid if there exist a vector µ ∈ Rd and a positive (semi-)definite d × d-matrix
Σ such that

E = E(µ,Σ) := {x ∈ µ+ Span(Σ) | (x− µ)Σ∼(x− µ)T ≤ 1}. (1)

Definition 2.4 generalizes the traditional non-degenerate ellipsoid. Note that
if Σ is full rank, then µ + Span(Σ) = Rd, and the restricted inverse becomes
the regular matrix inverse. Equivalently, a (non-degenerate) ellipsoid can be
described by the norm ∥ · ∥Σ on Rd

E(µ,Σ) = {x ∈ Rd | ∥x− µ∥Σ ≤ 1}

thus, the ellipsoid E(µ,Σ) is the unit ball around µ in the vector space Rd

endowed with the norm ∥ · ∥Σ . In particular, the unit ball around 0 in the
traditional Euclidean norm is E(0, Id). As Σ is positive definite, the matrix
square root exists. As such, we can express an ellipsoid via the following relation

E(µ,Σ) = Σ1/2E(0, Id) + µ

making every ellipsoid the image of the unit ball under a bijective affine trans-
formation. These alternative views of an ellipsoid can also be generalized to work
with the degenerate case in a similar fashion to the generalized definition.

Definition 2.5 (Volume of a full-rank ellipsoid). A full-rank ellipsoid E(µ,Σ)
of dimension d has volume Vol(E(µ,Σ)) =

√
det(Σ)·Vd, where Vd is the volume

of the d-dimensional unit ball.

Definition 2.6 (Ellipsoid norm). Let x ∈ µ + SpanΣ. We define the ellipsoid
norm of x with respect to ellipsoid E(µ,Σ) to be the quantity (x−µ)Σ∼(x−µ)T .
Note that x is contained in E(µ,Σ) if and only if its ellipsoid norm with respect
to E(µ,Σ) is at most 1.

Remark 1 (Ellipsoid Scaling). Throughout the paper, we make use of two dif-
ferent ellipsoid scalings. For ellipsoid operations defined by the ellipsoid method
(Section 2.3.1) or ellipsoid fusion (Section 4.2), we make use of the traditional
scaling factor of 1 in (1). However, the invariant of the DBDD problem (sec-
tion 3) requires that the ellipsoid be scaled such that the right hand side of (1)
is Rank(Σ). To remain consistent with prior work [17], we will treat these ellip-
soids as a separate object, the rank-scaled ellipsoid.

Definition 2.7 (Rank-scaled Ellipsoid). A set E(Rank) ⊆ Rd is a (possibly de-
generate) rank-scaled ellipsoid if there exist a vector µ ∈ Rd and a positive
semidefinite d× d-matrix Σ such that

E(Rank) = E(Rank)(µ,Σ) := {x ∈ µ+Span(Σ) | (x−µ)Σ∼(x−µ)T ≤ Rank(Σ)}.
(2)
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Converting a traditional ellipsoid into a rank-scaled ellipsoid follows from
the definition. Given a rank-scaled ellipsoid, E(Rank)(µ,Σ), it is equivalent to
the traditional ellipsoid E(µ,Σ ·Rank(Σ)). As the mean of the ellipsoid remains
the same, let

F : Rd×d 7→ Rd×d, F(Σ) = Σ · Rank(Σ) (3)

denote the transformation between the covariance matrices.

Definition 2.8 (Hyperplane). A set H ⊆ Rd is a hyperplane if there exist a
vector v ∈ Rd and a scalar threshold γ ∈ R such that

H = H(v, γ) := {x ∈ Rd | ⟨x,v⟩ = γ}.

Definition 2.9 (Halfspace). Without loss of generality, A set H≤ ⊆ Rd is a
halfspace if there exist a vector v ∈ Rd and a scalar threshold γ ∈ R such that

H≤ := {x ∈ Rd | ⟨x,v⟩ ≤ γ}.

2.3.1 Ellipsoid Halfspace and Hyperplane Intersection The algorithms
in some of our applications are reminiscent of the ellipsoid method, the first
provably polynomial time algorithm for solving linear programs [35]. While our
goal is to solve an integer program—a harder problem than linear programming—
it is well-known (s.f. [33]) that the ellipsoid method can be combined with lattice
reduction to solve integer programs. In practice, however, this method is both
inefficient and prone to numerical errors. So we must make crucial changes for
the approach to be viable in our setting (see Section 5.2). For an overview of the
ellipsoid method, see Appendix A.

The main update procedure of the ellipsoid method calculates the Löwner-
John ellipsoid corresponding to the intersection of an ellipsoid and halfspace.
Given an ellipsoid E(µ,Σ) and a halfspace {x ∈ Rd | ⟨x,v⟩ ≤ γ} (where v ∈
Span(Σ)), the Löwner-John ellipsoid of the intersection E(µ′,Σ′) is:

µ′ = µ− τ
vΣ√
vΣvT

Σ′ = δ

(
Σ − σ

ΣvTvΣ

vΣvT

)
(4)

This expression generalizes the computation of multiple Löwner-John ellipsoids
based on ellipsoid-X intersections. The exact intersection performed depends on
the values of the three variables δ, σ, and τ . For a geometric interpretation of
the effects of varying these parameters, see the survey on the ellipsoid method
by Bland, Goldfarb, and Todd [12].

For an ellipsoid-halfspace intersection,

τ =
1 + rα

r + 1
σ =

2(1 + rα)

(r + 1)(1 + α)
δ =

r2

r2 − 1
(1− α2) (5)
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where r is the rank of Σ, and α is a distorted measure of the distance between
the center of the ellipsoid and the separating hyperplane. In (5), α is defined as

α =
vµT − γ√
vΣvT

. (6)

When −1 < α ≤ 1, the separating hyperplane intersects the ellipsoid. If α = 0,
the separating hyperplane bisects the ellipsoid through its center. The optimal
circumscription when −1 < α < −1/r is simply the starting ellipsoid.

Ellipsoid-Hyperplane Intersection. The intersection between an ellipsoid
E(µ,Σ) and a hyperplane H(v, γ), where v ∈ Span(Σ) can be obtained by
plugging appropriate parameters into the formula for parallel cuts given in [12].
Doing so yields τ, δ, and σ:

τ = α σ = 1 δ =
r

r − 1
(1− α2) (7)

where α remains the same as in (6). An ellipsoid-hyperplane intersection is itself
an ellipsoid of one fewer dimension. As σ = 1, the rank one update of Σ in (4)
reduces the rank of the intersection E(µ′,Σ′) by 1, and ensures it is flat in
the direction of v. Here −1 < α ≤ 1, with no additional restrictions, as the
hyperplane need simply intersect the starting ellipsoid.

It is possible to prove a tighter bound so that δ = (1 − α2), which is the
setting of δ we will use in our implementation.

2.3.2 Ellipsoid Fusion The intersection of two ellipsoids is not generally
an ellipsoid, so as in the ellipsoid method, some optimal approximation must
be used to compute a representation of the intersection efficiently. There are
multiple measures of an ellipsoid’s size that could be optimized to produce a
good approximation. For our framework, we adopt the Ellipsoid Fusion procedure
proposed by Ros et al. [48]. Ros et al. propose a measure based on the volume
of a convex combination of the two input ellipsoids. This is done through the
minimization of the determinant of the combined ellipsoid’s covariance matrix.

Theorem 2.10 (Theorem 2 in [48]). Given two (possibly degenerate) ellip-
soids, E(µ1,Σ1) and E(µ2,Σ2), whose intersection is a nonempty bounded re-
gion, the region defined by

{x |λ(x− µ1)Σ1
∼(x− µ1)

T + (1− λ)(x− µ2)Σ2
∼(x− µ2)

T ≤ 1},

is a real ellipsoid, Eλ(µ0,Σ), which coincides with E(µ2,Σ2) or E(µ1,Σ1) for
λ = 1 or λ = 0 respectively; and it is given by

Σ = kX∼

X = λΣ1
∼ + (1− λ)Σ2

∼

µ0ΠX = (µ1λΣ1
∼ + µ2(1− λ)Σ2

∼)X∼

k = 1− λ(1− λ)(µ2 − µ1)Σ2
∼X∼Σ1

∼(µ2 − µ1)
T


for λ ∈ [0, 1].
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Note that µ0 can be set arbitrarily so long as µ0ΠX satisfies the above.
While this combination is not necessarily the optimal circumscription, it does
not contain points that are in neither E(µ1,Σ1) nor E(µ2,Σ2).

Definition 2.11 (Ellipsoid Fusion (Def. 5 in [48])). The fusion of E(µ1,Σ1)

and E(µ2,Σ2), whose intersection is a nonempty bounded region is Eλ̃(Σ,µ0)
for the value of λ̃ ∈ [0, 1] that minimizes its volume.

Theorem 2.12 (Fusion (Theorem 3 in [48])). The fusion of E(µ1,Σ1) and

E(µ2,Σ2) is: E(µ1,Σ1); or E(µ2,Σ2); or it is Eλ̃(Σ,µ0) where λ̃ is the only
root in [0, 1] of the following polynomial of degree 2n− 1 :

k(rdet(X))Trace(X(Σ1
∼ −Σ2

∼))− n(rdet(X))2(2µ0Σ1
∼µT

1−
2µ0Σ2

∼µ2 + µ0(Σ2
∼ −Σ1

∼)µT
0 − µ1Σ1

∼µT
1 + µ2Σ2

∼µT
2 ) (8)

2.4 Lattice Preliminaries

A lattice, denoted by Λ, is a discrete additive subgroup of Rd. It is generated
by taking the set of all integer linear combinations of r (where r ≤ d) linearly
independent basis vectors {bj} ⊂ Rd. Namely,

Λ :=
{∑

j
zjbj : zj ∈ Z

}
.

We say that d is the dimension of Λ and r is its rank. A lattice is full rank if r = d.
A matrix B whose rows are the basis vectors {bj} is called a basis of the lattice.

The determinant or volume of a lattice Λ is defined as Vol(Λ) :=
√
det(BBT ).

Definition 2.13 (Unique Shortest Vector Problem). For a lattice Λ and for
i ∈ [Rank(Λ)], let λi(Λ) denote the i-th successive minimum (the smallest radius
r such that the ball B(0, r) contains i independent points in the lattice). The
unique shortest vector problem (uSVP) is the following:

Given a lattice Λ in which λ1(Λ) is significantly shorter than λ2(Λ), find a
nonzero vector s ∈ Λ where ∥s∥ = λ1(Λ).

Definition 2.14 (Search LWE Problem with short secrets). Let n, m, and q be
positive integers, let X be a distribution over Z. The search LWE problem is:

Given (A ∈ Zm×n
q , b = zAT + e), where:

– A ∈ Zm×n
q is sampled uniformly at random

– z ← X , and e← X are sampled with independent and identically distributed
coefficients from the distribution X
Find z
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3 The DBDD Problem

Definition 3.1 (Distorted Bounded Distance Decoding problem). Let Λ ⊂ Rd+1

be a lattice, Σ ∈ R(d+1)×(d+1) be a symmetric matrix and µ ∈ Span(Λ) ⊂ R(d+1)

such that
Span(Σ) ⊊ Span(Σ + µT · µ) = Span(Λ). (9)

The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ is:

Given µ,Σ and a basis of Λ.
Find the unique vector x ∈ Λ ∩ E(Rank)(µ,Σ)

where E(Rank)(µ,Σ) denotes the (possibly degenerate) rank-scaled ellipsoid

E(Rank)(µ,Σ) := {x ∈ µ+ Span(Σ) | (x− µ)Σ∼(x− µ)T ≤ Rank(Σ)}.

In [17], E(Rank)(µ,Σ) corresponds to knowing that the secret vector x to be
recovered follows a Gaussian distribution of variance Σ and mean µ, and the
expected value of (x−µ)Σ∼(x−µ)T for a Gaussian x of variance Σ and mean
µ is Rank(Σ). In the current work, we do not view the ellipsoid in the DBDD
instance as stemming from the covariance matrix of a multivariate Gaussian
distribution. Rather, we view the ellipsoid as defining a region containing a
feasible solution to a certain constraint satisfaction problem over the reals. Then
we restrict the solutions to those that are also contained in some lattice.

In order to be consistent with the approaches in the literature on Löwner-
John ellipsoids, it will be useful for us to consider instances DBDD instances of
dimension one lower than those in the prior work. Further, we allow Span(Σ) =
Span(Σ + µT · µ) = Span(Λ), unlike in the prior work. For clarity we formally
define below the DBDD variant that we consider in this work.

Definition 3.2 (A Variant of the Distorted Bounded Distance Decoding prob-
lem). Let Λ ⊂ Rd be a lattice, Σ ∈ Rd×d be a symmetric matrix and µ ∈
Span(Λ) ⊂ Rd. such that

Span(Σ) = Span(Σ + µT · µ) = Span(Λ). (10)

The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ with respect to
(Λ,µ,Σ) defined as above is:

Given µ,Σ and a basis of Λ.
Find the unique vector x ∈ Λ ∩ E(Rank)(µ,Σ)

where E(Rank)(µ,Σ) denotes the (possibly degenerate) rank-scaled ellipsoid

E(Rank)(µ,Σ) := {x ∈ Span(Σ) | (x− µ)Σ∼(x− µ)T ≤ Rank(Σ)}.

We can convert a DBDD instance (Λ,µ,Σ) of the type considered above into
a DBDD instance (Λ′,µ′,Σ′) considered in the prior work as follows:

Λ′ = {(x||z) ∈ Rd+1 : x ∈ Λ, z ∈ Z}
µ′ = (µ||1) ∈ Rd+1

Σ′[i][j] :=

{
Σ[i][j] if i, j ≤ d

0 if i = d+ 1 or j = d+ 1.
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3.1 Reduction from DBDD to uSVP

Following [17], the conversion of a DBDD instance (Λ,µ,Σ) into a uSVP
instance proceeds in two steps known as homogenization and isotropization.

Homogenization: The homogenization procedure takes an ellipsoid that is cen-
tered at µ and converts it into an ellipsoid centered at 0. The zero-centered el-
lipsoid contains the ellipsoid centered at µ (see [17] for the proof of this claim).
The volume of the ellipsoid remains the same7, and the rank of its covariance
matrix goes up by 1. Specifically, the conversion is as follows:

(Λ,µ,Σ) 7→ (Λ,0,Σ′ := Σ + µT · µ).

Isotropization: The isotropization procedure converts the covariance matrixΣ′

into an isotropic matrix (i.e. with all its eigenvalues equal to 1), by applying an
appropriate linear transformation to the input space. We then perform the same
linear transformation on the lattice. Specifically, the conversion is as follows:

(Λ,0,Σ′) 7→ (Λ ·M,0,M ·Σ′ ·MT ),

where M =
√
Σ′∼. The above can be simplified to

(Λ ·M,0,M ·Σ′ ·MT ) = (Λ ·M,0,ΠΣ′) = (Λ ·M,0,ΠΛ),

see [17] for details on the above simplification. After homogenization and
isotropization, we obtain the uSVP instance Λ ·M (consisting of a lattice only).
To complete the reduction, note that from a given solution, x, to the uSVPΛ·M
problem, one can derive the solution, x′ = x ·M∼, to the DBDDΛ,µ,Σ problem.

3.2 Security estimates of uSVP

We briefly recap the way concrete hardness estimates are computed for a given
uSVP instance. Specifically, we consider an attack that consists of applying
BKZ-β to the uSVP lattice Λ for an appropriate block size parameter β. The
cost of the attack grows with β, and, as in [17], we will treat β itself as a
measurement of the security level in a unit called the bikz. Bikz-to-bit conversion
can be performed using a conversion factor based on the current best algorithms
for SVP in lattices of rank β. Typically, it is assumed that 1 bikz ≈ 0.265 bits.
As in [17], the concrete security estimates given in this paper only concern the
pure lattice attacks via the uSVP embedding discussed above.

Predicting β for a uSVP instance The state-of-the-art predictions for solving
uSVP using BKZ were given in [7,5]: For a lattice Λ of dimension dim(Λ), it is
predicted that BKZ-β can solve a uSVPΛ instance with secret (e||s) when√

β/dim(Λ) · ∥(e||s)∥ ≤ δ
2β−dim(Λ)−1
β · Vol(Λ)1/ dim(Λ) (11)

7 This assumes that µ′–corresponding to the first d coorindates of µ ∈ Span(Σ) and
the final coordinate of µ is equal to 1, which is the case for DBDD instances obtained
from DBDD variant instances.
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where δβ is the so called root-Hermite-Factor of BKZ-β. For β ≥ 50, the Root-
Hermite-Factor is predictable using the Gaussian Heuristic [16]:

δβ =

(
(πβ)

1
β · β

2πe

)1/(2β−2)

. (12)

In [17], the uSVP instances obtained were always isotropic and centered so
that the secret has covariance Σ = I (or Σ = ΠΛ if Λ is not of full rank) and
µ = 0. In this case, ∥(e||s)∥2 = Rank(Σ) = dim(Λ), in expectation, and β can
be estimated as the minimum integer that satisfies√

β ≤ δ
2β−dim(Λ)−1
β · Vol(Λ)1/ dim(Λ). (13)

Importantly, in our case where we do not enforce distributional assumptions, we
can no longer assume that after isotropization the secret has covariance Σ = I
and µ = 0, rather, we just know that the secret is contained in the ellipsoid
E(Rank)(0, I), but its norm could be far smaller. Therefore, when performing our
final hardness estimates, we sometimes need to take the length of the shortest
vector into account (i.e. we will use equation (11)) in order to accurately predict
β. Throughout the paper, whenever this is the case, we will make note of it. The
default is to use the prediction from equation (13), which returns β that is at
least as large as β from (11). As in [17], while β must be an integer as a BKZ
parameter, we provide a continuous value.

Remark 2. To predict security, one does not need the basis of Λ, but only its
dimension and its volume. Similarly, it is not necessary to explicitly compute
the isotropization matrix M of Section 3.1: Vol(Λ ·M) = det(M)Vol(Λ) =
det(Σ′)−1/2Vol(Λ).

Remark 3. Given a DBDD instance (Λ,µ,Σ), it is important to note that as the
volume of the rank-scaled ellipsoid E(Rank)(µ,Σ) decreases, the volume of the
lattice Λ ·M after homogenization and isotropization increases. Applying the
hardness estimate from (13), this makes the resulting uSVP instance easier to
solve. Our goal, therefore, when integrating “hints” is to ensure that the volume
of the rank-scaled ellipsoid E(Rank)(µ,Σ) decreases as much as possible.

3.3 Obtaining our initial DBDD embedding

Recall that, in the prior work, Kannan’s embedding was used to reduce LWE to
DBDD. We next present a somewhat different embedding of LWE in DBDD.

The geometric DBDD embedding. Consider an LWE instance sAT + e = b
mod q. We can remove the mod q and transform the above to a system of
equations over the integers by adding the vector of variables c:

sAT + e− qc = b.
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Note that given an LWE instance A, b and a solution (c||s), there is an affine
transformation to obtain a solution modulo q of the form (e||s). Specifically,
e = qc − sAT + b. Further, we assume that we can (w.h.p.) upper bound the
squared norm of (e||s) by σ2(n + m) = σ2 · d (e.g. in standard LWE σ2 is the
variance of s, e). In matrix notation, we define B as:

B :=

[
qIm 0
−AT In

]
. (14)

We obtain the following constraint on the solution (c||s) of the transformed

system:
∥∥( (c||s)B+(b||0)

)∥∥2 ≤ σ2 ·d. The above defines a rank-scaled ellipsoid
E with center (−b||0)B−1:

E(Rank)((−b||0, σ2(BBT )−1) :={
(c||s) ∈ Rn+m :

(
(c||s)− (−b)||0)B−1

) 1

σ2
BBT

(
(c||s)− (b||0)B−1

)T ≤ d

}
.

Our DBDD instance is therefore:

(
Zd, (−b||0)B−1, σ2(BBT )−1

)
.

Incorporating a center and shape matrix for (e||s). We con-
sider here the case that we are given a center vector (µe||µs) ∈
Span(Σ), and a shape matrix Σ, along with the guarantee that w.h.p.

((e||s)− (µe||µs))Σ
∼ ((e||s)− (µe||µs))

T ≤ Rank(Σ). As a special case, the
above guarantee holds when (e||s) ∼ N ((µe||µs),Σ) follow a multivariate Gaus-
sian distribution. Using the same B as in (14), we obtain the constraint:∥∥∥∥(( (c||s)B + (b||0)

)
− (µe||µs)

)√
Σ∼

∥∥∥∥2 ≤ Rank(Σ).

This gives the rank-scaled ellipsoid:

E(Rank)(((µe − b)||µs)B
−1, (BT )−1Σ(B)−1) :=

{
(c||s) ∈ Span((BT )−1Σ(B)−1) :

(
(c||s)− ((µe − b)||µs)B

−1
)
BΣ∼BT

(
(c||s)− ((µe − b)||µs)B

−1
)T ≤ Rank(Σ)

}
.

Our DBDD instance is now:

(
Zd, ((µe − b)||µs)B

−1, (BT )−1Σ(B)−1

)
. We can

now apply hints to our initial DBDD instance.

Remark 4. Our DBDD embedding extends to s sampled from any distribution
S whose support is contained in a lattice, and to AT ∈ Rn×m, e ∈ Rm which
are real-valued. Thus, our embedding captures the Continuous LWE Problem
for secret distributions S as above [14,29].
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4 Hints

4.1 Inequality Hints

An inequality hint on the secret (c||s) is the knowledge of v ∈ Rd and l ∈ R,
such that ⟨(c||s),v⟩ ≤ γ. In other words, inequality hints correspond to the
knowledge that the secret lies on one side of a halfspace.

The process for integrating inequality hints relies on the ellipsoid-halfspace
intersection procedure of the ellipsoid method (4,5). Given a DBDD instance
DBDDΛ,µ,Σ , an inequality hint with v ∈ Span(Σ) produces a new instance
DBDDΛ′,µ′,Σ′ ,

Λ′ = Λ (15)

µ′ = µ−
(
1 + rα

r + 1

)
vF(Σ)√
vF(Σ)vT

(16)

Σ′ = F−1

((
r2

r2 − 1
(1− α2)

)(
F(Σ)−

(
2(1 + rα)

(r + 1)(1 + α)

)
F(Σ)vTvF(Σ)

vF(Σ)vT

))
(17)

for −1/r < α ≤ 1, where α is defined as in (6). and r is the rank of Σ. If
−1 < α ≤ −1/r, then Λ′ = Λ, µ′ = µ, and Σ′ = Σ, meaning that for inequality
hints with α in this range, we do not make progress under the approximation
stemming from the ellipsoid method.
Quantitative volume reduction. Using the matrix determinant lemma and prop-
erties of rdet and Σ∼, we have that

rdet(Σ′) =

(
r2

r2 − 1
(1− α2)

)r

·
(
1−

(
2(1 + rα)

(r + 1)(1 + α)

))
· rdet(Σ).

Here we can clearly see the power of α on the volume. The closer α is to 1, the
smaller the resulting volume of Σ′ (yielding a larger decrease in security).

4.2 Combined Hints

We are given two DBDD instances, (Λ1,µ1,Σ1), (Λ2,µ2,Σ2), with respect to the
same secret (c||s) (resp. (e||s)). Recall that DBDD instances (Λ,µ,Σ) provide
the promise that the secret (c||s) ∈ Λ and (c||s) ∈ E(Rank)(µ,Σ,) (resp. (e||s) ∈
Λ and (e||s) ∈ E(Rank)(µ,Σ,)).

Combined hints take the two DBDD instances and combine them into a single
instance (Λ′,µ′,Σ′) that captures the information from both. Specifically, Λ′ will
be equal to the intersection of the two lattices Λ1, Λ2. Since the intersection of
two ellipsoids E(µ1,F(Σ1)), E(µ2,F(Σ2)) is not necessarily an ellipsoid, we
define E(µ′,F(Σ′)) to be an ellipsoid circumscribing their intersection. Exactly
computing the minimal volume ellipsoid that circumscribes the intersection of
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two ellipsoids is computationally difficult. We instead use Theorem 2.10 to find
E(µ′,F(Σ′)).

Λ′ = Λ1 ∩ Λ2 (18)

µ′ΠX =
(
µ1λ̃F(Σ1)

∼
+ µ2(1− λ̃)F(Σ2)

∼
)
X∼ (19)

Σ′ = F−1(kX∼), (20)

where
X = λ̃F(Σ1)

∼
+ (1− λ̃)F(Σ2)

∼
,

k = 1− λ̃(1− λ̃)(µ2 − µ1)F(Σ2)
∼
X∼F(Σ1)

∼
(µ2 − µ1)

T

and λ̃ is the unique value between [0, 1] that minimizes the volume of E(µ′,Σ′).
Theorem 2.12 provides a computationally efficient way to find λ̃. Given µ′ΠX ,
the mean µ′ can be recovered from the known linear constraints on the system.

When does fusion yield a volume reduction? If λ̃ = 0, then Σ′ = Σ2

and if λ̃ = 1, then Σ′ = Σ1. Therefore, ellipsoid fusion does not always yield a
reduction in volume. It is not hard to see that if Σ1 = Σ2, and if µ1 ̸= µ2 are
in the span of both Σ1 and Σ2, then the volume of E(Rank)(µ′,Σ′) is strictly
smaller than both the volume of E(Rank)(µ1,Σ1) and of E(Rank)(µ2,Σ2). We next
show that fusion can lead to a volume reduction, even in case that the volume
of E(Rank)(µ2,Σ2) is strictly smaller than the volume of E(Rank)(µ1,Σ1). In the
following, we assume WLOG that µ1 = 0 by applying a shift.

Theorem 4.1. Let c ∈ Rd denote the d-dimensional vector that has c ∈ R
in each position. Let σ2

1 , σ
2
2 ∈ R be such that σ2

2 < σ2
1. Consider the rank-

scaled ellipsoids E(Rank)(µ1,Σ1) = E(Rank)(0, σ2
1Id) and E(Rank)(µ2,Σ2) =

E(Rank)(c, σ2
2Id). Then the volume of E(Rank)(µ′,Σ′), where µ′ and Σ′ are de-

fined in equations (19) and (20) respectively, is lower than both the volume of
E(Rank)(µ1,Σ1) and E(Rank)(µ2,Σ2) if and only if c2 > σ2

1 − σ2
2.

We defer the proof of Theorem 4.1 to Appendix B.

Remark 5. Consider the setting of Theorem 4.1 and let c be such that (σ1 −
σ2)

2 < c2 < σ2
1 − σ2

2 . Note that E(Rank)(µ2,Σ2) ̸⊆ E(Rank)(µ1,Σ1). This can be
seen using the alternate definition of a rank-scaled ellipsoid as a linear transfor-
mation and shift of the ball of radius

√
r, where r is the rank. Specifically, since

∥1∥ =
√
d and since ∥1 ·

√
Σ2 + µ2∥2 = d · (σ2 + c)2 > dσ2

1 , we have that the
point 1 ·

√
Σ2 + µ2 is contained in E(Rank)(µ2,Σ2) but not in E(Rank)(µ1,Σ1).

On the other hand, the intersection of the two ellipsoids is not empty, since µ2

is contained in both ellipsoids. Clearly µ2 is contained in E(Rank)(µ2,Σ2). We
can see that it is contained in E(Rank)(µ1,Σ1) since

µ2Σ
−1
1 µT

2 = d · c2 · 1

σ2
1

< d · σ
2
1 − σ2

2

σ2
1

< d.
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However, since c2 < σ2
1 − σ2

2 , we have by Theorem 4.1 that the volume of
E(Rank)(µ′,Σ′) does not decrease.

Importantly, this means that the ellipsoid fusion technique does not
guarantee that we obtain a lower volume ellipsoid, even in the case that
E(µ1,Σ1), E(µ2,Σ2) are such that E(µ1,Σ1) ∩ E(µ2,Σ2) ̸= ∅, E(µ1,Σ1) ̸⊆
E(µ2,Σ2), and E(µ2,Σ2) ̸⊆ E(µ1,Σ1). This contradicts Theorem 3 of [48].

Remark 6. If x has ellipsoid norm 0 ≤ a ≤ 1 with respect to E(µ1,Σ1) and
ellipsoid norm 0 ≤ b ≤ 1 with respect to E(µ2,Σ2), then its ellipsoid norm with
respect to the fused ellipsoid is

0 ≤ λ̃a+ (1− λ̃)b+ k − 1

k
≤ 1.

For diagonal ellipsoids for which 0 ≤ k ≤ 1, the above implies that the ellipsoid
norm of x with respect to the fused ellipsoid is at most λ̃a+(1− λ̃)b ≤ max(a, b).

4.3 Perfect Hints, Revisited

A perfect hint on the secret (c||s) is the knowledge of v ∈ Zd and γ ∈ Z, such
that ⟨(c||s),v⟩ = γ. We assume that v ∈ Span(Σ).

In our previous work, the resulting instance after incorporating a perfect hint
was based on the conditional distribution of a multi-variate gaussian. Instead,
we make use of ellipsoid-hyperplane intersection.

Recall the definition of a hyperplane in 2.8. Here, a perfect hint can represent
the knowledge that the secret (c||s) is located on a hyperplane defined by (v, γ).
Thus, we can intersect both the ellipsoid and the lattice with H(v, γ). An
advantage of this approach presents itself when dealing with non-homogeneous
instances. If the hyperplane does not cut through the center of the ellipsoid, the
volume of the intersection can be lower than before.

Homogeneous instances. For homogeneous instances, the process for integrat-
ing perfect hints is fairly straightforward. It relies on the ellipsoid-hyperplane
intersection procedure of the ellipsoid method (4,7). Given a DBDD instance
DBDDΛ,µ,Σ , a homogeneous perfect hint produces a new instance DBDDΛ′,µ′,Σ′ ,

Λ′ = Λ ∩H(v, 0) (21)

µ′ = µ− α
vF(Σ)√
vF(Σ)vT

(22)

Σ′ = F−1

(
(1− α2)

(
F(Σ)− F(Σ)vTvF(Σ)

vF(Σ)vT

))
(23)

for −1 < α ≤ 1, where α is defined as in (6).

Quantitative volume and rank reduction. Note that the rank of Σ′ is r−1,
where r is the rank of Σ. Using (a generalization of) the matrix determinant
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lemma and properties of rdet and Σ∼, we have that

rdet(Σ′) =

(
r(1− α2)

(r − 1)

)r−1

· vvT

vΣvT
· rdet(Σ).

Non-homogeneous instances. Note that the above formulation is not com-
plete for non-homogeneous instances. Intersecting the lattice with a hyperplane
where γ ̸= 0 results in a shifted lattice coset. This severs the connection between
the lattice points and the ellipsoid if the exact shift applied is unknown. There
are simple geometric relationships that we can use to solve this problem easily,
but they quickly become infeasible when applying multiple perfect hints.

Our solution is to find a point y in the lattice coset and shift the entire
instance by y. This means that the lattice coset is now the zero coset (i.e. it is
again a lattice), and the hyperplane contains the origin, while the center of the
ellipsoid is now shifted by y. This allows us to achieve the smaller intersected
volume due to non-homogenized instances, mentioned above. Finally, note that
the solution that is obtained from this DBDD instance will now also be shifted
by y, and so to recover the original solution we must shift back by y. Thus, we
propose the following procedure.

First, observe that each perfect hint imposes a linear constraint on the space
of feasible solutions in Λ. Therefore, we can combine all perfect hints into a
linear system. Let V ,γ denote such a system, where V ∈ Zd×t,γ ∈ Zt, and t
is the number of perfect hints to be integrated. Further, let y ∈ Λ be a solution
to the above system (i.e. yV T = γ). For non-homogeneous instances, y will not
correspond to the origin. We then shift the ellipsoid (and thus the secret) by
y so that ((c||s) − y)V T = 0. For non-homogeneous instances, given a DBDD
instance DBDDΛ,µ,Σ , we obtain a new instance
DBDDΛ′′,µ′′,Σ′′ , where

Λ′ = [Λ ∩H(V ,γ)] + y (24)

E(Rank)(µ′′,Σ′′) = E(Rank)(µ′ − y,Σ′) (25)

and E(Rank)(µ′,Σ′) is obtained by applying (22) and (23) for all perfect hints
described by V ,γ. Note also that (with a slight abuse of notation H(V ,γ) refers
to the intersection of hyperplanes that meet the constraints of the V , γ linear
system. We note that for our proposed Kannan Ellipsoid embedding, we can
solve a system of linear diophantine equations to obtain y, as the lattice is Zd

when perfect hints are integrated first.
Such a system can be solved efficiently using the LLL algorithm or through

computing the Hermite Normal Form. We would like to make sure our offset y
does not become too large, as this induces numerical errors. Solving the com-
bined system (c||s)V = γ AND [(c||s)B + (b||0)](Im||A)T − qc = b can be
done over the integers, (the above uses B defined in (14)) but the solutions be-
come extremely large. Instead, as long as there are at most n perfect hints to
integrate, we are left with enough free parameters that we can jointly solve the
diophantine system and the LWE equations modulo q. More specifically, we first
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solve the diophantine system [(e||s)− (b||0)]B−1)V = γ to get a small integer
solution ȳ. In fact, we obtain a solution family {ȳ + xU |x ∈ Zd−t}, where
U is the unimodular transformation matrix of the Hermite Normal Form of V
of dimension (d − t) × d. Then, we solve the system, (ȳ + xU)(Im||A)T ) = b
mod q, with m equations and d− t ≥ m variables. Thus, our final y = ȳ + xU
is a solution to both systems. This then bounds the value of each coordinate of
y by at most q (given the solutions of the first system are sufficiently small).
Finally, y must be converted into the (c||s) solution space via the relation in
Section 3.3.

4.4 Short Vector Hints, Revisited

A short vector hint on the lattice Λ is the knowledge of a short vector v such
that v ∈ Λ.

In [17], these short vector hints were features of the DBDD lattice specific to
the LWE embedding derived from Kannan’s embedding. For example, LWE in-
stances give rise to q-ary lattices under Kannan’s embedding. Therefore so-called
“q-vectors” with value q in a single coordinate and 0’s in all other coordinates are
short vectors (magnitude q) that are always contained in this lattice. The main
intuition behind explicitly integrating this information into the DBDD instance
is that if one knows a “good enough” lattice vector v that is not the secret, then
that vector can be treated as a fixed basis vector. Projecting orthogonally to v,
then results in a tradeoff between dimension and lattice volume that can result
in an easier instance to solve. The lost dimensions can be recovered through
solving a system of linear equations over the rationals.

Note that in [17], the short vector hints were integrated into the lattice before
isotropization. For our embedding of LWE into DBDD, the lattice is simply the
integer lattice Zd before isotropization (unless perfect hints have been integrated,
but even in that case the lattice includes only information about the perfect hints,
and not the LWE instance itself). Integrating short vector hints for the lattice
Zd makes little sense, since providing a good basis vector for the lattice Zd with
basis Id is clearly unnecessary. However, we still want to somehow integrate the
information contained in the q-vectors discussed above into our DBDD instance.
More generally, for full compatibility with the prior work, we would like to be
able to integrate any of the short vector hints discussed in [17] into our DBDD
instance (e.g. the short vectors can have a different form after perfect hints
are integrated). To do this, we can simply (partially) revert back to the Kannan
embedding lattice to integrate short vector hints. To accomplish this, we perform
the following coordinate space transformation:

Λ′ = ΛB

E(µ′,Σ′) = E(µB,BTΣB)

We refer to this transformation as “partial isotropization,” since Λ′ would be the
result of full isotropization only in an instance where no hints were integrated.
Note that if the instance was not homogeneous, then the resulting secret is
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(e+b||s). From here, short vector hints can applied as in the prior work [17]. After
they are integrated, we perform homogenization and isotropization as normal to
complete the reduction to uSVP.

We can also integrate short vector hints with respect to the fully isotropized
lattice Λ ·M , where M := (

√
Σ)

∼
(assuming such short vectors in Λ ·M are

known).
As pointed out by an anonymous reviewer, the procedure described above

is equivalent to integrating knowledge of the short vectors of the DBDD lattice
Λ before isotropization, but where (1) length is measured with respect to the
ellipsoid norm defined by the DBDD shape matrix Σ, and (2) projections are
performed using the inner product induced by Σ.

As with the prior work, it is crucial to integrate these hints last. Thus, this
coordinate space transformation will not need to be applied to other hints.

5 Experimental Validation and Applications

5.1 Experimental Validation

For (1) perfect hints, (2) inequality hints, (3) combined hints, we compare the
bikz predicted by our tool with the bikz actually needed to launch the attack
and recover the LWE secret/error. For (1) and (2), we choose the same set of
LWE parameters for the initial instances as in [17], and integrate an increasing
number of hints of each type.

For (1), the curve labeled “Prediction (DDGR20)” uses DBDD instances ob-
tained by integrating perfect hints via the approach of [17], while “Prediction
(Ours)” uses our new approach. We display a single “Experiments” curve since
the EBDD and DBDD instances differ only by a scaling factor, which does not
impact the bikz (as verified experimentally). To see why our predictions differ,
compare the equations for Σ of the resulting distribution/ellipsoid, i.e., equa-
tion (10) in [17] and equation (7) in the current work. The main difference lies
in the term (1 − α2), where α represents the signed distance of the hyperplane
from the center of the ellipsoid as defined in 6. Both the magnitude of γ and the
length of v impact the value of α.

For (2), we create inequality hints by simulating a known (small) absolute
error. Given a hint vector v, we create the hint ⟨v, (e||s)⟩ ≥ γ − 2, where γ is
the inner product of v with the correct secret. Our predicted bikz–the “scaled”
estimate–take into account the length of the shortest vector in our final lattice as
in (11) as it deviates from the expected value assumed in (13). When integrating
large numbers of inequality hints the ellipsoid norm of the secret w.r.t. the
DBDD instance is significantly lower than the rank, while (13) holds under the
assumption that the ellipsoid norm is approximately equal to the rank. This leads
to overestimation of the hardness when applying (13)–the “unscaled” estimate.
As such, we also use this calibration when examining the hardness loss resulting
from decryption failures in Section 5.2.

For (3) we use the same set of LWE parameters to construct an initial DBDD
(see Section 3.3) instance. We then perform combined hints with the initial
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LWE Parameters
n = m = 70, q = 3301, σ2 = 20

Hint Type Parameter

Perfect hints –
Inequality hints ±2
Combined hints [20, (20/49)]

The hint vectors v for inequality and
perfect hints were chosen as random
ternary vectors of weight 5.

Fig. 1: Experimental verification of the bikz predictions for each type of hint. Each
data point was averaged over 256 samples. Inequality and perfect hint validation were
conducted by integrating successively larger numbers of hints. Combined hint validation
was conducted by integrating instances with decreasing ellipsoid volume (see (26)).

DBDD instance and each of the DBDD instances corresponding to the ellipsoids

E(Rank)((c||s) + E , (20/i) · Im+n), (26)

where E ∼ N (0, (20/i) · Im+n) for i ∈ [1, 49]. See Figure 1 for details.

5.2 Decryption Failures, Revisited

Decryption failures exactly correspond to inequality hints from Section 4.1. Thus,
the naive approach to running a decryption failure attack is to iteratively inte-
grate each decryption failure as an inequality hint, obtaining a series of ellipsoids
with volumes that are strictly decreasing. To test the efficacy of this approach,
we mounted a decryption failure attack on a toy FrodoKEM [6] parameter set.
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Fig. 2: 50 key pair average ellipsoid norm (left), predicted β and experimental β
(right) for integrating up to 20 decryption failures from a toy frodo-80 parameter
set with n = m = 80, q = 211. Inequality hints were integrated in order of
decreasing α (as defined in (6)).

We set n = m = 80 and q = 211, while we kept the secret/error distribution iden-
tical to that of the frodo-640 parameter set. This had the benefit of reducing the
initial hardness of each instance to β ≈ 45, while raising the empirical decryp-
tion failure rate to 0.44. We then generated a small database of 20 decryption
failures for each of 50 different key pairs. For each key pair we integrated the de-
cryption failures as both inequality hints and full dimensional approximate hints
using the approach from [17]. After integrating each hint, we recorded both the
predicted and experimental β as well as the ellipsoid norm for both approaches.
A plot of the averages from all 50 key pairs can be seen in Figure 2.

In the left figure, the ellipsoid norm of the LWE secret increases with the
integration of approximate hints. An ellipsoid norm greater than 1 indicates that
the secret is not contained in the DBDD ellipsoid. The formulation of decryption
failures as approximate hints in [17] approximates the search space as spherical
when in fact failures are biased in the direction of the secret. Thus, after a large
number of integrated hints, the approximated search space no longer contains
the secret. Since the hardness estimates depicted in the right figure assume
that the secret is contained in the DBDD ellipsoid, they are far lower than the
experimental BKZ-β.

With decryption failures modeled as inequality hints, the predicted loss in
β is more modest, but the experimental β effectively matches the predictions.
Note here, that compared to Figure 1, inequality hints are more effective. When
the hints are correlated with the secret, we find that α (6) is larger and therefore
the volume reduction is larger (see (5)). The decrease in β levels off after around
10 inequality hints are integrated. For full-sized decryption failures (discussed
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next) we introduce a “regeneration” technique to allow for continued progress.

Full-sized Decryption Failures. We experimented with applying our inequal-
ity hint approach to the recent decryption failure attack of Fahr et al. [24]. In
their work, the public key of FrodoKEM [6] (NIST level 1 frodo-640) was altered
by injecting faults via the Rowhammer exploit to significantly increase the de-
cryption failure rate (by effectively lowering the decryption failure threshold).
This enables an attacker to search for failing (honestly generated) ciphertexts
in a reasonable amount of time and thus this scenario is more amenable for the
experiments in this section.

When instantiating our naive approach in the Fahr et al. [24] setting, we
find that while the first batch of hints reduce the volume as expected (e.g. for
the first hint if a vector w causes decryption to fail with probability p over
choice of secret key, then we see a reduction of volume by nearly a factor of
p), hints quickly lose their efficacy, until almost no progress is made in terms
of volume reduction as new hints are integrated. In fact, we found that the
center of the successive ellipsoids obtained by integrating a sequence of inequality
hints converges very quickly to a feasible solution (i.e. a solution that satisfies
all the linear constraints). This is due to the one-sided nature of the linear
inequalities corresponding to decryption failures. The intersection of a finite
number of halfspaces pertaining to these inequalities is an unbounded region of
space. Thus, a feasible solution sufficiently inside this region will not be affected
by any new constraints of the same form.

After ≈ 200 hints for simulated failures on Frodo-640 [6] the center, µ itself
satisfied all prior and future inequality hints, which corresponds to a terminating
condition in the ellipsoid method. The full key recovery attack of Fahr et al. [24]
required ≈ 100, 000 hints, so reaching a feasible solution after 200 hints is quite
surprising. Unfortunately, the Euclidean distance between µ and the true LWE
secret/error remained quite large, so µ itself was not a good candidate solution.
Nevertheless, we found that µ contains a lot of information about s: We argue
next that if µ satisfies all hints, then ⟨µ, s⟩ ≥ ⟨s, s⟩ ≈ σ2

s · n.
As observed in [17], the distribution of hint vectors w decomposes as w =

α · s/||s||+w′, where α is a random variable with expectation ≈ t/||s|| (where
t is the decryption failure threshold) and w′ is a zero-centered random variable
orthogonal to s. So for a fixed center µ,

E[⟨µ,w⟩] = E[α] · ⟨µ, s⟩/||s|| ≈ t · ⟨µ, s⟩/||s||2 = t · ⟨µ, s⟩/⟨s, s⟩.

If we find empirically, for a sufficiently large hint database, that E[⟨µ,w⟩] ≥ t–
which occurs if µ satisfies all previous and future hint inequalities–it implies that
⟨µ, s⟩ ≥ ⟨s, s⟩.
Inequality Hints with Regeneration. To solve the issue of stalled progress
as well as issues of numerical precision, we developed the regeneration approach
in Algorithm 1.

When the center µ of the successive ellipsoids becomes such that ⟨µ, s⟩ ≥ σ2
s ·

d, we simply use µ itself to perform an inequality hint on a fresh DBDD instance.
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Algorithm 1 Integrating Decryption Failures Using Regeneration

Input: System of decryption failure hints: (W ,γ), LWE instance,
Maximum allowed regenerations: MaxRegen

Output: DBDD instance with integrated decryption failures
1: Wregen := [ ]
2: for i = 0 to MaxRegen− 1 do
3: DBDD← LWE.embed()
4: for j = 0 to i do
5: DBDD.IntegrateIneqHint(−Wregen[j],−LWE.σ2

s · LWE.d)
▷ Inequality hints formulated for ≤

6: while Mean(DBDD.µ ·W T ) < LWE.t do ▷ Failure threshold
7: IntegrateNextHint(DBDD,W ,γ) ▷ Use some hint integration strategy
8: append DBDD.µ to Wregen

9: return DBDD

Specifically, we regenerate the initial ellipsoid according to our embedding and
integrate the hint ⟨µ, s⟩ ≥ σ2

s · d. Once this is done, we find that we can again
make progress for some time by integrating more decryption failures. When
progress stalls again, we simply regenerate again.

An attacker cannot directly check the condition for regeneration (⟨µ, s⟩ ≥
σ2
s · d). Instead, the attacker can use the empirical value of E[⟨w,µ⟩], calculated

using all w corresponding to failing ciphertexts in the attacker’s database. In
the case that ⟨µ, s⟩ ≥ σ2

s · d, we expect E[⟨w,µ⟩] ≥ (1 + ϵ) · t where ϵ is a safety
margin due to the uncertainty in the empirical expected value.

To evaluate the effectiveness of regeneration compared to the full dimen-
sional approximate hint-based hardness estimates in [17], we continued to use
the scenario of Fahr et al. [24]. For our experiment, we generated several sim-
ulated public keys (i.e. we directly modified honestly generated public keys to
reproduce the result of the fault injection). Then, we searched for 4000 failing
ciphertexts for each key. We integrated these 4000 hints as full-dimensional ap-
proximate hints and inequality hints with regeneration on two separate DBDD
instances. We set the decryption failure threshold t = 1024 corresponding to the
effect of the fault injection attack. The results can be seen in Figure 3.

Since the obtained E(Rank)(µ,Σ) no longer represents a multivariate Gaus-
sian distribution (unlike in [17]), the expected value of the rank-scaled ellipsoid
norm of the LWE secret may be far less than the rank. Observe that in Figure 3,
the ellipsoid norm of the secret is less than half of the rank, which is 1279. To
account for this, we compute the estimated BKZ–β using equation (11). This is
equivalent to scaling the E(Rank)(µ,Σ) until the ellipsoid norm of the secret is
equal to the rank, and then applying equation (13).

As highlighted in Section 4.1, the volume reduction incurred when integrating
an inequality hint is almost entirely determined by the geometric parameter
α defined in (6), since the determinant of Σ scales by (1 − α2)d. Using our
regeneration approach, we were able to achieve improved β levels compared to
the full dimensional approximate hints approach of [17] by integrating only 959-

29



Full-Dimen.
Approx. Hints

Inequality Hints

Key 1 Key 2 Key 3 Key 4 Key 5

Initial BKZ–β 487.08 487.08 487.08 487.08 487.08 487.08
Ciphertexts 4000 1224 1106 959 986 965
Ellipsoid Norm – 322.61 213.55 590.57 546.58 485.14

Final BKZ–β 307.85 295.68 279.78 284.47 283.67 284.70

Fig. 3: Comparison of BKZ blocksize β estimates for a fault injection assisted decryp-
tion failure attack using 4000 failing ciphertexts for 5 different (simulated) poisoned
Frodo-640 public keys. The final scaled estimates result from shrinking the final ellip-
soid by a factor of Rank(Σ)/∥s∥Σ .

1224 hints in total, as opposed to 4000 hints. To achieve this, we used a greedy
algorithm that at each stage chose the hint with the largest α value to integrate.

We further note that while it is possible to obtain a β estimate using the
full-dimensional approximate hint approach from the prior work by utilizing the
ultra-lightweight version of the framework [17], it is not possible to compute
the uSVP lattice basis itself required to run BKZ due to high computational
overhead. In contrast, our new inequality hint-based method is more efficient
and so allows us to compute the final ellipsoid covariance matrix necessary for
the reduction from DBDD to uSVP, and consequently would allow one to run a
full key recovery attack given a sufficient number of hints.
A geometric approach to failure boosting. The α value for a candidate
hint, given the current information encapsulated by the ellipsoid, can be used as
a proxy for the probability that the query will lead to decryption failure: The
smaller α is, the higher the probability of decryption failure. Thus, computing
this α value before submitting a decryption query provides a geometric analogue
to the failure boosting approach of D’anvers et al. [20].

We tested this on a small scale by again using the scenario presented by Fahr
et al. [24]. Here, instead of generating a database of 4000 failing ciphertexts,
we generated a database of 100k candidate ciphertexts (note that in the Fahr
et al. [24] there is a way to filter candidate ciphertexts that have a relatively
high chance of causing a decryption failure). Of these, only 34 actually caused
decryption failures (this is consistent with the decryption failure rate (DFR) for
filtered ciphertexts reported by Fahr et al. [24]). We integrated these 34 failing
ciphertexts as inequality hints in order of decreasing α, each time calculating
the histogram of α values for the remaining ciphertext database. Figure 4 shows
the evolution of the histogram as more hints are integrated.

Next, we looked to quantify the number of decryption queries required to find
all 34 failures, compared to naively querying the database by a linear scan. All
34 failures had α values in the [0.07, 0.12] range, so we only submitted decryp-
tion queries for ciphertexts with corresponding α values at each step sorted in
ascending order. To obtain all 34 decryption failures in the database, we found
that it took 39785 queries versus 94894 for a linear scan.
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Fig. 4: Histograms of α values for a database of 100k ciphertexts after integrating 1
(top), 10 (bottom-left), and 34 (bottom-right) inequality hints based on the failing
ciphertexts in the database.

Essentially, we can profile the range of α values for the i-th hint and obtain
a range [αi

low, α
i
high], for which a decryption failure is most likely. We can then

run the following online algorithm when making decryption queries to find the
i-th hint to integrate into the ellipsoid: Let S be the set of all failing decryption
queries made up to this moment. First, search S to try to find a query with
α value in the range [αi

low, α
i
high] with respect to the current ellipsoid. If such a

query is found, integrate it into the ellipsoid. Otherwise, generate a set S′ of
candidate hints of some calibrated size s′. For each w ∈ S′, compute its α value.
If α /∈ [αi

low, α
i
high] then remove w from S′. Sort the entire set S′ from smallest to

largest α value. Make decryption queries in this order until a failing ciphertext
is found. Once found, add w to S and integrate w into the current ellipsoid.

5.3 Combining Decryption Failure and SCA

We illustrate our “Combined Hints” approach from Section 4.2 by combining
information on a single (e||s) pair from a decryption failure and a side-channel
attack. In a recent work, Fahr et al. [24] showed that, for FrodoKEM, obtaining
m′ number of vectors corresponding to random decryption failures, scaling them
by a constant that depends on the parameters of the cryptosystem, and taking
their coordinate-wise mean, approximates a draw from the distribution D′ :=
(e||s)+W ′′

(m), where the error W ′′
(m) is a d-dimensional Gaussian with mean 0 and

covariance matrix σ2
df ·Id, where σ2

df ≤ d2σ6
1/(t

2m′), σ2
1 is the error of the original

distribution, d is the dimension of the LWE secret/error, and t is the decryption
failure threshold. Rearranging terms, given a draw µdf ∼ D′, the secret is equal
to s = µdf + W ′′

(m). This means that the secret is contained in the rank-scaled
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ellipsoid E(Rank)(µdf ,Σdf ), where Σdf = σ2
df · Id. Note that we could have used

the results of Section 5.2 to obtain a DBDD instance with better parameters
than the one corresponding to E(Rank)(µdf ,Σdf ). Further, this instance would
no longer correspond to a non-centered Gaussian distribution over the secret,
and in fact the PDF of the secret would be unknown. Obtaining such a DBDD
instance with the target σ2

df value needed for our experiment would be very
computationally intensive. Therefore, for our illustration of the combined hints
technique, we use the rank-scaled ellipsoid E(Rank)(µdf ,Σdf ) described above to
capture the DBDD instance obtained from the decryption failure information.

Bos et al. [13] studied the feasibility of single-trace power analysis of the Frodo
Key Encapsulation Mechanism (FrodoKEM). Subsequently, Dachman-Soled et
al. [17] used this information to conduct a side-channel attack on FrodoKEM on
various parameter sets (CCS1, CCS2, CCS3, CCS4, NIST1, NIST2). Dachman-
Soled et al. [17] used the score tables constructed from Bos et al. [13] to form an
a posteriori distribution incorporating the side-channel information and used the
information from the distribution tables to “guess” a large subset of coordinates
when the confidence in the guess (where the confidence was calculated using the
aforementioned score tables) was sufficiently high.

5.3.1 The Baseline Approach The prior work [17] incorporated the side-
channel information, represented by DBDD instance with E(Rank)(µsc,Σsc), us-
ing approximate a posteriori hints. In this method, the mean and covariance
matrix of the a posteriori distribution (say on the s variables only) is calcu-
lated and then fully replaces the part of the covariance matrix in the DBDD
instance that corresponds to the s variables. This method was suggested by [17]
as an alternative to “conditioning” approximate hints. In our case, both Σdf

and Σsc are diagonal matrices. Therefore, the a posteriori hints approach, which
we refer to as the Baseline approach, yields the following rank-scaled ellipsoid,
E(Rank)(µba,Σba): For each i ∈ [d], if Σsc[i][i] ≤ Σdf [i][i], set Σba[i][i] = Σsc[i][i]
and µba[i] = µsc[i]. Otherwise, set Σba[i][i] = Σdf [i][i] and µba[i] = µdf [i].

5.3.2 Ellipsoid/Ellipsoid Intersection. For an ellipsoid E = (µ,Σ)
(resp. rank-scaled ellipsoid Erank = (µ,Σ)), we denote by ES = (µS , ΣS)
(resp. Erank

S = (µS , ΣS)) the ellipsoid (resp. rank-scaled ellipsoid) resulting
from the restriction of the center and shape matrix of E (resp. Erank) to a
set of coordinates S. For an ellipsoid E, we denote by nE the ellipsoid norm
of the correct solution with respect to E. Let Erank

DF = E(Rank)(µdf ,Σdf ) and
Erank

B = E(Rank)(µba,Σba). Restricting to the set S of secret (no error coordi-
nates), let Erank

int,S = E(Rank)(µint,S ,Σint,S) be the ellipsoid circumscribing the

intersection of Erank
DF,S = E(Rank)(µdf,S ,Σdf,S) and Erank

B,S = E(Rank)(µba,S ,Σba,S).

Let the diagonal of Σba,S be denoted by (σ2
2,1, . . . , σ

2
2,n). Let c = µba,S − µdf,S .

We simplify (19) and (20) as follows:

F(Σint,S) = kX−1; X = λ̃F(Σdf,S)
−1 + (1− λ̃)F(Σba,S)

−1

µint = (µdf,S λ̃F(Σdf,S)
−1 + µba,S(1− λ̃)F(Σdf,S)

−1)X−1
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k = 1− λ̃(1− λ̃) · 1
n

∑
i∈[n]

c2i
λ̃σ2

2,i + (1− λ̃)σ2
df

and λ̃ ∈ [0, 1] is the value that minimizes the determinant of Σint,S . Specifically,

det(Σint,S) = kn ·
∏
i∈[n]

(
λ̃

σ2
df

+
1− λ̃

σ2
s2,i

)−1

. (27)

The terms in the product on the right side of equation (27) correspond to
weighted harmonic means of σ2

df and σ2
2,i, for each i. While the harmonic mean

tends towards the smaller element, it is at least as large as the minimum of the
two values. This is then compensated by multiplication by k, which is always at
most 1. However, due to the negative influence of the harmonic mean on the final
determinant, we experiment with intersecting only on coordinates i for which the
gap between σ2

df and σ2
2,i is not too large.

5.3.3 Conditions 1 and 2. We consider two candidate methods of perform-
ing intersection: In the first method, referred to as Condition 1, we restrict the
intersection to the dimension n− g ellipsoids (where g is the number of guesses)
corresponding to the coordinates of the LWE secret (but not the error) that are
not guessed. This is essentially equivalent to performing the intersection after
guesses are made on the remaining coordinates of the LWE secret. For the re-
maining coordinates, we follow the baseline approach. In the second method,
referred to as Condition 2, we restrict the intersection to the dimension n′ el-
lipsoids corresponding to the coordinates i of the LWE secret (but not the error),

for which σ2
2,i is in the range [

σ2
df

5 , σ2
df ]. For the remaining coordinates, we again

follow the baseline approach.

5.3.4 The known and unknown cases Let EDF,S = E(µdf,S ,F(Σdf,S))
and EB,S = E(µba,S ,F(Σba,S)). We restrict ellipsoids EDF,S and EB,S to a set
of coordinates P ⊆ S corresponding to Condition 1 or 2, yielding EDF,P and
EB,P . These are then intersected to yield Eint,P , and Eint,P is substituted for the
set of P coordinates in EB,S yielding Eint,S . To maintain consistency of hardness
estimates, we would like to keep nEint,P

= nEB,P
. Further, ellipsoid/ellipsoid in-

tersection performs best when intersecting two ellipsoids EDF,P and EB,P such
that nEDF,P

= nEB,P
= 1, since points on the surface of both EDF,P and EB,P

also lie on the surface of Eint,P .
Assuming that nEDF,P

and nEB,P
are known, we scale EDF,P by nEDF,P

and
EB,P by nEB,P

, so that the correct solution lies on the surface of both scaled
ellipsoids, and hence on the surface of Eint,P . We then scale Eint,P by 1/nEB,P

,
to ensure that nEint,P

= nEB,P
. This yields the optimal volume reduction while

maintaining the norm constraint but requires knowledge of nEDF,P
and nEB,P

.
We refer to this case as the known case.

While nEDF,P
is fairly stable (since the decryption failure ellipsoid is a mul-

tivariate Gaussian in our experiments), nEB,P
can fluctuate. We therefore also
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Baseline
Approach

Combined Hints

Condition 1 Condition 2
unknown/known unkown/known

Original BKZ–β 268.83 – –
DF BKZ–β 203.02 – –
SC BKZ–β before guess 114.22 – –
SC BKZ–β after guess 68.65 – –
ln(Vint/Vbase) – -26.49/-30.47 -23.46/-32.24
BKZ–β before guesses 97.86 95.91/94.83 96.22/94.66
Number of guesses 190 190/190 190/190
Guess Success % 0.76 0.76/0.76 0.76/0.76

Final BKZ–β 52.20 50.19/ 49.18 50.50/ 49.00

Fig. 5: Comparison of bikz estimates for FrodoKEM with CCS1 parame-
ters. Results are the average of 150 randomly generated instances. Starting from the
top row, we report the original bikz, the bikz for only the decryption failure attack,
and the bikz for only the side channel attack, before and after guesses (throughout
we condition on all guesses being correct). We compare the baseline approach (Sec-
tion 5.3.1) with two combined hints approaches using Condition 1 or 2 (Section 5.3.3)
to select the set of coordinates for intersection. For each, we consider the known and
unknown cases (Section 5.3.4). We next report the ln of the ratio of the volumes of
the intersected and baseline ellipsoids (for the unknown case, these are reported after
calibration (Section 5.3.4)). For each, we report the bikz without guesses, the number
of guesses, the probability that all guesses are correct and the final bikz after guesses.

explore the case in which the adversary is not presumed to know nEDF,P
and

nEB,P
. We refer to this case as the unknown case, and we next describe the

algorithm for this case. We find experimentally that with probability at least
1/2, nEDF,P

≤ 0.9 ·nEB,P
. We scale EDF,P by 0.9 before intersection. In the case

that indeed nEDF,P
≤ 0.9nEB,P

, we have by Remark 6, that nEint,P
≤ nEB,P

. In
the case that nEDF,P

> 0.9nEB,P
, it may be the case that nEint,P

> nEB,P
8 To

take into account the fact that nEint,P
can now be smaller or larger than nEB,P

,
we use equation (11) to calibrate the predicted β value with respect to the entire
instance (including error coordinates).

We present our experimental results with decryption failure information mod-
eled as described above, with σ2

df = 0.25, and with side-channel data obtained
from the single trace attack of Bos et al. [13] on FrodoKEM. As in [17], we incor-
porate guesses when the side-channel distribution for a secret coordinate allows
for a high confidence guess. Figure 5 displays the predicted hardness (in bikz)
of the original and baseline DBDD instances, the intersected instances obtained
using Condition 1 and 2, in both the known and unknown cases, both with and

8 Note that in our experiments it was always the case that 1/0.9nEDF,P ≤ 1 so the
intersection is always non-empty.
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without guesses, for the CCS1 parameter set. 9 Our approach lowers the required
number of bikz as compared to the baseline approach by 2-3 bikz.
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A Overview of the Ellipsoid Method

A linear program is an optimization problem of a linear objective function sub-
ject to linear equality and linear inequality constraints. The set of feasible so-
lutions (if any exist) correspond to a region contained within a convex body
K. For any convex body K, the optimal (i.e. minimum volume) circumscribing
ellipsoid is known as the Löwner-John Ellipsoid. In general, these ellipsoids are
hard to compute, but special cases, including intersections between ellipsoids
and hyperplanes, halfspaces, or spaces between two parallel hyperplanes, have
closed form expressions. If the solution of the linear program is initially known
to be contained in some ellipsoid, the linear program’s constraints can be used to
obtain successively smaller volume ellipsoids by computing these Löwner-John
ellipsoids in an iterative fashion. This procedure can then be used to determine
feasibility: (1) In each iteration, check whether the center of the current ellipsoid
satisfies the linear constraints. (2) If the center satisfies all constraints, then the
center is a solution. (3) Otherwise, there is some constraint that is not satisfied
by the center. Set the new ellipsoid to be the Löwner-John ellipsoid circumscrib-
ing the intersection of the current ellipsoid and the halfspace of the unsatisfied
constraint. Continue to the next iteration. (4) If at some point the volume of the
ellipsoid becomes sufficiently small, conclude that the linear program is infeasi-
ble. The fact that the ellipsoid method is polynomial time is implied by the fact
that the volumes of the successive Löwner-John ellipsoids become sufficiently
small in a polynomial number of steps.

B Proof of Theorem 4.1

We restate Theorem 4.1, followed by the proof.

Theorem 4.1. Let c ∈ Rd denote the d-dimensional vector that has c ∈ R
in each position. Let σ2

1 , σ
2
2 ∈ R be such that σ2

2 < σ2
1. Consider the rank-

scaled ellipsoids E(Rank)(µ1,Σ1) = E(Rank)(0, σ2
1Id) and E(Rank)(µ2,Σ2) =

E(Rank)(c, σ2
2Id). Then the volume of E(Rank)(µ′,Σ′) is lower than both the vol-

ume of E(Rank)(µ1,Σ1) and E(Rank)(µ2,Σ2) if and only if c2 > σ2
1 − σ2

2.

Proof of Theorem 4.1. Recall that E(µ′,F(Σ′)) = E(Rank)(µ′,Σ′) is defined as
follows:

F(Σ′) = kX−1,

X = λF(Σ1)
−1 + (1− λ)F(Σ2)

−1

µ′ =
(1− λ)

dσ2
2

cX−1

k = 1− λ(1− λ)
c2

λσ2
2 + (1− λ)σ2

1

,
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for some λ ∈ [0, 1]. The determinant of Σ′ is

kd · ( σ2
1σ

2
2

λσ2
2 + (1− λ)σ2

1

)d (28)

Thus, the volume of E(Rank)(µ′,Σ′) decreases if and only if there is a setting of
λ ∈ [0, 1] for which (28) is less than (σ2

2)
d, which is the determinant of Σ2.

This constraint is satisfied if and only if

k · σ2
1σ

2
2

λσ2
2 + (1− λ)σ2

1

< σ2
2 .

Substituting k from above we get the requirement that:(
1− λ(1− λ)

c2

λσ2
2 + (1− λ)σ2

1

)
· σ2

1σ
2
2

λσ2
2 + (1− λ)σ2

1

< σ2
2 .

Which is true if and only if there exists a λ ∈ [0, 1] such that:

f(λ) = (λ·(σ2
1σ

2
2−σ4

1−σ2
1c

2)+σ2
1λ

2c2+σ4
1) < (λ2·(σ2

2−σ2
1)

2+2λ·(σ2
1σ

2
2−σ4

1)+σ4
1) = g(λ),

or equivalently, there exists a λ ∈ [0, 1] such that:

g(λ)− f(λ) = (g − f)(λ) > 0. (29)

Note that when λ = 0, (g − f)(λ) = 0, and that when λ = 1, (g − f)(λ) < 0.
Thus, since (g − f)(λ) is a degree-2 function of λ, the condition from equation
(29) is true if and only if the derivative of (g − f)(λ) is positive at λ = 0.

We have that:
(g − f)′(0) = σ2

1σ
2
2 − σ4

1 + σ2
1c

2.

Given the above, (g − f)′(0) > 0 if and only if c2 > σ2
1 − σ2

2 .
Thus, the volume of E(µ′,F(Σ′)) will be smaller than the volume of

E(µ2,F(Σ2)) if and only if c2 > σ2
1 − σ2

2 . This implies that the volume of
E(Rank)(µ′,Σ′) will be strictly less than the volume of E(Rank)(µ2,Σ2) if and
only if c2 > σ2

1 − σ2
2 . This concludes the proof of Theorem 4.1.
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